
Characterizing the
Software Process:

A Maturity Framework

Watts S. Humphrey, Sofi ware Engineering lnsiitufe

Software quality and
productivity must

improve. But where to
sfart? This model helps

organizations identify
their highest priority

problems and start
~ making improvements.

he amount of money spent on soft-
ware in the US grows approxi-
mately 12 percent each year, and

the demand for added software functions
grows even faster. Software is a major and
increasing portion of US Defense Dept.
procurement costs, a n d software often
adversely affects the schedules and effec-
tiveness of weapons systems.

O n e SEI project is to provide the
Defense Dept. with some way to charac-
terize the capabili t ies o f sof tware-
development organizations. T h e result is
this software-process maturity frame-
work, which can be used by any software
organization to assess its own capabilities
a n d identify the most important areas for
improvement.

In recognition of the need to improve '
the development of military software, the 1 Ideal Software process
Defense Dept. has launched several initia-
tives o n software reliability, maintainabil-
ity, and testing, including the A d a Joint
Program Office and the STARS program.
The Defense Dept. formed the Software
Engineering Institute at Carnegie Mellon
University in 1984 t o establish standards
of excellence for software engineering and
to accelerate the transition o f advanced
technology and methods into practice.

I t is worthwhile to examine the charac-
teristics of a truly effective software pro-
cess. First, it is predictable: Cost estimates
and schedule commitments are met with
reasonable consistency and the quality of
the resulting products generally meet user
needs.

Statistical control. The basic principle
o f software process management is that if

0740-7459/88/0300/0073/%01 .OO id1988 IEEE 73

Process evolution

Process
control

6 Defined 6 Defined

Process
definition

Basic
management

control
Initial

Process
definition

Process
measurement

1

Figure 1. The five levels of process maturity.

the development process is under statisti-
cal control, a consistently better result can
be achieved only by improving the process.
If the process is no t under statistical con-
trol, sustained progress is not possible until
it is.'

When a process is under statistical con-
trol , repeating the work in roughly the
same way will produce roughly the same
result.

W.E. Deming, in his work with the Jap-
anese industry after World W a r 11, applied
the concepts of statistical process control
t o industry. ' While there a re important
differences, these concepts a re just as
applicable t o software as they a re t o
automobiles, cameras, wristwatches, and
steel. A software-development process
that is under statistical control will pro-
duce the desired results within the antici-
pated limits of cost, schedule, and quality.

Measurement. T h e basic principle
behind statistical control is measurement.
As Lord Kelvin said a century ago, " . . .
when you can measure what you are
speaking about, and express it in numbers,
you know something about it; but when
you cannot measure it, when you cannot
express it in numbers, your knowledge is
o f a meager a n d unsatisfactory kind; it
may be the beginning of knowledge, bu t
you have scarcely in your thoughts
advanced t o the stage o f science. . . .''2

There a re several factors t o coniider in

measuring the programming process. Per-
haps most important is that the mere act
of measuring human processes changes
them. Since people's fears and motivations
a re involved, the results must be viewed in
a different light than d a t a o n natural
phenomena.

It is also essential t o limit the measure-
ments to those few items that will really be
used. Measurements a re both expensive
and disruptive; overzealous measuring can
degrade the processes we arc trying t o
improve.

Development-process
improvement

A n important first step in addressing
software problems is t o treat the entire
development task as a process that can be
controlled, measured, and improved. We
define a process as a sequence of tasks
that, when properly performed, produces
the desired result. Clearly, a fully effective
software process must consider the rela-
tionships of all the required tasks, the tools
a n d methods used, and the skill, training,
a n d motivation of the people involved.

To improve their software capabilities,
organizations must take five steps:

(1) understand the current status of their
development process or processes,

(2) develop a vision of the desired
process,

(3) establish a list of required process

improvement actions in order of priority,
(4) produce a plan t o accomplish these

actions, and
(5) commit the resources to execute the

plan.
T h e maturity framework developed at

the SE1 addresses these five steps by
characterizing a software process into one
of five maturity levels. By establishing
their organization's position in this matu-
rity structure, software professionals a n d
management can more readily identify
those areas where improvement actions arc
most likely to produce results.

Process maturity levels
As Figure 1 shows, the five levels of pro-

cess maturity are:
1 . Initial. Until the process is under

statistichi control, n o orderly progress in
process improvement is possible.

2. Repeatable. The organization has
achieved a stable process with a repeatable
level of statistical control by initiating rig-
orous project management of commit-
ments, cost, schedule, a n d changes.

3. Defined. T h e organiza t ion hac
defined the process, to ensure consistent
implementation and provide a basis for
better understanding of the process. At
this point, advanced technology can use-
fully be introduced.
4. Managed. The organization has

initiated comprehensive process measure-
ments, beyond those of cost and schedule
performance. This is when the most signif-
icant quality improvements begin.

5 . Optimizing. T h e organization now
has a foundation for continued improve-
ment and optimization of the process.

These levels have been selected because
they

reasonably represent the actual histor-
ical phases of evolutionary improvement
o f real software organizations,

represent a measure of improvement
that is reasonable to achieve from the prior
level,

suggest interim improvement goals
and progress measures, and

make obvious a set of immediate
improvement priorities, once an organiza-
tion's status in this framework is known.

While there arc many other elements to
these maturity-level transitions, the basic

74 IEEE Software

objective is t o achieve a controlled and
measured process as the scientific founda-
tion for continuous improvement. This
structure is intended t o be used with a n
assessment and management methodol-
ogy, as outlined in the box o n pp. 76-77.

Initial Process
T h e Initial Process could properly be

called ad hoc, and i t is often even chaotic.
Here, the organization typically operates
without formalized procedures, cost esti-
mates, and project plans. Tools are neither
well integrated with the process nor uni-
formly applied. Change control is lax and
there is little senior management exposure
to o r understanding of the problems and
issues. Since problems are often deferred
o r even forgotten, software installation
a n d maintenance often present serious
problems.

While organizations at this level may
have formal procedures for project con-
trol , there is n o management mechanism
to ensure they are used. The best test is t o
observe how such an organization behaves
in a crisis. If i t abandons established proce-
dures and reverts to merely coding and
testing, i t is likely to be at the Initial Pro-
cess level. After all, if the techniques and
methods are appropriate, they must be
used in a crisis and if they a re not appro-
priate, they should not be used at all.

One reason organizations behave chaot-
ically is that they have not gained sufficient
experience to understand the consequences
o f such behavior. Because many effective
software actions such as design and code
reviews or test data analysis d o not appear
to directly support shipping the product,
they seem expendable.

I t is much like driving a n automobile.
Few drivers with any experience will con-
tinue driving for very long when the engine
warning light comes on , regardless of their
rush. Similarly, most drivers starting o n a
new journey will, regardless of their hurry,
pause to consult a map. They have learned
the difference between speed and progress.

In software, coding and testing seem
like progress, but they a re often only
wheel-spinning. While they must be done,
there is always the danger of going in the
wrong direction. Without a sound plan
and a thoughtful analysis of the problems,
there is n o way to know.

Organizations a t the Initial Process level
can improve their performance by institut-
ing basic project controls. The most
important are:

Project management. The fundamen-
tal role of aproject-management system is
to ensure effective control of commir-
ments. This requires adequate prepara-
t ion , clear responsibil i ty, a publ ic
declaration, a n d a dedication to per-
formance.’

For software, this starts with a n under-
standing of the job’s magnitude. In any
but the simplest projects, a plan must then
be developed to determine the best sched-
ule a n d the resources required. In the
absence of such a n orderly plan, n o com-

A disciplined software-
development organization

must have senior
management oversight.

mitment can be better than a n educated
guess.

Management oversight. A disciplined
softwjare-development organization must
have senior management oversight. This
includes review and approval o f all major
development plans before official com-
mitment.

Also, a quarterly review should be con-
ducted of facility-wide process compli-
ance , installed-quality per formance ,
schedule tracking, cost trends, computing
service, and quality and productivity goals
by project. The lack of such reviews typi-
cally results in uneven and generally inade-
qua te implementation of the process as
well as in frequent overcommitments and
cost surprises.

Qual i ty a s s u r a n c e . A qual i ty-
assurance group is charged with assuring
management that the software-develop-
ment work is actually done the way i t is
supposed t o be done. To be effective, the
assurance organization must have a n
independent reporting line to senior
management and sufficient resources to
monitor performance of all key planning,
implementation, and verification activi-

ties. This generally requires an organira-
tion of about 5 to 6 percent the sire o f the
development organiration.

Change control. Control of changes i n
software development is fundamental to
business and financial control as well as to
technical stability. T o develop quality soft-
ware o n a predictable schedule, the
requirements must be established a n d
maintained with reasonable stability
t h r o u g h o u t t he deve lopment cycle.
Changes wil l have to be made, but they
must be managed and introduced in a n
orderly way.

While occasional requirements changes
are needed, historical evidence demon-
strates that many of them can be deferred
and phased in later. If all changes are not
controlled, orderly design, implementa-
tion, and testing is impossible and n o qual-
ity plan can be effective.

Repeatable Process
The Repeatable Process has one impor-

tant strength over the Initial Process: I t
provides commitment control.

This is such a n enormous advance over
the Initial Process that the people in the
organization tend to believe they have
mastered the software problem. They d o
not realize that their strength stems from
their prior experience at similar work.
Organizations at the Repeatable Process
level thus face major risks when they are
presented with new challenges.

Examples of the changes that represent
the highest risk a t this level are:

New tools and methods will likely
affect how the process is performed, thus
destroying the relevance of the intuitive
historical base o n which the organization
relies. Without a defined process frame-
work in which to a d d r e s these risks, i t is
even possible for a new technology to d o
more harm than good.

When the organization must develop
a new kind of product, i t is entering ne\+
territory. For example, a software group
that has experience developing compilers
wil l likely have design, scheduling, and
estimating problems if assigned to write a
control program. Similarly, a group that
has developed small, self-contained pro-
grams will not understand the interface
and integration issues involved i n large-
scale projects. These changes again

March 1988 75

destroy the relevance of the intuitive
historical basis for the organization's
work .

Major organization changes can be
highly disruptive. In the Repeatable Pro-
cess organization, a new manager has n o
orderly basis for understanding what is
going o n and new team members must
learn the ropes through word of mouth .

The key actions required to advance
f rom the Repeatable Process t o the
Defined Process are:

1. Establish a process group. A process
group is a technical group that focuses
exclusively on improving the software-
development process. In most software
organizations, people are entirely devoted
to product work. Until someone is given
a full-time assignment to work o n the pro-
cess, little orderly progress can be made in
improving it.

The responsibilities of process groups
include defining the development process,
identifying technology needs and oppor-
tunities, advising the projects, and con-
ducting quarterly management reviews of
process status and performance. Typi-
cally, the process group should be about
1 to 3 percent the size of the development
organization. Because of the need for a
nucleus of skills, groups smaller than
about four are unlikely t o be fully effec-
tive. Small organizations that lack the
experience base to form a proce5s group
should address these issues through spe-
cially formed committees of experienced
professionals or by retaining consultants.

2. Establish a software-development
process architecture that describes the
technical a n d management activities
required for proper execution of the devel-
opment process.4 The architecture is a
structural decomposition of the develop-
ment cycle into tasks, each of which has
entry criteria, functional descriptions,
verification procedures, a n d exit criteria.
T h e decomposition continues until each
defined task is performed by a n individual
or single management unit .

3. If they are not already in place, intro-
duce a family of software-engineering
methods and technologies. These include
design and code inspections, formal design
methods, library-control systems, and
comprehensive testing methods. Prototyp-

ing should also be considered, along with
the adoption of modern implementation
languages.

Defined Process
With the Defined Process, the organiza-

tion has achieved the foundation for major
and continuing progress. For example, the
development group, when faced with a cri-
sis, will likely continue to use the Defined
Process. The foundation has now been
established for examining the process and
deciding how t o improve it.

As powerful as the Defined Process is,
i t is still only qualitative: There is little data
to indicate what is going o n or how effec-
tive the process really is. There is consider-

able debate about the value of soft-
ware-process measurements a n d the best
ones t o use. This uncertainty generally
stems from a lack of process definition and
the consequent confusion about the spe-
cific items to be measured. With a defined
process, we can focus the measurements
o n specific tasks. The process architecture
is thus a n essential prerequisite to effective
measurement.

The key steps"' to advance to the
Managed Process are:

1 . Establish a minimum, basic set of
process measurements to identify the qual-
ity and cost parameters of each process
step. The objective is to quantify the rela-
tive costs and benefits of each major pro-

How to use this framework
This process-maturity structure is intended to be used with a n a s s e s s m e n t

methodology and a management system.13
Assessment lets you identify the organization's specific maturity status. A

management system es tab l i shes a structure for actually implementing the pri-
ority actions necessary to improve the organization. Once its position in this matu-
rity structure is defined, the organization can concentrate on those items tha t will
let it advance to the next level.

When, for example, a software organization d o e s not have an effective project-
planning system, it may be difficult or even impossible to introduce advanced
methods and technology. Poor project planning generally leads to unrealistic
schedules, inadequate resources, and frequent crises. In such circumstances, new
methods are usually ignored, and the focus is on coding and testing.

Using this maturity framework, the SEI h a s developed a n assessment question-
naire and methodology, a portion of which is shown in Figure A.4.5 The question-
naire has been reviewed by more than 400 governmental and industrial
organizations. Also, it h a s been completed by more than 50 programming profes-
sionals from nearly as many software Organizations. A section of our question-
sionals from nearly as many software organizations.

The SEI has a lso used the a s s e s s m e n t methodology to conduct in-depth tech-
nical reviews of 25 programming projects in four large programming organizations.

Through this work, the a s s e s s m e n t methodology and questionnaire have
evolved, but the five-level maturity framework has remained essentially
unchanged. We have found that it portrays, with reasonable accuracy, t h e s t a tus
and problems a s seen by the managers and professionals in the organizations
reviewed.

These early results indicate that the model reasonably represents the state of
such organizations and provides a mechanism to rapidly identify the key improve-
ment issues they face. At this time, the d a t a is too limited to provide a n y more
detailed information as to maturitydistribution by indus t ry , organization size, or
type of work.

References
1. W.S. Humphrey, Managing forlnnovahon - Leading Techn/ca/Peop/e. Prentice-Hall, Engle-

2. R.A. Radiceet al., "A Programming Process Study," IEMSystems J., Vol. 24, No. 2,1985,

3. R.A. Radice et al., "A Programming Process Architecture," / E M Systems J . , Vol. 24, No.

wood Cli f fs, N.J., 1987.

pp. 91-101.

2, 1985, pp. 79-90.

76 IEEE Software

cess activity, such as the cost and yield of
error detection and correction methods.

2. Establish a process database with the
resources to manage and maintain it. Cost
and yield da ta should be maintained cen-
trally to guard against loss, to make it
available for all projects, a n d to facilitate
process quality and productivity analysis.

3. Provide sufficient process resources
t o gather and maintain this da ta and t o
advise project members o n its use. Assign
skilled professionals to monitor the qual-
ity of the data before entry in the database
and t o provide guidance o n analysis
methods and interpretation.

4. Assess the relative quality of each
product and inform management where

quality targets a re not being met. A n
independent quali ty-assurance g r o u p
should assess the quality actions of each
project and track its progress against its
quality plan. When this progress is com-
pared with the historical experience o n
similar projects, a n informed assessment
generally can be made.

Managed Process
In advancing f rom the Initial Process

via the Repeatable and Defined Processes
t o the Managed Process, software organi-
zations typically will experience substan-
tial quality improvements. T h e greatest
potential problem with the Managed Pro-
cess is the cost of gathering data. There are

4. W.S. Humphrey and D.H. Kitson, "Preliminary Report on Conducting SEI-Assisted Assess-
ments of Software Engineering Capability." Tech. Report SEI-87TR-16, Software Eng. Inst.,
Pit tsburgh, July 1987.

5. W.S. Humphrey and W.L. Sweet, "A Method for Assessing the Software Engineering Capa-
bi l i ty of Contractors," Tech. Report SEI-87-TR-23, Software Eng. Inst., Pittsburgh, Sept.
1987.

2.3. Data Management and Analysis
Data management deals with the gathering and retention of process metrics. Data manage-

ment requires standardized data definitions, data management facilities, and a staff to ensure
that data is promptly obtained, properly checked, accurately entered into the database, and
effectively managed.

Analysis deals with the subsequent manipulation of the process data to answer questions
such as, "Is there is a relatively high correlation between error densities found in test and those
found in use?" Other types of analyses can assist in determining the optimum use of reviews
and resources, the tools most needed, testing priorities, and needed education.

2.3.1. Has a managed and controlled process database been established for process metrics
data across all projects?

2.3.2. Are the review data gathered during design reviews analyzed?

2.3.3. Is the error data from code reviews and tests analyzed to determine the likely distribution
and characteristics of the errors remaining in the product?

2.3.4. Are analyses of errors conducted to determine their process related causes?

2.3.5. Is a mechanism used for error cause analysis?

2.3.6. Are the error causes reviewed to determine the process changes required to prevent
them?

2.3.7. Is a mechanism used for initiating error prevention actions?

2.3.8. Is review efficiency analyzed for each project?

2.3.9. Is software productivity analyzed for major process steps?

Figure A. A p o r t i o n of t h e SEI'S a s s e s s m e n t q u e s t i o n n a i r e .

a n enormous number of potentially valu-
able measure5 of software development
and support , but such data is expensive to
gather and maintain.

Therefore, approach da ta gathering
with care and precisely define each piece
of d a t a in advance. Productivity da ta is
generally meaningless unless explicitly
defined. For example, the simple measure
o f lines of source code per development
month can vary by 100 times of more,
depending o n the interpretation of the
parameters. The code count could include
only new and changed code or all shipped
instructions. For modified programs, this
can cause a ten-times variation. Similarly,
you can use noncomment, nonblank lines,
executable instructions, or equivalent
assembler instructions, with variations
again of u p to seven times.' Management,
test, documentation, and support person-
nel may or may not be counted when cal-
culating labor months expended. Again,
the variations can run at least as high as
seven times.'

When different groups gather data but
d o not use identical definitions, the results
a re not comparable, even if i t made sense
to compare them. The tendency with such
da ta is to use i t to compare several groups
and put pressure o n those with the lowest
ranking. This is a misapplication of pro-
cess da t a .

First, it is rare that two projects are com-
parable by any simple measures. The var-
iations in task complexity caused by
different product types can exceed five to
one. Similarly, the cost per line of code of
small modifications is often two to three
times that for new programs. The degree
of requirements change can make an enor-
mous difference, as can the design status
of the base program in the case o f
enhancements.

Process da ta must not be used to com-
pare projects o r individuals. Its purpose is
to illuminate the product being developed
and to provide a n informed basis for
improving the process. When such da ta is
used by m a n a g e m e n t to e v a l u a t e
individuals or teams, the reliability of the
data itself will deteriorate. The US Consti-
tution's Fifth Amendment, which protects
against self-incrimination, is based o n
sound principles: Few people can be
counted o n t o provide reliable da ta o n

March 1988 77

their own performance.
The tw’o fundamental requirements to

advance from the Managed Process to the
OptimiJing Process are:

1. Support automatic gathering of pro-
cess da ta . Some d a t a cannot be gathered
by hand, and all manually gathered data
is subject to error and omission.

2. Use this da ta to both analyze and
modify the process to prevent problems
and improve efficiency.

Optimizing Process
In varying degrees, process optimization

goes o n at all levels of process maturity.
With the step from the Managed to the
Optimizing Process, however, there is a
paradigm shift. U p to this point, softuare-
development managers have largely
focused o n their products and will typi-
cally only gather and analyze data that
directly relates t o product improvement.
I n the Optimizing Process, the d a t a is
available to actually tune the process itself.
With a little experience, management will
soon see that process optimization can
produce major quality and productivity
improvements.

For example, many errors can be iden-
tified and fixed far more economically by
code inspections than through testing.
Unfortunately, there is little published
da ta o n the costs of finding and fixing
errors.- However, I have developed a use-
ful rule of thumb from experience: It takes
about one to four working hours to find
and fix a bug through inspections and
about 15 to 20 working hours to find and
fix a bug in function o r system test. I t is
thus clear that testing is not a cost-effective
way to find and fix most bugs.

However, some kinds of errors are
either uneconomical or almost impossible
to find except by machine. Examples a re
errors involving spelling and syntax, inter-
faces, performance, human factors, and
error recovery. I t would thus be unwise to
eliminate testing completely because it
provides a useful check against human
frailties.

The da ta that is available with the
Optimizing Process gives us a new perspec-
tive o n testing. For most projects, a little
analysis shows that there a re two distinct
activities involved. The first is the removal
of bugs. To reduce this cost, inspections

should be emphasized together \\ith any
other cost-effective techniques. The role of
functional and system testing should then
be changed t o one of finding symptoms
that are further explored t o see if the bug
is a n isolated problem or if i t indicates
design problems that require more com-
prehensive analysis.

In the Optimizing Process, the organi-
zation has the means to identify the
weakest elements of the process and fix
them. At this point in process improve-
ment, da ta is available t o justify the appli-
cation of technology to various critical
tasks and numerical evidence is available
on the effectiveness with which the process
has been applied to any given product. We
n o longer need reams of paper t o describe
what is happening because simple yield
curves and statistical plots provide clear
and concise indicators. I t is now possible
to assure the process and hence have con-
fidence in the quality of the resulting
products.

People in the process. Any software-
development process is dependent o n the
quality o f the people who implement it.
Even with the best people, however, there
is always a limit to what they can accom-
plish. When engineers are already working
50 to 60 hours a week, i t is hard t o see how
they could handle the vastly greater
challenges of the future.

The Optimizing Process helps in several
\+ays:

I t helps managers understand where
help is needed and how best to provide the
people with the support they require.

I t lets professionals communicate in
concise, quantitative terms. This facilitates
the transfer of knowledge and minimizes
the likelihood of their wasting time o n
problems that have already been solved.

It provides the framework for the
professionals t o understand their work
performance and to see how to improve it.
This results in a highly professional envi-
ronment and substantial productivity
benefits, a n d i t avoids the enormous
a m o u n t o f e f for t t ha t is generally
expended in fixing and patching other peo-
ple’s mistakes.

The Optimizing Process provides a dis-
ciplined environment for professional
work. Process discipline must be handled

Lvith care, however, lo r i t can easily
become regimentation. The differencc
betiveen a disciplined enLironment and a
regimented one is that discipline controls
the environment and methods to specific
standards while regimentation defines the
actual conduct of the work.

Discipline is required in large software
projects to ensure, for example, that thc
people invohed use the same conventions,
don’t damage each other’s products, and
properly synchronize their work. Dis-
cipline thus enables creativity by freeing
the most talented software professionals
from the many crises that others have
created.

The need. There are many examples of
disasters caused by software problems,
ranging from expensive missile abort5 to
enormous financial losses. As the coni-
puterization of our society continues, the
public risks due to poor-quality code will
become untenable. Not only are our sys-
tems being used in increasingly sensitive
application5, but they are also becoming
much larger and more complex.

While proper questions can be raised
about the size and complexity of current
systems, they are human creations and
they will, alas, continue to be produced by
humans - with all their failings and crea-
tive talents. While many of the currently
promising technologies h i l l undoubtedly
help, there is an enormous backlog of
needed functions that will inevitably trans-
late into vast amounts of code.

More code means increased risk of error
and , when coupled with more complexity,
these systems will become progressively
less testable. The risks will thus increase
astronomically as we become more effi-
cient at producing prodigious amounts of
new code.

As hell as being a management issue,
quality is a n economic one . I t is always
possible to d o more inspections o r to run
more tests, but i t costs t imeand money to
d o so. I t is only with the Optimizing Pro-
cess that the data is available to understand
the costs and benefits of such work. The
Optimizing Process thus provides the
foundation for significant advances in
s o f t w a r e q U al i t y a n d si in u I t a n e o u s
improvements in productivity.

78 IEEE Software

There is little da t a on how long it takes
for software organizations t o advance
through these maturity levels toward the
Optimizing Process. Based on m y experi-
ence, transition f rom level 1 to level 2 or
from level 2 t o level 3 take f rom one t o
three years, even with a dedicated manage-
ment commitment t o process improve-
ment. To date, no complete organizations
have been observed a t levels 4 or 5 .

To meet society’s needs fo r increased
system functions while simultaneously
addressing the problems o f quality and
productivity, software managers and
professionals must establish the goal o f
moving t o the Optimizing Process.

his software-development process-
m a t u r i t y m o d e l r e a s o n a b l y
represents the actual ways in which

so f tware -deve lopmen t o rgan iza t ions
improve. I t provides a framework for
assessing these organizations and identify-
ing the priority areas for immediate
improvement. I t also helps identify those
places where advanced technology can be
most valuable in improving the software-
development process.

T h e SEI is using this model as a founda-
t ion for a continuing program o f assess-
ments and software process development.
These assessment methods have been
made public,’” and preliminary da t a is
now available from several dozen software
organizations.

Figure 2 shows the maturity distribution
o f these organizations and the three lead-
ing problems faced a t each level. A t level
one , the distribution is shown by quartile.
There is not yet sufficient da t a t o provide
this detail for levels 2 or 3. As further da t a
is gathered, additional reports will be pub-
lished on the results obtained. -0-

Acknowledgments
Much of the early work on software process

maturity was suggested by my former colleagues
at IBM. I am particularly indebted to Ron
Radice and Jack Harding for their insights and
support. In addition, William Sweet of the SEI
and Martin Owens and Herman Schultz of
Mitre Corp. have made valuable contributions
to this work. I am also indebted to my colleagues
at the SEI, particularly Rodger Blair, Larry
Druffel, and Greg Hansen, for their helpful
comments and suggestions. This work was sup-
ported by the Defense Dept.

Problern areas J Error projectior:
r / Test and review coverages
J Process metrics datdhase

J Design and code reviews
J Software engineering training
J Software engineerinq process qroup

J Regression testinq

2% 1 2 % 28% 28% 21 ‘YI 9%
Software process maturing distribution (i n quartiles)

Figure 2. Early results from several dozen software organizations queried by
the SEI shows the maturity distribution and the three leading problems faced
at each level. At level one, the distribution is shown by quartile. There is not
yet sufficient data to provide this detail for levels 2 or 3. To date, no complete
organizations have been observed at levels 4 or 5.

References
1. W.E. Deming, “Quality, Productivity, and

Competitive Position,” tech. report, MIT
Center for Advanced Eng. Study, Cam-
bridge, Mass., 1982.

2. J.R. Dunham and E. Kruesi, “The Mea-
surement Task Area,” Computer, Nov.
1983, pp. 47-54.

3. W.S. Humphrey, Managing fo r Innova-
iion: Leading Technical People, Prentice-
Hall, Englewood Cliffs, N.J., 1987.

4. R.A. Radiceet al., “A Programming Pro-
cess Architecture,” IBMSystems J . , Vol.

5. M.L. Shooman, Software Engineering:
Design, Reliabiliiy, and Management,
McGraw-Hill, New York, 1983.

6 . R.W. Wolverton. “TheCost of Developing
Large-scale Software,” IEEE Trans. Com-
pulers, June 1974, pp 615-636.

7. M.L. Shooman and M.I. Bolsky, “Types,
Distribution, and Test and Correction
Times for Programming Errors,” Proc.
Int’l Conf. Reliable Software, IEEE, New
York, 1975, pp. 347-357.

8. W.S. Humphrey and D.H. Kitson,
“Preliminary Report on Conducting SEI-
Assisted Assessments of Software-
Engineering Capability,” Tech. Report
SEI-87-TR-16, Software Eng. Inst., Pitts-
burgh, July 1987.

9. W.S. Humphrey and W.L. Sweet, “A
Method for Assessing the Software
Engineering Capability of Contractors,”
Tech. Report SEI-87-TR-23, Software Eng.
Inst., Pittsburgh, Sept. 1987.

24, NO. 2, 1985, pp. 79-90.

Watts S. Humphrey is director of the software
process program for the Software Engineering
Institute. This group provides leadership i n
establishing advanced software engineering
processes, metrics, methods, and quality pro-
grams for the US government and its con-
tractors.

He worked at IBM from 1959 to 1986, where
he was director of programming quality and
process. Humphrey has written two books,
Managing for Innovaiion: Leading Technical
People and Switching Circuits with Computer
Applications.

Humphrey received a BS in physics from the
University of Chicago, an MS in physics from
the Illinois Institute of Technology, and an
MBA from the University of Chicago. He has
taught graduate electrical engineering at North-
eastern University. An IEEE Fellow, he is also
a member of the ACM.

Questions about this article can be addressed
to Humphrey at the SEI, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213.

March 1988 79

