
K%Mreffi
ffi we%ffiw

SECURITY 560

Nurwom PnnETRATroN

Tnsrmc ND

Errucar HrcKNc

Scanning

560,2

Copyright O 2011, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

IMPORTANT-READ CAREFULLY:

This Courseware License Agreement ("CLA") is a legal agreement between you (either
an individual or a single entity; henceforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrees that the CLA is the complete and
exclusive statement of agreement between The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject matter of this CLA. If any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thereof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MAY
RETURN IT TO THE SANS INSTITUTE FOR A FULL REFUND, IF APPLICABLE.
The SANS Instifute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
othetwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not sell, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute.

The SANS Institute reserves the right to terminate the above lease at any time. Upon
termination of the lease, user is obligated to return all materials covered by the lease
within a reasonable amount of time.

v2011 0418

Netw*rk Penetration Testing and Ethieal Hacklng

Scanning

SANS Seeuriry 56*.2

{l*pyright 2irt I, A}1 ltights llescr:r,ed
Vel.sit:l 3Sl I

Hello, and welcome back. Today's section is called 560.2, Scanning.

This component of the course focuses on the vital task of scanning a target environment, creating a
comprehensive inventory of machines, and then evaluating those systems to find potential vulnerabilities.
We'll look at some of the most useful scanning tools freely available today, experimenting with them in our
hands-on lab. Because vulnerability-scanning tools inevitably give us false positives, we'll conduct an
exercise on false-positive reduction, analyzitg several methods for getting inside of what our tools are
telling us to ensure the veracity of our findings. Our hands-on exercises include the creative use of packet
crafting to measure the fine-grained behavior of target machines, all while watching the action from a
custom-configured sniffer. We also look at some of the late-breaking features of popular tools, including
the latest Nmap Soripting Engine capabilities. And, we'll perform vulnerability scans, looking at the fine-
grained configuration options of Nessus.

Without further ado, let's begin.

t

a

a

t

I

560"? Tahle sf Contents litide #

This slide is a table of contents. Note that exercises are in bold f-ace, so you can more easily find and refer
to them.

2

F Sniffing with tspdsmF
. iletwork Sweeping with Seapy

r Scapyitcpdump Exercise
. Network Traclng
. Port Scanning

. Nmap
r Nrnap fxercise

- OS Fingerpnntrng
. Version Scanning

.- Nrnap -O -sV and
Amap Exercise

. Vulnerability Scanning
- Nmap Scrrpting Engine

' NSf Exercise
- Nessus
. Nessus Exercise
- Clhcr Vuln $canners

. Enumerating Users
- Enumerating Exercise

. lrletcat for the Pen Tester
; Netcat Exercise

Course Roadma

Planning and E* L.*n

r Explcitation
o Password Attaclt:,
. Wireless Attacks
r l#eb App Affiacks

We'll starl this section by discussing the goal of scanning and the different kinds of scans. We'll then
proceed to go over some tips to help improve the effectiveness of your scans and analysis of the results. We
then proceed through various scan types, including network sweeps, porl scanning, and version scanning,
culminating with an analysis of vulnerability scanning.

3

G*als of Scanning PhaEe

" Over&ll: Learn msr€ about targ*ts and find
apenings by interacting with th* target
envircnment
* Det*rmine nefwork addresses af llve hnsts, firewalls,

rcuters, etc. in the nretwork
* Determine network top*lcgy of target eRvironment

- Set*rmine cperating system types of dlseovered hasts
* Fet*rg?ine open pcrts and network services in target

envirgnm*nt
* Determine lists of pctential vulnerabilities
* Do these in a manner that minimizes risk of impairing

host or service

The overarching goal of the scanning phase is to learn more about the target environment and find openings
by directly interacting with the target systems. Particular objectives under this goal include determining the
addresses used by systems on the target environment, including hosts (seruers and clients), network
equipment (firewalls, routers, switches), and other devices. We also want to learn the topology of the target
environment, creating a diagram that shows how various systems interconnect: in effect drawing a network
map. From this map, we can plan further attacks with more confidence.

We also want to determine the operating system types of our target machines, so that we can tailor follow-
up activity (including exploitation) based on vulnerabilities associated with those kinds of machines.

Next, we want a list of listening TCP and UDP ports on the target systems because each open port offers a
potential avenue for oompromise. In addition to determining which pofts are open, we also want to verifl,
which service is listening on each port and the version ofthe given application or application-level protocol
(e.g., HTTP version, SMTP version, SSH protocol version) that it speaks.

We then want a list of potential vulnerabilities, which may be determined fiom the version numbers
determined earlier or based on the behavior of the target system in light of certain kinds of network
interactions.

We want to do all of the above in a manner that minimizes the chance of damaging the target machine(s),
although there is always a possibility that our interactions could cause a target system or service to slow
down or crash.

4

Scan Types

r Nctwcrk sirueeplng:
* Send a series of prabe p*ekets to identify {ive hosts et IP addresses in th*

target network
. Nefwark traeing:

- **terr*ine nebru*rk tcpal*gy and draw e rnfip

' P*rt seanning:
* *etermine listening TCF and UDF ports en terget systems

. OS fingerprinting:
* *eter*rine target op*rating system type based on neh*rcrk behavisl"

. Version scanning:

- Detern:ine the versinn sf $sliees and protocols spaken by apen Tf,F and
{J*P ports

' Vulnerability seanning:
* ileterr*ine a list of Botentiel vr"rlnerabilities {mis*cnfiguretions, unpatched

services, ete") in the target environrnent

To achieve our goals, we'll perform several types of scans during the test, including:

Network sweeping: This kind of scan identifies which addresses are in use by sending probe packets to all
network addresses in a target range. Wherever we receive a response during our network sweep, there is
likely a system using that address.

Network tracing: This is a closely related activity to network sweeping, in which we attempt to discern the
topology of the target network by drawing a network map.

Port scanning: This kind of scan discems potential openings in target machines by looking for listening
TCP and UDP ports. Open ports indicate that a service is listening. If that service is r,ulnerable, we may
have found an avenue to compromise the target.

OS fingerprinting'. Different operating systems have different network behaviors that can be measured. By
crafting specific test packets designed to measure the different behaviors, we can remotely determine the
target's operating system type using a technique called "Active OS Fingerprinting". Alternatively, some
sniffing tools include functionality to discern what kind of operating system formulated given packets in an
entirely passive sense. Without sending any packets, but merely by receiving them, these "Passive OS
Fingerprinting" tools can be helpful to a tester.

Version scanning: The tester needs to know which services are listening on which ports. Although many
major seruices listen on well-known ports (e.g., sshd on TCP 22 md,web servers on TCp 80), an
administrator may put these services on altemative ports. By interacting with ports during a version scan,
we can check which protocols they speak and possibly the version of the service listening on the given port.

Vulnerability scanning'.In these scans, we measure whether the target machine has any one of thousands of
potential lulnerabilities, which could include misconfigurations or rurpatched services.

\ff*rkflpw *f Scanning Fhase

The workflow ofa tester during the scanning phase generally progresses through the different kinds of
scans indicated on this slide. We stafl with network sweeps to identify potential targets and the addresses
they use. We then try to discern the network architecture to see how these targets are connected together.
Next, we move on to port scans, identifliing openings in the targets. We also perform OS fingerprinting to
see what kinds of target machines we are testing. We then move on to version scanning to discern the
services and protocols we face, ultimately culminating in a vulnerability scan. Each of these phases
provides vital infomation we'll use in future phases of testing.

The order of these scans presented on the slide is very common among most testers, but it is not universal.
Some testers may perform these scans out of order, or, given the scope of a test, may skip some steps
altogether. For example, sometimes the scope of a test is merely to find unexpected machines in a target
network range. Thus, the scope of the test may merely include network sweeps. Or, some testers may
inverl the port scan and OS fingerprinting phases of the workflow because they find that they can do more
targeted port scans ifthey know the operating system type in aclvance.

6

. Seanning Gaals and Types

.Netw*rk $we*ping with $capy
:ts $e*pylteFdurnp Exer*ice

. trletwork Tr*cing

. Fort $carrning
; Nmap
z Nmap Exercise

. OS Fingerprintrng

. Version Scanning
F Lrlrnep -* -sV and

Amap €xercise
. Vulnerability Scanning

F Hrnap Saript*ng Fngin*
. 1",lSE Exercise
. Nessus
- [,',Nessus Fxercise
* *ther Vr*ln $c*nncrs

. Enumerating Users

' Enr:meratinrg Exercise
. Netcat for the Pen Tester

r Netcat Exercise

Csurse Rnadrna

Planning and$***n

, ExpNsitatinn

I Passwsrd Attae
r Wireless Attacks
r Web App Affiacks

While conducting scans, a tester should observe some particular tips to help ensure a successful scan,
with results that provide insights into what is really happening on target systems. Let's go over some
of those tips now.

7

Scanning Tip: Usua*ty Scan Targ*t
IP Address,.. Nat Nan:e

* When scanning {and expl*itinq} systems,
eonfigure scanning tools tc use target IP
addresses or address ranges, n*t system ilames
* For exarnple, target 10.10.10.10. instead of

www.target.tgt

- If yau attaek based oR name, rcund r*bin DNS may
alter a target system whrile the test is *eeurring

* That will corrupt results
r Fort scrns with res*lts from tw* targets merged int* *n*
. Expl**ting serviee, try to conncrt to it, but it's nsw a different mael-*ine

When conducting scanning or exploitation of a target system, we recornmend that you indicate the target
network or machine in your tools based on its destination IP address and not its domain name. For example,
if you want to conduct a port scan or launch an exploit against a machine called www.target.tgt with an lP
address of 10.10.10.10, you should configure atarget of 10.10.10.10, not www.target.tgt. You may think,
"Well, DNS will just convert www.target.tgt to 10.10.10.10 for me, so what's the big problem?"

The concern is that many networks use DNS to perform load balancing and other traffic distribution
schemes across multiple targets. So, if you attack a single domain name, www.target.tgt, you may actually
be going after multiple hosts simultaneously without knowing it. This could lead to highly erroneous
results. For example, in a port scan, you will see the merged results from multiple machines as though they
were one box, likely missing some open ports. Or, if you exploit a target and create a listening port to
connect to, when you connect to that port, there may be nothing there waiting for you because you exploited
it on a different machine.

For these reasons, identify target systems for your tools based on their IP addresses.

There is still a possibility that the target environment will be load balancing the same lP address across
multiple physical machines, which makes our jobs as testers harder.

Tlp: Deeling with Very Large
$cans

* Occasiunally, testers are asked to scan &
very large set af targets
* Consider a r€quest to scfrn 1,0CI0 machines, all

ports
. 65"536 ?CF porhs and 65,536 UDP ports

- If it toak 1 second for each pCIrt {whieh is a low
estimate), the sean alone w*uld take:
r 131 Millisn Sec*nds = 4-15 Years
. Even if you scanned 10* portc at a time, it wculd still take 15

days af round the ctock scanning

- There must be better wayg

Occasionally, penetration testers and ethical hackers are asked to conduct comprehensive scans ofvery
large environments. A very expansive scope could mean a huge, almost impossibly large, amount of work,
and the numbers grow more quickly than many people assume.

Consider this example: suppose an organizalion wants a full port scan of 1,000 machines. It may sound
simple enough. The organization wants to know ifthere are any unexpected ports, such as those associated
with backdoors or unauthorized software in their environment. And, 1,000 machines represents a mid-sized
organization, not tiny by any means, but also not a giant enterprise either. But, let's look at the math.

lf we take port 0 into account, there are 65,536 TCP and 65,536 UDP ports. For 1,000 target machines, that
would be about 131 million ports to measure. Measuring one port per second would take 4.15 years. Now,
depending on network performance and the behavior of target machines (whether they silently drop packets
to closed ports or send TCP RESETs or ICMP port unreachable messages back), this I second may be way
too short a timeframe for our estimate. Acting very optimistically and going with that I second estimate, if
we could scan 100 porls at a time (perhaps using one system, or dividing the work among five or ten
machines), we'd still chew up 15 days with round-the-clock scanning.

Clearly, there must be a better way.

Tip: Handling Large Scans by
Limlting Scope (1)

' hlumerous approaehes ta dealing with very large
scans, sorne of which invslve cutting dawn the
number of pofts measured

1) Sample a subset cf target machines
- Laok for representative targets

- Downside: Hsw representative is the sample, really?

2) $ample terget ports

- Look far most interesting ports, sueh as TCP 2L,22,23,
25, 80, L35, L37, L39,443, 445, etc.

* Downside: What about other ports?

We actually have many different approaches to dealing with requests for very large soans. The specific
approach chosen for a given test will ultimately be a management decision, informed by the

recommendations of the target orgwization's technical personnel and possibly the testers themselves.

One set of methods deals with cutting down the number of ports that need to be measured. We want to
still have useful and meaningful results, but need to bring the amount of work down to a more

manageable project and lower the budget. Some common and effective ways to do this include:

1) Sample a subset of target machines : Instead of scanning the entire target environment, some

organizations are oomfortable narrowing scope by selecting a representative sample of machines in
the target environment. For example, instead of scanning all desktop machines, the testers could
choose a dozen that have typical configurations representing the remainder of those systems.

Likewise, instead of scanning every web server, three or four representative servers with common
configurations representing other servers in the environment could be scanned. The downside, of
course, is that these servers may not accurately represent the other systems.

2) Sample a set ofports: Instead ofscanning every port, target organization personnel and the testers

can agree upon a subset of the most interesting ports to measure. For example, a TCP port scan

might focus on a dozen, a hundred, or a thousand ports, but not all 65,536, thereby reducing the scope

of the work. For TCP, some of the most interesting ports include 2l (FTP), 22 (SSH), 23 (telnet),25
(SMTP), 80 (HTTP), 135 (NetBlOS over TCP), 137 (again NetBlOS over TCP), 139 (yes, NetBIOS
over TCP), 443 (HTTPS),445 (SMB over TCP), and so on. The downside of this approach is that it
only measures a set of ports, leaving the organization unaware of the status of otherports.

10

Tip; Handling Large Scans by
Limiting Scape (Z}

3) Review network flrewall ruleset and rneasure only
t!"rosg ports that c*uld reasonably n"rake it through
the firewall
- In effed, this is part eonfigur*tion review and paff por.t scan* Overcomes the dswnsideE of only sarnpling targets on

sampllrrg sperifie po€s
. By sanrpling parts on a more inteltigent basis

- Often a v€ry effe*live approach* Sownside: Doesn't msasure potentiel firewall bugs
' And requires rfi*re work from target srgsnizatisn perxnnel
r Also. dcesn't lend itseif tq a blark-bnx mpprcach* CCImbining meth*d 3 far larg*-scale scan with methed I

{sa.nrpling a subset of targets far comprehensiye scansi is a
selid *psrsech

A third approach to focusing the scope of scans in a large target environment is quite promising, and
overcomes some of the downsides of the two other approaches we've discussed:

3) Review networkfirewall rule set: Target organization personnel could provide the testing team with a
set of network firewall configuration rules. The testing team could then perform the scan on only those
ports that would be allowed through the firewall rule set. in eff'ect, this approach bundles a fbcused
configuration review with a scan to help make the scan more efficient. While this approach is often
quite effective, its limitation is that it requires target personnel to provide the testers *ith t6"
configurations, making it more invasive, and it doesn't measure potential failures in the firewall
technology itself. Furthernore, this method doesn't really work with a black-box penetration test, in
which the testers are given as little information about the target organizationas poisible. Still, it is a
good approach, and one that professional penetration testers and ethioal hackers often rely upon.

Penetration testers can achieve a nice balance where you can conduct large-scale scanning while still
verifying that a firewall faithfully implements its filter configuration by combining method number 3 and
method number 1. For the large-scale scan, consult the firewall ruleset, and scan only those ports that the
firewall is configured to allow through. But, for some sample of target machines, conduct entire scans of all
porls. That way, you can verifu that the firewall is actually filtering appropriately, while still touching a
large number of target machines.

11

Tip: Handling Large Scans by
Speeding Up (1)

. Other appr*eches deal with scanning all
pcrts, but as quirkly as possible:

4) Twe*k firewall rules to send Ril$ilTs and
ICMP Fsrt Unreachable messages fr*rur
closed pcrts
- Several downsides:

. Often undesirable because nf ehanges to pr*ducticn
environment

n Ycu've ehang*d firewall rules so that you can measure their
effeetiveness?

. Afso, a large scan will still take a lCIt of time even with thls
apBroach

Instead ofnarrowing the scope ofa project to deal with a very large scan, another set ofoptions involves
trying to speed up the scan itself, including:

4) Alter firewall rules for closed ports: Target organization personnel could alter firewall rules to send TCP
RESET messages for closed TCP ports and ICMP Port Unreachable messages for closed UDP ports,
which will prevent most scanning tools from waiting for a time-out to expire before moving to the next
port. In fact, it's quite possible that the target organization's network firewalls already function in this
way, helping to speed up a scan. While this technique can be helpful, it has some pretty big limitations.
First, it may involve making changes to the firewall configuration of a target environment, something
most organizations will not want to do for a penetration test. Secondly, even though such a
configuration will speed up scans, it will still take time to measure each port. That time will quickly add
up, and the scan will still likely have a very long duration.

12

Tip: Hendling Large Scans by
$peeding Up {2}

, A final appraach fer speeding up seans *f large nurnbers cf
ports:

5) Use hyper-fast port scanning methcds
* L*rge number of scanning maehines, andlor
* Mueh f-aster packet send*rate frnnr ex*stirrg machine, lawerinE tinre

cuts {but rnay fose pack*ts}, and/or
* Mcving closcr t* targets, near high-bandwidth bacil<bone, andlor
* Very fast scanning tools, like thcse featured in Dan Kaminsky's

SeanRand

- Dcwnside: You could create a denia[of service attack

' Be careful o,f nebffcrk bsttlenecks !n attacking a!"rd tfirget infrdstructure!

There are more options we have for large port scans that involves speeding up the scan, which can be accomplished
via several mechanisms:

5) Send packets much more quickly.' The attacker could use hyper-fast scanning methods for measuring
large numbers of ports quickly on the target environment.

First off, the attacker could use a large number of scanning machines. Instead of one or two, the tester
could rely on ten, twenty, or more machines diskibuted at various locations to conduct the scan.

Secondly, the tester could configure machines to send packets more quickly by lowering the timeout values for
unresponsive ports, with some specialized configuration options that we'll cover for the Nmap port scanning tool
later in this class. The tester has to be careful here, however, or he or she will miss imporlant packets indicating the
slatus of a port if the timeout is lowered too much.

Thirdly, we could move our testing machines closer to the target, near a point in the network with higher
bandwidth.

Fourth, the attacker could use tools that conduct porl scanning in untraditional ways to make them even faster, such
as those embodied in Dan Kaminsky's ScanRand tool. We'll briefly discuss ScanRand later in the class, but, in
essence, it allows for hyper-fast TCP port scanning by separating the sending and receiving mechanisms. The
sending component sends TCP SYN packets as fast as possible, and the receiver component of the tool sniffs for
SYN-ACK responses indicating that a porl is open. Using this approach, the sender doesn't have to wait for a
timeout to expire on the receiver before sending more packets.

Any of these mechanisms for option 5, however, consume a lot of bandwidth. Thus, testers have to be very careful
of inadvertently causing a denial of service on the testing network and the target infrastructure. When using these
approaches, the testers should carefully measure target systems to ensure that their legitimate services are still
available to third-parties while the scan ensues.

13

' Sc***irrg G*sls *nd Typ**
. Overall Scanning Tips

r $eapy/tepdump f xerci*e
' Netrncrk Tr**ing
. F*rt *ean*i*g

- Nmap
r NmaF Exercise

" C$ Fingerprrnting
. Version S*anning

r l!trr**S -* -*V and
Amap fxercise

. Vulnerability Scanning
? fi*rlrsp $+ripting fng***
- NSE frxercise
z Nes$us
. Nessus Exercise
F tlth*r Vr.*ln S*enn*rc

, Enumer*ting L}**r*
. ilnumerating Exercise

. Netcat tor the Pen Tester
; Netcat Exercise

Course Rcadma

r Flanning and

. Exploitatlon
I Password Attae
r Wireless Attaeks
r Web App Attaeks

Our next set of tips will focus on sniff'ers, specifically the very useful tcpdump tool. professional
penetration testers and ethical hackers need to be familiar with sniffers for several reasons, including:

' To watch the packets generated by their scanning tools and other tools while they run so that they
can make sure their tools appear to be operating properly.

' To gain insight into the behavior of target machines at a fine-grained level, perhaps getting more
information from their sniffer than their particular scanning tool is capable of revealing.

' If the Rulcs of Engagement allow for it, to sniff useful ancl interesting information from the target
environment, possibly including userlDs and passworcls or other sensitive information passing by
the machines that the tester has compromised during a project.

While sniffers can be useful for all of the above items, we need to understand how to configure a sniffer so
thal it focuses on specific packets that interest us during a test. This section provides tcpdump configuration
advice specifically targeted at penetration testers and ethical hackers.

14

Scanning Tlp: While Scanningn
Run a Sniffer

* Whenever you run & sf;an, ruil a sniffer so
that you can monitor netwerk activlty
* Yot"r dsn't have t* capture all paekets in the file

system
* That would likely require hrge storaEe spece

* Instead, display them on the screen $o ysu cen
visuallze what is happening in the scan

. Whieh snifler to uEe?

- Any sniffer that shows packet henders will do, but
you want scmething srnall, flexible, and fast

* tcpdump is ideai fsr this purpose

When running any kind of scan (ping sweep, port scan, vulnerability scan, and others), we recommend that
you also run a sniffer on the testing machine that is running the scanning tool. The sniffer should be

configured to display packets on the screen in real time, so you can have an at-a-glance view ofactivity
from your system. That way, while the test is running, you can verify that the scanning tool is functioning
properly. lf the packet display stops, either the tool has finished or encountered some sort of problem.

You don't have to capture the packets into a packet capture file, because that hle would grow immense over
time given the sheer number of packets that are typically generated by a scan. Still, displaying the packets

on standard output is quite useful.

Any sniffer will suffice, but a simple, flexible, low-cost, and fast tool is best. Tcpdump works really well as

a sniffer to use while scanning. Let's explore it in more depth.

15

Scannlng Tip: Use tcpdurnp

r Fr€f;, open so:.Jrce sniffcl'
- www"tcpdurnp.nrg
* Pofted to Windcws as WinDump at

www. wi npea p,org/wi nd umpldefa ult. htm
. Supparts vari*us filt*ring rules
. While testing, you will likely have it display at| packets

I*aving frcm and coxling to your seanning machin*
. But, far speeific issue$, you may need ta focus *n

sp*cific packets

- We'll address some eanfigurati*n *Bti*n* tc do that

Tcpdump is a free, open source sniffer that is quite flexible and fast. It runs on most Linux and Unix
variants (in fact, it is installed by default on many Linux distributions), and it has been ported to Windows
as WinDump.

Tcpdump supports a variety of filters, with a powerful language for speci$zing individual filter types. We
won't go over all of the filtering options in this class (they are covered in detail in SANS lntrusion Analysis
course, SANS Security 503, which focuses on packet analysis). Instead, we'll go over the most common
options oftcpdump used by penetration testers to view packets generated by their scanning and attack tools
while a test is underway.

16

Tip: Helpful tcpdump Options
to Use While Scanning

* Often, iust running tcpdump with no special cptions while sc*nning
pr'ovides the infcrnnaticn you need
$ suda tepdump. Fr*tr yoil mey wa*t ts rely on varioxs options:
-nl Llse numbers instead *f nan"les fsr machines
-nn: l.jse nurnbcrs instead nf names for machines cnd ports
-i [int]: Sniffi *n a particular interfece {-D lists intetfaces}
*v: Ee verbcse {printTTL, Ip ID, Total Length, XF optinns, etc"}
-w: Dump packets to a file {use *r to r*ad file later}
-x: Fri*t hex
-X: Print hex and ASCIi
-A; Print A$e1tr (daesn"t work in all versions.." esnsider -X instead)
-s [snaplen]r Sna# this many bytes fr*r:n eaeh packet, instead nf the d*fault

' F*r q,der vergions cf tcpdr.rmp, deiaL;ll was te cipture only first 68 bytes for m*91CSs...

' Fcr thace ve$iofls *f tcpdilnrp, you had ts sp€ctty -s * to ge{ whole pacftets
. on rnodern verslons sl tcp$ump, defai:lt cnaFieftgttl sf aero gral]s *ntire packcts

automatically

Most commonly, penetration testers simply run tcpdump without any special options, which by default will
show all packets sent to and from the testing machine. The tool should be invoked with root-level privileges to
make sure it can put the interface into prorniscuous mode, grabbing all packets that pass by the network
interface.

One relatively safe way to invoke a tool with root privileges is to use the sudo command, as follows:

$ sudo tcpdump

Then, provide the appropriate user password, and you are now sniffing.

Some useful command-line options for conhguring tcpdump include:

-n: Use numbers for machines instead of the names available via /etclhosts and DNS.

-nn: Use numbers for machines instead of the names available via /etclhosts and DNS, and numbers for ports
instead of names in /etclservices.

-i finterface]: Sniffon a specific network interface, such as the local loopback interface (usually lo) or the local
ethemet (often eth0). For a list of interfaces, you can run "tcpdump -D".
-v: Print verbose output (shows TTL, lP ID, Total Length, and lP options). -vv shows more. -wv shows even
more.

-w: Write packets to a file (which can be read later with the r option)

-x: Print out packet settings in hexadecimal form

-X: Print out packet settings in both hex and ASCII

-A: Print out packet settings in ASCII (This option doesn't work in all versions of tcpdump. If it doesn't work
in a given instance, consider using the X option to get ASCII and Hex).

-s fsnaplength]: Grab this many bytes from each packet instead of the default. On modern versions of tcpdump,
the default is to grab entire packets. With older versions of tcpdump, the default would only grab the first 68
bytes of each packet, unless you specified a snaplength of zero (-s 0) to indicate you wanted full packets,
regardless of their length.

17

Tip: Heilpful tcpdump Fxpressians
t* Use Whlle Scannlng

" Pro*:c*l:
*t-?;*r, ip, L-yi', arp/ .:.dr';:1 trp, r:dp*pfOtOCOl type

. Type:
h*st- lhcsr I * Only give me packets to or from that host
nir l:rst,.dori:; * Only packeG for a given network

Firt Ip*rtn*:* j - Only peekets fer that porl

iltrrar'q Istart**ndl - Only paekets in that range cf
ports

r Siredion:
Bre * Orly give me packets frsm that hcst or pont

**r- - illly give me packets ta that hast

. Uge "atTd" or "sr" to cambi*e these tcgether

Sometimes, however, you'll want to run tcpdump to focus on specific packets, such as those associated with
certain protocols, ports, or addresses. You can use several primitives to formulate an expression, which will
let you focus only on some specihc packets.

Protocol primitives include elher, lp, lp6, drp, rarp/ tcp, and udp.

Type primitives include host, net, port, and portrange.

Direction primitives allow you to specifu whether you want packets from a given source (s rc) or
destination (ds t), which can be associated with a host, network, or port. Note that s rc and ds t and
src or dest are supported as well.

Note that these primitives can be combined to create more complex expressions, using the logical "and" and
"or" terms. Also, there are additional primitives beyond the ones in this list. However, this list contains
some of the most frequently used items by penetration testers.

18

Tip: S*me Quick tcpdilmp
Usage Examples

. $how TCP packets egainst targ*t 30.10,10,Iil
in ASCII and Hex

tepdump *nnX tep and dst. 1S.10.1S.10

" Shsw ell UDP packets fram 10,10.10.l0
tepdum6: -nn r:d3r and src 1"0. :0.1"0 . n0

. Show all TCF port B0 packets gaing ta cr from
host 10.10,10,10

Lcpdump -nn tep and p*rt 80 and host
I.0 . 10.]"*. t.0

Let's look at some examples of combinations of these primitives to form expressions.

IfyouwanttoviewallTCPpacketsbeingsenttoatargetwithlPaddress l0.l0.l0.10,withoutputthat
includes ASCII and Hex contents of packets, you could run:

tcpdump -nnX tcp and dst 10.10.10.10

To see UDP packets with a source address of 10.10.10.10, you could run:

tcpdump -nn udp and src 10.10.10.10

To see all packets associated with TCP port 80 going to or from host 10. 10.10.10, you could run:

tcpdump -nn tcp and port 80 and host 10.10.10.10

As we perform exercises over the next several days, feel free to formulate tcpdump expressions to focus on
the most interesting packets associated with the scan.

19

' $ean*ing G**ls and Typ**
.Overallscanning TIps

z $nif{ing wiih tcpdump

" frjctrsorftt Traeing
" Port Seannrng

- Nmap
- NmaB Exererse

. OS Fingerprrntrng

. Version Scanning
r [.'Jrnap -O -sV and

Amap Exercise
' Vuinerability Scanning

r Nmap Scriptrng Engine
r NSE Exercise
r ftes$us
. f.lessr=rs Exercise
. Other Vuln Scanners

. Enumerating Use{-s
r Inumerating Exercise

' l**t*sl fr:r ths Fen Test*r
- Netcat Exereise

Course Raadma

' Explcitation

Password Atrae

Wirele;s Affiacks
r lffeb App Attacks

Now, we'll begin analyzing the different kinds of scans that testers perform, systematically stepping
through the scanning workflow. We'11 analyze each scan type, stopping periodically to do hands-on
exercises for most of them.

We stad with Network Sweeps. As we mentioned earlier, the purpose of this type of scan is to identify live
hosts on the target network, deterrnining their lP addresses so that we can later perform more detailed
analysis. Ifwedon'tknowit'sthere,wecan'ttestit. Thus,networksweepsareacrucialpartofour
analysis.

One of the best tools available for formulating packets used in packet sweeps or many other forms of
interaction with target systems is Scapy. Let's delve into this really remarkable tool, and see how we can
use it to scan a target environment.

20

Scapy Overview
' $eapy is a packet crafting, manipr:lation, and analysls suite

- Forge packets

- Sniff paekets
* il.ead packets fiom peap capture file
* Alter paekets

- Int*ract wlth targets in r*al tlnne

Scapy was ereated by Fh;fippe Siandi and runs in Python
* ean be used interact*vely at a Pyth*n prompt...

- .,.or you fan write Fython scripts for mCIre cornplex interaetions
* Must be run with rsot privileges to sniff or send pac&t*ts

Ysu don-t need to be a Fythorr ninja to use ecapy effectively
fu we ga thnough this sectirnn poF L,p a Scapy pronnpt and
experiment with c*mmands

An iffterscfive sh*ft *n$
scripting Iunguagefar
p*ekets.," A wonderf'ul p*tkrt
pfaygro unel fnr pen tes#rs !

i{ir alTAL.-lf t{}

erii i1,r{h*r/$cirpr

Scapy is a fantaslic and flexible environment for creating and interacting with packets. It's incredibly
full featured, allowing users to forge packets, sniff them, read them from a pcap-style packet capture

file, edit packets, and interact with networked targets in real time or via scripts. With all these

capabilities, Scapy is an amazingly useful tool for penetration testers to use during scanning,

exploitation, and researching target machines.

Created by Philippe Biondi, Scapy is an environment based on the Python programming language.

Users invoke Scapy to get an interactive Python prompt (>>>). Or, you can invoke a Python script
(typically with a filename suffix of .py) whioh can call Scapy features from the script itself. To craft
packets with Scapy, you'll have to invoke it with UID 0 privileges on Linux or Unix. You can do this

with "sudo scapy" followed by the user's password, as long as the user is allowed sudo privileges.

Alternatively, you can invoke Python itself with UID 0 privileges, and then import all of the Scapy

functionality as shown on the slide above.

It is important to note that you don't have to be a Python wizard to use Scapy, though. Even with just

some fundamental knowledge, you can use Scapy to achieve great things.

ln this section of the course, we'Il be talking about many Scapy features, with numerous examples.

As we go through this section,'please pop up a command shell on your Linux virtual machine, and

invoke Scapy. The easiest way to do this if you are logged in with root privileges (# prompt) is to
simply run "scapy", which is included in the default PATH of the course Linux image:

scapy

That >>> is the Python prompt, ready to run commands for us. To exit Scapy, hit CTRL-D.

21

Scapy - Listing Supparted Pratccals
. Tl"l* ls(] earnmand by iGeff lists all protocals suppofted by Scapy* ARp, IF, IFv6, TCP. UFp, ICMF, and numcrous app-laycr

- Prstoc*l namcs tend to be all eap {hut nat always.." for ereating Ethernet
fr*r*es, *se Ether)

o T* see the fields you can set within a given prctocol, run ls{fpRfiT0l}
- Field name,

data type, end
default valu*
*re sh0wn

- Default in parens
* D*faults are

usually quite
reasonable

* TeP defaufts:
' spc.t ?0 {ftp-data)
. dp*rt fi0 {hnp}. fiags SYP{

">>
LatY]:C.gl

*F{Jr:l..,

*.*i't,t-:. :' :,,:

*|.?,t:::,.

*rri..,. .
,,,,.',

rla!"adf *" , ,:::::

t**qf.;e8, .':.?

2Lx6:t I

'wa"***,.rt :

':hk*:-ct ,, :

*ZqpT-T.. , :

i:F1;,i*!1.9::::.. i

F!:*rtEr?$jiri-*l-rl ,:;:''

€h* r:t g*"i".lirj. * :il

:4. L\.:;

? - Ii - Ii
*izl::i6+:,rit .. . ':::.'.'

'F.la6xFic3d ::1,,:,.: ':'

*Yt*tLYi:e14
LSi;r-il.:c'n
*?z;;*t Ez*7.d ' :|':,,:.
i'1;rr!.r r.n<Ijr*l.l

.a2l)3

;.:*131

l+:a'.j I
.t '::

:;,1;t**r,,t:j

tt\ ..,,..,.

{ 8:?; l
{c'r*n*}

:.4,{:i.t

::'t"4"17'

Let's jump right into Scapy by looking at the different protocols it supports. We can do this by
running the ls0 function:

>>> ls o

Here, we can see the over 300 different protocols Scapy supports, including application-layer
protocols like HTTP, ffansport protocols such as TCP and UDP, Layer-3 protocols including lp
(that's version 4) and IPv6, and data-link layer protocols such as Ether (which generates Ethernet
frames). Most of he protocols are in all caps, with a few exceptions (such as IPv6 and Ether).

To see the fields available for us to interact with in a given protocol, we can run the 1s0 command on
a specific protocol. For example, we could run:

>>> Is (TCP)

Here, we can see the various fields of the protocol (spor1 for source port, flags for the TCP Control
Bits, and more), the data type of each field, and the default value Scapy will assign included in
parentheses.

The default values assigned to mostprotocols are pretty reasonable, and ofcourse we can change the
packets away from their default field values to anything we want. For TCP, the default source porl is
20 (which is typically associated with ftp-data), the destination port is 80 (HTTP, of course), and the
TCP SYN Control Bit is set.

22

Scapy - Listing Carnmands

. To get help with any function, run:
l::;. hr:ip { if urrli *n i }

Hit Q t* leave help
'; :: !i*lF { ar$}sad:16t54i.s€*}
t1'*).9;..t::z,f.artf:t.ir)*:;attlte;h*B**,s*r:,,,j.r1 nisrlli.?e. s€J:6,y".1,;*yrs3;9,,7,3t
iif :'f.: aril)ir--::l:::r:qC-, l,,: j";, --iiirr.,'nL iil)

.Firi!tl1 l;trqr,7;':3 t:;::::1tr:'aiLL, 1V*';1s Trlqi:!vLt:t|Lt.'g ll,Fi i;*u!,i.:

. The lsc() command shsws all funetions s*ppcrted by scapy
'. Isc{l

..t:..^.-t ,'.],..;rt.: : , :..,. t.lr, c. .,Ct-

et,)J.fj.q , L!s:tr* "i.AF d:i{r-tiEE ::*q**-"ils
.:r::;:x:tSg:t- _biti , : : f : -; - ;1 ..1.r, !,ar:t:+t\L&{4{: +r ::U*t}*f :.:{:,.t:;.i".|-X

: t4:.1::.',.r,:t : :I.:rt.- " , \ :4 1? :; t4rrl4ti{,
f.:z?. t Yr:a**fr;r* it Lay*r.i:fll+ &. fvt*y I;zy,*r ,: I
-t:r:T}1;*<ir:te. *r::r"r: alefaal,i: !"a.i!;e* !)y, r+tdifEt *:3ii:i-:ts .

4,2r-*.a;;t:yi'p i:: l3.et:*g:} ,14?al e*&s*s* {:*xrefil}{}tt1Lyt4 t:.t} -; 11.,..;r
:r .rd.! . r,,
it,:pt*'fr,'."a* :: : . ",,:. ?:ry t* 6ul*x* 9f t:.e:tti*y. L& 3:: *::*:*j.*._ r:.:,r1+.
serl* : .**.r24 y:e*E*}:x aL tay*."; 3
XqnrtrF : *rnt! Fa.k*l* at. ,ii:a'**:. t

ln addition to i1s great protocol support revealed by the ls0 function, Scapy also includes numerous
functions, which can be inspected by running lsc0. Go ahead and run it on your syslem:

>>> lsco

Here, we oan see the numerous features of Scapy. Notice that there are numerous attack techniques
embedded in Scapy ilself, such as arpcachepoison, a topic we'll touch on in 560.4. There are also
techniques for sending packets (send, sendp, sr, and srl, among other things, fall into this category).
There are funclions for fuzzrng, fragmenting, and much more.

To leam more about a given function, as well as the arguments it supports, you can run "help
(ffunction])", as in:

>>> help (arpcachepoison)

Here, we can see that the arpcachepoison fi-rnction supports a target, a victim, and an interval (whioh
defaults to 60 seconds) as arguments. These arguments are set by calling the function with
variable-value pairs, as in arpcachepoison(target:10.1.1.1, victim-10.1 .1.3, interval:2).

To get out of the help screen, simply hit the Q key.

23

Scapy * Making Packets
Paekets are constructed by layers, simply calling the
approBriate pr*t*col
- IP{}- IPv6{}, TCF{}, UDP{}, etc.

- Euild fronr lcwcr layers up to higher layers moving left tc right

- Separate laiTens with a /
* Override default value for field with <field>=<value>

:?> S,&e&e&*I F {de t* " 30, 1*, 1S, . 5* "r} /TCg {dt}fi sC*3* } l " IIetr tr: "

' : alfteFit:ri
: i YlYl*xtf 'r{i|it
' a gaa.*.U

t .tr..yt)

: ;}+::i:li;!Jsr;:'i.*1. d
i I'11+ r. l.X{t',:x€ i. +:,1:.,*

" a,..*:^1,i

14) I fl]dluttlt
{€4} iV;lue

{:o]t.?V "r} -i}'.1t 1

5*r'rtc tlcld:l,iirtr'.1':,'
r I {!:tt:ltl;ttr

We've seen protocols and functions. It's now time to make some packets. We can easily construct
them by calling the particular protocol we want with settings that we desire inside of parentheses, as
in lP(dst:" 10.10. 10.50"). We can build multi-layer packets by specif ing from lower layers up to
higher layers, separating each layer with a /. Remember that Scapy moves from lower layers on the
left to higher layers on the right. For example, we can specify a TCP/IP packet with all default
values by running packet:lP0/TCP0. lf you reverse the order of these protocols and don't use
lower-to-higher, you may not get what you are expecting.

Scapy lets us specifli all the way down to Layer 2 if we want, via functions like Ether0. We don't
have to specify Layer 2, though, as Scapy is happy to provide an Ethemet frame using defauh values
(based on moving traffic around the LAN on which our system resides) around whatever we create at
Layer 3 (typically lP or IPv6) when we go to send the paoket. Most of the time, people use Scapy to
specify Layers 3 and up,just relying on Scapy and the underlying operating system itselfto construct
Layer 2.

For example, we can create a packet by specifying Ether0/lPv60/TCP0/"Application Data". lf you
don't need anything special for your Ethemet frame (such as spoofed MAC addresses), leave off the
Ether0 up front, and it will be taken care of for you.

We can override the default settings for fields in a packet by simply specifying variable-value pairs.
For example, to oreate a packet called "packet" with a destination IP address of 10.10.10.50, going to
TCP porl 22,with a payload of "Hello", we could simply run;
>>) packet=Ip (dst="10. 10. 10. 50") /xCp (dport=22) /"Hello"

With our packet oreated, we oan see all of its details using the ls command on the packet itself. The
output ofls will show us each field, its data type, its current value, and its default value in parens.
>>> Is (packet)

24

pv Making Pack in FartE
Instead nf making a
alternatively make it
assemble

et in one step, you could
piece parts and thenrtn

--:*----t!Jrr.)u5 I,l
ll\ !:lS I' "1\{:f:lllltr'rl

Ih.,,, I

In the previous slide, we made a packet in one whole shot, just separating the layers by a / while we
were making the packet. Alternatively, we can make a packet in steps and then assemble it all into a
single package. Consider the following:

>>> stuff3=IP (dst="10. 10. 10. 50")
>>> stuff4=TCP (dport=22)
>>> stuffT="He11o"

Here, we've built each layer of the packet, storing each in a difTerent variable. The stuff3 variable
stores Layer 3 (the IP layer), stuff4 holds Layer 4, and so on. Note that Python supports variable
names of almost anything we'd like, including alpha, numeric, and _ in variable names. lt is also
crucial to note that Python variables are case sensitive, as they should be for any reasonable system.

Now, let's take each of our layers and stuff them all together into a single packet:

>>> packet=s tuf f 3,/stuf f 4,/stuf f 7

As before, we can see the detailed settings of our resulting packet (which could have a different
name... we called it "packet" because that is easy to remember) using the ls0 function:
>>> ls (packet)

Let's look a little more carefully at the output of ls0. Note how the different layers of the packet are
separated by -- in the output. We first see our IP header fie1ds, then our TCP fields, and finally our
applioation layer payload.

25

Scapy - Inspecting Packets
.>3" Bask€**SP{dc*..*"**, }*,lS " 5q" l

To lnak at ths settings fsr a
given paeket, we have s*veral
optians:
::-.::- paeket

r A very short sunrrnary {delt*s frcni
rtaf* ,li\uL,su,L/

. -' packet. susuaary {)
. A littte mars detail

' Reelly helpful if lpaekctl c+ntains
mulliple packets {nicre cn that laier}

paeket. xhaw {}
Even mrre de{ail

L* {packe!}
L*ti 0f detail, including furrent
settings and frrlgi*et defautls

-.:

. !? 4*t.*i, . L;' " ii: " 1t|
, packets. sholt ()

**ii. 7.t?),&*E
. '.: . | 5

.,.L71:.+j F#'t.*. . :.

r: .i i ::a
I: ,* i.:]nn,.,,

-.i* :
rl-.rs-
,t1"1: :
- i.: * (.1

, :' r :,' r '; !.."

:r!'* ; '. -1 ,' .':r. "

.et: z',; , ':.{} , lii , a*
., i;1i : .il5 .

. Xs {pack€t}

We can inspect a great deal of packet details using ls(packet). But sometimes you don't want that
much detail. Scapy includes numerous different methods for inspeoting the fields of packets, with
various levels of verbosity.

To see a brief summary of a packet, you can simply enter the variable name at the Python prompt:
>>> packet

This forrnulation essentially shows us the deltas from the defaults that you've set for thjs packet. For
more details, we can call the .summaryQ method of the packet, as follows:
>>> packet.surwnaryo

This summary is really helpful, as it displays some of the most interesting aspects of the packet

infomation to us. As we'll see later, a packet data structure may hold multiple packets, and calling
the .summaryQ method is a great way to see a synopsis of the packets contained in the struoture.

For even more detail, we can call the .show0 method:
>>> packet.showo

Now, we can see a bunch of the headers and the value assigned to them, either by default or by the

user.

And, as we've seen, to get a huge amount of detail for the packet (including all values plus the
original defaults), we could use:
>>> ls (packet)

26

Scapy * Interncting with Individual
Fields & Altering Packets

You can see the value of an individu*al fi*ld in a packet using
lpaeket].lfield] ill-fe,fleld nar,,re is unique across tl-re
of the packet

>)- paeh€i:.eporte443

If field isn't unique {e,9", IF flags and TCF flags), use:
lpecketl IIPROTC]I.tfield j = lvaluel

,;, pachetITCPI . fJ.ag.s=i'$Jl

',: packetITCP].f1aEe

trf it is not ur*lque {such as 13 f}ag$ and TCF flags}, yoil c*ft list the
value using ipaeket$lFR0T0l J. [field]

Aft*r ereating a packet, y*u ean change any field by
IpacketJ.[field] * [value]

To see the value assigned to an individual field within a packet, you can simply enter [packet].ffield].
Here, we're looking at the source port of a TCP packet:

>>> packet.sport
This formulation works well if the field name is unique across the different header layers of the
packet (which is the case for TCP source port with a name of "sport"). This is not the case for
"flags", which is the name of a field in both the lP and TCP headers. In TCP, this is the field that
holds the TCP Control Bits (SYN, ACK, etc.) We have a field name collision between lP and TCP.
We can look at packet.flags, but Soapy will give us the value of the first flag field it finds, which is
the IP flags. What if we really want the TCP flags? We have a couple of different ways of seeing
this (one on this slide, the other on the next).

First, we could specify the particular protocol layer we want to pluck the value from by using
[packet]IPROTO].[field]. The following example shows how we can pull TCP flags from packet:

>>> packet[TCP].flags
By default, the TCP flags value is 2. That is a decimal representation of the Control Bits, in the order
in which they appear in the packet, starting with CWR, then ECE, followed by URG, ACK, PSH,
RST, SYN, and FlN. If all of the Control Bits are set to 1, we'd have a value of 255. A value of 2
indicates that the SYN bit is set to 1. We have a SYN packet.

To change the value assigned to a field, we simply assign a fieldname:value, as in:
>)) packet.sport=443

Or, if the field doesn't have a unique name, we can specify the IPROTO] header where the held
resides:

)>> packet [TCP] . flag's="SA"

27

Scapy - Using ".payload" to
Reference Packet Parts

. Appending ",payload" tc a packet variabtre nar"ne will sl*ow yau info
beyond the initial layer {that is, the lowest layer you've d*fined fcr
tfie given paeket)

. This teehnique can alsa be used to resolve the field-name-c*lliEion
issue if yau don't want ts use packetlTCFl*flags

:"3.":'. p+ir*li*t*3g:,{det€* E*. 1*,:,t* "'$S::!, } l:Tgg

n

;i' paeket,paytroad {*-
'iTtF iF,]r: ss:. .$.a;i i'+{*'11.l1i' i>;
>.33 gleaket"pay-l*ed,f1ega . . .,::..',

.: > packet.flag"€

In
>??:pa*fs*lb"pq, ",;3ryr5gA**fi'

7" :r' .p*.e&&t.j,p$ylsgd":,f]'e$e*llS&r' | 1*
>1,1,,,,pe.*!eetr:,,fag'1oed',f**ge p

'lhir ir lli llag:;, nhe iir:t i1*gs
fir:fd 5c*p}' *nc$ulltr!:.

lly rasing "packet.p.:alkrad". *e
nre tt111ng it to rkip (he lolrr,:rt
lay*r' i:r lhi: p*cket. the lll 1ii'1'*r.

&ie can rr't variuhl*s in high*r l*y*rs u*ing ahis
.l';rr li,;J tuilrr'iqrru. Lrr'n rrh,'n th{r!r i,,l nrmt'
e*lliskw'"r.i!h l*rtr'*r L:1,*;'s.

\\is cin e1'srl r!*ublc-rrp *n th* .p*yla*tl ti)iEslF ir': ! !*5er*

Instead of using [packet][PROTO] to access a field when there is a fieldname collision, we could
alternatively use the [packet].payload construction. The .payload tells Scapy to jump in beyond the
lowest layer of the defined packet. So, for example, suppose we create a packet with the IP, TCP,
and Application Layer of the following:
>>> packet=IP (dst=" 10 . 10 . 10 . 50 ") /TCP (dport=22) / "Hello"

Let's look at the flags:
>>> packet.flags
0

But, we know that Scapy assigns a TCP Control Bit of SYN by default for TCP packets, resulting in
a flags value of 2. We're not looking at the Control Bits here, because these flags are in the first
header Scapy encounters, the IP header. We can skip past this first layer by using ".payload":

>>> packet.payload
<TCP dport-ssh | <Raw Load:'He11o'l>>

So, now we can look at the flags in the TCP layer by running:
>>> packet.payload. flags
2

With a value of 2, we see that the SYN bit is set. We can also change values using .payload:
))> packet.payload. flags="SA"

And, we can even use multiple iterations of the .payload concept to jump past multiple layers in the
packet:
>>> packet. payload. payload
{Raw load-'Hef1o' I)

28

Scapy * Specifoing Dest Addresseg

. We cen specifu destinatian IP addresses in Rumerous ways:
* Via dotted-quad notation:
:';'> paekab=IF {dat*"L*. L0 . 10 - 50" }
* Via dornaln name:
>1> pa.ek6€=IP {det='ineo " tarEet " tgt" }

* CIPR notation:
>>.: paeket=nF {dst="1S, 1,0 . X,g/24" }
* Mixed notation:
:.>> pe.cketalP {d€t*"rtea . tergret. bgt/l{" }

* Hultiple tarEets:
z :: > paek.eLxIP {dxt* ["!"C. 10 " 10 " 1", "3S . t$. 10 . ? ", * X.0 " :.0 . 10 . g,'

l{enember the I J anlufirl this
list nl lP addlu*scs.

Scapy provides great flexibility for speciSring destination IP addresses, referred to by Scapy as the
dst field in the IP header. We can use the familiar dotted-quad notation:

>>> packet=IP (dst="10. 10. 10. 50")

Remember to put the address in quotation marks.

Altematively, we can use the domain name, which will cause Scapy to do name resolution when we
try to send the packet:

>>> packet=IP (dst="neo. target. tgt")

Scapy supports CIDR notation to choose subnets (i32 means match an IPv4 address precisely, the
equivalent ofusing dotted-quad notation by itself).

>>> packet=IP (dst="10. 10 . !0 / 24"')

Here, we're starting to see how Scapy can lake one packet structure we define, and send it to multiple
targets. This formulation would send the packet to every IP address on the 10.10.10 subnet.

Scapy also includes a nifty mixed notation, which uses domain names and CIDR formulations. The
following will cause Scapy to look up the IP address of neo.target.tgt, and then send the packet to
various targets on the same 124 subnet.

>>> packet=IP (dst="neo. target. EgE/24")

And, hnally, we can provide Scapy with a list of multiple targets, simply by putting [] around a
comma-separated list, as follows:
>>> packet=IP(dst=["10.10. 10. 1", "10.10. 10 .7",,'LO.10.10. 9"])

29

Scapy -
and

Setting P*rt
TCF C*ntrsl

Ranges
Bits

For TCP(] and UDP{}, w€ can set dp*rt pcrt ranges by
simply specifyi*g the start and end po,$s !n parens(),
separated by a comma
- To create pack*ts destined for p*rts 1-1024, we could run:

3"3,: Elgq:lqtugF {:d!tt€ & },S, 3! ;; 1& ; $*'!.}. lfCF4 $rqsti+ { n
"
! * g * } }

For a listaf F*tu, use [] *nd commas:
->> packet=tPidet=''X0.10.10. 501'l /tCBiAport=l2e,S0,44gl)

f*r TCP{}' we can set Ccntro} Fits usirrg any
eombinatlons af the letters "CFLJAPRSF'', in any arder
* To ereate a RCSFT-ACK paeket fior port 8*, we eculd dc either:
3l?::::Fg.eli€t=EF f**tsq:'!S, L9 ,t* .&*ttltge l q_g*ec8p i g!ggs*"*,4!t!
\ i 2 paeket=Ip (dste{ 10 . 10 . 10 .50 " } /rcp tdport*8o , flagse',gp;; 1

We've seen that a packet data structwe can have multiple destination IP addresses, but can it have
multiple destination ports for TCP or UDP? Why yes, it can. We can specify a range of ports by
using parentheses around the start port comma end port, as in:

))> packet=IP (dst="10 . 10 . 10 .50" | /TCP (dport= (L tL024rt

If you prefer a list of ports instead of range, you could simply creale a comma-separated list,
included between brackets, as follows:
>>> packet=IP (dst="10. 10. 10. 50") /t3p(dport= lZ2,BO, 44Sj)

As we saw earlier, we can specify TCP Control Bits using the appropriate letters from CEUAPRSF
depending on the Control Bit combinations we want to set. It is important to note that you can
speoifu these Control Bits in any order that you choose, so that we can create a RST-ACK packet by
using:

>>> packet=IP (dst="10. 10. 10. 50") /l9p (dport=80, flags="RA")

Or:

)>> packet=IP (dst="10. 10. 10. 50") /tCp(dport=8o, flags="AR")

30

$capy - Hxpanding Multi-
Tergets lnto Individuatr Fackets
. When we have a variable with multlple

targets {parts and/nr addrnsses}, we can
display all cf the resulting paekets using a

Python "for" loop in a list structure I J

" Of coursei you can still do paekets.sumrnary{}
far n shorten furrn af rutput

lf you have a packet structure defined that includes multiple different target addresses and./or ports,
you can expand it into its individual packets using a Python "for" loop, with the following syntax:

This syntax tells Python that I want to create a list (that's the purpose of the [] around the syntax)
that contains a, where the variable a is set to each component of the structure of packets. That is, we
use a for loop to iterate throughpackets, plucking out each value into a variable called a, and then we
use those a's to create a list with the []. We are essentially using the for loop to unpack the packets'
structure.

Try it on your own system, by creating a packet structure (which we'll call "packets") that is going to
destination lP address 10.10.10.50/30 (that is multiple target machines), going to a port range of 21

to 23.

>>> packets=IP (dst="10. 10 .10.50,/30") /TCP (dport= (2L ,23r,

Now, use the for loop notation to display each of the packets yow structure will create:

Note also that we can get a nice summary of the packets in our structure by running:
>>> packets.summaryo

31

Scapy * Sending Packets
. We have nun'Ierffus options fsr sending packets

* send{}
. Send packets fit Layer 3 {and higher}, doesn't receive anything
. Uses 05 defaults for Layer 2

- sendp{}
n Send packets at Layer 2 - eushm Layer ? header incfuded, often

ereated using Ether{} fsr Ethernet
* 5()

. Send end recefve packets at Layer 3
* srp{}

. Send and e-ece{ve paekets at Layer ?
* snl"{}

' Send paekets at Layer 3 and netarn ontry the first answer
* srpl{}

n Send paek*ts at Layer Z *nd return anly the first ffnEwer

So, we've spent all of this time creating packet data structures, but they are really only useful if we
can do something with them. Scapy has numerous functions we can call to send packets.
Remember, you can get help on any of these functions by running help([function]).

The send0 function sends packets using Layer 3 and higher, and doesn't receive any response back.
It is a "fire-and-forget" sender. It uses default settings ofthe operating system itselffor all the Layer
2 frame elements.

The sendp0 function is used if you have crafted a Layer 2 header (as well as higher layer headers
and payloads) for the packet you want to send. This function will send your packet without waiting
for a response. The Layer 2 header is often constructed using Ether0 for Ethernet.

The sr0 function will send your packet and wait to receive responses from the target. Like send0,
this function sends packets without custom Layer 2 frames, instead just relying on the operating
system defaults for data link functionality.

The srp0 function sends and receives packets, using Layer 2 components you specify.

The srl0 function sends packets at Layer 3, grabs the first response, and returns. lt will not wait for
multiple responses.

And,asyoumightsuspectbynow,thesrpl0functionsendspackets atLayer2,grabsjustthefirst
response, and refurns.

32

Scapy - Fine-Grsined Optirns
fnr Sending Packets

Many sf the s*nding functiCIns
have fine-grained options we can
Eee vla the hetp{} featur*
Mast of th* send/reeeiv* functions
have the following options:
- filter=lbpf packet filter]

r The sarne filters we us.ed fnr tepdump* retry=lnunnber of tim*s to resend
unanswered p*cketsl

- trrneout=[number of seconds to wait
bef*re giving up.." deeimals
supportedl

*
'f*.s=ilnterfa*e

ts s*nd and receivel

sd":nti !. i,

{*r:jrn$:rtr*s**. t" Y** : *
I-cF$? I * *YYiet t {!.?"}

Each of the send functions supporled by Scapy can be called by itself, just providing it a packet to
send, as in send(packet). However, these send functions also support finer-grained options to control
more details of sending. The options are specified as variable:value pairs in the function call itself.
To see these options and how they apply to each send function, remember to call help(ffunction]).

Some of the most useful of these options in sending packets include:

filter:[bpf packetfilter]: With this option, we can define a packet filter that tells Scapy to accept
only responses that match certain characteristics we define according to Berkeley Packet Filter (bpf)
notation. This is the same filter syntax we covered earlier for tcpdump.

retry:[N] : This tells Scapy to resend the packet up to N times if it doesn't get a response.

timeout:[XJ.' This option tells Scapy to wait only N seconds for a response. Most timing options in
Scapy are based on a number of seconds, making it much more human-friendly than some other
packet tools which are based on milliseconds or microseconds. We can specify decimal seconds,
such as 0.1 for a tenth of a second or .000001 for a microsecond.

iface:[Interface NameJ: This lets us specify the particular interface to send the packet on, such as

eth0 or 1o. By default, Scapy determines the interface to use based on the way the operating system
would route the packet.

An example call that uses some of these options is:
>>> sr(packet,timeout=O.1,filter="host 10.10.10.50 and port 22")

Here, we're sending a packet, waiting to receive a response (sr). We'll only wait 0.1 seconds, and we
only want to receive answers that match the f,rlter of host 10.10. 10.50 AND port 22 (.i.e., packets
must involve 10.10.10.50 to or from port22, or else we'll ignore them).

33

. Store all results by using [var] = sr{lpacket"l}

1'3:. r€gtr*lege*sr iFa*&etl
i a lif ;. i:,.":lr : ..i:i;j..

{a*,*=',.;,1itz.: t,..1:4?:1.1, ,:.tJvtz11*r;€)te*a
i 1t:1t1 " f> 1 {:14.} , t'l

'iirl: :ei:c: ltcruils x:rri L,lnil:lserr*d

Scapy - Dealing with Respanses

. But, sendlreceive functions actually have two sets of responses:
answered and unanswered, so we can use [var1],[var2]=5plJpacket])

:,>: paekat=rF{dst='t1*, 1d . t0. $*"} /rrp {ds*tt=*?}
:: ?) &r**,zrtr&**e**r {paehe'},,

-.,..- ": .,

\}ARS

:1ft:t::1 rr:*,: 1 iir:l;*,:rt{ei {} +r."**?:.,,:}

7ii'"77i, 7"*;' r:4*j:{} '}tr.* at?.jp;t} {:ih*r i *::-

* If y*u don't prcvlde a variable, vour last r*sults ar* stored tn

;x;"3' €.r {tr}aek€t.},: :

*-^r^,.,..,-.i .-,, --i, .

33} a{lg rlf,ri&t}g**

When we use a send/receive function call, like sr, s{p, srl, or srpl, we can catch our responses in a
variable using [var]:sr(packet), as in:
>>> response=sr (packet)

Then, we can review our responses with:
>>> resPonse

When we use srQ or srp0, our responses are often broken into two sets, surrounded in parentheses,
separated by a oomma, each delineated with < and >. The first set is called "Results". The other is
called "Unanswered". Each includes an inventory of the number of TCP, UDP, ICMP, and Other
packets we either got back, or that were sent and received no answer.

Oflen, it is useful to separate out the answered responses from the unanswered responses. We can do
that using:
>>> ans,unans=sr (packet)

Then, we can view the answered packets, and also look at the unanswered packets we sent by simply
referring to the ans and unans variables.

It's really impofiant to note that if you call a function to send a packet, but don't provide a variable
name to store the results (i.e., you don't use "something:sr(packet)" and insteadjustuse "sr(packet"),
your results are automatically placed into a variable called _. When using Scapy interactively, this
variable is very helpful, because sometimes you get ahead of yourself, building packets and sending
them quickly, without remembering to store your results in a variable. Once you've sent some
packets (via something like "sr(packet)"), you can split the results into answered and unanswered sets
which you can then use later by running:
>>> ansrunans=

34

Seapy Sending and Reeeiving Exarnple

5rop1,... l**k *t thc fi*1 x*t ofn:y r*$tldlnsc

filJ rnd rhen tht Jirsr t:ad $l-rhnr *et [{i]10j.

..;! tr*{4.*t=:Fl{t:t-"1*. LS. 16"!,9"}/riFI*f*rls?z}

{eiv€{* I Farl..str, g*t L ***utrs, re€*ir,i** * ttett

qwg *z'l 9 i, l-, 1 1'.t*'l : l 1 i,aa! 1 t.j r)t-r*t, +' ! 4lj*&{rta*{ *4 t

Fesuler. i :- :,.: .,r : r : "
rf:t0rlrtsilf;

\<Tt;? .;:nt l.r.t4 .jilr.t1 t.- l, ii;,t*'..r::'.rt :t!:t ; ij'j:..*L4].. n1

!* *al5€ia*:

{*s*Erge.1r i Fr{k*t }

'f usrrlfiel

S*ap,v,., s**d *ry p:l*kel st*ring lh* r**ptn:;e
in * variablr: *leverl;- c*lleel "rr:*ponse".

$cap-v. . . i*oh at nry r{rprursLr,

'f;&J.*48{t t-* t*.i* I pa{.aelt Sc*pr! , " " s*ne! :;ry trr*uk*f egain, ne
varia!:lu lirr st*rirrg rr, ulls this timc.

5c;rp1.'.. " !:r'lilkc lne a tra*ke,il

{}**h".. 1}rft1}' c{}!ors iariieale
tr-::v*rs, FiqEd*, and l.alx**.

Scapy.." sptir lh* result rlr:y pr*viLr*s
llnrti*n cal! {_J intn tlr.tr $dtri: anr a::t} unan$

Scap5... l*t me inrpr:et the fir*€ part *l':rr.v.' *rrs.
r'vhich lcxrks rarhrr lik*: rwpo*:.*l{}l[{ll fr*nr
h*ti:ee.

Let's look at a quick example of building a packet with Scapy, and then sending it to a target machine and
analyzing the responses. We'll start with making apacket, built from an lP component and a TCP
component, separated by a /:

>>> packet=IP (dst="10 . 10 . 10 .50") /lCP (dporL=221

We send the packet and get responses, storing our result in a cleverly named variable "response":

>>> response=sr(packet)
We can see that we received 1 packet back. We can look at our response data structwe using:

>>> resPonse

Here, we see that our response has two components: Results, which includes I TCP packet, and
Unanswered, which doesn't have any packets in it. To look at the first component of our response data
stntcture (that is, the "Results" piece), we can look at the first component (offset of 0) in that structure via
the [0] notation:

>>> response[0]
Here,weseejusttheResultspart. lfwehadlookedatresponse[],thatwouldhaveshownusthe
unanswered component of our response structure. We can now look at the first packet (that is, the one with
a zero offset) in our response Results with:
>>> response[0] [0]
Here, we see the delails of the packet we sent plus the response we got back.

Alternatively, we could have called sr(packet) without immediately storing the results in a variable:

>>> sr(packet)
Now, we immediately split the result () into a set of answered and unanswered results:

>>> ans/unans=_

We can then look at ans, unans, or the first part [0] of ans, which is what we sent and got back at a detailed
packet level. It is worth noting that ans[0] will contain what we sent, and ansil] contains the response we
got back, similar to responsef0][0] and response [0][1] from above.

35

Scapy - Inspecting Muttiple Results

L* " t* . L* " 1,N; L*pxtrt: ,> 1*, Lf "3i,!.f.t-p .it:t\a ?J. I ?a*dzt:ztj

You may dc a scarr of a target and get multiple rsspcnse packets
variabtebaek into

. To laak at results for *aeh pplt, yor"l ean u:e:_

:..:". *.**,eueef.{}
t? 1. T{:? 1*,:i{},'t*,2 :it..r:,j?.it*. >':i),}.{}.1*, 1*: t:t:?*1,1x. t

1 F;!:. t: :

. To loak at a speelfic r€spoilse, use reecrd aflset nt":mber inside of []:
l.::: a:rg l?J
ttL? fr*.<*.J

:?.:> pad:k€€e:F{ilst@"1*"3"S,34"5*"}/t*8{dtr*rst*{:,lgg4},f,:.agiss,'S"}
"93? *rln, tr&&ge*at €€taekebl
&**s..ti efrt,i. *B L*z.a

,1.174 *rt*t>z*;:* o r*tair',ir':g * r';**k*lg

?*HF : i] :,';t7;r:t ; *? , ":.t.1,7t7'L'tt **ji:€:4 j T.f? l ,l.:*,e BT:s.r::,* a Yl;-? : 1.*24 r".j.r.]T:': t3

tj-*tt; t] ,r,{.}*2F : i} C'a**r: i {'} 7}

Scagr} g*t :r:tr:e pei:l;r:ls !ir;rl !\ *r'*rr',t t'*:rrnscs t{l
*'h:it *'c se :rt. . . It rtise *rdcri ttr*sr.

}ir'n1 pollii}r: {{r:lrs ilr:1..,
:'r:**i t'*il fii'Pi1I13L. L|!l lt {::i 5*f {l:1rl

1 j; il ,:..1 .". \ --:. -/.i jr.;.: ': | , .-.

ll 1.1":trqnrhcr ther* |]':; rr+ *i}sttl intrl gr1 affil!-. rc !*l i:l lon I ll
3lu sp*e itry a por"t ra:19* 11- 1,1{il4 Yriu:ruy.!ust x$r1l alr rkl
porlr {}.i*?4. Al:r. ht*;;re i:i'peflr f h*t il*rt't r*:p**r1.

We've seen how we can pick off individual response components with [N] notation, but sometimes
getting information in that way is just too fine grained. Consider the following port scan, in which
we send a TCP SYN packet to ports I through 1024 ontarget 10.10.10.50:

>>> packet=IP (dst="10 . 10. 10 .50") /fCp (dport= (L ,L0241 , flags="S")

>>> ans /unans=sr (packet)

First note on the slide that Scapy says that it received 1361 packets, and got 1024 answers. That is,
while sr0 was running, Scapy noticed that there were 1361 packets coming back to the machine on
which it was nrrming, but only 1024 of them were responses to packets Scapy sent. The other
packets beyond Lhe 1024 were discarded. We'll see shortly how we can use Scapy to snifT, grabbing
all packets.

Anyway, with our Results stored in the ans variable (and unanswered responses, of which there are
none in our unans variable), we can view a short survey of the results with:
>>> ans

Here, we see that we received 1024 TCP packets in response. Greatl But, what are they? All open
ports? That is very unlikely. Let's get a summary of them:

>>> ans . surwnary ()

Here, we see that most of our results have "RA" in them, so we have RST-ACKs. Most of those
ports are closed. Only where we see SA will we have an open port, because we got a SYN-ACK
back.

As before, we can look at an individual response by the ofl'set notation. So, to check the result for
port 3, we could look at [2] (remember that 0 is the first item).

>>> ans [2]

36

Scapy Loops
We often want to laop through a series of packets {to do an address
sweep or pnrt scarr, fcr instance)
We ean do this witl.t Layer-3 sending u*lng the Seapy srlnnp{}
funetion, which sends the same peeket and prints results contin*ously

.>.)> srlcclF {peeket}
- Simil*r t* hping{}

. uf, we ean accompr'sn ffirs wttn fr pytnon tor *0*B twRten c6il tet
change packet settings as the laop runs):

:r' {'\'4i; :-r: ..^.;i::
,.t .t ,...,.1: Lai=:!,:t.t

. Note mandatony indenting in the statement Fortionf Fcur spaees

Or, we ean accomptish this with a Fython for l**p {whieh can let t"rs

We can loop through a series of packets using a variety of different constructs with Scapy. lf you
want to send the same packet again and again, printing out the response for each sent packet, you can
call the srloop0 function, as follows:

))) srloop(packet)

We can see the results here with RECV displayed directly on the screen, showing the result of our
ICMP echo request packet going to target 10.10.10.50. This srloop feature is very similar to the
behavior of the hping command, a packet crafting tool for Linux, Windows, and Mac OS X that isn't
nearly as flexible as Scapy.

Alternatively, if we want more flexible looping, we can use a Python "for" loop. With this kind of
structure, we can unpack results and even change packet settings in the middle of a loop. The syntax
of a Python for loop is as follows:

>>> for <var> in (list):
statement

On the next slide, we'll see an example of this for loop in action.

Note that the statement portion of the loop must be indented. Python requires mandalory indentation
lo make code more readable. Four spaces of indents is the recommended.

37

Scapy-APnrtScanner
* We can nrake a sim geanner usi

3ut, searching through tho,se answers to find open p*rts is
a pain

' Let's look at

xnrllrllll{: l.{1*s:;

. lVe can iterate using a ffihcn f*r laop ta fi*d results that

:"}, talr a zr1 ;:rz*:
t!. at' juj!'j.j "i7*6"*'",*t*:

trr::. r1t ;r lLj , *t::.:z t

.5a? lra€kee*3g tdetr" J"$: X* . 1,*. 50 F) IEc? {dFort* tr 1, 16€4}, flaqie*" *" }
, unans=er {packet}

ans [0 1

;..:.;? {y;,13+i1 *y'.r.t3;t:a:* 46t;1:t-tt}":tj,.rl;. rt:.:{:V .*q!{:t.r,::"",),::{!:1,),}?t tL,}{}E-7 ,:17,
ii .", 1.' - " :',. -$....:.!i 1: ": ri,: . 1"i.-. -,-.,.:.,, : ,.;

t:t!:t.:qia,) t.1t't:s;t:,rilzazt411 4{y.'.\lj.i*-1.{i-rl:;.i?,i-'..r-.1 -:*"?:,.:. .:p::..t*e!';: . , t,
;psji:1;<t-;;Vry2:;; *gt:xt]:-tZg rl*r:a s:*,:.qzll:.a{:r"'u': :J:rr.,l:.}is..?:L :t:*t:r"sr::$.li'L L.;a*s- .'.

uicd*#e|i titis,rrj*rl{4&'?4 r;.yppy7;,1 :14?;jrj-"Lr1t: -{.......
L*e*"" \\Et:j{}\ 1"t:l}\:.i}{:,.&t:}*1".".:t*\s**' | >} :.? :

arsll.lll ! j

'tr'h* iirr L:rp rrnplrrhs {.}Ft r*s*lts li*rn a*s lnli.l
tire r,;riilhle l. *c x i: ai:sfNl. Thiit'* *!r1 v;g
l**:'t *iflh* {irst []. **a11'zi*g *f1]f1 I.t1ags,
L;eeair:l:: thar !ir a;;:li'ill l lll.].11agri

We print rpr:ri, h*eau*r it is llrr :lLlrcc p*rl *1
n*r SYN-,{l' K r*$Fr{}115*.

Let's see how we can use a Python loop to extract useful information about a target. We've already seen
how we can do a poft scan using the following syntax:
>>> packet=IP (dst="10 .10 . 10 .50"') /lCP (dport= (L ,LO24l , flag's="S")
>>> ans,unans=sr (packet)
We can get a summary of our responses by simply looking at ans or ans.surrunaryQ. But, if the target
machine is sending us RST-ACKs from closed ports, even ans.summary0 will have over a thousand entries
in it, making it tedious to see which porls are really opened. There are numerous ways for us to extract
information about which ports are open, but one of the most flexible is to use a Python for loop. We'lI be
looping over the results in ans, selecting just those that have the S\'l'l-ACK bits set. To figure out how to
select the right responses, let's look at one ofthose responses, ans[0], the response from the target on port I
(which is the tcpmux service).

ln the output, we can see that ans[0] is rnade of two parts each included in < >: the packet we sent (which is
ans[0][0]) and the response we got back (which is ans[0][]). Within the response we got back, we see that
there are three parts, again embedded in < >: the IP header (ans[O][1][0]), the TCP header (anst0ltllIl]),
and the Padding (ans[0][][2]).

We can use our for loop to unpack each ansfN] into a variable called a, as follows:
))) for a in ans:
Now, variable "a" will have the result for an individual port. In other words, "a" represents ansfN]. So,
a[0] is the packet we sent, and a[1] is the response we got back. Then, atl][0] is the IP header of the
response, and a[1][1] is the TCP header. So, we need to check a[1][1], which comesponds to ans[N][l][1],
the TCP header. We'll look at the flags field, to see if it has a value of 18, which represents SYN-ACK:

if a[1] [1].f1a9s==18:
lf this is a match, we'Il print out the source port from the TCP header, which is where the SYN-ACK
response came from, which should be an open port:

print a[1].sport
The result is a nice little report of open por1s.

3B

Scapy - Sniffing & Readlng Packets
To sniff, uEe the sniff{} functi*n
>>> ;rackets=srriff tfi3"ter=" Ifi3-ter] "]

* Gathers *nfy certaln paeketg

>>: eniff,{ceunt*[H]]
. Sniffs only sl paekebs

- Werningl ean be slow; you rnay miss pa*kets
* Packets piaced intc *, or yo*,l ean speeify a variable, as in

paekets=sniff{}

- Look at them cft masse with -.summary{)
Tc get packets from a pcap file, use:
>F> rdpcap{" Ifi]-enarne] "]
Ts write pack*t* ta a fileo use:
>>> wrpcap{" [fi]ename] ". [paekets]]
Yau can alsn invoke Wireshark dirertty from Scapy
F>b wireshark { lpaeketsJ]

Scapy also includes a sniffer, which can be invoked using the sniff0 function call. We can

optionally speci8' filters (using bpf notation like we used for tcpdump) through the use of the

fi1ter:"ffilter]" notation. We can also put a limit on the number of packets we want to gather, by
specifying "count:[N]". To get more detail about the various function call arguments besides filter
and count of sniff0, please run help(sniff.1.

It is important to note that Scapy's sniffer isn't super fast. lts performance sometimes lags, causing

you to miss packets. It is not as fast as tcpdump, a far simpler sniffer.

When you hit CTRL-C, sniff0 stops grabbing packets, returning the results it captured so far.

As you might expect, by default, packets grabbed by sniff0 are placed into , or you can put them
into a given variable using [var]:sniff0.

To see a summary of all the packets you've sniffed, you can nrn _.sunmaryQ, or [var].summary0.

lnstead of pulling packets from a network interface with sniff0, Scapy can read them from a packet

capture file using rdpcap0, where we specify a file name to pull the packets from. Again, packets

are sent to or a variable name we provide in [var]-rdpcap0.

We can likewise write our packets into a pcap file using the wrpcap0 call, where we provide a

filename and the packets we want to write.

Finally, Scapy can invoke the Wireshark sniffer to analyze a set of packets, right from the Scapy
Python prompt, by simply calling wireshark(fpackets]). This provides a handy way to see the

various fields in packets using the wonderful GUI of Wireshark.

39

Scapy also supports fuzzing, placing random data into fields ofa given protocol to see how a target
machine may respond to the garbage. To use the fazzing option, we simply call the fuzz0 function,
with an argument of a protocol that we wantfuzzed, as in fuzz(lP0). AnV fields we haven't hard
coded will be substituted with random data.

So, for example, to create a completely fuzzed lP packet, we could use:

>>> packelu=fuzz (IPO)

It should be noted that the random numbers for the various fields are not assigned until we actually
send or otherwise use the packet. We can see this by looking at our fuzzedpacket's settings:
>>> packet.showo

We'll see RandNum and RandBytes in various fields.

To create an IP packet with the default values, plus a fuzzed rcP layer, we could run:
>>> packet=IPO /fuzz (TCPO)

For any field in the given fuzzed layer that we don't specifl', Scapy will choose a pseudo-random
value. Checksum fields are still calculated appropriately, however, to ensure that the packet is valid.

So, for example, to create a packet that is destined for lP address 10.10.10.50, with a frzzed TCp
layer that alters all fields except for the source port of 1025, the destination port of 80, and the TCp
checksum field, sending the packet with a timeout of 1 second and receiving only the first response,
we could run:
>>> packet=IP (dst=" 10 . 10 . 10 . 50 " | / fuzz (TCp (sport=1025, dport=8O))
>>> sr1 (packet,timeout=l)

40

Using $capy in a Python Script

. We've focused on using Scapy at an interective Pytfion
prompt

. We could use all of these techniques in a Pythan script,
with a name suffix of .py

r At the start of r .py file, ma[e sure to
l luerfbin/pyth*n
utt

f rorn scapy " a I l- import *

*aur **r3*. g**s tr*v* SJi

Remember mandatory indenting!
- four spaces is the recammended indentaticn

We've focused on using Scapy as an interactive shell, but everything we've discussed can be used to
write Python scripts that oall Scapy functions. Simply preface all of the commands you create with
the lines shown on the slide, which include the following elements:

#! /usr/btnlpython

This item tells the system to use /usrlbin/python to process this script.

#

This line is a comment. You can add any comments you'd like, prefaced with a # prompt.

from scapy.all import *

This vitally imporlant line imports all of the Scapy functionality we'd like to use.

Remember, when you create Scapy scripts in Python, you must observe r-nandatory indenting. With
for loops and if staternents (among other Python commands), you must indent. lf you do not, you'll
get a Python effor message. lt is recommended to use four spaces for each level of indentation.

41

' *c&nni** G*als and Types
. Overalt Scanning Tips

r $niffiag uvith i*pd*mp
' Fletwork Sweeping with $c*Py

"M. l,{etvrlort Traclng
. Fort Scannrng

," Nmap

' Nmap Lxercise
.0$ Fingerprtnting
. Versron Scanning

. Nmap -O -sV and
Amap Exercise

' \fuln*r*bility Scanning
r Nmap Scnptlng Englne
. NSH Exercise
- Nessus
; Nessus Exercise
r Other Vuln Scanners

. Enumeratirrg Users
. Enumeraling Hxercise

' Ne{cat f*r th* F*n ?**ter
- Netcat Exereise

Cnurse Raadma

r Planning arld F.r:"***

r Explcitatinn
r Pas$word A
. Wireless Attacks
r lfileb App Attaeks

Next, let's do some hands-on exercises with Scapy and tcpdump. These exercises will take the form

of some challenges. We'll pose to you a scenario with packets you need to formulate with Scapy and

tcpdump configurations you'll need to write to see these packets. A11 of the answers to the

challenges are included on the page right afler each challenge. Try to formulate the answers on your

own system before peeking ahead to our suggested answers. Ifyou cannot get one to work, though,

feel free to look at the next page for some hints.

42

I

Exercise: Scepy and tcpdurnp

We are gning to experiment with
tcpdump and Scapy.".
...Honing our skills ta formulate paekets
and get resBonseg
* Sniffing detault beh*visr cf Scapy
* Lccking at ICMP payload behavior
* Crafting Land packets

- eanducting sweeps of a target
envir*nment

We are now going to perform an exercise to hone our skills in using both tcpdump and Scapy. We'Il
specify certain tcpdump configurations that will look for packets with specihc settings. Then, we'll
generate such packets using Scapy to verify that we can craft packets we want using Scapy and that we can
detect them using tcpdump. Scapy and tcpdump do great duets!

For each of the exercise components we'll analyze, try to formulate the commands for tcpdump and Scapy
yourselfbefore flipping to the next slide, where solutions are included. lf you need a hint, though, you can
peek ahead.

43

i

1) Default Scapy Sehavicr
The challenge:
* Canfigure tcpdump to displey all p*ckets with

yCIur machine's IP address and the IF address af
target maehlne 10.10.10.2*, in either directian

- In a separate windcw, run Scapy to craft a
paeket fsr L*.10.10.?0 with no options
. For the IP leyer, set anly the dst eddr*ss cf 10"1*.10.2*
n For the TCP layer, use enly the d*faufts
. Use sr{} to send your Backet

- In your sniffer output:
r Wlrat ls the default saurce part? What are the default eontrol Bits

{flags} settings?
. What is tle defau*t destination port?
. What lclnd of respgilse da you see?

We start out by measuring the default behavior of Scapy using tcpdump. Your challenge is to configure
tcpdump to display all packets that include both your Linux machine's IP address (which is likely
10.10.75.X, with a specific X assigned to you) and the IP address of a host we are going to sendpackets
to (in this case, 10.10.10.20). That way, we can capture only those packets that you are generating for
10.10.10.20. Configure tcpdump so that it does not resolve domain names or look up port numbers.

First, formulate that tcpdump command.

Then, run Scapy against the target, setting the dst to 10.10.10.20 for the lP layer, and using all ofthe
defaults for the TCP layer.

Ifyour tcpdump has been configured appropriately, you should start seeing packets on its output. Based
on those packets, discern the answer to the following questions:

what is the default source port? what is the default control Bits (i.e., TCp flags) setting?

What is the default destination port?

What kind of response do you see?

The next slide includes answers.. . but try to complete this yourself before looking ahead. If you get
stuck, feel free to fuin to the next page.

44

t) One Pnssible Answer

Yie?f Jefir'is$;abs HeS

t1?!io-l'l!'!f? ri.iort Py)(liar'i lie dbtp ?+ urF pldl
yrilu +:/t t

&&.,4* 4^- r*'.d ;--+;--*i^- ". t:rs'AlrRlu6: ru4 rsute fa$id iD. tF'6 deql ilral ion .

, ft^ d-{a.,i 1 r^,,ri t i

'reLrow ri: 5d dOV ll. t.0!

irllsf?*d tf] s*i:d 1 *aik€t6.

er{dX 2 ie{;(a'.1 ict 1;,figbers ,"*FJtriii 0 i:l

:rl: 1{P:9,}i:P;,1 "ti.',/,1:.;r**r:+>1
a:

,,,.;. | ''

ucreachable? ll's
y**r trr*wall" Se*
belaw for details.

y this leMF host

lrpd$sp .nn hosl !6.1S.J1. r ari: ho".t lu.1$.10.28

lrst**:"nq er elh4l. 11":{ type Ffl1eflB iIr']€:n*t!, (apc
ire t1.7? !ie,*+te!

il:l]. i?.rE}-i&l ai{J tepl ! lS :S.18.1$;\.dl 0SiS{:
: th: td: 15
Ll : L2 :3? "t&\&43 :r l*. r*. ::. :*El' r*. t*. ra. :@|
11:i?.ir.:6s8n6 :p 11.:r,14-Zq.fie " !0 1* ::.t.2e
:3j*:.3*::6 3.3.96::i::F{0il;{k li t'ra !6:9.3 n15 J4

!1 I?.11 1?li1: Yl tA in r-< I \ l6 lt !6:&. :16

',ilrr.** *,*r,o:p ?*.rs,:s,:* !:9,,*,* rr rln \
: l{1.1S./5.1 riirei:{lrable adnis! A.0l:b:1ed.

t t!.1e.71.1 ulie*ir^blc ail!* 9doi,lbltcS, 1qi,gt

-!:4S5ie::8 :il&5.i$?lSti i rrlr I *:rr l6ll]4 qe!5 l+bg>
t1::r:,1{-6?195F :p :s.1$.:1^1 ' 1!.1$^16^26: i(liP is

11.169:6:5: 1i4&nl6)18{*} ;tk : !in i4Jlil .n:s l
1 t . t l. ai 4!sEn1 t4 !g ta ta

:,!:i-'r.14.6:i9€6 11 1e lfi. l0.l0.te , I0.10.r5.1.:0. !

$r {}F{d$t'.1*. Xe.ra .}6" 1 fttqly

One possible tcpdump command line that will focus on the packets we seek is:

tcpdump -nn host [YourT.inuxlPaddr] and host 10.10.10.20
Note that you should replace fYowlinuxlPaddr] with the lP address you assigned to your Linux machine. This
syntax will make tcpdump look for packets that are associated with both hosts fYourlinuxlPaddr] and
10.10.10.20, while not looking up their names or services (-nn).

In your other window, you can run Scapy as follows to craft the requested packet and send it:

scapy
>>> sr (IP (dst="10.10.10 .20") /TCP O)

As Scapy runs, we can see the packet it generates in the tcpdump output. Specifically, we see the packet with a

source port of 20 (commonly associated with ftp-data), a destination port of 80 (associated with http). We also
see that it is a SYN packet, given the S in tcpdump's ouQut.

ln tcpdump, we can also see the response coming back from the target, which has an S on the line, as well as an

"ack" a bit later in the line. This is a SYN-ACK response. That porl is open.

Note lhat)tou may see an ICMP host unreachable message, going from your machine [YourlinuxlPaddr] back
to 10.10.10.20. Why is that packet being sent? This is an artifact of the built-in Linux firewall controlled via
iptables. Scapy is orafting a TCP packet, directed a1 10.10.10.20. That machine responds with a SYN ACK,
sent back to fYourlinuxlPaddr]. Your Linux kernel had no idea that the earlier packet went out (because it was
craftedbyScapy). Thus,itdoesn'tknowwhattodowiththeSYNACKresponse,soitsimplytellsl0.l0.10.20
that the host is unreachable. That's rather counter intuitive, telling 10.10.10.20 that the host is unreachable.
But, it is the default behavior of this version of the Linux firewall.

To disable the Linux firewall (a reasonable thing to do when you are scanning and/or crafting packets), you
should run:

service iptables stop

45

2) Ping and Fing with Paylnad
. Challenge:

- Run tepd*mp eonflgur*d t* shotv only trCMP messase$,
in hex and A$CII fermat, withn*t r*solving nam€s

- Use the standard ping command to ping 10.10.1ff.20 tn
veri$r your ccnfiguration

* Use Scapy to send an ICI{P feho Request Et4essage
once per secCInd with a payload that says
"lrellohellchellc"
r Ftiat: Echo R*quest is Scapy's default trCMP rneesaqe type

" Hint 2: lise srlsop{} tc send a packet *n{e Fer secrnd

- After a few peckets, hit eTRL-e
* View the payloads in the responses using tepdurnp... it

truly is an eeh*

- View th* payloads in the responses via Scapy

For our next exercise, we are going to use Scapy to send packets with a payload, and look at the contents of
that payload in tcpdump and Scapy.

To starl, invoke tcpdump so that it will capture only ICMP messages, displaying both hex and ASCII
formats of packets, withoutresolvingnames. Then, verifyyourtcpdump invocationbypinging 10.10. 10.20

using a standard ping:

ping 10.10.10.20

If you see the ping packets on your tcpdump output, your tcpdump syntax is good.

Then, use Scapy to send a payload of "hellohellohello" in ICMP Echo Request packets to the target
machine. As a hint, remember that Scapy's ICMP uses Echo Request type messages as its default.

Now, tcpdump should show the ping and ping response messages. Look at the payload of each. Do you see

that the ping response truly is an echo?

Try to formulate the commands for tcpdump and Scapy yourself before flipping to the next slide. lf you
need a hint, though, you can peek ahead.

46

2) One Fossible Answer

r t*:d*'.!. :r{f:T*i.l se(i.*l}. 1++.?'.'il9
..F# als :

Itl4t :4,,t

. * t l.$4* lt? lsta*" 1&. z*. \ e . 2+' I l t qw { } J" h*l l si*ellrtlells' }

@*''*pt{t.'e.},.}r}t.14*|"vE]i{ifil1lF'El6.t]'i8.4le
rt*n!** *r *tlA. !.,*k-flFe €#:ry,.1e l*t:1*rft*rll. tagt$i* trr€ *6 *?!4t

!1!34r,i5.4S::6} i!' !*.lt.?5.1 ' !.S.14:.1d.?E: Zrr.€? zrr* teg*?;l, :t i. :i* i.

41A& **7t' ***1 **ge 4*{i: 31*€ ea*& 44&1

&&e +*14 A&&4',*Zj *e€J* &&8* *44t 4a
Si#+?*: gf** r&t&t €it*f 6g*5 *16e ilf

l1:3a145.4*7*2, ip t+,19.1€.:A ? nF.tS.:5.:: tCf*P e{!}t

&t*4&et 4t*€i *63b $6ed 6E*d F.{}61 7ai{ g*$a ga1{
Ar*416: *4iF6 4b$l 4tl!)8* 61t17 6$ffi ***€ gg*5 &{
*z*azijt *t*& &64. &{&t e*45 d{6t e:t*& *+**

l 1 : 5* : ;l*. ;1114&1 3'19]]'f|. 2&. ?t - ?, " Z&. 1&, "1& - 28. Zt#? e{&e
l*:]

x$&6€i 45SA E?'] &$41 t!*{t$ 4S*? lt1as 44Fa 4**2 *..+". ..t4.K.
*r4qL4: EaAe A*4 ***4 *-"1? $4** **4i: ***5 &r*r ,.,,,....,.,r*',i

? zt,t'u*E "fisx lrug

First, we've run tcpdump, invoked with the -nn flag to make it show us only numbers and porls, not names,

and the -X flag to display hex and ASCII output. We've specified that we only want packets associated

with ICMP, as follows:

tcpdump -nnX icml>

Then, we've run Scapy as follows:

>>> srloop (IP (dst="10. 10. 10. 20") /ICMP O /"heIlohellohello")

This invocation will make Scapy send ICMP packets with a payload of "hellohellohello" to 10.10.10.20,
repeatedly, once per second.

And, note that in our tcpdump output, we see that hellohellohello was sent from our machine to the targel
(10.10.10.20). We also see that the ping response (from 10.10.10.20 to our IP address) includes the
hellohellohello string coming back. Truly, ICMP Echo Request is an echo.

Hit CTRL-C in both windows to get your command prompt back. Now, in the Scapy window, let's analyze
our result. First, we'll store it into ans and unans:

>>> ans,unans=_

Now, look at your first response:

>>> ans [0]

You should be able to see the payload ("hellohellohello") of both the request and the response in this data
structure.

47

3) Land Attack

r F*ow, we're going t* $se the spoafing cepabillties of Scapy to
launch a Land at[ack

" 7* L99,1, it was discovered that a TCP SYt\l packet with:
* Source IF addr = dest IP addr = target addr
* Ssurce poft = destination port = open pa* on tarEet

. ... would make the target crash *r drive the CFU to 10*$lo,
dcpending an the syst*rn type

. This issue resurfaeed fc: Windows XP and ?*G3 in a patch 20*51

. {haflenge; Using Scapy, {r€ate four Land-sfyie packet for
10.10,1S,?0 sn TCP port 8S

- Hi*t: l4ake sure your Eomffiand sends only four packets
* Ysu won't be getting a resp*ilse back, sc use sen*{}

. eheck sut hefp{s*nd) l* see h€w to eantrol the€*unt
. F4ake sure yoil first invoke tcpdump with a suitable

to *isptray ycur

For our next exercise component, we are going to use Scapy to generate a Land attack. Way back in l99l ,

a security researcher discovered that if you send a machine a spoofed TCP SYN packet to an open port with
the source IP address set to the same value as the destination IP address, and the source port the same value
as the destination port, the target system's CPU would spin up to 100% and in some cases even crash. The
target machine would, in effect, experience a condition where it would look like it received a packet from
itself, going in the same port that it is leaving, causing significant problems. Back in 1997, every major
vendor fixed the problem.

In 2005, the issue resurfaced with a Microsoft patch for Windows XP and 2003 that re-introduced the flaw.
Microsoft then released yet another patch to fix it, again.

We are going to verify our Scapy skills by recreating the Land attack.

Your challenge is to use Scapy to send a four Land-style packets for target 10. 10. 10.20 on TCP port 80.
Before you mn Scapy to do this, however, make sure that you first configured tcpdump appropriately so
that you can see your packet as it is emitted. For this challenge, make sure you send only four identical
Land packets to the target machine. Use help(send) for information about how to set the count.

4B

3) One PcsEible AnEwer

:.:* I

-:€ v cr "vv f*: f *li prot*lal d€q*dr
liste*i:}* *rx egfl$,
ln:46r5?"3?*lF4& €P
Xtr;4&:57.33341* 3F

t*r* siz* E& bytee
g 6:6{*} ein *1**

i 5 *:*{*} idin Sn?3
11:4*r3?,35*4?* lp t*.1r:.36.3*,*i3 b}S,1S,?*,3A.Ser 5 S;*{*} i.jin 838}
11:4S:57.363S54 5P 3*.18,1*.7*.** e :*.1*,!*.2*,6*: $ *;S{S} u:in 6t*}

t{t}d**p -tts1. tt* a** hcst \&,2{}.t9"2*

t 4 #:!{hets,

Here is one possible solution to creating a Land attack and configuring tcpdump to sniff that packet.

We can capture our packets with a tcpdump command line that doesn't lookup names (-nn) but does show
all TCP packets (tcp) that are also (and) going to or from the larget IP address (host 10.10.10.20). You
could narrow this down further by specifying particular ports, but it is often useful to invoke tcpdump with a
broader configuration so we can see more activity than just what a given tool is sending.

We've run Scapy as follows:

>>) send(fP (src="10. 10. L0 .2O,,,dst="10. 10. 10 .20.1 /5t1p
(sport=80, dport=80), count=4)

Here, we've told Scapy to craft a packet with an IP header where the source and destination IP adddress are
both 10.10.10.20. For the TCP layer, both our source and destination ports are 80. We'lI use a count of 4 to
send only four packets.

We can see in our tcpdump output the Land-style attack packets.

49

4) Using Scapy to Sweep the
Target tnvironment

r Now, use Seapy to sweep the target envir*nment

' Stert by running tcpdump configured to l*ok f*r packets
going ts netwoFk 10.1*.lff {hinh net}

r NCIw, use Seapy to se;rd ane ICMP Hcho Request rnessage
to host 10.10.3S.3"0, 10.1S.:"il.f0, L*.1*.3-il"4*,
lil.10.10.5S, 10.10.:.fi-S0
* Hint: Remem*er t* put I J around your dst list

* $tore your resFo*ses in variabtes called a*s and unans
* llir"lt: ans,unans=sr{)
- f"lint: f'lit CTRL-C after you see "Finished ts send..."

. Inspeet ans and unans, including their Eummaries

. trf you have extra time, send a TeP AeK packet t* port 80
sn each tarEet, and inspect yaur results

For our final challenge, we are going to send ICMP Echo Request messages to a list of target machines.
Startoffbyconfiguringtcpdumptosniffforpacketsassociatedwiththetargetnetworkl0.l0. 10. Asa
hint, consider using the "net" keyword in your filter.

Now, use Scapy to send one ICMP Echo Request message to host 10.10.10.10, 10.10.10.20, 10.10.10.40,
10. 10. 10.50, and 10. 10. 10.60. Note that 10. 10. 10.40 isn't in use, so we shouldn't get a response from it.
As another hint, don't forget to put [] around your list ofdst addresses. Store your results in variables
called ans and unans. As a hint for this, remember that you can use ans,unans:sr0 to separate out the
answered and unanswered results.

As Scapy runs, look at the output from your sniffer. Note that the sr0 will keep running long after it has
finished sending packets, waiting for possibly very late responses. Hit CTRL-C in Scapy after you see it
indicate "Finished to send 5 packets."

Now, inspect ans and unans, looking at their summaries.

Aller you've reviewed their summaries, feel free to use offsets such as [0] and [] to look at the
components of ans and unans in more detail.

Finally, if you have extra time, repeat this challenge, but this time send TCP ACK packets to each of the
target machines and inspect your results.

50

4) Sne Fassible Answer

'"" ,,'st&"W7**: l&re **$rcc: C* r*&eh {3etttt1*li.t* **t

*g Fa{*et', g6n 4 erN€vc{t, rel*rt*r** I ;r*c

,16,75,tr ct**-.**1"Y * I sa
fF I !ltt* 3*.:*.?5.1. " 18"
,t$,?s.3 *aeq"re*1't {t I

{Frtr Ll*F:* 7-{.,!1?:li a,a':;Nj, r*?

.j**1t} ia-Yi?: 1 ljt*t , :t:1,

"1 3 tr*,:S,l$,:.*
'xihe"r*{tse*t

& e*? tV,r r{f"lF 1&.1*.1*"1* - tS
,14.?3.1 *t!t*" rep\:y & f ?e4dirt;;
lY f ttF;* 1&,1*,73.L F ;*.18.t*.10 ee".O'i€Eile5: * =E: ir J t{!tp ;,9';&.r*'?S > :*l
,t6,?5,1 e*?:*'.**ly t' I te$ ii

lJs!r,* i:r*drdq'*Ei.

fF J :{;'fP L&"1*.75"1 , t*"

. .r.:..2@..,.,1'l

rtdslrt "+*-r*ciii-r!{+Srdre55ed, t.* -t {v -y? f9. i;11 ,rr*?+{+1. iJ*{*t*
,*!**s$4 *r1 *l?'$, \z?.r."ZV?4 *3.!#* {.Etharye*il, t*F11}(e tiia 9i1 *yteslt*!**elq ** *19s, isztr"ly?e *r.t#* {.Ethe**i1, t*F11}(e tiia 9i1 *ytes

=lSrS*;3S,1363*3 arF ah*'h*s l*.1$"1S,?* teil t*.:*.?9.: a
L1:&&:29-534F43 a"]p rcpLy :S.:*.1?.1* i$"&l &*i41rj:t:ce:b4:ie :
!:;6&;]F"5*?{}e 2P r*.2&.23.1 ! }F.:*.;*.:*: tttl* tt(k\} f*{ti}rtt, i4 F, tc4 3, lFl{::
.,1

6
!.3t&*1s*.5&1432 fp 3f.::|:.3+.1e 3 1t.til.?1.1i tr{f'1F e{ha rs*iy,]d :r" 5ts e, 1e"*ih
It

I : I *g i :!. 6:&9:? 6rp ui,$ -h*! :L!]. tl3. 1lX. :{! te\l Xe. u:3 "a r. Z

1]: *fi : j*.6.3{}5}* ;ir*, et}!y :s, ;*, rE. lq is "it *f ; *{:?*: l1i: 1$r i.5

ts**ued| .t]* r*t 1S.14.:*

iln!h. .. r*3".r1 1

We start by running tcpdump looking for traffic associated with network 1 0. I 0. I 0:

tcpdump -nn net 10.10.10

Then, we tell Scapy to send packets to the targets, storing our results in ans,unans (or we could use

ans,unans: after we run sr0).

ans,unans=sr(IP(dst=["10.10.10.10","10.10.10.20", "10.10.10.40","10.10.10
.50", "10. 10. 10. 50"1) /rcMpo)

We'Il now see the packets going out. Note that when it gets to 10.10.10.40 (the unused address), Scapy will
not get an ARP response, so it prints a WARNING on the screen.

After we see "Finished to send 5 packets", we hit CTRL-C.

Now, look at your ans:

>>> ans

We see that we got 4 ICMP responses.

Next, look at unans:

>>> unans

Here we see one ICMP message was unanswered.

We can review the summary of our results with:

>>> ans.sununary()

Then, we can aocess individual responses with ans[0], ansf1], etc. We can also access the components of
these responses with ans[0][1], and so on.

Try it again with TCP ACKs, and you'll see RE,SET messages coming back from the valid targets. You just
conducted an ACK scan.

51

" S**n*irlg G*als acrd Typas
. Overall Scanning Trps

F Sniffixg with te*dump
' l"l*&arerk Sw*eping witf] ge€py

? S**pyltcpd*mp Ex*rei*e
* &tws* FreedaffiW

' F** *can*iRg
- Nmap

' NmaB Erer*se
. OS Fingerprinting
. Version Scanning

F t$r#aB -O -sxr' and
Am*p Exerei**

' V*:ln*rability Seen n irr6
:i" F;*$ap $*ripting €*gin*
p N$E Excrcis*
- hlessus
k **essus €x*rcise
F Cther V*l* $csftners

. Enumerating Users
. fnurnerating Exercise

' lrletcat for the Pen Tester
? t*et*€t Ex*r*is*

Ccurse Raadmap

r Planning and

Exploitation

Fasswsrd A
r Wireless Atracks
r Web App Attaeks

Our next topic will be network tracing, figuring out the paths that packets take as they traverse the network
These methodologies and tools will be instrumental in our composing a network diagram of the target
environment.

52

The IPv4 Header and TTL Field

Vers I Hlen N $ervicr Type ilotal Length

ldentificstiar:l Flags I Fragrnent Offbet

Y::l:!t:r}-:*r-t l

S*uru IP Addrg'ss

fr estinslio w I P s4 ttelress

fF Optians {if any} | Padding

Data

To understand how network tracing works, we need to analyze some of the fiel<ls of the IP packet header.
This slide shows the IP version 4 (IPv4) header. Of particular interest to us now are the Time to Live
(TTL), Source lP Address, and Destination IP Address fields, which we will use in determining the overall
network topology. The source IP address is a 32-bit field indicating where the packet originated. This field
will usually be set to the address of the machine running the scanning tools, unless we are using a technique
that involves spoofing. The destination address is another 32-bits that identify where the network should
cany this packet. During network sweeps, we often send large numbers of packets that vary this destination
address.

The TTL field is 8-bits long and indicates how many hops this packet can travel before it must be discarded.
When a router receives a packet, it is supposed to decrement the TTL field by one. When a given router
decrements the TTL to zero, the router is supposed to drop the packet, and send a "TTL Exceeded in
Transit" message (ICMP Type 11, Code 0) back to the source IP address of the discarded packet. The
source address of this ICMP TTL Exceeded in Transit message is the router itself. This interesting TTL
behavior allows us to perform network tracing, discerning the hops between the scanning machine and
target systems.

Later in the class, we will look at some of the other fields of the Ipv4 header.

53

The IPv6 Header and H*p Llmit Fiefid

Flow Label

Ilayl*ad Length Next Heaeier

Srurce IPAeldr*ss

I] estin#tian I F Adrlress

Here is the IPv6 header. First, note the massive size of the source and destination IP addresses, with each

128 bits in length. Further, notice that this packet structure is actually in many ways simpler than IPv4. For
example, the helds associated with fragmentation (the lP ldentification field, the fragment-associated flags

Don't Fragment and More Fragment, and the Fragment Offset) are not present.

But, most important to us right now, there is a Hop Limit freld, which behaves in a very similar way to the

lPv4 TTL field. lt's now named "Hop Limit" to remove any connotation of time from it, but it is still
decremented by each router hop as the packet moves from its source to destination. Therefore, we can use

it to determine the series of router hops between a source and destination.

54

Tracer*ute

i

t

Dlscnvers tlre route that packets take behiveen two systems

Helps a tester csnstruct network architecture diagrams

Included in most oBerating systems
* Linux/UniN traeeroute and tr-aeenpute -6
* Windows traeert and tracert *6

$ends packets to target with varying TTLs in fhe IP l-{eader

r f,I"i* liffiffi;
t&r* tlj

ire1
$r:n*nin
lir,xtern

!! TTt. - f

*t-.!'.*F't-* 1, f:I*r:c{l r{t

Ilestintfi*n
Tltrgef

't 1":. R :
- tf:'lg TT t, f:1**lcnt

The traceroute technique uses this TTL behavior ofrouters to detennine the addresses ofrouters between

the scarLning machine and a given target. On Linux and Unix machines, this technique is implernented in
the traceroute command. On Windows, the tracert command provides similar functionality. Both
traceroute and tracert supporl lPv4, and have an option on modem operating systems for using IPv6 if we
invoke either command with a -6 flag. We'l1 discuss the differences between Linux/Unix traceroute and

Windows lracefl shortly.

But first, let's look at how both traceroute and tracert determine the hops between the scanning machine and
the target. The scanning tool starts out by emitting a packet with the target machine's lP address in its
destination field. The TTL of this first packet is very small: a value of one is inserled. When the first router
receives this packet, it decrements the TTL to zero. Because the TTL is now zero,the router drops the
packet, and sends an ICMP TTL Exceeded in Transit message back to the scanning tool. The source
address of this ICMP packet is the first router. We now know the first router's IP address.

Then, the scanning tool sends another packet to the destination target's lP address, this time with a TTL of
2. The first router decrements the TTL to 1 , and then routes the packet to the second router. The second
router decrements the TTL to zero. Because the TTL has reached zero, the second router drops the packet,
and sends an ICMP TTL Exceeded in Transit message back to the sender. We now know the second hop's
lP address.

The traceroute tool proceeds in this fashion, measuring hop after hop, until it reaches the target itself. The
target'sresponsedependsonthetypeofpacketusedbythetraceroutetool. Ifagivenhopdoesn'treturnan
ICMP TTL Exceeded in Transit message back (because it is configured to filter the inbound probe or omit
the ICMP response), many traceroute tools will simply label that hop with a "*", meaning that no address
inforrnation is known for it. ln tact, if a given network device filters all ICMP messages going back, its hop
and everything thereafter will be filled with a x.

55

Linuxlunix Traceroute
. Sends UDP packets with ir:creme*tinE p*rts starting at base

pcrt *f 33434, g*ing up by one port far e*ch probe packet
sent {each h*p measured lhree times)

" S*me useful *pti*ns:
-f [N]: Set the initial TTL for the first packet
-g fhastlist]: Speeify a losse sCIurce route {S maximum hops)
-I: Use ICFIP Echo Rcquest instead of UDF
-rn fll{l: Set the maximr:nr number of hcps
-n: Frint numbers i*stead of names
-p lp**l: Set the b*se UFP p** {default base is 33434, whieh is

increr*ented for first paeket, and for each s*bsequent packet. with
earh hop meesured three tlmes)

-w flVl: Waitfor f! seconds befpre giving up and writing * {default is 5)
-4: Force use c IFva {by default, ch*sses 4 sr 6 based on dest addr}
-6: Force use of IFv6

The Linux and Unix traceroute command utilized UDP messages with varying destination pofis as its probe
messages to elicit ICMP TTL Exceeded in Transit messages. As its starting point, traceroute begins with a UDP
port of 33434, to which it adds one for each probe packet it sends. By default, each hop is measured three times.
Thus, the first packet to measure the first hop has a TTL of 1 and a UDP port of 33434. The second packet
measures the same hop, again with a TTL of 1, but this time a destination UDP port of 33435. The third packet
again has a TTL of 1, but a UDP port of 33436. We then move on to the second hop, with a TTL of 2, and a
UDP port of 33437.

The traceroute command supports some useful options, including:

-f [N]: This option sets the initial TTL of the traceroute to an integer N, thereby skipping over the first
N- I hops. If a tester wants to ignore their nearby network in tracerouting, they can set this
value to skip some hops.

-g [hostlist]: Instead of having the network determine the routes that packets will take, the sender of a

system can employ loose source routing, embedding the desired path of routers to take in the
header of the IP packet itself. That way, the tester can control the flow of packets between
some of the routers, measuring hops in between those routers specified. The traceroute
command supports speciflring up to 8 router hops.

-l: Use ICMP Echo Request messages as probes instead of UDP packets.

-m[N]: Set the maximum number of hops to measure (the default is 30).

-n: Don't resolve domain names, but print IP address numbers instead.

-p [port]: Set the base UDP port, which subsequent packets will increment, instead of the default of
33434.

-w [N]: Wait for an ICMP response fbr up to N seconds (default is 5 sec).

-4: Force the use ofIPv4. By default, traceroute chooses lPv4 or IPv6 based on the destination address
type provided. But, you can force it to use lPv4 with this option.

-6: Force use ofIPv6.

For more options, please feel fiee to read the traceroute man page.

56

Linux/Unix Tracersute Hxample

12.?:e,i3li, 3fi i'o!,s r'a", a* byte odrketi
*.V71 sts. *.475 $v"z

z
3
,i
5

7*.X.\.?.22 &.tu37 cet

3*"8*"36*":. L*"44? w5

.. z&r $rv, : ,,,,: .
* f?41*.fi& lfthefs*tl. {nFtijre xirs gF i:yt{:5
id .tli:4:, {l?!@lft;rq: ii!,:i1*1 , Frrito *sF {

lJ{:P" le,iqth 4F ,:
f!a6s f***el, prrt4 uaP {
ypr. r-i:lgrri *s

U0P, ielqth 9il
li:51:S6.i,':i0: lp itu. S16, 'li .3" !fl lib.?&, fl*gs lr*s*1, pfst* titlP i:::
l?1 , I,es*t:1 6q, r{}"1,\.73,3?i11{r >;:4.11;.:7*.151:5tdaq. t}*?, \e*er.* 48
13;5?:**.*;:ttit13 CP tt*c *!.*, ttl ?, id;lld44. *ft6dt 6, f.aq: :rorti. croin u&p t
i?:, length **t 34.1,1"V*-24?34 " &4.12?.7?*.'"tL.3344.L: t]]*?,'.et\t:tt* 4*
15::1rAs.5?3t4::F {i*5 Ss*, tt1:, t* 4}t::tr, r}ff5et *, fl"{}' .r!+1q1. :":+:n UtF. {.

?,18t91i}6*}t4'1.t.?5':1?*g*}'}4.1::.;2*"la1..3344z|u*F'i€'?*th4s
.5tr.08.5??+r5 i' :{$5 "".9,

: t i {. rc 41611, otf\f: 8" il agn r*:rei tj€ta tn* :

tq!in^at c.10621 14 1.,.

15:3?:S4"5?$?Ztr tP ita:
? 1 l6^-+F (e ! lt MS

1?', 1e**!* 9&i 1S.1.1.?:

r?1, lenttl 6a! !$,:.1"7:

'llq!, [ft6**], prctq l]$g l=
lt?:F, lslrqlh {s i::

t\a& lr,E{.e7, Fr*16 *Fg {l::
VWF, **gt?' 4& t.-flac: l!!+zel, p.*t* Lt*F li,'

. : esgli d0 ,,

f lat: lnial*l , ;lrr:ia: llFF {i:i

* 4!&r3,

trl il* I

tl? :t* !
!*:$+:**.5?l&39 IP lt0t

{.4d.** t)1tA: ld li^r

* \tp{311e.? -v -{}11 ,},.}

In this example of a Linux traceroute, we first started the tcpdump sniffer to verbosely (-v) use numbers
instead of names (-nn) while printing out UDP packets (udp). We ran it verbosely so that tcpdump will
show us the TTLs ofpackets.

We then ran the traceroute command, also configured to use IP address numbers instead of names (-n), to
measure the router hops between the scanning machine and the target address of 64.1 12.229.131 (at the
time, this was the address assigned to www.sans.org).

In the tcpdump output, we can see that the first three probe packets all have a TTL of 1, and destination
UDP ports of 33434,33435, and33436. Next, we move onto the next hop, with aTTL of 2, and UDP ports
of 33437,33438, and 33439. Each of these TTLs and UDP ports are circled in the above packets.

It is vital to note that for the traceroute command to function using UDP, the network must transmit packets
with these UDP ports toward the destination. lf it does not, we can't measure those hops using this default
invocation. We could use the -I option to send our probes via ICMP Echo Request messages.

57

Windows Tracert
. Sends ICMF f,cha Requ*st rnesseqes tc lerget, startinE with small TTLs

and wur"klng upward

' Ssme usgfrJl optinns:
-d: Fon't resclve flames

-h [i{]: Maximum nurnber of hops {default i: 30}

-j ihsstlistl: l,ise loose $ourc€ routing, with a space-seFarated list *f router lP

addresses {uP tc I max}

-w lffil: Wait f*r lrl miltiseconds befarc giving up *nd writing a * (default is 48S0)

*4: Force use *f lfu4
-6: Farce *se of IPv6

""%ilf,r**i*g *&t* t€ xt*':*"**"xg &vsP a F*xiF*s of 38 l*ge 3A
i l. <l as {t Fs <tr Fa LE"t "1"??? !
t ? 8€s 7# ?# t6.98"158.r t
i : B B5 ? F3 ? Fs te.l8-l.l 1

F { * * * *s{seattiard*{rt. t

ii*'t*
* ' * EEri*exr

'i*ed
srt'

;,i

-i.t

: ^ : ^^J i#L-_

Next, let's look at the Windows tracert command, which has fewer options than the LinuxiUnix traceroute

command. By default, Windows tracert sends ICMP Echo Request messages probes, again varying the

TTLs as before. Each hop is measured three times.

The following options can prove useful:

-d: Print IP addresses ofdiscovered hops; don't resolve their names.

-h [N]: Measure only this number of hops. Give up if there are more than this nurrber of hops

between the scanning tool and the target. The default is a maximum of 30 hops.

-j fhostlist]: Use loose source routing, embedding a series of router hops in the lP header that

should be used to carry the packet. The hostlist is a space-separated list of router lP addresses.

Windows suppotls up to 9 router hops in its list.

-w [N]: Wait for N milliseconds for an ICMP TTL Exceeded in Transit message before giving up.

printing u "*", and going to the next host. The default is 4000 milliseconds (4 seconds). Note that

Windows tracert sets its timeout in milliseconds, while Linux/Unix traceroute uses seconds.

-4: Force use ofIPv4.

-6: Force the use ofIPv6.

In the example on this slide, we've done a tracert to 10.10.10.10. We've gotten results from the first three

hops. For the next two hops, we did not receive a TTL Exceeded in Transit back within the 4 second

timeout. In fact, we never received responses back from those hops, which are filtering either the inbound

ICMP Echo Request or are blocking the response ICMP TTL Exceeded in Transit messages.

5B

Other Tracerrute Topls

To ccnduct a tracer**t*n ynu have to be able
to get a packet into the destination nehruark...
* .".and get an ICMP Time Exc*ed*d messege back

If IeMp Scho Request is blacked, Windnws
tracert has problems

If high UPP packets are blocked, tinuxlUnix
traceroute has problems
We nnay need rnore flexible trae*routing
optlans

To perform a traceroute, we need to be able to get our probe packets into the target network, so that we can
elicit an ICMP TTL Exceeded in Transit message to receive back. lf a router with ACLs, a firewall, or
network-based IPS device blocks incoming UDP and ICMP Echo Request messages, the Linux/Unix
traceroute and Windows tracert commands will not be able to do their work against the target environment.
Are we out of luck?

No! We can use more flexible tracerouting tools beyond those built into the operating systems.

59

Layer F*ur Tracercute {Lff}
. Layer Faur Traceroute {Lf"f} addresses this issue

* Free at h*p;l/pwhois.*rg/1ft/
* Runs sn Linux and unix

' Supp*rfs a variety of Layer Four optians far
tracercuting
* Use TCP {d*fautt}, UPP i-ui, or ICMP Hcho Request (-p}
* fhease destlnatisn Bn* {-d [port]]. defeult f*r TCF is S0

- Chccse source po* (-s [port"l]* Set chcsen length {-[- tN]) ineluding layer 3 and 4 header
lengths

* Lo*ks up,4$ nurnber {-A} using varisus whsis servers
* Afso suppart RFe 1393 Traceroute via IP apticns {-P}

- Interesti*g, but support is nat widely implemented in rcuters

Layer Four Traceroute (LFT) is a more flexible traceroute tool, which is not shackled to ICMP Echo Request and
UDP for probe packets (although those are supported). This tool, which runs on Linux and Unix, supports TCP,
UDP, and ICMP Echo Request messages for probes. TCP is the default, while UDP is invoked with the u flag and
ICMP Echo Request is activated with p (for "ping").

Additionally, LFT lets a tester choose a destination port, setting it to something that the target network allows. By
default, LFT uses TCP port 80 for probes, because any system running a web server on the default HTTP porl can
receive the paoket. Alternatively, the tester could use -p 443 to use the HTTPS port, or any other port which might
be permitted in.

Some networks only allow packets with certain source ports inbound, such as UDP 53 (so they can get responses
from DNS servers). The LFT s flag followed by a porl number supports arbitrary source porls chosen by the
attacker. Ifa source port isn't identified, a high numbered port (above 1024) is assigned.

The -L flag lets the tester specify the total length of the packet 1o be transmitted, which includes the IP header
(Layer 3) and the TCP or UDP header (Layer 4). The payload of the Layer 4 packet is populated with padding to
make the total exactly N bytes long. When invoked with the A flag, LFT performs whois lookups to identify the
Autonomous System (AS) number associated with each discovered router, so we can see which network cloud it
belongs to and get a feel for when packets traverse between different ISP networks.

Finally, LFT supports an entirely different form oftracerouting. Instead ofrelying on sending a series ofpackets
with incremental TTLs, RFC 1393 describes using a specialized lP Traceroute message, sent from the originator all
the way to the destination. Each router hop along the way that supports this special kind of traceroute would respond
with a special ICMP Traceroute message back to the sender, indicating its presence in the routing path. Also, the
ICMP Traceroute response includes the hop count of the received IP traceroute message, so the sender can discern
how many hops away each router is. This technique is more efficient than traditional tracerouting. If there are n
router hops, this technique requires n+l packets (the original probe, plus one response from each router hop).
Traditional tracerouting requires 2n packets (one packet to each router, plus one response). Unfortunately, many
routers do not respond to the lP Traceroute messages, making this technique of limited utility.

60

t

a

Web-Based Traceraute
Services

Instead sf tracerauting fr+m your address to the target, varicus websites
allow you to traeeroute frcrn them to the target* In effieet, yoti c*n traeersute fiom around the world,."
* .".Sy domain narRe er IF address

Very useful in seeing if yau are being shunned during a te$tt!
Be careful witl"* domain
address far" that ilam€
* www.tracern*te,org* www,kl*th.netl

services/trac*r*ut*. ph p
* www.net.cmu.edul

egi-binlnetops"cgi

- www,traeet.com
* R.ealize that you are leaking

sorne iRforrnation to a third party",. telling them fhat soffieone at yrur Ip
address has an interest in these target mschines

aizin@,. t4,4 l:iiai:*j
t:2:l t:ti.:t
t.:t'j'i) t*.rtx:1i,,:,\ti:tl
lLt.r,;! 'ir. ';.a,,r.
;r,t l#8 ia*i

t va .&* tt+t:/t:k}
l:tt.::tljst Yi*a t!!4'a#nJi,.tr !a1ii.!! &st&

i:rili E{&&,-

,iBt*t . Y;et1

Instead ofrrrnning a local traceroute tool (such as traceroute, tracerl, LFT, or 3D Traceroute), a tester couldperform
a lraceroute using a web-based traceroute service. Several organizations provide a web server on the Internet that
includes a form asking for a target lP address or domain name, as well as a geography (choosing from dozens of
different countries) that the user would like to traceroute from. Upon receiving this infbrmation, the web server
sends a request to an affiliated traceroute server in that given geographic location. The traceroute server performs
the traceroute between it and the destination, retuming the results to the web server, which forwards them back to the
user's browser.

ln this way, a tester can see what a traceroute against atarget will look like from other parts of the world. These
services are also helpful in determining if there is a localized outage or blockage on the network, or if the target
system itself has gone down. For penetration testers and ethical hackers, these services are immensely valuable in
differentiating whether a tester has been shunned by the target network administrators or automated cletection
technology, or if the target network or systems has gone down. If, at the start of a test, you can traceroute all the way
to your destination, but during the test, you suddenly lose connectivity and traceroute ability, you can try tracerouting
to the target using one of these services. lf they can still reach the target, but you cannot, you either have a local
network problem or have been shunned by the target. Please do note that any addresses used in these services can be
recorded in their logs, so be careful in using them; you are revealing the lP addresses that you are testing to the
organizations running these serr,,ices.

Also, when using services like these, you may want to enter IP addresses of targets insteacl of domain names. lf you
enter a domain name for a traceroute server to test halfway around the world, that name may resolve to the Ip
address of a totally dilTerent system, one that you are not authorized to test. Thus, iP adclresses are usually the best
way to refer to targets with these web-based traceroute tools, unless you are specifically looking to see how a given
domain name resolves in another part of the world.

It's important to note that, when you use such third-party external information sources, you are revealing to the
people who run them that you have an interest in these target machines. You should always carefully consider the
infotmation you might be leaking to the third party while conducting a penetration test. Tracerouting usually doesn't
contain very sensitive infotmation, but other kinds of extemal lookups should be considered carefully so you can
avoid violating your non-disclosure agreements.

61

Planning and

Explcitation

Passward

Wireless Attacks

lffeb App Attaeks

I

t

t

t

' Seanning G*als and Typ**
. Overal! Scannrng Tips

r Snlffing with tcpdump
'N*tw*rk *w*eping witll Seapy

r $capy/tcpdump Exereise
. i,{etwor[< Tracing

' f''lnrap Exercjse
" OS Frngerprrntrng
. Version Scanning

r Nnrap -O -sV and
Anrap Exercisc

. Vulnerability Scenning
r Nmap Scrrpting Fnrgine
:' hlsE Exercise
- Nessus
- Nessus f;xercise
. Other Vuln Scanners

. Enumerating Users
- [nurnerating Exercise

. Netcat for the Perr Tester
r N*t{ifrt !:XerClSe

Our next topic is port scanning. We will use a variety of techniques, mostly centered around the

mighty Nmap tool, to find open ports on the target machines. Each of these ports offers a potential
vehicle fbr infiltrating the target environment. We want to use various tools to detetmine, with a high
degree of certainty, which ports are open and which are closed. We'll send probe packets to the

target maohine, and, based on its responses, try to determine which ports are currently accessible to

the tester on the target.

62

TCP vs. UDF

M*st scrviees on the Intern*t
ere TEP Nr UDP

Very different pr*perties
between these prctocols,
whieh inrpaet our scanning
TCF: frnnecfian *riented.
tri*s ta preserv* sequ*nce,
retransmits l*st packets

UDP: C*nnectionless, n*
attempt made far reliable
deliv*ry

To understand port scanning, we hrst need to discuss some protocol issues. Most services on the Internet
use either TCP or UDP, which are carried end-to-end across the network using IP (either lPv4 or lPv6).

The Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are very different.

TCP is a connection-oriented protocol, which tries to ensure reliable, in-order delivery of packets. lf
packets are lost, TCP automatically retransmits them. lf they arrive out of order, TCP will resequence them

before handing them up to an application.

UDP is connectionless. The UDP software makes no attempt to associate streams of packets together. As
far as UDP is concerrred, each packet is completely independent, unrelated to other packets. No attempt is

made by UDP for retransmission or resequencing. If a packet it lost via UDP, it's up to the higher layer
application to resend it.

63

TCP H*ader

Sexuce Fan Destination F*fi

Sequence Xumber

As.kn*w lcdgment |tiurnbsr

Hlera lRsvd I Cnntr*l Bits Window'

C*e*ks*n: Urgent Poi:rter

TCP Opti**s {if a*ry1 j Patfd*ng

Data

Here is the TCP header. Note that it includes a source port and destination port, each 16-bits in length.

The source port is the port on the originating machine that emitted the packet. The destination port
indicates the port on the target machine the packet should be delivered to.

We have a sequence number and an acknowledgment number, which allow TCP to track a series of
packets to make sure they arrive reliably and in-order. lf a packet is lost, TCP will retransmit it. lf
packets arrive out of order, TCP will adjust them to make sure they are delivered to the destination
services in the proper order.

We also have the TCP Control Bits, which are incredibly important for tracking the state of a given TCP

connection.

64

TCP Ccntral Bits

f;*ntral Sits are also known as "eontrol Flags"
or'oComrnunieaticn Flags"

- The RFC ealls them C*ntr*l *its, though

6 traditional ones, with 2 newer extended

(..".".".""''..--.- _/
Deflned i,j' nrt' : tox

The TCP Control bits are sometimes called the "Control Flags" or "Communication Flags", but the RFC refers
to them as the Control Bits. These bits in the TCP header help identify the state of the TCP connection and

which components of the TCP connection the given packet is associated with. There are six haditional TCP
Control Bits, with 2 newer extended ones defined by RFC 3168. These Control Bits provide numerous options
for us to scan the target system and determine the status of its TCP ports. Each control bit can have a value of 0
or I (after all, each one is just one bit long). The six traditional control bits include:

. SYN: The system should synchronize sequence numbers. This Control Bit is used during session

establishment.

. ACK: The Acknowledgment field is significant. Packets with this bit set to I are acknowledging
earlier packets.

. RST:The connection should be reset, due to enor or other interruptions.

. FIN: There is no more data from the sender. Therefore, the session should be gracefully torn down.

. PSH: This bit indicates that data should be flushed through the TCP layer immediately rather than
holding it and wailing for more data.

. URG: The Urgent Pointer in the TCP header is significant. There is important data there that
should be handled quickly.

Note that this list doesn't show the Control Bits in the order in which they appear in the packet. Instead, we
have sorted them in a more memorable fashion. The two additional control bits are CWR and ECE, which are:

. CWR: Congestion Window Reduced, which indicates that, due to network congestion, the queue of
outstanding packets to send has been lowered.

. ECE: Explicit Congestion Notification E,cho, which indicates that the connection is experiencing
congestion.

Each of these control bits can be set independently of the others. Thus, we can have a single packet that is
simultaneously a SYN and an ACK.

65

TCP Three-W*y

Hvery legit TCp conncetion starts with
three-way handshake

UEed to exehenge sequfrn{e nurnbers
that will be applied in increasing fashion
fsr a*l follow-on packets fur that
c0Rnecti*n

Handshake

t

$Yn: S*q:l!!'{ "'e''6:11

Srn-Ack: 5cu-lSN,. .l;k- l5N, t I
F

{cL: \i:q- !\\,"I 1tk-l\}rt,-l

-'.'t-

n€,{:tI{}l}

Every legitimate TCP connection begins with the TCP three-way handshake, which is used to exchange

sequence numbers so that lost packets can be retransmitted and packets can be placed in the proper order.

If machine A wants to initiate a connection to machine B, it will start by sending a TCP packet with the SYN
Control Bit set. This packet will include an initial sequence number (which we'll call ISNA because it comes

from machine A), which is 32-bits long and typically generated in a pseudo-random fashion by the TCP

software on machine A. The ACK number (another 32 bits in the TCP header) is typically set to zero, because it
is ignored in this initial SYN. Some operating system variants may make this ACK number non-zero. Either
way, it is ignored by the destination machine.

If the destination port is open (that is, there is something listening on that port), it must respond with a SYN-
ACK packet back (a packet that has both the SYN and ACK Control Bits set at the same time). This paoket will
have a sequence number of ISNB, a pseudo-random number assigned by machine B for this connection. The

SYN-ACK packet will have an acknowledgment number of ISNA+I, indicating that machine B has

acknowledged the SYN packet from machine A.

To complete the three-way handshake, machine A responds with an ACK packet which has a sequence number
of ISNA+I (it's the next packet, so the sequence number has to change from the value in the original SYN
packet). The acknowledgment number field is set to ISNB+I, thereby acknowledging the SYN-ACK packet.

We have now exchanged sequence numbers. All packets going from A to B will have increasing sequence

numbers starting at ISNA+1, going up by a value of 1 for each byte of data transmitted in the payloads of A to B
packets. Likewise, all responses back from B will have sequence numbers starting at ISNB+I and going up for
each byte of data from B to A. In essence, we have two streams of sequence numbers in this series of packets:

one from A to B (originally based on ISNA) and the other from B to A (originally based on ISNB).

66

Scanning TCP Pnrts

According t* the TCp sp€cs {RFC 7S3)...

.."if something is listenins an a TCP psnt...

.."and a SYN arrives *n that port.".

".,the system responds wlth a SYN-ACK,..

...regardless *f the payload of the SYN packet

That gives us a reliable indieation *f which
p*rts are listening

Aocording to the original TCP specification (RFC 793), if a service is listening on a TCP port and a packet
with the SYN Control Bit set arrives at that port, the TCP software must respond with a SYN-ACK packet.

This response must be sent, regardless of the payload of the SYN packet itself.

Thus, even if we don't know what service is listening on the target por1, we can still measure whether it is
open by simply sending it a SYN packet. That gives us a reliable method for determining whether a TCP
porl is open or closed.

67

TCP Sehaviar While
Scanning {1}

Pnrt

S:.'n

Case T1:
SYX in

5YN-ACK baek

$yn*Ark

Easy: The pclrt is apenl

sln

R-tT:"Ark

Easy: The por* is clascd
(or a firewall bl*cked itJ

To understand the different options we have with TCP port scanning, let's explore TCP behavior under

different conditions in more detail. Suppose machine A is being used to scan machine B to determine if a

given port is open or closed. We start out by sending in a SYN packet. There are numerous possible

responses:

Case T1: We receive a SYN-ACK response. This is an easy case, because we now know that the port is

very likely open. There is a very small chance that there is some software on the target machine that is

trying to trick us by responding with SYN-ACK packets from every possible TCP port on the box, but that

is very unlikely.

Case T2: We receive a packet back with both the RST and ACK Control Bits set to L This RST-ACK
packet represents another easy case: the port is likely closed, rejecting our connection request. There is also

a chance that the RST-ACK came from a firewall instead of the target system. Either way, we cannot reach

that port from where we sit, because it is effectively closed to us.

As a penetration tester or ethical hacker, we like to see packets with the RST Control Bit set to I coming

back fiom closed ports during our scan because they make the scanning process significantly faster. Rather

than having to wait for a timeout before we can move on to another port, we know very quickly that this

port is closed and move on immediately upon receiving the packet with the RST Control Bit set to l.

68

TCP Behavior Psrt
nnrng

ilvn

ICMF Ftn flrru*chable.€
The p*nl is iers**essible, iike{y bltrcked
b3, * tirew'all {*n netru*r* *r end systr:ml.
Nxrap marks ns'"{iltered".

*vn

The part is insccessihle. lik*ly bl*ehecl
by * {irewali {on nefirerle *r **d sy$t€rni.
hknap m;lrks as "filtereel'".

Case T3: We send in a SYN packet, and get an ICMP message back, such as an ICMP Port Unreachable
message. The port is inaccessible to us, likely because it is blocked by a firewall which is creating the
ICMP message. If the message is coming from the target machine itself, a local firewall on the machine
(such as lPtables) is likely formulating the ICMP packet. Nmap marks this status as "filtered".

Case T4: We send in a SYN packet, and get nothing back. Nmap will try to retransmit the packet, but if
nothing is received back within a certain timeout, the port will be marked as "filtered" as well. In all
likelihood, either there is nothing listening on the end system (which has been configured via a personal
firewall to silently drop all packets to closed ports) or a firewall is blocking our inbound SYN packet (again,
silently rejecting it).

Each of these four cases is summarized well in the Nmap man page, which states:

"This technique is often refered to as half-open scanning, because you don't open a full TCP connection.
You send a SYN packet, as ifyou are going to open a real connection and then wait for a response. A
SYN/ACK indicates the port is listening (open), while a RST (reset) is indicative of a non-listener. lf no
response is received after several retransmissions, the porl is marked as filtered. The porl is also marked
filtered if an ICMP unreachable error (type 3, code 1,2,3,9,10, or l3) is received."

69

Results nf Different TCP
B*haviors

. There ar* u*ually a lot rnore elssed ports than cpen
prrts
- Thus, behavi*r of elosed potts will significantly irnpact scan

durati*n
. If the seanning t*ol gets RESETS cr ICMP Fort

Unreachabl*s back, the scan wilN occur far more
quiekly

. If ncthing cnmes back, the seanning tonl wilf have to
wait fcr a timecut to expir'e *ef*re m*ving onta the
*ext p**
* Duplieeted over thausands cf ports on dczens, hundreds, or

th*uEands of machine*, that time *an add upl

When doing a port scan, you usually find far more closed ports than you do open ports. There are 65,536
possible TCP ports, and most systems have only a handful of ports open. Therefore, from a timing
perspective, the behavior of the tens of thousands of closed ports could seriously slow down a scan. lf the

target sends back RESETs or ICMP Port Unreachables, our scan can occur more quickly, since we don't
have to wait lor a timeoul to expire.

But, if nothing comes back, such as in case T4 that we discussed earlier, we have a problem for large-scale

scans because it chews up a significant amount of time as the tool has to wait for a timeout to expire before

it determines the state of this port. It may take 12 to 24 hours or more to conduct a port scan of all TCP

ports when nothing comes back, and that is to scan just a single host.

70

USP Header

Sauree Par-t De*tinatisll Port

UDP Message Lengtlr USP Cheeksurn

Data

Here is the UDP header. Note its relative simplicity when compared to the TCP header. We have a source
port and destination port (each 16 bits in length, giving us potential values of between 0 and 65,535). We
also have a message length and a checksum.

Specifically, note that there are no Control Bits in UDP, nor is there a sense of the "status" of a
"connection". Because of these characteristics, our options for scanning UDP ports are far more limited
than they are for TCP por-t scanning.

71

Scanning UnP Ports

a UDp is a far simpler protocol, without
tracking of state of a "connection"

-There is no connection with UDP

Less aptions for scanning

Often, slower scanning

And, less reliable scanning

t

I

t

UDP is a connectionless protocol. There is no concept within UDP of the state of a connection, as there is
with TCP and its sequence numbers and window sizes. From a protocol perspective, UDP moves
independent datagrams between systems.

Because there are no Control Bits in UDP, we have far fewer options for scan types. We can't vary the
Control Bits to play with different target behavior to discern whether ports are open or closed. Because of
this, UDP port scans are less reliable and often slower than TCP scans, for reasons that we'll cover shortly.

72

UDP !\lhite
s {1}

Port

U'}P

LIt}F

iltlF

lC*il F ltcrt t l n rer*qh{,hb*
{.**...g*d

F

Easy: The psrt is el*seil
fr:r a f,rewall blosked it'

To see why UDP scanning is less reliable and often slower than TCP scanning, consider the cases that could
occur when we perform a UDP port scan:

For each ofthese cases, the soanning system (System A in the figure) sends a UDP packet to the target
machine (System B). With most port scanning tools (including Nmap), an empty UDP datagram is sent
(with no payload).

Case U l: The target machine responds with a UDP packet. This is an easy case - something on the target
machine received our UDP packet and responded to us. Thus, we can be fairly confident that there is
something listening on that porl on the target, so the port is open. Nmap lists the port as open.

Case U2: The UDP packet we send to the target may result in an ICMP Port Unreachable message coming
back. This is an easy case for determining the status of the port as well, because we can be fairly certain
that the porl is closed. Nmap lists the port as closed. Unfortunately, some target systems rate-limit the
number of ICMP Port Unreachable messages they send, specifically Linux and Solaris. The Linux 2.4
kernel, for example, will only send one ICMP Port Unreachable message per second. Thus, we have to go
relatively slower in our UDP scans to make sure we allow adequate time for the ICMP Port Unreachable to
come back.

By the way, there are variants of U2 in which the target system sends other ICMP message types back
instead of "Poft Unreachable" (Type 3, Code 3). According to the Nmap man page, "If an ICMp port
unreachable error (type 3, code 3) is returned, the port is closed. Other ICMP unreachable errors (type 3,
codes 1, 2,9,10, or l3) mark the port as filtered."

73

UDP Behavior While Port
Scanning (2)

UI}P

The port is inaccessible, but why?
Fossibl* reasons:
a) Port is closed
b) Firewall is blacking inbound lJilP

prabe paeket
c) Firewall is blocking outbound re$ponse
d) Port is open, bul it was lookirrg for specific

data in UDP paylead Witho*t the data, nCI respanse was sent
ln other words, we don't know,.. Nmap markg as "openlfiltered"

To rr_r ro sddres-s tlris dilcmnrr s'f
rase fl3, i\'imap 5,?0 nnrl lste r sends
a prctocnl-specific ptyload t$ elieit
a reitlonle fcr over a tl$zen UD?
ports (53-DN$. lll-rpcbind, l!3-
ntp. tsl-$nmp, ere.) in {n attcmpt to
turn l"J3 conrlitio*i lo UI. F$r *l[
other LDP parts bq'oncl tlris dnzen,
Nmap *rnds fln enrpty payloatl.

Now we get to the hard case.

Case U3: We send in a UDP packet, and we get nothing back. There are numerous possible reasons for this,
including:

. The port is closed

. A firewali is blocking the probe packet inbound on its way 1o the target

. A firewall is blocking the response on its way back to us

. The port is open, but the service listening on the port was looking for a specihc payload in the
inbound UDP packet. We didn't include any payload, so it silently ignored us.

That last case is incredibly common. Nmap labels the result on its output as "openlfiltered", which for UDP
means that Nmap doesn't know whether the port is open or closed.

And, for that reason, UDP port scanning is less reliable than TCP port scanning. With TCP, according to the
protocol spec itself, if we send a SYN packet to an open porl, the target system must respond with a SYN-ACK,
regardless of the payload of our SYN. That behavior gives us the assurance that the TCP port is open. We don't
have that behavior and the resulting assurance with UDP, making it less reliable. Also, because we have to wait
longer for the ICMP Port Unreachable messages, we have to go slower than we might with TCP.

To try to address this dilemma of case U3 and make UDP port scanning more reliable, Nmap 5.20 and later sends
a protocol-specific payload to elicit a response for over a dozen UDP ports (53-DNS, I I 1-rpcbind, 123-ntp, l6l-
snmp, etc.) in an attempt to turn U3 conditions to U I . By sending a proper payload for a given layer-7 application
that is designed to elicit a response, the target machine is more likely to send back a UDP packet, giving us a

more reliable indication of whether the port is open or not (case Ul). For all other UDP ports beyond this dozen
or so port numbers, Nmap sends an empty payload, still resulting in a lot of case U3 conditions. Still, for the most
common UDP ports in a production environment, this is a very good feature for identifying UDP-based services
using their standard port.

74

. €exnr*ing Gaal* and Types

. Overall Scanning Tlps
r Sndffing with tcpdump

. f.'lctwork *w**pirrg with $capy
. Scapy/tcpdump Exercise

' lrletwork Tracing
. Port $canning

; #ffiffi
- NmaF Exererse

. OS Fingerprrnting

. Versisn Sc*nning
- Nmap -O "sV and

Amap Exercise
. Vulnerabiliiy Scanning

. Nmap Serrpirng fngine

' NSI exereise
- Nessus
- Nessus Hxercise
. Other Vuln Scanners

. Enumeraling U$ers
- [numerating Exereise

. frleicat for the Pen Tester
r Netcat Exercise

Crurse Roadmap

and H**r::re

r Explaitation
r Password Attae
r Vfireless Attacks
r \fdeb App Attaeks

The most popular port scanner in the world is Nmap. Professional penetration testers and ethical hackers
around the globe rely on this incredibly flexible and high-quality tool. ln this section, we'11 discuss some of
the most useful features of Nmap for penetration testers and ethical hackers.

Even if you've run Nmap befbre, pay special attention to some of the new and more subtle features of
Nmap that we'll address. ln the past year, Nmap has been going through rapid change, with useful new
features released on a regular basis. Understanding these features is impofiant so that we can benefit from
them in improving the accuracy and efficiency of our penetration testing and ethical hacking regimens.

75

Nmap Pcrt Scanner

. Wri*en and rnai*tained by Fyadcr

- Very popular, located at www.insecure.org
and www.nmap.*rg

. Nct jusf a pcrt scaniler
* Pcrt scanning is its foeus
* But, has b*en extended int* a general-

purpose vulnerability seanner via Nmap
Scripting Fngin* {t\tSE}
* Mer€ *n that later

The Nmap tool is a critical element in the toolbox of most penetration testers and ethical hackers. Written

and maintained by Fyodor, with a constant supply of updates and tweaks from an active group of
contributors to this open source project, Nmap is primarily a port scanner, showing which TCP and UDP

ports are open on a target system.

But, Nmap is not just a port scanner. lt also provides numerous other features, including ping sweeps,

operating system fingerprinting, tracerouting, and much more. With the Nmap Scripting Engine (NSE),

Nmap can be extended to become a general purpose vulnerability scanner as well. We'll look at each of
these features, building up to an exercise that analyzes the capabilities and results of NSE.

76

Nmap Usa
--pae ket

E

Run Nmap with
*-p.icket-trctee
to display summary of
eachr packet be re it is
sent, with output that
includes:
- Flmap calls to the *5

l

- SENITIRCVD
* Prctscsl irtF/IJDF}

|

- Source IF:Part and Fest
IlP:Port
I

- Control Bits
I

*TTI i

i* Other header informaticn i

billty Features:
-trace Spti*n
:.Se fdif Xquq: 34$*Vet 'ielXs.:fiete :: :: , ,1:;;;;...'

se,*i lr..rigt!l T,-p r0.te.t:.:,+it:q, ie re.e.t.95l s ;
ttl*4* :**3649? ip\ew*<a ***e1?ij:*:?&":r x:ir,*3*4* cri*: _.

I 46$r
S*1.*1 {?.:*F*e} f{F },*,}8.13.;;47:,34 " 19,t*.*.!:$?3 *
ttl-39 id=31?43 i_ple**+e teq=1?336:]6?3 6i*'4**& <e5*..

9gr4T €7.LEe*n, d{* tr*,:ts"?}"}:4?x34 ' 36.16.*"3:*4* 5 *tll*4t :!d.376** iple*=44 r*{4= 1,.733{i7V&23 :y!ft=j*}}; e$.?sc.-

f.tll111 ! ro !s n r (1r . --5g€T tr"l**sei lrp I.6. i*.?t.:;".1:134 ? .t.9.1*.,?.X2t7t x ._.
?11=?? irf .4?&ES !rs\ *rt=44 tcq*, 17 33&17 {}73 rei^r!-:*4s <nr 1,..._

1i6*:
$S*? €:.34*65! 7{? I€:-7*.73.2:4?1}4 F 38.1S"*.1:4til t .,

r,7*3* :.*"3223 ig1.en"44 sf{t*373}61?*33 n,*E4A*{s 4ftt'4
i46e"
5fl{? i?.:**es} T{p }4.}.*.75.?:4?134 }:.*.1*.*"X:}*5 5
tX1"3? i**a*5ge L**t "44 5FE8X7336tr?S:3 d:*3:*4C <s6n...

t 4li8-
5*#? f3"X&qSt3 T{l 1€.l.*.11.}:q}.].3.{: t*.:*.*.3:;iF? 5 --tt 1-a;l id-343.*3 ip1,ay'.44 *fqi:?33Si?6?: Ein=4?S$ drrdrs$-.,

tg?€? {3.?ii*ts} TfP 3s,1s.7},}:4?134 }:6,1*.*.1:831i 5
ffl.al i**:*€11 i.?l*tj=44 csqetr?33&1?6:3 ldin=?*4$ eia?s.
l44r). l

When using Nmap, it can be helpful to have the tool itself display a sulnmary of the packets that it sends in
real-time. When invoked with the --packet-trace feature, Nmap does just that. lt displays various status
messages on its output, including some of the calls it makes into the operating system, such as the cormect0
call that is made during TCP Connect scans (which we'11 discuss later). it shows whether a given packet is
sent or received, the protocol it used (TCP or UDP), and the source and destination lP addresses and porls.
It also shows the control bits (the S in the screenshot above indicates a SYN packet). It also displays olher
header information, such as the lP Time-to-Live (TTL), the TCP Sequence number, etc.

The Nmap command line sequence that resulted in the screenshot on this page was:

nmap -PN -sS 10.10.0.1 -p L-LO24 --packet-trace

The -PN indicates that we don't want to ping the target system, we just want to scan it.

The -sS indioates that we want a SYN scan (also known as a Stealth Scan or a Half-Open Scan).

The -p l-1024 tells Nmap to scan ports 1 through 1024 only.

And, the --packet-trace makes Nmap display the status and packet summary information.

77

Nmap Usability Features -
Runtime Interaction

Nmap supports runtime interaction
Hit the following keys while it is running to
get Nmap to display status on the screen:
F = Turn on packet tracing
v = Increase verbosity
d = Increase debugging level
* Shift with any sf above inve*s it
- Any other key prints status message:

* Elapsed time, hosts eompleted so far, number of hosts up,
number of hosts currently being scanned

. Pereentage done, estimate of amount of time remaininq

If a user forgets to invoke Nmap with the --packet-trace option, they can turn it on after invoking Nmap.
While Nmap is running, the user can hit the p key to turn on packet tracing. Nmap will print on the screen a
sunmary of each packet sent.

Furthermore, the user can hit any key to print a status message showing the elapsed time of the run so far,
the number of hosts it has completed scanning, the number of hosts up, and the number of hosts currently
being scanned in parallel. Bu| the best part of this output is an estimate of the time remaining fbr the given
scan.

Additionally, the v and d keys increase the verbosity and debug modes, respectively.

Holding down the shift key with p, v, or d inverts the function (i.e., SHIFT-p turns off packet tracking,
while SHIFT-v lowers verbosity). In other words, if you invoke Nmap with the --packet-trace option, hitting
the Shift and p keys while it is running will turn off packet tracing.

78

Controlllng $can $peeds with
Nmap's Timing Optlons

. Sy defautt, Nmap has a dynarnie timing model
* Adapts sean timeouts based on p*#crmanee of initial paekets

. Furtherrnore, lt*map has varipus options for scan speed built-in.
invoked with the -T syntax
E narap *T ftirB"ing*opti,on] [(}th€r str}ti*nsJ
* 0: Faranoid * Waits 5 minutes between p*ekets, scans serially

- 1: Sneeky * 15 seconds betwe*n packetso scans seriaily
* 2: Polite * 8.4 secsnds between paekets, scans serially
* 3: Normal * Defa**t, designed to n*t ov*rwhetm network or rniss

t*r$et*/ports, scari$ in parallel {using -T3 ehanges nething, h*ceuse tt is
the defautt)

- 4r Aggre*sive * Waits only 1.?5 seconds for pr*be respon$e, seans in
p*raflel

* 5: Insane - Spends up to 15 mlnr:tes per host {gives up en that hoEt and
moves *n if sean taking lsnger fcr it], waits unly 0.3 seeonds for probe

sca*s in paralle|

Nmap supporls a variety of scanning speeds built-in. They can be invoked at the command-line by adding
a T <ParanoidlSneakylPolitelNormallAggressivellnsane> to the Nmap invocation. Altematively, they can

be referred to by numbers, with 0 meaning Paranoid (-T0) and 5 meaning Insane (-T5).

Paranoid mode is designed to scan so slowly that it will avoid detection by IDS systems, falling outside of
their time-sampling window. It sends packets approximately every 5 minutes. No packets are sent in
parallel with a Paranoid scan; they are sent one at a time.

Snealq, mode sends packets every 15 seconds. As with Paranoid, no parallel sending is used with the

Sneaky option.

Polite mode sends a packet every 0.4 seconds, again one-by-one (no parallel sending). This mode is

designed to lower the load on a network and prevent targets and network equipment from crashing.

Normal mode is designed to run quickly, but without overwhelming the sending machine or the network.
This mode, which is the default behavior of Nmap, is also designed to maximize the chance of
successfully identifying target machines and open por1s. It will scan in parallel, sending multiple packets

to multiple target porls simultaneously. lnvoking Nmap with the -T3 option acfually doesn't change in any

way the fashion that Nmap runs, because it simply selects the default timing model, which is used even if
you don't specify -T3.

Aggressive mode will never wait more than 1.25 seconds for a response, and it scans in parallel. The

Nmap documentation recommends using -T4 for "reasonably modern and reliable networks". However,
some penetration testers use the default normal mode (-T3) to lower the chance of impairing the target
network.

Insane mode spends only up to 15 minutes per target host, and waits only 0.3 seconds for a response to

each probe. lf Nmap cannot complete a given host within 15 minutes, it gives up on that host (with the

scan only partially completed) and moves on to the next host. For protocols such as UDP or large-scale

scans of ports for TCP services, that's not a lot of time to get results back, so it should only be used on a
very fast network. Furthermore, sending packets at that clip could impact the target system or network
equipment between the scanning machine and the target.

79

Finer-Grained Nmap Timing
Options

r 1o get even more contrsl over timing, Nmap supports these options
(timeouts are in miiliseconds):
--host_timeout: Max time spent on single host before movinq an; defaull is no host

tirneout
--max-rtt-timeout: Max time to wait far probe response before retransmitting or

timing out; default is 9 secends
--min_rtl*timeout: To speed up a scan, Nmap measur* timing of target and

lowers timeouts to rnateh its network beh*vior, speeding up a scan but possibly
missing responsesi this optian can be set so that timeouts don't go below a
given value

--initial*rtt_tiFfieout: Sets the initial timeout for probes, which wifl be lowered
fiiltomatically as Nmap rnea$ures the network performance of a target; default
is 6 seconds

--max_parallelism: Sets the number af probes Nmap will send in perallel {1-serial)
-xan*d*lay: Sets minimum time Nmap waits between sending probe packets

Beyond its six levels of pre-canned timing options, Nmap also supports various finer-grained timing
options. Most penetration testers use fhe default options, but some people fine tune their scans based on
careful observations and measurements of the timing associated with the target network. The finer-grained
Nmap timing options include:

--host timeout: The maximum time in milliseconds spent on single host before moving on. The
default is no host timeout.

-max_rtt timeout: The maximum time to wait for probe response before retransmitting or timing
out. The default is 9000 milliseconds.

--min_rtt timeout: To speed up a scan, Nmap measures the timing of responses from a target and
lowers its timeouts to match that target's network behavior, speeding up a scan but possibly
missing responses on networks with high variability in their performance characteristics. This
option can be set so that timeouts don't go below a given value, helping to ensure reliability of
results.

--initial_rtt_timeout: This value sets the initial timeout for probes, which will be lowered
automatically as Nmap measures the network performance of a target. The default is 6000
milliseconds.

--maxlarallelism: This option sets the number of probes Nmap will send in parallel (with I
indicating a serial scan with only one outstanding probe at a time).

*scan delay: This value sets the minimum time Nmap waits between sending probe packets.

80

Nmap Output Opticns
tlmap *utput is displayed on the scr€en in a handy format
for humans
We ean also st*r* output in a file by spccifying an output
type folXowed by e file name:
-oN ffilenameJ: Stcre output in nprmal fnrnrat, recording data

typicaHy displayed on screefl
-oG [filename]: Store output in greppable format, with *ne lin* per

hast indie*ting all open pCIrts, their st*tus, their associated
serviee, etc.
. V*ry usefuI as ifiput ts othe!" t**ls

-oX ffilenenne]: St*re output in XML farmat
-oS [filename]: $tore output in script kiddie forrnat {meke "Elite

speak" substitutisns of Q->0, mixed case/ etc.,, not very useful,
but ssmetirnes com*eal)

-aA lbasenarneJ: Store in all three major farmats {Narmal,
Greppable, and XMI-) at once, using basename.nm&p,
basename,gnrfiap, and basename.xm* as file names

Nmap displays results to the screen in an easy-to-read, human-friendly format, indicating which hosts were
scanned and the open ports and services associated with each host. Additionally, we can have Nmap store
its results in a file by specifying various options at the command line prefaced with a dash and iower-case o
(for "output").

The -oN ffilename] option will store the normal human-readable ouQut typically displayed on the screen in
a file called "filename".

The -oG ffilename] specification is highly useful, as it causes Nmap to store its results in a greppable
format, with one target machine per line with each open port and its associated service all on that line in a
comma and slash (/) separated list. Several other tools which rely on Nmap output (such as the Amap tool
we'll discuss a little later) as well as Metasploit rely on this greppable format.

The -oX [filename] option causes Nmap to place its results in an XML format, which may be used as an
import option for other tools.

The -oS [filename] option creates scriplkiddie style output, which can be fun for laughs, but isn't tenibly
useful. O's become zeros, S's become dollar-signs, and mixed case prevails in this rather unreadable
longue-in-cheek lormat.

And, hnally, to cover all bases, the -oA fbasename] syntax tells Nmap to create normal, XML, and
greppable output in three files, named basename.nmap, basename.gnmap, and basename.xml.

To make sure your results are as usable as possible, it often makes sense to specify -oA and a basename that
includes the target IP address range and scan type so that the three files of output are immediately
recognizable in the file system.

81

Nmap and AddreEs Probing
By default, Nmap probes a target address
before scanning it
* Fsr UID 0 users, Nmap sends:

. Ifon same subnet as Nmap box. iust send ARP request _. If on different subnel. send ICMF *cho Request, and... I lll senl immediatrlx..

. TCP SYN t* po*,143, and... I not *airilg for

. Tf,P ACK io po* 80, and,.. I r.csponr* betwee$
r ICMF Timestamp Request (Type 13) J each p*cket* For non-UIF 0 users, Nmap initiates 3-way handshake by sending:
. TCP SYN to port 80, and...
r TeP SYN to port 443

' Note that no 1CMP is used

- These packet combinations are based cn statistical analysis of
ectual systems thet respond on large networks and the Internet

Nmap with the -PN option isame as -F0) will not ping a
tal'get before scanninq it

Nmap is not just a port scanner, although that is one of its primary purposes. The tool does offer numerous
other features, such as identifiing which addresses are in use on a target network. ln other words, Nmap
can be used for network sweep scans.

By default, Nmap automatically probes atarget address before it port scans it. The particular method of
probing to determine whether the address is in use depends on whether Nmap has been invoked with UID 0
(root-level) privileges. lf Nmap was invoked as root, it first checks if the target lP address to be scanned is
on the same subnet as the machine running Nmap. If it is, Nmap sends an ARP request, waiting for an ARP
response. lf it gets an ARP response from the address on the same subnet, Nmap knows that the given
address is in use. lf the target address is on a different subnet (and Nmap was invoked with UID 0
privileges), Nmap then sends an ICMP Echo Request message (a standard ping), a TCP SYN packet to port
443, aTCP ACK packet to port 80, and an ICMP Timestamp Request message (Type l3) to the target
address. Nmap sends all of these packets one right after another, not waiting for responses between them.
After this small bwst of packets, Nmap waits to determine whether any of them elicit a response from the
target.

If Nmap is invoked without UID 0 privileges, it simply asks the OS to initiate comections, resulting in the
sending of TCP SYN packets to port 80 and 443 and waits for a response. Without root privileges, Nmap
cannot craft the specialized packets needed for the more complex and accurate probing done with root
privileges. lt's worthwhile noting that without UID 0, Nmap doesn't even send an ICMP Echo Request
message to identif, a host. lt just uses two TCP SYNs.

The specific probe packets were chosen by the Nmap development team based on statistical analyses of
scans of large networks, focusing probes on those packets most likely to get a valid response.

By default, Nmap will only scan the target if it gets a response to the messages described above. If it
doesn't get a response, Nmap gives up on that address. To make Nmap skrp this ping phase, the -PN option
can be used. This -PN option does the same thing as -P0 option. More recent reference works on Nmap
refer to the -PN option to minimize confusion between -P0 (zero, used for not pinging) and -PO (the
capital letter O, used for lP Protocol Pings, which send a specified IP packet with a given number in the
protocol field ofthe IP header).

82

ftmap and l\letwork Swceping

" $eyond pinqing en individuat host before pcrt
scanning, Nniap can als* just probe for target fiosts,
launching a network sweep scan
* rrnap **P fepti*ns]
* By itself, -sP uses default prcbing hehavisr listed on previous

stidc
* Besides the default prabesn there ene numercus other

oBti*ns fon netwonls sweep*ng tn deterrtline which addresses

are [n ug*

Beyond this probing of an individual host before port scanning it, Nmap also offers network sweep

capabilities to identifu where hosts are located in a target network address range. The simplest version of
an Nmap network sweep is initiated with the sP option. With no further options, this simple syntax, as you

might expect, performs the default probing behavior described on the previous slide.

Beyond this default behavior, Nmap supporls numerous other probe types for network sweeping, which
we'll explore in detail next.

B3

Nmap Network Sweeping Optlons

r Attackers will choase a network sweep option based on
what is allowed into the target network, measured by
sending test probes using different protocols

r Nmap offers the following network sweep types:
-PN: Dsn't ping (also -PS)
-PB: Same as default, use ICMF Eeho Request, $YN to TCP 443, AfK to TCP 80,

and ICMP Timestamp Request {if UID 0)
-Pf (formerly -PI): Send ICMP Echo Request {ICMP type 8)
-P5[partlist]: Use TCF SYltl to specified ports in the port list {e.9., -PS8fi}

-PP: Send 1CMP timestamp request (ICFAP $pe 13) to find targets
-PM: Send ICMP address mask request IICMP type 17) to find targets
-PR.: Use ARP to identify hosts (only works with hosts sn sarne subnet)

* Used by default for targets in the same subnet as scanning host

Here are the other ping sweep options for Nmap. The attacker will choose an appropriate option based on
what is allowed into the target network. If a network firewall only blocks some ICMP types but not others,

we might still be able to identify hosts on the other side.

As we've discussed, the PN option tells Nmap not to ping at all. Some of the other useful options for a ping
sweep include:

-PB, which is the same as the default Nmap behavior for probingatargel (if running with UID 0,

send an ICMP Echo Request, a SYN to TCP port 443, an ACK to TCP port 80, and an ICMP
Timestamp Request)

-PE, which sends only an ICMP Echo Request message (formerly -Pl)
-PS[portlist], which sends a TCP SYN packet to each port in the port list. There is no space between
the -PS and the port list, A useful port list is -PS22,25,80,135,139,443,445 which would identify
systems using standard ports for Secure Shell, Simple Mail Transfer Protocol, HTTP, DCE
Endpoint, NeIBIOS Session, HTTPS, and Microsoft's SMB protocols, respectively. Note that Nmap
identifies a host whether SYN/ACK or RESET packets come back. Either indicates that a target host
responded.

-PP, which sends ICMP Timestamp query messages.

-PM, which sends ICMP Address Mask queries.

-PR, which sends only ARP messages to identify hosts on the same subnet as the machine running
Nmap.

As we have seen, that last one (-PR for ARP scanning) is used by default when Nmap determines that a host
is on the same subnet as the machine on which Nmap is running. There's no sense doing a standard ping --
sending an ARP, and waiting for an ARP response, followed by an ICMP Echo Request, and waiting for its
response - when the target is on the same subnet as the scanning machine. The ARP and ARP response
suffice to tell us that there is a target host at the given address.

Nmap includes options beyond this list as well, but these are some of the most useful.

84

Nmap and Tracercute {1}

Nmap has * --trareroute feeture
Based on resuits from scan so far, Nmap determines theFCI3E:iJ l"ttl lC3U|LS tlt,ilil *L{?rr:r,J tgu, rrnr€H Lr6L6rilulrq} L.t(:

i":

types cf p*ckets {IClqP, TCP with n specifie port. {JDF with ar:

specific port) that are likely to be allowed through the
netr'verk tc the target
Then, it tr*cerqLrtss to the target using those packets

Fiff*rent fronr msst ti:aeercutes, ln that it "gnes baekwards"
for efficiency
Sends *ut a pack*t with a high initial TTL based on a guesg
ass&eiated with the scan results so far r;::,.

- If ;t gets a resp*nse fro*t th* end hcst, it lowens the TTL
* Tf tt gets an I[F4F Time Exceeded, it raiscs it

It de*s that until it knaws the exaet nur*ber of hops to terget
The*, wcrks its way beskwards t* decrem*nt d*wn to 0

Nmap also included traceroute capabilities, invoked with the --traceroute syntax at its command line. The
traceroute capabilities of Nmap have some interesting and useful differences from olher traceroute tools,
designed for effectiveness and efficiency.

From an effectiveness perspective, the Nmap traceroute functionality first consults the scan results obtained
so far from the given target lP address. lt then selects a protocol that the network allows to access that
target to use for its traceroute, such as ICMP, TCP to a given port, or UDP to a given port.

Then, to determine the router between the attack machine and the target, Nmap works backward. Unlike
most traceroute tools, which start with packets with small TTLs and work their way up to higher TTLs to
measure the routers from the attacker to the target, Nmap measures from the target back. lt's counter
intuitive, but can lead to more efficiencies when scanning larger numbers of targets on more complex
networks.

In Step l, Nmap starts by sending a packet with the appropriate protocol to the target machine, using a TTL
that it guesses for the target machine based on its earlier scan. If an ICMP Time Exceeded Message comes

back from a router, Nmap didn't get the right TTL for the hops to the target, so it increments the TTL and

sends another packet. lf it gets a response from the target, but the TTL in the response is not 1, it doesn't
have the exact number of hops to the target, so it lowers the TTL. All of this is happening in Step 1 in the

figure above. Nmap steps up or down its TTL until it gets exactly the number of hops to that target, based

on a response coming back with a TTL of l.

Then, in Step 2, Nmap sends a packet with a TTL one lower than the number of hops to the target machine,
finding the next earlier hop. It then tries a TTL of 2 lower, determining the hop before that in Step 3, and so

on. Nmap has now ligured out the routers between the target and the scanning machine. Essentially, we
have mapped out one branch of a network tree. It's convoluted and backwards, but it works.

85

Nrnap and Traceroute

Now, it knaws the hops to
that one target
lt then can start stepping
back frsm sther targets,
until it gets a coffimon
router in the path coming
back
- l-iere is where the efficiency

occurs

No more information needed
for the path to that target,
so it moves to the next one

But how is this technique more efficient? To see the efficiencies, let's consider another target that is also
part of the same scan, invoked with the -traceroute option.

In Step 6, Nmap does another guess of the TTL going to the second target. If it gets back a response with a

TTL of one, its guess was correct. If not, it increments or decrements until it gets that TTL of one. Then,
Nmap can send a packet with a TTL of one lower (Step 7), figuring out which router hop comes before that
target. lt then sends a packet with a TTL of two lower (Step 8), finding the hop before that.

Now, here's where the efficiency comes in. When Nmap, walking backwards like this, discovers a router
hop already in the list of routers discovered for an earlier host, it doesn't have to walk backwards any more
for that target. It has then attached a new branch to the network tree it had started constructing before, so it
can move on to the next target.

In Step 9, we do the little back and forth shuffle to determine the TTL to that target. ln Step 10, we start
walking back, immediately seeing a router that we already have in the tree. Thus, we can attach that branch
right away, saving us from having to retrace the same routers again and again.

86

l\lmap Port Scanning

I Nmap dcesn't check all po*s hy #efault
* This is very impnrtant to nste... it's not a c*r*prehensiv* scan by default

. By default, lt{map checks onfy the top l,Silil msst uEed ports for TCF
and/cr ilFP
- The nmap-servrces file indlcates the ranking of the most common parts, based

on widespread scanning research by Fyodor* Nmap dBes n*f cheek all pork lcss than 1*Z:1 by defaalt sfiynRsre

" The *F apt*on {whleh stands for "Fast"} says to scen the tcp 100 Fsrts* The --top-p**s [hl] *ption tells Nmap t* scan for the lrl most popular po*s
* For * comprehensive or targeted $ean, ilse the -p *ption

-p 6-65535 wifl scen all parts
*p 3t ,23,2n, fi0,445 will cheek only those pc*s
- The flag T: and U: can be inelueled in the list tc speeify TCP ar UFF

. Ports are scanned in randsm srder, hut *r makes them nnt randomieed

A common error in running Nmap port scans is to simply run Nmap, specifying a scan type and a target IP
address, thinking that Nmap will check all ports on the target system. For example, someone might run:

$ nmap -sT 10.10.10.10

This invocation will indeed run a TCP porl scan against target 10.10.10.10. Unforlunately, it will not scan
all TCP ports. ln fact, Nmap won't even check all ports less than 1024 by default. Instead, by default,
Nmap only checks the top 1,000 most widely accessible ports on the lntemet, as specified in the nmap-
selices file. Fyodor conducted in-depth research with large scale scans to determine the most popularly
used ports on the Internet. This ranking of port popularity is included in the latest versions of Nmap, within
the nmap-services file. Nmap will scan the top 1,000 most popular TCP or UDP ports from that file when
no port range is indicated.

lf Nmap is invoked with the -F option (which stands for "Fast"), it will scan the top 100 most popular ports
of TCP or UDP, depending on whether it is configured to conduct a TCP or UDP scan.

lnstead of the top 1,000 or top 100 ports, the Nmap user can also specify "--top-ports [N]" to scan the N
most popular ports from the nmap-services file.

However, a given target environment may have a very specialized application listening on a port that is not
in the top port listing in the nmap-services file. Thus, if testing time permits, you should oonsider doing a
comprehensive port scan, checking all possible ports. The p flag can indicate a port, port list, or port range
for Nmap to scan. To scan all TCP ports on atarget, you could specify:

$ nmap -sT 10.10.10.10 -p 0-65535

Alternatively, to check only a specific list of ports, you could invoke Nmap with -p 22,23,25,80,445 to
measure only those ports. If you want to mix TCP and UDP ports, you can preface TCP ports with T: and
UDP ports with U: in this list. By default, Nmap scans ports in a range or list in a random order. The r
flag makes Nmap scan linearly (in increasing port order).

87

I

t

Nmap TCF Pcrt Scan TYPes:

Cnnnect Scan
frlmap *ffers ililmerous TCF seanning *ptions

lvlast of thes* are based on varying the TCF cantrcl blt$

Th* mosf strnightforward is the TCP eonneet Sean, Nmap -sT
. Cornpletes three-way handshake
. Cennedisn then torn down using RI$flT
. Slswer, more likely to b€ l*Sged

. . Less nrntrol fer Nm*p, because it $ses OS cc*nect{} eall

. Can rufl with sr withsut rost sr adffiin privileqes

S:n

$yn-"{tk

Aefi ,, .
R,;5r"r

Nmap offers numerous types of TCP port scan options, most of which are based on triggering the behavior

of target machines with various TCP Control Bits set.

The most straightforward Nmap TCP port scan is the Connect Scan. This option, invoked with the sT flag,

attempts to complete the TCP three-way handshake with each target port. If a connection is made, the port

is labiled as open, and the connection is torn down with a RESET packet from the testing machine.

Connect scans are slower, in that they have to wait for the TCP three-way handshake to complete for all

open ports. Furthermore, they are more likely to be logged. If the end system is logging completed

connections, a connection will be recorded for each open port, unlike a SYN scan (discussed next), which

never completes a conneclion.

BB

*\rnap TCP Pnrt $can Types:
SYN Scan

. SYN $canr scmetirnes called "half-open"'or *SYfrI

Stealth" scanr invoked with -sS
* SYN-ACK resp0nge F fipen
r RSI responsc * elosed
. llo response = filtered

- Ofleri, not fcgged on the end systemu beeause ther* is na
canneqtion

- Firewells, IDS sensors, and IP$ tools rnay still deteet it
* Requires rsot privileges

Syrt

$yn=Aek

Jr4$qT ,, *

A SYN scan, also klown as a "half-open" or "SYN Stealth" scan, doesn't complete the three-way
handshake. Instead, it starts out by sending a SYN. Open ports are determined based on a SYN-ACK
response. Then, Nmap sends a RESET to abort the connection initiation. Nmap interprets RESET responses

as a closed port. If nothing comes back, Nmap labels the given porl as filtered. These scans are invoked
with the -sS option.

Because a connection never occurs, the target system is less likely to log this kind of activity. Atry
applications on the target that log connections will not see the activity. However, firewalls, Intrusion
Detection System (IDS) sensors, and lntrusion Prevention System (IPS) tools may 1og, alert, or even block
packets associated with a SYN scan.

Because it doesn't fully follow normal TCP behavior with a three-way handshake, this kind of scan requires
root privileges so that Nmap can formulate the packets associated with the scan.

B9

Additional Nmap TCP Scan
Options

. ACK Scan (-sA)
* LJseful in scanning through an "estabtished" filter on a rcuter
* But, doesn't reliably tell us if a porl is open or closed...

insteadn it is useful for identifoing hosts {network mapping)

r FIN Scan (-sF)
* Set fIN bit of all scan packets

r NmaF Null Scan (-slU)

- Set all control bits to 0 (Null)
. NmiF Xmas Tree Scan {-sX)* Set FtrN, FSH, and U*G, "lightlng up the pack*t like a

ehristmas tree"
. Maimon $cen (-sM)

- Set FIN and ACK bits

Nmap also supports ACK scanning to help get through certain kinds of packet filters. A router may have
access control lists configured to allow outgoing SYNs from a protected network and their incoming
responses (i.e., established connections with the ACK Control Bit set). These filters also block incoming
SYNs. That way, users on the protected network can initiate sessions outbound and can receive responses.

But, if someone on the outside tries to send in a SYN packet (without the ACK bit set), the router will block
the connection. Nmap's ACK scan feature (invoked with sA) generates packets with only the ACK bit set

as it soans the target environment. It is important to note that ACK scans cannot reliably determine whioh
ports are open or closed. Different systems respond in different ways to an unsolicited ACK. However, a

response DOES indicate that there is a system at the address. So, the ACK scan result can be used to do

network mapping through an established filter. But, it is not a useful port scan technique.

Nmap also offers other TCP scan options that involve unusual Control Bit combinations, which different
end systems will respond to in different ways, and may be helpful in scanning through certain kinds of
filters. A FIN scan, invoked with sF, sends packets with the FIN Control Bit set. Null scans (-sN) set
none of the Control Bits. Xmas ffee scans (-sX) set the FlN, PSH, and URG Control Bits, making the
packet resemble a Christmas tree (according to some people).

The point of all these variations is that, according to RFC 193,if the port "state is CLOSED... an incoming
segment not containing a RST causes a RST to be sent in response." Later, the RFC further explains that
systems should "drop the segment and return" for open ports that receive a packet without the SYN, RST,
or ACK bits. Thus, if the target machine follows RFC 793 carefully, we can send packets without the SYN,
RST, or ACK bits. A RST response means that the port is closed. No response means that the port may be
open. Sadly, though, many systems do not follow this MC-directed behavior, making these scans less
reliable.

The Maimon Scan (-sM), named after its creator Uriel Maimon, sets the FIN and ACK bits. That's because
some BSD-derived TCP stacks will respond to such a probe with a RESET if the port is closed, and nothing
if the port is open.

90

Custcm Cnntrol Bits in Scans

' To generate flags with your own desired TCF
Csntr*l *its, use:

--ecanf,iags
lnRG lecK I F$s I i{sT X SEfi | F',rH I EeE I CfiR lALt l}rOHE}
* Include the three*letter reference for your desired

Csntrotr BiG, in any orden {or ALL oT NSNE}

- Fsr *xample, t* send a $YN, PSH, AeK packet to
port 139 on lil.1c.X0,1"S, you cauld run:

* narap **eceaflags 5Tl{F$X{.h"eK *p X39
10"1"0.10"10

r Nmap is grawing into a packet crafting t*al

Beyond the pre-baked Control Bit scans (Xmas, Maimon, etc.), Nmap users can also specify arbitrary

Control Bit settings, using the --scanflags option, followed by a list of the desired Control Bits. Control Bits

are indicated based on three-letter abbreviations of URG, ACK, PSH, RST, SYN, and FlN, and can be

specified in any order. Note that even the extended Control Bits (ECE and CWR) are supported now.

Specifying ALL sets all of the control bits to I in TCP packets, while specifying NONE sets them all to

zero.

For multiple flags, the three-letter abbreviations are just smashed together. The result looks like this:

nmap --scanflags SYNPSHACK -p 139 10.10.10.10

That syntax will invoke Nmap t<-r scan target IP address 10.10.10.10, sending a packet with the SYN, PUSH,

and ACK control bits set to destination port 139.

With this kind of feature, Nmap is taking on characteristics of a packet crafting tool, being used to generate

packets with settings determined by the user. We'll get more into packet crafting later in this course.

91

Nmap UDP Scans
. Far less optians than with TCP
. Invoked with the -sU option
. $ends UDP packet with no payload to target for most ports

- For a little rnore than a dozen of the most csmmon UDP services, Nmap
5"20 and later send a protceol-specific payload tc the standard po* for
the service, designed to elicit a response

- Serviees include ports 7 {echo),53 (domain}, 111 {rpcbind), 123 (ntp),
137 inetbios-ns), 161 (snmp), 500 (isaknp), 1645/181? (radius), 2049
{nfs}, and others* Only sends the appropriate payload to those port numbers".. aXl other UDP
ports have blank payload

. 50, lt $roft't det€{t a t$&rnOn l-lSP serlice listenlng 6il an unusual part... but how often do
yzu see that ift a production environment? Almost never.

. Attempts to detect regponse ICMF rate limiting in target, and slows
down
* Can really stretch orjt scan tlme
- Remember. clcsed po*s may respond with ICMP Po* Unreachable

- Linux will send orrly L per second"..

- For 65,536 ports, thafs over 1B hsurs for a single target maehinel

Nmap also supports UDP scanning, but note that we don't have as many options as we did with TCP
scanning. There's no such thing as a UDP Connect, SYN Stealth, Xmas Tree, or Null scan. Instead, for
UDP, we have one option, invoked with a -sU syntax.

Nmap will send UDP packets with no payload to the target machine for most ports.

Starting with Nmap 5.20, for a little more than a dozen specific UDP ports associated with the most
common UDP services, Nmap sends a protocol-specific payload in its UDP packet for each service,
designed to get the target service to send a UDP response back. That way, we can get more reliable UDP
port scanning for those services. The services Nmap measures this way include ports 7 (echo), 53
(domain), l l l (rpcbind),123 (ntp),137 (netbios-ns), 161 (snmp), 500 (isakmp),164511812 (radius), 2049
(nfs), and others. Note that these payloads are only sent to those ports associated with the common UDP
services. If someone has altered a standard UDP service to listen on an unusual port, this technique will not
find it, because only a UDP packet without a payload will be sent to the unusual port. However, it is
exceedingly rare to find a production network with a standard UDP service listening on an usual port.
Therefore, for identifuing these common ovcr-a-dozen UDP services, Nmap's UDP payload feature is really
useful.

Nmap also includes functionality that tries to detect whether the target machine is throttling the rate at
which it sends ICMP Port Unreachable messages back. As you may recall, Linux will send only one ICMP
Port Unreachable message to a given machine per second. Nmap interacts with the target to measure how
quickly it gets ICMP Port Unreachable messages back, and then automatically slows down the rate at which
it sends follow-up UDP packets to other ports to match the rate at which the target can send responses.
With Linux throttling ICMP Port Unreachables down to I second per response, a UDP scan of 65,536 ports
on a single target machine will take over 18.2 hours, a very long time.

92

a

a

Nmap Feature: --badsurn scans
Using Nmap with *badsurn at the c*mmand line will generate packets with an

invalid TCF or IJDP checks*rn

End system will reject these packetsn silently droppinq them

Eut, sonre firewatls and IPSs do not calcuiate lay*r 4 checksulms
* They may rend a RESET cr lCl{P Poft Unreech*ble
* Th*refore, if any respcnses e$rne baek, it came from a firewati or IFS

This techniqlie is scmetiffies eail*d "Firewall Spotting"
* Another triek invotves lcokinq for a different TTL frsm 9YN-ACK respcnses fcn

allawcd services v€rsuc the TTt on RESET r*sp*nses for blscked services

- They may be dlfferent beeause *f a different initial TTI-, or, even !f they h,ave the
sarne initial TTL, th* RESET5 frorn the firewall are d*ererinented iess, beeause it is

"#
1;**4.:...1:t.i

Server

cleser

rr*itb g*r*rfuutrto n'* rtr+*'f
k*ns'if if's fm* the
fi*n'*ll *r s*n er:
Wif[r hsds$it1, if nr]$r{ bc
frnm ?h* firewxlll

tui :;"

Another interesting Nmap feature involves sending packets with bad TCP or UDP checksums, calculated

incorrectly on pulpose. The resulting packets are bogus and should be ignored by any target operating system.

What value do they have, then? We1l, as pointed out by Ed3f in Phrack magazine, although end systems silently

drop bad checksum packets, most firewalls and IPS tools do not. They often send back a RESET or ICMP porl
unreachable message. These tools do not calculate the layer 4 checksum, but instead interact with even these

bad packets. Again, you might think, so what?

A bad checksum scan can be used to delerrnine if a firewall sits between the attacker and the target. Suppose an

attacker does a scan with good checksums, and gets back a bunch of RESETs. The attacker is not sure if those

packets came from a firewall on the network or from the end host. Is the traffic filtered or is the port

legitimately closed? With a bad checksum scan, any RESET that comes back must be from a firewall or

network-based lPS. Thus, the attacker knows that a firewall or IPS is in place between the attacker and the

target, letting the attacker attempt to compromise that system. Additionally, by looking at differences in the

TTL of the RESET, and any legit trafhc that comes from the end system (such as a SYN-ACK response from an

open port), the attacker can infer the number of hops to the firewall or lPS.

This technique is known as "Firewall Spotting", as it allows the penetration tester to spot a network firewall or

similar device protecting the target systems.

Another trick for performing firewall spotting is to look at the TTL values in the responses coming back from
the target environment. If the TTL values from allowed services (say, SYN-ACKs from the web server on port

80) are different from the TTL values of blocked services (indicated by RESETs coming back), that could be a

sign that a firewall or similar network devices is sending the RESETs. For example, if the TTLs of the RESET
packets coming back are higher than the TTLs of the SYN-ACKs, it implies the system generating the RESETs

is closer (because the TTLs are decremented less). Howevet, such a case depends on the target machine and the

firewall device having the same initial TTL. Even if they don't have the same initial value, however, we still can

spot a discrepancy in the TTLs for allowed versus blocked services.

93

Nnrap Support for 3Fv6
r trFv6 acc€ss tn systems is *ften nst secured

* Many firewalts and IPSs do not bloek IFvS traffic
* IPv6 is auto-canfigured cn most win, Linux, os xn and *ther d*vices
* Even if tl*e target crganizat*CIn'$ ISP dsesn't earry IFv6 traffie, it is often

allowed wlthin * D*42 or on an lntranet
* ExFjsit syst€rns acr*ss thc Interaei vi* Itu4, e*d thw loeally pivct attacking lPv6

r IPv6 addrs are 128 bits {16 bytes}: Groups of 4 hex digits
separated by c*lons
- Dsuble cctrsns {;:} means tn fi}i irr with appropriate number *f zero's

' fan orrly us€ :; *nce in *ddress, or etse it is ambiguous

* Lceal lccpbaek is : : 1 {****:0800 : G8**:0000:0*&0:0000:OCIOil:*0**1}

* Some Nm*p scan types Eupport lPvG (launched with -6 aptian)

- Fing sweeps {*F}
. F*ct over{y sseful because nf enorm*us tfrrget *ctlAJork rangeg

- funnecL scans {-sT}* Versi*n scsns {=sV)* OS deteetion, ra*dorn targetsn and deeoys qg{g$!ru9!:gggg4eg

Nmap does support lPv6 for some of its scanning options. Scanning targets using the IPv6 protocol can be helpful

for penetration iesters, because many firewalls and lPSs do not filter, block, or detect attacks transmitted via IPv6.

Even if the target organization's ISP does not transmit lPv6 traffic to the target over the lntemet, chances are that

the target systems themselves speak IPv6, and can be accessed locally within the DMZ and intranet using the

protocol, especially from systems on the same subnet. This leads to some interesting pivot options for penetration

iesters. We can exploit a system across the lnternet using lPv4 to gain access to aDMZ or internal network. Then,

we can scan for and exploit other targets using IPv6. Most operating systems and even network appliances have

IPv6 auto colfigured. Modem Windows systems, most Linux variants, Mac OS X, and several wireless access

points all have lPv6 capabilities turned on by default, making them potentially juicy targets.

Ipv6 addresses are 128 bits long, and are represented by groups of4 hexadecimal digits separated by colons, as in

0102:0304:0506:0708:090A:0B0C:0D0E:0F00. To save space in printing addresses, double colons (::) mean that

the given bits should be populated with all zeros. You can only use :: in an address one time. Otherwise, it would

be ambiguous how many zeros to filI in with multiple :: indications. The local loopback address is :: 1, which

represents 0000:0000:0000 :0000 :0000:0000:0000:0000 1.

A few Nmap scanning capabilities supporl lPv6, which are invoked by adding "-6" to the Nmap command. In

particular, ping sweeps (-sP) do. However, this feature isn't very useful because target IPv6 address spaces tend to

be enormous. Subnets are often 64-bits long or even larger, making a single subnet have substantially more

potential lP addresses than the entire current lnternet, with its 32-bit address space. For that reason, penetration

iesters usually don't sweep subnets looking for IPv6 targets. Instead, as we'll see on the next slide, we usually send

broadcast pings to find targets.

Nmap connect scans (-sT) and version scans (-sV) do support IPv6. These are highly useful, as they can allow us

to find TCP services and the version of the protocols and software we may be able to exploit over the IPv6

protocol. Currently, Nmap's OS detection, random targets, decoys, and other scan tlpes do not support IPv6.

94

Finding IPv6 Targets and
Uslng Nmap tfr Scan Thenr

. To loeate tarEets, you cot"tld use Neighbor siseovery
feature based on braadcast addresses via ping6
ccmmand:
* ping6 *l eth6 ffs!: ;1 {tlris is broadcastaddressfar all

link-l*cal ItuS n*d*s)
$ ping6 *I eth0 ff,02 : : ! {this is brCIadeast addr*ss for all

fink-l*cal IFv6 routers)
* Then, lsek et neighbors with:

$ iP neigh
r tr&/ith Nmap, specify target IFv$ address as

xxxx : xxx : ; xxxxo/o [i nt], as i n fe80 : : 20c*1ð*
. Finelly, we e*n th*n port sean them with:

S rrmap -Pt{ *sV 16 fe80::3fc0ð0 *-packet*traee

When using Nmap to perform connect and version scanning of targets, we first need the target's IPv6

address. We can use the ping6 command built into many Linux variations and Mac OS X to send a

message to the broadcast address ofa local subnet looking for neighbors, a feature oflPv6 known as

"neighbor discovery". The broadcast address for a local subnet is f1O2::1 to identify lPv6 hosts, andff02::2
to identify lPv6 routers. Thus, we can use ping6 to find targets by running:

$ ping6 -I eth0 ffO2:,:L
$ pin96 -I eth0 ff02::2

Now, you could look at the ouQut of your ping6 command to identify targets. Alternatively, on Linux, you

could run "ip neigh" to see which neighbors are currently cached based on the neighbor discovery done by
ping6. On Mac OS X, you could also run the "ndp" command to discover neighbors.

Then, to run Nmap to launch a TCP connect scan and/or version scan against discovered targets, you need

to specify the IPv6 address followed by a%lint] to indicate the interface the packets should be sent on. For

example, you may scan an address such as fe80::20c0%eth0 to send packets on your eth0 interface to the

target fe80::20c0.

For an example that puts this altogether, we could launch an Nmap version scan of a target (-sV), avoiding
an initial ping (-PN), scanning using IPv6 (-6) of the target lP address fe80::20c0 sent through our eth0

interface (%eth0) invoking packet tracing to see all the action using the following command:

$ nmap -PN -sV -6 fe80::20c08eth0 --packet-trace

95

* Se*nning G*als and Typ**
. Overalt Scanning TiPs

? $*iffing wiih tspd*mfl
. l.{etwcrk $wecping with SeaPy

P $e*pyf!*FdxmP €x*r*i**
' Fletes*rk Tr**icl$
. Porl Scannrng

, lrlrnap
r S$fitss ffirarede*

@
. OS Frngerprinting
. Version Scanning

r Nmap -O -sV and
Amap Hxercise

. Vuinerability Scanning
- Nmap Scrrpting Engine
r NSE Exercrse

- Nessus
. Nessus Exercise
? *ther Vul* Scann*rs

. Enurneraiing t"Jsers

- [numerating Exercise

' Net*st l*r th* Fen Te*tar
- Netcat Exercise

Course Roadrnail

r Flanning and

r Exploitati*n
r Fassword Atta
r \ffireless Attacks
. lAleb App Attaeks

Now, we'll do some exercises with Nmap, exploring its run-time interaction abilities, ARP scanning,

and I{le scanning. Get your Linux machine ready to go, logging in with root-level privileges, which

Nmap will need to formulate most of the unusual packets we'll generate.

96

Hxercise: Nrnap ARP Scan and
Run-Time Interaetian

Run a ping sweep of our loeal netwark
ii a*ap *n -*F 10.n0.10"1*255 --packet-traea

\tVhil* it ls running, hit the
full*wing keys:
* $hift*P = Turfi off Paeket tracing
* p = T*rn it back on
* 1r = Inerease verbgsiry

- $hift-v = Turn if *ff
* g = Inerease debugging level

- Ehift-d * Turn it cff
f!*te that y*rl nre just sending
ARPs; nr ICMF ar HTTP
- Nmap is smart enough to do that

b*c*r*s* you ere *n the same LAN

)C;.,:,,,:&qy-.,Wxe 3e- _rys91,1,=33p1€,,::a
eap -& -€p ?"19.3€,1-:55 - pfi{ket-
t rfirF

s, ! iE1{3 *t**p 4.68 t htr$:J/nftldB.or-g)

et 7Q*A"27"74 X4:3fr f$3
i3: i {:l , {} ?ilBs) AFt$ b"flc nii! 1€ . }e " 3S . ?

t*TZ 7*"7*.v5,2 ;

gHT ie.077e5i AnF kh+ nde !*.:8.i*,3
t*L?" L*.18.75.7 t:

Fn"F I tll 6t??i1s I *Fll *he*.,. . s> tr7, *9, t3.s
1I rd *n 3r n

{*,*?*Ss} ARF ra*{r*"}:z** X6. X&. t*. $
16:! !* l* fq I

SFHr {S.g?Sesi ARp !*ho-lra} :.$.10.1ft,6

€# i*.*?*6$l &RF wh*-k&: t*"t6"Lfr"7

Let's run a scan of the target subnet. We will run:

nmap -n -sP 10.10.10.1-255 --packet-trace

The n means that Nmap should not resolve domain names. The -sP means do a ping sweep, but watch
what happens... no ICMP (or TCP packets for that matter) will be sent for the ping sweep. Also, the --
packet-trace option tel.ls Nmap to display a summary of each packet before it sends it. While it runs, hitting
Shift-p will turn this off, while hitting the p key will toggle it back on.

Also, try v and d multiple times each for verbosity and debug information. lf you can't type that fast
enough, try relaunching the scan and then hitting them.

Note that you are sending only ARPs, no ICMP or HTTP, despite the fact that you kicked off Nmap with a

-sP for a "ping" sweep. Nmap did this because you are on the same subnets as the targets, so an ARP reply
implies that the address is in use; no follow-up ICMP or TCP packets are required.

97

Nmap - Speciffing Port Range

'vv for f*ll p.{::oc01 dscod€- vv for f *ll pr*:ocal decode ,:..,

lisfening on eth6, tink-iype Et{l0F€ {Eth*rnet
), rastur* srze 96 byt+s
16:l?:11.914551 drp Hho.has]0.10. 1S.5S {ff:t
f:ff:ffrff:ff] ieii 1S.:.9.75.? ,

&t33 :5L.*tr33s'& a{p {e*1,y 1*.1*.t* .?tt 1., -*t 0]..,

:St:29:11:l?:df,:s{:tY:t::I/;u0
t:37:31,919876 ip 19.18.71.?,44971 z 1*.16.1::.

=:37:31.*1917? IF lfi .18.73.:.141*7 > 1&.1*,11'
.50.?3: $ 4ll52S?179;aIt5?82179{0i vin 3840

.5*.79& : 5 4 I*,13*?ftA! : 41e47*?*41 t *, r,ri,il 544*;:
<&st t468,1ackox, til}ertanp 1408285: O,rlrrlj,ris
dle 4r

ale 4>
=

r 14S€, tae kfit{, ti,idrearlrlp t4A*2*53 $,no*,wsc .

ale 43 :
16:17;11.9?0248 IP I0.10.75.2,53S29 > 10. 10.1-

,5&.63$: 5 41€Sa8l?*3:41SS48n?93t*] '|li* 5g4Q:i
dr*st l{**. e&(k*€. t i'n€s ta,Ep },40fi,1&33 &, ?,**,vE ::.

1$:3?:11,*?SE33 1p l&.?S.10.1*.?5$ r 1*.?*.15

tsrti*r tr$eF 4.6s I http:/l**ap.*f* ! at ae*
I1 - t4 14: 53 tST

poRT 5tA?e Srnv:cE
€+,,rrJ L1,! vp;.r r rp

221ltF c*€n 55h

P,*4{eet: SS:6{ : 29: L1: 17 :S6 {l,ttrcrel

ri$*r: : tP a**{**5 l.l h*e1 *pl <*r****d

lnterestin* Flcrts *tl 1*"1S, 1*"5ei
s*dnn: :,?06 elcsed *srtE

ttp arlev te'l ncl
Sg/t{F *?4{t htl{}
ttt/tr* *Fe* .F{b;nd

Slltp cp€ir htrpg
11/t{-p op€fi Lcgin
r4l?fF &**{t slr*11
lBsJt.p *pen lllyrql.

Rma$ -n.sT 1S.10,10.56t{pduilrp'.:n hoct 1S.18-1$.38

ns:ap "n -:? 1&.18,Ie.30 "p 1-S331

Next, let's conduct a TCP port soan of target machine 10.10. 10.50. Stop tcpdump, and then restart it,
configured to show traffic associated with host 10. 10.10.50 (not resolving names):

tcpdump -nn host 10.10.10.50

Next, invoke Nmap to scan that host, doing a TCP connect scan (full three-way handshake):

nmap -n -sT 10.10.10.50

Nmap will display the total time it takes to complete the scan. Record how long it took for the scan here:

Nmap did not scan all TCP ports with that invocation, however. lt only scanned the top 1,000 most
frequently used ports as indioated in the nmap-services file. Let's see how much longer it takes to scan all
TCP ports:

nmap -n -sT 10.10.10.50 -p 1-65535

It should take a lot longer, given the higher number of ports it is scanning. But, do you notice any
differences in thg output of the narrower port scan and the complete port scan?

Also, look at the output of your sniffer. You should see lots of SYN packets (S) going from your machine
to the target, as well as lots of RESETS (R) coming back. There will be a relatively smaller number of
SYN-ACKs coming back, as well as ACKs going from your machine to complete the three-way handshake.

98

Experirnenting with
Nmap Output Formats

*we? - * -rT xs. 3*. 1S. 5* - *lr lt np f L*.3&,,6. 3**{*sse{t_g{at1

.rti{tg U'.ag 3,2}, t ,r.rytll**ap,*rg }
sfar tfF{}ir i*" j$.:6.i1.1t

rt Jc Lp rtj.9813: L;iFrir!l
!!*t rh*!a$: a** t"1"*.** *4{15

I)lslt:Efti'-c
ai-.

77!7.., *Fer rsll
3J+.{.9 qper! ?el*el

\tq rlf. !i:LP

1111t{F Fp€lr tlttfrz{r4
:.jrir, opeil hllcb

i1.]'rcg., $pe*, l"rS:*
\.41trp *pea ri:ell

3l**Jl.t: oper *y*q1
};?**J!qii *per u*kn**

lrdq{crr : *i1 :Sf :}9: 1,3 : ll?:** t!!4}fete:

€{lt 'lyiee &eat{e l*ex* k?tt}ft'tfrrh

!l
Op n s*va P,,nl

t{},t*.l$* *&*x*tz x{e,t1,tt1ma# 1)i'

ri ia*ij i.il r':** *iittatiA e;ii-ex! ie i*:i'::"u ,rtg: *:
i*i '*.i"T .r* lt*ilil. 1*.:3.:* {***it:r*ff t*,:.*.::.*,5?v*!*t '* . rT *& ltEF,ru. :.t, 1+.1+_.{**€i1.'5r
3*etj i*. le. $.1r) {l !i*t*5: uF
rt : L. La'. \t .)tj I J pf r1:,: tLl1l:.:r I tt t, / l tt r] | / /, 2i / **t J
l l'1J".1r' r. '$Fpr rai!.r''lqP11r; B0Jol'e' t(9 1(1p1/'
111/*?+11jt{i!l,r,i?r*i\tlif!,44.31F{t**/t.r"$l!'rttt:p-t!fl,51}{**4rl
irp. "i0q!r?,r. 1icjro.n.t..i : filr ?'.)j'ciir :(r
F,ilq111"/ i;itq1,eqr11(F li',i:rr1',.. il,i0ttJ !l.rl'.
,lare* t"39&\
trlKB* dt&4 81 63t As* t4 l*rl*:!? *i3l+ ,. ! lt id{rel+ N}"

+:il ilgi 6tai**d :t* *,4!i t{.t*ndt

ge*:.i J {c}F/ ?* . xe. \Q . 9q t***ett t{: &t1 . q{2*a*

Next, let's look at the output lbrmat files that Nmap can create via the -oA option. Re-run your -sT scan

with the default port, storing your results in all of the major forrnat styles (-oA to indicate Norrnal,

Greppable, and XML output). We'll slore our results in files in the /tmp directory. with a base name of
10.10.10.50_Connect_Scan, which indicates the scan type and the lP address ofthe target:

nmap -n -sT 10.10.10.50 -oA /rmp/10.10.10.S0_Connect_Scan

Then, get a list of the files associated with 10.10.10.50 inside of /tmp:

Is /tmp/LO.LO.10.50*

You should see three files: the greppable form (with a .gnmap suffix), the normal form (with a .nmap

suffix), and the XML form (with a .xml suffix).

Use the gedit tool to review these files, especially the greppable format:

gedit /t:rrp/tO. 10. 10. 50 Connect Scan. gnmap

Note that all of the results for a given host are stored on one line, with each open port and associated service
identified.

99

Scanning Psrt 0 and
Lists *f Forts

ii
teit.ftti t]\re* 4.** { E!lp:llr1t14p'si'g } at ;E*il
ll l; la;59 8.5'r

Irltrr*tiiflq i:*r1€ ** !6.X8.1*.5*:
f gTA?e *.ffi,:Ev{t :.1

tal {lqle,J dshneq'{
Addresc: *S:*e : ?*:l*: 11 t*6 tUt'?daa*:

d*rte: I :1.? add{*g* lx ?,s9? c.ipi sei?***d ii
*,L93 3r{iwd€

fllEeF -r1 -*7 ,A.Z{t^"t*"3* -* *

!&, 94it Un*i E**''F.*t' &ess*!€n!J.,,,,1trb

' t ..1 ::.a,'+ - ; :

a** *B*. ' i&e , *s)j!.... , .:,': .: l

,,:: ry6*_t*reces ;{ .

lt:21&r1.'1 .;4t&1
ftt 3.LlLtp 4.\97*tZ * Frle trstf{r
It+ztt.r+\1
ttcr s1l4.t{} ;J.$*4814 * s]1* :rait,ar
{tetrc11f;t* tl".:rtF *.j:tr:*{i*i} 4 {\'.e Itzt1'}t:tr
I in.tirtl i
xr* ?.':faa* *.1&236A &t*tt{t t?tea". L*t}tn
s5* 221tnp .-t.r*13**3 4 te{qi* 9&el1 !!r}rr
nr? 22ltf.-1.? *.,':y',2*** * t*ail{e t^et'" Lrgn
ttllztt :lllrp A.72LlE1
,4\tdt ?31*4? 4.fr{}''}'L'.
rtv"reA'. 24lt:,-t &.&*t:t34 d s{ gr:{*te

Htl $rrt*s
yt-*at\ ;4l4tJ* 1t.4.9*i1t

A3 ttAn ,.ias

7,'*&p - {.t - }Y Z* , 1* , ?tJ
"
5E .B ::,?e,:3, :3,**. 1..,

ls'tlng l\iFdij .tr.88 I tltlp://e,:14r).01E I at ;08
-11"r4 14:5? !57

Iiri-*rerlia!l Forts sil l9..LS. t0.1S:
AR;

"-"-at&72 izrru:ir l

lji{p qf}e{t ft*
li:tp **err 5t?

eaI *o+rr y vtsE

By the way, in the TCP scans we just conducted, we omitted TCP port 0. Let's test that one port with:

nmap -n -sT 10.10.10.50 -P 0

As we've seen, we can scan individual ports by just specifying -p tX] (where [X] is the port number we

want to scan). We can do ranges of ports by specif ing p [X-Y]. And, we can do individual sets of ports

by using a comma-separated list. Try the last one by scanning:

nmap -n -sT 10. 10 .10 .50 -P 2! ,22 ,23 ,25 ,80,135,443 '
6000

Next, review the ports in the nmap-services frle (the file ftom which Nmap gets its list of most frequent

ports to scan) by running:

gedit /usr/share/nmap/nmap-services

The format of this file includes the service name (e.g., ftp), the associated port and protocol (e.g., 2lltcp),
the relative frequency that the given port was discovered during Fyodor's widespread Internet scanning

research, and an optional comment. Note that the ports themselves are typically TCP or UDP, although

some are associatecl with the Stream Control Transmission Protocol (SCTP), an alternative layer-4 protocol

defined by RFC 4960.

100

Nrnap UDF Part Scan

i.dsl:r]: fir.all 4.bg i ritip:11,1-dF.o.q lat JBq
-11-14 !3:*€ 15?
!iti6: $:*&r36 elap:cd; B hc€tr {cff"S1f{r'{i { 1

3 , 1 tsn:i*rg*L** lj*P &{i}r'r ::t 5i;i* liminq: Abert.l.gl.* done; Lir:]3:79

3 , l" u*s*n**i!1g l..lrF 5r*n
5{a$?iF'rift*r Ak*t}t 4.43k d***; iTt: 13:3ei

i0r15 l: !eId!nrn.j)

tt{}:f !r1zlep.{+ : *t :**;'ite{ti** l&p 4.*e t
-iI"14 l5:{!F 55?

21118{e91'Lfi4 **rt* A{1 L*,1*.7*.**z

3lt3** t1*ietj
11ly'u*$: *Fe* | tiltered

5*t5, at* -'t *{
-uv f*r full pr*t*r*l ****tl*

=ti!tiring i]* eth+, [:nk type tHICHts {tther$et
i, t*pt*re si:* s& b!'tee :li
l3:la:tr4.433S5? aip who has t0 l0.tfr.5S {ff: I
;ff;fi;ff:ffi tell l!^S.t&.rX.: i

i1: t4:5i1.455SJ5 arp re$iy t0, t$, t{1}.5* d5.$t S

0 roc :J*: l5: I l; a*:
tr5:14:54.4&!7!i c]fti uhr hos 10.1S.!0.56 tei(
{}.i0.1:.2

15:1'l:1i.4e133!.irir repli- !0.1* 14.1{? r5 dt *
; &t ; ?6: X3 ; !?: ti6 i';

t5:I4 54.4&3116 IP lg }s ?5.?.::?E: b ig:G,1
t Et €lt !r*S ln!!.flr h

?3:?'*:54"t1S346* XP 1*. 1*,?3.4,3S:El ;" l&.tr*. 1*
.}r*.Lt?: **7, \.er+*th 4

3Fr :.4f54.4&35?3 :F }'*,:*.T5,2,3*2&Z >]*,1#.11
t+.3*.&a: U$P, l*$!t.t 0
iL4;34.4{5e}f}4 iF [&,],1*.5*] tP.18.?5.:: :

l*,3*.3*,5* ,,*d{: p*rt *:g lrrree€hah!*, lc
rrq? h 36

nfi&ir 'ir " rt.l l8. l€. L€.5$ t.tld*ng'+r, 4a:i l*.!g.l€.1C

tt& -* -1u 1*.,1.8_:*.5* ",3 53,:.1:,434,5**-5

Now that we've looked at TCP poft scanning with Nmap, let's try UDP port scanning. Remember we
discussed earlier that Linux kemels throttle ICMP port unreachable responses so that they send only I every
second? We'll see that behavior now, because 10.10.10.50 is a Linux machine. Keep your tcpdump sniffer
running, showing packets going to and from hosl 10. 10. I 0.50.

Now, invoke Nmap to perfom a UDP port scan of 10.10.10.50, as follows:

nmap -n -sU 10.10.10.50

ln your sniffer output, you will likely see several UDP packets, and some ICMP port unreachables sent
periodically. But, these ICMP messages are coming very slowly.

ln your Nmap window, hit the space key to get a status report. You will likely see that the scan is only a
small percentage done, and will take far longer to complete than we have time for here, perhaps over an
hour or more, depending on your system speed and the network speed. We can't wait, so hit CTRL-C to
stop Nmap before the scan completes.

Now, re-run an Nmap UDP scan of the target, this time focusing on a nalrower list of ports, as follows:

nmap -n -sU 10.10.10.50 -p 53,LtL,414,500-501

101

The *-reason Optian and
Scanning TCP and UDP

iarti*{ tlelap 4.6e I l\tt*://*%t*{t.org : at 1**8^1:-ld 16:46 E'T
:rtereStrn€ ports oF 10.10.1S.10:

T *7A7t 6{F.t1(e. p,tA\il*;

53/e&p .\oted dsi*er.* *o.t-?*reaelr
1"1L/*ea open 1 filt*r*d rp{b:.,'}d n*- respgns*
l4lLidp{l.i}s*d l{:fulotfkFsflt''..!!xreatli

360/urfp el*:cd rza*xp psrt-u*r€aeh
381/trdp elcied ststf Fort-tlntes{*

Adsr*5s: 00:Si:19:]1: I7:Db {l'l.td,}re}

t4 9"sat16t

tartir:q l*B;rp 4.s* t. *tl*i/lt2tRz'r.arq) at 7*E&'11-24 L&:46 *37
nterestirlg tr*r'ts *r1 1*, 18. 1S,1*:
)Rt SrATr 5tRV1{€ Rg45C*
i.ltcp *oer: ttp svn-atk+r, \rts *y-r. , Ly if,r u'R

::/trF *$)** sr* t:r*.ark
t*P tpel tel**t :yn'aeFt

:41trp {1o$€{J i}rir'n*ii. ronn" r-e:trsed

' "n "sx ta.i*.rs.:A'-o ii.in.aia.s**-sat "1***i

ncxeF -n "sl -iU 1*.1€.1S.$e -p 21'?5 -'reelo*

Modern versions of Nmap provide the --reason option, which tells us why Nmap classifies a given port's
open/closed/filtered state as it does. Let's re-run ow previous scan, but with the --reason option:

nmap -n -sU 10.10.10.50 -p 53,LLL,414,500-501 --reason

There are no spaces between those double dashes before the word reason. Note the REASON column in
the output, telling us the behavior that caused Nmap to come to the conclusion it did about the port's state.

Next, let's see how we can scan for open TCP and UDP ports in the same command, while looking at the

reasons that Nmap has labeled a port with a given state. Run Nmap as follows:

nmap -n -sT -sU 10.10.10.50 -p 2t-25 --reason

While it is running, note the output of your sniffer. lt's always a good idea to keep an eye on what your
sniffer is telling you about a scan.

102

Exerclse: Nmap with Gaod
Checksum and Sad Checksum

r Run a *normal" SYN seaR cf lfi.X0,10.1*
nrnetrr -n *eS 1$,1CI.LQ"10

r Ncte the results
. Now, run the $ame scan, but with a bad checksum
l,; nm*p -n -sS 10 " l"e . 10 . i"O *-badsum

, Hit the space bar to see the eurnent estimate sf ols

done and time remaining
. Ncthing shauld come back, because the end hsst

ignores the pack*ts
. Why is it rnuch slswer with bad checksums?

Now, let's look at the bad checksum behavior of Nmap. First, let's try a nonnal SYN scan of the target

machine at 10. 10.10. l0:

nmap -n -sS 10.10.10.10

You should see some open ports on the target.

Next, try running the same scan with bad TCP checksums:

nmap -n -sS 10.10.10.10 --badsum

This will take a lot longer. To see what your current status is, hit any key (such as the space bar) to see time

remaining. ln the end, you'll see that no ports appear to be open; they are all filtered. That's because the

end system is ignoring these packets and sending nothing back.

But, why is it so much slower? Let's investigate.

'103

Exercise: Nmap Checksums
and Timing

. To shed some light on the difference in speed, run
tcpdump:

{i tcpdump -nn host t 0 " 10 " lt . 10

r Compare the tcpdump results of:
nmap -n -*5 f 0 .l"0.l"g . 10

. Versus:
*. rrmap *n -sS 10 " 10 . 10 " t 0 *-badsusr

r Bottom line;
* RESETs really help to speed up a SYN scan

- Butthe end system sends no RESf,Ts during a badsum scan
* If we da get a RESFT, Nr*ap is smart enough to know it came

from a firewall, and prints out "slosed" instead of "filtered"

To determine why it is slower with bad checksums, try running tcpdump:

tcpdump -nn host 10.10.10.10

Compare the tcpdump results when running:

nruap -n -sS 10.10.10.10

Versus:

nmap -n -sS 10.10.10.10 --badsum

Do you see why it is different? lf the badsum result triggered a RESET for a given port, Nmap would label
the port as "closed," not "filtered". What would that indicate'l

104

. $canning Gc*l* and Typ*s

. Overall Scannrng Tips
- Snifiing with tcpdump

n trletrrv*rk Swe*ping with S**py
- Scapy/tcpdrlmp Exercise

. Network Traclng

. Fori Seanning

' Nrnap
r NmaF Hxercise

i Nrnap -O -sV and
Amap Lxercise

. Vulnerability Scanning
? fdmaB $er*pt*r*g €ngtn*
- NSE fxercise
; i\-lessus
r Nessus Exercise
,- Other Vuln Scanners

'Enumerating Users
z Enumcraiing Exercise

' Netcai for tne Pen Tester
- Netcat Exercise

Course Raadmap

Planning and

r Explcitaticn
r Password ASai
r Wireless Affiacks
. \A/eb App Attaeks

After the tester has determined open ports on systems in the target environment, we need to discern
the operating system types of the target. Armed with OS types and open ports, we not only have a

better idea of the kinds of targets we face, we can also begin researching known flaws (such as

common misconfigurations and unpatched services) on those types of devices.

105

Nmap Active OS Fingerprinting

Nmap attempts to determine the operating
system of target by sending various packet

Spes and measuring the response

Diflerent systems have different pratocol
behaviors that we can trigger and measure
remotely
Besides Nrnap, another tool focused just on
active fingerprinting is Xprobe2 by Gfir Arkin
* http : /lsys-secu rity.comlxp robe

&
@w*:i:t \i6rc;a:$ii1ffi"

*tl***$*n
f 1sc*'

In addition to finding out which ports are open on a system, an attacker also wants to determine whioh
platform the system is based on. By determining the platform, the attacker can further research the
system to determine the particular vulnerabilities it is subject to. For example, if the system is a
Windows Server, the attacker can utilize various vulnerability disclosure sites to hone the attack.

The specifications for network protocols leave a lot of room for interpretation, and the software that
implements this communication is quite complex. Thus, different vendor implementations of TCP,
ICMP, lP and other protocol behavior differ. Nmap supports sending probes to a target machine to look
for differences in these behaviors to identifu the operating system type.

This technique is called Active OS Fingerprinting because it is sending packets out to measure the
response of the machine in an effort to identiff the OS type. It is active because it sends packets.

Another tool besides Nmap that focuses just on active fingerprinting is Xprobe2 by Ofir Arkin. This tool
sends several test packets to a target machine, and then applies fuzzy logtc to calculate the probabilities
ofits operating system type.

106

il{map CS Fing*rprinting
Capability

' Recent versions of Nmap have droppcd the fir-st
generation fiS finEerprinting capability buitt into
ldmap for years
* R.an nine tests of a target, m*stly associated with unusu*l

Ccntrol Fit setti*gs for differe*t operating systemg

- Msdern Flmap installs include cnly secend genernti*n OS
fingerprinti ng fu ndi*nality

. An avalanehe cf additional tests ineluded in the
sec*nd generation capability

* The *O rption {and **2} uses the seesnd gener*tian
method
* The -O1 opticn has b€en removed in mcdern Nmap versfnns

Nmap has included active OS fingerprinting functionality for many years. However, modem versions of
Nmap have significantly changed this functionalify from earlier versions. The original Nmap OS

fingerprinting capabilities performed nine tests, most of which centered around how different operating
systems respond to unusual TCP Control Bit settings. This older capability is often referred to as the
"first generation" OS fingerprinting capabilities of Nmap.

Recent versions of Nmap have a "second generation" active OS fingerprinting ability. A huge number
of new active fingerprinting techniques have been added in this suite. Currently, the second generation

tests are more accurate than the first. The most recent Nmap releases have dropped support altogether
for the first generation capability, and now rely exclusively on the second generation fingerprinting.
which is invoked with either O or 02 at the Nmap command line. Older versions of Nmap supported

-Ol for the first generation capability, but that suppoft has been removed in recent versions.

It is important to note that Nmap focuses on active fingerprinting. That is, Nmap sends packets at a

target machine to measure its behavior in responding to the packets Nmap generates. Nmap does not
currently support passive fingerprinting, which involves sending no packets but merely listening for
packets from a target. Other tools (such as the free P0f2) do support passive OS fingerprinting.

107

Tests Includ*d in NmaP

Secnnd Gen OS Fing*rPrinting

the second generaticn fingerprinting,
induding:
n TCP ISN greatest ccmm*n

den*r*inator {GCF}

' TCF 35N counter rate {I5*)
. TCF lF ID sequenee

g*nerat$on atgcrithm {TI}
. ICMP IF ID sequence

generation algorithm {II}
' $hared I* ID sequence

bselean {55}

. Sver 3* different methad$ are includ*d in

' TCil tinrestamp option
alsorith.n (T5)

. TfP in*tiatwindow siee {W,
w1 - w6i

. IP dc*'t fragment bk iDf)

. IF *nitial tinte-to-live *ilecs
{rc}

. Explieit e*ngestl*n
nctification {CC}

The second generation active OS fingerprinting of Nmap includes over thirty different tests to determine the

operating system type of a target. Iniluded in these tests are measules of the TCP sequence numbers of

."rponr"r, such as their greateit common denominator and how quickly they change over time' Also,

N*up *"urn es the changes in lP ID values for responses to TCP and ICMP packets. Some operating

,yrt"t types have different sets of IP lD numbers for TCP versus ICMP, while others do not (Windows

uses the same incremental number for both sets of protocols)'

It also looks at TCP timestamp behavior and TCP window sizes the target system negotiates. Also, Nmap

evaluates the behavior of the system to a message with the Don't Fragment bit set in its IP header. It

attempts to guess the initial Time To Live for the packet by rounding it up to the next nearest power of 2,

because many system types have a TTL of 2x*n or (2**n)-1. Finally, Nmap analyzes the explicit congestion

notification behavior of ihe target machine to see how it handles the extended control bits associated with

congestion control.

108

Tests Included in Nmap
First Gen 05 Fingerprinting

. Older versions of Nmap {b*fore 4.51} include flrst
generation fingerprinting tests, invoked with *Sl
- ?CP Sequence Frediction
* SYn{ packet to open port

- I'IULL packet to cpen port
* SYl{'rINlURfilPSH packett* open po!-t

- ACK paeket t* aperi port

- SYN packet to elqsed pnrt
* ACK packet to closed port

- FINIp51"{IURG packet to closed p*rt

- IJDP packet to clased port

The first generation active fingerprinting of Nmap is supported only in older versions of Nmap, those
released before Nmap 4.51. Some testers still use these capabilities, because they are faster than the second

generation feature, although they are less accurate.

The first test in this list looks at the predictability of the TCP sequence numbers of the SYN-ACK responses

(which we called lSNu when we covered the TCP three-way handshake) of the target. Some operating
system types have more predictable sequence numbers than others. Thus, by looking at how these numbers

change for subsequent connection, we may be able to narrow down the operating system type.

Many of the other tests look for variances in the behavior of the target's TCP stack with unusual
combinations of TCP control bits.

109

. $canning Goals ar:d Types

. Overallscanning Tips
i Sniffrng with tcpdump

. Network Sweeping with Scapy
; Scapy/tcpdump Exercise

. Network Tracing

. Port Scanning
. Nmap
r Nmap Exercise

. OS Frngerprinting.ffiffisM
i Nmap -O -sV and

Amap Exercise

' Vulnerabifity Scanning
r Nmap Scripting Engine

' NSE Exercise
,. Nessus
r Nessus Exercise
.- Other Vuln Scanners

. Enurnerating Users'';' t'numerallng hxerClse

' Netcat for the Pen Tester
r Netcat Exercise

Course Roadmap

. Planning andF*{-*il

' Explcitation

Password Atla
Wireless Attacks

r \ffeb App Affiacks

Now that we know the open ports and the operating systems behind them in the target environment, we
need to discern the protocols spoken by each port and the versions of the services listening on those ports.
We use version scans to gain this infbrmation.

110

Version Scanning

* When Nmap identifies an open port, it displays the default
serviee commonly assaeiated with that port
- Eased CIn *Hap-services file, whieh lists about 2,20CI serviees* Additional eervlces are searchabte at the Snternet Assign*d ltumhers

Authority {IANA) port assignments at
httB : l/www" ia na "orglassignmentslpor"t-numbcrs* But, what services are sn pofts n*t in that tist?

. And, what abaut an admin whc configures a service tc listen
sn frn unexpected part?
- Example: Web s€ru€r sn ?CP 90 or sshd on TCP 3322

r Afldr what service and pratoenl versicn is the tanget listening
serviee using?

r NrfleF versl*n scanning has the ailswer

Once we've got a list of open ports, we have to determine which services are actually using those ports.

One easy (and automatic) way to do this is to merely look up the common service associated with the port.

These mappings of port numbers to services are available in several locations. Most Unix and Linux
systems include a /etclservices file that includes rudimentary information of this form. More ports and

detailed information are available in the nmap-services frle (located by default in the /usr/share/nmap
directory). This file contains approximately 2,200 common services and the well-known ports that they use.

Nmap automatically checks this one by default as it displays its output. The official port assignment list
maintained by the Internet Assigned Numbers Authority (IANA) can also be consulted.

However, while searching such common lists may be valuable, it is limited. The well-known service may
note be on that well-known port. For example, what senrice is listening on a strange port, not included on
any of these lists? Furthelrnore, what if an admin configures a common service on an unusual port,
configuring a web server to listen on TCP port 90 or an sshd on TCP 3322? Even if a common service is
using a oonlmon por1, it could be helpful for us to know what version of the service is nrnning and the
protocol version number that it speaks.

Each of these questions is addressed by another very useful Nmap feature known as Version Scanning.

111

Nmap Version Scanning
Functionality

. Version scan invoked with -sV
- Or, use *A for OS fingerprinting, version scan, script scan, and

tracersute (i.e., -A = -O + -sV + -sC + --traceroute)

. For eaeh listening port discovered during the port scan,
Nmap:
* Makes a connection to ?CP and listens for 5 secands... if respsnse

with match: Fone!
* Sends probes to TCP and UDP po#, sending data designed ta

elicit a response to determine the service type
* Over 1,000 service fingerpri*ts in the nmap-service-probes file

- Attempts $SL handshake over TCP ports, and, if successful, probes
over 55L connection

- Issues hlull RFC commands to determine if RPC service is in use
--version-trate optioil showE the details of the probes in real time

To invoke Nmap with its Version Scanning functionality, use the -sV option. Alternatively, Nmap
executed with the -A option will conduct OS fingerprinting, Version Scanning, script scanning, and Nmap's
tracerouting. ln Nmap's algebra, it appears that -A: -O + -sV + -sC + --traceroute. ln other words,
running Nmap with the -A option is the same as running it with the -O (OS fingerprinting), -sV (version
scan), -sC (run default Nmap Scripting Engine scripts), and --traceroute (use Nmap's traceroute feature)
options.

The Nmap version scan functionality is executed after Nmap finishes conducting a port scan of the target.
For each discovered open port, Nmap will probe the port to try to determine what is listening there. For
TCP ports, Nmap connects to the port with a 3-way handshake and waits for a response. lf a response
comes across the connection, Nmap looks up that response in its nmap-service-probe file (also found by
default in /usr/share/nmap). lf it finds a match, Nmap prints out information about the service. lf no strong
match is found, Nmap starts probing thc port further.

For open TCP and UDP ports, Nmap probes the target by sending a variety of packets defined in the nmap-
service-probes file. There are over 1,000 signatures in this file, which are highly useful in determining
various kinds of target services based on their network behavior. Nmap also attempts to conduct an SSL
handshake over open TCP ports, and ifSSL is supported, it then probes the target port across the SSL
connection to get version information. Nmap also sends null Remote Procedure Call commands to listening
ports, to determine if it has found a port mapper application that will provide more information for dynamic
ports used by RPC services on the box, or whether it has found a particular RPC-based service.

When invoked with the --version-trace option, Nmap displays each step of its version probe on its output, to
give its user a feel for how it is attempting to determine the target service in real time.

112

Other Versian Scanning and
Infarmation Gathering Tcols

* THC Amap
* Fres frsm http : //freeworld "thc-srglthe-ama p

- Amap can do a port scan itself, ar...
* ...provide Amap with the cutput fil* fr*m f{map

{generated using the Nmap "*sG filen&me"
option)

* It sends tniggers ta eaeh open psrt (defined in the
appdefs.trig tile)

* It looks for defined respcnses {from the
appdefs,resp file)

* A us*ful seeond cplnion to the Nmap version scan

While Nmap's version probe functionality works quite well, a second opinion on what it discovers can be
quite helpful. The Amap tool created by The Hacker's Choice (THC) group also perforrns quite accurate
version scanning. Amap can perforrn a port scan by itself, or use the output of an Nmap scan saved to a
file. Nmap, when invoked with the "-oG filename" option, will store its results in a format that Amap can

read. The rG stands for "greppable" format of output for Nmap.

Amap then sends triggers to each open por1. These triggers include connecting to TCP ports and listening to
what comes back, as well as making SSL connections. Amap's triggers are defined in the appdefs.lrig frle.
When a response comes back from a target port, Amap consults its appdefs.resp file to see if it has a match
for the given service type.

113

! Sc*nning Goals and Types
. Overall Scanning TiPs

z Snffing with tcpdumP

' N*twork €we*ping witft $*ePY
F $r.spylteBd**rP *x*r*i**

. lt{etwsrrk Tracing

. Porl Scannrng
- Nrnap

- i{maF Exercise
. OS Fingerprinltng
. Versisn Scanning

- $dmees -# -eHg*d
@

r. l*r'**p $*ripting Cngln*
z NSE Exercise
r l.,iessus
. Nessus Exercrse
F" 0ther Vuln $eanners

. Enumerating Users
. Enumerating Exercise

' Netcat for the Pen Tester
r Netcat Exercise

Csurse Rsadmap

and Hri* t

' Exploitation
I Passwsrd Atta
r WirelesE Attacks
r Web App Affiacks

To get a feel for version soanning, we'11 now perform some exercises, both with Nmap version scanning

and Amap. In these exercises, we'll also identifu a false positive with Amap and determine why it is

happening. We'l| also see an unusual port in our Amap analysis, and attempt to discern its network

behavior using Scapy and tcpdumP.

ln these exercises, we are attempting to model the troubleshooting and analysis process that penetration

testers and ethical hackers must go through to refine their results when anomalies are discovered.

114

ExerciEe: Nrnap Os
Fingerprlnting

. lit/e wltf perform Nmap O5 fingerprinting af attr systems cn
our tanget network

. First, run tcpdump so that it sniffs all paclcets going
betrrueen your machine and the target network of 10.1*.10

. Th€fl, invoke Nmep in one esmrnand configured as
foll*ws:* *sn't resolve names

- LJse O$ fingerprinting
- Ss a TCF esnnect sean {3-way handshake)
- Scan target ports tr=nCIZ4

- Scan the target netwerk 10.10.n0.1-?55
o Use run-time fnteractian by hifting the space key to see

$imap's eurrent ectivity and pragress

For this exercise, we are going to start by running Nmap's OS fingerprinting features. Start up tcpdump so

that it will sniff all packets from your machine and the 10.10.10 network without resolving names, as

follows:

tcpdump -nn host [YourlinuxlPaddr] and net 10.10.10

Now, invoke Nmap to do the following:
. Not resolve names (have it display lP addresses instead)

. Use OS fingerprinting

. Perform a TCP connect scan (the three-way handshake for each open port)

. Scan target ports I through 1024

. Scan the target network 10.10.10.1-255

Try to compose this Nmap command line yourself, without peeking at the next slide. If you must, flip the
page to see the command.

While it is running, periodically check on Nmap's progress by looking at your sniffer output. Also, hit the
space key every once and a while to see what Nmap is up to.

115

Nmap Scan and OS Fingerprint

*ts*p -n '* -*T -* 1":.6?4 :S.1S"lS.:-?55

tartir:g ?4*ap 5.Ag €. httplftr'rfrep.Org l at
Interesttng por6,s on 1S, i0. i0.10:

tho!,n: 1018 clo*ed p'orts
T $TAfE SCnVt{f

Itcp sprn 5*lp
t{p ope* http

133/tep ap€* e*rgc
139/tcp o$)er *e!*z*c"*s*
43/tep 0pen http*

Itry aperl ffiierft*oft-dg
Addr**s: *6:EC :39:e* :&4;F€ {V}&i*r€l

i.ce typr: g**eral putpo$e
i*qi ?'!i{r86*ft sir}d*ss ?s081?4e

det*il*: l!:.e roselt 'di{tdt,r;t Zry*Q

i'rdrw ?*68 5?1. a{i{,'caoft ?ti*dqwt
twork DrstanEr: I hop

I*terestinq pcrte a* 16.1{}.ld.2&:

Nn*s: ltlu ru.rl' grf a rlighfll' dilTerent
m*lch &n signature. bec*use fhese
results:lre hs$ed nn rfatistical

?E€ analysis ol variaus fields in rcsp{rnrr
paekst*. 'fhe values in those fitltls
change, wnretirn** Ie*ding tn
different results for specific
opertti*g $-ysttm versitcs" \trur
anslrcrri ;hould l{rok similar, but
might nol br id*nlital. F*rthtrmore,
!'oilr anslrcrs ruight ehunge *lightl3'
ear:h fime .y$n run it{nrrp agai*st
thcse s*rnc t*rgets!

5?&l5B2l6F1 i}r' ?Ji*dass XB 5?&f5PL, ?4i{r$s&?t
*ill*nniu;* f*:"ti*tr {:4€)

To make Nmap perform the scan described on the previous slide, we invoke it as follows:

nmap -n -O -sT -p L-L024 10.10.10.1-255

The -n option makes Nmap use lP address numbers instead of names. The -O (that's a letter O, not a
zero) tells Nmap to perform OS hngerprinting, which uses the second generation capability. The -sT
configures Nmap to do a TCP scan completing the three-way handshake (a connect scan). We've
directed it to scan ports I to 1024 with the -p l-1024 syntax. And, of course, our targets all fall on
10.10.10. l -255.

NotetheresultsinNmap'soutput. Wasitabletoidentifytheoperatingsystemtypesof 10.10.10.10,
10. 10. 10.20, 10. 10. 10.50, and 10. 10. 10.60?

Please note that you may get a slightly different match on signature from what you see on the slide
above, because these results are based on statistical analysis ofvarious fields in response packets, which
vary flom time to time even on the same target machine. The values in those fields change, sometimes
leading to different results for specific operating system versions. Your answers should look similar, but
might not be identical. ln fact, your answers might change slightly each time you run Nmap against
these same targets due to this field sampling and analysis performed by Nmap!

116

Nnnap Verslon Scan

. N€xt, let's da a versipn scfin sf scille of the hosts
* $iart with 10.lfi.lff.1*
* ennfigure Nmap nnt to resolve danrain names

- Perform a version scan

- Use target pcrts 1-15il

r Nmap bases its versioil scan an the eontents *f
the file nmap-service-probes

- "Probe" lines indicate what tCI send
* "rfifitch" lines indieate what to seareh f*r in responses

Next, we'll do an Nmap version scan, but only of ports between I and 150, and with one target host at a

time. Start with 10.10.10.10.

Your Nmap command should look like:

nmap -n -sV -p 1-150 10.10.10.10

Compare your results to those discovered when you performed the -sT port scan on the previous slide for

10.10.10.10. Are they different? How?

Then, in another window right next to your first, proceed to do the same kind of scan against 10.10.10.20.

Do you notice any differences in the sV output of 10. 10. 10. l0 and 10. 1 0- I 0-20?

Next, try 10. 10. 10.50. lt is a Linux machine, as is 10. 1 0. 10.60.

Nmap bases its analysis of services on the contents of a file called nmap-service-probes, located in the

Nmap data directory (typically /usr/share/nmap). ln that file, lines that start with "Probe" indicate the

messages to send to target services, while lines that start with "match" indicate the response text to look for
when identilying the given service.

117

10.10,10,10 vs.

ta{tl*g Nea? 4.69 { i!113:1,/*a*ap.org ? * 2*a8-11^-14 16:53 €57
Inle:€stlng pcr?< +n 1S.!*.10.is:

1(r apen Snlp 'ii{.'{'.cft Fqta'p 5.s.?17?.1
t{p *t€r': i}ttp $irr0rstt tt, *ebtet'e('i.8

tStlt p a?en nt{*. :litr6:otl }{:*d*39 *p{
!3g,".i0 otrir nelL;i)i gsn ffiW

Pidregs: 00; 0{: 3E :81:F8:BA
i{e I*t*: Ho€t: 1ri*:ty;

rvt.e dete(tltn perf&rtr*d. F

: l/rl*aP, orgliubql!tl
don*: t xP addre$s ,z ttsg

*B*g "ft -sf -f:-i56 1€.:6"1*.14

t*rli$* t*6at 4.6* | *ttp.ilr,e*p.*rg l at :0&9-11-lrt ?6:*6 Es'l
dr€st1ng p*.ts cr 18.lE.i*.?6:
si*"*r" t4? *lore* $$r?t

5rA?€ SErr tC€ VARtt*f{
tcF aper; htte ttirr$roft ::5 Hebserv*r *"9
tttJ 'lt\treu !15'p.
./t(rr rilte'ed nettrtos 5)n
d{treis : €:0C: }g:C9 :49:{7 t\&iat*,

vr{r Info. 05: eiriloHs

L77 /\<p t iLa*E ed ltsr yt
::9,/l{f tilteied *€t6}i6r. se*

av:.{e dete*iion p*rtsr:!*d. flr*te rep{,rE a&? i*e*rr*{l r€1!:.1s e€ *ttF':'
I I / *eap. a I q l

'*rrfrt"l
/

C0ne: I !P addFess ii noSt uti scar::ed i* ?.6;9 stiondE

f nBat -n "5? -E 1"1?a 1S.?4.1e.?s

The screen shot on this page shows the results ofthe version scans ofports 1-150 on 10.10.10.10 and
10. 10. 10.20. ldeally, you should have similar (but possibly not exactly the same) results on your own
system.

In particular, note that 10.10.10.10 is listening on TCP port25, while 10.10.10.20 is not. This port speaks

ESMTP, the Extended Simple Mail Transfer Protocol, with a very precise version number and an indication
that it's Microsoft's version. That's a mail server all right.

Both machines are running web servers, identifying thernselves as IIS. But, the llS version on 10. 10. I 0.20
is newer than the one on 10.10.10.10.

Additionally, note that TCP 135 and 139 are open on 10.10.10.10, while they are labeled as "filtered" on
10.10.10.20.

Both systems are Windows, but they are quite different versir.rns with significant differences in
configuration.

118

I

t

Next, w
First, lo
{ gedit
'ii ged'it

Amap Versifin Scan
e'll run the Amap version seanning progrem

:lc at the Amap triggers and resp*ns* files:
'- /:us* I *t*lappdefs . briq
: lgEry'etclappdetrs.rssll

& l&? ea€ tat*i1ars *ft defsaed, th* l**i!*a lt tffl'(! lo rdlr
* it,e.$FFut :t thir tf:'**{r rtr.x{!l r4n iretii ap*1.1t&1,16\t, 9*! i} 'l',
)* *t!*.#:r*'*', ?hig is a**ll? 3t&it*.y, t9 **f:r-rt+ r$sld
rsae* **f ipFli.;t}rn. l&&t! 'pky Ay dal&u\z al! I "99",o "'** tsll, 4r.d ?*r *eet t? e**ly Itf "El' lwjtttl t+nl t4 *qt$

lJ{e i rdrie* d< 4a€': t.
6 **tf,: $ei tfilt *** 9i1*e 2t a&e t,{lgqgr d*?* t&r"-+u":
s r+*t6'. ?t{2*a34r-t tt}etlaltt:t {lttl€rt, nxaA*rs, ,:tttlr*11*n,

e z32r+t1{* . lkt tr:i+!e. d*ta t* ttnd t8 a?'.* **tta. Y$ cat 5Fts{if!. ti}eF
€ t4 t* r*?$: i] +gi] !!ri*t: *+f,lcx** Eltll " 6r n! hef,
F ttr:24* Ftq*efi4.etA vLl^ "aN.".

s trs*Fl*3:
t iitr;l:trFi*:'*SEq iP,{:}\41*" Thtr tritg*r *al* i4* }1aw "tZF i1
$ ttft& !t a1i TtF g*lts +i$ hat g+t tt* ?&!s* "a,t*!t /'l'&'?" it'"iaatl tj,
* & ,,&.ri&re ret$* ,rrii l!4i.fe*'1,

,ar4Z,CBE4:/. : .:l6i$

For the next component of the exercise, we'll run Amap against the same targets, comparing its findings
with Nmap's results. First, let's look at the contents of the Amap triggers file (appdefs.trig) and its
responses file (appdefs.resp). You can open these files on your Linux machine using any editor you are

comfortable with, such as vi, emacs, or others. If you don't know how to use vi or emacs, a simple editor
for Linux that is quick and easy to use is gedit. Open the files as follows:

gedit /:usr/el-c/appdefs. trig
gedit /wsr/et'c/appdefs.resp

The Amap trigger file specihes which data to send to discovered open ports. In the trigger f,rle, notice the

option of HARMFUL described near the top of the file. Some of the triggers could cause a target service to

come down, so we must be careful. Within your editor, search for : l: to find the potentially harmful
triggers.

The response file tells Amap what to look for in its responses to determine which services are in use. Note
that the responses are actually searched using a Perl regular expression (run man perlre for more details

on how such syntax works).

119

Running Amap

r Now, letk run Amap against targ*t 10.lfl.1S.10

' We'll have it peform its own port xan, of potts 1-15il
. Don't forget to run tcpdurnp
. Then, invake Amap as follows:
amaF -q,r 10.10.10. 10 3-150

* The -q tells it to omit closed por"ts frern its output

- The *v means to be verbose
. Next, letk run it again with the -b flag to print aut the

banners it receives back
amap *bgr 10. LCI.10.10 1*1"50

We will now run Amap against 10.10.10.10, configured to scan and check TCP ports l-150. As Amap runs,
make sure you have tcpdump running so that you can watch as your packets are sent to the target machine.

Invoke Amap as follows:

amap -W 10.10.10.10 1-150

This command tells Amap to omit closed ports from its output (-q) and to give us verbose results (-v) of the

scan against 1 0. 10. I 0. 10, using ports I - I 50 (TCP is the default). Look at its output, and compare with what
Nmap told us.

To get more detail, let's have Amap print the banners it received on each port, by including the -b flag in its
command:

anap -bgv 10.10.10.10 1-150

This provides a lot more detail, giving us results closer to what we got with Nmap.

120

Amap Results fbr' 10.10.10,10

*s iTlEfE-t7et cl;rppde f * . t :").Q . " . 1*;ld*q:
rest:!*rlse ti* faxrIV*#ZI*tsfeppdef*.{*e* . ". 1c**cd

tr:Sger f !le /'.rsrllaeal,retc/aBprlef s. r*r . .. loaded 45* t!-rgge'"s

v5.} {r,ri*". the .€rg/thr-asxF} sg*c"te{$ e? }***"ltr"74 L&:5&:4&
3f,l* slcci* l'

T*t;rl *anu*t *f tdr$fus t* p*r.t*r:r* *.* pl*3x a*rlclc{t re***z 34bF-
Fr*tar*1 crr 1i3" lS lS. t6:?5lte p iby tnrgqer !"'??BJ nat{h'eE sntp
r*t*e*l ** 3&.1*.1S.1&:**t'te g: {*:y trlgger httF} xat*hes f ir':q*r

r*ioe*t an 1"8.1S. iS. iS:S*/teB t*V tnlq6es hrtFl nar{ne3 *ttp-ii3
r*g*{*1 rn 3S. 3S - :S . 3&: 339f ie F €*y trig:ger http} sr:*tcl":*: ftetLr:.s}s " sess,-

rstcecrl ** Z*.1S.3&"1S:135/ts* {*y tri*gl*r" mc-qts} m**e''s** erstbi*c"s**l
SZ*rz
r*'tee{rl **:*.?1}"3*.L#:$&/ttp {by tr€gg*r" va***2*l si*t{he$ u*E:raj.* l

:trn* i*r tSne*{.tt afi !.4 {on!:ectinns ", "

ar{ip -qu l#. 1S. IS. i0 } . } 5S

Here are the Amap results (without the -b flag). Note how it tells us the number of triggers and responses it
loads. The appdefs.rpc file contains an additional set of triggers associated with Remote Procedure Call
(RPC) services.

We received similar findings to what we discovered with Nmap. We can see the trigger that elicited the
given response (with the output text "by trigger"). We can also see the response that matched.

Note, however, that the TCP port 80 finding matched multiple responses, including htp and http-iis as we'd
expect. It also matches "finger", whioh seems strange. The Amap response associated with the finger
service includes several different responses, and the text on the web page on 10.10.10.10 matches it. We've
gotten a false positive! Let's see why.

121

Ana*yzing Amap Trigger,
Respanse/ and False Pasitive

17.1 28e *K
t,,ar. &4trracdft" !l(/E n

t3t.t|Y. - L*t eTi*tt t *t lt]l" f / 1&. L* . 28
te: Fri, 14 S*v ZA6e 21:3*:33 #

{}*te&t -7 Y 98 I t*E€,lhtfBa
e€*pr-*"et1945 i bytes
st"itsdifre*: Hed, &6 Feb 26S8 2

eI ag ; " &dcf 3&&&*r&1 ; &*&"
81t".*t -F-e1l't*t\:; 2*

a*Fdek.rrig H T f tT7?/L.*

E{fit ki*$. gear€h g**t6 g*................{uryrei!tx Se,F

f i$S€t": : t{p: r L:'16 t)ger
frtlg€r: : t€p: r L*qln na*!e:
{rnger: :tlp: :Laqtr.+44aw. iTtY- *1dle

Lh 14.?. Col 19

**tz* * 5efi5 566!#

In Step l,let's look at the Amap trigger for http, by opening the iusr/etolappdefs.trig file:

gedit /asr/etc/appdefs.trig

Search for http. We can see that Amap sends the string: *CET / HTTP/I.0Wr\r\n".

ln Step 2, look in the /usr/etc/appdefs.resp file, searching for "finger". Just start browsing down the file,
as the finger signatures are pretty easy to locate by hand. We can see that several possible matches appear
for "finger", including:

^\r\nWel come

ln Step 3, let's manually simulate what Amap is seeing here. Use Netcat, the general purpose connection
tool, to connect to 10.10.10.10 on port 80:

nc 10.10.10.10 80

You will see no response, but the connection will be made. Now, in Step 4, let's manually type in the
trigger used by Amap:

eF.T / HrrP/l.o
Hit the carriage return rwice.

Look at the response from the target in Netcat's ouQut. Do you see the "Welcome" text? That's why we
got the Amap false positive for the "finger" response.

122

Now, Analyze 10" 10,10.2S

Continue your
Amap analysis
cn 1S.X"0,lfi.t0
Run both with
and with*ut
the *b cption
Notiee the
difficulty It has
with TCF pcrts
135 and 139

ri -n^lFl{ t, c ll
^-.lsi

1e I . i,!.-' (

i.*q r**g***te,i* l1's{t*q.&2.f*trfarp4*t$.r4t? ,., 1.*e*et* 34& {q,"rt*m!et
inq r13gq6' f:.le /,\r/itr;rllF"ldlp{icts :p{ ... iaei1 ,}59 trllqe!i

u5. ? {a}+*?J, lt?f .*r4l1*4-af*a*} gtar€rd at lg48" !! - 14 1?: 1! : r}F

?sieL a**9!*t *f t**hr t6 Fertqrte Z* fi\ai* ii!*ar{t *r$e: 3450
r*?!:l*L *r': 18,!&,?q?,?*:S4/?cF {hy trigEdr &it*! E*tr*f.{ hr.rp

,r*ttt:tlT ** !S,!&.1&"?E:g*lt.p {by t.i**er tlttF} n*t{**s ht.t$':i! .

?terr\ifrq. {**1,i nrt €.@{22*e\ l.tt***ttt }, r*€rtr*g 3} ?* 1l}.lc.1s.ia:::3,"r..p,
{ii5*blint! F*r4 i.,
1.-i^-, r.a'.id Rri i^d-n1r lr *-r", { .orr;q, ,r

dr!-iLl:!ic curt
{:n: iel tltr.Jit- oi .' (s-tefliotr - - ,

"tlDiLi t"i 10. it.1&.lEr84Jr.p ibi t iq!{.' det}*:'n} ry.3t(h{s
"€Ler!n

drdp "qv 1*.!0.10.]i) l.r5t?

Next, let's continue our analysis by doing an Amap scan of 10.10.10.20. Run it both with and without the -
b option, as follows, again scanning ports 1-150:

amap -gv 10.10.10.20 1-150

amap -bgv 10.10.10.20 1-150

In the output, look for the messages associated with TCP ports 135 and 139 (this is easier to see in the
Amap run without the banner grabbing b flag). Note that it sensed that these ports were open, but couldn't
make a connection to them to perform version detection. What's happening with these ports? In the next
component of the exercise (on the next page), we'll analyze them in more detail.

Note also that you may get false positives with triggers associated with ms-remote-desktop-protocol and
smtp on port 80 on target I 0. 10. 10.20. These are again anomalies, and they do not always appear during the
scan, because some specific characters in the web response aren't always delivered back from the server.

123

I

a

Investigating the *iff*rent P**s

Use Seapy ta see what's different abaut
pCIrts 135 and 139 sn 10.10.10.20

Run yoilr sniffer, focuslng 0n TCP

Use Scapy t* send a TCP SYN Packet to
port 130-14il an 10.10.i.C.zil
Lopk at your sniffer autPut
- Whatt the difference between 13*-134

versus 135?

Next, we'Il look at why we are getting different Amap behavior for port 135 and I 39 on 10. 10. 10.20. Why

does it sense that the porl is open, yet it cannot make a connection? Our trusty friends Scapy and tcpdump

will help us hnd out.

First, run tcpdump so that it is looking for all packets that your machine sends to the target network of
10.10. 10. To cut down on clutter, have it gather only TCP packets'

Then, write a Scapy invocation that sends TCP SYN packets to 10.10.10.20 on all ports from 130 to 140.

Hint: Remember to put parents () around your port range for Scapy.

Try to compose these commands yourself. If you are having trouble, you can refer back to the sections on

Scapy and tcpdump we covered earlier. Or, if you'd prefer, flip to the next page for more info.

124

fiehavior
Poft

Note that we get
RESCTE from all
ports, except 1"35

*nd 139
* lrVell, and 80,

which SYf*-ACKs

But, L35 and 139
sil*ntly drop lhe
packet
They hav* a filter
that hlocks
{snneftiCIns

*14 E6t Siqs,:-'3***irt*i ?63s SelS.:::,::::. :; ::..:::.'..::.:::.

s tcp4ilF'$, n', iiB *r* -ost 10.10. r5.l aqd net Js.!*.:s
Itpftrhp. +*rb49* c*tFl*l **t!Frie55ed, u5* -{ *r -vv f*r f*11 ti*t*{:,:-
r,l tler cd"
i!<f*,i:n] Or 6!ty, 1-Li'i.tI!,e Vill8?A8 lta,?ti?tl, tA*1,'p r!rf 9b h-
yl +'-

:3 : 1?:3i*. l??AtE iV \&.&.72.7 "e*4V " 14, t&. 1rj.2&, t34 t, 1*6 igal i :

.i$AJgel?lf,l Hjn 3l: ^^.11"1q"16 :94q7* T? l*.10.t.i.:0.11& p l4l.l0.11 .?.7944
f

,*i0: *,
k 4SE?$813 a:t 3 \
??:19;??.1?3*4* sF 1&"1*.73.3.?*48 : :*,1*,1*"1*.131: ! 949lsl60d
i?19:430i1.1{tl ar'r 5!} /,\,
i;;19;1!.I*?al4 lP l*.i3.ie.le.ijl , 10.:C.rr..t.:tr.}d I *.{i{lii: a.
k q4gl*J8.]5 E;n a \-/
1? r 19 r 53. 1&6*?3 Z? 1* - *.7r.?.t*4€ " !&. l*. tr*. l*. 131 : t 741397*v,:..
::a5:11:!ll8! ":i]l- .^'
Iirrlgr:2^;sli*l trp 1g.t3.!&.:e.:.t1, , ls.Lt.ll .t.lttt*, P l:6{0} j'
! :4135519& i/!n * \J i'
1? : !? : *3- r€'{t1** Xv 1&,',tr., 7>.2.tS5* } :d. Lil. 1€. ?*, }.3}: 5 423*'*A41
.4.'i9,i;.l1tJ! .:r 51; n
lJllri.1{.lq:6$6 :p r0. rq. lc }* td{ b 1S.1$.r1.: ;a:{ t l.6l*r er
{ ;?.191"1.:+: *:' e V
1? : lt : 54. lL13** 3F 1*. 1*. ;*. :. ?A?L > t&. tg

"
r* "3&. 13:*: 3 32*?3?444)

3:si1?riq*iS: *:n 5ll nllrlv:5.1.:l:81? ;p rn.!S.JG.lS.t34 > 19.:0 l:.;.t*51t I t:*igl rd
fi JJb.rE ta+1 rt;: R \-/
rl? : 1g;31.1163:s IF l*. lG. ?5.k. **5? > 1S, 1S, 1*.?S. 133: s eet Lio:3:*:

4*tx1$533{4} ?,;?:3rt

HCI RESfrT frcm TCF t35!

To achieve what we described on the previous slide, we can invoke topdump as follows:

tcpdump -nn tcp and host [YourlinuxlPaddr] and net 10.10.10

Then, we can run Scapy as follows:

scapy
>>> ans,unans=sr (IP (dst="10. 10. 10. 20", /fCP(dport= (130,140)))

Hit CTRL-C after you see "Finished to send I I packets".

Now, lookinthetcpdump'sou@ut. Notethatforports 130, 131, 132,133,andl34,wegetaRESET(R)
response. But, for port 1 35 and I 39, we don't get anything back. It silently rejects our packet because of a

packet filter.

125

' $**r*ning Gcals and TYP**
. Overa[| Scar"lning Tips

? Srriffiag with t*Pd*mF

' hlelr,vark *w**Ping with $*aPY
:. Sixpyltcpdufflp gx*rci**

' illetwork Tracing
. Port Scanning

- Nmap
r lrlnrap Exercise

. OS Frngerprinttng

. Version Scanning
. Nmap -O -sV and

Amap Exercise

- Nessurs Exercise
. Olher Vuln Scanners

. fnumerating Users
. f;.nunrerating Exercise

. Netcat for the Pen Tester
r Nelcat Exercise

Ccurse Raadmail

Planning and

r Explaitation
r Passw*rd Attae
r Wireless Attacks
. Web App Attaeks

Now, we have reached the topic of Vulnerability Scanning. The goal of these kinds of scans is to find

potential security flaws in the target environment. Discovering misconfigurations, unpatched

services, architectural mistakes, and more are what this component of our test is all about.

126

Methnds far Discovering
Vulnerabllitlcs

. How can we determine whether a given piece
of software is vulnereble?
1) Cheek software version number

. Ccrnpensating eontrols nrigfit block exploitation {network- ar hest*
based IPS, etc,)

2] flheck prnt*col versi*n number spoken

3) took at its behavior * somewhat invasive
4) Check its c*nfiguration * rnore invasive

' Req*ir*s aceess t0 target

' Oro r*qutr-es canfiguratisn documentat**n from target environment
persannel

Vulnerability scanning tools can determine whether atarget system is vulnerable to attack in several different
ways. The primary (but by no means exclusive) methods employed by today's vulnerability scanners for
hnding security flaws include:

l) Checking version numbers: lf the software running on a target machine has a version number
that is known to be flawed, we can have a reasonable expectation that the software is indeed

vulnerable. There might be compensating controls in place that block exploitation, such as a

network- or host-based IPS. However, even with compensating controls, most organizations
strive to upgrade and patch out-of-date software.

2) Checking protocol version^s.' A related method for finding flaws involves checking which
protocol versions a given piece of software speaks. Even if we cannot determine the version of
the software itself, we might be able to determine that it speaks an older version of a network
protocol, possibly indicating that it hasn't been patched or hardened.

3) Looking at its behavior.' Even if software doesn't provide us a means for ascertaining its version
number, a tester's tools can interact with the software across the network (or in certain
circumstances locally), measuring whether it exhibits behavior consistent with a vulnerability.
These behavior-discoverable r,ulnerabilities could be due to old software or misconfigurations.
Measuring behavior of target programs could be somewhat invasive, as the tester has to interact
wjth the target in various ways.

4) Checking its configuration: With local access to a machine, or even with remote access gained

via some other mechanism (such as an exploit or password-guessing attack), a tester could
analyze a system at a hne-grained level to determine whether the configurations of the programs

on the machine exhibit weaknesses. Such tests tend to be even more invasive than the options
above, as they requires the tester to gain access to alarget or get a copy ofthe system
configuration from an administrator.

127

Mare Methcds f*r Siscovering
Vulnerabilities

5] Run exploit against it - potentially dangerous,
but p*tentially v€ry useful
* $uscessful exploit shows the vulnerability is present
* Helps lower false p*sitives

. filote that failed expl*it dces not indicate that the system is see*rel

, Not all vulnerebilities lead to expl*it
* Sar*e misconfig*rations could be asssciated with

infsrmatisn leakage

- Sthers might indicat* a concern, but without
exploit*tion being p*ssible

There is another method for finding vulnerabilitres:

5) Running an exploit against target: This often most invasive fbrm of vulnerability discovery involves

achrally trying to exploit the target, potentially taking over the system. Running an exploit could be

dangerous, as it could bring down the target service or entire system. But, running an exploit can be

very helpful for testers, as successful exploitation proves the presence ofa vulnerability (false positive

reduction). It should be noted that failed exploitation does not mean that the software is safe, however.

It's possible that the tester's exploit failed for any number of reasons, but a different attacker might be

able to get it working. So, actual-exploitation can lower the number of false positives, but it doesn't

really help us manage false negatives.

We'11 analyze this issue of the safety of exploitation in further detail at the start of our 560.3 class.

It's also important to note that not all vulnerabilities lead to exploitation. Many vulnerabilities don't let an

attacker take over a machine at all. Instead, they could be associated with information leakage or other

problems. As penetration testers and ethical hackers, we are interested in all kinds of vulnerabilities in a

target environment. Our jobs involve reporting on the issues we discover, whether they can be exploited or

not. Obviously, exploitable mlnerabilities have higher imporlance than non-exploitable issues, but all
discovered flaws should be reported.

128

Nmap Version $can and Amap
as Vulnerability Scanners?

. C*uldn't Nmep's version scannlng ar Amap be used to
find vulnerabilities?
* Yes, by deteding an cld version cf scme so€ware.".
* ...or by farmu*ating packets and p*ttern matching *n the res*fts
* It is certainly passible."" You'[* have to lock up and lnterpret

those results y*urself, by hand
* Watch out for false B*s[tives

. BuL". Nmcp versicn scanning and A:nap are limited
* Thcy send a packet and sean the respo*rse for strings
* ?hey een't have rneaningfuf comrnunleatfsns with rnultiple baek-

and-forth messageg

' Hewever, the Nmap $cripting E;rgine can

As we have seen, both Nmap and Amap support version checking, which sends probe packets to given ports

and matches specific strings in the response to determine the version of a service. With that functionality,
couldn't we use those tools to find vulnerable systems? We certainly could, by researching the versions of
the detected services on the target machines to see if they have a history of flaws. Currently, such research

must be done manually by the user of the tool. Nmap and Amap do not tell you that the given target is

vulnerable; they merely give you information about the service version, which you must look up.

It's imporlant to note that, while the version scan outputs can give you insight into whether the target is

vulnerable, Nmap version scanning and Amap are limited. They send a probe and scrape through its
response looking for certain text. They don't have meaningful, complex back-and-forth interactions with
targets to measrlre more complicaled behaviors to determine if the given service is vulnerable. Thus, Nmap
version scanning and Amap are prone to false positives. lt might look like a given service is vulnerable
based on its version number. However, it's possible that there are other compensating controls that prevent
the issue from being exploited. Simple version checking cannot look for those compensating controls. A
more complex back-and-forth interaction is required to measure whether the target has the behavior of a
vulnerable service, notjust its version.

However, outside of its version scanning functionality, Nmap has been extended to include a powerful
featwe to let it have complex interactions with targets using scripts to measure for vulnerabilities. This
feature is called the Nmap Scripting Engine (NSE).

129

. Se€n*ing G*ai* *trt* Type*

. Overal! $canning Tips
z Sniffing with tcpdump

. Network $weeping with $capy
- Scapyltcpdump Sxereise

' Network Tracing
. Port Scanning

- NmaB
r Nmap Exercise

.0S FinEerprinting

. Versicn Scanning
. Nmap -O -sV and

Amap Exercise
" Vulnerability Scanning

i Nessus
r lilessus Exercise
l- Other Vuln $eanners

. Enun'rerating Users
- Enumerating Exeruse

. Netcat for the Pen T*ster
r Netcat Exercise

Caurse Roadmap

Planning and

Exploitation

Fassward Atlne
r Wireless Attaeks
r lffeb App Attacks

Because the Nmap Scripting Engine (l.lSE) can be used to discover some vulnerabilities, let's zoom in on its
functionality in more detail, running an exercise on some of the NSE scripts to see their capabilities.

130

Nmap Scripting fngine

. Goals of th* Nmap Scripting Engine {IVSE}
* Allqw fcr arbitrary messages to he sent or received by

ttdmap to multiple targets, running scripts in parat[el

- Be easily ext*ndabte with community-develaped scripts
* Support extended netwsrk dlsccvery {whois, Fhl5, etc.}

- Perfcrm more saphisticated versian deteetiun

- fonduet vulner,ability scanning
* Fetect infected or backdoored systems
* Exploit dlscovened vulnerabilities

r May someday rival Nessus and NASL as a general-
purFflse, free, open snilrce vulnerability scanner

The Nmap Scripting Engine has numerous goals, which really extend the capabilities of Nmap beyond mere
port scanning and OS fingerprinting. These goals include:

. Utilize Nmap's efficient multi-threaded architecture to send arbitrary messages and receive
responses in parallel to and from multiple targets

. Create an environment so that a development community can write and release free scripts that
can easily be incorporated into scans by all Nmap users

. Support network discovery options that augment Nmap's port scanning and OS fingerprinting
features, including whois lookups, DNS interrogation, etc.

. Enhance version detection functionality beyond "probe and match"' to look more deeply into the
interaction with a target

. Perform vulnerability scanning of target systems to find configuration flaws and other issues

. Detect systems that have been infeoted with malware or backdoors based on their network
behavior

. Support exploitation of given flaws to gain access to a target machine or its infomation, not
supplanting the Metasploit exploitation framework, but offering some subset of exploit
functionality integrated into Nmap

With these goals, the Nmap Scripting Engine could one-day rival Nessus and its Nessus Attack Scripting
Language (NASL), if developers increasingly embrace the NSE.

131

Nrnap Scripting Engine Scripts

* Oftsn used in Same$, Lua is fast, flexihle, and frce, with.a
srnall interpreftr that works acr055 platforms and is easily
embedded inside of oth*r applications

- Described in detail at www.lua.org
. T* invske NSH:

* To run all scripts in the category sf 'defnult':
nmap *se ltarget] *P fports]
* f * run an individual seriPt;
i rusap -*script=[aLJ., categorY,dir,script...]

ltaigebl *p- [Ports]
- Add "--script-trace" for detailed autput frcrn eaeh script

r Writl*n in the Lua pragr*rnming language

Nmap scripts are written in the Lua scripting language, which is commonly used in computer games. Lua is

wideiy regarded as a flexible and extremely fast scripting environment. lt's interpreter is free, cross-

platform, and has a very small footprint, making it ideal for incorporation into other applications, such as

N-up. Lua is named after the Portuguese word for "moon", and is described in detail at www.lua.org. The

Snorl network-based lntrusion Detection System (IDS) and Wireshark sniffer also offer Lua support.

To invoke the Nmap Scripting Engine, a user would invoke it either with the sC option (to run all scripts in

the 'default' category), or with the --script: option to choose specific scripts. When running specific scripts'

a user could choose all (to run all scripts), script categories (which we'Il describe shortly), a directory

containing several scripts, or individual scripts by name. Alternatively, these different methods can be

combined in a comma-separated list.

To get detailed, step-by-step output from a script as it runs, Nmap supports the

--script-trace option, which operates rather like Nmap's --packet-trace option, but is focused

on scripts.

132

hl5f Script CategnrieE
, ilevelopers who create NSH scripts identify each

script in one s'' more categories:
- $afe: Not designed to crash targets, c*nsume bandwidth, or

exploit vulns
* Intrusive: May lcave togs, guess passwords, or *therwise iffipact

the target
* Autlr: Test for issues ass*ciated witl: authenticetion

- Malware: ilet*ct network-aecessible nralwere or backdCIsrs
* Versionl Fetect the version of target's serviees
* *iseovel"y: Info gethering about target environment

- Vutn: Look for a given vu**erability in the target

- External: Sends inf*rmati*n to thit"d-perty for l*ckup {exenrple:
whois), Third party could record query, response, or IF address

- lefau*t: Run this set of scripts when l\trmap *s invoked just using
-sC cr *A withuut a eategory af individual script specified

The Nmap Scripting Engine supports several different categories of tests, with each script fitting into one or

more script categories.

The first category is "Safe" scripts, which are designed to have minimal impact on a target, neither crashing it
nor leaving any entries in its logs. Furthermore, these scripts should not utilize excessive bandwidth, nor should

they exploit vulnerabilities.

The second category is "Intrusive" scripts, which may leave logs, guess passwords (which could lock out

accounts), and have other impacts on the target machines.

The "Auth" category are tests associated with authentication, including some password guessing and

authentication bypass tests.

The "Malware" category measures for the presence of an infection or backdoor on the target. Examples in this

category include checks to see if a port used by a given malware specimen is open on the target and whether it
responds as that malware would.

The "Version" category of scripts attempts to detemine which versions of services are present on the target.

These scripts can be more complex than the normal version checking of Nmap.

"Discovery" scripts deterrnine more inforrnation about the network environment associated with the target, and

include some whois and DNS lookups, among other functions.

The "Vuln" category includes scripts that determine whether a given target has a given security flaw, such as a

misconfiguration or an unpatched service.

The "External" category includes scripts that may send information to a third-party database or other system on

the Intemet to pull additional data. Whois lookups fall into this category, because they send data to whois

servers, which may record the query information.

And, finally, the'Default' category includes scripts that are run when Nmap is invoked with just the -sC or A
syntax and no specific script category or individual script specified.

133

Sorne fixarnpl* f!58 $cripts

r Scripts are located in their own directcry inside the Nrnap
data directory
* Often lusr"/shar#nmap/scripts/

r The file script.db inventaries and categsr;zes the various
types

* Several dozen seripts look for a variety of different
canditi*ns:
* Leok for commel"r SF{S vul*er*bilities cn target */ind*ws machines
- Eeterrnlne if an F?F serv*r suppc*s bounee scens

- FNS servers s*pportinE asne transfer
* Tell if a Wi*dows shell is on a glven port
* Test if SMTF server can he used as a relay
* Many, many more

The scripts associated with NSE are found in their own directory called, appropriately enough, scripts, which is
located by default in the Nmap data directory. On many Nmap installs (including the one associated with the
VMware image for this class), they are located in /usr/share/nmap/scripts.

lnside this directory, there is a file called scripts.db, which inventories the several dozen scripts in the directory.
This handy hle simply associates the given script with its category. Thus, we can easily search for "safe" scripts
by running:

grep safe /usr,/share/nmap/scripts/script.db

"lntrusive" scripts can be found by with:

grep intrusive /usr,/share/nmap/scripts,/script. db
Note that the categories are in all-lowercase within this file.

In the scripts directory, there are several dozen scripts. Some of the more interesting include:
. A script to determine if an FTP server supports Nmap bounce scans

. A script to find common SMB vulnerabilities on Windows targets

. A script that attempts to do a DNS zone transfer from a target

' A script that looks for Windows shells on TCP port 8888, which could easily be altered to look for
them elsewhere

' A script that analyzes whether an SMTP server can be used as a mail relay, thus leaving them open to
abuse by sparnmers

134

'€c**xi*g G*aln afid Types
'CverallScanning Tips

i Sniffing with tcpdLrmp
. lrletwork Sweeping with Scapy

:- Scapyltcpdump fixercise
. Network Tracinrg
. HOft beannrng

,, F{fnap
r Nmap €xercise

. OS Fingcrprinting

. Version Scanning
r Nnrap -O -sV and

Amap Exercise
. Vulnerability Scanning

- Nmap Seripting Engine

'#€##. Nessus
. Nessui Exercise
r Other Vuln Scanners

. Enumerating Users
.- Enurnerating fxereise

. Netcat for the Fon Tesier
- Netcat Exercise

Course Rsadmap

r Planning and

' Exploitation
r Password Attae
r Wireless Attacks
r Web App Attaeks

To get a better feel for the various vulnerability scanning tools we've been discussing, let's nrn some of
them against our test targets in the lab environment. For these exercises, we'll be experimenting with
Nessus and the Nmap Scripting Engine.

135

NSE Exercise
. Look at the different kinds of scripts

that Nmap supports
gedit, lusr/sharelnmap/scripts/script. db

gi3* E*t *efi .E*&rc?t 3**!$ g*qu***ts jlgq]

We will now look at the functionality of the Nmap Scripting Engine. Start by opening up the file that
contains the inventory of all of the scripts that have been defined for NSE:

gtedit /usr/share/nmap/scripts/script. db

If you don't like gedit, a simple WYSIWIG editor, feel free to use another Linux/Unix editor with which
you are lamiliar, such as vi, emacs, nano. etc.

This scripts.db file has a very simple format, essentially just mapping script categories such as "safe",
"intrusive", and "vulnerability" to the specific script file, which ends in .nse. Note that some scripts are in
multiple categories, such as dns-zone-transfer.nse, which is in the default, discovery, and intrusive
categories.

Let's count the number of scripts in some of the oategories, by sending the script.db file through the wc
(wordcount) command with the -l (where that lower-case L stands for linecount) option:

cd,/usr,/share,/nmap/scripts
cat script..rh I grep safe I wc -1 € NOTE: That is a dash

lowercase L, not a dash one.

wc -1
wc -1

+

+

cat script.db I grep discovery I

cat script.db I grep intrusive I

136

NSE r*bots,txt, nse Script
. Letk try running Nmapk rsbots.txt.nse seript

* This script pr:lls robsts.txt files frcm terget web gervers
* The robots,txt file tells well-behaved web erawlers to ignsre given pieees

of the file systenr
* ftun this script against X0.1S.30,SS, just cn TCF port 8CI

tsrtefts ?.&slep 3"*& { http:lfr:mep.*r4 3 et 3**g-&?-3* t*:}S 6*T
!,1te.e*ti*g p*!'tc 6* 1&. ?*,3*. $g:

<Y*?F <FFIJTTT:

/t{:t} *pefi *f.t#
reb*t*.txt: h*s 4 d95611*r{*d *'rtrt*g
I ie&*e ? I ryi " *.t3,t s. t *f f f f *1 de r g p* r x *x*\ I t r *& f f !Le*
,rc*x*itiv* *t*ff

Addr e!s I G0: 0e;?9:€l[; 3] :tt {r,@*are}

cr***: ! IF address i: t}*st upl **a***& iil *,3S *ee**4s

nw&p -{} "-sr.r2pt*r*Y;+t,.txt^:'rs€ LE"LA.L*,** -* &*

Let's experiment with the robots.txt.nse script. This script will pull the robots.txt file from target web
servers. The robots.txt file tells well-behaved web crawlers (such as those from the major search engines
that are attempting to find new pages on the world wide web) to ignore given directories or pages on a
website, because they have information that the website owner doesn't want to be included in search
engines. In other words, robots.txt tells well-behaved crawlers what to ignore, possibly because it is
sensitive. Attackers often focus on the directories and files listed in robots.txt, because they may include
some juicy information. As a penetration tester, we'd very much like to have a copy of the robots.txt files
from all web servers in our target range. Note that robots.txt is a file readable by anyone who accesses the
website and is usually included in the document root of the web server. Thus, it really isn't a security
feature; it merely helps keep things out of search engines that shouldn't be there. But, it is also a red flag
indicating where more interesting parls of a web site might be located in the file system structure.

The Nmap script robots.txt.nse pulls robots.txt files from target machines. Let's test it by invoking it as

follows:

nmap -n --script=robots.txt.nse 10.10.10.60 -p 80

Note that we are just having the script focus on TCP porl 80 to save time. During a more comprehensive
scan, we would have invoked it with sV and possibly with scanning all target TCP ports 1-65535 (-p 1-
65535).

ln the Nmap output, you should see the directories that are listed in the robots.txt file of the target web site.

137

Getting robots.ht with wget

#'e g*1t w**4 Tewim&4 ww* Help

; -z€*8 :724 d FE: 3:lES "- http-i I rg " t0, i g. 601 r*tstr . rxt
oft*€{ting l* t8^\&.10.6S:80. ., {e*{tecte*.

reqrJ**t **rz'r., a*taitjing r**.p0n5€.,. ?*0 *K
e:rqth: 1?? [tsxtlp'ai*J

*.*g t*:' r*bct5.txt.3'

10€%{********e***=*€**#:*#-=*=:=*>] }22 - " "'X/S in

?*88-11-14 18:31:4€ ,4.79 148/ct - 'robct*.txi.3' €aved ,l:LltZZJ

cat r*l]*t5.txt
:J5*r- ag€€1t : i
isall*t*:,1iflr;:*e$,

0i*a11*s: lcaz-bi*
i cxl l"ew : / st*t f I t *]"de,rl;:e ro**al,/ f r ed 1'f zl-es
isalLot;:,/re*sitiva $tuff

,1r*ilot L txt

While the outpul from the Nmap robots.txt.nse information is helpful, note that the script doesn't display the

full contents of robots.txt. It merely lists directories, without the "Disallow:" notation and any "IJser-agent"
restrictions that help specify which browser types should get access to which data. To get that information,
you'd have to surf to the website from a browser, going to 10.10. 10.60/robots.txt. Let's do that using the
wget tool, a helpful widget for fetching web pages via the command line. We'l1 start by changing into our
home directory:

#cd

Then, let's get the robots.txt file from 10.10.10.60.

wget 10.10.10.60/robots. txt

This should f'etch the page. To display it, simply type:

cat robots.txt

So, if we can fetch robots.txt files manually, then of what use is the robots.txt.nse script? It can be used in
an Nmap scan of a large number of machines, pulling back information about robots.txt file restrictions and
the tipping off a tester to go back and investigate a given robots.txt file on specific target machines in more
detail. ln fact, let's pull robots.txt files from all of our target maohines;

nmap -n --script=robots.txt.nse 10.10.10.1-255 -p 80

138

ruSf Fxereise * KIin nbtstat vs, Hmep nbstat

Nrnapk nbstat-nse
scnipt pulls NeIBIOS
i*fiormation from a
target
- frlame, MAC address, *ser

infs

- ilather like the Windows
nbtstat cCImmand
r l'lnte tlrat Wi*dows

esmrnand is nhfstatn
!,{hereas Nmap is nbstat
{ririsstng t}* Frcm \rVindcws, run the

nbtstat esmmaftd against
10.1*.1"0"1CI t* get a f*el
for the inf* we ean qe,t

Ig*rldrrxa; E1&"1€.?6,9: Bc*p* l*; []
ll*tBIS* *es*i;e lfeeEirc H*rm ?abls

€tat**

!!> nbtstet .** 19-1&-16"19

$an* TglE

TNfHTTf
YETHIT?

{*s}{t6}!*sxx€g*lJr {s$}
r,t&,*td*ssuF {lli}:s:*rTY {93}
IH€t'Eer*lsa€ {1€}
IS"T*rlrrrY. ", " "{Ba}n0fiIt{ts?ttt}?s*l <*3}

Recistered
ftesistered
Beg is te rrcd
ReqiaLered
F*glst*red
ll€gist ered
Sas!st ared
Fe&l*te**d

r,fit#rg
Biltrlitg*s$r
*€*uF
t:fiEterlz
GA*Ur
t,r,lt&ru
irHt4{tE

f*S* l*l*ra*e - GB-A**29**1*@**ll

Next, let's explore the Nmap nbstat.nse script. This script works like the nbtstat command in Windows,
which pulls NetBlOS over TCP statistics, including machine names, MAC addresses, and user names. To
get a feel for what nbtstat output looks like on Windows, bring up a cmd.exe and run it against the Windows
target 10.10.10.10 as follows (the A means that we want to use an lP address):

C:\> nbtstat -A 10.10.10.10

We can see the machine name, MAC address, and a user name of Administrator. While we oan run this
command from Windows, we can also gather similar information from our Nmap scans via the nbstat.nse
script. Note that although the Windows command is nbtstat (with a T), the Nmap script is called nbstat,
without the t between the b and the s characters.

139

l\l5E Exercise - nbEtat.nge

l*rtirlg F{e*p 5.*S i lritp:,rl*,Bep.*r* } &t Z8*9-*7'}t} ,

ille'e5t:nr tut:,t> 8n 1S.lS. Le.1+:
t 5i1*'#$: *g* t1'*1*d t1*{t'1

tTAtt :tsglie€g
/4w *Fe* tlztF
/1cp *pen http

t*1/t.g *?*!1 %E{Ft
Zzgftr-p *pe, fi*tbi*t"tt]'

l"Ltp 4g*t1 431'alt{

s.Sd{'et! : *6',4t :7& :tt :&4 :{f. 1'4&#e{* t

ttfF *s** httpE
445rt.ii nFen r.trBsofa "dB

llip sper, ,,{€5 f" 1i!
!"6?6/tr,t sFrn 15€'*r"ilt*rfir
e*:?Jtrp *i:en rtrs

i:l'

Z rarLrt r*$!,jl.t;: ;j
!"Aitat j g*?4105 ne*; Z&X?LZ|Y, it€?*:{:5 at*st AF$IH:

!57*,qT*8. r:t*t&E3*fr&t1**;&{:?g:{*:*rt:te
:.

til11 g,i*t*6$1 4e{4ri*
i19:**i*g ** etl:*. iirk-typ€ E{1*f4B {et*€rt}*!}.

9:.rf, i!* *y?e1
l? t4* 1\4.'r 37515 arl &e'44t }li" x*. 1*. la { f f : f f : I
f:ffl t*li 1*.16,T3.?
!?;4*it{"?33*31 *rp r':plf 1*.|e.1*.1& iE'at 4S:
1:F*:**
11 : 4S'.54.7 48*68 :p !€. 1*. ?3. ?.4*;S4 3 1s' 14. 1$. :
9 ?4&1?!4??1r?4ei?14?t3it?l xi* l4?;l a!&$* 1*i!+

LT t 4* t\4,748&V? :f :*. 1*. 33, f ,48334 e L*. t€' 1$. 3

1? ; 4* 154. 14?91{ Zg 26. LC. r* - *.443 } 1A - :e. ?3, : "

{! l;*il*>
l:4€;54.?41?&€ ItP 1e.1$,?5,:';ii];*4 5 1S

3. 24&v7 7472212489.711727 t *\ ui* 4
lt ;4*: 14.?4?*&l * \e. \.*.1{1. 9* "3}g} > 18" 1*. ?3.
: R €:Sl8t *(t.l48l?14];l eln *

: 9 ::i81??4?31::4e*$?21tat ltL* 4**& 4lset X46*i
LT t 4& :54.7 4'124& :{ti :*, 1$, ?5. 3'4*?34 > 1*' :&. 1S.

?,c41?1"4?:1: ;4&1?:4??11 iBl $i* 3&72 <*tt 14{}*"
3,?:4$:34.?41684 tP]6,f*.;5.t.4@354 $:I4'l*"3*"

14&27 1472t :74&\7!.4?:1 {*} v.i$ 3*}: 4ets r4&*e

tapdi**p -z* ae9€ 1q":&.1ft.1&

Next, move to Linux and run a sniffer so that we can see all traffic going to or from IP address 10.10.10.10,

without resolving names or services. We want to get a feel for what Nmap does when invoked to run a

script without specifying a target port.

tcpdump -nn host 10.10.10.10

Then, run Nmap against 10.10.10.10, configured to run the nbstat'nse script:

nmap -n --script=nbstat.nse 10.10.10.10

As Nmap runs, look at the output of yor-r sniffer. Notice anything interesting? Nmap is doing a port scan

of the target machine, analyzing the interesting ports on the box. Even though we told it to run only the

nbstat.nse script, it does a port scan. Why? Because it needs to know which ports are open so that it can

determine if the service(s) the script tests are available. A full three-way handshake scan (a "connect" scan)

has been run. Then, if the appropriate porls are open, Nmap runs the nbstat.nse script against the target,

showing the results in its output. You should see, at the bottom of your Nmap output, a line that says

"NBSTAT: NeIBIOS name:" and so on, with the results ffom the nbstat.nse script.

140

ruSf fixerciEe * SlqB Scripts

L*ek at the
*vailable NSH
5l4S scripts
for
lntenacting
with target
Windows
rnaehincs
sver Slt{8
Then, inr.oke
the sn'lb-
€n[Jm-
u5€r5,nse
ageinst
x0.10.1*.1CI

/r**r*1f1*$pJrc tiptr5l5e*' t&€rh-ril1,nt, et€
l4liareln@p/Et.{tt5/:,rt er}a'dcn}}sS t1d

'
rlsta relnsspls{ rigtslrsb. errn " gf}r,!15,i:$e

jirr Eri3r r/nrup/!",pr i re€! +:!a b' t(ec re9.a:f,
t3*itretfieettJ ttrtqt t/ *eb -terJft " ret9t*t15 . rle

r.a:h* reli:fl{{tllr rii}t !.t58*- **tfi" 91r*te5 . s$4
,1ii,rr€1re$.I!{ fl 3pt*lt*F- ***,?. sc4.9, fi 5e

t{ ! laerelt6a?l E{ri.stElt*i}. 65 dirt6:{att.r,t+
r'rhar*/**gltl5r rrp!5"15*b - feex*e. ffiea

916rf ,erpf i(i:{?ij'crdr-(e,,.t'y sj* rrr
"J 3ialc.'n'dFJ 1. i ipr 5 1..€b :Pr ye r' r I al \. n(e

t. Itlle{el46.pJ ttripr$l5ee'*grt4f- icf* - fite
*5 il*l.i*f6lf&*p/ 9{,t*ttl t**,tt .e*dl}1** .n**

a{Ii{'* r4na* 5.tl { httg,:/l*#!:"Qf;* ! *t :*16-S8 1;1 1 168 €$'l
5rrltt 5€6**is* repl*tet|.
9*;ir' .*ir*rt f* tr&,2*,1&"t&

I ia t*# t&"8*839 laic*ty:.
T E?A''E s{fi}lr€
/t{F aFc* $tr.+r*tt-d$

&&&t at, t *t;.&t \ Z? r{f r S4: Fg (vl**nte}

ls lrltifJ6hlrft 1!:ri$:*/r{r:8t$/16::*.*!€

r**t "4' "${ript*r**"e*ilq.u56.$. i1t9 :e. :.s "
:s. llt .F *41

Next, let's look at the Server Message Block (SMB) scripts included with Nmap, many of which were written by
Ron Bowes. First, we'll look at the name of all of the SMB NSE scripts included with this version of Nmap:

l-s /usr,/share/nmap / seripE/ srnb* . nse

Here, you can see scripts that will let us perform brute force password guessing (smb-brute.nse), check for
conlmon lulnerabilities (smb-oheck-vulns.nse), and plunder the target for information (smb-enum-domains,

groups, processes, etc.).

Additionally, the smb-psexec command allows us to provide a userrrame and password in the administrators
group (with --script-args:smbuser:[AdminUser],smbpass:fAdminPass],config:[ConfigFileName, stored in
/usr/share/nmap/nselib/data/psexec]), as well as one or more commands we want to run in a configuration hle,
and this script will attempt to cause any targets that it discovers communicating using SMB to run the commands.
It operates in a fashion similar to the Microsoft Sysinternals'psexec command.

Let's try the smb-enum-users.nse script:

nmap -n --script=smb-enum-users.nse 10.10.10.10 -p 445

ln the output, you will see the results of the port scan, indicating that the given porl is open. Then, we can see a

list of users and their Relative Identifiers (RlDs), the unique porlion of each user's Security Identifier (SID), in the
output. We'll look at the technical mechanisms used by this script later in book 560.2 to iterate through a series of
RIDs to find user names.

lf you have extra time, you can try the other SMB.nse scripts in this directory.

141

NSE Exercise * 55Hv1
Suppo't?

r Let's run the sshvl.r'lse cheek against
1 0.10. 10.60

- This witt tell us if it supports the older and weaker
55H protocol version 1

tartrng Nrsdp 5"0S (http.l/fi{*ep.org } at ?SS9-e7"39 17:38 EST
K {0.1e90r} neock lsoF{} stertrd {t!****t*3*rs3}. 0 r**fits peridi*g
i{ i$.l8?ss} Ttp {0nn€(tion req*e*ted ts 16.1€.1S.60r?l {IS* #1} fIS I
X {S"13?6s} ns*etr'-1oop{i started {tis€cut*5*'!rs}. 1 ave*t$ pe*di*g
K {S.1*?8$} {*11***ek: {Ol{Ee{? *u{{€5S tur t7* $ {1*"1*.}0,&g:il?l

l: T{P I&.LQ.7t.l:53683 " lg.l8.t€.6$:??
'

CSHi'IECT

{9"1s30s} nlcck lo*Fi} *tertad {t:!*e*$1*}*,is}" g *?e*ts sendlr:*

nmap -n - -3svitt=si?rvl.nse --rcripi"trace 10, ie.t6.og -p zz

Next, we will use an NSE script to test whether machine 10. I 0. 10.60 supports SSH protocol version l, an

older form of the Secure Shell protocol that is subject to man-in-the-middle attacks. SSH protocol version 2
is far stronger. We can measure whether the server has this issue by invoking Nmap as fbllows:

runap -n --script=sshvl.nse
--script-trace 10.10.10.60 -p 22

This command tells Nmap to run the script called sshv I .nse and to display the trace of the script's activity
to the screen (--script-trace), against target 10.10.10.60, using TCP port 22. Note that we are only
measuring TCP port 22 for this example, to keep things focused and quick. TCP 22 is the port commonly
associated with SSH, of course.

Note that, becaase we have specilied a given script with the "--script:" syntox, we do not have to specify

-sC. Indicating u speciJic script implies that we want to invoke a script scan sa -sC l's not resuired.

Once you've run this command, look through its output carefully. Can you get a sense of what the script is
doing? Note that the --script-trace invocation makes Nmap put a lot of details on its output. Normally, you
wouldn't run Nmap with this option. Still, for debugging, troubleshooting, or fine-grained analysis, this
option is helpful.

So, does 10. I 0. 1 0.60 support SSH protocol version I ? The answer should be yes.

142

L*cking at the
sshvl - nse Script

f !;e{:I y',-r5I
""shdrelnf;?asl5rI 3Fitr55hu:..[]1 -,i,I I-. \,j ia-4raggL;l lcLLl3>l'r'31:iu ;u! :!

ra EPi, Yj.}? g!3*r{i1. 3!}*16

a Lr"6 :: ':

Ar3.* 4n-h a;.^,1 Sr"Et

+{lits = trrl{tif*llt*tt" F".:{1J'iLro' ror i{r l '' rrtrdl: ne,*r*. ktl {,

f3€ g.el Vier4 b*arih Jb*ir t*cutr€r:r f elp

{;
*fe?f *?:*l: 5&s* piiBl.,. tJ***
' +t*** t3*tuq ::i I

ttxi*E*le*ted *Ft;**i {}ra*** a li
e d'{'aur I .e1!" ___Chan ge 22

-l

1"rH#'J: ro 23 *nd
€9-l rte" qd*i *5! | ,J !' '7:::::;:X"::: :." "'" rene*rve # :::

tl' tle
-

{nn.li.rl *nrl ir qe1r,.'!trJ "q-*rl

Now that we've got a feel for what these soripts can do, let's look at them in more detail so that we can
avoid some common mistakes in their usage. Let's return to the sshv l .nse, opening it in an editor to look
at a very important setting in each script:

gedit /usr/share,/nmap,/scripts/sshvl.nse

Now,lookforportrule - shortport.port_or_service (22, "ssh")

This line tells Nmap that it should only run this script if it frnds TCP port 22 listening on a target machine,
or if a version scan finds thal the ssh service is listening. That's good, but what happens if an sshd is
listening on a port other than TCP 22? We need to know.

Let's reconfigure our sshd on our own Linux systems to listen on TCP port23. You can do this by
opening the file /etc/ssh/sshd config:

gedit /el-e/ssh/sshd config

Find the line that says #Port 22. Edit that line so that it says:

Port 23

Make sure you remove the # from the front of the line. Save the file. Now, make your sshd re-read its
configuration file by sending it the HUP signal:

killall -HUP sshd

143

NSE Scripts Withsut and with
Versinn ScanE

i{p lpeiq :aip

** "-.g I. Lti r rl rp ilre66t 1.9 d' ,rireq at l€

1&:11 *[zT
Z*tarertifi* **{t5 a* \7.7 '*'4.1: ;

I lhss: 99b !ib'"e$ Prrr l-
€T3r€ :*EiJtr{g vliBstfi* !

tftt'* spr* eslx tlF*&*Stt 1.1 ttlriltr]4sl :l '99;

i1 &.r,n,?J6.?+.?

* "&"7'!
"1'*1a',.&*: 4L*; 4t: {Jn15

1{e d€t*{tl** F*l
re6*lti &t lillli:l

ttj ***e1 1 tP
.e*r€

. F:-6&rs rt*tltt ar4Y tLt,att

h*rt uitl d{t}rr}ed x* $.?7 $

,.@:-,:&Y'F :,,,.:,-::'':':..::''. ii.::::

?tt 2?v4 $+?*tt T{f "

{tz{.& t&ap 5.** I hitF:t/**4F"*.6 \ et ;E*s',i}?'3*

lrt*rctit2q p8tt5 8* 1?;.4-$.11 .

t?\,,1 &9?1 .s*t itlJ t&g & ?13 Tt? '
r3l {LiST€!J}

:?1 {tf5:ati*3

rhefi: 996 .l*g*ti F .t:
5?4* €eR?:{C

lttp *F*s rE13*,
ll?'!rf, cpPft lllq
!:lj1a$

"'1
y' \,4

ii,:ait,.o "tr" / \
rr,+p ;+r,e l&al F* ,, nrr, **' b(4ii+il r ' 6 38)
F{ srd! i I,--. t I'LJ

rif".a* " * - tv .' 3{r!*€€5*h?},, l t* lt't . &.*. 1

tsEV -*'. Et.ttl"s*LY:.*n. j.:7'6'e.X

Verify that your sshd is listening on TCP port23, by running:

lsof -Pi I greP 23

The i option indicates that we want to see network usage, while the -P modifier makes lsof display port

numbers, not service names. lf you see a line of output mentioning sshd and TCP 23, you are ready to go.

Now, run Nmap with the sshvl.nse script against your localhost:

nmap -n --script=sshvl.nse 127-0.0.1

Do you see any output from the script (not Nmap overall, but the script itself) commenting on whether SSH

protocol version I is in use? You likely do not, because Nmap only performed a TCP connect scan,

discouering that TCP 23 was open, but not realizing that it spoke SSH. lnstead' it just looked up the
..normal" service associated with that port, which is telnet. It never measured whether a telnet services was

listening there, because we didn't do a version scan. lnstead, it just looked up that service in the nmap-

servicesfile. Also,thesshvl.nsescript'sportrulethatchecksfor22or"ssh"servicecouldn'tseethatTCP
23 spoke ssh, so it didn't try to measure the SSH protocol version.

Let's try it again, but this time, telling Nmap to perform a version scan in addition to running the script:

nmap -n -sV --script=sshvl.nse 127-0-0.1

Now, you should see in your output that the listener on TCP port 23 not only speaks SSH, but that it also

uses SSH protocol version 1. Our script ran properly this time because the version scan was able to detect

that TCP 23 spoke the secure shell protocol.

144

. Scanning Goals and Types

" Overatl Scanning Tips
? S*ifnnq wiih tepdrimp

'N*tt$crk $wrcpi*g with $e*py
- Scapy/tcpdump Exercise

. Nehsork Tracing

. Port Scanning
- Nmap
r Nmap *xercise

. OS Frnrgerprrnting

. Version Scanning
r Nmap -O -sV and

Amap Exercise
. Vulnerabrlity Scanning

- Nmap Scnpfing Frrgrne
r tlSE fxercise
FffiW
- Nessus Exercise
r Other Vuln Scanners

'Enumerating LJ$ers

- f.nu:'nerating Exercisc
. f.'letcai for the Pen Tesier

r N€lcat hxercrse

Csur$e Rcadmap

. Flanning and

' Expl*itation
r Passwsrd ASa
r Wire:ess Attacks
r \Aleb App Attaeks

While the NSE has great promise, and is starting to get more use in professional penetration testing and

ethical hacking, it doesn't detect nearly as many flaws as other full-fledged vulnerabiiity scanners. While
NSE might someday catch up as a general-purpose vulnerability scanner, today, it is used mostly to fbcus in
on a specihc set of issues. That's not a klock against NSE. It's objectives center on augmenting Nmap and
bringing more flexible analytic capabilities to the tool. But, it is arealization that, fbr now, Nmap with its

NSE capabilities will not supplant traditional vulnerability scanners.

Most modem l.ulnerability scanners can measure for the presence of thousands of flaws in a target
environment. One of the most full-featured vulnerability scanners available today is Nessus, our next major
topic.

146

Tenable Netwark Secu rityk
Nessus Vulnerabillty $canner

. l4aink*ned and distributsd hy Tenabfe ltlehzucrk Security
* r{w}v.R*5$u5.0rg

. Free download
; Nessus ?, 3, and 4 all st*fl supported

' Plugins measure flaws in target environment
* Over 30,S0CI plugins, rnix of open*ssurce and comnrarcial* As sf F,ugust 1, 20fiS, cprnrner*ial plugirr suhseripti*n r*quired fcr n*n*

horne uge
r As new vul*:erahilities are dise*vered, Tenable personnel release

plugirrrs
* Available t* paying customer$ irnmediately via Conrmerciel Fe*d serviee

" UE $ 1rl$il p€r y*€r per Nessili seenner {indudes tech $upp*rt)* Free Hnnre feed, but only f*r N*n-Csmrnercial Use

\ | {/

The Nessus Vulnerability Scanner is maintained and distributed by Tenable Network Security. Available
for free download from www.nessus.org, there are acfually three versions of Nessus actively maintained
today: Nessus 2, Nessus 3, and Nessus 4. Nessus 2 includes an open source scanning engine, supported by
a development communify and Tenable Network Security personnel. Nessus 3 and 4 have a closed source
scanning engine, and is actively maintained by Tenable personnel.

The scanning engine is the component of Nessus that actually scans targets. But, those scans conducted by
the scanning engine are based on plugins, individual small programs that tell the scanning engine what to do
to measure for each individual security issue on a target machine. Some plugins are open source, while
others (specifically the more recent ones) are commercial. Today, all plugins can run on either Nessus 2, 3,
or 4. There are over 30,000 plugins available today, with new ones released on almost a daily basis. Most
plugins are written by Tenable personnel and researchers, although a third-party development community
does develop some.

Prior to August l, 2008, Nessus supporled a7-Day Delayed feed, for all plug-ins on a free basis. As of this
date, though, all recent plug-ins require either a Commercial or Home feed subscription. Tenable's
Commercial Feed service makes new plugins immediately available to paying customers for a US $ 1,200
annual fee per Nessus scanner. This fee also includes tech support. Non-subscribers can get free access to
all Nessus plugins but only for Home use. All commercial use requires a Commercial subscription feed as
of August l, 2008. Many professional penetration testers and ethical hackers who rely on Nessus do
subscribe to the commercial service.

147

filessuE Architecture
Nessus is a client-E*rver *rchitecture
* Client: nessils
* Server: nesgusd

flients and servers available f*r Linux,
MacOS X, \{lindows, Solaris, FreeSSS

Nessus ? versug Nessus 3 & 4
* !{*s us ?: Free and engine freely redistributable

{sorne plugins frc*, *tlers c*mmereial}
. ?enable claimq "r*nable ie **xsri"at*d t* t:ae

pe!'!€gterc€r v*r*j"erg *g bl€ssxle ?,x" in €ha
l4esses f,;L*

* Nessus 3 & 4: Comr*erciat, 50Va or m*r€ faster,
with cornrnercfal plug-lns

- Tl-*e sanl* plugins work in bothn unless th*y use
extended plugin functlonality
nfNesEus3&4

Tcster

f$5us
i:li*nt

.fars*ts

Nessus itself is a client-server architecfure. A user invokes the Nessus daemon (nessusd), and then uses a

Nessus client to connect to it. The nessus client configures and manages things, while nessusd performs the

scan. All reporting occurs at the nessus client. While nessus and nessusd can run on separate systems, they are

often run on the same machine. Nessus clients and servers have been released for Linux, Mac OS X,
Windows, Solaris, and FreeBSD.

So, should you use Nessus 2 or later versions as a professional penetration tester and ethical hacker? Nessus 2,

3, and 4 are in widespread use right now by professionals around the world. Nessus 2 is free and can be

redistributed on a free, open-source basis. That's why we'll mn our exercise on it in this class. Furthermore,
Tenable has claimed in the Nessus FAQ that they are, "Committed to the open-source version of Nessus 2.x."
So far, they have held up this commitment, continuing to make it available for download and supporting it with
the latest plugins. Some penetration testers and ethical hackers rely on Nessus 2 andutllize the open-source

nature of the tool to add their own tweaks to the underlying engine.

Nessus3and4arecommercializedversionsofNessus. Fufthermore,theirpluginsrequireaCommercialFeed
subscription. Their scanning engine is faster than the Nessus 2 scanning engine, with most scans taking half
the time with Nessus 3 or 4.

Currently, the vast majority of plugins work for Nessus 2, Nessus 3, and Nessus 4. Tenable has introduced
some extensions to the language in which some plugins are written (the Nessus Attack Scripting Language, or
NASL for short), that only work on Nessus 3 and 4, however. According to Tenable's web site, "Starting with
Nessus 3.0.2, NASL scripts can write directly to the ethernet level, handle non-blocking sockets, etc. While
enginccrs at Tenable will try to be backward compatible with Nessus 2 most of the time, these functions will
be used to improve the results of the scan or to speed it up."

148

t

a

Update Plugins Regularly
Update Nessus plugins beforc
Ta get latest plugins, ycu first
need to register

- Register and subscribe at
www. netsus,0rg/plugins

* You'll get a serial nurnber
* In Wind*ws and Mac OS X, enter

serial number into 6UI

- In Linuxn Solari*, and FreeFSS,
enter serral number via:

ir ne*sus*f,eeeh *-r6qister
lseriall

Nessus 3 & 4 auto-update plugins
every 24 hours by default
To force update now:

In Linux, Solaris, and FreeBSO, use:
d nessus-update-plugins
In Windaws and Macg5 X, use GUi

a test

Sle €dit g€H 3€crdnsl 7&r HeW
nt.,*ii't " t tti* " : r*qintu, ru{r 6{tiv61:.+a acde hd$ beeil rdg}st*red t}ar}Berlf - tli&4a: yqu.-

f*t{h:** th* $e,ae3t \u;.q* 9ct ffdff pl"'}i$i.*er*u*-+ts.,. i,
li€nsug irirtgllaii*n i5 1191{ us"ts.flete, :..
t*re t+ {{!.1 ?e1*lar\l *9e t*€ q*ffi*e{ 'ce:tur.ilp{3ale'pl;t=

'ddl*
+ dlii indl.e 'i,e $pdF'3, Fro(e)1, plfdle {::il <l E 1p..r/ffi.lci)L
!* *r "php2c1or*tr*ez

ile''r,ts ufri:1tt' 8\ u4 iti9

You should update your Nessus plugins on a regular basis 1o rnake sure you are testing against the latest set
of known vulnerabilities. To get updated plugins, you'll first need to register with Tenable. Upon
subscribing, registering, and providing your e-mail address, you will be e-mailed a serial number for use in
downloading the plugins. In the Windows and Mac OS X versions of Nessus, simply enter the serial
number into the Nessus GUl. ln Linux, Solaris, and FreeBSD, you need to run the nessus-fetch program to
register your serial number with your given Nessus install.

Once your serial number is registered, you can then use it to download plugins from within Nessus. Nessus
3 and 4 automatically update plugins every 24 hours by default. You can shut this off by altering the
Nessus configuration to require manual plugin updates, a helpful option if you want to have control over the
plugin update process. Nessus 2 requires manual intervention to update plugins.

Once you've gotten a serial number and registered your version of Nessus to use it, you can update plugins
manually right away. ln Linux, Solaris, and FreeBSD, this is accomplished by running the nessus-update-
plugins script. On Windows and Mac OS X, you simply invoke plugin update via the GUl.

149

Updating ltessus *ffline and
Keeping an Eye on lsew Plug_inq

" Suppose ycur system running nessusd isn't or the I*ternet, but you

need updates
r You could update e differen? nessusd cstnputer and move the plugin

directories...
r OFn ycu could download thern vla a brcwser and m*ve the file to the

nessl,sd scann**g system via USB
* Ysu'll need an unused serial namber

- SuB tO
. httpi//piugins'ne55us.orEy'efflift€.phf {l'le55i.l5 3,x and later}
. i:ttp:l/plugins.nessus'ctg/rnanuff [-register'php {Ness ?'x}

* Dswnload the revisians
* While ycu &re c*nducting a p*netr*tiorr test, keep an eye *n the latest

pkrgins released* trttp:/lwww,n*ssus.org/plugins/lndex.php?view=newest

Sometimes, we are faced with a situation where we cannot update our Nessus plugins from the system

running nessusd. Perhaps the nessusd computer isn't able to access the Internet, yet we need it to get an up-

to-date set of plugins. We can accomplish this in two ways. First, we could put another system with

nessusd on the lntemet and update its plugins. Then, we'd need to copy the plugin directory to our lnternet-

shielded nessusd machine. The directory on Linux is /usr/local/lib/nessus/plugins by default. On Windows,

it' s c :\Program Files\Tenable\N essus\plugins.

Tenable provides another option. We could use a browser to surf to the appropriate URL at nessus.org, and

clownload the plugins directly, without using Nessus at all, but instead relying on our browser for doing the

download. We'lI need a serial number that hasn't been used for a Nessus install yet. We enter that serial

number into the web form, and then we can download the plugins in our browser. We can copy the file to a

USB token, and move it to the machine running nessusd.

It's also important for us to keep an eye out for new plugins while we are conducting a test. If a vitally
important new plugin is released while a test is underway, we need to analyze whether we should run

another scan using just those very new plugins against the target so we can have the latest, up-to-date

results. Ofcourse, there is risk in this approach, because those new plugins haven'tbeen carefully

scrutinized yet, either by our testers or the community. Still, we need to keep this option open and discuss it
with the people who formulated the Rules of Engagement for the given test'

150

Recsrd Plugin Feed Info
Befare Starting a Test

In addition to updating y**r
pfugins bef*re sterting a
test, reeord which ph:gins
y*u wiil use
Windows:

L]Tre ''c:\Froqse
f il-6€ \ geEelrle\1{€q*u*\
Fluqii€ \FlugiSn-f €€d_tnf, e . tft c"

LinuxlUnix:
:1 cat /ssrllcdallltbleea*us/
pJugrfts/plugln feed :nSo.ine

. Alsc reeord the *nes y*u
choose t* run:
- All? All-exeept*dangercus?

Specific categ*ries?

type "i: : \fpegr&e} Fi:€s1.T*nab}e\Xr*e*s* j
ins\sJugin*feed*inf o . ine"
r{-8ET "'?ffil1256?35":il-fEED " "'Fegjstcrad

S{e;..,$*1*,.,,Hiww ffi;&t,,']kbs.:,,,91q.,,,.:,,,..,..
c*e f

"s
iii*ieif lctul*;u s": :;p t Jg iirirpi *g rrl f j

i*'Fti. i.r,:s
t**Itl 5E? * '-7***3333*?3$": j

LUGllt 6t[0 - "Re*:stered ''rI

In addition to updating your plugins before a test, you should also record the plugin feed info you are
running the test from. Nessus maintains this information in a file stored with the plugins. The file is called
plugin-feed-info.inc, and records the PLUGIN SET number, essentially a date and timestamp of when that
set of plugins was released by Tenable. Make a copy of this file and store it with the results of any s<;ans
you conduct.

You should also make a note of the particular plugin configuration you use for the test. Are you enabling
all plugins? All plugins except the dangerous ones? Are there specific plugins that you are shutting off?
Are there categories you are choosing to run or not to run? Make sure you write down the specifics of the
plugin groups you choose in your testing notes.

151

Nessus and Dangersus Plugins

za*** *l :'

& * r'

j i €*Siadrra*44{,*t*tt.t .i.rat4tr ar?rt4dtst4l

,, :it+Pjltefrteefr\WF

: :*tteilie6it+ri
'.-1rr !.riti r- ? ;d.: :.C ae .! "ll.d.
tt:ak'et t t!#ea. la B :W& nai

1 :t+t *t 44{Jet rt "x.}z.a *, t,r,e I til ee::+

Same gtlessus plugins
eauld erash * target
sy:tem or otherwise
impair it
* Scme Senial sf Serviee

plugins, but not all
. Ssrne lust nreasure versit:rn

nurnber
* Fasswcrd guessing

plugins

- Others

By default llessus shuts
off all d*nger*us plugins

You n':ay chccse t* enabl*
them, but check the Rules
of fngagement

The authors of Nessus plugins have characterized some of the plugins as dangerous, meaning that they
could impair a target system.

Some, but not all, of the Nessus denial of service plugins are dangerous. Some of the denial of service
plugins merely measure the version number of a target serr,rice; that is typically not dangerous. Others
actually launch malformed packets at the target service, which could cause it to crash, a dangerous
circumstance. Some password guessing plugins are dangerous because they could lock out accounts in a
target environment. Other plugins formulate benign exploit code for atargel, which could crash a service
running on it, again illustrating a potentially dangerous circumstance.

By default, Nessus disables all dangerous plugins when it is first run. You have to enable individual plugins
by hand if you want to run them. You'll note that the denial of service category is enabled by default, but
some of the plugins within the categoty are shut off.

So, should you run the dangerous plugins during a penetration test or ethical hacking exercise? Consult the
Rules of Engagemenl. ln most environments, you will not be allowed to run these plugins.

152

Nessus Results

Nessus resu*ts incl*de:
- An estimate *f risk fevel
* A description of each

discovered flaw
* Reccrnmendati*ns for

res*luti*n
Ycu e*n often improve
upan these results* Verifu issue nranually, if

passible
* False F6sitive redu{tion

Prsvide clear*r explanati*ns
Tune risk level to tarqet *rganization's profile
Provide eust*mired reeom mendatisns fsr target
organiaatlnn
Prioritize fecommendations

Nessus results include an estimate of the risk level associated with each finding (High, Medium, or Low), a
brief description of each discovered flaw, and recommendations for resolution. Note that most professional
penetration testers and ethical hackers use this Nessus outpul as a starling point, refining it and providing
value-added analysis. Don't just throw the Nessus results at.targetpersonnel as your entire final reporl.
Instead, help them focus on the most vital issues. The Nessus reporl might be an appendix of your final
report, but it should not be its centerpiece.

lnstead, provide value-added services by verifying the Nessus results manually if possible, researching each
discovered issue and trying to see if the given target machine really exhibits that problem, or if we've got a
false positive. You may need to review the configuration of the target with the system administrator, or
research methods for using tools like Netcat (which we'll cover in more detail later in this class) to interact
with the target manually. Furthermore, tune the risk level to the target organization's risk prohle, as well as
the importanoe of the machine on which the vulnerability was discovered. Even though Nessus says that a
given issue is High risk, for a given target in a given environment, it may be Medium or Low risk. Of
course, the opposite could also apply.

You should also strive to provide clearer explanations ofissues than those offered by Nessus results.
Describe the issue in the context of the given target environment, using examples of how the given threat
could be exploited within their industry, if possible. Also, tailor your recommendations to the target
organization, based on your understanding of their environment and motivations. And, finally help
prioritize recommendations to focus on those findings that are most urgent.

153

" €eanning S*als *nd Typas
. Overall $cannrng Tips

r Sniffing wilh tcpdump

" Network $weeping with $capy
- Scapy/tcpdump Exercise

. Network Tracing

. Fort Seannjng
. Nmap
r Nmap Exereise

. OS Fingerprintrng

. Vorsion Scanning
r l{map -0 -sV and

Amap Exercise
, Vulnerability Scanning

> Nmap Scrrpting €ngine

. Hnurnerating Users
r Inunrerating Exercise

' Netcat for the Pen Tester
,- Netcat *xercise

Caurse Roadmail

Flanning and

r Expl*itation
r Fassword A
r \rvireless Attacks
r Web App Attaeks

Now that we've gotten an overview of Nessus functionality, let's tour its configuration in-depth during a

hands-on exercise. In your Linux machine, get ready to run Nessus against our target environment.

154

NessuE HxerciEe

* Sta* by inv*king Nessus
Server
ii neasusd -n

Then, invake lJessus cli*nt
* n€ssl^ls &

Login from the client to
the scrver, using a user3F
and password nf:
* L*gin = rfist
* Passw*rd = lnessuspwl

- D*n't *se OS rc*t passwcrd

First, we need to invoke the nessusd server, running it with a D option for daemon mode, running in the
background. This will make nessusd load its plugins, which may take some time.

nessusd -D

Once nessusd is ready, you will get your command prompt back. If you get an error saying that nessusd
can't bind to the por1, that is likely because you already have nessusd running, using that port. you can
likely just connect to it if it is already running, or kill it with the killall command and an aigument of
nessusd.

once the nessusd server is rrrnning, we can invoke the Nessus client, by typing;

nessus &

We use the & here to kick the Nessus client into the baokground so that we can get our terminal back.

The Nessus client GUI will ask us for a Login name ancl Password to access nessusd. Use the default Host
and Port, and type in a iogin name of root and a password of lnessuspw!. Please note that you are typing in
the name and password of the root user we created in Nessus, not the overall root user for ihe operating
system. The operating system root password is different from this password within Nessus.

155

La*king at Fluglns

Cli*k anil
Frag lr*r*
tc r:*ke
rryind*rq.

1*e pbJgieis th*|ft&ve r*e,&eitY E* t?atk7*t1..*t* i4.r\ti{e$ *rh6st*
has€ 1i&* d?Feb9€,*. *!.t 3i!g*l$ ea!iva!* d1*n ;t Fear eenl y*urse{*t a?

dudqt ls ile .cErF:ele

.uatrula *rrr A{r*ufris

1l j3i.re dli -;ii '' .

" !lrmi sr;e^te*';Fc

'?ryta.*tltlu Nat* that SSmS Arf [-* >ra !ilrai4'.;tr;. . turr ,.f 4J
"t , . -

:*i*€$ij1u*,1garr * *rJ: selectedo +tth*rs *re mot " 4
Aettt ,4**a t1*.s ?rantruslrali+n *e*ira *4+:*l *t ta{v\te V+1t14,&h1hty &

:?ty:***
"tt

j 1u14lsns,3 tlf* ?4*urit F*4Ii:s! *rnftl sf **rvi{e !&t1*rt**il;t'/ &
{}.t143,+lt. t&N5fd 1 4;1 .1 t:v€{f1**
,ia*z*.g V-**:,iel

By default, the Nessus dangerous plugins are disabled. Upon successful login, Nessus tells you this with a

Warning message on the screen. Click OK.

Let's explore these dangerous plugins in more detail. Go to Plugins tab, and select the Denial of Service

category under "Plugin selections". On the bottom area ofthe screen, you should see the individual plugins

in this category. Make your Nessus client screen bigger by dragging the bottom comer of it so that you can

see the detail on the right hand side of the individual plugins. Wherever you see a yellow triangle with an

exclamation point (l), these are dangerous plugins. Note that by detault, the dangerous ones are off. Also,

note that some denial ofservice plugins are not dangerous, and are turned on.

Let's look at another category to show that some dangerous scripts are located outside of the Denial of
Service category. At the top, click on the Web Servers category. Within this category, look at the CERN

httpd CGI name heap overflow. [t is dangerous, and off by default, but it is located in the Web Servers

directory.

156

Counting Dangereus Plugins

us!"llgcal/LL*{rxest:}?1plu$lns,/**t5cat}* cras*, nrs I : 6sr
{arr oFu!n' I '

u s rl loc * t/ I ibl nes sus /p *gi*s I hp _LLrs f hft is a d*rb-lorter-casc-L,
#t*q${yl$.tr f}F*3AL}',-, .-, . rx{rt fl dash-one.

f ti* r I *€aZ ltrib/ne**urlplq:6€$s/a**'4s4 "
pt_ {eteg*ry { A{?-*fi'{3AL} ;

/ u* r I l* e*L / I lbf r: *s s r.! s/ill rtqi n s,1 enapaq a**em 55 I
rylAff glEt{let};

I v e r f \o c e\ / T ib f ez* s *v e I g\rs6 ir:'* / cisc o*flt t p,
{Ae? *f;1'?x6l} !

/ u* r lLur.aL /tiby'xessercl gl*ryins I nu*zlenabl.e-
s, *e:1 I s*rif:t {.at***tyl&qf DE*IALi ;

I t*x r I \ sr,el I T i* I n**xc** tpl uE l n i 7 s r"'r *,r'ru d o s

tA{? 08F15&L};
l ** { / lut*Z / 1, LW l *esstte f plvg2*x l d*xinc htt p dr s . *a*L : s{ ri pt, eateg* r

{A{Y *f$3Af,} i t

.ep -r -gr 1. &CT SFi{IAL lasrfL*a\lliblnessuslpluqisx I sc

-ftr I AeT Dgf{IAt /irsrliocallltb/ne$9usl

Double clicking on a plugin shows details about it, what is measures, recommendations for addressing it,
and so on. Alternatively, you can view the individual plugin scripts in the directory
I usr I Io cal I hb lne s s us/plugi ns.

A11 dangerous NASL scripts contain a line that says "script_category(ACT_DENlAl)" in the script code.
Thus, we can count the number of dangerous plugins by running the following command:

grep -r -m 1 ACT DENIAL /:osr/Loc,aL/LIb/nessus/plugins I wc -1

Again, please note that we are using wc with a dash-lower-case-L, not a one.

We are using a grep -r here instead of a grep * because the number of plugin scripts is often too
large fbr grep * by itself to handle. But, with the -r option fbr recursing that directory instead of
relying on the shell to expand the * wildcard, the command works just fine. The -m 1 indicates that we
want to count files that have one or more occurrences of the string "ACT_DENlAL". After finding the
string once in a given plug-in file, grep moves to the next file because of the -m 1 invocation. Running
this command might take a half a minute or more, because there are many thousands of plugins to check.
Just leave offthe J wc -l to get a list ofthe dangerous plugins.

grep -r -m 1 ACT DENIAL /usr/1oca1/1ib/nessus/plugins

By the way, to do a similar thing on the Windows version of Nessus (not included on the course DVD),
you could run:

C : \> cd "c : \Program Files\Tenable\Nessus\plugins\scripts"
C:\> findstr ACT DENIAL *

157

Lo*king at Credentials

:jt*ttaet *4a14 |

tl't {t},}5/.titt} I**a,tt} J

!\1t F#- ifr Lu Lit

t4.,t1,t1tt;ilt rt, r* tiae

149?A{e t ', ';2E l*t .

l'&*t ff;r rltatr.t rt lli?r a- tftlel t{*tt

aihas ttra *#1 :

&targ'. Et{ v&L{9r :

v9

Fiette*' ?+4k* ra/tzt rsit|I

tt4t tt{qr}.'l .

E,;e *die'l* ;

t8*. d&nr trltt4141!

Click on the Credentials tab of the Nessus GUl. Nessus allows testers to enter userlDs and passwords for a

target environment, which Nessus will use with various plugins that can supply user credentials to target

machines. Some of these plugins acfually try to login to various target systems and measure them for

vulnerabilities.

Most professional penetration testers and ethical hackers do not use these options, instead relying on Nessus

scans for vulnerabilities that can be measured without any user credentials a1 all. Some pen testers and

some auditors do use these options, however, to gain more in-depth insight into security vulnerabilities of
target maohines that can only be measured using valid authentioation credentials.

In this tab, we can enter Server Message Block (SMB) credentials, used for Windows file and print sharing

services and domain authentication, as well as Linux and Unix Samba. Several exploits fbr Windows

require a usefilame and password of a limited privilege account, but can deliver local SYSTEM-level access

with the exploit. We can provide an account name, a password, and a domain name.

We can also configure Nessus with an SSH user name and password, as well as public and private keys for

authenticating to machines in the target environment. The SSH password option is listed as "unsafe!",

becauseleavingcopiesofpasswordsforsshaccesstothetargetsinsideofNessusisasecurityrisk. Of
course, entering SMB passwords into Nessus provides a similar area of risk as well.

Additionally, you can see fields for configuring Kerberos credentials, including the Key Distribution Center
(a Kerberos server that distributes keys) and networking options.

158

Now, click on the Scan Options tab. Here we can see the port range that Nessus will scan. you could.
configure Nessus to scan all ports, a range of ports, no ports (by entering -1), or the default set of por1s. By
default, Nessus scans the ports listed in the Nessus service file, which is located in
lusrllocallvarlnessus/nessus-services. This file contains about 9,000 ports, about half TCp ancl half UDp.
Open this file and look through it:

gedit /usr / Loc,aL/war/nessus/nessus-services

The Soan Options tab also lets us configure Nessus parallel scans, setting the number of tests and target
hosts that Nessus will scan simultaneously. If we are scanning a web server, we can also tell Nessus where
the CGI scripts directory on the server is, so that it can look for well-known vulnerable scripts.

The Optimize the test option tells Nessus to only run a given test if the port associatecl with the service is
listening, or some other test determined that the servioe might be running. Unfortunately, it's possible that
the port scan or other test may give us a false negative, which would make Nessus set to "Optimize the test"
miss a vulnerability. Still, this option does make tests significantly faster, as many plugins are skipped
when the target doesn't secm to be running a given service.

The "Safe checks" option is another method for forcing Nessus to avoid functionality that could clisable or
crash a target service. By default Nessus turns off dangerous plugins. Going further, some plugins have
two options for measuring whether a vulnerability is present: 1) by checking its banner or 2jby interacting
with a system in a way that might cause problems. Enabling "Safe checks" makes these plugins use only
method #1, resulting in even more safety on top of disabling the dangerous plugins. in the version of
Nessus we use in this course, "Safe checks" is enabled bv default.

159

Lroking nt Part Scanner OPtions

,eF fi*rp4gr,@s:1
:'*'+p!'nr*':brgst r'ri*r Pre6i$a.;g*

. 5tafi*t;!i6*9

.rr,6il!;P

{*Gd€r !jrs{**rrd P*llr *! t}rse4,

&llini]*r *lird15le la t*se af th{ :as* }es :

?ilfr'*er 4! thetkt t* lt4r;t*!q1 *l ?.11* "'afi* 11t11* |

F tt C? i*€ l{,?r :

, .. {}* a ft ee3e t+4r.t}p s* Lr* lF b*ttt+ ,-r\ttlt} it

; qpa!#i:€ ehe t*!t
. lEie t:le{k1

us3:ryi14 h*5lt bf ahet t4,!1 e44r*E+

f0n:tdrdrrr

anap i;';.q.gl #rap*F l
: t4ee|*a tt4li,t' t{ r{t et
Nt:lta3l't:: 4t2l*f

:5t?t t'-a*
' ua4 l/;{ L4 l*4 t,r*1rt:*41*tat
fj->%l (11 1! d,,r'

' srurith*i.;n '
' tiio,ui,ort {;\"t "

:

Staying in the Scan options tab, at the bottom, we oan choose our port scanner, using the built-in Nessus

scanner, which most testers do. Nessus also includes a special scanning function to try to find a LaBrea

tarpit, atool by Tom Liston that slows down aggressive scans by responding very slowly to session

requests. Nessus will identify LaBrea based on its timing characteristics and tell the Nessus user, helping to

explain why a scan is going so slowly.

Nessus also can invoke amap, the scanner we discussed earlier, to perfbrm port scans and service

identification. And, Nessus includes a scanner for pulling infbrmation via the Simple Network Management

Protocol (SNMP).

Also, as you can see in this Scan Options tab, by default, Nessus pings hosts before scanning them, but this

feature can be turned off.

Please note that for many of the options in the Nessus GUI, you can hover your mouse over the option to

make Nessus display a brief help statement summarizing the functionality of the given option.

160

J

Setting Targets

ll€e.t fi|e...

:. -,:,,
5f$ri rhts sca$ G2,t

Note that we left the default for the Plugins, Credentials, and Scan Options tabs. In the Target tab, though,
we're going to enter atarget for our scan. We could specifu one host, a range of hosts, a list of hosts, or a
file from which lists of hosts can be read.

We'll scan target lP address range l0.10.10.50-60, so enter that into the Target(s) field.

We have an option to tell Nessus to perform a zone transf'er from the DNS server configured for the
operating system. Nessus will then scan all hosts referred to in the results of the zone transfer. While that
sounds convenient, it can be dangerous, because there may be hosts in the zone transfer results Lhatare
outside of the scope of the test. Thus, we recommend that you not use this option.

We can also have Nessus save its session state so that we can resume a scan that was begun before.

161

We'lI skip over the User tab, because most penetration testers and ethical hackers don't use it. That tab

allows for configuring cerlain acoounts within Nessus that have limitations, in that they cannot use certain

plugins or scan options. Some auditors might need acoess only to a limited set of Nessus scanning

functionality, and making restricted user accounts within Nessus can help support such needs. But, most

prof'essional penetration testers need the ability to nrn any combination of plugins.

Move on to the Prefs. Tab. Here we can set some detailed configuration options fbr various components of
Nessus. We can configure the port soanner to scan ports in random order. Nessus can detect network

oongestion indications based on slower responses over time, and try to compensate by throttling back its

scan.

Nessus can also remotely enumerate accounts on Windows target maohines by iterating through the

Security lDentifiers (SIDs) of acoounts, a technique we'11 cover using different tools (SlD2user and

user2SlD) in more detail in an exercise later in this session, 560.2.

Many of these preferences are associated with configuring the amap scanner, the services identification tool

we discussed earlier. Another large set of them are associated with configuring Nessus to launch THC
Hydra, a flexible password-guessing tool that we'11 look at in depth in Section 560.4 when we cover

password guessing.

Briefly review these options. The default settings for them are quite reasonable for most tests.

162

Canducting a Scan

Activate
tcpdump
looking for
traffic going
from your
machine to
net 10.10.10
Scan target
range
10.10.10.50-
6t)

"d Prrt!(an:
l0 10.10.:5 ?-negfs

jS Frns(d,..
1+.:S.1C-55 a:*?tks:

1q:li.1i1.:E {

-a| P1! ()ian

'vtr t*r f$11 pt*ti:(dl .l*{sit{l'vrJ ?*r lllil pr*ti:(dl .1*{sil{1 l:1,is'"e*L*g 6* et&*, link'typ(AS1os+B {E-thrrnet:,
l, (dpturp crze 96 bytei
12:Jn:i?.)17S5? i?0 dhs has 1:.10.iS.13 lp:1
I0. tG. 75 . 2

22:3*:17.73?919 ar! }JhG-tlas 1&-}e. 36.'4 teltr
10. 1G . 75. 2

:3S:1?.1*9?i6 !? 16.1*.75.?.'194: * 1*. t*.1
,1&.139: 5 163:*SS77g:14356*9?TSiili ?ij.* i3

t(!:,1{E!r -*a rlet 18.i.9.16

The I(B tab is used to configure the Nessus Knowledge Base, a database in which Nessus sLores information
about soans in progress. By saving the Knowledge Base, you can optimize the speed of later scans by
having them rely on information gathered from earlier scans.

Next, let's start our scan of target range 10.10.10.50-60. But, before you start the scan, run the tcpdump
sniffer, configured to display alltraffic associated with our target network, 10.10. 10, but without resolving
names or looking up ports. We oan do this with:

tcpdump -nn net 10.10.10

Then, click on "Start the scan" at the bottom of the Nessus GUl.

You will see the Nessus scanning window appear. Each target host undergoing a scan will get a progress
bar in this window. Note that you could stop an individual host by clicking on the Stop button next to its
progress bar. Or, you could click on "Stop the whole test" at the bottom of the screen to abandon the test.
Even if you do abandon the test, the interim results will be displayed. Note that at the onset of your test,
each IP address in the range 10.10.10.50-60 will briefly get a progress bar, but the only ones that will
remain are those that respond to the pings sent by Nessus.

Let the test run without stopping for a few minutes. If it hasn't completed at that time, olick on "Stop the
whole test". We want to look at our interim or final results.

163

Review Results
Then here- Then her*

'l^/:a;t
tt .

i. lzlu:til leru*l ra liglr**g 4il L.: {tt11qt.. {}.11t:.

***tr.p!*rz:

lhe t€*916 !l*cl i: {\11'f1t1"t4 a ,t81t1.:L t*?1":,,
t'a;*g l:t*el 1t *t:?: t.ttr,*1tr*r144tj &t i*1tr.t. ,&".14,)ld! enil a*r,*6ild:
;.t€: i{*r.}l"re4 1* it*&1 t*ra.

Afr allet-{*{ ?,&t e4,;r:'>4(t'l} t}u 4 l*,r,t, *4rr:4* a24 *ltl.crl/. z?te

Next, let's look through our results. On the left-hand side of the screen near the top, we see a summary of
the subnet(s) that we scanned. We only scanned a single network, I 0.10. 10, so click on it. Then, below the

subnet list, we'll see the Host list on that network. Nessus should have found and scanned 10.10.10.50 and

10.10.10.60 in our larget range. Click on any one of these hosts, and the Porl pane shows us the ports that

were founcl to be open on that host. We can then click on the ports to determine which Security Holes,

Security Wamings, and Security Notes Nessus found lbr each target on each por1.

A recl stop sign icon indicates a potential Seourity Hole, possibly a high-risk flaw. The yellow yield sign

indicates a Security Waming, possibly a medium-risk flaw. And, the light bulb indicates a Security Note,

which may or may not be a risk. Note that we must analyze these issues rather than just labeling them as

High-, Medium-, or Low-Risk issues in our final report.

Look through the findings of the two targets you scanned.

164

Rep*rt

Nessus supports a
variety *f report
formats
* NBE is the standard

f{essus farmat
* We recornmend y*u

save in NBH f*rm, s*
that you ea* apen it
in Nessus and then
save as oth*r
forrnats such as
HTML sr ASCII

;ormats

{14tt*":.tt?.}ete f&}q.*.i-**t, . vs9s1s1,2Vqy"g11

!t1::i i+m
trilit i i*!:,

t,r'1o qJi:l

Itr *"j *- L

',,:,i0"::Y""1,-::::.: r,,i,
;

r
qdrP 0$',on\

fi4Farrd*t*r*1af : W t
iili5, I,rn -Jr -S

l'lirt i€30!*{d!erl

,{F}{

!ldl ,A!{i liviS - A?tr(rdtr"itl
' nrr.i!" *F" I

reffixl;:*,u,**u*,**n, ffi

lil**

In the Nessus report window, you can click on "Save results". Nessus allows us to save scan results in a
variety of formats. The default format understood by Nessus itself is NBE. Other formats include XML,
HTML, and ASCll.

We recommend that you save results immediately in NBE format. Then, if you need to generate any XML,
HTML, or ASCII repofis, you could simply open the NBE file in the Nessus client, ancl then save the results
in another format. Keeping the original in NBE forrnat, though, offers more flexibility for conversion at a
later time.

165

. 6ea*ning G*als and Typ*s

. Overall Scanning Tips
F Sniffin* with tepdums

' Netw*rlq Sweeping with Seapy
? $e*pyltcpdxrnp *x*rrl**

. Network Traong
" Port $eannrng

. Nmap
r Nnrap Exercrse

. O$ Fingerprinting

. Version Scanning
r Nmap -O -sV and

Amap Exercise
. Vulnerability Scanning

r Nmap Seripting Engine
r NSE Exercise
. Nessus
r Nessus f.xercise
,tffi

. Enumerating Users
. fnunnerating Exercise

. Netcat for the Pan Tester
/ Neteat Fxercise

Csurse Raadmail

. Planning and

. Explcitation
I Passwsrd Attac
r Wireles* Attacks
r l&feb App Attaeks

While Nessus is very popular, there are other vulnerability scanning tools on the market. Let's briefly
survey some of them that you might want to consider using, and then zoom into one of them to explore its
capabilities in more detail.

166

Other Vulnerability Scanning
Toals

*Y: W,&triil3Frc. Commercial soiutions: - ";""-.:": {f}*hlT"- ftapid7 ilJeXpase and Metespl*lt Hxpressl www"rapidT"ennr 3€{ g ! I I* Saint: www"*aintccrpcr*tion-eom
* ftetina F{etwork Se*urify Seanner: www.eeye.com
* Lur**ncion Fatchl-irrk Scanner {f*rmerly Harris Stat}: www.lunrensi*n,eorn
- SiDiFLAH * www.sensep*sleom
- C*r* I|I'IFACT - www.esres*eurig.ccm - exploitation tool, but limitetl

- Qualys: www.qualys.eom .ifa Fcrree ffi- *
. Free soturions: =* ffigffim=- WF TJUALY$.

* Sara: www-arc.eomfs6ra, free, but nst as e*rnprehensive as others* Super5ean * www.fsundstone.c*r*. free, but limited to port scans and
Windows infarrnati*n pulling

W{*t'rru**xz*sztXJ -:." n:r -

Besides Nessus, there are numerous other commercial and free vulnerability scanning solutions available today.
From a commercial perspective, products include RapidT's NeXpose, a comprehensive vulnerability scanning
and management solution. RapidT also sells Metasploit Express, a product that provides a GUI for Metasploit
and integration between its scanning and exploitation components, with automation of numerous common tasks
performed by penetration testers and a step-by-step process organized around the workflow ofpen testers.
Saint, a product derived from the Security Administrator's Tool for Analyzing Networks (SATAN), is one of the
original vulnerability scanners. eEye Digital Security has a comprehensive scanner called the Retina Network
Security Scanner. The Lumension Patchlink Scanner was built on the Harris Stat scanner, ancl is used by US
govemment and military agencies as well as some commercial companies. The BiDiBLAH scanner by
Sensepost offers some very interesting feafures, with integration into Nessus and Metasploit.

Some penetration testers and ethical hackers consider using their exploitation frameworks as vulnerability
scanners. For example, Core IMPACT, a commercial exploitation tool, can scan for some vulnerabilities,
specifically the vulnerabilities for which the tool offers exploit code to compromise a target system. While the
scanning features of these exploitation tools are useful, they are not as comprehensive as other commercial
scanners. You will miss some flaws, and potentially pretty serious vulnerabilities, if you rely exclusively on
your exploitation tool for scanning. Thus, exploitation tools do not supplant wlnerability scanners; they
augment lulnerability scamers.

Some companies offer subscription scanning services, which can be configured to scan across the lnternet on a
regular basis, such as monthly, weekly, or even daily. For intranet scans, these companies often ship an
appliance that sits on the internal network scanning regularly, with reporls accessible to authorized personnel via
a web portal running on either the appliance or on the service provider's website. Foundstone and eualys offer
such subscription-based scanning solutions.

And, let's not overlook some additional free scanners. Sara is a free scanner also built on the foundations of the
SATAN scanner. However, the number of vulnerabilities it can scan for is lower than for tools like Nessus or
the commercial solutions cited above. SuperScan by Foundstone provides some helpful scaming capabilities,
but is very limited. lt focuses on port scanning and pulling information from Windows machines.

167

r S{&rtning Gcals **d Typ*s
. Overal!Scanning TiPs

r Sn!ffing with tcPdump
. Nelw*rk *we*ping with StaPY

F S#apylt*Pd*lTl* *xer*i**
. Network Tracing

' F*ri $****i*$
. Nmap
i Nmap Exererse

* OS Fingerprinting
. Version Scanning

F Fimap **':-5v e*d
Amap Exercise

. Vu*a*r*bility $**nning
F Nn+ap $*riPtir*g enghr*
. NSE fixercisa
F *tt**su*
F tr*essus Exerei**
P *ther Vuln Scanners

. l*6tcst f*r th* F€n Teeiar
> Netcat Exereise

Csurse Rsadmap

. Planning and

' Exploitation
r Password Atlae
r Wireless Attaeks
. Web App Affiacks

An important component of many penetration testing and ethical hacking projects involves getting a

list of account names for target systems, a process sometimes called "enumerating users." Next, we'll

discuss several tactics for enumerating user accounts in a target environment so that we can use those

account names during our exploitation and password attacks as we move forward with the test.

168

Methads for Getring Accsunt
Names

. We often need account names for our tests
* We pulf them during our s{ans

- We mey use thern later for our password guessing attacks
. We have numerous methods fer getting account names
. Public sources of information:

- Lsok at e-mail addresses, blog postingsf newsgroup postings, etc.
* Most organizations use e-rnail addresses that cnntain account names:

. {aeeoun},narneJ@ltarget_domain_nameJ* Not every orEanization does this, but enough of them do to make it
wCIrthwhile to try

- Pull potential user names from dccument metadata
. Alternatively, you may want to ask target personnel for account names

for the test
- Such informatian helps tc perform a more thcrough test

- Assume the worst case * the attacker knaws an aeco*nt name... can we get
in then?

During the scanning phase of a test, it is helpful to build an inventory of account names for alargel
organization that we can use throughout the rest of the attack. Later, we may need a valid account name to
make an exploit work. Or, for password guessing, we need account names against which we can use

automated password guessing tools. These lists of account names should be carefully documented and
guarded throughout a test.

There are numerous methods for getting account names. One method involves doing research on the
Inlernet in various public sources of information to pull potential account names. A tester can look at e-

mail addresses in newsgroup postings, mailing list archives, blog posts, and social networking sites. Many
(but not all) organizalions formulate their e-mail addresses so that they contain user account information,
simply because it is easier for users to remember their account name and e-mail address if they both contain
the same information. ln other words, many organizations have e-mail addresses of the form:

[account_name] (@ [target_domai n_name]

Some enterprises are more careful and separate the e-mail address from account names, possibly using e-
mail aliases. But, because the practice of keeping these names in synch is so common, it is worthwhile for
us to try the first part of an e-mail address as an account name.

Additionally, as we saw in 560.1, we could try to pull user names from document metadata.

Arother option for getting account narnes is simply to ask target organization personnel for them. They
may provide them to help you do a more thorough test. Such tests model a worst-case situation: an attacker
knows account names because he or she shoulder surfed them from a legit user at an airport or cyber caf'd.

169

F4ethods for Pulling Account Ftrames

fr*rn LinuxlUnix *nd \#indaws

I-inux I Unix:
- L*cal, with login *r th* b*x

r Get list of all aecountsi ? c*t /ste/passtrd
. 5ee whc i* currently logged in: :: f,irrqer

' &n*ther way to gee seme thing: i wrro
. 5e* wlrat lhey *re d*ing: ; w

- Remotelyr aer*55 the netwsrk:
' Try finqer, but almost always aff nowi t tringar p {targetrPl
r If fr,i35 is in use, puil uscr names with: i yp*ab pa*sr*d

* Pult group names and us*r mernberghiF lqith: i !?c+t {ir*up
r If LDAP is 1n use, query il5er names with: * ldapseeteh Ieritegia.J

Windows:
- PulXi*g user lists fr"*m Null Si"lB sessicns
* Auternating enumeration via U*er2sid and S*d]user conversisn t**ls

,ge':g{'E= *Y.,w. Te&s g
€ {n{ lel{,/pd15"d
I rSt.;:*:8; ros! ; I I 0*t : lb iiljba:*
birl : x : 1 r : : A:t1 : l*i* 1 / $*i{t l *€z.aqt=t
*
&e*E**! :F..2 : Z : 44*#*{t. l t*i11 : f t?}itt',.
1nr:l og r n

a&* : x ;3 : 4 ; *dm: f v er I e**i I e?]i.* f t\8
I"$*it* I-9*" tr

? ; 8, 4 i "; t Lv : l v &? l ****\ ! Lp9 t f r*{ ;

We have other, more technical methods for getting lists of account names. From a Linux or Unix environment, we

can try to pull them either locally or across the network. If we have a local account to login to a Linux or Unix

machine, we could simply look at the /etc/passwd file, in which each user account for the operating system is

defined. Because /etc/passwd is readable by any user on the machine, this is a handy way of getting a list of all

user names for the system:

$ cat ,/etc/passwd

Alternatively, we could run the f inger command locally, which will show us who is currently logged into the

system (even if the finger service isn't active, the local finger command still works). The finger command provides

less information than we can get from looking at /etc/passwd (which shows us all users regardless of whether they

are logged in our not), but it still might be interesting. Additionally, we could run the who command to show us

who is logged in, giving us pretty much the same information as finger, in a very similar format. The w command

gives us more info, showing us what the user is doing (that is, it will display the command each user is running on a

given terminal).

Remotely across a network, some older or less secure Linux and Unix systems may have the finger service running

providing f,rnger information remotely on TCP port 79 . lf that porl is listening, we can at least try to see who is

logged in by running:

$ finger G [targetlP]

Alternatively, if there is an Network lnformation Service (NlS) server, we can use the Linux and Unix ypcat

command to query it for users and groups using the syntax shown on the slide. lf LDAP is in use, the ldapsearch

command built-into some Linuxes can be used to formulate queries for usernames against it. For specific syntax of
the ldapsearch command, please consult the man pages.

From a Windows perspective, we have two really useful options for remotely harvesting user accounts: pulling user

lists from Null sessions and using User2sid/Sid2user tools. Let's explore each of those approaches in more detail.

170

\ffindaws: Pulllng Account
Names via Null SesEians

Windaws l\Lrll sessisn;* SMts session with n* *serlO, nn passr,vord, *o dcnrain membership
if tester hEs SMB ac€ess 9f .a targe! Windows systern {via TCp port
135-139^or.TCP 445), and the mlchine is eonfi$uned tb supforf

-

Microsofl- tile and print sharing..,* The attacker e&n set up a f{ull sessi*n
To test if you can estabtish a Null session by hand:
t:: 1> net use \\ f targ*tlFl ,' !, fu + il

'r

We can pull uner nameg:
* C* tVindows 2000 targ*ts, if

$-lKLF!\System\Cr-rrrentControlset\Control\Lsa\RestriciAnoe.lynnou$ = 0 {thedefault]
* On Windows 200J, XP, and Vista tarqets. if

l-*KLMlSystem\eurrsntControlset\Cofrtrot\fsa\RestrictF,n*nymotfsSAM
= 0

{rr*t th* defbult}

On Windows machines, a Null session is a Server Message Block (SMB) connection with a blank userlD, a
blank password, and a blank domain. Literally, the information associated with who sets up such an SMB
session is Null. lf a tester can connect to the SMB over NetBlOS ports (TCp ports 135-13i) or SMB port
(TCP 445) associated with a target Windows machine, and the target has been configured to support
Microsoft file and print sharing, a tester can establish a Null session. To set up a Null session by hald to a
target machine, the tester could run:

C : \> net use \\ [targetlp] ,,' /If,. ,r rr

The information that can be pulle<l from a target using the Null session depends on the settings of various
Registry keys. Of most interest to us as ethical hackers and penetration testers are the settings assooiated
with getting a list of user names on the target machine. We can pull user names via a Null session from a
Windows 2000 target machine if the Registry key
HKlM\System\CunentControlset\Control\Lsa\RestrictAnonymous has a value of 0. That's the default for
Windows 2000 machines, and is seldom changed beoause many applications designed to run on Windows
2000 expect to be able to get user information via this method. On-Windows 2003,Xp,and Vista
machines, the ability to pull user names via a Null session is controlled by the Registry key
HKlM\System\CurrentControlset\Control\Lsa\RestrictAnonymousSAM. lf this value is set to 0, we can
pull names via a Null session. The default setting for this key is 1, which prohibits pulling user names.
However, on some target maohines, this setting has been configured to 0 by administrator-s to support
compatibility with a given application that requires such a configuration.

171

Tools fnr Pulling Accnunt

:\cgelsE*sE: sFqE
erue*: lFl.1S"16-16
etg ins ui) ;eae ion. . succrsa.
ectinir u:er Lict ($s;g l. indee S).. -

*dsl*istr.etdf f,al:i** gsnFge eder*
lS*H-fftIt tsilrc ru$h
ekodo 9u$d fslnt€mstllqeF

i*erlng aF,., t*c*sas.
r\ted15\q*ue: o*us *{i 1$-1&"1*-18
rua; l&.1*-L*i,14

*:fl9 EF *eg*lgnr.. *uec€6*"
r{t}: *rtfiaEltt14t4r*

XglSdsl*istFatsr
Fti{!TY\fatk*a
gl *i T?* l4ed*

Nanres vla Null SessianE

Enum. by Jcrdan Ritter

- eon:mand-line tocl fcr ptttling
informatiorr from targets
v[a l{ufl sessisns

* T* get u*ers:
l:\> enlxe -$ ltargettPl
* To get qr*ilps and nr*mb*rshiP:
i,_:i\..1 enu* *€ [terge?IF]

Winfingerprint, *y \faeuutn !* GUi-based loolfor
pulling varisttE kinds of
information from a
target, {ncludinq
user*ames via
l,lL-rtl Eessions

Two tools that pull information from a target machine using Null sessions are Enum and Winfingerprint,

both included on the course DVD in the Windows directory. Both Enum and Winfingerprint establish their

own Null sessions as they run, so there is no need for an attacker to set up a Null session before activating

either tool.

Enum is a command-line tool released by Jordan Ritter, which can pull lists of users (when invoked with the

-U option), lists of groups and their membership (-G), and other information from targets. Additionally,
Enum can pull password policy information (-P), such as the maximum allowed password age and the

minimum length password. It can also get a list of available shares from atatget (-S). Enum also supports

dictionary-based password guessing for NeIBIOS over TCP connections on a target Windows machine or

SAMBA file server via its D option, but we'll go over far more powerful password guessing tools in our

560.4 session later in this course. Enum runs against only a single target when it is invoked.

Winfingerprint is a GUl-based tool that can pull information from one target, ranges of targets, lists of
targets, or everything available in the network neighborhood. When run with both its "Domain" and "Null
IPC$ Session" options, Winfingerprint pulls information from a target machine using Null sessions, and can

get a list of users and groups. It can also pull information from Active Direclory and the Windows

Management lnstrumentation (WMI) API, other methods for extracting information from target Windows

machines.

172

Hnumerating SIDs

i On Windows, each groilp and account has a
unique Security Identifier (SIn)
- Unique number for that system
* Consists of 5- [X] - [Y]- [domain/computer] -RID

. X is the revision l*vel {typically 1}

. Y is an authority level (typieally 5 for users end groups)

. Domain is e unique number for the given machine or domain
* Last component is RID

. WelFknown accounts have comm+n RIDs:

- Original adnrinistratsr acco*nt has RID of 5*0 (regar.dless of narne)

- Guest account has e RID of 501

- Users created on the maehine have RIDs 1001 and up

- Focumented by Microsoft at htlp://suppoft. mhrosaft.comlkbiZ4333O

Besides pulling user and group names via Null sessions, we have another related method for pulling
information based on the Security Identifier (SID) for each account. Windows assigns a unique SID for
each user account and group defined on each system. The SID consists ofseveral components, and is
typically displayed in the format of:

S- [X] - tYl - [domain,/computer]-RID

The S up front merely indicates that this is a SID. The X is the revision level, typically given a value of l.
The Y indicates the authority level of the SID, and is typically set to 5 for user accounts and groups. Next
comes a unique number associated with either the individual machine on which the account was created, or,
for accounts that are defined on a domain, a unique number indicating that domain. Then, at the end, we
have the Relative ID (RID), which makes a unique number for the given account or group,

Various important accounts have known RlDs, with a oomprehensive list of well-known SlDs and RlDs
defined by Microsoft in an article at http://support.microsoft.comlkbl243330. The administrator account
has an RID of 500, regardless of the name of the account. lt is possible to rename the original administrator
account on Windows, but its SID still remains with a suffrx (RID) of 500. The Guest account has an RID of
501. lndividual user accounts and groups are assigned RIDs by the system when they are created, starting
at 1000 and moving up by one for each new entity created.

173

$id2user and Us*r2sld

The L*akupAccoufitl{ame Af:
eall in Windsws en*v*rts a $ID
to a Usernam*, *cross the
netwark via Null gessiosl

Th* L*okupAccount5id
converts il5€rrrame tc SID

- ind*p*ndent of
R*strietAn*mynrexs values

- Corrtralled by a secilrity pclify
setting eall*d "Ailaw
anonymous STD/Name
Tra*slatinn" in secpcl. msc

The Sid2l-jser tqsi takes a 5ID
and querics a system for th*
u$er nam*
* We mn automate... sinrple

command tt: ls*k f*r all RIFg
fram 100fi **d rtp

Windows includes two API calls associated with mapping user names and SlDs. The LookupAccountName
API allows an anonymous user via a Null session to convert a SID to a username, remotely across the

network. The LookupAccountSid API goes in the opposite direction, converting a username to a SlD.
Again, these API oalls can be made remotely across a Null session, providing tremendously useful

information to an attacker.

Also, their functionality is independent of the RestrictAnonymous and RestrictAnonymousSam registry
keys that control the ability to extract user names fiom a target machine via tools like Enum and

Winfingerprint. Regardless of the settings of RestrictAnonymous or RestrictAnonymousSam, an attacker

can still pull information. The conversion of SID to username and vice versa is controlled by a separate

setting, accessible via the local security policy (viewable and editable using secpol.msc). In Local Policies,

under Security Options, there is a setting called "Network access: Allow anonymous SID/Name
translation". By default, almost all Windows machines allow User-to-SID and SID-to-User translation,
except for Windows 2003 servers that are configured as domain controllers.

Two tools, Sid2user and User2sid take advantage of these Windows APls to pull information from Null
sessions about users and SlDs across the network. We can automate these calls to harvest user names from
a tatget machine by querying SID after SlD, looking for thosc that successfully resolve into a username.

174

Using User?sid and Sid2user

*aal: Use Sid2user ta harvest names frnm a target
Start by establlshing a Null session
e : \> net r:se \\ [AargetIFJ rt rt lu: " 'n

Then, ask the target fsr its domainleomputer
compoRent of the SID
C: \> u*er2sia \\ [targetlF] [nrachine*narse]

Thenn with the damain/computer cornpon€nt of SID,
we can Inokup potentia{ users based on their RIFs:
c: \> for /x *i. in {1"000,1, 1CI10} do Gsidluser

\\ [targetlF] [SIn without RIOl gi

To harvest user names fiom a target Windows machine with Sid2user, we could apply the following steps.
First, we need to open a null session with the target. Unlike Enum and Winfingerprint, User2sid and
Sid2user do not establish their own Null sessions. We have to create one manually before running the tool.

C : \> net use \\ [targetlp] r' r' /u. ,r'
Now, we want to run Sid2user to ask the target machine about various SIDs. However, to do this, we need
to know the [domain/computer] porlion of the SID for the target machine. We can pull this by running
User2sid against the target, with a user name of the machine name itself:

C:\> user2sid \\[targetlp] [machine name]

This command will tell us the overall SID for the target machine, a value of something like S-l-5-[some
series of digits]. It's those series of digits we want, because they are the unique numbers from which SlDs
are built for that target machine. Once we have those digits, we can then run an automated loop around
them, asking for SlD-to-useralame conversion for RlDs 1000 and up. We can accomplish this with a FOR
loop as follows:

C:\> for /L %L in (1000,1,1010) do Gsid2user \\[targetrp]
[domain/computer] gi

This FOR loop tells Windows that we want a counter (lL) thatwill iterate the variable %i through a series of
integers,startingatl000,countingbyl,andgoingupthroughl0l0(1000,1,1010). Ateachiteration
through the loop, we'll run the sid2user command against the target machine with a SID (consisting of the
number 5 followed by the unique domair/computer string, but not including the RID) followed by our RID
guess (%i). The system will display the result each time, showing us which SlDs are valid and giving us the
associated user name. We'll do an exercise on this later, and cover Windows FOR loops in more detail in
session 560.3.

175

* S**nni*g G*als and Types
.0verallScanning Tips

z $niffing with tcpdump
* N*fw*rk *w**ping with S**py

3 Srapylt*Bdx*tp €x*rci**
. irletwork Tracing
. i'on beannrRg

- Nrnap
r Nmap Fxereise

. OS Ftngerprrnting

. Version $canning
- Nmap "O -sV and

Amap f.xercise
. Vulnerability Scanning

r Nnrap Scrrpting Engine
- NSE Exercise
r Nessus
. Nes$us Exercise
- Other Vu!n Scanners

. Enumeraiing Users
e F*gee*t**#&Seffi €rary*ee

ffi

' frjet*at fe'r the F*n T**t*r
r Netcat Exercise

Ccurse Roadmap

Flanning andF"*{:*{'t

. Exploitation
r Fassword Affa
r Wir*less Attacks
. lffeb App Attaeks

In our next exercise, we'll look at methods for enumerating users on a target Windows machine.

Specifically, we'll use the enum tool to get a list of users and groups via a Null session. Then, we'll explore
really useful techniques for applying User2sid and Sid2user to extract user names fiom systems that have

even enabled the RestrictAnonymous and RestrictAnonymousSam registry keys.

176

Preparing Hnum

. UnziF Hnum onto your hard drive

. Your anti-virus tool may nat like Enum

- You may need to shut down your AV t*ol to use
Hnurn

* Dont just kill the AV processes or stop their
services
. TheV will still protect you
r You need to turn thenr off using their adnnin GUI
. You must have access to that GUI to disable the taol

I Extract enurn.exe to c:\tools\enum\

For this component of the exercise, you'll need to unzip the enum tool from the course DVD. It is located
in the Windows directory. Unzip it to your hard drive, putting it in a directory called c:\tools\enum.

Your anti-virus tool may have a signature that detects enum as malware. Enum is not malware; it is a tool
used for pulling configuration information from machines remotely using Null sessions. But, because some
computer attackers have abused systems with enum, some anti-virus vendors have written signatures for it.
Thus, if you have such an anti-virus tool, you must first disable it before you can unzip and run enum.

Disable your anti-virus tool using the anti-virus admin GUI. DO NOT DISABLE YOUR ANTI-
VIRUS TOOL BY KILLING ITS PROCESSES IN TASK MANAGER OR DISABLING ITS
SERVICES IN THE SERVICES CONTROL PANEL! Most anti-virus tools will still protect you even
if you kill them using those methods. To disable anti-virus protection, you must use the anti-virus
administrative GUI.

Make sure that you've successfully extracted enum.exe into c:\tools\enum, the directory from which we'll
run the first component of this exercise.

177

Running Enum

:\tooh\.ns> dir

:\tool€\Gfrua> 6nufr -ll 1g-1&.fS.16

:\tod!3**i:e> shu}l *6 lg.t6"1O.1S

S6r,lal l{ueb*:: tc E&S4*?G$B

Piraetpry af c:\tsela\cnuF
46*gW s5:51 *i* dlt*>
r'16r?SSS 95:53 frlt {DIF:.16/-2W 6119 *at

11S/SS*S €5:48 (tl/L,*/**?t tg:?g PFlgStttw s3:lrl rtt&6/tt*9 &*:49 A*
ll6r'266# *g:str ntl

6 Filc{e}

366 t*x*rlpti€tr
?t"!S? s{ua.cpp A**s:,zls i*u".aii { "--l
-a:tia ;;;;;;;ipp\rr1t8 s€topt-h
r -r{6 itsDif;
e.3.13 by$s

1Ye

rircces*fully
put enum
here

2 DLy4aJ ?8,S9e.6&9,498 hstss fts*e

rttlng up sea*lon--- srcEgc$"
tti*g {*rp }ist (pa*e 1" iedox 8},.. s*esean* gtti. " ' ,/L-
fdftlnlstr*tsf, falktt ge*rg* *se*t latS*JEt?? { 'llirnr,L"Brrtf rihn, w*k ,.*''t"

tqEq* !"'trrr:' llere i$ a ligt
*kod+ sr*** T*Ing*matll**r

lu.,nl$c ur.-- suor*rr. ofu*grs

Now, with Enum on your hard drive, change direclories to it:

C:\> cd c:\tools\enum
Verify that you are in a directory with enum.exe:

C: \> dir

Now, run enum against 10.10.10.10, configured to extract users:

C:\> enum -u 10.10.10.10

Then, run it to extract groups:

c:\> enum -G 10.10.10.10

Finally, get password policy information:

C:\> enum -P 10.10.10.10

Record your findings here:

Users:

Groups:

Users in Admin Group:

Password settings:

178

Preparing

copy
sid2user.exe
and
user?sid.exe
fram course
DVD
li\lindsws
directory,
into
c:\tools\sid
Invoke each
ta see its
options

Rrad usage

Ncte spaees

sfrttctians.
hetrveen parts of SID, not dashes.

Sid2user and UserZsid

iJ, llid{yi (ff) Fll Ftghsr rc6€}o6d" l?*s
Ch{nl:(r9 BsD6r.tA6nt. tto:cov St+tr Unlvereltg
t 19899 lloscov" Eqr s ra. http:/rm.ehea.nsu, r*/"hudngi/E tcoe. htR I
rudnvi&epnp"qhes.6su,Esrudnyi&epnp"qhes.6su,Es

hts {tt}ttq l* Fye**ave an{t ln sB}itlc ilowl*. Fcrl, tres *s u*e and
lstrlhutc lt. Sp:l&rnllt" peolded 9fu 1tk6 th* uttllty"
06 @y send * a b*tf,l€ cf bs(r,
isclaimr sf klrafttsi
hls util!t9 jr cuoBlied a$ ir. I dicelaia alI qrraotlar,
rrFe?s er tapliod- loclbdlng, yith{st lrFit&ttas" *hr warr'trits* af

htrtsltillty antl of fitnaes of thls utll!ty lor ang gurposa. I ueuao
iability fon dmgaa direet or cooeeqrcnti6l. ehich s9 reerrlt fron

hr qe* sf thi6 stillig"
l'0 goal of tl* utlllty ie to olteln tle *c€os6a oi& fFc4 Slt" usa*qi

Gid?us€r l\\coast6rj6Nl reths$itu d[}}auth*ritvj . -.
re con4r6rj6ht ls oEtlon*I. Fcr e'affLz

rid2{3r} 5 3? 54{ 1 {
defa*lt, th* c€aeh *ta{---2a locel t \ HI eoh!ilrer"

:\tq91$\5id)-

i\> ed c:\tsal:\5id
:*coIs\$ld> & lrlzu*.r.€x6

Enum worked, but we have other options that are more widely applicable to maohines that even have
blocked extracting user and groups via Null sessions using the RestrictAnonymous and
RestrictAnonymousSam Registry keys. We could rely on Sid2user and User2sid instead. To start this part
of the exercise, copy each of these tools from the course DVD Windows directory onto your hard drive, into
a folder called c:\tools\sid.

Then, change directories into c:\tools\sid:

C : \> cd c: \tool-s\sid

Now, invoke the sid2user tool without any options, and read its usage instructions:

C: \> sid2user.exe

Note specifically that we ean run the tool, followed by a remote computer name with \\[computer_name].
We then give it the SiD of the given account, starting with 5 and then a space, followed by the remaining
elements of the SlD, separated by spaces. Please note that it is asking for spaces between the components
of the SlD, and not dashes. Windows displays SIDs with dashes, but we need to convert them into spaces
when we run this tool.

179

Running Sid2user
\idolc\sid> nec ut6 \\lr-la-t8-16 '-' /tt:

r \too ls\r id > ugan2s i:l \\16 -18- 16-1S trjnlty

ratsrlB\rit} sfd?usel. \\19"1&-1&.18 g 21 tL?&Vr?:* 139836?4?6 t*91674931 S&g

in i* f8lflITt
of SlD ls $idl

:\toa:.r\s*"d> ta? /1, "tt" tn (1@&,1,1S16) do e*ld?*rsF \{S.1A.1g.tS 5 t1 tt?6ffi2g 1958:6?it?5 X*916?rfdf1 7i

* t ^5 -21 * LIV*59?1S-19 5836?{?6 *r8 g1 6?{931

€ne le IsIfit*rfs*tueeF
c$qin i* ?nlNlTY
*p6 of S.IB 1n slillypeUaex
me ir llJBP,-BFTIll
ssaLr Lr T*IHITY
:,r:!a cf SIF ls 9ld1!.8*lle*r'
aae ia I?I*H-X3TT!,pn*fn la fnlillT?
ypc of SIB is $idTys€U+er

i* fslkgn
i,l is fnIN:T?

21
tn

1e

'\r-
I *---1
\J

\l

\J\

Now, let's try using the Sid2user method for getting a list of users. First, establish a null session with the target:

C:\> net use \\10.10.10.10 "tt /u'utt

Then, run the User2sid command to determine overall domair/computer component of the SID by providing it
with hostname of target (we could get hostname from an nslookup or ping -a command):

C: \> user2sid \\10.10.10.10 trinity

Then, find out the administrator's name:

C:\> sid2user \\10.10.10.10 [domain number, starting with 5 followed by
space, followed by 2L, followed by space, followed by 3 sets of digitsl 500

Don't forget to put the 500 on the end, to specify the administrator's SID.

Then, enumerate users, starting at 1000 and going up through 1010:

c:\> for /L Ei in (1000,1,1010) do Gsid2uEer \\10.10.10.10 [5 followed by
space, followed by 2L, followed by space, followed by 3 sets of digits
separated by spacesl 8i

This FOR loop is a counter (/L), starting at 1000, counting by intervals of l, up through l0l0 (1000,1,1010),
running sid2user on the given domain SID at each iteration through the loop. You should see a series of
usernames in the output. Don't worry if you don't understand the details of the FOR loop right now. ln 560.3,
we have a whole section on Windows command line capabilitics, including FOR loops, for professional
penetration testers and ethical hackers.

180

" Scanning Goals €nd Types
. Overall Scanning Tips

r Sniffing with tcpdump

'N*twork $weeping with $eapy
- Scapy/tepdump [xercise

. Network Tracing

. Pori Scanning
r Nmap
r Nmap Exercise

. OS Fingerprinting

. Version Scanning
z Nmap -O -sV and

Amap Exercise
. Vulnerabrlity $canning

,," Nmap Scripting Fngine
r NSE Exercise
r Nessus
ts N€s$[lE Fxercise

' Other Vuln Scanners
. Enumerating Users

. Enurnerating Exercise

'ffi
r Netcat Exercise

Course Roadmap

r Planning and

. Exploitation
I Password ABa
r Wireless Attacks
r Web App Attaeks

In our nexl section, we'll look at the incredibly flexible tool Netoat, specifically as applied to penetration
testing and ethical hacking. Some of you may be Netcat fanatics, while others aren't... yet. As a

professional penetration tester or ethical hacker, you'll likely use Netcat on a regular basis in yourjob.
We'll use it throughout the rest of the course, so let's get familiar with it now.

For those of you who already know Netcat, we'11 go over some specific uses that are important for
penetration testers and ethical hackers, so pay careful attenl.ion. And, if you already know Netcat, start
brainslonning about how you can use this amazingly flexible tool in other creative ways for penelration
testing and ethical hacking. For those new to Netoat, don't worry. We'll describe how the tool works, and

then apply it <lirectly to several important tasks.

181

*
t

a

Netcat fcr the Pen Tester
Netcat: General-purpnse TCP and UDF netwsrk widget" running on

LinuxlUnix and Win*ows
* fiuiit-in to nrany Linuxcs, av*ilable fur Windsws
* Reeent versicns of Nmap include ncet - a re-implernentation of many Ftetcat

fe*tures, plus 55L encryPtlon
* We'l| fceus *n stgndard t{etcatu giv*n that it is butlt-ln ts 50 nnany Lin*xes

. most eorrcepts we1l ccver ier* map direct?y tcl Nmapk *rat as n*ll

Netcat takes Standard In, and sends it acrsss the netw*rk

Reeeives data from the netwerk, and puts it cn Standard Qut

Messages frorn Netcat itself put on Stendard Error

Std In

Std Sut
?he

n Std Err
sy$€em

Se*d peekets

*.*e*ive p*ckets

Ths
Netwrrk

Netcat is a general-purpose TCP and UDP network widget for Linux/Unix and Windows' sending data to

or from a given TCP or UDP port, or listening for data to come in on a given TCP or UDP port. That's

really it from a functionality perspective. Buq with those essential capabilities, we can use Netcat for all

kinds of network-related tasks that penetration testers and ethical hackers may face every day. Netcat is

available in many fonns. The most common form is the one installed by default on many variants of

Linux, which we'Il cover in this class. There is also a great version of Netcat for Windows, which we

will also be covering and using in this class. The Nmap development team re-implemented most of
Netcat's features in their tool called ncat, which includes SSL encryption capabilities.

Netcat takes whatever comes in on Standard Input and sends it across the network. Standard lnput could

be the keyboard, redirection from a file (using < for a redirect of Standard lnput, as in nc I options l
< | f i1e I), or piped from another program (using I for piping, as in Iprogram] I nc

I options]).

When Netcat receives data from the network, it places it on Standard Output. Standard Output could be

the screen, redirected to a file (using > for a redirect of Standard Output, as in nc Ioptions] >

t f i f e I), or sent to another program's Standard lnput. To send Netcat's Standard Output to another

program's Standard Input, we have two options. We could hrst simply pipe it using the I symbol, as in

". Ioptions] I Iprogram] . That would start streaming the output of Netcat immediately to the

program, which would be executed right away. Alternatively, we could use Netcat with the -e
fprogram] option, which tells Netcat to execute a program only after a connection is made (for TCP)

or data arrives (for UDP). Also, -e has the effect of not only passing whatever Netcat receives on the

network to Stan<lard lnput of the program, but it also sends Standard Output of the program back across

the network via Netcat. A very imporlant property of Netcat involves its use of Standard Error. Any

messages from Netcat itself associated with what it's doing on the network are sent to Standard Error'

Being able to read and interact with this form of Netcat commentary is useful, as we shall see.

182

Netcat Command Flags

ns [options] [targetlPJ [remoteyart(e] J

-l: Listen mode {default is client}
-L: Listen harder (Windows onfy) - make a persistent listener
-ur UDP mcde {default is TCF)

-p: Locel psrt {In listen mode, this is port fistened
on. In client mcde, this is source port for packets sent.)

-e: Program to execute after connection cccurs
-n: Don't regolve flames
-z: Zero-Il0 m,*de * don't send any data, just enrit packets
-wN: Timeout for connects, waits for N seconds
-v: Be verbose, printing when e ccnnectlon ls made
-w: Se very verbose, printing when eonnections are made,

dropped, ete.

l1;:. ;,;;::j.;;;:: ; t;1;;

: ;:;;j

#,*
Listeners w:*if for

connsctioas

These are the most important command-line options for Netcat. While there are (many) others, knowing
these will help you diagnose Netcat's use in about 95 % of circumstances. The format is:

nc [options] [targetlP] lremote3ort(s) I

The target_system is simply the other side's lP address or domain name. It is required in client mode, of
course (because we have to tell the client where to connect), and is optional in listen mode.

-1: Listen mode (default is client).

-L: Listen harder (supported only on Windows version of Netcat). This option makes Netcat a persistent
listener, which starts listening again after a client disconnects.

-u: UDP mode (default is TCP).

-p: Local port (In listen mode, this is port listened on. ln client mode, this is the source port for all packets
sent.)

-e: Program to execute after a connection occurs, connecting Std ln and Std Out to the program.

-n: Don't perform DNS lookups on names of machines on the other side.

-z: Zero-IlO mode (Don't send any data, just emit a packet without payload).

-wN: Timeout for connects, waits for N seconds. A Netcat client or listener with this option will wait for N
seconds to make a connection. lf the connection doesn't happen in that time, Netcat stops running. If a
connection does occur, Netcat sends or retrieves data. Then, after Standard In has been closed for a total of
N seconds, Netcat stops running.

-v: Be verbose, printing out messages on Standard Error, such as when a connection occurs.

-vv: Be very verbose, printing even more details on Standard Error.

183

S*me hletcat UseE for Penetratian
Testers and f;thleel Haekers

. Right now, we'll use Neteat fcr a variety *f tasks:

- eon*ectian string gatherlrrg frorn servers 8r elients

- P*rt scang

- "5elice*is*alive" heartbeats
*'*Ssrvice-is-dead" notificaticn

' These aren't the cnly uses cf Netcat fsr a pen*tratlsn
tester or ethieal haeker

. We'll cover additicnal uses as we need
them throughout the rest *f the course
* f*l*ving flles betwe*n systems
* S*tting up relays to forward connections

- CreatinE backdoor listeners

Right now, we'll build up our Netcat skills focusing on various Netcat uses to help penetration testers and

ethical hackers. Specifically, we'11 look at using Netcat to gather connection strings from seryers or clients,

which can provide us insights about the software types, version numbers, and protocols they speak. We'1l

do a hands-on exercise with Netcat as a port scanner and automated connection string grabber from

services. We'Il look at using Netcat to monitor a target system's services, providing us a heartbeat when a

service is alive, or giving us a waming message when a service has gone down.

Please note that throughout the rest of this class, we'll be using Netcat in numerous other ways beyond the

ones we're covering in this section. At this point in the course, we wanted to emphasize how Netcat works

and how it can help in some penetration testing and ethical hacking job tasks. But, as we move forward to

other sections of the course, we'll cover additional uses of Netcat, including moving files, setting up

forwarding relays, and creating backdoors.

184

$

I

Some Netcat Uses:
Netcat Client Grabbing Service trnfo

A Neteat client can connect
to a target service, and pull
back its service info
rrd [targetlF] fremoto_port]
You may need to enter a
connecti*n string to elicit a
respcnse from the target
- Fnter Enter
HE.&D / Hrrplx. c, followed

by Enter Enter
- Others

Fle. .Edtt Seyr lerxnins,, :. Fe$ * 4,-qe.r:
flt lE.:.4.73.: ?2

.1.99"opens*i 5.0,/\Pul!L.-lJ*

nc 10.18.10,10 2t :

2a tri*iry Hicrossf! €_5r"lp frn:l Serlr(e, q

r5:0n: 5.6.21??. t rga'\t Fr1. ?l Aov 20
$ i4: 19:4S OSSO

--i-I*

f'{ 16.}*"1S,*C &*
t t{v"r?lL.*

rF/l.I 493 t*rb}*s*n
le: Fri, 2Z t4av Z&*& 1*:?9:1* 6iil
ruer: AFdtheJl,?.F f Fesaral
:est "R*noel \tes
ltent -Le4gtH 39IA

ti**i tl&t€
t€nt -Typd: t6rt,rht*1 ; aharc€r"U?rr-A

Now that we've had a brief discussion of those command flags, let's look at some practical uses of Netcat
for penetration testers. You can harvest a connection string presented by services at connection by simply
using a Netcat client to oonnect to the target service with the following syntax:

$ nc ItargetlP] [remoteport]

Some services will present a banner including their service type, version number, and protocol immediately
upon connection. Other serlices require some string to elicit a response with this infbmation. For some
services, simply hitting Enter Enter will elicit a response. lf the target service speaks HTTP, you can get its
connection string by typing:

HEAD / HTTP/I . 0 followed by Enter Enter.

ln the screenshot above, we've used Netcal to connect to 10.10.75.2 on TCP port22, the port commonly
associated with Secure Shell. Upon connection, without any solicitation, the target tells us its version of
SSH. We hit CTRL-C to make Netoat drop the connection, which causes the Linux/Unix version of Netcat
to print out a message that says, " punt!" on Standard Error, displayed on the soreen. We next use Netcat to
connect to 10.10.10.10 on TCP port 25. The target tells us that it is running the Microsoft mail service. We
connectedto10.10.10.60onTCPport80. Nothingwasimmediatelydisplayed,soweenteredHEAD /
HTTP/I.0 followed by Enter Enter. The system told us that it was running Apache, along with its
version number and underlying operating system type. While these connection strings can be altered to fool
an attacker, they usually tell the truth.

185

Automating :

Info Gi

We can nrake Netcat gr*b a
!

whole burnch sf service strings I

from a series of ports on a target
I

We specifu a port-range [x-y] as
l

the remote*pcrt(s)
]

Ports are searched in inverse
]

order
echo "" | rrc -? -n -w1

l

ItargetIPJ Iport-range]
In effed, this is a port scaflner
that harvests banners

Service String
lthering
,:i*e:€dit g:ew ,.1er|n.|]t+,, T6b*. fielp,
a echc "" ! r:c -,; .fl "H: 18.1*.1S. i0 l.les
{UNKll0i{N} 110. }0.ls.1Si 80 { ?? ope:-i

{lt}lxr**M) 1}e.}0.1fi.ls} ?5 l:} ope* .::::

?eB trrntty Hicrosaft {51{Tp r'*1L:trvlfr, Ve
rsr.an; 5.0.?172.1 ready dt Fri, Zl Nov 2008
14:72:67 -8500

* echo "" I ne .v -n .r*l 10.1S.1S.66 1-]0$
iuflxils?fi) 110.1s. r0.601 8s i ?) open
{ijilX}t*ffi'l} 110.10.16.69i 5l i?r oper
{uNK}|Stril} 110.14.10.60} 23 tl} ope!'l
& 86 &*#6i'{uNKri#dltr} 110.i0.10.60: ?z r?) o
pen
sSH-.t. 99-Op€nssi{_4. 7

Protrcol ft! Snatch.
{uNKr.10sJit} l10.ts.ls.60 I 21 I }i open
2?0 i vsFTPd 2.0.5)

$30 Fl*aEe l*gin uitlr ,J5fft and PA53" :
ut"

Of course, testing one target machine on one port is helpful, but we might want to automate this over a
range of target ports. Netcat supports such functionality, with the [remotelort(s)] option taking a range of
nurnbers, specified as [x-y]. This setting will make Netcat try to connect to the ports, starting at port y, and

then decrementing by I going down until it tries to connect to port x. The -r flag will make Netcat work
throughports in this range randomly, but is only used if you want to be just a little more stealthy.

We can harvest connection strings from a range of ports using this command:

$ echo "" I nc -v -n -wl [targetlP] lport-range]

This will echo nothing onto Standard Output, piping that through a Netcat client. We echo nothing to force
the closure of Standard Input. Remember, the wait option in Netcat (-wN) will wait for N seconds on an
open port after there is no information on Standard Input. If we don't do this echo "", our Netcat client will
hang on the first open port, waiting forever for Standard Input from the keyboard, so we purposely echo
nothing to close off Standard lnput. You'll see how this works in an exercise shortly. We echo our nothing
into a Netcat client (nc), verbosely printing output (-v) so we can see when a connection is made, not
resolving names (-n) to keep clutter out of our output, waiting no more than 1 second to rnake a connection
or after a connection is made (-w1), of the target lP address on the target range of ports. In the screenshot
above, you can see that we directed the scan at 10.10. 10.10 and 10.10.10.60, finding some interesting
listening ports that didn't return data (TCP 80), and some that did (TCP 25,22, and 2l).

186

Netcat Listener
fr!€ 4dit gernr S*n.x1!nai TaAs E*lS
n{ .v -l -p 80

lrtentnq gn lanyl 86 ...

Grebbing Client Info
t0.le,76.1. !frer qts host 1slkup r.;,led: u:,h
lOVi* host
c*n**rt to tt*.10"?t.21 f.*!it {tttlt*tq}rti} l1a":.

iET r HrTp/!.!.-l_l-
Ate**t : teaq*lgit, aeeq*.lv tb:}ts6!r, ifl6q*t:l

, 2s.aqe I plpeg, *ppl i<*t :on/x -r*5. appl 1 cat.

A Netcat listener can receive a
connection and display info
about the client

Dr}, app1j.{af ion I v{t*. *s " x*9.ta<w6ert. af Fi j,{
ltrrraml,!rl. appi "cattcnlr-ns rbap, dt,tl

zt ai:1*, / \ " t**t:Y,vtave- fl.a*h.' /,
t-L€*$ir&qe: e!}-ilc

-iFi.f: x&5
"FiI.EnfoElnEi o;19, ger r.lle l

i, nc -v -I- -p [localJertJ .-Agefi t : &*z.l\lz, 4.6 {{*:4patib,l*; 7

Then, the client has to be made
to connect to the listener
- lHake browser surf there; we'll talk

about haw in 56S.3

Gives interesting insight into
client prograrn

,g: 'd7*4eq5 t{T 5,€; 9lC{1; ..{Ht {LA ?,,
27; ***\a CtirtBr fe 9.9; .$aT CLn 3.S.0

E?:18.1S,75.2
*r**{ti0r1; Kqep'&lirJe

^(f).int !

r!< -{ .l -F &6
I ir i-nr,'^ ^a 1,2**l nh! tv!.JJ !v r r,

16,1*.?t.3: itlv*r5* hs!t !**kut tB:.1.*d: l,&ti
hrll

cor!rt'/-(1o 110,1S.1:.?j {ror iUHKhokBrl lll
tg.7-r.]l "t9toJ 1\
iET I HTr?,,:.t L--.1

*r-:1€.10.?5.2
€r':a{--l!: r'l*ar11a- :,S iu:,rldoH5: u: llind0s
It6.*l?n trS; rr. !..8.1,!1i 6e.i0l2$0?tt:,

t Firetsxl?,4.$. tl

Just as a Netcat client oan grab connection strings from a service on the network, we can also have a Netcat
listener grab connection strings from clients such as browsers and other network tools. That client
conneclion string provides us insight about the client program.

We can make a Netcat listener wait on a given port as follows:

$ nc -v -1 -p [local port]

Note that this command includes a dash-lower-case-L, not a dctsh-one.

Then, we have to direct the client to access the machine on which Netcat is running, on that given port.
We'll talk about how to get the client to access the tester's machine on that port in our 560.3 section, when
we address clienl-side exploits.

In the example in the soreenshot above, we show a Netcat (nc) listener (-l) running verbosely (-v) on local
TCP port 80 (-p 80). A client connected to this Netcat listener. Because we invoked Netcat with a -v for
verbose output, we can see the lP address the client had come from displayed on Standard Error. We note
that our first connection appears to have come from an lnternet Explorer 7 browser, given the User-Agent
string, the method a browser can use to tell a server its type and version number. We hit CTRL-C and
started another listener. Now, we've got another connection coming in from the same source IP address,
but wilh a User-Agent string that says it is a Firefbx browser, with its detailed version number.

187

Netcat far a "Service*is-Alive"
l-leartbeat

r While exploiting a serviee, we want to know if the s*rvice
crashes

r Netcat in a small shell eommand can t*[! us if a service is

still listening *n a target pcrt with auditory feedhack
- A digital heartbeat every second white there is a resp*nse *n the

tarEet p**
$ whiLe t*ruel ; do xtc -1tY' -z -w3

Itarget XFJ Itarg*t3ort]
&& e*ha -e "\x*?"; sSeep 1; dsne

. ThiE may laok ugly or complicated, but it is very useful
r Rem*mber. eve* if yau dcn't have sound, ycur terrninal

will still flash *n the e*Llr$e Linux irnag* when it beeps

As a professional penetration tester, while you are exploiting a network service on a target system, you

really want to know if and when the service crashes. One way to determine that a service may have crashed

is to see if the target system still completes the TCP three-way handshake on the port where the seryice

should be listening. If it doesn't, the service has come down. We can use Netcat in a small shell command

to measure whether a service is alive on a regular basis, such as every second or every ten seconds. Our

command can provide auditory feedback, beeping if the service is still alive, and going silent if the service

stops. In effect, such a command gives us a remote digital heartbeat for the target service. We can

implement this functionality with the following command:

$ while (true); do nc -w -z -w3 [target_IP] [target3ortl) /dev/null
&& echo -e "\x07",' sleep 1; done

This command starts a while loop, which will run continuously. At each iteration through the loop, Netcat

is invoked as a client (there is no -1), being very verbose (-vv), sending no data (-z), and waiting no more

than 3 seconds to make a connection (-w3) to the target_IP address on the remote targetlofi. Anything that

comes back from the other side is dumped into /dev/null, because we don't really care what the target is

telling us, just that it is alive. As long as this Netcat client can make a connection successfully (&&), we

want to print the BEL character on Standard OuQut by making echo evaluate its hexadecimal code (echo -e
"\x07"). We wait for 1 second (sleep 1) and the loop starts again. When Netcat cannot make a connection,

the echo -e is skipped, and the sound stops.

This may look ugly or complicated, but it is very useful.

Also, please remember, even if you don't have sound support on your system, your terminal border will still
flash visibly on the course Linux image when the system tries to beep.

188

Netcat far *'Service-is-Dead "
Notification

* Sometimes, you might want to reverse that loEic
* ?hat is, print a me$sage that the serylce is OK"..

- ...but beep when it dies

$ rEhil-e "nc *vv *z -w3 [target_IPJ
I target3ortl
"Service is ok",' eJ.eep L; done; echa
"$ervice is dead"; eeho -e "\x07"

. If you really want it to freak out when the service
dies, replace echo -e "\x0?" with while
ttrue); do echo -e "\x07"; done

Sometimes, a tester may want different behavior from a service-monitoring command. Instead of a

heartbeat showing that the service is alive, we might want a waming saying that the service is dead,

beeping when it goes down. We can do that with the following shell command using Netcat:

$ whiJ.e 'nc -w -z -w3 [target_IP] [target3ortl > /dev,/nu]-l ' ; do
echo "Service is ok"; sleep 1,'done,'echo "Service is dead"; echo -e
" \x07 "

PLEASE MAKE SURE THAT YOU USE A BACKTICK (AN UNSHIFTED TILDE AT THE UPPER
LEFTHAND CORNER OF A U.S. ENGLIGH KEYBOARD) JUST BEFORE THE nc AND JUST
AFTER THE /dev/null.

Here, we've moved the Netcat invocation itself into the while command to evaluate. ln a while loop, we
enter the command to evaluate in backticks (') which are typed with the unshifted tilde on most
keyboards. The while loop kicks off a Netcat client (nc), which very verbosely (-vv) sends no data (-z)
waiting no more than 3 seconds (w3) to connect to the target IP address on the target port. Any
response that comes back is sent to /dev/null. As long as Netcat makes a connection successfully (the
while loop evaluates to positive), our command will print a happy message saying that the "Service is
ok", and then sleep for I second before going another round in the while loop. lf the while loop ends
(because Netcat couldn't make a connection), we print out a sad message that the "Service is dead" and
ring the bell (echo --e "\x07"). If you want the machine to really beep a lot when the service dies (an
emergencywarningtobesure!),youcouldreplaceecho -e "\x07" withwhile (true); do
echo -e " \x07 " ; done. Such a change will ring the bell until someone hits CTRL-C. That's
annoying. but certainly attention getting.

189

'$ca**Ing Gaals and Types
. Overall Scanning Tips

: $nrffing with tcpdump

'Network Sweeping with Scapy
I Ssapy/t*pd*mp *x*rei*e

. Netwsrk Traclng

. Port Scanning
r Nmap
r Nmap Exercjse

. O$ Frngerprrntrng

. Version Scanning
i Nmsp -O -sV and

Amap Exercise

' Vulnerability Scarrning
.. Nmap Seripting Engine
r l\5h L,XArCiSe
r Nessus
. frlcssus fxercise
z Olher Vuln Scanners

. Enumerating Users
r Enumerating Excrcise

. Netcat for the Pen Tester

C*urse R*adffta

r Planning and

. Explaitatian
r Password Attae
r lffireless Attacks
r lffeb App Attaeks

Now, let's apply some of these Netcat techniques in hands-on exercises. If you finish the written, explicit
exercises early, use these exercises as starting points, and feel free to explore further, using them to learn

more about the software on your local Windows machine and the Linux viftual machine we've provided.
However, please do not make changes to our target machines across the network. Feel free to explore your
own Windows and Linux machines to your heart's content.

190

Playing with Netcat ClientE
and Listeners

Sta* by creating a simple Netcat listener on Linux
that does ncthing but listen
Then, on Windowsr use a Neteat client to c*nnect
to it
l'lave a chat with yourself

I';-l$ffi: {*w=*re'

That ir a da:rh-lower*case-L.

:3)j]***::r\ftr .ex* L*"t^g_?S -2 *{ -l -p 5535

We'Il start this exercise by experimenting with a plain Netcat client communicating with a plain Netcat
listener, so we can get a feel for how they are moving Standard lnput and Standard Ou6ut across the
network. In our analysis, we'll look at moving information between a Netcat listener on Linux and a Netcat
client on Windows. Start by unzipping Netcat from the course DVD Windows directory (netcat.zip) into
c:\tools on your Windows box. Then, run a listener on Linux:

nc -1 -p 5555 € Note: That is a dash-lower-case L,
not q dash-one.

This listener will simply wait for a connection to arrive on local TCP porl 5555. When it comes in, it will
display the data on Standard Output.

On your Windows machine, initiate a connection from Windows to Linux with Netcat as follows:
C: \> c: \tools\nc.exe [yourT,inuxlpadd.r] 5555

When the connection is made, start typing information into either the client or listener. When you hit Enter,
the data will be sent to the other side. Type into each side and make sure data is flushed back io the other
side. Drop the connection with a CTRL-C.

If the conneclion is not successful, your Linux firewall may be blocking it. Disable the Linux firewall with:
service iptables stop

191

Manual Service Ccnnection
String Grabbing

Use Netcat on Linux ta
verbosely, without
resolving names,
connect to:
* 127.0.0.1 on TCP 25

- 10.10.10,10 on TCP 25
* 127.0.0-1 on TCP 22

- 10.10.10.60 on TCP 22
* 10.10.10.60 an TCF B0

. Enter a connection string for
this one

@! 1t27.6.0.11 ?5 {?} open
?& laral-!1*st. 1*saldor**in f$}4?P
L &.14.218.L4"2: f {1, Z4 M{r"r 2Q08 71tl
7:V4 -83*8 :l

Funt I

liii

"v .n 10. fS. tO. te a: I ::

l,lCHHl [l0.16.10.10! 25 {]} open
trinlty Hic!-eeoft E5$Tp lf.AIL Servi

e, Versi*tl: 5"e.7t72.2 ready at Fri,l
:tr #tv ;488 14:3711? -€5$6

li
C DUNI !ffi

"1"S*-*pqn$5* 3.S
f?l opeil ,

"e 1?7-€}-8.1 ?1

*. -v -r1 t27.&.a"1 V-V

Now that we have seen how data is exchanged using Netcat clients and listeners with Standard lnput and
Standard Output, let's try some manual service connection string gathering. From your Linux machine,
we'll pull information from various locations. We want to run a Netcat client, verbosely (-v) without
resolving names (-n) to connect to our localhost (127.0.0.1), connecting to TCP port25. Try that, using an
IP address of 127.0.0.1. Also try it with a target machine name of localhost. Why doesn't the latter work?

nc -v -n L21.0.0.1 25

nc -v -n localhost 25

Hit CTRL-C to drop any connections you make. Now, try pulling connection strings from the following
targets, comparing the results and trying to determine the service, its version, and anything the target tells us
about the operating system type:

#nc-v-n
#nc-v-n
#nc-v-n
#nc-v-n

10.10.10.10 25

L27 .0.O.1 22

10.10 .LO.60 22

10.10.10.50 80

For that last one, type in the appropriate HTTP comection string to elicit a response:

HEAD / HTTP/1 . 0 (Followed by Enrer Enter)

192

fxercise: Netcat Part $can and
Service Info Grabbing

Run Netcat to port
scan 10.1*.1G.60,
ports 2il-80, with -z
Then, do service
connection string
grabbing, without -z

Then, try it again
without the
ggho tr t'

* When it pauses, try
hitting Hnter Enter

{Ul'lKl,l*k*} [10.1s.:*.**J 3] i?] spe*
{u,{xilffir} [ls.:.$.t8.es] 23 N?l a*et\
{Ul.lKl'r$!*H} [XS":e .10,6*] 27. l?] a?e{t
{UllKrueks} l1s-1*,rs,e*} ?1 {?} ot}*!l

tUrll{ruedftl [1e.1*.rs,**] 13 !?J *pe::
{u.tKite!#} f1{t.18.1S.*fr} ?3 {?} aren

a8 e€#s*'{u}{!{}r0?*{! [xs.1s.le.e*] ?? {?i
Ssil - :. . ?9- 0pes:55H,,4 . ?

e s!is,*alrh,
lUtlKH0sFl) 1r0.t8.10.fr01 ?l i?! open

{r$FTPd 3.i3.51
39 Piease logrn Hrth USER and PA55.

lf it stops, hit Enter once or twice. ,;

$c "Y -n -c -*:. 1e.1e.14"44 2O-&*

et?w "" I ne 'v "r': -v1 19.10.1t.*4 Zq-&g

n{ -?'.r -}r:. eS,l*.}6.64 ?$^80

Next, we will explore the different behaviors Netcat has with and without -2, and with and without echo
" ", when port soanning and pulling service connection strings from a target machine. Start the exercise by
using your Linux Guest machine connected to our network to conduct a port scan of target 10.10.10.60,
with ports 20 through 80:

nc -v -n -z -w1 10.10.10.50 20-80

This will tell Netcat to run verbosely (-v, printing when a connection is made), not resolving names (-n),
without sending any data (-z), waiting no more than I second for a comection to occur (-wl) on larget
10.I0.10.60, TCP ports 20 through 80. You should see a series of open ports. But please note that you
don't see any strings that come back.from the services. You only get an indication of which ports are open,
but not the connection string.

Then, let's do our connection string grabbing. Make sure you omit the -z from this command! If you
include -z,you won't see the connection strings, because Netcat will move on before it gets any data back.
The -z and w used together have that impact.

echo "" I nc -v -n -wl 10.10.10.60 20-80
You should see the open ports, as well as connection strings from somc (but not all) of the services.

And, finally, try running this again, but without the echo " ". You'll see that it pauses on the first open
port, waiting for Standard Input from you on the keyboard. Because Standard lnput stays open without the
echo " ", Netcat pauses. Hit Enter once or twice to nudge it along.

nc -v -n -wl 10.10.10.60 20-80

193

txercise: Grabbing Client
Connection Striilgs

r*,'r'l*el tr til,{"*.}j fr{}i!, {
R'? fft ltl}.1S.75.:l tfrx

[127.e.4.1] Thalis s dash'lower-f,ase-L, 2.1 1*1**
| 1 t*?f 1.t

sstr l;7.s.*,! n+t * tlgsh-*ne. tltlif , i*eEel r-ehzt*ap, t,
5€r"Aqent : l4*]ill.a/1. -
1686; en.U5; rv: L8. l. l6) 6€(ko/20ll6s
16 feorrd,I ! . t, ! ! 1. f{9 S*a}roakc?/3 .1.

e6ge1 J ge$, r&a** I P i It6]E. a**-t i < a t it:* I x',.,.

'"! apDLirdtto", applrtat iur,rvnd.t> x

1l -1'\qccept i terEr'xal.alplrcatra{JEl,app1 I

ui.cf:T, aFf L icai:,;nlrari +xni , Bpp
l.:cati*ir/r-*s.straF, EFpli.sti$ft/x" rha,,,

ellL{t*! 1|?}teZ+rff'l , t*, i/ht$l ; q.s, 9, t*aili
larn. q=g g, I q3qe/p1rq, {,r' ;q:0. 5

.'.da!ie-flarh,.1,

ceFt -Lan*naq* : e* -lrt,r*i q'0, 5

feill -tangua$e: eil iJ5
' LPU i r36
(€pt ifl{odlnq: gzr:1, del'dte

{ept- ger*di*{ : *zi*,*ef s"*\e
' -Agci:l : uctlllar{ s {(+*pattttlc;

\f. 1,Q: ztinc#ds l{T S.0; 5tfcl; "il€Tqflf,}]' !re,itx fpf?*. P(\ &'

nr -v ^ir -! -p ge lt. "y .* "\ '* gA

,*tF;Jll0.1D.;"t ?i

Next, on your Linux machine, set up a Netcat listener that will verbosely listen on local TCP port 80,

resolving names of systems that connect there:

nc -v -n -1 -p 80 €Note:Thatisadash-lower-caseL,
not a dash-one.

Then, from another terminal on your Linux machine, run the Mozilla browser, kicking it into the
background wilh &:

mozilla e

When the browser comes up, enter a URL for it to surf to http',|1127.0.0.1

Look at your Netcat output, specifically the User-Agent string. lt tells you the kind of browser that just
accessed the Netcat listener.

Now, hit CTRL-C in your Netcat window on Linux, and then restart your Netcat listener, again on TCP
port 80:

nc -v -n -1 -p 80 (Note:Thatisadash-lower-caseL,
not a dash-one.

Now, from Windows, run lnternet Explorer, and have it surf to a URL of http://[LinuxlP]. Notc its User-
Agent string. Try other Windows client programs that you might have, such as Firefox, RealPlayer, and
others, having them surf to [YourlinuxlPaddr]:80. Most of these programs have options for opening a

URl,typically by going to File)Open... and typing in a URL of the form http://[Paddr]:fport] or simply
[Paddr]:fport]. Make a note of the various User-Agent strings you identifl, for lE, RealPlayer,
QuickTime, etc.

194

Exercise : t*Service-is-Al ive"
Heartbeat

'.'44 t"..w,8.&l -r l,raLFr vyLr.
aa

:cf,t g, :cvd 0

in,je 1127.8.s"1; ?t {iPrtp} op*n :::
.a.t A r.vd ft

inrx l1?7.0.6.:l ?3 {rl?:lp} 0p€* :'
5.'ot 0, rrv{t {t

::

lrlix [::;.0.*.:].]1 ilnt;it : {unne(!:on ref*r
td

5e*7- g, ?wd A ::

.a'1r a ..\'A *

Li*rr 13.3?.S.9.11 ?5 {efttp} : {*nfle{li$n r*frt$

.Ant A ?.tt+ ft

.f 0 0 1i1.0.€ !:?5

ting 5n"cliiest I

'e&i* ,truet; do ne .vv -z -u3 1Z?.$"*,1 2*
J*er.,/fi*li && e{he -e "\7*7',"i f,:a6^ t..4ir:*

9sf9l{e tand:?s1l 5t$*

Let's try a "service-is-alive" heartbeat checker with Netcat. On our Linux machines, we have configured the
system with a listening Sendmail server on TCP port 25.

ln Step l, you can see this listening port with the netstat command, invoked to show us numbers (not names) of
all port and socket usage (-a) of TCP ports (-t), scraping output for the number 25:

netstat -nat I grep 25

For Step 2, in a separate window, let's set up a Netcat heartbeat to check that port:
while (true); do nc -:rr -z -w3 L27.0.0.L 25 > /dew/naLL && echo -e
"*07",' sleep 1; done

You should hear the heartbeat.

ln Step 3, go back to your first window and stop the sendmail service:

service sendmail stop

The Netcat service-checking hearlbeat should go silent. The service is down!!!

ln Step 4, when you bring your sendmail back, the heartbeat starts again:

service sendmail start

To end the heartbeat monitor, simply hit CTRL-C in its window. lf that doesn't stop it, hit CTRL-Z, followed
by:

killall -9 nc

195

Exercise : "5ervice*is-Dead" Alert

:l!
$tiit6 *sldil **z+&**i't t
'ltt

J

I

r&ila 'n* -v..t "'t -vt3 Lz?,*,*"L z* " !d*v|t1n\\'
; ** ec*4 .lae,rqixe it {&*; :!fe:} Ll *e*c; *ilt$ "
Esr"ias tt *e*d": tr*il,e ltt**ti 4'a e{*e 'q "r'19?

ttezti&z -6&l

te+\ 4, r#8 *

l*.,*x ?"L??,&.*.L1 ?$ {5,:xtFl .i}:err

'e*t A, frsd 6
rci{.e L +l
:*.?6 t1??.d!.*.11 7* {tftt*t tv*t
t**t *, rt"d 6

u1{e !9 *1
ifi{x l}?}.$.S.1] ?2 a.ery} : {***elti*r {*t
t?.ti 6. {wd *
r!:ar tt iiefld

s*z.slre s**{a*L\ *

Next, let's create our "service-is-dead" red-alert message with Netcat, again monitoring our Sendmail service.

In Step 1, verifu that the porl is listening:

netstat -nat I greP 25

lf the port isn't listening, starl your Sendmail service using the command on the previous slide. For Step 2, in a

separate window, let's set up a Netcat monitor to check that port, printing happy messages when the port

completes a connection, and making lots of noise when it doesn't:

$ while 'nc -w -z -w3 L27.O.O.L 25 > /dev/null' ; do echo "Service is ok";
sleep 1; done; echo "service is dead"; while (true),'do echo -e "\x07";
done

PLEASE MAKE SURE THAT YOU USE A BACKTICK (AN UNSHIFTED TILDE AT THE UPPER

LEFTHAND CORNER OF A U.S. ENGLIGH KEYBOARD) JUST BEFORE THE NC AND JUST AFTER

THE /dev/null.

When the command is nrnning, you shouldn't hear anything for now... But get ready.

In Step 3, go back to your first window and stop the sendmail service:

service sendmail stop

Your system should now make lots of noise. The service is down! Ouch. Stop it by hitting CTRL-C in the

window running Netcat. Note that the nature of the monitor command we used this time does not stop the noise

when the service comes back up. lt just keeps making noise. You could alter the command to make it a while
(true) loop with that kind of functionality if you have extra time. Also, if you want, you can start your Sendmail

service again.

196

Csnclusian for 5S*.2

That esncludes the 560.2 sessicn
* Vl/e've gathered infarmation about targ*t

system types, open psffi, available services,
and other useful lnf*rmatian

* At this stege of a prrject, the tester has
c*mpleted scanning, *nd is poised tn perfarm
exploitation

In 560.3, we'll look at exBl*itation in depth

This will bring our 560.2 section to a close. Throughout the scanning phase, penetration testers and ethical
hackers gather very useful information about the target environment that will be critical in the ongoing
stages of a test. We've analyzed methods for determining many things about the target environment,
including operating system types, open ports listening on the network, available ,"*i."r, and other useful
information about target machines.

The next phase of the testing process will focus on exploitation, the topic we'll address in depth in 560.3,
and continue through the first part of560.4

197

Optional Appendix:

Hping

Review if you have
Not covered in class,

lf you have extra time, you may want to review this Appendix, which covers the Hping tool. Hping can be
used to craft packets and send them to a target system, like Scapy. Although it isn't as flexible as Scapy,
Hping is more likely to be installed on target systems, and can therefore be helpful to know. In this optional
appendix, we'll review Hping configuration, with a particular focus on how Hping can be used to sweep a
target environment.

198

t

a

Netwnrk Sweeping with Hping

Inspired by ping, but goes mueh firrther
* Originalfy [-'lpi*9, then HpingZ... latest is Hp;nE3

- Frsan maft paEe: "Send {almust} anbitrary TCFIIP packets
to netw*rk hff$ts"

Fr*e at www"hping.of$, runs on Linux, *BSF,

Mac05 X, and Windows

The latest versicn, Hping3. supporEs TCL scripting
Sy default, s*nds TCP packets with nc controt bits
set to target port 0 csntinususly, once per sec*nd
- Possibly getting RfSHTs back

Example: S hping3 10 . 10 . 10 - ?0

Hping is a general-purpose packet generation tool, useful for a variety ofsoan types. It can be used to
conduct a network sweep with several different protocols. Furthermore, it supports tracerouting in a
flexible fashion, as well as porl scans. And, Hping's flexible protocol and payload options make it useful
even beyond the scanning phase, with useful abilities for exploitation as well.

Originally, the tool was called Hping. Hping2 supplanted that version, and was itself superseded by
Hping3, the latest version. We'lI refer to the tool as Hping, reahzing that we are discussing the latest
version from this point on.

Hping3 offers all of the same functions as Hping2, but with a lot of bug fixes. Furthennore, Hping3 has
been expanded to support Tool Command Language (TCL) scripting. Thus, instead of using standard
command line options or shell scripts to control Hping, scripters can use TCL. Our use for this course will
continue to be the most common method of invoking Hping: at the command line.

Hping was created for Linux and Unix (including Mao OS X), but has also been ported to Windows. By
default, Hping merely "pings" a target lP address by sending TCP packets with no control bits set (SYN,
ACK, FIN, RST, PSH, and URG are all set to zero) to the target machine on port 0. Hping will
continuously send one packet per second, until it is stopped. Most systems respond with a RST packet,
indicating that there is a system there. Admittedly, this is an unusual ping, but it can be effective in some
network environments.

199

Hping Protccol Selection

. Fefault prot*eol is TCP, but ean easily
be switched using the fallawing flags

--udp: Send UDP paekets
--iemp: Send ICMP paek*ts
--rawip: Send raw IP packets, with na

TCP or LIDP compon*nt
. Hxample:

hping3 *-rawip lCI.10 .10.20

By default, Hping uses TCP packets. However, it can easily be switched to use other protocols, such as

UDP (with the --udp option), ICMP (with the --icmp option), or raw IP packets (with the --rawip
invocation). The raw IP mode will send packets without a TCP or UDP header in them. Later, we'll see

how to put the contents ofa specific file as a payload on such packets.

For an example, consider this invocation:

hping3 --rawip 10.10.10.20

This command will make Hping send raw IP packets to 10.10.10.20. Most systems will silently reject a raw
IP message.

200

$etting TCP Control BitE

. By defuult, HBir*g sets all TCF Csntral
BitE tc zero

. But, Hping suppcrts a simple syntax to
ehoose eontrol bits:
--syn
--fin
--rst

--push
--ack
--urg

a Numerous nther TCP, UDF, ICMP, and
IP se*ings are eonfigurable as well

As we've discussed, Hping sends a TCP packet by default, with all of the TCp Control Bit values set to
zero. These items can be turned on an<l off independently by simply using the command line options of --
syn, --fin, --rst, --push, --ack, and/or --urg when invoking Hping.

other TCP, UDP, ICMP, and lP settings are configurable as well, such as TCP sequence numbers, TCp and
UDP checksums, lP Time-to-Live values, iP identification numbers, and so on. Tile hping3 man page
includes these details.

201

Hping Target Selectlsn

. As we've seen, Hping can gend packets ta a single target by
merely specifying

'ts
IP address *r d*main na*1e

r Alternatively, we can specify:
-=rand-dcst lp_addr: Will send paekeft t* random tergets wherevel" an x

is included in ttie IP address {e.9., 10.1*.10.x wlli send packets t*
targets fnom 1S.1*.10.1 ts 1fi.10.i0'?55). Note thet targ€ts are
repeated randomlY.

--intedace lIntSl When u*ing the ran*sm destinatlon *ptio*, you r*ust
specifu wi"rich interface to send the packets an

FxampXe: it hping3 --rand*dest 10.3.0.1*.x --intarfa*e aLh0

. ljnfortunately, Hping does*'t supp*rt a range of target*,
unless we use a shell or TCL scriPt

By default, Hping sends packets to a single target destination, as we have seen. Alternatively, it supports a

rather crudely tuned option to choose targets randomly within a Larget network environment. We can

specify --rand-dest followed by dotted-quad lP address with one or more x characters in it (such as

10.10.10.x or 10.x.20.30 or 10.20.x.x). Hping will then generate packets by oreating a random number

between I and 255 for each x, and then sending packets there. This is a crude tuning because it cannot be

used to hit anything smaller than a single class-C sized network (124), nor can it be used to hit fine-tuned

selections of target networks.

Also, when using the --dest-rand option, Hping requires the user to specif,i which interface the packets

should be sent through, with the --interface directive. For example, consider this command:

hpinq3 --rand-dest 10.10.10.x --interface ethO

This invocation will make Hping send packets to random targets in the 10.10.10 network, using interface

eth0 to transmit the packets. Note that Hping does not maintain state of the targets it has already tested;

each one is selected randomly each time, making it likely that we'll have repeats of a single target in
potentially short periods of time.

Unfortunately, Hping does not provide options at the command line for doing a sequential walk through a

target network range at the command line by itself. lnstead, a user would have to write a shell script at the

command line or a TCL script inside of Hping to make it walk through a range of targets sequentially.

202

Hping Snurce Selection

. -*sponf [IFaddr]: sets spocfed sauree IP
addl'ess cf all packets sent

Example: # hpi-ngi **spaof t0 . t0 . l-0.:.0 3-0.1.0 " i0. AS

. *-nand*souree: Randsmly selects a
sCIurf,e address far all paekets
- No way to speciff range

- Sti*t useful for stress testing stateful
firewalls

* May fill up a state table, causing additlonal
paekets far other users to be dropped

Hping provides some options for speci$ring the source IP address of the packets that it creates. By default,
it uses the IP address of the machine running Hping, as you might expect.

For example, consider this command line:

hping3 --spoof 10.10.10.10 10.10.L0.2O

This syntax will cause Hping to send packets from a source address of 10.10.10.10, directing them to a
destination address of 10.10.10.20. The tool will generate its default TCP packets withzero for all of the
control bits to destination port 0.

Alternatively, Hping supports the --rand-source option, which will generate packets with a completely
randomized source address. Unfortunately, there are no options to narrow down the range of random
source addresses. Still, this technique can be used to stress test a firewall, generating a large number of
packets from a large number of source addresses. Such actions can fill up the state table of some firewalls,
causing them to drop packets for other users, so be careful.

203

Hping Fart Selection

' *destil*rt [port]: Use this destinetian p*rt
* If preceded by a +, pcrt is inreme*ted by I for eaelt

respon$e received
* If preceded by a ++r port is *ncremented by 1 for eaeh

packet .genf

* --scail lp***rangellistj: Scan this target range or list
of ports (x-y,z,known)

r --baseport lpott]: Start with this source pcrt,
inerementing for each packet sent
* lss + and ++ supported for scurce port {behavi*r is

effeetively like ** for destporti

- Default is tc use random baseport
. -*keep: L}se only a single $oure* port fur all paekets

In choosing destination and source ports, Hping supports several options. For destination port, we can use

the --destport or --scan options as follows:

--desQort [port]: This tells Hping to generate packets for this target port. If the target port number is
preceded with a +, the port is incremented by I for each response packet that Hping receives. A ++ before
the port number tells Hping to increment the destination port number by I for each packet thatHping sends,

something like the default behavior of the Unix and Linux traceroute command (which, as you may recall,
increments through high UDP ports for each packet that it sends).

--scan fporl range/list]: This invocation tells Hping to send packets to a range of destination ports (with a

to indicate the range) or to a comma-separated list of target ports. We can mix and match ranges and lists,
usingsyntaxsuchas 1-100,135,139,445,700-300totestportsfrom l to 100,plus 135, 139,and445,aswell
as porls 700 to 800. The "known" keyword here makes Hping send packets to the list of ports in
/etclservices.

For source port selection, Hping uses the '1-baseport [pot]" syntax, which will cause Hping to start sending
packets with a source port of N, incrementing by 1 for each packet sent. Unfortunately, Hping does not
support the * or ** notation for source ports. For source port, by default it behaves in the fashion of a lf
for destination port; that is, it increments by one for each packet sent. If no source port is specified, Hping
uses a randomly selected port number higher than 1024.

The --keep syntax tells Hping to use a fixed source port for all packets that it sends.

204

Hping: S*me Helpful Optl*ns

* Hping suBp*rts nrrmerous additianal
useful options
--e*unt lNl: Send only N packets
--heep: Feep when a packet is recelved
--file [filename]: send ecntents cf file as a

payload, must be used with --data
--data lNl: tength of payload to send, in

bWes {if na --fi|e, peyload is X's}

Here are some useful miscellaneous options for Hping.

Specifying a --count [N] at the command line will limit the number of packets Hping generates to N. By
default, Hping sends packets continuously, but, for example, with a "--cou nt 4",1t wlti onty send 4 packets.

The --beep option makes the tool audible, triggering the system beep sound when a response is received
back. This can act as a audible heafibeat to verify that the tool is still running and getting responses.

Users can specify "--file [filename]" to indicate a specific file whose contents should be used as the payload
of all packets sent to the target. This option requires the user to also specif' a,,--data [Nl',, which indicates
the length of the payload to send. lf --file is used, a --data must be provided. if a --data is used, and a --file
is not provided, the payload is padded with the character X.

20s

Hping: Speed Options

I By defnult, hping sends *ne packet pcr
second, but this can be changed

--fast: S*nd ten packets p*r second
--faster: Send 1rff**,*00 packets p€r second {if

psssible]
--flcod: Send packets as fast as possibl*,

perhaps evcn faster than they can be
displayed

--interval tNl {ar uflNl}: Send paekets every N
seconds {cr every uN microseccnds}

By default, Hping sends one packet per second. We can speed this up considerably using various
command-line options. The --fast option makes Hping send ten packets per second, while the --faster
option sends one million packets per second if the interface can keep up with that pace. The --flood option
sends packets as quickly as possible, likely exceeding the system's ability to let hping display any responses
that come back.

A much more reasonable speed option is the "--interval [N]" or "--interval u[N]", which makes Hping send
one packet every N seconds or every uN microseconds.

206

Using Hplng ta Iterate thrnugh
an Addres$ Space

We can us* *-*plng tc iterate thraugh an
address spaee using sorne of the features of
the Linux shell:
for i in " seql L t55' ; da hping
**eount I 10.10 " 30. $i; done
Or, if you only want to focus an the systems
that respnnd, grep autput fc'r

-'ip=",
because

that string is ineluded in respoRses:
for i in 'seq 1 255 - ; dLo hping**c*unt I l-0 . 10 . 10 . Si 2>ldev/nu}l
i grep iF=; done

We have seen how we can use Hping to move through a series of ports with the + and ++ notation. To
make it iterate through a series of target IP addresses, however, we can use a bit of Linux shell functionality
as follows:

for i in'seq 1 255'; do hping --count 1 10.10.10.9i; done

Here, we starl a for loop, which will iterate over the variable i, changing its value at each iteration through
the loop. We iterate over the output of the seq command, which is set to generate a sequence of digits from
I Io 255 on its ouQut. The backticks (') on either side of the seq I 255 command ensures that that
command will be executed so that we can iterate on its output. At each iteration through the loop, we run
hping, configured in whatever way we want. Here, we've set it to send a single packet (--count 1) with
default settings to the target address of 10.10.10.$i. The $ in front of the i will make the shell expand it to
the current value of the i variable. While this loop will work to help identify which hosts are in use, its
output will be very cluttered. Each packet sent will generate a couple of lines, which might make our
responses diffrcult to locate.

To help focus our command on those instances where we get a response, we can use the fact that, when
hping receives a response, it displays the text "ip:" followed by the IP address on the screen. We can
scrape through the output of the hping command to find only those hosts that respond by simply taking
Standard Error messages and throwing them away (2>ldevlnull), and then piping (l) our Standard Output to
the grep command, looking for the string "ip:". The resulting command is:

for i in 'seq 1 255'; do hping --eount 1 10.10.10.$L 2>/devlnull I

grep ip=; done

207

