
1

Software Quality and Agile Methods

Ming Huo, June Verner, Liming Zhu, Muhammad Ali Babar

National ICT Australia Ltd. and University of New South Wales, Australia
{mhuo, jverner, limingz, malibaba }@cse.unsw.edu.au

Abstract

Agile methods may produce software faster but we

also need to know how they meet our quality

requirements. In this paper we compare the waterfall

model with agile processes to show how agile

methods achieve software quality under time pressure

and in an unstable requirements environment, i.e. we

analyze agile software quality assurance. We present

a detailed waterfall model showing its software

quality support processes. We then show the quality

practices that agile methods have integrated into

their processes. This allows us to answer the question

“Can agile methods ensure quality even though they

develop software faster and can handle unstable

requirements?”

1 Introduction

Ever since Kent Beck introduced Extreme

Programming [1], agile software development has

become a controversial software engineering topic.

Practitioners and researchers argue about the benefits

of it, others are forcefully against agile methods,

while others suggest a mix of agility and plan-driven

practices [2]. However, the reality is that agile

methods have gained tremendous acceptance in the

commercial arena since late 90s because they

accommodate volatile requirements, focus on

collaboration between developers and customers, and

support early product delivery. Two of the most

significant characteristics of the agile approaches are:

1) they can handle unstable requirements throughout

the development lifecycle 2) they deliver products in

shorter timeframes and under budget constraints

when compared with traditional development

methods [3-6]. Many reports support the advantages

of agile methods. However, proponents of agile

methods have not yet provided a convincing answer

to the question “what is the quality of the software

produced?” Does agility provide enough rigors to

ensure quality, as do traditional development

methods, e.g., waterfall model, and if agile methods

do provide the same level of quality then how is it

achieved?

We now compare the quality assurance techniques

of agile and traditional software development

processes. Our approach consists of three steps: 1)

build a complete outline of the traditional waterfall

model including its supporting processes, 2) identify

those practices within agile methods that purport to

ensure software quality, 3) determine the similarities

and differences between agile and traditional

software quality assurance techniques. By applying

such an approach, we can systematically investigate

how agile methods integrate support for software

quality within their life cycle.

The rest of the paper is organized as follows:

Section 2 presents a short description of waterfall and

agile methods to highlight the reasons why the latter

have become popular. Section 3 gives a brief

introduction to software quality assurance techniques.

Section 4 explains why we chose a waterfall

approach for our comparison. Section 5 concludes the

paper.

2 Waterfall model vs. Agile Methods

Even though, on an abstract level, the waterfall

model and agile methods are very different process

methods, their actions within the development

sequence share some similarities. In this section, we

provide a short description of both the waterfall

model and agile methods. In 2.3, we present how one

short agile release shares similar development

activities with the waterfall model.

2.1 Waterfall model

Since the late 60s, many different software

development methodologies have been introduced

and used by the software engineering community [7].

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

2

Over the years, developers and users of these

methods have invested significant amounts of time

and energy in improving and refining them. Owning

to continuous improvement efforts, most of the

methodologies have reached a mature and stable

level. Hence, they are referred as traditional software

development methods. Each of the traditional

development methods attempts to address different

development issues and implementation conditions.

Among the traditional development approaches, the

waterfall model is the oldest the software

development process model. It has been widely used

in both large and small software intensive projects

and has been reported as a successful development

approach especially for large and complex

engineering projects [7]. The waterfall model divides

the software development lifecycle into five distinct

and linear stages. Because it is the oldest and the

most mature software development model we have

chosen it to investigate its QA process [8]. In addition

we chose the waterfall model because the phases in a

waterfall development are more linear than other

models. This provides us the opportunity to clearly

present the quality assurance (QA) processes. In

practice, the waterfall development model can be

followed in a linear way. However, some stages can

also be overlapped. An iteration in an agile method

can also be treated as a miniature waterfall life cycle.

Despite the success of the waterfall model with large

and complex systems, it has a number drawbacks,

such as inflexibility in the face of changing

requirements, and a highly ceremonious processes

irrespective of the nature and size of the project [7].

Such drawbacks can also be found in other traditional

development approaches. However, agile methods

were developed to address a number of the problems

inherent in the Waterfall model.

2.2 Agile Methods

Agile methods deal with unstable and volatile

requirements by using a number of techniques. The

most notable are: 1) simple planning, 2) short

iteration, 3) earlier release, and 4) frequent customer

feedback. These characteristics enable agile methods

to deliver product releases in a much short period of

time compared to the waterfall approach. This brief

comparison of the waterfall model and agile methods

brings this discussion to our research question, “How

can agile methods ensure product quality with such

short time periods?” Our research hypothesis is that

included in an agile methods development lifecycle,

to some degree, are some practices, which offer

traditional QA supporting processes.

2.3 One agile release vs. waterfall life cycle

The waterfall development model provides us with

a high-level framework and within this framework,

are five distinct stages: 1) requirements analysis and

definition 2) system and software design 3)

implementation and unit testing 4) integration and

system testing 5) operation and maintenance [7]. In

principle, any stage should not start until the previous

stage has finished and the results from the previous

stage are approved. The agile approach turns the

traditional software process sideways. Based short

releases, agile methods go through all development

stages a little at a time, throughout their software

development life cycle. In one agile release, the steps

may not be clearly separated, as they are in a

waterfall development model, but the requirements

recognition, planning, implementation and integration

sequences are the same as in waterfall model. Figure

1 lists a short comparison between the waterfall

model and agile methods.

Figure 1 Waterfall model vs. agile methods life cycle

3 Quality assurance techniques

Since we are concerned with the quality of

software produced with the Waterfall model and an

agile approach, we investigate quality-centric

software development supporting processes. We

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

3

concentrate on two of the most widely used general

quality-focused processes, Software Quality

Assurance (SQA) and Verification and Validation

(V&V).

“SQA governs the procedures meant to build the

desired quality into the products” and V&V is aimed

more directly at product quality including

intermediate products [8]. These two supporting

processes are normally used to support the waterfall

model to provide a complete process model. QA

techniques can be categorized into two types, static

and dynamic. The selection, objectives, and

organization of a particular technique depend on the

requirements and nature of the project and selection

is based on very different criteria [8] depending on

the methodology being used.

Unlike dynamic techniques, static techniques do

not involve the execution of code. Static techniques

involve examination of documentation by individuals

or groups. This examination may is assisted by

software tools, e.g., inspection of the requirements

specification and technical reviews of the code.

Testing and simulation are dynamic techniques.

Sometimes static techniques are used to support

dynamic techniques and vice versa. The waterfall

model uses both static and dynamic techniques.

However, agile methods mostly use dynamic

techniques.

4 Agile methods quality techniques

Figure 2 shows a complete model of a waterfall

development with its QA supporting process in

diagrammatic form. In the next diagram (Figure 3),

we show the agile methods life cycle in diagrammatic

form. In 4.2 we address some quality assurance

practices used by agile methods.

4.1 Waterfall model with SQA and V&V

The development activities in the Waterfall model

include: 1) requirements definition 2) system and

software design 3) implementation and unit testing 3)

integration and system testing 4) operation and

maintenance [7]. Each activity produces well-defined

deliverables. Since the deliverables of one activity are

input for a subsequent activity, from the theory point

of view, no subsequent phase can begin until the

predecessor phase finishes and all of its deliverables

are signed off as satisfactory.

In Figure 2, the left hand side shows the main

waterfall development model and the right its

supporting processes. The output from each phase is

input to the corresponding supporting phase and will

be verified or validated by its supporting process; this

output is then sent to the next stage as input.

We use the model shown in Figure 2 as a base for

comparison with the QA techniques of agile methods.

We explain this further in section 4.4.

4.2 Agile methods with QA

In Figure3, we present a generalized agile method

development life cycle. In this diagram, some agile

stages normally overlap each other. This makes it

difficult to show distinct phases. The generic

development sequence is the same as in the waterfall

model (Figure 2) however, in Figure 3 the repeated

unit cycle is a short release, which does not exit in the

normal waterfall model. In Figure 3, the left hand

side shows the agile processes main sequence and the

right side includes agile practices that have QA

ability. There are two major differences between

Figures 2 and 3; 1) in agile methods, there are some

practices that have both development functionality

and as well as QA ability. This means that agile

methods move some QA responsibilities and work to

the developers. These practices are marked by an

underline and are discussed in detail in section 4.3. 2)

In an agile methods phase a small amount of output is

sent frequently to quality assurance practices and fast

feedback is provided, i.e., the development practices

and QA practices cooperate with each other tightly

and exchange the results quickly in order to keep up

the speed of the process. This means that the two-way

communication speed in agile methods is faster than

in a waterfall development.

4.3 Agile Methods: quality techniques

Agile methods include many practices that have

QA potential. By identifying these practices and

comparing them with QA techniques used in the

waterfall model, we can analyze agile methods QA

practices. System metaphor is used instead of a

formal architecture. It presents a simple shared story

of how the system works; this story typically involves

a handful of classes and patterns that shape the core

flow of the system being built. There are two main

purposes for the metaphor. The first is

communication. It bridges the gap between

developers and users to ensure an easier time in

discussion and in providing examples. The second

purpose is that the metaphor contributes to the team’s

development of a software architecture [10]. This

practice helps the team in architecture evaluation by

increasing communication between team members

and users.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

4

Figure 2 Completed Waterfall Process Model

Having an On-site customer is a general practice

in most agile methods. Customers help developers

refine and correct requirements. The customer should

support the development team throughout the whole

development process. In the waterfall model,

customers are typically involved in requirements

definition and possibly system and software design

but are not involved as much and do not contribute as

much as they are expected to in an agile

development. Consequently customer involvement in

agile methods is much heavier than in waterfall

development. In practice, in a waterfall development,

some milestone reviews might be set up and

customers will participate, but this kind of customer

involvement is less intense than it is in an agile

development.

Pair programming means two programmers

continuously working on the same code. Pair

programming can improve design quality and reduce

defects [11]. This shoulder-to-shoulder technique

serves as a continual design and code review process,

and as a result defect rates are reduced. This action

has been widely recognized as continuous code

inspection [11].

Refactoring “is a disciplined technique for

restructuring an existing body of code, altering its

internal structure without changing its external

behavior. Its heart is a series of small behavior

preserving transformations. Each transformation

(called a 'refactoring') does little, but a sequence of

transformations can produce a significant

restructuring.” Because each refactoring is small, the

possibility of going wrong is also small and the

system is also kept fully functional after each small

refactoring. Refactoring can reduce the chances that a

system can get seriously broken during the

restructuring [12]. During refactoring developers

reconstruct the code and this action provides code

inspection functionality. This activity reduces the

probability of generating errors during development.

Continuous integration, a popular practice among

agile methods means the team does not integrate the

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

5

code once or twice. Instead the team needs to keep

the system fully integrated at all times. Integration

may occur several times a day. “The key point is that

continuous integration catches enough bugs to be

worth the cost” [12]. Continuous integration reduces

time that people spend on searching for bugs and

allows detection of compatibility problems early.

This practice is an example of a dynamic QA

technique. Waterfall model development integration

is done much later and its frequency is much lower

than in an agile method development [13].

Acceptance testing is carried out after all unit test

cases have passed. This activity is a dynamic QA

technique[8]. A Waterfall approach includes

acceptance testing but the difference between agile

acceptance testing and traditional acceptance testing

is that acceptance testing occurs much earlier and

more frequently in an agile development; it is not

only done once. Early Customer feedback is one of

the most valuable characteristics of agile methods.

The short release and moving quickly to a

development phase enables a team to get customer

feedback as early as possible, which provides very

valuable information for the development team.

We can compare the differences between the SQA

from three aspects: 1) many of the agile quality

activities occur much earlier than they do in waterfall

development, 2) the frequency of these activities is

much greater than in the waterfall model; most of

these activities will be included in each iteration and

the iterations are frequently repeated during

development, 3) agile methods have fewer static

quality assurance techniques.

Agile methods move into the development phase

very quickly. Although this kind of development

style renders most separate static techniques on early

phase artifact unsuitable, code makes dynamic

techniques useful and available very early. Also

developers are more responsible for quality assurance

compared with having a separate QA team and

process. This allows more integration of QA into the

development phase. Small releases also bring

customer feedback for product validation frequently

and requirements verification. The QA techniques for

agile methods are based on:

Applying dynamic QA techniques as early as

possible (e.g. TDD, acceptance testing)

Moving more QA responsibility on to the

developer (e.g. code inspection in peer/pair

programming, refactoring, collective code

ownership, coding standards)

Early product validation [8] (e.g. customer on

site, acceptance testing, small release, continuous

integration)

Figure 4 shows the waterfall model and agile

development methods life cycles based on time and

their available quality assurance techniques. We can

see that the dynamic techniques are applied late in a

waterfall development when compared with agile

development. In an agile development cycle, static

and dynamic techniques can both be applied from

very early stages.

Figure 3 Agile methods and QA [9]

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

6

Figure 4 SQA Timeline [14]

5 Conclusion

Even though some agile practices are not new,

agile methods themselves are recent and have

become very popular in industry. There is an

important need for developers to know more about

the quality of the software produced. Developers also

need to know how to revise or tailor their agile

methods in order to attain the level of quality they

require. In this paper we have analyzed agile

practices’ quality assurance abilities and their

frequency. The conclusion we draw here is: 1) agile

methods do have practices that have QA abilities,

some of them are inside the development phase and

some others can be separated out as supporting

practices 2) the frequency with which these agile QA

practices occur is higher than in a waterfall

development 3) agile QA practices are available in

very early process stages due to the agile process

characteristics. From this analysis, we identified

some issues for which development criteria might be

desirable. According to the process quality a team

require and time they have available they can tailor

agile practices.

However, is difficult, sometimes even not

realistic to compare the software quality resulting by

the use of a waterfall model with agile methods

because their initial development conditions,

especially the cost, are not comparable.

6 References

[1] K. Beck, extreme programming eXplained: embrace

change. Reading, MA: Addison-Wesley, 2000.

[2] B. Boehm and R. Turner, "Using risk to balance agile

and plan-driven methods," Computer, vol. 36, pp. 57-66,

2003.

[3] J. Grenning, "Launching extreme programming at a

process-intensive company," Software, IEEE, vol. 18, pp.

27-33, 2001.

[4] O. Murru, R. Deias, and G. Mugheddue, "Assessing XP

at a European Internet company," Software, IEEE, vol. 20,

pp. 37-43, 2003.

[5] J. Rasmussen, "Introducing XP into Greenfield Projects:

lessons learned," Software, IEEE, vol. 20, pp. 21-28, 2003.

[6] P. Schuh, "Recovery, redemption, and extreme

programming," Software, IEEE, vol. 18, pp. 34-41, 2001.

[7] I. Sommerville, Software engineering, 6th ed. Harlow,

England ; New York: Addison-Wesley, 2000.

[8] A. Abran and J. W. Moore, "Guide to the software

engineering body of knowledge : trial version (version

0.95)." Los Alamitos, CA: IEEE Computer Society, 2001.

[9] Extreme Programming: A gentle introduction,

http://www.extremeprogramming.org.

[10] How Userful Is the Metaphor Component of Agile

Methods? A Preliminary Study,

[11] A. Cockburn and L. Williams, "The Costs and Benefits

of Pair Programming," in Extreme Programming examined,

G. Succi and M. Marchesi, Eds. Boston: Addison-Wesley,

2001, pp. xv, 569 p.

[12] M. Fowler, "Information about Refactoring," 2004.

[1 3] C o n t i n u o u s I n t e g r a t i o n ,

http://www.martinfowler.com/articles/continuousIntegratio

n.html.

[14] K. Beck, "Embracing change with extreme

programming," Computer, vol. 32, pp. 70-77, 1999.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

	footer1:

