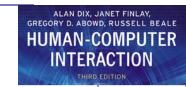
HUMAN-COMPUTER INTERACTION

THIRD EDITION



chapter 12

cognitive models



Cognitive models

- goal and task hierarchies
- linguistic
- physical and device
- architectural



Cognitive models

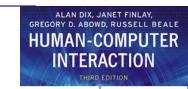
- They model aspects of user:
 - understanding
 - knowledge
 - intentions
 - processing
- Common categorisation:
 - Competence vs. Performance
 - Computational flavour
 - No clear divide

Goal and task hierarchies

- Mental processing as divide-and-conquer
- Example: sales report

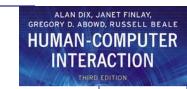
```
produce report gather data
```

- find book names
- . . do keywords search of names database
- further sub-goals
- . . sift through names and abstracts by hand
- further sub-goals
- . search sales database further sub-goals layout tables and histograms further sub-goals write description further sub-goals



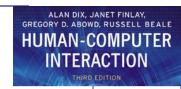
goals vs. tasks

- goals intentions
 what you would like to be true
- tasks actions
 how to achieve it
- GOMS goals are internal
- HTA actions external
 - tasks are abstractions



Issues for goal hierarchies

- Granularity
 - Where do we start?
 - Where do we stop?
- Routine learned behaviour, not problem solving
 - The unit task
- Conflict
 - More than one way to achieve a goal
- Error



Techniques

- Goals, Operators, Methods and Selection (GOMS)
- Cognitive Complexity Theory (CCT)
- Hierarchical Task Analysis (HTA) -Chapter 15

GOMS

Goals

- what the user wants to achieve

Operators

basic actions user performs

Methods

decomposition of a goal into subgoals/operators

Selection

means of choosing between competing methods

GOMS example

```
GOAL: CLOSE-WINDOW
```

- . [select GOAL: USE-MENU-METHOD
 - . MOVE-MOUSE-TO-FILE-MENU
 - . PULL-DOWN-FILE-MENU
 - . CLICK-OVER-CLOSE-OPTION

GOAL: USE-CTRL-W-METHOD

. PRESS-CONTROL-W-KEYS]

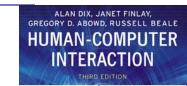
For a particular user:

Rule 1: Select USE-MENU-METHOD unless another

rule applies

Rule 2: If the application is GAME,

select CTRL-W-METHOD



Cognitive Complexity Theory

- Two parallel descriptions:
 - User production rules
 - Device generalised transition networks
- Production rules are of the form:
 - if condition then action
- Transition networks covered under dialogue models

Example: editing with vi

- Production rules are in long-term memory
- Model working memory as attribute-value mapping:

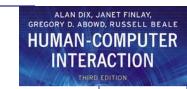
```
(GOAL perform unit task)
(TEXT task is insert space)
(TEXT task is at 5 23)
(CURSOR 8 7)
```

 Rules are pattern-matched to working memory,

```
e.g., LOOK-TEXT task is at %LINE %COLUMN is true, with LINE = 5 COLUMN = 23.
```


Four rules to model inserting a space

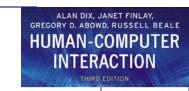
Active rules:


```
SELECT-INSERT-SPACE
INSERT-SPACE-MOVE-FIRST
INSERT-SPACE-DOIT
INSERT-SPACE-DONE
```

New working memory

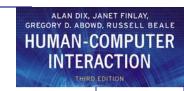
```
(GOAL insert space)
(NOTE executing insert space)
(LINE 5) (COLUMN 23)
```

SELECT-INSERT-SPACE matches current working memory



Notes on CCT

- Parallel model
- Proceduralisation of actions
- Novice versus expert style rules
- Error behaviour can be represented
- Measures
 - depth of goal structure
 - number of rules
 - comparison with device description



Problems with goal hierarchies

a post hoc technique

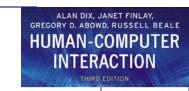
- expert versus novice
- How cognitive are they?

Linguistic notations

- Understanding the user's behaviour and cognitive difficulty based on analysis of language between user and system.
- Similar in emphasis to dialogue models
- Backus-Naur Form (BNF)
- Task–Action Grammar (TAG)

Backus-Naur Form (BNF)

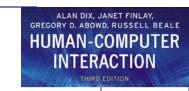
- Very common notation from computer science
- A purely syntactic view of the dialogue
- Terminals
 - lowest level of user behaviour
 - e.g. CLICK-MOUSE, MOVE-MOUSE
- Nonterminals
 - ordering of terminals
 - higher level of abstraction
 - e.g. select-menu, position-mouse



Example of BNF

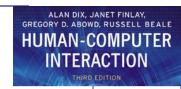
- Basic syntax:
 - nonterminal ::= expression
- An expression
 - contains terminals and nonterminals
 - combined in sequence (+) or as alternatives (|)

```
draw line ::= select line + choose points + last point
select line ::= pos mouse + CLICK MOUSE
choose points ::= choose one | choose one + choose points
choose one ::= pos mouse + CLICK MOUSE
last point ::= pos mouse + DBL CLICK MOUSE
pos mouse ::= NULL | MOVE MOUSE+ pos mouse
```



Measurements with BNF

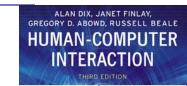
- Number of rules (not so good)
- Number of + and | operators
- Complications
 - same syntax for different semantics
 - no reflection of user's perception
 - minimal consistency checking



Task Action Grammar (TAG)

- Making consistency more explicit
- Encoding user's world knowledge
- Parameterised grammar rules
- Nonterminals are modified to include additional semantic features

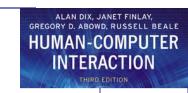
Consistency in TAG


In BNF, three UNIX commands would be described as:

```
copy ::= cp + filename + filename | cp + filenames + directory
move ::= mv + filename + filename | mv + filenames + directory
link ::= ln + filename + filename | ln + filenames + directory
```

 No BNF measure could distinguish between this and a less consistent grammar in which

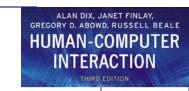
```
link ::= In + filename + filename | In + directory + filenames
```



Consistency in TAG (cont'd)

- consistency of argument order made explicit using a parameter, or semantic feature for file operations
- Feature Possible values

```
Op = copy; move; link
```

Rules



Other uses of TAG

- User's existing knowledge
- Congruence between features and commands
- These are modelled as derived rules

Physical and device models

- The Keystroke Level Model (KLM)
- Buxton's 3-state model

- Based on empirical knowledge of human motor system
- User's task: acquisition then execution.
 - these only address execution
- Complementary with goal hierarchies

Keystroke Level Model (KLM)

- lowest level of (original) GOMS
- six execution phase operators

Physical motor: K - keystroking

P - pointing

H - homing

D - drawing

Mental M - mental preparation

SystemR - response

times are empirically determined.

Texecute = TK + TP + TH + TD + TM + TR

KLM example

GOAL: ICONISE-WINDOW

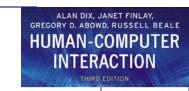
[select

GOAL: USE-CLOSE-METHOD

. MOVE-MOUSE-TO- FILE-MENU

. PULL-DOWN-FILE-MENU

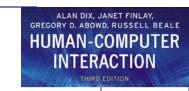
. CLICK-OVER-CLOSE-OPTION


GOAL: USE-CTRL-W-METHOD

PRESS-CONTROL-W-KEY]

- compare alternatives:
 - USE-CTRL-W-METHOD VS.
 - USE-CLOSE-METHOD
- assume hand starts on mouse

USE-CTRL-W-METHOD		USE-CLOSE-METHOD	
H[to kbd]	0.40	P[to menu]	1.1
М	1.35	B[LEFT down]	0.1
K[ctrlW key]	0.28	М	1.35
		P[to option]	1.1
		B[LEFT up]	0.1
Total	2.03 s	Total	3.75 s



Architectural models

- All of these cognitive models make assumptions about the architecture of the human mind.
- Long-term/Short-term memory
- Problem spaces
- Interacting Cognitive Subsystems
- Connectionist
- ACT

Display-based interaction

- Most cognitive models do not deal with user observation and perception
- Some techniques have been extended to handle system output

(e.g., BNF with sensing terminals, Display-TAG) but problems persist

Exploratory interaction versus planning