
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2005 Proceedings European Conference on Information Systems
(ECIS)

2005

Quality Assurance of Integrated Business Software:
An Approach to Testing Software Product Lines
Ulrike Dowie
Universitat Stuttgart, dowie@wi.uni-stuttgart.de

Nicole Gellner
Universitat Stuttgart, gellner@wi.uni-stuttgart.de

Sven Hanssen
Universitat Stuttgart, hanssen@wi.uni-stuttgart.de

Andreas Helferich
Universitat Stuttgart, helferich@wi.uni-stuttgart.de

Andreas Helferich
Universitat Stuttgart, herzwurm@wi.uni-stuttgart.de

See next page for additional authors

Follow this and additional works at: http://aisel.aisnet.org/ecis2005

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2005 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Dowie, Ulrike; Gellner, Nicole; Hanssen, Sven; Helferich, Andreas; Helferich, Andreas; and Schockert, Sixteen, "Quality Assurance of
Integrated Business Software: An Approach to Testing Software Product Lines" (2005). ECIS 2005 Proceedings. 152.
http://aisel.aisnet.org/ecis2005/152

Authors
Ulrike Dowie, Nicole Gellner, Sven Hanssen, Andreas Helferich, Andreas Helferich, and Sixteen Schockert

This article is available at AIS Electronic Library (AISeL): http://aisel.aisnet.org/ecis2005/152

QUALITY ASSURANCE OF INTEGRATED BUSINESS SOFTWARE:
AN APPROACH TO TESTING SOFTWARE PRODUCT LINES

Ulrike Dowie, Nicole Gellner, Sven Hanssen, Andreas Helferich, Georg Herzwurm, Sixten
Schockert

Universität Stuttgart, Institute of Business Administration, Chair of Information Systems II,
Business Software, Breitscheidstraße 2c, D-70174 Stuttgart

{dowie|gellner|hanssen|helferich|herzwurm|schockert@wi.uni-stuttgart.de}

Summary:

The use of integrated business software can be instrumental in reducing the difficulties occurring
when various information systems have to be integrated. As a downside of this and due to the fact that
these systems are designed to be used in all sorts of enterprises, the internal complexity of these
systems increases exponentially. Software product lines on the one hand promise remedy by the
conscious use of variability, on the other hand create new demands on quality assurance. The article
on hand provides a theoretical framework for evaluating approaches to software testing, regarding
their use in the development of software product lines. It turns out that only a practice-oriented
approach emphasizing the buyer’s view will be successful in the end.

Keywords:

Business software, software product line, software testing, quality assurance, domain engineering,
application engineering.

1 INTRODUCTION

The demand for off-the-shelf or standards-based business software has increased steadily over the last
few years. The simultaneous use of many software packages developed in-house as well as (often
customized) off-the-shelf software has further intensified the existing integration problems of
application systems. Microsoft guesses that the percentage of costs for application integration will rise
from approx. 10-15 % today up to 60 % within the next years (cf. [Kind04]). Many enterprises
therefore consider replacing the "best of breed" – strategy with the alternative "single sourcing". In
“best of breed” the alternative best fulfilling the requirements of the enterprise is selected, irrespective
of the provider, and integrated into the enterprise application architecture. In “single sourcing” all
application systems are purchased from one single supplier. The most important advantage expected
with purchasing products from a single source seems to be the simplified integration of these systems.

Among manufacturers of integrated business software, such as Enterprise Resource Planning (ERP)
systems, this trend is reflected in an increasing performance range. Some years ago the market for
Customer Relationship Management (CRM) and Supply Chain Management (SCM) systems was
dominated by specialists. Nowadays ERP vendors and their CRM and SCM modules steadily gain
market share, e.g. the CRM module of the mySAP business suite. The higher degree of process
coverage that integrated application systems offer brings along a rise in the internal complexity of
these systems. Additionally, the trend to differentiate products, e. g. by industry-specific solutions or
special offers for small and medium-sized enterprises (SMEs), increases the challenge for software
companies to offer high quality products. Software product lines, an approach used in research and
industry for some years, promises remedy or at least relief here. The use of product lines holds both
improvement potentials for the quality assurance of integrated business software as well as new
challenges to quality assurance. This article introduces a framework for the evaluation of software
testing approaches regarding their use in the quality assurance for software product lines.

2 SOFTWARE QUALITY, SOFTWARE PRODUCT LINES AND
SOFTWARE TESTING

2.1 Software Quality

The International Standards Organisation norm 9126 (see [ISO01]) deals with software quality. Since
the last revision in 2001, it distinguishes between Internal Quality, External Quality and Quality in
Use. Quality in Use was not part of the previous version and is defined as “the user’s view of the
quality of the software product when it is used in a specific environment and a specific context of use.
It measures the extent to which users can achieve their goals in a particular environment, rather than
measuring the properties of the software itself…” ([ISO01], p. 5). Put another way, Quality in Use
measures the fulfilment of user requirements. A comparison of 82 studies on the relationship between
customer orientation and a company’s success (see [Herz00]) shows a significant relationship between
fulfilment of customer requirements and success in the marketplace.

Companies using integrated business software want the software to support a large degree of their
business processes. At the same time business processes are usually different in different companies,
therefore it is important for software companies to offer products that are flexible enough to be of
value to a large number of different companies. This is where software product lines come in: they
promise to make it possible to offer a large variety of products while still being able to manage this
variety. Chapter 2.2 explains how this is supposed to work.

2.2 Software product lines

The term “software product line” implies that different products of one domain (also referred to as
problem space or application range, e. g. operating systems for mobile telephones or software support
of the sales department) are viewed as a family and not as single products anymore (while parts of the
literature distinguish between product families and product lines, in the context of this article both are
used synonymously). According to the Software Engineering Institute, software product lines are
defined as “set of software-intensive systems sharing a common, managed set of features that satisfy
the specific needs of a particular market segment or mission and that are developed from a common
set of core assets in a prescribed way“ (see [ClNo02], p. 5). The components of a software product line
are the product line architecture and the individual products which are part of the product line. The
product line architecture describes the individual products, their common components and - at least in
outlines - the differences between the products of the family (cf. [Bosc00]).

The concept of software product lines supports the reuse of components: the common product line
architecture is explicitly designed for reuse. Therefore a component does not have to be evaluated
regarding its suitability for this use (cf. [Bosc00]). This is at the same time the most important
difference compared to other reuse concepts of program parts or components: the multiple use is
already planned in advance. This implies a high degree of reuse and therefore the possibility of fast,
economical and high quality development of new products (systems). Both time-to-market and
maintenance effort are expected to decrease, while customer satisfaction is expected to increase since
software can be developed faster, in higher quality, and for more individual purposes (cf. [Böll02]).

2.3 Software Testing

A test case comprises input values, preconditions and expected results. It serves a purpose, e. g. to
verify a certain execution path (cf. [IEEE90]). The test case consists of a stimulus and the result that a
correctly operating system would deliver in response to this stimulus (cf. [McGr01], p. 5).

Test procedure means a document that can give proper instructions on the execution of one or several
test cases. Test method describes a procedure which is scheduled and built on a set of rules that
derivate or select test cases (see [SpLi04], p. 214). The term testing approaches as used in this article
summarizes test methods and test procedures as well as recommendations on how to go about testing
software product lines.

A test specification is the documentation of the implementation of a component, its interfaces and a
certain set of test cases related to the respective interface.

Test products are all documents and executable programs or program parts, which are required or are
designed in the context of testing (e.g. test plan, test cases, and code for automatic tests). The
proportional amount of source code which is tested by running the software tests is called coverage.

3 PRODUCT LINE DEVELOPMENT PROCESS

3.1 Overview

Different process models exist for the development process of product lines, e. g. those described in
[Bay+99], [WeLa99] or [Muth02]. Common to them is that the product line development process is
modelled along the structure of a product line. Just as the product line consists of product line
architecture and product line members, the development process also consists of the process of the
development of the product line architecture and the development process of product line members.
The development of the product line architecture is called domain engineering and the development of
product line members application engineering. Figure 1 shows the complete process. Testing is

highlighted due to the central importance for this work as part of the steps implementation (Core
Assets) and system implementation.

A rough cost-benefit analysis and the so-called scoping (cf. [Bosc00]) precede domain and application
engineering. During scoping the use of the product line or its products is planned (see [Böc+04], p. 44).
One important aspect of this is the separation between requirements common to all products and
variable requirements. Variable requirements are not demanded for all products of a product line in the
same way. For example, all requirements which depend on the hardware platform used are variable
requirements. In the context of business software, one example is the user interface. A user can
alternatively access the system using a local client, web browser or UMTS mobile phone.

Systemanalyse Systementwurf System-
Implementierung Testen

Sc
op

in
g

Implementation
(Core Assets) TestarchitectureDomain analysis

Produkt Line - Infrastructure/Basis

Systemanalyse Systementwurf System-
Implementierung Testen

System analysis System design system
implementation TestNew

requirements

information about
existing systems

Domain Engineering

Application Engineering

New
Systems

Figure1: The product line development process (modified from [Muth03])

3.2 Domain Engineering

Domain engineering consists of three steps: domain analysis, architectural design and domain
implementation. During domain analysis, the analysis of the application scope of the product line that
started with the scoping is continued and a requirements analysis is carried out for the complete
product line. Common features among and differences between the products are defined and the so-
called variation points are fixed. Variation points are those system parts where the products differ
from one another (see [WeLa99], p. 20). A summary of variation points and their modeling and
implementation is given in [Böc+04] (see ibid. p. 13 et sqq. and p. 109 et sqq.).

Following domain analysis, the product line architecture is designed. The product line architecture
provides the framework for reusable components. This framework describes visible properties of the
components and the relations between them (cf. [Bosc00]). Reusable components are designed in the
last step of domain engineering, during domain implementation. These components represent the base
for the products of the product line. Together with test cases or scenarios, documentation and models
they form the so-called core assets (cf. [McGr01], p. 23).

3.3 Application Engineering

During application engineering, the individual products are implemented according to the results of
scoping and domain engineering. Three phases can be distinguished: system analysis, system design
and system implementation.

During system analysis the requirements on the respective product gathered during domain analysis
are further particularized, especially focussing on differences between variable requirements on the
individual products. For every single product, those requirements are disregarded which this product
does not have to fulfil. Then, the architecture of this product is derived from the product line
architecture. The following steps are carried out: architecture pruning, architecture extension, conflict
resolution, and architecture assessment (see [Bosc00], p. 262 et sqq.). Next, product-specific
components are implemented, using the possibilities of core asset varieties and all product specific
components. Finally, the adapted core assets are tested and integrated into the designed product (cf.
[WeLa99]).

3.4 Testing during the development process of software product lines

Testing software product lines is both part of domain engineering and application engineering. It
builds upon well-known methods and principles of testing software components. It is common practice
(cf. [Weyu98], [Reu+03]) in testing components, no matter whether these are made or bought (cf.
[Szyp99]), that there are always the phases unit test, integration test and system test. During the unit
test phase, the component is tested detached from any application. This is normally carried out by
component developers and under consideration of aspects internal to the component. The subsystems
which are composed of individual components are tested during the integration test. And finally the
complete system, consisting of all subsystems, is checked for faultlessness in the system test.
Integration and system tests depend on the context in which the respective component is used since by
definition such tests include exactly the context of the component in the test case, thereby planning to
validate the interactions of the component with other parts of the system. The problem is that all
integration and system test results are therefore also context-dependent. Thus, a component can
contain a serious error which, however, never comes to light in a certain system since the function of
the component in question is not used at all. If the component is integrated into another system which
uses this faulty function, the defect appears for the first time despite intensive testing in the previous
system. A popular example of this is given by the accident of space rocket Ariane 5 (cf. [Weyu98]).

4 TESTING APPROACHES TO SOFTWARE PRODUCT LINES:
STATE OF THE ART

4.1 Testing approaches to Domain Engineering

In the following, we will distinguish between testing approaches to Domain Engineering and testing
approaches used for component testing since the testing approaches applicable for Application
Engineering are the same that are usually used for component testing. As there is a multitude of testing
approaches, a conscious decision was made to limit the number of approaches initially included in the
framework presented in the following chapter. The approaches presented in chapter 4 and classified
using the framework in chapter 5 were selected either because they were developed specifically for
software product lines or because they are well-documented and researched and seem a good addition
to the set of approaches covered.

One goal of domain engineering is the reuse of test products. In combination with early testing during
development, it can lead to the same savings and advantages in product lines as the reuse of products

in development does (cf. [McGr01]). Test products like test plans and test cases should be usable for
different products (cf. [ClNo02]). They are part of the reusable components of the product line.

A recommendation for testing product lines repeatedly given in literature is to map the program
architecture to the test architecture (cf. [McGr02], [ClNo02]). The goal is to clarify which parts of the
program code can be tested with which parts of the test code (cf. [Weyu98], [ClNo02]). Thus, the test
code can be easily adapted in case of changes in the code to be tested. This is generally useful when
tests are repeated (e. g. after error correction) and especially in case of software product lines, as
planned tests are executed repeatedly in order to cover different configurations of the tested software.
As in product development, it is important that specific test cases of the product remain compatible
with the corresponding product line test case. The approach to requirements-based testing introduced
in [Kam+04] keeps the variability in domain artefacts to support the reuse in test artefacts. In this
approach called ScenTED (Scenario-based test derivation), test cases are already generated in domain
engineering using Use-Case models and Use-Case specifications which are extended with variabilities.
By keeping these variabilities, it is possible to derive test cases from test artefacts when creating an
application, since all intended variants are already modeled in these test cases.

Due to the large amount of possibilities of combining and integrating components of a product line,
research efforts are directed to finding metrics which measure test coverage of possible component
interactions (cf. [WiPr01]). Furthermore methods were developed to determine the number of test
cases required for a certain degree of coverage (cf. [Coh+97]). These approaches can be summarized as
combinatorial design. In [Lulu02] a tree-based analysis technology (FCTA Fault Contribution Tree
Analysis) is introduced. It uses the results from domain analysis when designing a new member of the
product family. The method is based on Boolean logic and describes which elements (knots in the
tree) may lead to a fault in the resulting system. Knots in the tree represent system functions. Starting
at the root, a refinement of the functions shown is carried out. Test case generation for specifications
in Boolean form can be automated. A detailed description of this method is given in [Wey+94].

4.2 Testing approaches to component testing

A software product line contains products sharing requirements, functions and concepts. It also
contains program code, usually in the form of components (cf. [RiRo02]). A component is a unit with
a specified interface and explicit context dependencies. A component can be used independently and is
subject to composition by third parties (see [Szyp99], p. 34). Problems which arise in connection with
testing component-based software therefore also affect products in product lines.

A first summary of the state of research in testing components can be found in [BeGr03a]. According
to the authors, many problems with using components arise from the fact that there is no flow of
information between the supplier of the component and the component user who integrates
components into a system. As an example, source code of a component is not available to the user and
the developer has no information about the context in which the component will be used. Approaches
to testing components which address the problem of a lacking flow of information can be subdivided
into two categories: those improving the flow of information between supplier and user and those
which deal with the consequences of such a lacking flow of information.

The metadata approach by [Ors+00] is part of the first category. The basic idea is to augment
components with additional information about the component itself (metadata). The information
provided is determined by the component manufacturer and can be adapted specifically to the needs of
the customer. In principle it can be any artefact created during component development, but it can also
be any additionally generated information (e. g., control flow data). [Edwa01] suggests that the
component developer provide the specification of the component. In [Ors+01], the authors expand this
approach to regression testing of component-based software by providing test cases as metadata.
These are derived from the source code of the component or from its specification. The provision of
test data by the component developer is also addressed in [LiRi98]. In this approach, test cases already
used by the component developer as well as test cases to be carried out later by the component user are

delivered as metadata. Additionally, the component is enhanced with additional features for collecting
internal information during testing as well as for providing this information. A similar approach is
found in [Bun+00], though it uses testing specifications rather than test cases.

Approaches which deal with the consequences of a lacking flow of information between the developer
and a user of a component, aim at extending components with the functionality to test themselves. As
opposed to the approaches already shown, components are extended by special testing functions which
can be invoked by the component user. Approaches of this type can be found in [Yan+99], [Tra+99],
[BeGr03b] and [HöEd02]. The testability of a component can also be improved by supporting test
execution and observation. Such an approach can be found in [Gao+02]. Components are extended
with functionalities showing the internal structure and the behaviour of the component. A special test
interface can be provided to gain access to special test functionalities as well as to cooperate directly
with external testing tools.

In the approaches mentioned previously, the reason for many problems using components is assumed
to be the fact that component designer and user work separately and necessary information is not
exchanged. Reliability-based approaches live by the fact that the component user selects or refuses
components depending on their quality, e. g. accuracy. An approach which measures the quality of a
component can be found in [Xiao03]. A component developer provides a metric M. The reliability of
the component can be defined as a function f= {< s, M (s) >} for a defined set of possible input values
s. Using this formula, the quality of the complete system can be calculated. In [Mena04] an advanced
concept for web-based applications is outlined. According to the author, components are not evaluated
by the component user with regard to their quality. Rather, components log into systems dynamically.
Whether a component will be accepted or not is determined by its functionalities as well as the quality
of its services. If the interaction between system and component is successful, the component becomes
a registered part of the system.

4.3 Testing approaches: Summary

The following table gives a summarizing survey of the testing approaches introduced.

Testing approach Test object level Source
Testing architecture reflects program
architecture

All products of a product line
(PL), single products of the
PL, single component

[McGr02], [ClNo02],
[Weyu98]

Product line test case is adapted as product
test case

All products of a PL, single
products of the PL

[McGr01]

Requirements-based testing (ScenTED) single products of the PL [Kam+04]
Combinatorial Design All products of a product line [WiPr01], [Coh+97]
Self-testing Single components [Yan+99], [Tra+99],

[BeGr03b], [HöEd02]
Metadata-Approach Single components [Ors+00], [Edwa01], [Ors+01],

[LiRi98], [Bund+00]
"testable beans" (improving testability) Single components [Gao+02]
Quality of service-/ Reliability-based
approaches (for web-based applications)

Single components [Xiao03], [Mena04]

Automatic test case generation for
specifications in Boolean form

All products of a PL, single
products of the PL

[Wey+94]

FCTA (Fault Contribution Tree Analysis) All products of a PL, single
products of the PL

[Lulu02]

Table 1: Testing approaches to product lines and respective test object level

5 EVALUATION OF APPROACHES TO PRODUCT LINE TESTING

The variety of approaches indicates that a choice of testing approaches has to be made. A theoretical
framework will be introduced which can serve as a decision basis (cf. for theoretical frameworks in
general [Kubi75]). The selection of testing approaches depends on the objective pursued with testing.
As most approaches are not mutually exclusive, several different approaches can be chosen when
several objectives are pursued that do not contradict one another.

As any other entrepreneurial activity, testing is motivated by goals the organization intends to achieve
(see [Hame92], p. 2634). Thus, the decision about how to test, i. e. which testing approach to choose,
is influenced by the pursued goals (cf. [Hame92], p. 2635). As examples, test objectives that support
efficiency, quality and competitive goals are used as criteria for evaluation of the testing approaches.

Table 2 summarizes which objectives are pursued by which approaches.

Competitive goals

minimize test
efforts

minimize
maintenance of test
products

find many errors =
correct
implementation

high degree of
coverage = complete
implementation

minimize risks for
the customer using
the software early market entry

test architec-ture
reflects program
architecture

after high initial
efforts

Test architec-ture as
stable as program
architecture

- (test architecture
does not reveal any
faults) x

not during first
development but at
updates

product line is
adapted for indiv.
products

product line test
case is adaptable
template

product line test
case is adaptable
template

- (only new test
product line will
reveal more faults)

Combinatorial
Design

in case of automatic
test generation x x

ScenTED accept test cases accept test cases

- (no testing, but
generation of test
cases)

test cases of the
specification - (no approach)

? (indirectly by
reducing test
process)

self-testing
self-testing
component

test cases included
in components

- ("black-black-box
test": test procedure
AND test cases
unknown)

? (depending on
components
manufacturer)

component detects
errors itself and is
able to react

tests postponed to
later stages

meta data approach
less effort by more
information

test products can be
enclosed meta data

depending on
component user,
but e.g. source code
is helpful

depending on
component user,
but e.g. source code
is helpful - (no approach)

? (indirectly by use
of components)

testable beans
(improved
component testing)

improved testing =
less efforts)

improved testing =
less efforts)

depending on
component user

depending on
component user - (no approach)

? (indirectly by use
of components)

Quality-of-service /
reliability based
approach (web-
based applications)

test effort avoided
by dismissing or
accepting
component without
testing

- (no relation to test
products)

- (no faults can be
found, because
actually no testing)

- (no faults can be
found, because
actually no testing)

component can be
accepted or
dismissed according
to field of
application

? (indirectly by use
of components)

automatic test case
generation for
specifications in
Boolean form

effort avoidance by
generation of test
cases

automatic
generation of test
products

illustration of
specification into
test cases

coverage
proportional to the
number of test cases -

? (indirectly by use
of components)

FCTA (Fault
Contribution Tree
Analysis)

effort avoidance by
analysis of possible
error paths

? (no test product
generation but basis
for appropriate test
cases)

- (faults are not
found but sources
of error excluded)

- (faults are not
found but sources
of error excluded) - x

regression test x

-

Testing approach test objective
efficiency quality objectives

legend:

= approach suitable
= approach not suitable
= no clear statement possible

Table 2: Testing approaches to product lines and test objectives

Not every testing approach introduced in chapter 4.1 and 4.2 is appropriate in every software product
line development effort. Rather, the testing approach selection has to be carried out under

consideration of the framework conditions which need to be fulfilled so that a testing approach can be
used and moreover can be useful (cf. [Herz00], p. 68ff). Considerable research has been done on the
relevant conditions for successful software development (e.g., cf. [Herz00], p. 46ff, and [Boe+00]). For
testing specifically, there’s no established model to date capturing factors explicitly affecting testing
success. Therefore, testing being part of software development efforts, conditions identified as
influencing software development as a whole represent the basis of influencing factors for testing.

Transferred from development to testing, the conditions concern the product to be tested, the testing
process followed, the organisation and the people carrying out testing tasks (cf. [Boe+00], [Herz00],
p. 69). In the following, a selection of framework conditions is presented which suffices for illustration
of the evaluation systematic and which has the strongest influence on the choice of testing approaches.

test architecture
reflects program
architecture

highly qualified test
staff necessary

with low complexity,
test architecture might
not be needed

test architecture
changed in paralell to
program architecture -
not necessary, if
program architecture
does not change

test case for product
line is adapted for
indiv. products

only test cases actually
needed for this product
are adapted x

Combinatorial Design
highly qualified test
staff necessary x x

ScenTED
highly qualified test
staff necessary

suitable testing
infrastructure
necessary well suitable results from use cases

self-testing
highly qualified test
staff necessary well suitable

meta data approach
highly qualified test
staff necessary

suitable testing
infrastructure
necessary

not suitable, too much
effort for party reusing
the component

? (maybe helpful
depending on provided
information)

? (depending on
provided information)

testable beans
(improved component
testing)

highly qualified test
staff necessary

suitable testing
infrastructure
necessary x

Quality-of-service /
reliability based
approach (web-based
applications) x

may be important for
decision whether to
accept a component

generation of
specifications in
Boole's form x x

important (but can be
derived from
specification)

well suitable
(requirements arise
from specification)

FCTA (Fault
Contribution Tree
Analysis) x x x
regression test x x x

-
legend: = approach suitable

= approach not suitable
= no clear statement possible

Testing approach Framework and test parameters regarded as not alterable
enterprise characteristics product characteristics

testing infrastructure:
suitable soft- and
hardware equipment

high complexity (many
components)

well-known use
profiles

product requirements
frequently changing

qualified test staff
available in sufficient

numbers

Table 3: Testing approaches to product lines and required framework conditions

Availability of resources is the most important organisational characteristic which influences the
selection of the testing approach: on one hand the testing staff (number and qualification of testers), on

the other hand the test infrastructure (primarily hardware and software). Products can be distinguished
by the following criteria, relevant for the choice of testing approach: complexity (e. g., number of
combined components), availability of use profiles and frequency of changes to product requirements.
A survey of conditions under which circumstances which approach is useful, is offered in table 3.

To make a clear decision regarding the testing approaches depending on the chosen test objective, all
design parameters (e. g. the test resources) are considered to be fixed (in short term). If it turns out that
the testing approaches suitable for the chosen test objective require certain framework conditions
which are not given and cannot be established, the chosen aim must be changed. If for example the test
objective is “to find many errors” and the approach "Self-testing" shall be followed up, this makes
sense only in case of frequently changing requirements. If this is not given in the planned development
situation, another approach should be chosen.

As a result of tables 2 and 3, different objectives are attainable under certain framework conditions
with a choice of testing approaches. The economic aim "low test effort" is pursued by the clear
majority of testing approaches. Also, reduction of costs for maintenance of test products is one focus.
Quality objectives, however, seem to be of secondary importance. A high coverage range is pursued
by 50 % of the presented approaches. A high measure of faultlessness is explicitly pursued only by
30%. The most important aim from the customers’ view is minimizing risks of using the software.
This, however, is only the focus of 30% of the approaches. The aim "early market entry" that becomes
achievable by early testing during development is explicitly sought by only a few approaches.

It is remarkable that many approaches were developed for tests of complex products or product lines
and for development environments with frequently changing requirements. However, few testing
approaches consult information about software usage in form of use profiles. According to one
approach ("product line test case is adapted to the product test case"), a test architecture following the
program architecture can be developed only if sufficiently qualified testing staff is available. The test
outline by means of combinatorial design based on component interaction is not useful if the product
to be tested consists of few components or if there are only few possible combinations of components.

All of these observations reveal that approaches to testing software product lines which take the
customers’ perspective into account are still missing and that scientific research is incomplete. To be
successful on the market for software products, the focus on customer interests is imperative (cf.
[Herz00]). This applies to the development of software product lines in particular, since here scale
effects take effect that can easily extend the advantages of customer orientation.

6 CONCLUSION

Software product lines promise reduced time to market as well as increases in technical and relative
software quality. There are examples of successful application of this concept from various kinds of
systems and enterprises developing the systems. Testing software product lines, however, seems to be
a rather neglected activity. There are approaches to software testing that can be adopted or adapted for
the use in software product line testing, but there does not seem to be one single approach covering all
the aspects necessary. The framework developed and presented in this paper helps researchers and
practitioners to decide which approaches to combine to effectively and efficiently test software
product lines. Even more, by looking at the tables comprising the framework, researchers can
determine which areas most urgently need additional approaches and direct their research efforts
accordingly. For this to be most effective, the number of testing approaches classified the framework
needs to be increased further, trying to make sure no approach that can be used in this context is being
left out. Additionally, the framework needs to be other enhanced by incorporating additional testing
objectives, the link between company goals and testing objectives should also be investigated.

Additional research effort should be directed at identifying the factors influencing the success of
software testing initiatives. The results of this research could then be used to revise the framework,

replacing the conditions derived from research on the success of software development projects (as
explained in chapter 5).

Bibliography
[Bay+99] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud, J.-

M., PuLSE: A methodology to develop software product lines, in Proceedings of the 5th
Symposium on Software Reusability, pages 122-131, 1999.

[BeGr03a] Beydeda, S. und Gruhn, V., State of the art in testing components, in: Proceedings of the
Third International Conference On Quality Software (QSIC’03), Dallas, Texas, USA, November
2003, p. 146

[BeGr03b] Beydeda, S., Gruhn, V., Merging components and testing tools: The Self-Testing COTS
Components (STECC) Strategy, in: Proceedings of the 29th EUROMICRO Conference „New
Waves in System Architecture“ (EUROMICRO’03), Belek-Antalya, Türkei, September 2003,
p. 107.

[Boe+00] Boehm, B.; Abts, C.; Horowitz, E.; Madachy, R.; Reifer, D.; Clark, B.K.; Steece, B.; Brown,
A.W:; Chulani, S.: Software cost estimation with Cocomo II. Upper Saddle River, NJ: Prentice
Hall, 2000.

[Böc+04] Böckle, G., Knauber, P., Pohl, K., Schmid, K. (Eds.), Software-Produktlinien: Methoden,
Einführung und Praxis. Dpunkt: Heidelberg, 2004.

[Böll02] Böllert, K., Objektorientierte Entwicklung von Software-Produktlinien zur Serienfertigung
von Software-Systemen. Dissertation, TU Illmenau, 2002.

[Bosc00] Bosch, J., Design and use of software architectures. Addison-Wesley: Harlow, 2000.
[Bun+00] Bundell, G., Lee, G., Morris, J., Parker, K., Lam, P., A software component verification tool,

in: International Conference on Software Methods and Tools (SMT’00), Wollongong, Australien,
November 2000, p. 137.

[ClNo02] Clements, P., Northrop, L., Software product lines: practices and patterns. Addison-Wesley:
Boston, MA, London, 2002.

[Coh+97] Cohen, D.M., Dalal, S., Fredmann, M., Patton, G., The AETG System: An Approach to
testing based on Combinatorial Design, in: Transactions on Software Engineering, 23,7 (Jul. 1997),
p. 437-444

[Edwa01] Edwards, S., Toward reflective metadata wrappers for formally specified software
components, in: OOPSLA Workshop Specification and Verification of Component-Based Systems
(SAVCBS), 2001.

[Gao+02] Gao, J., Zhu, Y., Shim, S., On building testable software components, in: COTS-Based
Software Systems (ICCBCC), volume 2255 of LNCS, Springer 2002., p. 108-121.

[Hame92] Hamel, Winfried: Zielsysteme. In: Frese, E. (Eds.) Handwörterbuch der Organisation. 3.
Aufl., Stuttgart 1992, p. 2634 – 2652.

[Herz00] Herzwurm, G., Kundenorientierte Softwareproduktentwicklung. Teubner: Stuttgart, 2000.
[HöEd02] Hörnstein, J., Edler, H., Test reuse in cbse using built-in tests, in: Workshop on Component-

based Software Engineering, Composing Systems from components, 2002.
[IEEE90] Institute of Electrical and Electronics Engineers, IEEE Standard Glossary of Software

Engineering Terminology, IEEE Std. 610.121990, New York 1990.
[ISO01] International Organisation for Standardization: ISO/IEC 9126-1:2001, Geneva 2001.
[Kam+04] Kamsties, E., Pohl, K., Reuys, A., Anforderungsbasiertes Testen, in: Böckle, G., Knauber,

P., Pohl, K., Schmid,. K. (Eds.), Softwareproduktlinien, Methoden, Einführung und Praxis,
Heidelberg 2004, p. 119 – 137

[Kind04] Kindzorra, O., Software development at Microsoft. Lecture script, Stuttgart Institute of
Management and Technology (SIMT), fall semester 2004.

[Kubi75] Kubicek, H., Empirische Organisationsforschung. Konzeption und Methodik, Stuttgart 1975.
[LiRi98] Liu, C., Richardson, D., Software Components with retrospectors, in: International

Workshop on the Role of Software Architecture in Testing and Analysis, 1998, p. 63-68.

[Lulu02] Lu, D., Lutz, R., Fault Contribution Trees for Product Families, in: Proceedings of the 13th
International Symposium on Software Reliablity Engineering (ISSRE’02), Annapolis, Maryland,
USA, November 2002, p. 231.

[McGr01] McGregor, John D., Testing a Software Product Line, Technical Report, CMU/SEI-2001-
TR-022, Software Engineering Institute, Carnegie Mellon University, Hanscom AFB, MA, USA
2001.

[McGr02] McGregor, John D., Building Reusable Test Assets for a Product Line, in: 7th International
Conference on Software Reuse, “Software Reuse: Methods, Techniques, and Tools”, Austin, TX,
USA, April 2002, p. 345-346.

[Mena02] Menasce, D., Load Testing of Web Sites, in: IEEE Internet Computing, Juli/August 2002,
p. 70 - 74, 2002.

[Mena04] Menasce, D., QoS-Aware Software Components, in: IEEE Internet Computing, März/April
2004, p. 91 - 93, 2004.

[Muth02] Muthig, D., A light-weight approach facilitating an evolutionary transition towards software
product lines. Dissertation, Universität Kaiserslautern, Fraunhofer-IRB Verlag, Stuttgart, 2002.

[Muth03] Muthig, D., Produktlinien – Einstieg. Webseite des Kompetenzzentrums Software
Engineering: http://www.software-kompetenz.de/?2246, Abruf am 15.6. 2004

 [Ors+00] Orso, A., Harrold, J., Rosenblum, D., Component metadata for software engineering tasks,
in: Proceedings of the 2nd International Workshop on Engineering Distributed Objects (EDO 2000),
LNCS Vol. 1999,Springer November 2000, p. 129.

[Ors+01] Orso, A., Harrold, J., Rosenblum, D., Rothermel, G., Do, H., Soffa, M., Using Component
Metacontent to Support the Regression Testing of Component-Based Software, in: IEEE
International Conference on Software Maintenance (ICSM’01), Florenz, Italien, November 2001,
p. 716.

[Reu+03] Reuys, A., Kamsties, E., Pohl, K., Götz, H., Neumann, J., Weingärtner, J., Testen von
Software-Produktvarianten – ein Erfahrungsbericht, in: 2. Deutscher Software-Produktlinien
Workshop (DSPW-2), Multikonferenz Wirtschaftsinformatik (MKWI 2004), März 2004, p. 244-
259.

[RiRo02] Riva, C., Del Rosso, C., Experiences with Software Product Family Evolution, in:
Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03),
Helsinki, Finnland, September 2003, p. 161.

[SpLi04] Spillner, A., Linz, T., Basiswissen Softwaretest, 2. Aufl., d.punkt-Verlag, Heidelberg 2004.
[Szyp99] Szyperski, C., Component Software, Beyond Object-Oriented Programming, ACM Press,

Addison-Wesley, 1999.
[Tra+99] Traon, Y., Deveaux, D., Jezequel, J.-M., Self-testable components: from pgramatic tests to

design-to-testability methodology, in: Technology of Object-Oriented Languages and Systems
(TOOLS), S. 96-107, IEEE Computer Society Press, 1999.

[WeLa99] Weiss, D.M., Lai, C.T.R., Software product-line engineering: a family-based software
development process. Addison-Wesley: Reading, MA, Bonn, 1999.

[Wey+94] Weyuker, E., Goradia, T., Singh, A., Automatically Generating Test Data from a Boolean
Specification, in: IEEE Transactions on Software Engineering, Vol. 20, No. 5, May 1994, p. 353 –
363.

[Weyu98] Weyuker, Elaine J., Testing component-based software – a cautionary tale, in: IEEE
Software, September/Oktober 1998, p. 54-59.

[WiPr01] Williams, Alan W.; Probert, Robert L., A Measure for Component Interaction Test
Coverage, In: ACS/IEEE International Conference on Computer Systems and Applications
(AICCSA'01), Beirut, Libanon, Juni 2001, p. 304.

[Xiao03] Xiaoguang, M., A General Model for Component-Based Software Reliability, in:
Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture”
(EUROMICRO’03), Belek-Antalya, Türkei, September 2003, p. 395.

[Yan+99] Yang, Y., King, G ., Wickburg, H., A method for built-in tests in component-based software
maintenance, in: Third European Conference on Software Maintenance and Reengineering
(CSMR), Amsterdam, Niederlande, März 1999, p. 186.

