
Chapter - Six

File System

Outline

• Introduction
• File system concepts and definition
• File attributes
• File access methods
• File operation, organization
• Directories
• File allocation
• File permission

Introduction
• Secondary storage is the non-volatile repository

for (both user and system) data and programs.

• As (integral or separate) part of an operating
system, the file system manages this information
on secondary storage.

• Uses of secondary storage include:
– storing various forms of programs (source, object,

and executable) and
– temporary storage of virtual memory pages (paging

device or swap space).

Introduction…
• Generally there are three essential requirements for

long term information storage:
1. It must be possible to store a very large amount of

information.
2. The information must survive the termination of the

process using it.
3. Multiple processes must be able to access the

information concurrently.

• The solution to all these problems is to store
information on disks and other external media in
units called Files.

File systems
• A file system provides a mapping between the

logical and physical views of a file, through a set of
services and an interface.

• Simply put, the file system hides all the device-
specific aspects of file manipulation from users.

• The basic services of a file system include:
– keeping track of files (knowing location),
– I/O support, especially the transmission mechanism to

and from main memory,
– management of secondary storage,
– sharing of I/O devices,
– providing protection mechanisms for information held

on the system.

File concept
• Files are managed by operating system.
• How they are structured, named, accessed, used,

protected, and implemented are major topics in
operating system.

• As a whole that part of the operating system dealing
with files known as file system.

• A file is a named collection of related information,
usually as a sequence of bytes, with two views:
– Logical (programmer’s) view, as the users see it.
– Physical (operating system) view, as it actually resides

on secondary storage.

File concept…

• What is the difference between a file and a data
structure in memory? Basically,

– files are intended to be non-volatile; hence in
principle, they are long lasting,

– files are intended to be moved around (i.e., copied
from one place to another),

– accessed by different programs and users, and so on.

File Attributes
• Name – only information kept in human-readable form
• Type – needed for systems that support different types
• Location – pointer to file location on device
• Size – current file size
• Protection – controls who can do reading, writing,

executing
• Time, date, and user identification – data for

protection, security, and usage monitoring
• Information about files are kept in the directory

structure, which is maintained on the disk

File attributes
• Each file is associated with a collection of

information, known as attributes:
– NAME, owner, creator
– type (e.g., source, data, binary)
– location (e.g., I-node or disk address)
– organization (e.g., sequential, indexed, random)
– access permissions
– time and date (creation, modification, and last

accessed)
– Size
– variety of other (e.g., maintenance) information.

File access methods

The information stored in a file can be accessed
in a variety of methods:
– Sequential: in order, one record after another.
– Direct (random): in any order, skipping the

previous records.
– Keyed: in any order, but with particular

value(s); e.g., hash table or dictionary.
– TLB lookup is one example of a keyed search.

File Operations
• Create
• Write
• Read
• file seek – reposition within file
• Delete
• Truncate
• Open(Fi) – search the directory structure on disk for

entry Fi, and move the content of entry to memory
• Close (Fi) – move the content of entry Fi in memory to

directory structure on disk

Addressing levels
• There are three basic mapping levels (abstractions)

from a logical to physical view of a file (contents):
• File relative:

– <filename, offset> form is used at the higher levels,
where the file system is viewed as a collection of files.

• Volume (partition) relative:
– device-independent part of a file system use
– <sector, offset> (e.g., a partition is viewed as an

array of sectors.)
• Drive relative:

– at the lowest level, <cylinder, head, sector> (also
known as <track, platter, sector>) is used.

File Types – Name, Extension

File Organization
• One of the key elements of a file system is the

way the files are organized.
• File organization is the “logical structuring’’ as

well as the access method(s) of files.

• Common file organization schemes are:
– Sequential
– Indexed-sequential
– Indexed
– Direct (or hashed)

Access Methods
• Sequential Access

read next
write next
reset
no read after last write

(rewrite)
• Direct Access

read n
write n
position to n

read next
write next

rewrite n
n = relative block number

Sequential-access File

Simulation of Sequential Access on a Direct-access
File

Example of Index and Relative Files

Directories
• A directory is a symbol table, which can be searched for

information about the files.
• Also, it is the fundamental way of organizing files.
• Usually, a directory is itself a file.
• A typical directory entry contains information

(attributes) about a file. Directory entries are added as
files are created, and are removed when files are
deleted.

• Common directory structures are:
– Single-level (flat): shared by all users.
– Two-level: one level for each user.
– Tree: arbitrary (sub)-tree for each user.

Directory Structure
• A collection of nodes containing information about all

files

F 1 F 2 F 3
F 4

F n

Directory

Files

Both the directory structure and the files reside on
disk
Backups of these two structures are kept on tapes

A Typical File-system Organization

Information in a Device Directory
• Name
• Type
• Address
• Current length
• Maximum length
• Date last accessed (for archival)
• Date last updated (for dump)
• Owner ID
• Protection information (discuss later)

Operations Performed on Directory

• Search for a file
• Create a file
• Delete a file
• List a directory
• Rename a file
• Traverse the file system

Organize the Directory (Logically) to Obtain

• Efficiency – locating a file quickly

• Naming – convenient to users
– Two users can have same name for

different files
– The same file can have several

different names

• Grouping – logical grouping of files by
properties, (e.g., all Java programs, all
games, …)

Single-Level Directory
• A single directory for all users
• Shared by all users.
• One directory containing all the files

(root directory).

Naming problem

Grouping problem

Here the directory contains four files.
Disadvantage:

– Different users may accidentally use the same names for
their files.

– Example: User A creates file name mailbox. Latter user B
creates file name mailbox. Then B’s file will overwrite A’s
file.

Two-level directory system
• To overcome the above problem, just give each

user a private directory.
• One level for each user.

Two-Level Directory…
• Separate directory for each user

• Path name
• Can have the same file name for different user
• Efficient searching
• No grouping capability

Tree (Hierarchical directory system)
• Arbitrary (sub)-tree for each user.
• It is used for large number of files.
• Each user can have as many directories as possible.

Tree-Structured Directories…

• Efficient
searching

• Grouping
Capability

• Current directory
(working
directory)
– cd

/spell/mail/pro
g

– type list

Tree-Structured Directories (Cont)
• Absolute or relative path name
• Creating a new file is done in current directory
• Delete a file

rm <file-name>
• Creating a new subdirectory is done in current directory

mkdir <dir-name>
Example: if in current directory /mail

mkdir count

mail

prog copy prt exp count

Deleting “mail” deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories
• Have shared subdirectories and

files
• Two different names (aliasing)
• If dict deletes list dangling

pointer

Solutions:
– Backpointers, so we can delete

all pointers
Variable size records a problem

– Backpointers using a daisy
chain organization

– Entry-hold-count solution

General Graph Directory

• How do we guarantee
no cycles?
– Allow only links to file

not subdirectories
– Garbage collection
– Every time a new link

is added use a cycle
detection algorithm to
determine whether it is
OK

Directory operation

• Create- a directory is created.

• Delete- a directory is deleted.

• Opendir- directories can be read.

• Closedir- directory can be closed.

• Readdir- this call returns the next entry in an
open directory.

File allocation
• The file system allocates disk space, when a file is

created.
• With many files residing on the same disk, the main

problem is how to allocate space for them.
• File allocation scheme has impact on the efficient use

of disk space and file access time.
• Common file allocation techniques are:

– Contiguous
– Chained (linked)
– Indexed

• All these techniques allocate disk space on a per block
(smallest addressable disk units) basis.

Contiguous allocation
• Allocate disk space like

paged, segmented
memory.

• Keep a free list of
unused disk space.

• Advantages
– Easy access, both

sequential and random
– Simple
– Few seeks

• Disadvantages
– External fragmentation
– May not known the file

size in advance

Contiguous Allocation of Disk Space

Chained (linked) allocation
• Space allocation is similar

to page frame allocation.
• Mark allocated blocks as

in-use.
• Advantages:

– no external fragmentation
– files can grow easily

• Disadvantages
– Lots of seeking
– Random access difficult

• Example
– MSDOS (FAT) file system

Linked Allocation…

• Each file is a
linked list of disk
blocks:

• blocks may be
scattered
anywhere on the
disk.

pointerblock =

File-Allocation Table

• File-allocation
table (FAT) –
disk-space
allocation used
by MS-DOS and
OS/2.

Indexed Allocation
• Brings all pointers together into the index block.
• Logical view.

index table

Indexed allocation…
• Allocate an array of pointers

during file creation.
• Fill the array as new disk

blocks are assigned.
• Advantages

– Small internal fragmentation
– Easy sequential and direct

access
• Disadvantages

– Lots of seeks if the file is big
– Maximum file size is limited to

the size of the block
• Example

– Unix file system

Example of Indexed Allocation

File Permissions
• Read, write, and execute privileges
• In Windows:

– Change permission on the Security tab on a file’s
Properties dialog box

– Allow indicates grant;
– Deny indicates revoke

• In UNIX/Linux
– Three permission settings:

• owner; group to which owner belongs; all other users
– Each setting consist of rwx

• r for reading, w for writing, and x for executing
– CHMOD command used to change file permissions

File Permissions

• One can easily view the permissions for a file by invoking a long
format listing using the command ls -l.

• For instance, if the user Abe creates an executable file named
test, the output of the command ls -l test would look like this:

rwxrwxr-x Abe student Sep 26 12:25 test.l

Access Permissions

• This listing indicates that the file is readable, writable,
and executable by the user who owns the file (user
Abe)

• as well as the group owning the file (which is a group
named student).

• The file is also readable and executable, but not
writable by other users.

rwxrwxr-x Abe student Sep 26 12:25 test.l

Access Permission of File/Directory
• The ownership of the file or directory can be changed

using the command
– chown <owner> <file/directory name>

• The group of the file or directory can be changed using
the command
– chgrp <group> <file/directory name>

• The permissions of the file can be changed using chmod
command
– chmod -R ### <filename or directory>

• -R is optional and when used with directories will traverse
all the sub-directories of the target directory changing ALL
the permissions to ###.

Access Permission of File/Directory

The #'s can be:
0 = Nothing
1 = Execute
2 = Write
3 = Execute & Write (2 + 1)
4 = Read
5 = Execute & Read (4 + 1)
6 = Read & Write (4 + 2)
7 = Execute & Read & Write (4 + 2 + 1)

