
proper implementation of the appli-
cation’s features. However, because
security is not a feature or even a set
of features, security testing doesn’t
directly fit into this paradigm.1

Security testing poses a unique
problem. Most software security de-
fects and vulnerabilities aren’t related
to security functionality—rather,
they spring from an attacker’s unex-
pected but intentional misuses of the
application. If we characterize func-
tional testing as testing for posi-
tives—verifying that a feature
properly performs a specific task—
then security testing is in some sense
testing for negatives. The security
tester must probe directly and deeply
into security risks (possibly driven by
abuse cases and architectural risks) to
determine how the system behaves
under attack.

One critical exception to this
rule occurs when the tester must
verify that security functionality
works as specified—that the applica-
tion not only doesn’t do what it’s not
supposed to do, but that it does do
what it’s supposed to do (with regard
to security features).

In any case, testing for a negative
poses a much greater challenge than
verifying a positive. Quality assur-
ance people can usually create a set of
plausible positive tests that yield a
high degree of confidence a software

component will perform function-
ally as desired. However, it’s unrea-
sonable to verify that a negative
doesn’t exist by merely enumerating
actions with the intention to pro-
duce a fault, reporting if and under
which circumstances the fault oc-
curs. If “negative” tests don’t un-
cover any faults, we’ve only proven
that no faults occur under particular
test conditions; by no means have we
proven that no faults exist. When ap-
plied to security testing, where the
lack of a security vulnerability is the
negative we’re interested in, this
means that passing a software pene-
tration test provides very little assur-
ance that an application is immune
to attack. One of the main problems
with today’s most common ap-
proaches to penetration testing is
misunderstanding this subtle point.

Penetration
testing today
Penetration testing is the most fre-
quently and commonly applied of all
software security best practices, in
part because it’s an attractive late life-
cycle activity. Once an application is
finished, its owners subject it to pen-
etration testing as part of the final
acceptance regimen. These days, se-
curity consultants typically perform
assessments like this in a “time
boxed” manner (expending only a

small and predefined allotment of
time and resources to the effort) as a
final security checklist item at the
end of the life cycle.

One major limitation of this ap-
proach is that it almost always repre-
sents a too little, too late attempt to
tackle security at the end of the de-
velopment cycle. As we’ve seen, soft-
ware security is an emergent prop-
erty of the system, and attaining it
involves applying a series of best prac-
tices throughout the software devel-
opment life cycle (SDLC; see Figure
1).1 Organizations that fail to inte-
grate security throughout the devel-
opment process often find that their
software suffers from systemic faults
both at the design level and in the im-
plementation (in other words, the
system has both security flaws and
security bugs). A late lifecycle pene-
tration testing paradigm uncovers
problems too late, at a point when
both time and budget severely con-
strain the options for remedy. In fact,
more often than not, fixing things at
this stage is prohibitively expensive.

An ad hoc software penetration
test’s success depends on many fac-
tors, few of which lend themselves to
metrics and standardization. The
most obvious variables are tester skill,
knowledge, and experience. Cur-
rently, software security assessments
don’t follow a standard process of any
sort and therefore aren’t particularly
amenable to a consistent application
of knowledge (think checklists and
boilerplate techniques). The upshot
is that only skilled and experienced
testers can successfully perform pen-
etration testing.

The use of security requirements,
abuse cases, security risk knowledge,
and attack patterns in application de-

Building Security In
Editor: Gary McGraw, gem@cigital.com

BRAD ARKIN

Symantec

SCOTT STENDER

Information
Security
Partners

GARY

MCGRAW

Cigital

Q
uality assurance and testing organizations are

tasked with the broad objective of assuring that a

software application fulfills its functional busi-

ness requirements. Such testing most often in-

volves running a series of dynamic functional tests to ensure

Software Penetration Testing

84 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY

Building Security In

sign, analysis, and testing is rare in cur-
rent practice. As a result, security
findings can’t be repeated across dif-
ferent teams and vary widely depend-
ing on the tester. Furthermore, any
test regimen can be structured in such
a way as to influence the findings. If
test parameters are determined by in-
dividuals motivated not to find any
security issues (consciously or not), it’s
likely that the penetration testing will
result in a self-congratulatory exercise
in futility.

Results interpretation is also an
issue. Typically, results take the form
of a list of flaws, bugs, and vulnera-
bilities identified during penetration
testing. Software development or-
ganizations tend to regard these re-
sults as complete bug reports—thor-
ough lists of issues to address to
secure the system. Unfortunately,
this perception doesn’t factor in the
time-boxed nature of late lifecycle
assessments. In practice, a penetra-
tion test can only identify a small
representative sample of all possible
security risks in a system. If a soft-
ware development organization fo-
cuses solely on a small (and limited)
list of issues, it ends up mitigating
only a subset of the security risks
present (and possibly not even those
that present the greatest risk).

All of these issues pale in com-
parison to the fact that people often
use penetration testing as an excuse
to declare victory. When a penetra-
tion test concentrates on finding and
removing a small handful of bugs
(and does so successfully), everyone
looks good: the testers look smart
for finding a problem, the builders
look benevolent for acquiescing to
the test, and the executives can
check off the security box and get
on with making money. Unfortu-
nately, penetration testing done
without any basis in security risk
analysis leads to this situation with
alarming frequency. By analogy,
imagine declaring testing victory by
finding and removing only the first
one or two bugs encountered dur-
ing system testing!

A better approach
All is not lost—security penetration
testing can be effective, as long as we
base the testing activities on the secu-
rity findings discovered and tracked
from the beginning of the software
life cycle, during requirements analy-
sis, architectural risk analysis, and so
on. To do this, a penetration test must
be structured according to perceived
risk and offer some kind of metric re-
lating risk measurement to the soft-
ware’s security posture at the time of
the test. Results are less likely to be
misconstrued and used to declare
pretend security victory if they’re re-
lated to business impact through
proper risk management.

Make use of tools
Tools should definitely be part of
penetration testing. Static analysis
tools can vet software code, either in
source or binary form, in an attempt
to identify common implementa-
tion-level bugs such as buffer over-
flows.2 Dynamic analysis tools can
observe a system as it executes as well
as submit malformed, malicious, and
random data to a system’s entry
points in an attempt to uncover
faults—a process commonly referred
to as fuzzing. The tool then reports
the faults to the tester for further
analysis.3 When possible, use of these
tools should be guided by risk analy-
sis results and attack patterns.

Tools offer two major benefits.
First, when used effectively, they can

perform most of the grunt work
needed for basic software security
analysis. Of course, a tool-driven
approach can’t be used as a replace-
ment for review by a skilled security
analyst (especially because today’s
tools aren’t applicable at the design
level), but such an approach does
help relieve a reviewer’s work bur-
den and can thus drive down cost.
Second, tool output lends itself
readily to metrics, which software
development teams can use to track
progress over time. The simple met-
rics commonly used today don’t
offer a complete picture of a system’s
security posture, though, so it’s im-
portant to emphasize that a clean bill
of health from an analysis tool
doesn’t mean that a system is defect
free. The value lies in relative com-
parison: if the current run of the
tools reveals fewer defects than a
previous run, we’ve likely made
some progress.

Test more than once
Today, automated review is best
suited to identifying the most basic
of implementation flaws. Human
review is necessary to reveal flaws in
the design or more complicated
implementation-level vulnerabili-
ties (of the sort that attackers can and
will exploit), but such review is
costly. By leveraging the basic
SDLC touchpoints described in this
series of articles, penetration tests
can be structured in such a way as to

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 85

Figure 1. The software development life cycle. Throughout this series, we’ll focus on
specific parts of the cycle; here, we’re examining penetration testing.

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Requirements
and use cases

Design Test
plans

Code Test
results

Field
feedback

Building Security In

86 IEEE SECURITY & PRIVACY ■ JANUARY/FEBRUARY 2005

be cost effective and give a reason-
able estimation of the system’s secu-
rity posture.

Penetration testing should start

at the feature, component, or unit
level, prior to system integration.
Risk analysis performed during
the design phase should identify
and rank risks as well as address in-
tercomponent assumptions.4,5 At
the component level, risks to the
component’s assets must be miti-
gated within the bounds of con-
textual assumptions. Tests should
attempt unauthorized misuse of,
and access to, target assets as well as
try to violate any assumptions the
system might make relative to its
components.

Testers should use static and dy-
namic analysis tools uniformly at the
component level. In most cases, no
customization of basic static analysis
tools is necessary for component-
level tests, but a dynamic analysis tool
will likely need to be written or mod-
ified for the target component. Such
tools are often data-driven tests that
operate at the API level. Any tool
should include data sets known to
cause problems, such as long strings
and control characters.6 Further-
more, the tool design should reflect
the security test’s goal: to misuse the
component’s assets, violate intercom-
ponent assumptions, or probe risks.

Unit testing carries the benefit of
breaking system security down into
several discrete parts. Theoretically, if
each component is implemented
safely and fulfills intercomponent
design criteria, the greater system
should be in reasonable shape (al-

though this problem is much harder
than it seems at first blush7). By iden-
tifying and leveraging security goals
during unit testing, we can signifi-

cantly improve the greater system’s
security posture.

Penetration testing should
continue at the system level and be
directed at the integrated software
system’s properties such as global
error handling, intercomponent
communication, and so on. Assum-
ing unit testing has successfully
achieved its goals, system-level test-
ing shifts its focus toward identifying
intercomponent issues and assessing
the security risk inherent at the de-
sign level. If, for example, a compo-
nent assumes that only trusted com-
ponents have access to its assets,
security testers should structure a test
to attempt direct access to that com-
ponent from elsewhere. A successful
test can undermine the system’s
assumptions and could result in an
observable security compromise.
Dataflow diagrams, models, and
high-level intercomponent docu-
mentation created during the risk
analysis stage can also be a great help
in identifying where component
seams exist.

Tool-based testing techniques are
appropriate and encouraged at the
system level, but for efficiency’s sake,
such testing should be structured to
avoid repeating unit-level testing.
Accordingly, they should focus on
aspects of the system that couldn’t be
probed during unit testing.

If appropriate, system-level tests
should analyze the system in its de-
ployed environment. Such analysis

should be targeted to ensure that
suggested deployment practices are
effective and reasonable and that ex-
ternal assumptions can’t be violated.

Integrate with
the development cycle
Perhaps the most common problem
with the software penetration testing
process is the failure to identify
lessons to be learned and propagated
back into the organization. As we
mentioned earlier, it’s tempting to
view a penetration test’s results as a
complete and final list of bugs to be
fixed rather than as a representative
sample of faults in the system.

Mitigation strategy is thus a criti-
cal aspect of the penetration test.
Rather than simply fixing identified
bugs, developers should perform a
root-cause analysis of the identified
vulnerabilities. If most vulnerabili-
ties are buffer overflows, for exam-
ple, the development organization
should determine just how these
bugs made it into the code base. In
such a scenario, lack of developer
training, misapplication (or nonexis-
tence of) standard coding practices,
poor choice of languages and li-
braries, intense schedule pressure, or
any combination thereof could ulti-
mately represent an important cause.

Once a root cause is identified,
developers and architects should de-
vise mitigation strategies to address
the identified vulnerabilities and any
similar vulnerability in the code base.
In fact, best practices should be de-
veloped and implemented to address
such vulnerabilities proactively in
the future. Going back to the buffer
overflow example, an organization
could decide to train its developers
and eliminate using potentially dan-
gerous functions such as strcpy()
in favor of safer string-handling
libraries.

A good last step is to use test result
information to measure progress
against a goal. Where possible, tests
for the mitigated vulnerability should
be added to automated test suites. If
the vulnerability resurfaces in the

Penetration testing can be effective, as long
as we base the testing activities on the
security findings discovered and tracked
from the beginning of the software life cycle.

Building Security In

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 87

code base at some point in the future,
any measures taken to prevent the
vulnerability should be revisited and
improved. As time passes, iterative se-
curity penetration tests should reveal
fewer and less severe flaws in the sys-
tem. If a penetration test reveals seri-
ous severity flaws, the “representative
sample” view of the results should
give the development organization
serious reservations about deploying
the system.

P enetration testing is the most
commonly applied mechanism

used to gauge software security, but
it’s also the most commonly misap-
plied mechanism as well. By applying
penetration testing at the unit and
system level, driving test creation
from risk analysis, and incorporating
the results back into an organization’s
SDLC, an organization can avoid
many common pitfalls. As a mea-
surement tool, penetration testing is
most powerful when fully integrated
into the development process in such
a way that findings can help improve

design, implementation, and deploy-
ment practices.

References
1. G. McGraw, “Software Security,”

IEEE Security & Privacy, vol. 2, no.
2, 2004, pp. 80–83.

2. B. Chess and G. McGraw, “Static
Analysis for Security,” IEEE Secu-
rity & Privacy, vol. 2, no. 6, 2004,
pp. 76–79.

3. B.P. Miller et al., Fuzz Revisited: A
Re-Examination of the Reliability of
Unix Utilities and Services, tech.
report CS-TR-95-1268, Dept. of
Computer Science, Univ. Wiscon-
sin, Apr. 1995.

4. D. Verndon and G. McGraw, “Soft-
ware Risk Analysis,” IEEE Security &
Privacy, vol. 2, no. 5, 2004, pp. 81–85.

5. F. Swidersky and W. Snyder, Threat
Modeling, Microsoft Press, 2004.

6. G. Hoglund and G. McGraw,
Exploiting Software, Addison-
Wesley, 2004.

7. R. Anderson, Security Engineering:
A Guide to Building Dependable Dis-
tributed Systems, John Wiley &
Sons, 2001.

Brad Arkin is a technical manager for
Symantec Professional Services. His pri-
mary area of expertise is helping organi-
zations improve the security of their
applications. Arkin has a dual BS in com-
puter science and mathematics from the
College of William and Mary, an MS in
computer science from George Washing-
ton University, and is an MBA candidate
at Columbia University and London Busi-
ness School. Contact him at brad_arkin@
symantec.com.

Scott Stender is a partner with Informa-
tion Security Partners. His research inter-
ests are focused on software security, with
an emphasis on software engineering
and security analysis methodology. Sten-
der has a BS in computer engineering
from the University of Notre Dame. Con-
tact him at scott@isecpartners.com.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. McGraw is the coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son-Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. He has a BA in philosophy from
the University of Virginia and a dual PhD
in computer science and cognitive science
from Indiana University. Contact him at
gem@cigital.com.

