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Evntually, oll things nerge into one, and a river runs through it. The river was
cur b)' the xorld's great food and runs over rocks from the basenent of time. On
some of the rocks are tinteless raindrops, Under the rock are the lords, and
some of the u'ords are theirs.

I arn haunted by waters.
-Nomtrnan l\'laclean, A River Rlns Tltrouph lt
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PREFACE

The study of open channel hydraulics is a challenging and exciting endeavor
becai.rse of the influence of gravity on free surface flows. The position of the free
surface is not known a priori, and counterintuitive phenomena can occur from the
liewpoint of the first-time sludent of open channel flow. This book offers a study
of gravity flows staning from a firm foundarion in modern fluid mechanics that
includes both experimental results and numerical computation techniques. The
development of the subject matter proceeds from basic fundamentals to selected
applications with numerous worked-out examples. Experimental results and their
comparison with theory are used throughout the book to develop an understanding
of free-surface flow phenomena. Computational tools range from spreadsheets to
computer programs to solve more difficult problems. Some computer programs afe
provided in Vsual BASIC, both as leaming tools and as examples to encourage the
use of computational methods regardless of the platform available in a very
dynamic environment. In addition, several well-known computer packages avail-
able in the public domain are demonstrated and discussed to inform users with
respect to lhe methodologies employed and their limitations.

The basic equations ofcontinuity, energy, and momentum are derived for open
cbannel flow in the first chapter, from the viewpoint of both a finite control volume
and an infinitesimal control volume, although the complete derivation of the gen-
eral unsteady form of the differential momentum equation is saved for Chapter 7.
Dimensional analysis is introduced in some detail in the hrst chapter berause of its
use throughout the book. This is followed by Chapters 2 and 3 on the specific
energy concept and the momentum function. respectively, and their applications to
open channel flow problems. Design of open channels for uniform flow is exam-
ined in Chapter 4 with a detailed consideration of the estimation of flow rcsistance.
Applications include the design ofchannels with vegetative and rock riprap linings,
and the design of storm and sanita4r sewers. Chapter 5, on gradually varied flow,
emphasizes modem numerical solution techniques. The methodology for water-
surface profile computation used in current computer prcgrams promulgated by
federal agencies is discussed, and example problems are given. The design of
hydraulic structures, including spillways, culverts, and bridges, is the subject of
Chapter 6. Accepted computer programs used in such design are introduced and
their methodologies thoroughly explored. Chapters 7, 8, and 9 develop cunent
techniques for the solution of the one-dimensional Saint-Venant equations of
unsteady flow and their simplifications. In Chapter 7, the Saint-Venant equations
are derived, and the method of characteristics is introduced for the simple wave
problem as a means of understanding the matbematical transformation of the gov-
erning equations into characteristic form. The numerical techniques of explicit and
implicit finite differences and the numerical method of characteristics are given in
Chapter 8, with applications to hydroelectric transients in headraces and tailraces,

xl



xii Prcface

the dam-break problem, and flood routing in rivers Chapter 9 co'rers simplified

methods of flow routing including rhe kin-ematic wave method' diffusion nrethod'

;;; ';; lt;;;ki"s";-b,i,lg" nt"tttod Finrllv' the complcx subjecr of alluvial chan-

nel flows that have a movable bed as rvell as an adjusiable free surface is explored

r" ti "pli io- rrtls chapter emphasizcs the inponant links among sediment dis-

.n-gaiU"O forms, and flow "ti 'tunt" that are essential to an. u.nderstanding of

op.n'.itunn"t nonu in rivers. Also covered in Chapter l0 are alluvial channel adjust-

J;;;';iilLrm, and shapei and bed scouiin response to the flow blockase

caused bY bridge foundations'
The book includes two appendices to supPlement the text material The first is

, ".n"iui discussion of somi selected numerical techniques that can be used

,rrt?r"rr"*-t.tre book. The second appendix contains some example computer pro-

;l#ffi; ';;;;;";;,t* ;i noIilal and critical depth in prismatic channels'

i".i"oi"g .t.p"""h channels' and computation. of waler-surface proirles These

;;;;r".: ;" written in visual BASIC as leaming aids for. more exrensrve prc.

!;ffi;;;;t;i;;; u,',i. "na-or *tal chapters' 6n a website for the book' addi-

ionJ proir^*. for solution of the more advinced exercises on unsteady flow com-

""o,iJ", i"" be found, where they can be updated if necessary in a dynamic

;'f"':l"J#ilj?i,),.Ti;n, 
is inrended ror advanced undersraduales and nrsr-

r.*?;l;;;;;"i" i" trt" g"**r fields of water resources and environmental

ffitffi;;: ch;ffi i'il"dsh 5 and Chapters ? throush 9. provide sufficient

material for a semester course rr open channei hydraulics covering both steady and

u*i*Oy no". fn" book also can be used for a first-year graduate course or a sen-

i", .i.tii"i-.."*" on hydraulic structures and river hydraulics' utilizing Chapters

+,'s,'is, "iJ 10. n"s materia.l, which includes several applications and example

#il;r, ilii ; ur.rur ,o the fractitioner charged with the responsibilitv for

i""ft'lrks "t nt aplain management' spillway design for small teseryoirs' culvert

-J."*", a"tig" r,ir orainage, investigaion oi stability and flow resistance of allu-

il ;;;il;J "stimatioriof bridgeiackwater and stour. Because of this applied

i*"r J,ii"'m"r. it should be a uJeful addition to a consulting engineer's library

ur-*"fi u, " po.ti"al textbook on *re fundamentals ofopen channel flow'
- ' 

;;;h'rp";"ontains worked-out example problems to ard.in the understand-

ins of the text material. Where postibt"' tolution' are given.in dimensionless form

llt#n"il ;;il;; iniuiJu'" una.''onding of the phvsics of the problem and

the behavior of its solution over a wide range of variables At the end of each chap-

;;; ;;;;;i; ;" ptesented that involve application of the.material in the chapter as

""'U "t ti"J* "'-pf"tation of further rarnifications of the text material' In some

;;;#;;;i i"do.utory results are given for data reduction and presentation by

studenb to experimentally verify text material'"'""d; 
bJ;;*to*n out of it"ttctional and research materials developed over

**r"iy"-. *J "i"A in a g'adoate cout'e sequence in open channel flow and sed-

i**io't .pon ̂ t *ell as ii a continuing eduiation.course that I have taught at the

6'""r *iJi i*" of Technology' Becau-se of its unique focus on fundamentals as

ffiiuuJ *fi;;il'-*J"*pJtl-""ttl results as well as numerical analvsis' this



book should fill a niche b€tween exhausiive handbooks and purely academic uea_
tises on ihe subject of open channel hydraulics.

. . I am indebted to more people than t can enumerate here for the completion of
this project. My initial motivation for preparing for an academic career in hydraul_
ics dates back to a keynote address that I heard delivered by Hunter Rouse, who was
an accomplished orator as well as writ€r, at a conference held at the Universitv of
Iowa. The subject was the careers of famous hydraulicians including rheir foiLles
as well as achievements. I later graduated from the University of Iowa under the
late Jack Kennedy, who was a continuing inspiration to a struggling ph.D. student.
I am much indebted to the continuing encouragement given by BJn C. yen at the
University of Illinois, where I received my B.S. and M.S. degrees in Civil Engi_
neering, and Fiward R. Holley at the University of Texas at Austin over the course
of my career C. Samuel Martin has served as mentor and colleague for many years
at Georgia Tech. The encouragement and research collaboration of my coileague
Amit Aminharajah has been invaluible. I owe much to the previous treatises on
open channel hydraulics by Ven Te Chow and F. M. Henderson, as do many olher
authors as well as practirioners. Review comments by Johnny Morris, Larry Mays,
and Ben C. Yen, and suggestions by Edward R. Holley have led to an improved
manuscript, although I bear the responsibility for any errors or shortcomings that
remain. I express my gratitude to Mark Landers ofthe USGS for locating and pro-
viding copies of the river slides by Bames.

My students have been a continuing source of motivation for me to try rc
explain complex aspects of open channel hydraulics wirh clarity. I have leamed
much from their curiosity and probing questions about the details of o;rn channel
flow phenomena.

Finally, I am forever indebted to my wife, Candy, whose padence, love, and
s-upport brought me through this project, and to my grown children, Geofrrey,
Sarah, and Christy, through whose eyes I continually see the wodd anew.
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Basic Principles

t . l
INTRODUCT'ION

Open channel  hydraul ics is  rhe srudy of  rhe physics of  f lu id  f low in  conr  ey ances in
whjch the flowing fluid forms a free surface and is driven by gravity. The primary
casc of inrerest in this book is water as the flowing fluid ha!ing an inlerface or free
surface formcd *,ith the antbient atmosphcre, but lhe basic principles also apply to
other cases such as density-stratified flows. Natural open channels include brooks,
streams, rivers, and estuaries. Anificial open channels are exemplified by storm
sewers, sanitary sewers, and culvens flowing partly full, as well as drainage
ditches, irrjgation crnals, aqueducts, and flood diversion channels. Applications of
opcn channei hydraulics range from the design of anificial channels for beneficial
purposes such as irrigation, drainage, water supply, and wastewater conveyance to
the analysis of flooding in natural waterways to delineate floodplains and assess
flood damages for a flood of spccified frequency. Principles of open channel
hydraulics also are ulil ized to dcscribe the transporl and fale of environrnental con-
tan'linanls, including those carried by sedinrcnts in morion, as *ell as to predict
flood surges caused by dam breaks or hurricanes.

1 . 2
CIIARACTERISTICS OF OPEN CHANNEL FLOW

Although the basic principles of fluid mechanics are applicable to open channel
flow, such flow is considerably more complex than closed conduit flow due to the
frce surface. The relcvant forces causing and resisting motion and the ineflia must
form a balance such that the frcc surfacc is a strca',rline along which the pressure
is coDsl.lr)t and equal to almospheric pressure. Tltis extra degrce of freedom in open
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chanacl f low means rhat the flow boundaries no longer are fixed by the conduit
geometry, as in closed conduit f low, but rather the free surface ad.justs itself to
.rccomnrodate the gi\ en flow conditionr.

Another important characteristic of open channel f lorv is the extreme variabil-
ity encountered in cross-scctional shape and roughness. Conditions range from a
circular gravity scwer flowing partly full to a natural river channel with a floodplain
subject to overbank flow. Roughness heights in the gravity sewer correspond to
those encountered in closed conduit f low, while roughness elements such as brush,
vegetation, and deadfalls in natural open channels make the roughness extremely
diff icult to quantify. Even in the case of the circular gravity sewer, resistlnce to
flou is complicated by the change in cross-secrional shape as the depth changes. In
allur ial channels, the boundary itsclf is movable, giving rise to bed forms that pro-
r ide a funher conlributiun to florr re.istrnce.

Because of the free surface, gravity is the driving force in open channel t low.
The ratio of inertial to gravity forces in open channel f low is the most irnportanr
governing dinrensionless paranreter. It is called the Froude number, deltned Lty

F :  -  Y *
( sD ) ' -

( l . l )

in which V is the mean velocity, D is a length scale related to depth. and g is grav-
itational acceleration. In some instances the Re1'nolds number also is imponant, as
in closed conduit flow, but one of the few simplifications in natural open channels
is the existence of a large Reynolds number so that viscous effects assume less
imponance. Flow resistance in this case can be dominated by form resistance,
which is associated with asymmetric pressure disfibutions resulting from flow sep-
aration. The success of Manning's equation in characterizing open channel flow
resistance in fact depends on the existence of a Reynolds number large enough that
the Manning's resistance factor is invariant u irh Reynolds number.

1.3
SOLUTION OF OPEN CHANNEL FLO\Y PROBLEMS

The complexities offered by open channel flow often can be dealt with through a
combination of theory and experiment, as in otier branches of fluid mechanics. The
basic principles of continuity, energy consenation, and force-momentum flux bal-
ance must be satisfied, but we often must reson to experiments to complete the
solution of the problem. The resulting relationships can be quite complicated, espe-
cially when the variability of the cross-sectional geometry is considered.

ln the not-too-distant past, the design of open channels was achieved with the
aid of numerous nomographs and graphical relationships because of the nonlinear-
ity of thc goveming equations combined with complex geometry. More extensive
analysis of unsteady flow problems or gradually varied flow problems associated
with river floodplains required mainframe computers. Presently, the proliferation of
personal computers and engineering workstations has provided much greater acces-
sibility and flexibility for simple as well as complex problems in open channel
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h l t l rau l i cs .  Programs lha t  a re  l ru l )  in lc rac t i !e  \ \ ' i th  immcd ia le  fccdback  o f  rcsu l ts

i n t h e f o r n l o f  s c r c c n g r a P h l c s r ' t n t ' \ - * r i r t c n u i t h e a s e  T h e  h 1 d r a u l i c  e n p i n c c r  c a n

i " ra .u ig" , "  a  * ide  ar r -ay  o f  dcs tgn  so l t t l i ons  3nd the i r  in lp l i ca t ions  in  a  complc le l )

in (c rac t ive  rnodc  in  thc  n todcrn  cng inccr ing  r ro r ts ta t ion  On the .o ther  hand '  such

. l " ra  o iu ra  ,o tn . , i tnes  Ic rds  to  n r is in f . rn ted  app l ica t ions  o f  acccpted  prograr ls  tha t

havc bccn lran\Poned from lltc tnainfrlmc 10 flcrsonal comptrlcrs

1 . 4
PURPOSE

Thc th ! 'me o f  th is  book  ts  to  p rcscn l  n rcdc tn  nun lc r ica l  t cchn iqucs  fo r  the  so lu t ion

"i'"p."'ii-".r n":^o:::l:',::.i:,ii",...,lli"l,ir'l'r"il'*r:::i:i;l:::'JT;l:::
well as to en'lphaslze exPcnmclr
;;;t. Tt; proii.. or u variable bed surfacc caused b1' sedinrent transpon in ailu-

.'i i .f,r"".it is (reated as well ln addition' focus is placcd on the aPplication of

;;' ';;;i: '; i;: oinu,o -"tr"nitt ro the formulation of .pen channel flow prob-

lems. so that the assumptlons ano limitations of the nurnerical models now widely

;;;il;;i" "r" rnade cleai The cornbination of theoretical' experimenta!' and numer-

;;;h-",q;;plied to open channel flow provides a synthesis that has become

the hallmark of modern fluid mechanics'

1.5
HIS'[ORICAL BACKGROUND

The following discussjon relies on the excellent hislorical treatment of hydraulics

bv Rouse and Ince (1957) ,  to  which the reader  is  refcr rcd for  fur t l rer  deta i ls '
"' 

;ro; irr" Jt*i "i.i"irization' the cotrvcyance of \tater in opcn channels has

becn used to mcet basic needs, sLrch as inigation for thellSyptians and Mesopolami-

ans, watrr supply for the Ronlans' and *istt disposal for U'1ry:lt in the Middle

,og;t, ;irh ,ttl 'ail"strous results of waterborne discase transmission ln somecases'

artificial open channels wcre ton'trutttd' while in otbers natural river channels

\  ere ur i l i /ed to con\cy $atcr  Jnd \ \astes '""' 
d;;;;pii^"t ur.d u du* for water diversion and gravity flow through canals

to ,rirtnuu['iut", from the Nile River, and the Mesoporami.ans developed canals to

transfer water from the Euphrat€s to the figris rivers' but there is no recorded evi.

i""i. "f""y ""a"tstanding of the theoretical flow principJes involved' The Chinese

are known to have devised a system of dikes for prorection from.flooding several

,h;;; ;;;;;g" Evidence of water supplv pipes and brick conduits for drainage

;;;;i000 y;rs B.c. has bcen found in int indut River valley The success of

;;;; ;;tiy,;;;""tive hvdraulic works was likelv the result of experience onlv'

Roman aqueducts were used to transport water from springs to distribution

reservoirs. The aqueducts rvcre reclangular, masonry.canals supported by masonry

"r.rr.r, ""0 they conforned to the n,iural topography in longitudinal slope. The

water discharge in the aqueducts *ut 'neu'u"d is the cross-sectional area of flow
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u,ith no regard for the r elocity or slopc producing rhc velocity. Alrhough rhe exis_
tence o fa  conserva t ion  pr inc ip le  was rccogn ized.  thc  conscrved quant i t r  o fvo lume
flux was misundcrstood. Yct, these itqueducts served their .ngin".r,,,g purpore,
albeit inefficiently and uneconomically in nrotlern lerms.

The philosophical approach of the Grceks toward physical phenomcna was
rcvived by the Scholasticism of the N4iddle .{ges, and it renrained ior L_eonardo da
Vinci to introduce the exprcrimcnlal rnethod in open channel f low during the Renais_
sance. konardo's prolif ic writ ings included observations of the velocitv distribution
in rivers and a correct understanding ol the continuity principte in srcams with nar_
rowing width. Some earlt experimental results on pipe and channel f lo*, $ ere rcponcd
by Du Buat in 1816, but rhe cxperintcntal work on canals begun by Darcl,ard com_
pleted by Bazin in the late l9th centurv, and Bazin's experiments on weirs. \\ cre unsur_
passed at the timc and remain an enduring legacy to the experimental approach.

The problcm of o;xn channcl f low resistance was recognized as imponant by
many engineers in the I Sth and l9rh centuries. The work of Chezy on fl oq, resisrrnce
began in 1768, originaring from an engineering problem of sizing a canal to deliver
water from the Yvctte River to paris. The resistance coefficieni attributed to him,
however, was introduced much later because his work dealt only with ratios of the
independent variables of slope and hydraulic radius to the l/2 power in a relationship
for velcrity ratios in difrerent streams. His work was not published unti l the lgth cen-
tury. The Manning equation for open chrnnel f low reiistarrce, about which much wil l
be said in this book, has a complex historical development but was based on field
observations. Thc Irish engineer Roben Manning actually discarded the formula
because of its nonhomogeneity in fayor of a more complex one in l gg9. and Gauck_
ler in 1868 preccded Manning in introducing a formula of the type that no$. bears the
name of Manning.

The theoretical approach to open channel f low rcsts on the l irm foundation
built by Newton, Leibniz, Bernoull i. and Euler, as in other branches of f luid
mechanics; but one of its early fruits was the analytical solution of the equation of
gradually varied flow by Bresse in I860 and the conect lormulation of thi momen-
tum equation for the hydraulic jump, which he attributed ro the lg3g lecture notes
of Belanger. In addition, Julius Weisbach extended the sharp_crested u eir equation
in l84l to a form similar to that used today. By the end oflhe lgth centurv. manv
of the elements of the modem approach to open channel f low, which inclujes borir
theory and experiment, had been established.

The work of Bakhmeteff, a Russian emigre to the United States. had oerhaos
the most imponant influence on the development of open channel hl,draulics in
the early 20th century. Of course, the foundations of modern fluid mechanics
(boundary layer theory, turbulent velocity and resistance laws) were beins laid bv
Prandtl and his students, including Blasius and von Kiirmiin, but Bakh-meteffis
contributions dealt specifically with open channel f low. ln 1932, his book on the
subject was published, based on his earlier l9l2 notes developed in Russia
(Bakhmereff 1932). His book concentrared on . 'varied flow" and introduced the
notion of specific energy, sti l l  an imponant tool for the analysis of open channel
flow problems. In Germany at this time, rhe conributions of Rehbock to weir
flow also were proceeding, providing the basis for many further weir expenmenrs
and weir formulas.
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By thc  n r id -20 th  ccn tury .  n l i ln )  o l  thc  g r ins  in  Inow ledge in  opcn ch lnnc l  f low
had bccn conso l ida tcd  and c r tcn t jcL l  in  thc  books  by  Rouse (  1950) ,  Chow (  1959) ,
and lJcnc je rson (  1966) .  in  rvh ic l r  c r t r 'ns ivc  rc fc rcnccs  can bc  found.  These bu lks  \e t
the  s tagc  fo r  rpp l i ca t ions  o f  n toc lcnr  nuntc r ica l  ana lys is  techn iqucs  and cxpcr in rcn-
Ia l  ins tn rnrcn ta t ion  lo  p rob lcors  o f  r ' f . ' n  ch lnne l  f lo * .

1 . 6
DI.]FI N IT'I ONS

In  a  s tcady  ope n  channc l  l low.  thc  dc1 l lh  and rc l t , , - i t y  a t  a  px) in l  do  no t  changc as  a
func t ion  o f  t ime.  In  tbc  n rore  gcner i r l  casc  o f  uns tcady  f loq .  bo th  vc lmi ty  and dcp lh
vary  u i th  t i l re .  as  in  the  case o f  the  prssagc  o f  a  f lood  $arc  in  a  r i ver  as  shown in
Figure L la re lative to a fired obscrre r on lhc rivcrbank. Thc change in rc' lrn--it; and

(c)

Rainfall
TITTTTTTTT|ITTT|N

Q r I

FIGURI :  T .T
T)pes of L,pen channel f low: (a) unstcidy; (b) stcady, riniform: (c) steady. gradutlly varied
(GVF).tn,l sleady, rapidly !aried (RVF)i (d) uns{ead}'. rapidll rrried: (e).paliall} varied.

(a )

(e)(d)
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deplh in a large river nlay occur so gradually and over such long distances that the
obsen er can see only a gradual rise rnd fl l l  of rir er stlge. If rhe flood wave results
from a dam break, on the other hand, an abrupr change in depth and velocity and a
distinct u'ave front or surge may be observed. In the former case, only ncar the peak
of the flood wave could the florv be considered approxirlately steaoy, or quasl_
stead). allowing steady flow analyses.

Spatial variations in velocity and dcpth in the flow direction are disringuished bv
the tcrms uniform nnd nonunifornt. In a uniform flow. the mean crosi-sectional
velmity and dcpth are constant in the flow direction. as shown in Figure l. lb. This
flou condition is diff icult to create in lhe laborarory amd rarcly occurs in the field, but
oflen js used as the basis for opcn channcl design. It requircs the existence of a chan_
nel of unifornr gcometry and slope in the flow direcrion; that is. a prismaric channel.
The nonunifornr f low condition can be divided inro tuo rypes: gridLrally variecl and
rapidly varied. Gradually varied flow is nonuniform flow. but the curvature of the
free surface and ofthe accotnpanying streamlines is so slight that the transvcrse pres,
sure distribution at any station along the flou can bc approximated lr hl,t lrosiarrc.
This assumption allows the flow to be treated \{ith one-dimensional fonns of the
gor eming diffcrential equations in which we are concemed with variation of the flow
lariables in the flow direction only. Fortunatel\ ' . most river f lows can be feated in
this ntanner. Rapidly varied flow, on the other hand, is not amenable to this approach
and often requircs application of the monentum equation in control volume ftrm as
in the hydraulic jurnp or a two dimensional formulation of the gor eming differential
equations as in the highly cunil inear flow over a spil lway crest. Examples of gradu_
allv raried and rapidly varied flow are shown in Figures l. lc and I. ld.

Spatially varicd flow really is a class of nonuniform flow but oues irs nonuni_
formiry to Iariation in the flow discharge in the direction of motion as well as to an
inrbalance of gravity and resisting forces. Examples of spatially varied flow include
side channel spil lways ard continuous rainfall additions to gutter f low, as snown rn
F igure  1 .1e .

1.7
BASIC EQUATIONS

The basic equations of fluid mechanics are applied to open channel flow wrrn some
modifications due to the f 'ree surface. These equations are the continuity. momen_
tum. and energy equations, which can be derived directly from the Rcynolds trans_
pon theorem applied to a fixed control volume as shown in Figure 1.2a. The
Retnolds transport theorem is derived in mrnr elementary fluid mccnanrcs rext-
books (Roberson and Crowe 1997: White 1999) and is civen bv

Ib p d Y  + (  1 .2 )

i nuh ich8:sys temproper ty : / : t ime;  b  :  rhe  in lens ive  va lue  o f  B  per  un i t  rnass
nr, dB/dm. p = fluid density; V : volume of rhe control volume (ca); V : veloc,

t
I  b p ( V . n )  d a
I

d B d

dr dr
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F IGURI '  I .2
Conkol volurnes (a) arbilrary conttol volunle; (b) strealn(ube; (c) rivcr reach: (d) streamline

ity vectorl n : ounlard normal unit vectorl and A = arca of the control surface (cs)

Tie volume integral on the riSht hand side of Equation I 2 sums up the values of

the property per unit mass b over each mass element given by pdV ln the surface

integral in Equation 1.2, (pY n) d"4 rePresents the mass flux through an clemen-

tal area d,4 on the control surface. The dot product of the vclocily vector with the unit

out$ard normal (Y n) determines the compon.nt of the vclocity perpcndicular to

the surface since only that comPoncnt can carry the PfoPerty through the surface'

Furthermore, the dot product is positivc for outtr ard fluxcs and ncgative for in$'ard

fluxes inlo the conrrol volume. Thus, thc sulfacc irltc!ral sulns up the products of

the property per unit mass b and the tl lass flux ovcr the control strrfacc to ! ' iYc the

Control

l l / = pg dA ds
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net outward flux of thc properly. In sunlrnary, Equation 1.2 slates that (he time rate
of changc of the system propeny is the sunt of the tinte rate of change of the prop_
eny inside the control volume and rhe net outward l lux of the property rhrough the
control suface.

The Rcynolds transpon rheorem can be applied to the properties of mass,
momentum. and cncrgy to obtain the control volume fbrm of the corresponding
govcrning conservation equations. The control ' ,olume forms of the equrri.,n. cai
be simplif icd for the case of steadv. one-dimcnsional f low and used in the analysis
of many opcn channel f loll problcms.

In the case of mass rn, the propen), I = rr and it follows thar dBldt : 0 and
b - dBldn = l. so that

(  1 . 3 )

which means simply that the timc rate of change of mass inside lhe control volume
in the first term must be balanced by the net outward mass flux through rhe control
surface expressed by the second term. Now, in the case of steady flow of an incom-
pressible fluid for the one-dimensionrl streamtube shown in Figure 1.2b, we have
the fanr i l i r r  form of  the conl inu i r )  equt t ion:

= 0 = : 0 . , , - : 0 , " ( L,1)

in which IQ - summation of the volume fluxes in or out of the control volume.
The mean cross-sectional velocity, {. is defined as the volurne flux divided by the
cross-sectional area of f lo* perpcndicular to the streamlines such that the yolume
flux can be written as

0 :  | , , , , , ae :  
v , e (  1 . 5 )

in which u, is the point velocity in the streamline direction; { is the nrean cross-
sc\'t ional velor it) : rnd A is the cro\s-\eclional rrea of f low.

Equation I.3 also can be written in differential form for the general case of
unsteady open channel f lou, of an incompressible fluid. If the control volume is
considered to have a differential lengrh lr, as shown in Figure 1.2c, then as Ar
approaches zero, Equation 1.3 becomes

(  1 . 6 )

At any cross section, the time rate of change of flow area due to unsteadiness as the
free surface rises or falls must be balanced by a spatial gradient in the \,olume flux
Q in the flow direction. For sready flou.. dAldr is zero by delinition and 6el0r then
also must become zero, which irnplies that the volume flux e is constant along the
channel, in agreement with Equation 1.,1. The differential form of the continuitv

d t  I
i ) , , oov  

+  j , r ( v ' n )d " t

/ . t n . " l  
oo

aA ao
n

at i).\
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cquat ion  as  S i \cn  b)  [ ]qu l : r t ion  l6  w i l l  be  app l icd  in  thc  nun l t ' r r . r t l  r ina l r r i s  o f

uDstcady of^.. r chrtrnel f lorv in Clrlpler 8

I f  $c  tu r l  : r ( \ *  to  thc  p ropcr t l  ( ) f  momcntun l ,  lhc  fund i ln lc i "  r l  p r ( rpcnv  B in

the  Re, " -no l t ] .  i . r r r . ; )1 ] l (  thcorc rn  bcc t tmcs  a  vcc{or  quan l i t \  dc l r r  i J  b }  thc  I rncar

momcntum t t  =  r ; , \ ' ,  in  r rh ic f t  r t r  -  mass  and V =  vc lc r i t )  \ c ' c l { r . .  fh t  lo l r l  d ! 'nv -

a t i vc  dB/d l  i s  c rae t l l  lhc  \ r ' c t ( ) r  sum o f  fo rccs  I l '  ac t ing  on  thc  cor r { ro l  \ ( ) lun le

accord ing  to  Ncr r lon  s  sccond law.  ln  th is  case.  dB/d ,x  =  \ '  and  thc  Rc;  no lds  t rans-

lo r t  {heorcn  fo r  a  f i red  cont to l  \o lu l l ] c  bcco tncs  a  vcc lo r  equa l ion '  u i r i ch  can he

wr i t t cn  as

vp rrv + 
f  ,un1t ' . . ;  

ou (  1 . 7 )

I luua t ion  1 .7  s l r l t cs  th r l  lhc  v r ' c lo t  'unr  o f  fo tccs  ac l i t )8  on  lhe  cont ro l  ro lL rn lc  i s

cqua l  to  thc  t i t ] t c  ra te  o f  ch ln8cof  I  re l r  n lonren l t t r l ]  ins idc  the  co l l ( ro l  \o lumc i tus

the  ne t  nomcntum f lux  ou t  o f  the  cont ro l  ro lun le  th rough lhc  con l fo l  sur facc .  In

fact, this equation can bc thought of sinrply as Novton's sccond law applied to a

fluid. It is crucial lo note that Equation 1.7 is a vector equalion that rcPresents lhrce

separate equalions, writ lcn in each coordinate direclion with the approPrilte com-

ponents of each vcctor quantlty.

For the special case of the streanltube control volume in Figure l.2b' thc

steady, one-dimensional form of the momcnturn equation in the stream direction, s'

i s  g iven  by

- t lBpQv,),,,, - > (FpQv,),^ ( 1 . 8 )

in which u, is the point velcrity in the strcan'i lube directionl { is the nrean vcloc-

ityl and p is thc momentunl f lux correclion coefficient to accotrnl for a nrrnuniftrrnr

velocity dislributjon. The I ' l torncrrturn eqtration as givcn by l iquation 1.8 statcs lhat

the veclor sum of extcmal forces in ihe strt 'rtntubc direction is cclull to lhe nronlcn-

tum f lux  ou t  o f  the  cont ro l  vo lu l r tc  in  thc  r  , J i rec t ion  n t inus  thc  n lo r r l i r l t l rm f lux  in to

the control volume in the s dircction.
The rnomentum flux correction coell lcicnt p in Equation 1.8 is dcfincd by

: ! ' : :  i
,JI J,,

J,nu,(v 
n) oa

t ^
l u ; d A
J .

'  v :A
( 1 . 9 )

to correcl for the substitution of the mean velocity squared for the point velcrity

squared ard bringing it outside the integral in Equation l.8 ln turbulent f low in

prismatic channels, the value of p is not significantly greater than lhe value of unity,

wbich is the raluc for a unifonn vclocity distribution. In othcr opcn channel f low

situations such as imrncdiatcly d.'rrnstrfam of a bridge pier' or in ;r rivcr channel

with floodplain flow, lhc valuc (,f fJ ( i l 'r lol be taken as trt i i ty hccattse of thc highly

nonun i fo r t r  \e loc i ty  ( l i \ l r i l , f l l i )ns  i r r  l l  ' " , :  s j tua t ions .
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It is imponant to note that thc volunre l1ux. Q, has bccn subsriruted for A{ in
Equation 1.8 and that the renraining { in the momenturn flux term is dre componenl
of mean velocity in the direction in which the forces are summed. The outward vol-
ume flux takes a positive sign from (V . n) becausc of the positive oulward unit vec-
tor, ard a negativc sign goes with the inward volunte flux for thc sane reason. The
sign of { depends on tl:e chosen positive direction for the force sunrmation. lf the
forces are being summed in a direction jr that is dilTerent from the streanrtube direc-
tion. the volunre flux remains unchanged but the contponent velocitv is taken in the
r direction rvith the appropriate sign. [n the r direction, Equalion L8 becomcs

)F. - )  (BpQv)*, >(FpQv,)," ( 1 . 1 0 )

If the monrentum equation is applied to a differential control rolurne aJong a
slreamline, as in Figure L2d, and only pressure and gravity forces are considered,
the result is Euler's cquation for an incompressible. frictionless fluid:

a; au, ou,- p 8 - = p - ' t p L " "
( t . t  dt  dt

i n  uh ichp =  pressure : :  -  e leva t ion i  u ,  =  s t reaml ine  ve loc i ty ;  t  =  t ime:  and s  =
coordinate in the streamline direction. lf only steady flow is considered and Euler's
equation is intcgrated along a streamline, the resuh is the familiar Bemoulli equa-
tion \\ ritten here in terms of head between any t\\ 'o points along the streamline:

0  . 1 2 )

in \\ hich y is the specific weighr of watcr = pg. In this form. the Bernoull i equa-
tion rcrms have dimensions of energy or work per unit weight of l luid. and so it is
trul) a work-energy equation derived fiom. but independent of. rhe momentum
equation. The terms are scalars and reprcsent pressure work, potential energy, and
kinetic energy in that order. For applications to open channel l lou, we need to
expand the equation from a strearrl ine to a streamtube and include the energy head
loss term due to friction, /rr, for a real f luid, which results in

1 + . ,  +  "  5 =  4 +  - .  +  a . $  +  r ,  ( l . r . . )
f : g f ' 2 8

This expansion of the Bemoulli equation to a srreamtube ri ' i th head loss included is
cafled the extended Bentoull i equotiotr or the €/tergr. equation. l l  requires the
assumption of a hydrostatic pressure distriburion at points I and 2, bccause this
means that the piezometric head (p/7 + a) is a constant across the cross secrion. The
use of the mean velocity in the velocity head term necessitates a kinetic encrgy flux
correcticn coefficient defined bv

i,: o.r
*  

v lA

_ 0 p
as

P r  u i  P .  U ir j + - . + : : = i + - - +  :
v  

' r  
) o  v  "

( r . l  l )

( l . l l )
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Io  account  fo r  a  nonun i fo rm \c l { r ' r t \  d i \ (nhut ion .  As  l l c  shr l l  scc  in  succecd ing
chap lc rs ,  the  va luc  o f  r r  can  bc  . , , - i r r l i c ln t l v  la rgc ' r  th rn  un i ty  rn  r i vc rs  w i th  ovcr
blnk flow and thcre'fore cilnnol b. n.!lr 'aled.

To cnrphas izc  the  indc-pc 'ndcn.  e  r , f  rhc  cx tcn t lcd  I l c rnou l l i  o r  encrgy  cqu l t ion
f rom lhc  Inonrcn turn  c ( l i l l t i on ,  i t  ' h , ru ld  hc  po in ted  ou t  tha t  lhc  cncrgy  cq l r r l to l l  can
bc dcrivcd in a nrorc gcncral *l; Ironr tltc Rcynolds transpon thcorern and the first
lar of thcrmodynamics:

dE dQ^ d lv ,  d l l ;  d  I
; , = a ,  i -  d , = * 1 , , " ' o o

in which B has bcen replaccd bl the total cncrgy E; 0^ - lhc hcat transfer lo rhe
tluid; lt i  ,. thc shaft work donc by thc fluid on hl,i lraulic machincs; ly. = lhc work
dcrre by the fluid prcssure forccs; and e is dE/dn = the intemal cncrgy plus kinctic
encrgy  p lus  po tcn t ia l  cncrgy  pcr  un i t  n tass .  For  s tcady ,  one,d in tcns iona l  f low o f  an
incompress ib le  f1u id .  thc  cncrgy  ba lance g ivcn  by  Equar ion  L l5  rcduces  to  Equa-
t ion  1 .13 .  in  wh ich  the  head loss  te rm represcnts  the  i r revers ib le  change in  in re rna l
energy and the energy converted inro heat due to viscous dissipation (White 1999).

The continuity equation is a statement of (he conservation of mass. Likewise, the
energy equation cxpresses conservation of energy. It is a scalar equation and in the
form of work/energy because of the spatial inregrarion of IF = nra. The momentum
equation also comes from Newton's second law applied to a fluid but is a vector equa-
tion that states that the sum of forces in any coordinate direction is equal to tie change
in momentum flux in that direction. In tie control volume form, the momentum equa-
tion can be applied to quite complicated flow siluations. as long as the extcmal forces
on the conrol volume can be quantif ied. The energy equation, on the other hand,
requires the capabil ity of quantifying cnergy dissipation inside rhe control volume.

Often, all three fundamental equations are applied simultancously to solve
what otherwise would be intractable problems. The hydraulic jump is an example
in which the momentum and continuity equations are applied first to obtain the
sequcnt depth (depth afler the jump). and lhen the energy equarion is employed to
solve for the unknown energy loss.

Even experienced hydraulicians sometirncs misapply the nromentum and
energy equations. The cardinal rule is that the cncrgy equarion nrusl include all sig-
n i f i can t  energy  losscs  and the  nromentum cquat ion  must  inc ludc  a l l  s ign i f i can t
forces. Breaking this rule sometimes leads to conflicting rcsults from the momen-
tum and energy equations because of misapplication rarher than a breakdown of the
fundamental physical laws.

r .8
SURFACE VS. FORM RESISTANCE

F"low resistrn, e in fluid flow can rcsult fron two fundarnentally differcnr physical
p r ( )cesscs ,  u l , i ch  take  on  s |cc ia l  mean ing  ' , ,hcn  we d iscuss  open char rne l  f low
resistance coclficients. Surfirce rcsistance is the lri ldit iorral form of r sislance

t
+  I  e p ( V . n )  d A  ( 1 . 1 5 )

I
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FIGURE 13
Separation and form resistalce in real fluid flow around a circular cylinder: (a) larninar sep-
aration; (b) turbulent separation; (c) real and ideal fluid pressure distributions (Whire 1999).
(Source: F White, Fluid Mechanics, 4e, @ 1999, McGraw-Hill. Reproduced teith pelmission
of The McCraw-Hill Companies.)

resulting from surface friction or shear stress at a solid boundary. Integration of the
shear stress over the surface area of the circular cylinder in Figure 1.3, for exam-
ple, would result in surface drag.

Surface resistance alone cannot account for the measured flow resistance of a
blunt object, such as a circular cylinder. Because of the phenomenon of flow sepa-
ration of a real fluid, an asymmetric pressure distribution occurs around the circu-
lar cylinder, leading to form drag as shown in Figure 1.3 with higher pressure on
the upstream face of the cylinder than on the downstream face in the zone of sepa-
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ra l ion .  In  con l r i l s t .  in \ i sc rd  l l r \ r  thcorv  p rcd ic ts  a  s ln rnc l r i c  p rcssurc  d i \ t r jbu l ion
and no  fo rm drag  (as  *c l l  a r  no  rL r r f r tcc  d rag)on thc  c \ l indcr .  as  shor+n in  F i ru rc
1 .3 .  I f  lhc  con ' rponcnt  o f  th r '  f , rcs .u r t  l i r rcc  rn  thc  f lo*  d j r r - ' c t ion  is  ob l l i r rcd  b t  rn r r ' ,
g r l t ing  lhe  rca l  f lu id  p rc 'surc  J i \ tnbu l ion  around thc  \phcrc .  thc  rcsu l t  i s  a  f r r rm
dr;rg or form rc\islanrc {h.rt rs utrnrIlr ' t. ' ly scparllc frorn surfacc drag. The total drlg
thcn is thc sunr of thc rurfrrcc dra-g uni! lornr cirag. 

'fhc 
nragnitudc of the' fornr drag

dcpcnds h igh ly  ( )n  lhc  po in l  o f  \ cp . r . r t ion .  wh ich  is  d i l f c lcn t  in  t l re  la rn inar  and lu r -
h , r i l cn l  cascs .  as  sho*n  by  F igurc  I  3 .  In  opcn chrnnc l  l lo \ \ .  thc  rcs i \ t i l ncc  o f f ( ' r cd
hr  la rgc  rourhncss  c lcn t . 'n ts  o r  l l l u r i r l  b t 'd  fo rn ts  n rar  be  duc  la rgc ly  to  fo rm
rc \ is tancc .  Th is  po in t  * i l l  be  d iscusscd in  morc  dc ta i l  in  Chrp tc rs . l  and 10 .

1 . 9
DI }1 I 'NSIO\A L  A\ALYSIS

Thc purpose of dinrt 'nsional anall,sis is to reduce the number of indcpcndent vari,
ablcs in an opcn channel f low problem or any olher fluid mechanics problern by
transforming the depcndent variable and several independent variables that form a
functional relation:,hip into a snaller nunrber of dimcnsionless ratios. This reduces
the number of experiments involvcd in devcloping an experinrental relationship.
since only the independcnt dimcnsionless paramcters need to be varied rather than
each individual indcpendent varjable. Rather than varying the ve)ocity, depth, and
gravitational accelcration indcpendently in a hydraulic jump experiment, for exam-
ple, it is necessary to vary only thc Froude nurnber, rr hich is a dimensionless com-
binalion of these variables. and presenl the results for the ratio of depths bcfore and
after the jump in terns of thc Froude number. In addition. the dimensionlcss vari-
ables often represent ratios of forces, such as inertia and gravity, so that the magni-
tude of a panicular dimensionless variable and its variation in a given experiment
rclate to an understanding of the physics of lhe flow siluation. I irdbennore, pre-
sentation of experimental results in terms of dimensionless variables generalizes
the results to a wider rangc of applications and confirms the validity of the dimen-
sionless ratios chosen to model a panicular f low phenomenon.

lf the goreming equations can be completely formulated for a given problem,
the equations can be nondimensionalized to deduce the embedded dimensionless
paramelers of imponance. For example, spplication of the rnomentum equation to
a hydraulic junrp and nondimensionalization of the resulting equation for the depth
after the junp results directly in the appearance of the Froude number as the only
independent dimensionless parameter for this problem. The necessary condition for
nondirnersionalization of an equation is dimensional homogenei{y, whicb simply
requires every term to have the same dimensions in any propcrly posed equation
describing a physical phcnomcnon. Once the govcnring equations are transformed
into dimensionless form, the solution can be obtaincd in terms of the resulting
dimcnsionless variables, either analyti,-.rl ly or numerically, for a conrplctcly gcneral
solution. This solution can be appli, d to similaf f lo\\ siturtions under conditions
different from those for which the rcsults rvcre obtained, so long as the ranges of
the dimensionless variables are the same.
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In  sorne  cascs ,  equat ions  o fopen channe l  f lou  such as  thc  Mlnn ing ,s  cquat ion
or thc head discharge equation fbr l low over a \\r ' ir: l t f irst may not appcar to be
dimensionally hontogencous. In thesc cases, son'te "constant" nrust have dimen-
sions for lhc equation to be dinrcnsionally homogeneous. lf the equation for dis-
charge Q over a sharp-crested weir. for example. is wrilten as a constant Cr times
lH"r. where l, is the crest lcngth and H is the head on the crest, it is clear that the
equat ion  is  no t  d i tnens iona l l y  homogcneous un less  C,  has  d imens ions  o f  le rg th  to
the l/2 power dividcd by time. These in fact arc rhe dimensions of the square roor
of the gravitational accelerarion. e, * hich has bcen incorporared impliciriy into the
value of C,. This practice requires that rhe coefficient Cr take on a different numer-
ical r,alue for different systems of units, which is less desirable rhan leaving the
original equation in tenns of the grar itational acccleration.

As an exantplc of nondintcnsionalization of rhe govcming equations, the invis-
cid flow solution shown in Figure 1.3 can be obtained fronr an application of
Bemoulli 's equation between thc approach flo\ (variablcs with a subscript of -)
and any point on the circumfcrence of the cylinder:

p , , p ' 2 1  o , r :

If the equation is nondimensionalized, there results

( l . 1 6 )

p - P ,  / r \ t
vi  \  v- l

o, 2

(  1 .  1 7 )

in u hich Co is defined as a dimensionless pressure coefficient. The solution for the
pressure coefficient is obtained by substituting the inviscid flow solution for the cir-
cumferential velocity u : 2y_ sin d into Equation l.i7 with the result

C p  =  I  - , 1  s i n r a (  1 .  l 8 )

Equation Ll8 gives the theoretical distribution of the dimensionless pressure coef-
ficient Co shown in Figure 1.3. Thus, if the goveming equation of a fluid mechan-
ics problem is klown, then the equarion itself can be made dimensionless, as in
Equation L17, and the resulting solution also *ill be dimensionless.

In many problems of open channel flou,, the theoretical solution is not
directly applicable without the addition of experimental results to evaluate
unkrown parameters, or it may not be possible to formulate and solve the gov-
eming equations in very complicated flows. This requires a different approach for
obtaining the important dimensionless parameters of the problem. In the case of
drag on a circular bridge pier, for example, specification of the experimental drag
coefficient is necessary to calculate the drag force, which includes both surface
and fonn drag, the latter of which is not easily calculated from the goveming
equations. Presentation of the exp€rimental results for the drag force in dimen-
sionless form requires a general technique such as that afforded by the Bucking-
ham fl theorem (see, for example, White 1999). The Buckingham fI theorem can
be stated as follows:
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l f  a  ph l r i ca l  p r \ \ ess  rn \o l \ es  r  f unc t i t r na l  r r l : r r r on .h ip  rmong  , r  \ t nab l c \ ,  $h i ch  can
bc  e rp re ' r scd  i n  t e rmr  o [ , r  bas i c  d i n tens ions .  r t  aun  bc  r cJL ]acd  t o  a  r c l a l r on  bc l t r ccn
{n  , r ) d i r r r an \ i on l css  ra r r rb l cs .  o r  f l  t c rn r . .  t ' \  i hoo \ i ng  r r  r . pa , r t t ng  ' a r i nb les .  c i t ch
o f  \ r h r ch  i r  r on rb rn r t l  i n  t u rn  \ \  i l h  ( hc  r t ' n ra rn rn r  \ r r r , l h l c \  l o  f L r r r r r  t hc  I l  I c rms  as  p rM-
u ( r \  ( ) f  t h r ' \ r r j Jb [ -5  l l l cn  t o  rhe  i ] np rop r i r r c  p r * . - r r  

' f he  
/ ,  r c l a . l r r n - c  ra r j ab les  mus r

a ( r r r l . i n  r r r r ( ) n8  t h tn r  a l l  [ r : r s i c  d imens ions  f ound  | t  l ] l  I hc  ra r r rh l cs  bu l  c l r nno t  t nem
sc l r ' c s  f on r t  a  I I  t c rm .

In  n r ; i ( hc r ru ( i ca l  l c rn t s .  i f  a  dcpcnc l cn t  va r i l h l c  , 1 ,  can  bc  c ' r f r csscd  i n  t c rn r s  o f
( r r  -  l )  i ndcpcndc 'n l  va r i ab l c ' s  as

A ,  =  J ( 4 2 .  A . .  . . .  . , \ " )  0 . 1 9 )

then lhe Buckingham I ]  theorcrn a l lou 's  the r r  rar iab les to bc cxpre 'sscd as a func,
( ional  rc la t ion anong ( r r  ar )  I l  groups:

d ( n r .  I t : . . . . .  f I ,  . )  : 0 (  i  .20)

Thc bas ic  d in rcns ions  usua l ly  a re  taken as  nrass  (M) ,  Icngrh  ( /_ ) .  and r ime ( f ) ,
allhough forcc (F), Iength, and tirne are an equally valid choice. The force dimen-
sion is uniquely related to the rcmaining dimensions by Newron's second law; that
is .  F  =  MLT r .  In  cena in  ins tances ,  the  fundamenra l  d imcns ions  may be  fewer  than
three; for exantple, only lcngth and time may be involred. Whcn choosing repeat-
ing variables, it is important to recognize thal ir is b€tter not to choose the depend-
ent variable as a rep€ating variable, so that it \r, i l l  appear in only one fl term.

If, for example, n = 5 and rn - 3 with M, L and fas rhe basic dimcnsions. the
two fI terms can be found from

It7 it = uatro = [A,] ' '1.,r,], Ie.],,[a,]

Ll l . l  = untoro = [A,] ' , lAr l , , [A4], , lA5l

( 1 . 2 1 )

(t .22)

in which the square brackcts dcnote "dimensions of'the enclosed variables; and A"
A.. and An have bcen chosen as repcating variables. By substiruting the dinrensionl
of the variables into the right hand sides of Equations I .2 | and t .2 2 and equ ating the
exponerlts on M, L, and f on both sides of the equalions, rhe rcsulting algebraic
equalions can be solved for the unknorvn exponents and the resulting lf tcrms.

Now consider the drag prob)em for a conrpletely imnrersed cylinder in whicb
the drag force, D, can be cxprcssed in terms of tre cylinder diameter, d; the cylin-
der length, /.; the approach velocity, V-; rhe fluid density, p; and rhe fluid viscos-
rty, 1t:

D : f, (d, r,,v-, p, t") ( t .23)

A loral ci six variables with all rhree basic dimensions (M, I- Tl are represent€d,
so therc wil l be three II terms. The rcpeating variables are chosen to be the den-
sity, velocity, and cylindcr diamelcr, which contain among rhem M, I-, and T as
basic dinrensions bul do not lhenrscives form a dinrcnsionless group. The cylinder
diarnt'ter and lcngth could not bc ( itoscn togethcr -,s rcp,:ating variables because
lhey would form a lI gloup. Irirst, thc (lrag force is couibilcd with powers of the



D  l t  \

t r v i  
- / . \ ;  R e / (  l . 2 4 )

which gives the dintensionless drag ralio in ternrs of the Rel nolds number, Re =
pV*dlp and the rario of cylinder length to diametcr, /./d. Tradirionall),, rhe drag
ratio is redefined as a more general drag coefficicnt, applicable to other shapes of
immersed objects as D/(pAV:12r. with A in rhe coefficienr of drag defined as the
frontal area of thc inrmersed object projectcd onto a plane perpendjcular to rhe
oncoming flow (1,. X d). Also. a factor of 2 is added ro the dcfinirion of the drag
coefficient as a natter of tradition. For an infinitely long $ Iinder, the ratio {./d no
longer has an influence because there are no end effects. so the experimental coef-
ficicnt ofdrag is determined fronr the Reynolds number alone rnd ;sed ro calculate
the drag force.

The choice of the repeating variables is not unique, so rhere are equally valid
altemative fomrs of the fl groups. If, for example, the repeating variables werc cho-
sen to be p. V-. and d in the cylinder drag problem, the resulr would be

D  /  1 \

, . lv-a '  
=n(ne -- . ; ( r  .25)

l{owever, the alternate dependent l l  group in ( 1.25) could be deduced from taking
the product of the drag ratio and Reynolds number in ( 1.2.1). In the same manner.
the justification for replacing d I in the denominator of the drag ntio in ( I .24) with the
frontal area is that the drag ratio in (1.24) can be divided b1 {/d and rep)aced by
the result. ln general, it is possible to state that a new II group can be formcd as

n; :  i l i  n ! r :
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repeating variablcs, either algcbraically or by inspection. ro vield rhe firsr I l tcrnt;
then the same process is rcpcated fbr the cylinder length and rhe fluid viscosity.
The resu l t  i s  g iven  by

(  l  .26)

and used to replace one of the original f l groups.
In the more general case of several bridge piers, each wirh diameter d and spac-

ing s between piers and in open channel f low with a finite depth of water I0. the for-
mation of gravity surface waves around the piers may give rise to additional f low
resistance so that the drag force can be written as

D - fo@. s..r'0, V-, p, p. g) ( t  27)

in which the gravitational acceleration has been added to the l ist of variables. Alter-
natively, the specific weight 7 could be added to the l isr instead of g, but rhe ratio
7/p, which is equal to g, then would appear in the dimensionless group related to
the gravity force. Now, rhere are eight variables and sti l l  rhree basic dimensions
resulting in five l l groups that can be expressed as

D  " ( d
p d: 'nv l  Jr  

\  r ' (  |  .28)
d \

.  ne.  n /
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' f hc  
a r lc l i t iona l  !co tnc l r i c  ra r ia t r l c  rcs r t l l s  in  ln  add i t ion : r l  Seon)c( r i c  ra t io ,  a r ld  the

in r roduc t ion  o f  lhL '  8 r l \  r l l t l i on l l  fo rcc  ncccssar i l y  b r ings  in to  P l l y  the  I ' rou( jc  nurn-

t . l r r ,  ! - .  The rc l r i t r rc  i t t r lonr ince 'o l  thc  l l  g roups  on  thc  r igh t  h l rnd  s idc  o f  (1  28)

r , 'ou lc l  bc  dc tc t  t t r r r r rd  b )  c \ i r r ' r l l nc l l t s
'I lrc 

cxistcncc of thc' frce sltrface itt o1^-n channcl f lorr incritabll ir\ol\cs thc

gravity forcc. r ' i thcr through thc foll l l l l l ion of srtrfacc ualcs. l l lc cxislcncc lrf a com-

poncnt of the body forcr' in thc l lo* dircction, or a tl i ffercnti l l  pr!-ssurc f(irct 'due to

changes in dcpth.' lhercforc. a i l i tncnsional analysis of an opcn channcl f lo* problcm

includcs thc gravitalional accclctl l ion in thc l ist of variablcs. and thc Froudc nunrbcr

ncccssarily crtrcrgcs rs an intponant dit lrensionlcss parametcr' as discussed previously'

Thc  c -ho ice  o f  i r rc lependcnt  and dcpcndent  var iab les  is  c ruc ia l  to  thc  suLcess  o f

r . l in rcns iona l  ana lys is .  Thcre  can bc  on ly  onc 'dcpcndent  ra r i l l b lc .  lnd  the  indepcn-

dcnt  var iab lcs  n ru \ t  no t  bc  rcdundant ;  tha t  i s  onc  o f  the  indepcndcnt  var iab les  can-

not bc obtrincd front sonrc combination of {he others. 
-l-he 

inclusion of extra inde-

ocndent rariablcs that atc truly indcPcnd!'nl is not fatal because the expcrintental

resu l ts  * ' i l l  show wh ich  o f  the  resu l l ing  d in lcns ion less  groups  is  un inPo(ant '  bu t

fa i l ing  to  inc lude a  s ign i f i can t  indcpcndcnt  var iab le  can S ive  an  incomple te  exPer -

imental rclationship. Ultirnately, such decisions are nrade in lhe course of rescarch

on a panicular problcrn and may involve trial and error to arrive at the final set of

impor tan t  d imens ion less  ra t ios .

1 .10
CO]\'IPUTER PROGRAMS

Some conrputer programs are given in Appendix B in \lsual BASIC code, which is
aoolicable to ttre Microsoft Windows environment. The BASIC language has evolved

frorn a DOS-based langua8e to *re present form that utilizes the graphical user interface

of \Mndou s. It is an event-driven language composed of both form nrodules, which

contain the graphical user interface, and standard modules. whjch contain the compu-

tational code. Th. progt"., in the appcndix include standard modules that consist of

numerical pro,:edures or subprograms. They can be convened easily (o otier languages

such as Fortran or C, contbincd $'iti fomr nrodules in Msual BASIC for input and out-

put, or jnco+rcralcd into Ixccl sprcadshects using\4sual BASIC for Applications The

pu.pose here is to doelop thc core methtxlology for the use of numerical analysis to

iolve opcn channel f low problcms. To this end. Appendix A contains some basic mate-

rial on numcrical methods that will be used throughout the text. Appendix B includes

some example programs that arc jntended to serve as leaming tools to explore the apPli-

cation of numerical techniques to open channel flow problems.
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EXERCISES

l . l . Classify each of lhe followiDg flows as steadl or unsleadt front lhe vieu'point of the
obscrver:

FIo* Obscn er
(.r) Flow of river around bridge piers. ( I ) Sranding oD bridge.

(2) ln boar, drift ing.
1r) Movement of f lood surge downstream. ( l) Standing on bank.

(l) Moving \\ ith surge.

1.2. At the crest of an ogee spil lway. as shown in Figure l. lc. \\ould you expect the pres,
sure on the face of the spil lway to be greater than, less than. or equal to the hydro-
slatic value? Explain your answer.

1.3. The river f low at an upstream gauging station is tneasured to be 1500 nrr/s, and at
another gauging station 3 km downstream, rhe discharge is nreasured to be 750 mr/s
at the same instant of l ime. lf the river channel is unifonn. with a \l ' idth of 300 m,
estimate the rate of chlnge in the water surface elevation in meters pcr hour. Is it r is-
ing or fall ing?

1.4. A paved parking lot section has a unifonn slope over a length of 100 m (in the flow
direction) from the point of a drainage area dil ide to the inlet grate. which extends
across the lot width of 30 m. Rainfall is occurring at a uniform inrensity of l0 cm,4rr
If the detention storage on the paved section is increasing at the rate of 60 m],/hr, what
is the runoff rate into the inlet grate?

1.5, A rectangular channel 6 m wide with a depth of f low of 3 nr has a mean velociry of
L5 m/s. The channel und€rgoes a smooth. gradual contraction to a \\ idth of 4.5 m.
(d) Calculate the depth and velocity in rhe conrracred section.
(b) Calculate the net f luid force on the walls and floor of the contraction in the

flow direction.
In each case, identify any assumptions that you make.

1,6. A bridge has cylindrical piers I m in diameter and spaced l5 m apart. Downsrream of
the bridge where the flow disturbance from the piers is no longer present, the flow
depth is 2.9 m and the mean velocity is 2.5 m./s.
(.1) Calculate the depth of flow upstream of rhe bridge assuming rhat the pier coef-

ficient of drag is 1.2.
(D) Detcrmine rhe head loss caused by the piers.
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A  s )n rmc l r i c  con rpound  ch . rnne l  r n  ovc rbank  l l ow  ha \  a  n ta tn  ch rnnc l  q ' r t n  a  oo r ,
t o rn  r v rd th  o f  - ' 10  m ,  s i de  s l o l cs  o f  I  l .  l nd  a  f l o r r  dc | l h  o f  I  r n .  l hc  f l oodp la rns  t , n
e i t he r  s i de  o f  t he  n r r i n  chan | r ' l  r r e  -100  m  \ \ i de  and  f l ow ing  a l  a  dcp th  o f  0 . -5  n r
The  n re i l n  ! e l oc i l \  i n  l hc  r r , r r r  t hanne l  r s  |  5  n r / s .  uh i l e  ( he  f l oodp la in  f l o *  h r , , . r
mean  vc loc i t y  o f  0  - l  n t / s  . . \ : r u rn ln t  t h t t  t h . '  ve loc i t )  va r i a t i on  w r th i n  t he  marn
ch lnnc l  and  l he  f l oodp l i i n  \ uh \ec t l on !  t s  t nuch  \ n l a l l e r  t han  l be  change  rn  n t cJn
vc loc r t i c s  be l r r ccn  subsec ( i ons .  l l nd  t hc  \ i l l ue  o f  l he  k tnc l i c  cne rgy  co r rec t l on
coeff icicnt tr .

The po*,er la\\ ' \elociry distnburion for ful ly rough. lurbulent f low in an olxn chan,
ne l  i s  g i ! en  by

in \\hich l .  = point \elGity at a dist lnce : from the bed; l .  = shear velcrirr -

bJp)t4; ta = bcd shcar stress: p = f luld densityi  k, = equi\alenr san<l grarn rough-
ness hcighti  and a = constant.
(r ' )  Find the rat io of the maximum relocity. *hich occurs ar the free surface *.hcre

: = the depth, ]0, to the mean velocity for a very wide channel.
(b) Calculate the values of the kinetic energy conec(ion co€ff icient a and the

momcntufi l  f lux correction coeff icient p for a very wide channel.

1.9, An alteniat ive expression for the !elocjty djstr ibution in ful ly rough, turbulenl f low is
S i t en  by  rhe  I oga r i t hn r r c  d i . Lnbu t i on

r . ,  l ,  / z \
, . = * ' n \ , 0 /

in which x = the von Karman conslant = 0.40;q = t/30; and the other val- iables are
the same as defined in Exercise L8. Show thar a and B for rhis disrr ibution in a very
wide channel are given by

a - l - 3 e l - 2 € j

B : l + e 1

in *hich e : (u.", /V) l ;  l . -  :  nraximum velocity; and V = mean velocity.

1.10. In a hydraul icjump in a rectangular channel of width b, $edeprhafterthe jump _r.,  is
kno$ n to depend on the fol lowing variables:

,rr =,fl_yr, q, c]

in which )r : depth before $e jump; 9 = discharge per unit width : eh; and g =
gravitational acceleration. Complere rhe dimensional analysis of the problem.

1.11, ' ihe backwater Cy caused by bridge piers in a bridge opening is $ought ro depend on
the picr diameter and spacing, d and .r, respectively; downstream deprh, )/o: down-
streanr velocity, V; fluid density, p; fluid viscosiry, p; and gravitarional accele.arion,
g. Complete rhe dinlensional anaJysis of the problem.

' ( * ' ,  
)  

'
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1.12. Thc lonSiludinal vclocity. u, near the f l \ed bed ofan opcn channel depends on the dis'

tance i iom the bed.::  thc kinematic viscosity. ! i  and the shcar vclocity. i r '  :  (relp)o5

in which ro is the $al l  shear strcss. Develop the dimcnsional anal lsis for thc point

veloclty. r .

1.13. ln lhc rery slow motion of a l luid around a sphere. the drag force on the sphere, D,

dcpends on thc sphere diameter. r. / :  the velocity of lhe approach f low. V: and the f luid

viscosity. p- Complele the dinlensional anlt lysis- How man) dinlensionless groups are

there and what are lhe i l ] lpl icat ions for the corresponding r l lues of thc group(s)? Why

*as the f luid dcnsity not included in the l ist of variables?

1.14. The discharge over a sharp-crested weir.  0, is a function of lhe head on the \\ 'c l t  crest.

H: the crest length. a; thc hcight ol lhe crest, P; density. p; viscosity. p: surface len-

sion. o; and gravitat ional accelerat ion. g. Cirry out the dimensional anal l  sis using p.

g, and H as repeating variables. I f  i t  is known that 0 is direct ly proponional to crcst

Ienglh. L, how would you al ler the depcndent l I  group?
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Specific Energy

2.1
Dlrl-INITION OF SPECIFIC ENERGY

' fhe 
concept of specific energy as introduced by Bakhneteff ( 1932) has proven to

be rcry uscful in the analysis of open channel t low. It arises quite naturally from a
consideration of steady flow through a transition defined by a gradual rise in rhe
channel bottom elevation, as shown in Figure 2. | . For given approach flow condi-
l ions of velocity and depth, the unknown depth, yr, after a channel bottom rise of
height Az is of interest. If for the moment we neglect the energy loss, the energy
equation combined with continuity can be written as

o z  0 2
f  I  r - . , 1  ! 2 '  t - � ^ :

zE^  t  z  E /1)

( 2  1 )

in u'hich y : depth; 0 = discharge; A = cross-sectional area of f low; and A; =

zz it = change in bottom elevation from cross-section I to 2. Now, it is apparent
that the sutn of depth and velocity head must change by the amounl Az and that the
change must result in an interchange betwecn dcpth and velocity head such that the
energy cquation is satisfied. lf spectfc encry.r' is dcfined as the sum of depth and
velocity head, it follows that the possible solutions of the problem for the depth
depcnd on the variation of specific energy with depth. In fact, there are two real
solutions for the depth in this problem, and Ihe plot of depth as a function of spe-
cif ic energy clarif ies which solution wil l prevail. Such a plot for constant discharge

Q is called t\e specifc energl,diagron.
A more formal definition of specifc energy is the height of the energy grade

line above the channel bottom. [n uniform flow, for example, the energy grade line,
by defrnit ion, is parallel to the channcl bottom, so that th€ specific energy is con-
stant in the flow direction. Thc component of thc gravity force in the tlow direction

).1
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Transition with bottom slep.

is just balanced by the resisting boundary friction- ln Figure 2.1, the sPecific energy

dcireases in the flow direction. but it would be equally possible for the specinc

energy to increase in the flow direction by dropping rather than raising the channel

bottom. The total energy always must remain constant or decrease, but the sPecific

energy can increase as well. In gradually varied flow. a continuous change in spe-

cif ic energy with flow direction leads to a classification of gradually varied flow

profi les, in Chapter 5, according to the interchange between depth and velocity

iead. We show that the rate at which specific energy changes in the flow direction

in gradually varicd flow is determined by the excess or deficit of the work done by

gravity in comparison to the energy loss due to boundary resistance'- 
Blcause the specific energy arises in connection with the determination of

depth changes in one-dimensional f low, certain restricl ions are inherent in its defi-

nit ion. First, the spccific energy is defined at cross sections where the flow is grad-

ually varied, so that the depth is identical to the Pressure head at the channel bot-

tom: that is, the free surface represents the h)draulic grade line. What happens

bet\r 'een two points at which specific energy is defined is not restricted by this

assumption, however, as evidenced by the situation in Figure 2 1. Second. the water

surface and energy grade line are assumed to be borizontal across the cross section,

so that a single value of velocity head corrected by the kinetic energy flux correc-

tion coefficient c suffices for the entire cross section With these two restrictions in

mind, the definit ion of specific energy' E, becomes

a V ' 12.2)

in which 1 = flow depth: a : kinetic energy flur conection: and V = nlean cross-

sectional velocity.
A third resriction on the definition in Equation 2 2 occurs in the case of a chan-

nel with a large slope angle g, as shown in Figure 2.2 In this case it no longer is

obvious how the depth should be measured (venically as ) or perPendicular to the

channel botlom as d) nor, in fact, whether either of these definit ions of depth is the

correct representation of the pressure head, p/7. This can be clarified by considering

the force'balance between the gravity and pressure force perpendicular to the chan-

nel bottom in Figure 2.2, whereby p/7 : r.1 cosa- in which 7 is the specific weiSht
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Depth and prcssurc hcad on a sleep slope.

of the fluid. Funhcrmorc, ir should bc nored frorn the geometry in Figure 2.2 rhat
d : ,y cos0. The coffect cxpression for spccific encrgy must bc written as

^  a V 2  , ^  o V l
, :  _ d c o s d ,  

, r ' -  
) c o \ . d  +  - 2 g

As a practical matter, cos20 does not vary from unity by nrore than I percent if g (
6", so that tie approximate form shown in Equation 2.2 is valid for all except the
sleepest channels, such as a spillway chute.

3i,1crrlc ENERGy DIAG RAr\{

Now we are ready to consider the actual functional variation of depth y with spe-
cific energy, E, in the graphical form called the specifc energy diagram. At ftrst, it
wil l be convenient to consider the case of a rcclangular channel of wjdth b. The
flow rate pcr unit of width 4 can be dcfined for rhe rectangular channel as e/b,
where O = total channel discharge. Continuity rhen ailows us to write rhe velociry,
V as q/y, and so the specific energy for a rectangular channet with a - I is

E = j - + \ 2 .4 )

l W  =  , /  \ r d

(2 .3 )

q-

zgy'

It is apparent from Equation 2.4 that there indced is a unique functional variation
between ) and E for a constant value of 4, and it is sketched as the specific energy
diagra;n in Figure 2.3. Note from F4uation 2.4 t}at, as I,becomes very Iarge, E
approaches 1l so that the straighl ljne -), = E is an asymptote of the upper limb of tie
spccific energy curves shown in Figurc 2.3. In addition, it can be shown thar, as _v
approacbes ztro. E becorncs iDfinircly lrirgc, inplying rhar $e E axis is iin asyDrll( )lc
ofthc lorvcr lintb ofthe specific cr gy curve. Betwccn these t'r'o limits, the speciirc
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FIGURE 2.3
Specific energy diagram for a transition $ith a smooth, upward botlom step.

energy must have a minimum value for a given value of f low rate per unit of width r/.

In other words, flows with a specific energy lcss than the minimum value for a giYen

4 are physically impossible. The critical depth, -r'., corresponding to the condition of

mininrum specific energy, E.. can bc found by differcntiating the expression for sPe-

cihc energy in Equation 2..1 with respect to -v and setting the result to zero:

d t  n  _ r  q .

dt 
- " 

B.\, '

Now for the critical depth. -r'.., we have

o

(2 .5 )

(2.6J

which indicates that crit ical depth is a function of only the flow ratc per unit width

q for a rectangular channel. Funhermore, with the help of Equation 2 6, the value

of minimum specific energy, E , is given by

q ! 3
F  = \ ,  +

l 8 ) ,  ;
(2.1)

and shown in Figure 2.3 as the locus of values of crit ical depth and minimum spe-

cific energy for each specific energy curve defined by its own unique value of 4.

Iq,-l ',,"  L e l
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Bccar rsc  bo th  r ,  and E increasc  as  z7  inc rcascs ,  thc  spcc i f i c  ( 'nc rg) ,cur \es  move
upuard  and to  th r ' r igh t  in  F igurc  2 .3  a r  q r  inc rcasrs  and 17 ,  >  q ,

Thc  ph ts ica l  n tcan ing  o f  thc  spc-c i f i c  c 'nc rg1  d i lg r ; r r l  i s  no t  nc ' i l r l y  so  c lcar  as
i ts  rn r r thcnra t ica l  in r r - ryJ rc la l ion .  I t  i s  ohr  ious  f r , r rn  F igurc  2 .3  th r t .  lna lhemat ica l l y .
{hcrc  r rc  t \ \o  pos : ib le  va lues  o f  dcp th  fo r  a  g i ren  ra lue  o f  spcc i f i c  cnergy .  The
phy,sical mcrrning of thr'sc t\\ o dcplhs bt'conres clcar fronr a rcarrangt'rncnt of Equa-
I  ion  f .6  as

f rom *h ich  uc  can conc ludc  tha t  the  c r i l i ca l  dcprh  cond i r ion  is  spec i f ied  by  rhe
va lue  o f  thc  Froudc  nurnbcr .  F .  becont ing  un i ty .

l f  $c '  fu r thcr  obscne tha t  the  cc le r i t y .  c ,  o f  a  rc r l  s rn l l )  ampl i tude d is tu rbance
a l  (he  wa lc r  sur facc  is  (g rJ l l ,  a  phys ic l l  in le rprc ta l ion  o f  the  n te ln ing  o f  the  two
I i rnbs  o f  thc  spec i f i c  energy  curves  in  F igure  2 .3  i s  poss ib le .  F i rs r ,  ue  assurnc  in
Figure 2.{ that a small anrplitudc disturbancc in shallow water of dcprh } is propa-

Sated at a celerity c relative to sti l l  water. If we superimpose a ',elocily c in the
opposite direction, this becomes a steady flow problem with conslant energy, so
that (.! '  + i/28) : constant and thcrefore

d r , + 9 d c = o
I

Then, with the aid of conlinuity for steady flow, c) = conslant; and we have that
c d_r' * _r'dc = 0, which can be combincd with Equation 2.9 to prove rhat c = (B))rn
with respect to the sti l l  water as a refercnce frame.

Now, for depth y < r,., the Froude numbcr, y/c, must be greater than onc and
the vcfocity V > c. ln other words, the flow velocity is greater than the cclerity of
a small surface disturbancc and so swccps any disturbance do$'nstream. This flow
regime is called supercrit ical, or rapid, Jlow,and charactcrized by relatively small
depths and large vclocities, as can be seen in Figure 2.3. The upper regime of f low,
on the other hand, has.r' > -r; and the Froude nuntber less than unity. Therefore, the
flo*' ve lu--ity, V < c, and wave disturbance s can trar el both upstrcam and down-
stream in this regirne, uhich is callcd subcrit ical f lou.. Subcrit ical f low has rela-
tivcly large depths and small velocities: for this reason. jt also somelimes is called
tranquil Jlo*,. \4'c can conclude that subcril ical f lo*' is a flow reginre in which the

t't(;t RF: 2.4
Water suface dj\lurbnn.e of snrall amplitudc \\, ith celcrit) c.

( 2  8 )

(2.e)
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depth control, or boundary condition, can exen its influence in the upstream direc_
tion, while in supercrit ical f low, a control can influence the flow profi le only in the
downstream direction. These observations become important laier when we con,
sider the computation of f low profi les.

Finally, we can retum to the original problem posed by the transition in Figure 2.l.
lf t}le upstrearrr flow is subcriticat, as indicated b1, point I in Figure 2.3, which depth is
the proper solution for point 2, for which Ez: Et - A;? The lower depth _r2, can be
reached only by a decrease in specific energy to its minimum value, followed by an
increase in specific energy. Because tiis is physically impossible, lhe correct solution
for the unknown depth is the subcritical one, y.. As the flow passes over the rise in the
charncl bonom, the depth will decrease ard the $.ater surfaci elevation will dio.

2.3
CHOKE

A limiting condirion for the transition shown in Figure 2.1 occurs if A; ) ,l;.,
where Az" is the difference between the approach specific energy and the ntinimum
specific energy. If this difference is exceeded, it would appear that the specific
energy must become less than the minimum value, a condition already shown to be
impossible. In response to this dilemma, the flow responds with a rise in the water
surface and the available specific energy upstream of the transition. as shown in
Figure 2.5. ln fact, rhe specific energy rise in Figure 2.5 is just sulficient to force
flow through the transition at the critical depth. Any further increases rn Az will
cause a corresponding increase in the upstream specific energy. while the depth in
the transition will remain criticar. This condition, referred to;s a criore, i ustrates
quite dramatically the extra degree of freedom afforded by the adjustment of the
free surface in open channel flow.

The step height required tojust cause choking can be developed from the energy
equation applied from the approach section to the critical section over the steo:

Az . :  E ,  -  Q :  E ,  -  1 .5 . r . (2. r 0)
If E4uation 2.10 is divided by the approach depth,..!r, the result for the dimension_
less critical step height depends on the approach Froude number. F,. alone:

Fi
r  + 2  -  r . s F i  , (2 .  r  l )

Equation 2.1 1 is ploned in Figure 2.6. For an approach Froude number of0.l, for
example, rhe crit ical srep height for choking is 6g percent of the approach depth but
rapidly becomes a smaller fraction of the approach depth as the approach Froude
number increases.

EXAMPLE 2.1. For an approach flow in a recrangular channel wirh deprh of 2.0 m (6.6
ti) and velocity of 2.2 nts (7.2 ft/s). determine the depth of flow over a gradual rise in t}lc
channel bottom of .l: = 0.25 m (0.82 fi). Repeat rhe solution for l: = O.SO - (t.O+ ttl.
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FIGURE 2.5
Choking in transition with a smoolh- upward bottom step'
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So/|rtbt. First, it is necessary to know whether the approach flow is supercrit ical or

subcrit ical. which is ascenained most easily by sinrpl) calculating the crit ical depth for
a flow ra(e per unit width of q = I x 2.2 : '1. ' l  m:/s ( '17.'1 ftr/s):

) .  :  ( ,1 . .1 ' � l9 .81) '  r  :  1 .25  m (1 .10  f t )

from which it is obvious that the approach flou'is subcrit ical, bccause -r', ) t,. The
approach flow Froude numb€r also could be calculated:

F !  : 2 . 2 / ( 9 . 8 1  x 2 ) ' r : g 5

Now the energy equation $ritten bclween the approach flo* and the section of maxi-
mum s lep  hc igh t  (0 .25  m)  i s

Et  -  2  +  2 .211t9 .62  :  2 .25  -=  0 .25  +  r . ,  -  .1 .4 r i1 ( t9 .62  x  ] ' l )

which can bc solved by trial. Only roots larger than thc c.it ical depth of I l-5 m ('1.10

ft) are sought.'fhe result is r ', : 1.62 m (5.32 ft). Note that the absolule elevalion of
the  water  sur face  drops  by  the  amount  (2  -  0 .25  -  L62) :0 .13m(0. '13 f t )  l f thes lep
height increases to 0.5 m ( 1.61 ft). the available specific energy is the approach specific
energy (2.25 m) less the srep height of 0.5 m. or L75 m (5.74 ft) ' which is less than the
min imum spcc i f i c  energy  o f  (1 .5  x  1 .25)  :  1 .88  m (6 .17  f t ) .  Th is  means tha t  e  choke

occurs in which the depth over the slep becomes crit ical (1.25 m) and the upstream
depth increases as given by lhe solution of

, -1  +  4 . { l ( t9 .62  x  r l )  :  0 .5  +  1 .88  :  2 , -18  m (7 ,81  f r )

Thc result is lr : 2.17 m (7.12 ft). which results in an upstream increase in depth of
0.1? m (0.56 ft). The cri l ical step height. which $il l just cause choking. can be obtained
fronr Figure 2.6 or Equation 2. I I for a Froudc number ol 0.5 as 1:,-/-r '  : 0 18. from
which  A: .  =  0 .36  m (  l . l8  l i ) .

2.4
DISCHARGE DIAGRAM

Transitions in channel width also can be analyzed by the specific cnergy concept.

For the rectangular channel. however, it is no longer true that the flow r31e per unit

width q remains constant. Suppose the channel uidth changes from b' in the

approach subcrit ical f low to b" in the contracted section. as shown in Figure 2.7a

With negligible energy loss. the energy equation simply states that Er : 8., but this

requires that the flow regime move from one specific energy curve do\r'nward to

another that is appropriate for the new value of 4, as shown in Figure 2'7b by the

points I and 2.
An altemative way of viewing the change in flow regime in a width contrac-

tion can bc gained by writ ing the energy equation and noting that the quantity that

remains Jonstant in this instance js not q but rather the specific energy, E (ncglecting

energy losses and assuming a horizontal channel bottom). Therefore. if a discharge

function for a given specific energy, 8,, is defined by

( 1 . 1 2 )
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FICURE 2.7
Speciric encrgl and discharge diagrams for contraclion in r,..idth.
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then it is obvious thlt thcre is a unique functional rclation bctween the discharge
per unit width 4 and depth r for the rectangular channel for a constant value of spe-
cif ic energy. The funclion is shown in Figure 2.7b alongsidc the spccific energy dia-
granr rr ith the approach and contracted sections identil ied as points I and 2. respec-
tivel\ ' . Two specific energy cur\ics are shown: one corresponding to the upstream
width b, and flOw rate per unit width qt: the other for the contracted section \\ ith
widrh b. and flow rate per unit width q.. The decrease in depth from point I to point

2 occurs at constant specific energy, as shown in the spccific cnergy diagram, and
corresponds to ln incrcase in discharge per unit *idth in the discharge diagram.
The discharge function given by (2. l2) has a nraximum thilt can bc found by set-
ting dgld,r' : 0 and solving for }. to obtain (2/3)E,. This is precisely the relation for
crit ical depth derived previously, which means that crit ical depth not only is the
dcpth of mininrum specific energy for constant 4 but also can be interpreted as the
deprh of maxirnum discharge for a given specific cnergy. In Figure 2.7b, the crit i-

cal depth associated with the given specific energy in the specific encrgy diagram
has been transferred across horizontally to the maximum 4 in the discbarge dia-
gram. Figure 2.7b also shows that the position of point I on the approach specific
energy curve determines the available specific energy and establishes a single dis-
charge diagram for that value of specific energy because -r' = E u'hen q - 0 in the
discharge diagram.

Choking can be caused in a contraction by decreasing the width to a value such
rhar rhe available specific energy no longer is sufficient to pass the flow through the
contraction without an increase in the upstrcam depth. This is i l lustrated in Figure
2.7c by the points 1, I ' , and 2. Point I must move up the specific energy curve to
the point l '  upstream of the contraction with an increase in specific energy in Fig-
ure 2.7c. This establishcs a new discharge curve in Figure 2.7c with a new value of
maximum discharge and a new crit ical depth, shown by point 2. The flow regime
passes from the new upstream depth )r. to y.. in bolh the specific energy and dis-
charge diagrams but in different ways, as shown in Figure 2.7c. Also apparent from
Figure 2.7c is that, once the choking criterion is exceeded, funher decreases in the
dou nstream width b. cause the depth at point l '  to continue increasing asymptoti-
call), to the straight l ine ) = t as the approach velocity head becomes nearly neg-
ligible. In this instance, the crit ical depth in the contracted section approaches two-
thirds of the approach dcpth for a rectungular channel.

Another interpretation of the discharge diagram is shown very clearly by the
example in Figure 2.8, in which flow from a resen'oir into a short horizontal chan-
nel or over a broad-crested weir is controlled by a sluice gate. The reservoir level
establishes the hxed value of specific energy, and raising the sluice gate in the
channel causes an increase in discharge as the depth of f low upstream of the gate

decreases. Simultaneously, the depth downstream of the gate increases to main-
tain the same discharge. The discharge reaches its maximum value when the
upstream depth becomes crit ical. Beyond this value, the gate no longer has any
influence and the discharge cannot be increased further without raising the reser-
voir level. At the maximum discharge, the depth in the rectangular, horizontal
channel becomes two-thirds of the head in the reservoir if the approach velocity
head is negligible.
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! 't ctrR!t 2.8
Dirchrrge drrgram for f lo* under a sluice gatc on a brold cr! 'stcd \,"r ir .

If the approach flow to a contraction is supercrit icl l, spccific encrgy analysis
s t i l l  app l ies  in  the  gencra l  case w i thout  chok ing ,  bu t  ob l ique s tand ing  wayes  can
compl ica te  the  ana lys is .  I f chok ing  occurs  due to  a  cont rac t ion ,  two l imt t i ig  cases
are possible for a supercrit ical approach flow, as shou'n in Figure 2.9. Choking con-
dition A is caused by the occurrence of a hydraulic jun.rp upstrearn of the contrac-
tion follo$ed by passage through the crit ical depth in the contracted opening.
Choking condition B, on the other hand, is the resulr of going directly from the
supercrit ical state lo the crit ical depth for the contraction. Between conditions ,4
and I, choking may or may not occur (point 3 or 2', for exarnple). These two con-
djtions are analyzed in more detail in the following chapter.

2.5
CON'IRACTIOn-S AND EXPANSIONS WITH HEAD LOSS

The general equation goveming contractions and expansions with a subcrit ical
approach flow at cross-section I is the encrgy equation wirh head losses included,
as given by

- j } q

, ,  *  #,= az a -r :  -  #.  r , l * r -  *
o :
:  (2  r . ] )

in which A; is positive for an uprvard step. Encrgy losses are consjdcred and
exprcssed as a minor loss coefficicnl, (r, t imes the diffcrence in velocity heads
bctwecn tirc two cross s. ctions. The rbrupt expirlrsion hils Ihc highest encrgy Joss
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FIGURE 2.9
Choking modes for contraction with supercritical approach flow.

because of f low separation and viscous dissipation of mean flow energy in the sep-

arated zone. Henderson ( 1966) has shown from a combined energy and momentum

analysis that the expression for the head loss in an abrupt open channel expansion
is given by

\ 2 . 1 4 )

in which the subscripts I and 2 represent the approach and expanded sections, respec-
tively, as shown in Figure 2.10. Equation 2.14 assumes that the dePth at cross-
section I equals the depth at cross-section 2 and that the pressure distribution at
cross-section 2 is hydrostatic across the full width br, including the separation zone.
The momentum equation then is written between cross-sections 2 and 3, and the
energy equation from I to 3 gives the head loss. The first term on the right hand
side of (2. l4) is identical to the expression for head loss in an abrupt pipe expan-
sion, wbile the second term is the open channel flow term with its dependence on
Froude number F,. For F, ( 0.5, the second term is small compared to the first, so
that it can be neglected under this condition and y1 =,12:1,. Then, for an expression
for head loss like that given in Equation 2.13 to be consistent with Equation 2.l4
with the second term neglected, Kr must be given by

i

o

,l-  b lb2

a1u1

2Fibi(,,: Il(' - l)' .

Specific Energy, E
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Plan \ icw of abrupt opcn channel expensron.

' i , :
( F r  <  0 . 5  ) ( r . r 5 )

|  + ! \
b.

in which K. varies from approxirnalely 0.8 to 0.05 as b,/b. increases from 0.1 to
0 .9 .  Gradua l  taper ing  o f  the  e \pans ion  a t  a  ra tc  o f  l :4  ( la te ra l : long i tud ina l )  resu l ts
in a head loss coefficient thal is onl\ about 30 percent of the value given by Equa-
t ion  2 .15 .  Energy  losses  are  smal le r  in  the  case o f  con t rac t ions  than erprns ions .
Henderson (1966)  repons  va lues  o f  e i ther  0 . l l  o r  0 .23  t imes the  downst rcam
velocity head, depending on whether the contractions are rounded or square
edged, respectively. For rivers, the HEC-RAS manual (1998) suggests a value for
r(. of 0.3 for gradual expansions and a value of 0.1 for gradual contractions. The
default values for WSPRO (Shearman et al. 1986; She arman 1990) are 0.5 for
expansions and 0.0 for contractjons.

The actual effect of head losses in the specific energy analysis of contractions
and expansions dcpends on lheir relative magnitude in comparison with the
approach specific encrgy. In a contraction followcd by an expansion, as in thc open
channel venturi nrcter shown in Figure 2.11, or in a bridge contraction, the con-
traction energy loss nray be considerably smaller than the expansion loss, as shown
in thc specific energy diagram. The overall effect of the total head loss is an
upstream approach dcpth at point I that is largcr lhan the downstream tailwater
dep$ at point 3, evcn though choking is not occurring. As the tailwater is lowered
from point 3 to 3' for the same total discharge, choking occurs at some point, as
shown in Figure 2.1I at point 2'. Choking also can occur as {he contracted section
width gets smaller for the same total discharge and the same tailwater. Funher
decreases in contracted width cause the depth to remain crit ical in the contracted
seciion, although crit ical depth itself also is increasing as the width b2 decreases
and 4, increases. Tlris causes backwater, a rise in upstream depth. In this case, thc
flow regime passes to supr:rcrit ical do$ nstream of the contractcd section followcd
by a hydraulic jrrnrp to the fixed tail\\,a(er.
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FIGURE 2.I1
Open channel contraction followed by an expansion with head loss.

2.6
CRITICAL DEPTH IN NONRECTANGTILAR SECTIONS

Specific energy for nonrectangular sections must be formulated before deriving the crir
ical condition as the point of minimum specific energy. Specific energy in ary nonrec-
urgular section of area A and depth .1; as shown in Figure 2.12, can be expressed as

d
E  r ' * o  = .' 2sA'

Differentiating with respect to y and sening dEld) - 0 results in

.c

o
o

( 2 . 1 6 )

dA

d)

dE

dy

ou-
gA"

(2.11)
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l ' l ( ;L  RE 2 .12
Ccom,,-tric proPcnics of gcncrll nonrectengular scclion.

From I ' igure  2 . I2 .  r |e  sec  tha t  d .4 /d r  -  B ,  in  \ , ' h ich  Bh l  i s  thc  top  w id th  a t  the  water
surface and a function of l The condition for ntininrunt specific energy' and crit icai
dcp th  then is

ao2B-

sA: 
I ( 2 . l 8 )

(2 . t9 )

(2.2O)

(2.2t)

in which the subscript c indicates that A and B arc functions of the crit ical depth,
y.. If *e define the hydraulic depth D = A./B and substitute V = UA, the Ftoude
number for a nonrectangular channel is defined and has the value of unity at t ie
c r i t i caJ  cond i t ion :

v
F -  _

kDlel 'r '

The value ofthe minimum specific encrgy can be obtained from Equations 2.16 and
2. l8  and is  e iven  bv

D.
6 , = ! " +  

2 ,

in which a docs not appear cxplicitly but nevedheless is inrolved in the determi-
nation of .)" and thcrefore E .

The conrputation of cdlical depth for thc nonrcetangular channel is a matter of
solving Equation 2.18 for thc geometry of a panicular cross-sectional shape. The
appropriate geometric elements needed for the trapezoidal, triangular, circular, and
parabolic cross sections are listcd in Table 2- 1. An exact solution is available for
both tie triangular and parabolic cases, but the trapezoidal and circular sections
require the solution of a nonlinear algebraic equation to obtain the critical depth.

A graphical solution in nondimensional terms is possible for both the trap€-
z-oidal and circular cases (Hendcrson 1966). The trapezoidal section, for cxample,
rcquircs the solution of Fquation 2.l8 after subslitution of the appropri le gcomet-
nc express lons:

_ li = 1",.(b _11,,,.)l'
B, (b + ?my,)

c'8
I
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T A  B I , E  2 - I

Geometric elenrenls for channels ofdifferent shape lv : f lon depth)

Rectangular

I  l v  I
1-|

D

Trapezordal

\ l ' / ,
l J '

Triangular-w1'

Top

Area, A \l 'etted Pe.imetcr, P Width' A

b + 2 r

J 1 b  + , | 1 r )  b + 2 r ( l  + n : ) r a

mj2 2}.( I + rnl)l/r

b + 2 m r

lnt\

Circularr

ParaboliC

Tl-T/-
L\lr--l

(0 sind) d:/8 Adl2,L@_1
(u3) Br- (A/2)t(l + rr)14 + (l/.r) ln (; + a'o/r')r '

(1  t . r : ) rn ) l

t 8 = 2 c o s r I t - 2 ( y d ) )
$ - 4 r B

in which b is the bottom width of the trapezoidal section with side slopes of ,r; I

(horizontal:vertical). To present the solution of Equation 2.21 graphically, the fol-

lowing dimensionless variables are defined for the trapezoidal channel:

om)lt m\',
4*= ;L  v '  :  ' � ' �  (2  22)

tgfu)tlz 6stz' 
'  b

d sin(012)
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0 . 1
0 . 1

z

FIGURE 2, I3
Cri l ical deplh for trapezoidal and circulat channclsi 2., , ,  = Q/lgt ' fn]:
7t.p = Qrnr' l l i rrbtcl ( lJendcrson. 1966). (Soa'cp. OPE^'CHANNEL FIAW b\ H?nder'

son, @ 1966 Reprinted br pernission of Pnntice'Hall ,  Inc., Upper Soddle Ri|er NJ )

Equation 2.21 can be nade dirncnsionless with thcse rariables to produce

f r ' ' i l  +  v ' 1 1 r  :
t - t n P  

/ t  !  
- ) , . , \ L l

\ ,  - ' l

This relation, plolled in Figure 2.13, can be used to find crit ical dep(h directly for

a lrapezoidal channel. A similar relation has been der eloped for the circulaJ case,

also plotted in Figure 2.l3 (l lcnderson 1966). For the circular section the dimcn-

sionless variables are redefined as

2.,,,
o (2 .24 )

( g l o ) ' t  d t  t '

in *hich d - conduit diarneter. Thc Ialue of a has L^-cn shou'n as unity in the defi-

nit ion o[ Z in Figure 2.13, which is a reasonable assumPtion for a prisrnatic charnel.

The minimum specific cnergy can be determined and ploned for the trape-

z-oidal and circular sections as wcll (Henderson 1966). For the trapezoidal section

with the dimensionless variables as defined in Equation 2.22 and wittr E' = mE"/b,

Equation 2.20 in dimensionless form is given by

I ' ( l  +  r ' )
j ( l  - r  z !

l \ . 'ow, bcciritse bolh E' lrd Z are unique futictions of r ' ' .  E' can be givcn as a func-

t ion  o f  Z ,  rs  in  l - igore  2 .  14 .  A  s i r , j l a r  re la t ion  can be  J (  \  c loPcd fo r  the  c i rcu la r  sec '

t ion ,  a lso  sho*n  in  l - igure  2 .1 .1 ,  r l i th  E '  -  L l t l .

0 . 0 1 1 0

(2.23)

(2.2s)
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T'TGURE 2.14
lr' l inimum specific energy for trapezoidal and circular channels 2,,,, = el[g]t.f1l; Z\,"p :
Q#nllgtEbsEI (Henderson, 1966). (Source: OpEN CHANNEL FLOw bt. Henderson,
@ 1966. Reprinted by pennission of Prenrice,Hall. Inc., lJpper Satldle Ri,er NJ.)

ExAl rp r -E  2 .2 .  F ind  the  c r i t i ca l  depth  jn  a  t rapezo ida l  channe l  $ i th  a  20  f i  (6 .1  m)
bonom width and 2:l side slopes if I : l00O cfs (28.3 mr/s) . Use the biseclion rech_
nique and compare rhe solulion wirh that from Figure 2.13.

Sol,/tbr. The bisection procedure developed in Appendix A can be used to find crir_
ical depth if the function FCr) is properly dcfined. The equation ro be sarisfied is Equa_
t ion  2 .18 .  so  l rke  FLvr  to  be

r,2.261
^ l : i l :

r0 ) :  Q ?
The Visual BASIC prognm Y0YC that solves for crirical deprh is given in Appendix B.
Data is entered through a sepaIate form module, shown in Figure B.l. The data input is
passed to the main procedure, Y0YC in the paEmeter list. The nlain procedure establishes
the initial interval for the root search (Yl and y2) and the specified relative enor crirerion
ER. It tlen calls tle BISECIION subprocedure. which in tum calls the function subproce,
dure F for each iteration. Because the same subprocedure is used to compute normal depth,
for which a different function is required, the appropriate iunction is specified by the value
of the variable NFUNC. Nore lhat the critical deprh elaluarion requires only rhe channel
geometn. par.unerers (b and n) and tie discharge, e, while rhe normal deplh compuhrion
(to b€ drscussed in Chapter 4) also requires the channel slope. s. and roughness coelicient,
n. The final result is stored in the variable YC. \,, hich is passed back to $e form module_
The result for this example is 3.?40 ft (1.14 m). r,r.hich can be checked with the sraphical
te.inique of Figure 2.l3 by calculating {-n:

Z ,oo  =  1000 x  211/ (32 .21  I  x  205r ;  =  6 .29

Then, from Figure 2.13, ny,lb = 0.17 and r. : 3.7 fr ( l. l  m).

d = diameter; b = botlom widlh; m:1 IH:V) = sideslope
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2.7
OVI.-RI]ANK III,O\\'

In  sornc  \ i tu l t ions .  thc  fo rcgo ing  ! ' l ( ' l l l c l l t i ! r \  rc la t t t rnsh ips  fo r  (hc  occur rence o f

, . r ' i t i ca l  f low no longcr  app ly  in  th t -  l i i rn l  g i \cn .  Onc c r l tnp lc 'o f  in l t l r r ' \1  i s  r l v t r

r r re rbank  l lou ,  a  shr r l lo *  f l t t rv  o rc r  r r i c lc  f loo< ip la ins  contb j l l cd  \ \ i th  I  n la i l l  ch i ln

rc l  f low tha t  i s  ou t  o f  b . tnk .  In  th is  c rse .  i l  no  l r . r t rsc r  i s  pc lmiss ib lc  lo  ncS l t ' c t  o .

bccause o f  Ia rgc  nonun i fo rn t i t i cs  bc t *er . 'n  the  Ie loc i t i cs  in  lhc  o rerbrnk  rnd  n i i l i n

channe l  \Vhcn Equat ion  2 .16  is  d i i f i t cn t ia t id  u i th  re 'spec t  to  dcp th  r  to  ob ta tn  an

txprcss ion  fo r  d r i t i ca l  dcp th .  the  \a r ia t ion  o f  a  * i th  r  l i l o : t  bc  cons idcrcd :

dE ,  nQtB Qt  do

orl 
: '  

,rrr 
-  

i rrr,  ,rr .

. .=(-s*3-##) '

( ? . 2 1  )

Now i f  d l - ld r  i s  sc l  lo  zc ro ,  a  con lpxrur ld  channc l  Froudc  nun lbcr  can bc  d t f incd

lB la lcxk  and Sturnr .  l98 l  ) :

The firsr tcnn on the riSht hand sidc of Equltion 2.28 leads to the conventional def-

init ion of the Froude number. while tre second tenn rePresents the contribution of a

nonconstant value of thc kinetic entrgy concction coefiicient, rr. The cross-sectlon

is divided into a main channel and floodplain subsections for the computation of a,

which dcpends on the assun'lp(ion that lhe encrgy grade line is horizontal across the

cross stction so that the energy gradc l ine slope is the sanlc in each subscction. It

funher is assumcd thal the slope of the energy grade line' S., can be fomrulated as

S, = Q'�lP, in which K is the total channel convel'ance as dcfined by a uniform flow

fonrula such as Manning's cquation. which is discussed in nore detail in Chapter 4.

The conveyance depends only on the Seometric and roughncss properties of the

cross scction. Under these assumptions, we have Qrl,\3 = QlRi. or

( 2 . 2  8  )

(2.29)

( 2.30)

( l . l  l )

9 , -
o

k,

K

i n  rvh ich  p ,  -  subsec t ion  f low ra te :  t ,  -  subscc t ion  co l l \ cyance i  O :  lo la l  d is -

chargel and K - total con\eyance = It,. The definit ion of a can be expressed:

:  l v  , / a , r  a l
^  -  |  ,__"  

( Q l A ) ' A

in which a, - subsection area and A = total cross-sectional area. In Equation 2.30,

it has been assumed that the primary contribution to o is the difference in velocity

betwccn subsect ions.  Subst i tu t ion of  Equat ion 2.29 in to Equat ion 2.30 thcn leads
to thc def io i t ion

>(r,i lr i)
"  

Kr  lA2
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in which A, : the conveyance ofthe ith subsection: a, : the area ofthe lth subsec_
tion: and K : It, - the conveyance of the total cross scction. The conveyance of the
ith subsection is calculated from a unifomt florv fomtula such as N,tanning's cquarion.

Differcntiating the kinetic encrgy corection coefficient as defined bv Ecuarion
2.31 and subsrituting into Equation 2.28 leads to a working definit ion ui th. .orn_
pound channel Froude nurnber:

".- l#(+ -,) i  '
(2.32)

(2.33a)

(  2.31b)

(2.3 3c)

i n  wh ich

? [(f)'(,,, -,,f - f i l)]
, rq)
,  \ 4 ;  /

?[( f ) ("  , ' * - . ; :?) ]
in which a,. p,,.r,, t,, ni, and l, represent the flow area. \\,etted pedmeter, hydraulic
radius, top width, roughness coefficient. and convel.ance oi the ith subscction.
respectively, and K = total conveyance. AII the terms on the right hand side are
cvaluated io the course of water surface profi le computarion, .*aapt dp,/dy,, which
can be evaluated as shown in Figure 2.15 because the cross section is composetl of
a series of ground points connected by straight l ines. At any given \r.ater surface ele-
vation, only those portions of the boundary that intersect the free surface are con_
sidcred to contribute to dp,/d-r At the point of minimum specific energy, F. can be
cxpected to have a value of unity so that Equarions 2.12 and 2.3j can be used to
solve for crit ical depth in a compound channel.

For r spceific range of discharge in some comJnund chanrrel cross rections,
multiple values of crit ical depth can exist with one minimum in the specific energy
occumng in the overbank flow case and (he other occuning in the case of main
channe l  f low a lone.  B la iock  and Srurm 11981I  demonsr ra t ;d  rhe  va l id i tv  o f  the
compound channel Froude nurnber in conectly predicting multiple point, tf mini_

F IGURE 2 . I 5

Evalual ion of dpldy at the water surface intersection !\  i th the channel bank (BIalock and
Sturm, l98l ).  (Soune: M. E. Blalock and T. W. Stunn. "Minimun 

Specifc E .r |y in
Conpowtd Open Channel," J. H\d. Dir'., A 1981, ASCE. Reproduc.ed bt pernission of
ASC')



Cl l^pr tR 2r  Sr ) ( ,c l f i c  Encrgy  .11

r r rum sJrcc i f i c  cncrgy  b t  inves t iga t ing  thc  h \porhcr ica l  c ro ls  scc t i0n  A,  as  !ho \ \n  inI : igurc  2 .16  fo r  a  f i \ cd  d i . , cha ige ,  o f  SOOO c ts  f t f :  n r i l s r .  f , r ' r t , i r , t , r . r , , , rg "  r t  "c ross  s ( ' c t ion  has  two po in ts  o f  mr r in run t  rp . ,c r f i c  cncrgS tCt  unJ  C: t .  as  can bc

:::l.T ::i,[ 
],,11^fl:..:l,n,l,"d chann-cr l:roudc .,,.,ii", ,, "q""r ,. Lrnrry rr thc! ' , " \ r '  u( l ' r ' r \ .  Lorrc \pondtnp to Dont ls  of  min imum spcci f ic  encrgy.  as shown jnFrgurc I  I8  In  rddr l ron.  I rgurc '2 .1g sho*s rhar . . r " ' . " " r f " i i . , r i r ' , i " , iu i r inn,  ofFr,ru,-ic' nrrrrbcr gire 'n.,.rr.-ct rarues of thc criricar ocpri. Thc iLrr,ra uuu,r.)"., n",is  def incd by Equi l ( ion 2.19,  as is  F * i rh  r r  = 1.0.

T' ICL]RE 2 . I6
Hlpothctical corrpound channel cross,section A.

z 0 4.O 6.0 8.0 1O.O
Specific Energy, ft

FIGt 'Ru 2. l7
Specif ic energy diagram for cross secl ion A (Blalock and Srumt. lggl).  ( . \our..e; M. E.Blalock and T. W Srunt, l,lininun Speci/ic Energt in Co^pn,na'Op",) ino,,n"t,- l.HtLl. Dir,., A 1981, ASCE. Reprtttlucctl bl.pe rntission ttf ASCE.)

r !
72 tl

Cross section A
O = 5000 cts
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S=
Cross section A
O = 5000 cts

- c 1
S:-:---&-___-

Top of bank \ / c 2

1 0 . 0

8.0

t
-e 6.0

E

6  4 . 0
o

2.0

0.0
3.01 . 0

Froude Number

TTGURE 2. I8
Froudc numbers for cross,secrion A (Blalock and Stu.m, lggl). (Sourcer M. E. Btatock
dnd T. W. Sturm, " Milimum Specijic Energt in Conpound Open Channel,', J. H1d. Div.,
A 1981, ASCE. Reproduced by pennission ofASCE.1

FIGURE 2.19
Experimental conrpound channel cross-section (BIalock and Sturm. lggl). (Source; M. E.
Blalock artd T. ll. Sturm, "Mininum Specific Energy in Conpoutttl Open Channel,,, J.
Htd. Div., @ 1981, ASCE. Reproduted bt permission of ASCE.)

The concept of two points of mininlum specific energy, as i l lustrated by cross-
section A in Figure 2.17, was investigated experimentally by Blalock and Sturm
( 1981) in a ti l t ing flume wirb the cross section shown in Figure 2. 19. Uniform flow
was estat' l ished in the flume for various slopes at an average constant discharge of
1.69 cfs (ftr^). Detailed velocity distributions t"ere meorure,l to compute a and the
specific energy at each measured depth of f low. The experirnentrl results are shown
in Table 2-2, in which two poinrs of minimum specifi i  energy lRuns 2 and g) are
predicted by a value of unitv for the compound channel Froude number u ithin the
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T A T I , E  2 . 2

Fl) ipcrinlental ralucs ol conrporrnd channcl Froudc nunrber for \ !r ious deplhs of f low

in  t hc  c ross -sec l i on  o f  F igu rc  2 .19  x  i t h  an  a re rage  d i scha rge  o [  1 .692  c f s  10 .0 {79  mr / s )

), ft E, lrRun F

1

.t

2

3

l 0

1

b

I

0 6,i0

0 6t_5

0.600

0 561

0 .5 t1

0 5(n

0..167

0  J l l

t l 9 2

t t 9 8

1 .221

I  : 1 8

t09 .1

|  087

r.0:6

I  100

0  7 t 8

0.70:

0.700

0.701

0 ?0.1

0.700

0.690

0  7 0 t

0 7 0

0 8 2

0.97

I  t 5

0 8 2

0 9 0

r.00

I  I l

.S. ! r .c  Dar.  fuom El i i r { l  ud Slunn l98l

cxperi,nenta) uncertainty. The two values of crit ical depth also correspond to min-
in rum va lues  o f  the  monrcn tunr  func t ion  (B la lock  and Sturm,  1983) .  as  exp la ined
in  Chapter  3 .

The compound channel Froude number also can be derived by setting V - c,
rvhere c is the wave celrrity in a compound section, in the equations of the charac-
teristics of the general unsteady form of either the energy or momenturn equation
(B la lock  and Sturm 1983;  Chaudhry  and Bha l lamud i  1988) .  Once an  express ion  fo r
the wave celerity c is devcloped from the characteristics of the unsteady energy or
momentum equation (see Chaptcr 7), the compound channel Froude number can be
defined as V/c uith a result identjcal to lhat of mininizing the specific energy or
rnonrentum functions. Kcinemann (1982) also sugges(s an expression for the com-
pound channel F'roude nurrrber by minintizing the expression for spccific cncrgy,
cxcept that the tcrms involving the rate ofchange of wetl!-d p€rimcter with respect
to depth of f low, dp/d\', Ne ncglccted. Inlerp.ctation of the flou' rcgimc of the sep-
aratc floodplain and nrain cltanncl subscctions has becn proposed by Schoellhamer,
Pcters. rnd l-artxk ( 1985) using a subdivision Froude numberi however, {he com-
pound channel Froudc nunrber given herein applies lo the entire cross scction for

the purpose of watcr surlace profi le computation, as discussed in Chapter 5.
For a particular compound channcl geometry and roughness, it is possible to

establish a range of valucs of the discharge (if any) over which multiple crit ical

depths can be expected (Stun.n and Sadiq 1996). The key to such a determination

is to recognize that curves of depth versus compound channel Froude number can
be made dinrensionless and independent of discharge Q. The bank-full Froude
nurnber for the main channel is defined by

o B"t '
F, = j?r (  2 .34  )
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2.O

Cross seclion A

(Fc /Fr  )mar

0.0 3.01 . 0 2.O

in *hich the subscript I refers to bank-full values of the geometric parameters.
Dir iding either (2.28) or (2.32) by F, effectively removes rhe influence of discharse.
so thar the curve for F.,/F, can be plotted as a function of ry'_r,, alone. as sho* n in Fig_
ure 2.20 for cross-section A. Tb find crit ical dcpth,r... F, is set to a yalue of unity, so
thar it is obvious from Figure 2.20 that therc is a range of values of l/F, and, there_
fore. a range of discharges, ovcr which two values of cri l ical depth extst, one in
overbank flow and the other in main channel f low alone. (The interrnediate depth is
a local maximum in specific energy rather than a point of rninimum specific energy..y
Because l/F, decreases with increasing discharge. \r.e can see from Figure 2.20 that
an upper l imit is placed on the discharge p, beyond which on)y one crit ical depth
exists for the case of overbank flow The limit Qu tx'curs when F, = F, and for F- =
l; hence, Q.. can be calculated from the condil ion F, : I as

Fc  lF1

FIGLRE 2.20
Dimensionless contpound channel Froude number for cross,section A.

_ Q ,
Qt

\ / . ,  ̂ \ :

V B '

The lower l imiting discharge Q. for the discharge range of multiple crit ical depths
occurs when F./[ ' , lakes on a maximum value as shown in Figure 2.20. In this cise,
Fl for 0 - Q. can be expressed, as Qr/Q, from (2.35) and combined with the con_
d i t ion  F .  :  l .  We have

/ F , \
\t/,...

(  2 .35 )

(2.-r6)
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' I  
he  v r r  l t t c  o i  (F , . /F  r  ) , , , . , .  can  rou  : ta  n ! ' r ; i t ( 'd  l l  t , rn  u  : r r  rc  s  o I  r  l l r rcs  o l  t Jc  p t  h  I  l9 r '  an)

t f j s th r r r . l c .  a l rh t rugh i t  i s  conrcn icn t  to  usc  a  d i :eh , r rg r '  ( ( ) r rc \ f r )n (J ing  6  e  =  e t
[ ]qu i t t i ( r r \  1 . .15  ln t l  1 . .16  pror  idc  thc  r r rcuos  f r t r  i , .o lu r in !  th r  r { ) ( ) t  \ ( i1 rch  fo r  c r i t i ca l
dcp t l t  r r  l t cn  n ru l t ip lc  c r i t i c l r l  t Jc I ths  t ' r rs t  A  lo l l rnc l r r  : r l t cbr : r i c  c r lL r i r l jon  'o l rc r ,
\ u ( ' h  i \  l h c  i n t c r r r r l - h l r l r i n g  t c e h n i q u c .  c l n  h c  l r j r l l l i c d  t o  r o l t c  l ,  I  u h c n  ( h c
l rouods  o l  lhc  roo t  scurch  ar t  p ro |c r l r  c lc l incd  . \  I  t c  r  n  t r  t  i  r  c  l r ' .  ( 'hu IL l l t rv  lnd  I lha l -
l i rn ru( l i  11988) l ro losc  an  i t c r : r l r rc  nu- rncr rcu l  p roer .d t r rc  to  so l re  th r  c ( lL r i i t i r )n  g i \cn
b ;  l ' ,  .  l .  r r r  r rh r th  l - ,  i s  dc f in t 'd  l r { )n t  thc  l J l r rn tcn lu l l  cq l t l ion .  und prLr r idc  a
( i ( l l t i l fd  p fo (cdurc  fo r  a  s l l tn tc t r i c l l .  r ! ' . t i l l l l ]u la r  eor ] ] l t c r i tnd  thunnc l .' l -hc  

eonr l r i r tu t ion  o fc r j t i ca l  dcp th  u i th  thc  cont l )o i rnd .h i rnnc l  F r ( )udc  nun lber
r i c l rDcc l  b l  F .qu l t ion  2 .32  rcqUi r t ' r  lhc  dcrc r rn in ; r l i , . rn  o f  thc  tco l t . ' l r i c  p ropcr t i cs  o f
thc  n l r lu r l l  c ross  sL 'c l ion .  Ao a l ro r i l l l r ) t  lo  l ccont l ) l i sh  lh is  l i t \ k  i r  shor , .n  in  lhe
V isuu l  l l i \S IC procr 'durc  Ycontp  in  Appcnd ix  B .  The l lgor i rhn t  rcqu i rcs  . rn  i l J 'u t
d l ta  f i le '  o f  d is tancc  c lc ra r ion  p ! i rs .bc t \ \cen  sh ich  a  . , t r l igh t  l inc  r . r r r . r t rc rn  i s
l \ \u r )1 ! 'd .  In  a r ld i t ion .  t l r c  d is lanccs  . r t  \ \  h ie  h  subse e  r ion  h( ,und i rne \  J rc  lLx - -a tcd  ahd
rhc  \ i r luc \  o l  N l lnn ing 's  r r  in  each subscc l ion  n tus t  bc  spc 'c i f i c -d .  Thc  r . r r ious  quan-
{ i t i cs  ncccssary  fo r  thc  cva lua t ion  o f  the  contpound channe l  Froudc  nuntbcr  by
Eqr r r t ions  2  32  and 2 .13  are  computcd .  The procedurc 'can  bc  uscd 1( )  eva l l ra te  the
cr i t i ca l  depth  in  a  conrpound channe l  o r  a  s imp le  na tura l  channe l  c ross  seL l i r )n ,  as
i l lus t ra tcd  by  the  fo l lo* ing  exanrp le .

I , r x A \ t p I - E : . 3 .  F o r c r o s s - s e c r i o n A . p r c r i o u s l v d e f i n e d i n F i g u r e 2 . l 6 , f i n d r h e d i s -
charge range of multiple crirical deplhs. if any. and delerrnine (he crirical dcprh for dis-
charges of .1000. 5000. and 6500 cfs ( l 13. 1.12. and 184 ml/s).

So/trlrbn. Fir\1. the values of the cross,scclional area and top width for bank-fir l l  f low
are detcrmined to be Ar = .16E frr {.{1.5 m:) and 8r = 8.1.0 fr (25.6 m). Tbcn. rhe upper
linri l inS discharge. p1. is calculared as

VIt :  r r t ,8,  "
O ,  -  '  -  6 : 6 8  c l \  ( l  / ?  6  m ' \ )

v 8,1

l le\ 'alueof (F,,/Fr). . . :  LjJ6 is calculatcd frorn a sr.r jc 's of incrcasing Ialues of _rA,,
as shown prc! iously in Figure 2 f0. The lo\ ler I imit ing discharge is given by,

^  6168
Q t  " ; '  J r r 5 r f \ ( l - \ \ 8 r n  \ )

Thercfore. two values of cr i t ical depth should be expected in the range from ,1335 to
6268 cfs ( 122.8 to 177.6 mr/s) for c.oss-secrion A.

The equation lo b€ solr ed for critical dcptlr is given by setting the comground chan-
nel Froude number, F., in F4uation 2.32 equal to unity and defining a new function given
by F1r) = F. - I  = 0. The only dif f iculty is in conrpuring rhe geomerric propert ies
rcq': ired for thc evaluation of F.. This can be accomll ished by assuming straight l ines
bctwccn su^'eyed ground points and computing the leoDtet. ic propcrt ies as a sunlma-
tron of those for regular geornetr ic f igures from one ground poinl lo rhe ncxt. This has
b€cn done in the funcl iot l  subpro<.edure FC shown in Appcndix B in lhc program
Ycornp. Olherwise, thc eraluation ofcri t ical depth prcreeds as in Erantple 2.2 using $e
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biscct ion subprocedure. Note that the unknoun rari lble sought in the bisection subpro,
cedure is the cri l ical \ \ 'ater surlace elevation r! lher lhan the cri t ic,, l  depth. The code ntod-
ule in thc appendix requires a data i l le of the cross section ground points and rhe sub-
section breakpoints and roughness coefl icients as shorvn. The program output for O =

5000 cfs ( l . l l  mr/s) gives cri t ical depths of 5.182 ft  (L579 m) and 6.7.10 fr (2.05,1 m).
For 0 : 4(X)0 cfs ( I  l3 mr/s). there rs only the main channel value of cr ir ical deprh equal
to '1.180 ft  (  L-165 nr). \r  hi le only the overbank cri t ical dcpth of 7. l9J lr  (2.193 m) exisrs
for P : 6566 .tt ( 18.1 mr/s).

START

Calculate bank-full Froude no., Ft,
and upper l imiting discharge, QU

> QU?
No (

YeS

Compuj
crit ical d€

e lower
rpth, YC 1

Compul
crit ical d(

e upper
)pth, YC2

YC2
(Upper,

may not occl
b may or
rr for this O)

YC1
{LOWer y(

occur to
does not
'  th is  Q)

/ ^ ^ - ^ , n ^  t - { ^ .  t ' l t '  -  1  i o

F * <  F j ? O L = O U STOP

No

'I

FIGURE 2.2I
Flowchart for finding multiple critical depths.
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Thc  p rocc ' du re  l o r i c  f o r  c ; r l cu le l r ng  n tu l r i p i e  c r i l r . a l  dcp (hs  rn  rhe  p rog ram Ycon rp
rn  Ap l rnJ i \  B  r s  i l l u \ t r i l cd  b ]  r he  l l o \ r ch ln  i n  F igu re  I  l l  T l r e  r r l uc  o f t hc  upp r r  l im ,
i t r n S  d i \ . h l . g c .  p l , / ,  r c l l t r r c  t r  t h c g i r e n p d e t c m t i n c s t h c c r r r l c n c c o f r l o u c r , j l u p p c t
cn r r . r l  r l c I r h ,  r h r ch  r \  r h rn  c ; r l ! r i l ; r l ed  Thc  up i ^ - r  c r i t i ca l  dcp th  i s  dc ' s rgna rcd  as  yC2 .
uh r l e rhc lo \ \ c r c r r l i ca l  d . l nh  i \YC I  Thc i r  va lucs  a re  se r  cqua l  t o (  |  )  t o  l nd i ca l c  t h3 l
t h . ' \  do  no t  c r r r t . ' l l c  r a l ue  o f  l "  i s  l he  con )po r i nd  ch l rnnc l  F roudc  ru rnbc r  e \a l ua led
a l  i  dcp th  o ,  i . 0 l  t tmes  l hc  b l nk fu l l  dcp th  t o  r i c r c r rn i nc  i f  t he  F roudc  nu rnbe r  r r  r r r . r cas -
rn ! .  3s  r f l  t hc  casc  o f  mu l { r l ) l ! '  cn l l ca l  dep (hs ,o rno t  l f  r t  i s  no t  l nc reas ing  abo \e  bank -
1u l l  dc l l f L  r h ! 'D  on l !  onc  c r j r i ca l  d .p th  ex i s r s  and  QL  =  QU. , l f  r s  i nc r cas ing ,  r hcn  rhc
r r t r \ i n l ! n r  \ a l ue  o I  t hc  co I l ] pound  ch3nne l  F rou i l e  number .  F "o . .  t \  nccdcd  t o  ca l cu ta le
lhc lo\\  cr l j l ]1i t ing di\charge. O1-, for the possible ca-sc of ntult iple crrt jcal dcpths for the
g i \  en 0. Oncc borh O U and Ql, arc known. thcn decisjons are made atxJUI lhc c\ rstc nLe
of onlr a Io\\r ' r  cr i l ical dcpth. of only an upper cri t ical dr 'prh, or of both.

!-IGURE 2.21 (cotlt inue\

(Only upper yc occurs)

Compule upper crit ical
deplh YC2

(Bolh y;s occur)
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2.8
}VEIRS

Thc ocrurrence of critical deprh is put ro good use in thc design of open channel flow
measuring devices. By creating an obstructjon. crit ical depth is lorced to oc-cur and a
unique relationship betwecn depth and discharge results. This is the principlc upon
uhich weir design is based. The very exrensive sct of experimental rcsults do.eloped
for weirs accounts for ticir continuing popularity as flow measuring clevlces.

Sharp-Crested Rectangular Notch \\ 'eir

Thc sharp-crcsted weir equation can tr derived with respecr to Figure 2.22 by first
assuming (l) no head losses, (2) atnlospheric pressure across section AB, and (3) no
vertical contraction of thc nappe. Under these idealized assumptions, the velocity
along any streamline at section AB is giren by u : (2ghrtE, where i : venical dis-
tance below the energy grade line. This veltrcity distribution can be integrated over
the cross-section A,B to obtain a theorerical value of discharge per unit of width, q,:

{zgn an (2.37 )

in which Vo - approach velocity; and H - approach ht-ad on the crest of thc weir.
Carrying out the integration, the resuh is

2 , p
2 s '

(,1, : 
l
a e

, , :1r4[( '  .  #)'- (#)"]",, '

- - - - - - -  E G L

B

(2.-r8)

sV2 n

I

FIGURE 2.22
Idealized flow over a rectangular, sharp-crested weir.
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I f  thc  tc r  r  in  squarc  b rackc ts .  wh ich  c rprcsscs  lhc  c f fcc t  o f  thc  approach vc tc rc i ry
hc-ad .  i s  cor rb incd  u i lh  cont rac t ion  and hcad loss  c f fcc ls  in lo  a  d ischr rge  coc f . f r -
c rc 'n t ,  CJ ,  thc  ac lua l  Io ra l  d isch l rgc  i s  g i rcn  by

2 - -
Q :  a  

Y  2 g C ' l , H '  ' (2 .39)

i n  u  h ich  L  i s  thc  l cngrh  o f  rhc  no lch  c rcsr  pcrpcnd icLr la r  ro  thc  f low;  and H is  rhe
hcad nrca \urcd  abotc  lhc  c rcsr .  The d ischargc  coe l l l c ien t  can  be  dc ten l incd  on ly
by  cxpcr | Ic r ) ts .  In  thc  L ln i l c 'd  S t i t t cs ,  i t  i s  cus too tary  10  s imp l i f y  F iquat ion  2 .39  as

Q ' c l H 1 l
i n  r r  h ich  Q js  in  cub ic  fcc r  pcr  sccond and l /  i s  in  fcc l ,  bu t  rhe  d j rnens ion lcss  fo rm
of C, in (2.39) is prcfr-nt'd.

Wi th  thc  gconrcr r i c  var iab lcs  dc f incd  as  in  F igure  2 .23 ,  a  d imens iona l  rna l ;  s is
for thc coefficient C, yiclds

, ,=t(:,:-t f '*",*.)

(2.10)

(2 .4 t )

(2.42)

(2.43)

(2.44a)

(2.44b)

in *'hich 1- is the crest length perpcndicular to the flow, b is the approach channel
width; H is the heacl above lhe notch; P is rhe hcighr of thc norch cresr above the
channel bonom; Re is the Reynolds number; and lve is rhe Weber number, One of
the ea-rl icst experimental relations for C, was given for thc suppressed weir (Ltb :
l) by Rchbock (l{enderson 1966), in which he neglecred viscous and surface ten_
sion effects so that Cd was given as a funcrion of H/p alone:

Ca = 0.611+ 0.08 4
P

ln the suppressed weir, there are no laleral contraction effects on the werr oappe, so
that the coefflcient of discharge does not depcnd on l/b. Funiermore, Rehbock's
formula rcflects no influence of H/L on tbe discharse coefllcient.

Based on expcrinrental resLrlts obtained at Ceorgia Tech. Kindsvater and Ca-rter
(1957) proposed that rhe Reynolds number and Weber number effects can be
included in thc hcad discharge relationship by naking small conections to the
head, H, and crest lcngth, l. By doing so, they derived from their expcrimenral
resufts an effective coefficient of discharge, Cd., that depended only on H/p and
Ltr, as shown in Figure 2.23. Their relationship is given in the form of Equation
2.39  as

Q = 
;V2sc&1,H3,/'�

L , = L + k "

H , -  H  +  k ,

i n  wh ich

whcre C, and ,t. are given in Figures 2.23b ard 2.23c, respectively, and frH was found
to bc nearly constant with a value of 0.001 rn (0.003 ft). The crest-length correction,
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(a) Definit ion Sketch

E
-lO

0.80

o.7 5
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0.008
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-0.002

t ) o=  t ' y

0.8
-(

0.6
0.4

o.2 -

0 . 0  0 . 5  1 . 0  1 . s  2 . 0  2 . 5
H/P

(b) Coeff,cient of Discharge

0.55
0.0  0 .2  0 .4  0 .6  0 .8  1

L /b

(c) Crest Length Correction

FIGURE 2.23
Head-discharge rela::onship for a sharp-crested weir (Kindsvater and Caner, 1957).
(Source: C. E. Kirdtater and R. W. C. Carter, "Discharge Characteristics of Rectangular

Thin-Plate Weirs," J. H'-d. Dir'., @ 1957, ASCE. Reproduced by pemtission of ASCE.)

/<., is maximum at Lh = 0.8 with a value of 0.0O43 m (0.014 ft). as shown in Figure
2.23c. Equations for Cr" based on the Kindsvater-Cmer data are given as a function
of the lateral contEction ratio, L/b, and the venical contraction ratio, H/4 in Table
2-3. Kindsvater ard Cafier (1957) found that there was a negligible influence of H,4,
on the discharge cclefficient.

Kindsvater and Carter ( 1957) constructed tbeir sharp-crested weir notches, not
with a knife edge but with an upstream square edge having a top width of 1.6 mm
(1/16 in.) and a downstream bevel. The head for the sharp-crested weir should be
measured at a distmce of three to four times the maximum head measured upstream
of the weir plate rBos 1988).

'l l l le suppressed weir, or full-width weir, with Ub - |.O must have provisions
for aeration of tie underside of the nappe, because some air is entrained by the
nappe, whicb affects the discharge coefficient due to subatmospheric pressure rn the
pocket underneath the nappe. Undesirable oscillations of the nappe also can result
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l A t l t  t i : - . 1

C o r m c i . n t s  o f  d i s c h a r g e  f o r  t h c  K i n d s \  a l c r - C a r l c r  f o r n r u l a

Ub

5 l

C,,,

0 6.l l  -  0 075 IVP

0 599 * 0 (ril 11./P

059?  -  0 (X5  l L?

0 595 + 0 030 H/P

0  591  +  0  018  H /P

0  5 9 2  +  0 0 l t H P

059 !  +  00058  l lP

0 590 , 0 0010 l l ,?

0 5ll9 0 00llt ltnr

0 588 0.0021 lvP

0 58? - 0.0021 Fl,?

Sdl r " i  Darn  f tonr  Krnds \arer  and Can€r  l95 l :  Bor  l98E Bra t . r  and KrnS l916

from irregular air supply rales to the pocket. To ensure full aeration, Bos ( 1988) sug-

gests lhal the tailwaler remain at least 0.05 m (0. l6 ft) below the \\ 'eir crest.

For prccise measurelnents, Kjndsvater and Cartcr ( 1957) recomnrended a l im'

itation of H/P < 2, with P no less than 9 cm (0.3 ft). If l1lP excecds 5' then the weir

itself no longer is thc control section, and so large values of /J/P should definitely

be avoided.

Sharp-Crested Ttiangular Notch 11'eir

The triangular or V-notch sharp-crested weir defined in Figure 2 2'1a provides a pre-

cise nleasurement of discharge over a wide range of discharges Util izing the same

approach as for the derivation of the head-discharge relationship for a rectangular

sharp-cresred weir, it can be shown that the head-dischargc relationship for a V-

notch weir is given by

e - A

O = C' iVze nn"1ns z

0 6

0 5

I

0 .9

0 .8

0 7

0 1

0 l

0 2

0 t

0

(2.4s\

in which I is the notch angle. The weir can either be fully contracted or partially

contractcd for narrow approach channels. Equation 2.45 can be presented in the

Kindsvater-Caner form in which the head, H, is replaced by an effective head, H. :

11 + t,, and the coefficjent of discharge C* beconles independent of Reynolds and

Weber nuniber effects (Bos 1988). Thc value of Cr., shown in Figure 2 24b, varies

between approximately 0.58 and 0.59 as a function of 0 only, provided tlrat H/P <

O.4 and P/b 4 0.2 to ensure the fully contracted case. Thc value of ,t, varies from

I to 3 mm (0.0033 to 0.01 ft) as a function of the notch angle, 0, as shown in
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0.59
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0

(a) Def init ion Sketch

I
o  0.58

o 20 40 60 80 roo 120
,, degrees

(c) Head Correction

FIGURE 2.24
Triangular, sharp-crested ueir (Bos' 1988) {Solrce: Bos' M. G l9SS "Discharge Mea-

surements Stntclures," ILRI Puhlication 20. 3d Reised Edition. Wgenitgen' Tlrc Netlrcr'

lands, 320 p.)

Figure 2.24c. For a partially contracted V-nolch weir, sufficient data for the dis-

charge coefficient is available only for the case of € - 90o, and the discharge coef-

ficient varies wrth H/P and P/b for this case, as given by Bos ( 1988).

Broad-Crested Weir

The broad-crested weir has a finite crest length parallel to the flow. In addition' the

crest is long enough that parallel f loq'and crit ical depttr occur at some point along

the crest, as shown in Figure 2.25 for a rectangular, broad-crested weir. If the

energy equation is applied from the approach flow to the critical section on the crest

and energy losses are neglected, we have

0 20 40 60 80 100 120
d, degrees

(b) Coefficient of Discharge

. .  Q '  3  f ( o / t ) ' l ' '
"  zse i  2 l  s  l

( 1.46.)

in which H" is the energy head on the crest as shown in Figure 2 25a1 that is. 11" :

H + Vll2g, in which Vo is the approach velocity. l l  the energy losses are absorbed

\
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(a) Delinit ion Skelch of Broad-Cresled Weir
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(b) Coefficient ot Discharge for H llH + PJ < O.35

F-IGURE 2.25
Coefficicnt of discharge for broad-crested and shon-crested rreirs (Bos, 1988) (Source:

Bos, t'!. G. Ig88 Dischorge Measurentents Slructures ' ll RI Publicalion 20' 3rd Retised

Edition, llageningen, The Netherlonds -120 p \

in a discharge coeffrcient, Cr, and we solve for Q in terms of the h€ad, H, the

resu l t  i s

5 l

o

0.9

0.8

o = c " c , : f ] r l ' " . n . '
J  L J  I

(.2.41)

in which the approach velocity coefficicnt C, : (H,/nr? l iquation 2.47 can be

solvcd for the discharge, assuning that C, - l, and lhen the approach vclocity hcad
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can be calculated to update the value of Cu for a second calculation of Q. Altema-

tively, C, can be relatcd to the variable C dA'lA F in which C, - s eir discharge coef-

ficient; A' = LH = flow area in the control section of the weir $ ith a water surface

hcight conesponding to the upstreant head, H; and A, - f lou cross-sectional area

in the approach section where H is measured = L(H + P) for a suppressed weir
(Bos 1988). The resulting relationship between Cu and CrA'lA, is

coe' lcl ' '  -  t) ' i '
At 0.385 C,

Equation 2.48 is plotted in Figure 2.26 so that C! can be estimated directly.
For the broad-crested weir, an additional geometric variable, 1, the length of the

crest parallel to the flow, is introduced into thc dinensional analysis for Cr' and it
can be shown that

/  H  H \
c , :  f \ p . T  )

(2.19)

as given in Figure 2.25b (Bos 1988) for Hl(H + P) < 0.35 In fact, whether the
broad-crested weir behaves as expected depends on the value of l1.4 The following
ranges of behavior can be delineated:

1. 0.08 < H/l < 0.33, broad crested.
2. 0.33 < H/l < 1.5, short crested.
3. H/l > 1.5. sham crested.

1 . 2 0

( r .48)

1  . 1 5

d  1 . 1 0

1 .05

1.00
0.3 0.4

cdA'/41

o.7

FIGURE 2.26
Approach velocity correction coefficient for a broad-crested weir (Bos. 1988) (Source.'

Bos, M. G. 1988 "Discharge Measurements Structures," ILRI Publication 20' 3rd Revised

Edition. Wageningen, The Netherlands, 320 p.)

0.80.60.5o.20.1

,/
I
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In thc rangc of broird,crcstc'd bchavior, t ltc crest is long cnough in the l lo* dircction
to obtain plrallcl f low at the crit ical s('ction and a theorcticrl dischargc ctxlf icicnt.
Ca ,- I 0. but friction Iosscs rcduce thc cxpcnntcnral vlluc of thc dischar.gc c<xfl. i,
cient. Cr. t0 0.8{l i as long as the $cir rcntains broad crcslc,tl .rnd H/lH 1- pl ::0.35.
In thc shon-crcstcd rlngc of bcharior. thc flow is cun,i l inear along frc cntrr!, crcst of
thc rr r 'rr lnd thc c(^*ff ici( 'nl of dischrrgc .rt trrr l l ; incrcrres. r, shou n rn Figurc 2.25b.

Thc  advanragc  o f  a  b road-crcs lcd  wc j r  i s . tha t  thc  t l i l r va tc r  can  bc  above the
crcs l  o f thc  *c i r  u  i thou t  a f fcc t ing  the  hcad-d ischarge rc la t ionsh ip  as  long as  the  con-
trol scclion is unaffected. The ljmir of tajl\r,arcr heighr, l/,, abo\e rhc cresr of rhe wcir
so that the discharge docs not dccrcasc by more than I pcrcent is called the rnodl,
lar l init. The modular I inrir usually is exprcsscd in rcrms of the rario 11./H, u,hcre
l/ is the upstrcam herd on rhe qrest of.rhc wcir, and it has a vaiue of H,./H .. 0.66
for  a  r tc t rngu la r  b road-crcs tcd  *c i r  (Bos  1988) .

2.9
ENERGY I'QUATION IN A STRATIFIED FLO1V

[-et us suppose now that the flows over obstacles tiat we have been considerine in
this chapter occur ar rhe bottom of a deep reser voir of depth D as a resulr of r plring-
ing gravity cunent of higher density, as shown in Figure 2.27. The ambient density in
the reservoir is p, and that of the gravity cunent is pr. Such flows occur naturally as
the result of a density stratifying agent such as temperature or saft. If a small obsta_
cle of height Az is on the bottom of ttre reservoir, rien we can write the cncrgy equa-
tion for the lower flow layer as before, taling into accounl the additional Dressure of

F ICI ,RE 2 .27
Tu'o layer dcnsity str itt i f icd tlow over a step in the channel botlom. D >> )l ano pb > po.
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dre overlying stagnant layer' The cnergy equation from thc approach flow to a point

ovcr the obstacle is

v1,
+ pr,g(t :  + J:)  + pn-

Collecting terms and dividing by p, results in

(2.50)

a p
P } r  t

p " ' +=+s ( r :+a : )+T( 1 . 5 1 )

in which Ap/p : (pa p,)/pa. This equation is identical to the Prcvious rcsults for

sinsle-larei flow if ihe gravirarional acceleration is replaced by the reduced gravi-

rari"onal acceleration (,\t/p)B = 8'. The specific energy then is written as E' = -r *

V2/2p' and the Froude number from taking dt'ld) = 0 is

v
F o  =  ,  ,  . , r

1 8  l )  
-

r r  5 ? l

in which Fo is call ed the tlensinetric Froude nLtntber' Note that the Froude number

previously 
"defined 

for a single-layer flow of water really is just a special case of the

two-layer flow of water under air, in which l-plp - 1'

The densimetric Froude number represents the ratio of inenial force to buoyancy

force, which is just anothcr manifestation of the influence of gravity ln movable-

bed channe|s, which are treated in Chapter l0' yet another fbrm of the densimetric

Froude number, called the sediment nunber' is encountered lt uses the scdiment

grain diameter as the length scale and sl mbolizes the ratio of inenial force to the

iubmerged weight of a sediment grain. \ 'e encounter the Froude number through-

out the iemaindir of the text; for example' in hydraulic jumps' uniform flow grad-

ually varied flow, and unsteady flow.
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EXERCISES

2.1. \\ 'arer is f lo*ing at a depri of lO fl with a velxity of l0 ft/s in a channel of rectan-

gular section. Find the depth and change in water surface elcvation caused by a

inrooth up*ard sleP in the channel bottom of I ft- \ rhal is the maximum allowable

srep size so that choking is prevcnted? (Use a head loss coefficient : 0 )

2.2. The upsrream conditions are the same as in Exercise 2 l wilh a smooth confaction in

width from l0 ft to 9 ft and a horizontal bot{om Find {he depth of f low and change

in water surface elevation in the conltacted sectjon What is the grealest allowable

contraction in *idth so thal choking is preventedl (l lead loss coefficicnt = 0 )

2.3, Detcnnine rhe do\\ nslream depth in the transition and the change in q aler surface ele-

vation if the channel bottom rises 0 15 m and the upstream conditions are a vcloclty

o f  4  5  n / .  and a  depth  o f  06  m

2.4. Dctcrmine the do*'nstream depth in a sub'cri l ical ransition tf Q 
- 262 cfs and the

channel bolrom riscs 3 279 ft in going frcm an upslrcanl circular channel lo a down-

slream rectanguliu channel 
'fhe upstream circular channel has a diameter of 9 18 ft

and a deplh of f lotl of 7.34 ft. The downstream tectangulat channel has a width of

6.56 ft. Neglect the head loss.

2,5. Derermine the upstream dePth of flow in a subcritical transition from an upstream rec-

tangular flume that is 49 fi wide to a downstream traPezoidal channel with a widti of

75 it and side slopes of 2: l. The transition botlom drops I ft from tbe upstream flume

ro the downstream trapezoidal channel The flow rate is 12,600 cfs. and t-he depti in

the downstream trapczoidal channel is 22 ft. Use a hr:ad loss co€fficjent of 0 5

2 .6 .  Inahor izon ta l  rec l tngu la r f lume,sr rpposetha tasmcxr th 'bump"* i0 rahe igh to f033f t
has bccn olaced on the channel bottont. The dischargc P€r unit widtl in thc flr lne is
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0.,1 cfs/f l-  Delerminc the depth ar rhe obslruct ion for a tai l \ \arer dcpth oi 1.0 i t  and
neSligible hcad losses. Sketch thc rcsults on a specif ic enereY diagram.

A rcctaneular channel 3.6 m !\ ' ide contracts to a 1.8-m \r ide rectangular channel and
then expands back to the 3.6 m width. The contraction is gradual enough that head
losses can be neglected, but rhe expansion loss coeff icienl is 0.5. The discharge
through t})c transit ion is l0 mr/s. l f  the do*'nstream depth at the recxpanded section
is 2..1 m. calculate the depths al the approach scction and rhe contracted section. Show
the posit ions of the depth and spccif ic energy for al l  three sections on a specif ic
energy dragram.

Dctcrminc the discharge in a circulaJ culven on a steep slop€ i f  the diameter is 1.0 nl
and the upstreanr hcad is L3 m rvith an unsubnlerged entrance. Aiso calculate rhc cnt-
ical dcpth. Neglect entrancc losses. Repeat for a box culren that is 1.0 m square.

2.9. An open channel has a senlicircular botlom and vertical. parallel \{alls. lf the diame-
tcr. d, is 3 ft. calculate the crit ical depth and the nrinimum specific energy for two dis-
charges. l0 cfs and 30 cfs.

2.10. Derive an exact solution for crit icai depth in a parabolic channel and place it in dimen-
sionless form. Repeat fic procedure for a triangular channel.

2.11. A parabolic-shaped irrigation canal has a top $idrh of l0 m ar a bank-fulldepth of 2 m.
Calculate rhe crit ical discharge, p. (i.e., the discharge for q hich rhe depth of uniform
flow is equal to crit ical depth) for a uniform flow depth of 1.0 m. If Q < O, for the
uniform flow depth of 1.0 m. $ i l l  the uniform flow be supercrit ical or subcrit ical?

2.12, A USCS study of natural channel shapes in the wcstem Unired States repons an aver-
age ratio of maximum depth 1(] hydraulic depth in the main channel (with no over-
flow) of t,zD = 1.55 for 761 measuremenls.

(d) Calculale the ratio of marinrum depth ro hydraulic deprh for a ( I) tr iangula.
channcl. (2) parabolic channel. (3) reclangular channel. Whar do you conclude?

(r) Calculate the discharge for a bank-full Froude number of Fr = 1.0 if r/D =
L55 and 8, : 100 ft for r., : l0 fr. Whar is rhe significance of rhis discharge?

2.13. A natural channel cross section has a bank full cross-sectional area of ,15 ml and a top
width of 37.5 m. The maximum value of F./F, has been calculated ro be 1.236. Find
the discharge range. if any. $ilhin which multiple c.it ical dcprhs could be expected.

2,14. Design a broad-crested *eir for a laboratory flume with a *idth of l5 in. The dis-
charge range is 0.1 {o 1.0 cfs. The maximum approach flou depth is l8 in. Determine
the herght of the weir and the * eir lengrh in rhe f ' low direcrion. Plot rhe expecred head-
discharge relationship.

2.15. Plot and compare the head-discharge relationships for a reclangular. sharp-crested
weir haling a crest length of 1.0 fr in a 5-ft wide channel \\ irh thar for a 90. V-notch,

t J l
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shlrp,crc'sted rrcir if both weir crest-s arc I l i  bo\c thc chunnel bottonr. Considcr a
hcad range of 0-{.5 ft.

2.16. Derive lhe head-discharge rclationship for a triangular. brotd-crcsted weir and a cor-
responding relationship for C" analoeous to Equation:.JS.

2.17. Dcrive the head-discharge rclationship for a truncated. lr iangular, sharp-cresred weir
with nolch angle d and venical walls that begin ar a heighr ofir above lhe triangular
crest. Assume that I/ > h,.

2.18. Modify the conrputer program YoYC in Appendix B to calculare rhe crit ical depth in
a circular chlnnel.

2.19. W.ite a computer program that compules rhe dc|th in a width contraction and the
upstream depth given a subcrit ical rail$ ater deprh as in Figure 2.1 L Assume that rhe
channel is rectangular at all three secrions and make provision for a h€ad-loss coefll-
cient that is nonzero: include a check for possible choking.

2.20. A laboratory experiment has been conducted in a horizonral flume in which a shar?-
crested wet plale has been installed to determine the head-discharge relationship for
a rectangular, sharp-crested weir. With reference to Figure 2.23, P = 0.506 ft, L =
0.25 ft, and, = 1.25 ft. The discharge was measured by a bend meter for which the
calibration is given by Q = 0.015 Al0'r, in which @ = discharge in cubic feet per
second (cfs): Al = manom€ter deflection in inches of warer; and the uncertainty in
the calibra(ion is 10.003 cfs, The head on the crest of the weir was measured by a
point gauge and is givcn in the data rable rhat follows. An upstream view of lhe weir
nappe can be seen in Figure 2.28.

FIGURE 2.28
Upstream view of the flow over a rectangular. sharp-crested $.ek (photograph by G. Sturm).
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r 3.2

I  1 . 5

I 1 . 2

8 .3

8 .0

6 .2

,{.3

1 .2

2 .1

2.0

0.,198

0.,176

0..{71

0.,r25

0.,{21

0.3u,l

0.386

0._113

0.ll, l

0 .212

0.25?

(.o) PIot the head on the vertical scale and thc discharge on the horizonlal scale of
loglog axes and obtain a least squares regression fit forcing the inverse slope ro
be the theoretical value of 3/2. What are the single best fit value of C, and the
standard enor in Cr? Compare the standard error of the "0 esti$ate" with the
uncenainty in the bend-meter calibratron.
Cdlculate the discharge first using the Kindsvater-Caner relationship and then
using the single best-fit value of Cr. Compare both sets of results with the meas-
ured discharges by calculating the percent differences and also plotting the meas-
ured vs- calculated discharges.

\ b )
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Momentum

3 .1
INTRODUCTION

The nromentum equat ion  in  cont ro l - ro lu lne  fo rm is  a  va luab le  too l  in  opcn channe l

f low ana lys is .  I t  o f ten  is  app l ied  in  s i tua t ions  invo l ! ing  complex  in te rna l  f low pat -

tcms with energy losses that init ially ate unknown. The advanlage of lhe monlen-

tum equation is that the details of thc intenlal f low palterns in a control volume are

immaterial. It is necessary only to be able to quantify the forces ard rnonlcntum

fluxes at the control surfaces thal form the boundaries of thc control rolune. This

property of the rromenlull l  cqualion allows it 10 bc used in a cornplenlentatl fash-

ion with the encrgy equation to solve for unknown energy losses in otherwis€

intractable probicms.

3.2
IIYDRAUI,IC JUJ\IP

The most  common app l ica t ion  o f  the  mol l l cn tum equat ion  in  open channe l  f low is

the  ana lys is  o f  thc  hydrau l i c  jump.  The hydrau l i c  juD lp .  an  abrupt  change in  depth

from supcrcrit ical to subcrit ical f low, al*'ays is accompanied bl a significant

energy loss. A countcrclockwise roller rides continuously up the surface of the

jump, entraining air and contributing to the general coniplexity of the internal f low

patterns i l lustraled in Figure 3.1. Turbulence is produced at the boundary between

the incorningjet and the roller. The turbulent eddies dissipale energ) front the mean

flo$, aithough lhcre is a lag distance in the downstrearn direction bet\r 'een the point

of maxintum production of lurbulence and maximutn dissipation of energy (Rouse,

Siao, and Nagaratnanr 1959). Funh('rmorc, the kinetic encrgy of the turbulcnce is

rapidly dissipated along with thc nlean flow cnergy in lhc downstream direclion, so

6 l
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in which f" - hydrostatic force; pQV : momentum flux; and the subscripts I and

2 refer to ihe upstream and downstream cross sections, respectively The hydro-

static force is eipressed as 7fto4, in which rlr" is the distance below the free surface

to the centroid oi the area on which the fcrce acts, as shown in Figure 3 l ' and the

Sec. C-C

FICURE 3.7
Application of thc momentum equation to a hydraulic jump in a nonrectangular channel'

that the turbulent kinetic energy is small at the end of the jump This complex flow

situation is icleal for the appljcation of the nlotnentum equltion. because preclse

mathematical description of the intemal f low pattem is not possible

lf any general nonrectangular cross section is considered as shown in Figure

3.1. a control volume is chosen such that the hydraulic jump is enclosed at the

upsfeam and downstream boundaries, where the flow is nearly parallel This

choice of conrrol volume boundaries allows the assumption of a hydrostatic pres-

sure force at the cntrance and exit of the control volume Also assumed is that the

velocity proltles are nearly uniform at the upstream and do\\ 'nstream cross rections,

with the result that the momentum corection coefficient F = I The boundary

shear over the relatively short length of the jump is neglected in comparison to the

change in pressure force. Finally, the jump is assumed to occur in a horizontal chan-

nel. Under tiese assumptions, the momentum equation in the flow direction

becomes

Fr l  -  Fp t :  PQ\V:  
-  V t ) (3 .  1 )
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rucan rc l rx i l y ,  11  , ,  Q/A.  f ro r : r  thc  c ,  ' r : :nur t r  eqUl t ion  Wi th  thcsc  sLrbs l i tu t ions  lnd
d i r id ing  I ' ,qua t ion  3 l lb )  thc  sp t ' c i l : :  * r ' rehr .  y .  thc rc  rc ' \u l l s

'1.�h,: ( - l  2)+ Q
.(i:

a) '

\ \ ' c  scc  f rom (h is  rc r r ran tc l rc 'n t  o f  rh ! -  equa l ion  tha t ,  i f  $c  dc f ine  a  func t ion , ly ' ,
$ h r , h  $ c  u r l l r . r l l  r h c  n t , t n t t t t u n t f , , n .  t t , . n .  a ,

( - 1 . - l )

t l ren  i t s  cqua l in  ups t rcar r  and do , , rns t rc -am o f  thc  h ld rau l i c  jump can bc  uscd to
detc rnr  ine  thc  scqur 'n t  dcp lh .  $  h ich  i<  rhc  dc  p th  ; i f t c r  the  j  u  rnp .  i I  thc  ups t rcanr  con-
d i l ions  arc  g i ren ,  o r  v ice  vcrsa .  l vJcr ie  p rcc isc l l .  the  rnorncntun t  f r inc t ion  is  fo rcc
p lus  rnorncn lum f lux  d iv ided by  the  spr :c r f i c  ue igh t  o f  thc  f lu id .  and rh is  quanr i ry
is  conserved across  the  hydrau l i c  jump.

The distance from the free surface ro the centroid of thc flow section, ft., is a
unique function of the depth, ), and the geontetry of the cross s€ction. For exam-
ple. the nronentum function for the trapr:zoidal scclion is given by

bt2  - r ' t
M =  ] : - . - :  + , .

o :
(3.4 )2 3 gr (b  +  l r r  )

in uhich b - bottom width; r4 = sidcslope ratio: and y : f low dcpth as dcfined in
Table 3- L ftre trapezoidal section has been divided into a recranglc and two trian-
gles, and the additive propeny of the first moment of the area about the free surface
has becn used to obtain the expression for Ah.. The momentunr function definit ions
for scveral other prismatic cross sections also are giten in Table 3- I

The nromentum equation can be placed in dimcnsionless form and solved
numerically for the sequent depth. If Mr is known for the trapezoidal seclion from
inconring flow conditions, for cxample. then setting Mt = Mz and nondimension-
a l i z ing  resu l l s  in

L 5 . \ r  ^ r  l Z :  1 . 5  3 2 :

' , ' i  
*  n  

. \ r i ' ( t  - . \ r i )  r i  
r l  . , i " i t  -  r ' i . ;

in rvhich A - ,r./.r ' ,;,r j = n*,/b; and 2: : 91mtlgb5. Equation 3.5 can be solved
d i r e c t l y f o r Z a n d t h e n p l o t t e d a s l . , / r ' , : / ( 1 ' . 2 ) a s s h o w n i n F i g u r e 3 . 2 w h e r e Z :
Z-,-n. Similarly, rhe solution for the sequcnl deprh ratio for the circular case can be
giren as shown in Figure 3.3 with Z;^ : g:/gd5.lmplicil equations for yr,/_r,, and
their graphical solutions in a form similar to ttrat of Figures 3.2 and 3.3 for trape-
zoidal and circular channels were proposed b1' )\4assey ( I 961) and Thiruvengadam
(  l96 l  ) ,  respeet i r  e ly .

To solvc the nonlinear aJgcbraic equations for the sequent depth ratio numer-
ically, a fLrrrction Flt) = Mr M. is defined and solved by interval halving or
sonc  o lher  non l incar  a lgcbra ic  equat ion  so l re r .  The c r i t i ca l  depth  must  bc  found
f i rs t .  h tx rer , . ' r .  to  l i r i i t  lhe  roo t  search  ro  the  a lp ropr i l t c  subcr j t i ca l  o r  supercr i t i -
ca l  \o lu t ion .

r t l
_ ;

(3.5)
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Nlonrentum function for channels of different shapes lr : f lor depth)

Reclangular

F-r--l
|  l v  I

D

Trapezoidal

\ l ' l t
t l '

D

Triangular

\v l l'v.;'

Circularr

b j l  1 2  +  Q l  l k ' )

b.r 2 + rrrr/ '3 + Qr. ' lgr lb + / l l ' ) l

rnyr,/ :  + P:7'(gmr 
r)

'f'-,/..-\

dT f f i ly  
13 ' , " {d, r )  s inr (d 2)  3(0 i2)  cos(s l l ) )d1121 + Q1l 'Led ' � (o  -  s ind)  8 l

{ \qu l'
Parabolic+

f'-81-l
Tl---'----f

Jr ' r  \  lv  . /r \l--,/
(a /1s) {_ r5 I  +  r .50 : / / (8 (_r ' r  r )

'0 = 2 cos ' l l  2o/d)l
t ; = a'/;-t1n

For the rectangular cross section, there is an exact solution fbr the sequent

depth ratio that depends only on the uPstream Froude number. Setting the values of

the momentum function per unit widti upstream and downstream of the jump equal

and rearranging, we have

r  r : c f r  1 l  ( 3 .6 )
2 2  I  L .Y2 , ) r  l

With some algebraic manipulation and nondimensionalization, Equation 3.6

becomes a quadratic equation:

, \ ' �+  , \  -  2F i  -  o  Q7)
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Froude Number, F1

, fzlh . Et-/E1 / LtY2

FIGURE 3.' l
Compuison of theory and experimenl for a hydraulic jurrp in a rectangular channel: 'r ' ,/r ' '  :

sequent dcpth ratio: Erl81 = energv loss ratio; Ur. : j  ump len5.,h r.r| io ' \I)ata frcnl Bradle\

ttnd Peterka )957.\

in which ;\ = -r './r ' '  and F, - the approach Froude number = 1t1rl3ti)r" The solu-

tion to Equation 3.7 is given by the quadratic formula

. r = l I  r  + . ' / r *  s r i  ]

- Theoretical

The unklou n energy loss can be obtained as the difference bet\reen the upstream

and downstream uoiue, of the specific energy, E. - f E, ln dimensionless

form. this is

F ,  . \  +  F i r t _ \ l
_ ! =  I  _

Et I  + Fi i  2

(3.8)

(3.9 )

Equations 3.8 antl 3.9 are shown in Figure 3'l and conrpared with expenmental

da'ra obtaineri by Bradley and Peterka ( 1957) of the U S Bureau of Reclamation in

a comprehensire study of sti l l ing basins. The data were obtained in five flumes with

the upsrrsam Froudc numbers having ralues between approximately 2 and 20 The

ogr..r.nt between the experimcntal data and the theoretical Equations 3 8 and 3 9

is"quitc good, confirming ihe init ial assumptions nrade in the momentum analysis'

fhe tenittr of the junlp1, u'hich can be determined onl) experimentally also is

shown i-n Figure 3.4. The jutnp length was defined in rhe experinents somewhat

qualitativell: as the distanc; fr;m the front of the jump to either the point where the
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Parabo l ic

Triangula r
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Froude Number. F,

F IGTJRE 3 .5
Contparison of sequent depth ratios in rectangula-r. parabolic, and triangular channels.

jet lcft the floor or a point on lhe water surfacc immcdiately downstream of the
roller, whichever was la-rger. Based on this data, the jump length often is dcfined as
c i ) ,  t in rc .  the  dcp th  a f te r  thc  jun1p.

Graphical solutions for the hydraulic jump in triangular and parabolic channels
can bc obtained in the same manner as for thc trapezoidal channel. In both cases,
the Froude number is the only independent dinrensionless parameter. Silvester
(19&) summarized some experimental data for thc scquent dcpth ratio ard the
energy Ioss in triangular and parabolic channels, and reasonable agreement with tie
momentunr solutions *,as demonstrated. The seclucnt dcpth for the triangular, par-
abolic. and reclangular channels can be conrpared directly on the basis of the actual
approach flow Froudc nunrber for a nonrectanguJar channel, as in Figure 3.5. We
can see tbat the nragnitude of the scqucnt-depth ratio for the same Froude nurnber
increascs as the channcl cross section bccomcs "fuller" from triangular to pffabolic
to rectanBular. The ratio of the energy loss to the available upstream energy E/8,
is compared for the triangular, parabolic, and reclangular channels in Figure 3.6,
arrd they are remarkably close to cach other.

The monrentum equation also has been applied to the circular, or radial,
hydraulic jump (Koloscus and Ahmad t969). The major difference b€tween tie
jump in a prismatic, rectangular channel and the radialjump is that ttre hydrostatic
forccs on the walls of the radially cxparrding channel havc a conrponent in tbe radial
directjon. This, in tum, requires that the surface profi le of the jump be known. The
simplest assunrption, which is adoptcd for Figure 3.7, is to take the effective jump

profi le to be l inear. Arbhabhiranra and Abella ( 197 I ) assumed an ell ipttc water sur-
face profi le, but Khalifa and McCorquodale (1979) showed that air entrajnmcnt

1 8

1 6

1 2

i  1 0n
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FIGURE 3.6
Comparison of energy losses in a hvdraulic jump in reclangular. parabolic. ano rnangular
cnanDels.

shifts the effective profi le as determined by the hydraulic grade line toward rhe l in-
ear.shape. The sequent depth rario for a radial jump (rn J r./r, = 2) is compared
uith the rcctangular chrnnel jump (r./r, = l) in nigr.. ' :.2. W. see that the radial
Jump nas a smalJer,sequent depth ratio for the same approach Froude nunlber but ararger encrgy tos\. Lawson and phil l ips ( l9g3) as well as Kialifa and McCorquo-
dale (1979) have dcmonstrated reasonably good expcrimental ugre.m.nt *itn tn.

:11"1.]l ' .1, 
*q*", deprh rario and relative energy )oss when aisuming the l inear

Jump prollte.

, 
The appearance of the hydraulicjump, as well as the sequent depth ratio andthe dimensionless energy loss, is a function of the approacli n.ouo. nr_U"., u.shown in Figure 3.8. For Froude numbers between 2'.5 and a.5, the entering letoscillates from the channel bottom to the free surface, creating -surface waves forlong distances downstream. Jumps *' ith Froude numbers u.ti."n-+.-: and 9 arewell balanced and stable, because tie jet leaves the channel boitorn o, uppro*r_

mately the same point as the end of the surface roll.r. For an approuch Froude num_
ber in excess of 9, the downstream water surface can Ue ,ouit, but large energl,losses can be expected.

It is instructive to consider the shape of the momenfum function, slnce lt obvi_ously is a function of depth 1, alone foi a given e ,nd g.o*.try in rnuch the sanefashion as.the specific energy function. If-we coisioer irre ,.. i inguiu, .r,rnn"r, to.example, rhe momentum function per unit of channel width is giien by

M -'- 
2 (t2

; :  ^  + -
o z g l (3  l 0 )
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(b)Sequenl DePth and Energy Loss

FIGURE 3.7
Sequent d!:plh and energy Ioss ratios for a radial hydraulic lump

which has two branches and a minlmum. As -l approaches 7-ero, the molnentum

function per unit of rvid1h approaches infinity' while it approaches the parabola f/2

as ,r ' bec,onres very large The minintum value of the momenlum frrnction is

obra ined by  d i f f c ren t ia t ing  w i l t )  , csPect  to  )  and se t t ing  lhe  resu l t  to  zero :

o 2

8') 
'

( 3  l l )
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F1 Between 1 .7 and 2.5
Form A-Prejump stage

Fl Betlveen 2.5 and 4.5
Form B Transition stage

F1 Beiween 4.5 and 9.0
Form C-Range of well-balanced jumps

i l

F1 Greater than 9.0
Form D-Effective jump but rough

sudace downslream

FIGURE 3.8
Appearance of a hydraulic jump for diffcrent Froude nurnber ranges (U.S. Bureau of Recla-
mation 1987).

If we solve for.r ', we obtain the expression for crit ical depth for a rectangular chan-
nel derived from a consideration of minimum specific energy. Therefore. crit ical
depth occurs not only at the minimum value of specific energy for a given dis-
charge, O, but also at the minimum value of the momenrum function.

The correspondence between the specific energy and momentunt functions is
il lustrated in Figure 3.9 for a hydraulic junp in a reclangular channel with thc func-
tions given in dimensionless form. Clearly, conservation of the momentum function
as required by the hydraulic jump analysis requires an enr'rgy loss. Also note that
the sequent depth ratio, _t,r/,r ' ,, and the encrgy loss increase for smaller values of the
approach depth. As the approach depth decreases, the velocity head increases; and

,
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- Specif ic energy Momenlum funclion

F'IGURE 3.9
Hl draulic junrp sequent depths on specrfic energy and n]ontentum diagrams nondimension-
alized by crit ical depth.

so the Froude nurnb€r must incrcase. ln othcr words, the dinrensionless specific
energy and nronrentum diagrams confirm the incrcase in sequent depth ratio and

energy loss with Froudc numbcr found previously from the solutions of the energy

and monre l r tum equa l ions  and shorvn  in  F igure  3 . .1 .
The gencral clse for the mininrurn value of the mootcntutn function can be

derivcd for any nonrectangular section for u'hich B : I = cons(ant. Setting the
derivative of the momentum function with respcct to -r lo zero yields

!4 = !,o0., 9-14 : o
dy dr ' gA'

( 3 . 1 2 )

in which dA/d,r,has been replaced by the top width, L Using the definit ion of the
first moment of the area and thc I-cibniz ntle, it can be shown that the first term of
the derivative is cqual to the flow arta, A, frorn \rhich it is obvious lhat thc mini-

nrurn value rf thc rnonrcnturn fuoction occurs *hen the Froudc nunlber squarcd for

th (  n , 'n re (  1 .  r rg r r la r  , . l  r r r rn t  l  i .  .  q r , , l  to  un i t l :  th r t  i r .  B-B lgA '  '  I  0 .

Although general agrr-cr:rcot bctween expcrinlcntal results ard thc nl(rl l lanlum
rheory lor the hydraulic junp has bcen dcmonslrirted, it is useful to considcr lhe
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cffects of the assunrptions made in the analysis. l larlcnran ( 1959) concluded frorn
thc  da ta  o f  Rouse,  S iao .  and Nagara tnan (  1958)  tha t  the  c f l cc t  o f  assunr ing  a  un i -
lo rm ve loc i ty  d is t r ibu t ion  and ncg lcc t ing  the  tu rbu lence a t  the  t$o  cnd sec t ions  o f
the hydraulic jump indeed is small. Rajaralnanr (1965), horvever. shorved from his
analysis of the jump as a wall jet that the intcgrated boundary shear stress can affect
the  sequent  depth  ra t io .  Lcu theusser  and Kanha (  1972)  gcnera l i zed  and ex tended
this conclusion by conducting experiments on jumps uith fully developed inflo*s
and undevelopcd inflous. From the tr, 'o dirnensional Reynolds cquations, they
derived an intcgrated forn of thc hl draulic jump cquation that elinrinates the con-
vcntional assumptions by lunrping them into a single iactor. e:

, r \ , r

- ) t t -

in which '\ = _r'./-r ', and F' = approach Froude number. For c = 0, we recover the
result given in Equation -1.7. On tlre other hand. if rvc consider the inlluence of the
mean shear stress over the length, Z, of the jump, e is given by

Ct L -\l
( l. I -t.)

2  _ r 2 A  I

in which Cr: overall skin friction coefficient. Leuthcusscr and Kanha (1972)

showed from their experimental results that e has essentially no influence on the
sequelt dcpth ratio for approach Froude numbers less than 10. For greater values

of the Froude numbcr, however. the de\eloped-inflow jurnp had a smaller sequent
depth ratio than prcdicted by Equation 3.8 due to the influence of the boundarl
shcar force. Furtlrerrlore, the developed inflow junrp *'as )ongcr and lower than in
the undcveloped-inflow case, which Lcutheusser ard Kartha suggest is due to the
tendency for thc undeveloped inflou to scparate, thus reducing the boundary shear.
lt must also be pointed out that the jump length in Equation 3. l '1 is defined as the
point at which no further changes are observed in the centerline velocity distribu-
tion in the downstream direction. The dimensionless length. L/r'.. has a value of
approximately l6 for the fully developed inllow and a typical value of q is I x

l0 r. These experimental values result in a value of eof approximately -0.1 and
a relative error in the sequent depth ratio of less than l0 percent at a Froude num-
ber of I0.

lf the effcct of boundary shear is relativcly small for hydraulic jLrmps in smooth
channels, it may not necessarily be negligible in the case of a channel with signif-
icant boundary roughness. Expcriments by Hughes and Flack ( I984) confirm this
to be the case for both strip roughness and gravel beds. Their laboratory results
showed that both the lcngth and sequent depth of a hydrauljc junrp are reduced b1'
large roughness elements. A bed of j to j in. grarel. for exampJe, rcsulted in a l5
percen'. reduction in the sequent depth ratio predicted for a smooth channel at a
Froude number of 7.

The effect of boundary shear on the hydraulic jump is sinri lar to the effect of
fonn roughness provided by baffle blocks on the floor of a sti l l ing basjn. Thc
obstruction causes a lower sequent depth ratio at the same Froude number and

( 1 . t 3 )
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(a) Hydraullc Jurnp wrth Ball e B ocks

Momenlum Function, M

(b) Fleduction jn Momentum Funclion

T'IGURE 3.IO
Dec.ease in momentum function for a hydraulic jump due to the extemal force of blocks on
the control volume.

rlakcs the jump position rnore stable. Thc effcct of the (ibstnrction on the monren-
tu r l  ba lance is  i l l us t ra ted  in  F igure  3 .10 ,  in  wh ich  c )car ly  the  decrease in  thc  va lue
of the nromentum function from thc supcrcrit ical to subcril ical slate in the
hytiraulic jump must bc exactly equal to the drag forcc of thc obstruction, pr,
dir idcd h;' the fluid specific wcight, 7.

1 3
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Iirlr-luc BASTNS

Hydraulic junrps are used extensively as energy dissipation dcrices for spil l*ays
because of the largc pcrccntage of incoming cncrgy of thc supcrcrit ical f lo\\ '  that is
los t  (see  F igure  3 .4 ) .  The s t i l l i ng  bas in .  loca ted  a t  the  do ! \  n \ t ream end o f  the  sp i l l -
way or the spil l\\,ay chute, usually is constnlcted oI concrete. It is intended to hold
the jump within thc basin, stabil ize it, and reduce the lcnsth rcquired for the jump
to occur. Thc rcsulting lou -velocity subcrit ical f low rclcascd dou nslream prer ents
erosion and undernrining of dam and spil lway structures.

Gcncra l i zed  dcs igns  o f  s t i l l i ng  bas ins  havc  bcen devc lopcd by  the  U.S.  Bur .au
of Reclamation and otbers. based on expcrience. f ielt l obsen ations, and laboratory
nrode l  s tud ies .  Spec ia l  appunenances  are  p laced * , i th in  the  s t i l l i ng  bas in  to  he lp
achieve its purpose. Chute blocks placed at thc entrance to the sti l l ing basin tend to
split the incoming jet and block a ponion of it to reduce the basin length and stabi-
l ize the jump. The end sil l  is a gradual rise at the end of the basin to funher shorten
the jump and prevent scour downstream, which nray result from the high velocities
that develop near the l loor of the basin. The sil l  can be solid or dentated. Dentation
dilfuses the jet at the end of the basin. Baffle blocks are placed across the floor of
the basin at specified spacings to funher dissipate energy by the impact of the high
velocity jet. l lowever, the blocks can be used for only relatircly lorv velocities of
incoming flou,: otherl ise, cavitation damagc may result.

With reference to the types ofjunps that can form as a function of the Froude
number of the incoming flow (see FiSure 3.8). the Bureau of Reclantation has
developed several standard stiJl ing basin designs (U.S. Burcau of Reclanration,
198?) ,  th ree  o f  wh ich  are  shown in  F igures  -1 .11 .3 .12 .  and 3 .13 .  For  incoming
Froude nrrnbers from L7 to 2.5. the junp is weak and no special appurtenances are
required. This is called the Trpe I basirt. In the Froude number rangc from 2.5 to
,1.5, a transition jump forms with considerable \\ 'ave action. The frpe IV basin is
recomnrended fo r  th is jump.  as  shown in  F igurc  3 . I  l .  11  has  chu(e  b locks  and a  so l id
end s i l l  but no brff le blocks. The recornnrended tail lr 'ater de pth is I 0 pcrcent grcater
than the sequent depth to help prevent sweepout of the jump. Because considerable
u'ave action can remain downstream of the basin. this junrp and basin are some-
tines avoided altogethcr by widening the basin to increase the Froude number. For
Froude numbers greater than.1.5. either frpc /11or Trpe II basins. as shown in Fig-
ures  3 .12  and 3 .13 ,  a re  recommended.  The Type I I I  ba \ in  shown in  F i - lu re  3 .12
includes baffle blocks. and so it is l inrited to applications $here the inconring
velocity docs not excecd 60 ft/s. For lelocities exce'eding 60 ft/s. the Type Il btsin
shown in Figure 1.13, u'hich has no baffle blocks and a dcntaled end sil l . is sug-
gested. It is slightly longer than the Type III basin. and the tailtvrrer is recom-
mendcd io bc 5 perccnt grcater than thc scqucnt dcpth to help prevent s\\ 'ccpout.

Matching the tailwater and sequent depth curves over a range of opcrrting dis-
chargcs is one of the most important aspects of sti l l ing basin dcsign. lf the tailu ater
is lower than the sequent depth ofthejunp. the junp ma) be s$ept out ofthe basin,
$hich then no longcr scrves its purposc bccause dangerous erosion is l ikelr t0
occur do*,nstream of the basin. On the other hrnd. a tailwater elevation that is
higher than the sequent depth causes the junrp to back up against thc spil lway chute
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and "drown out or be subrnerged, so that it no longer clis-ripltes as much cnergy.
The idcll situation is onc in \r 'hich the sequcnt depths perfectlr ntltch the tail\r 'ater
ovcr the full rant!- of opcrating discharges, but this is unlikcl\ to occur. Instead, the
basin l loor elcration is set 1() rr]atch sequent dcpth and tail\\aler at t l lc naxinrum
design discharge at point A. as shown in Figure 3. I -la. and the basin can bc widened

as shown in the figure to help implovc thc ntatch at lower discharges while erring
on the subnrerged sidc rather than the s$'ccp-out side. I l the scquent depth curve is
shaped as sho$ n in Figure 3. 1,1b, the tailrvater and scqucnt dcpth would havc lo be
nratched for a lowcr dischargc than the maximum. such as point B in the figurc, to
ensure sull icient tailwater for all discharges.

Set t ing  the  f loorc l$ 'a t ion  o f  the  s t i l l i ng  bas in  and se lec t ion  o f the  type  o fbas in
to use dcpends on predicting the flou and velocity at the toe of the spil lway and

hcnce the encrgy loss over the spil lway. Some general dcsign guidance is provided

in  thc  De,s lgn  o f  Sna l l  Dans  (U.S.  Burcau o f  Rec lamat ion  1987) .  l I  the  s t i l l i ng

basin is locatcd irnmediatcly dorvnstream of thc crcst of an ovedlow spil lway or if

the spil lway churc is no longer than the hydraulic head, no loss at all is recom-

mendcd. Here. the hydraulic head is dcfined as the difference in elevation betu'een
the reservoir u ater sudace and the downstream water surface at the entrance to the

sti l l ing basin. lf the spil lway chute length is between one and five times the

hydraulic head, an energy loss of 10 pcrcent of the hydraulic head is suggested. For

spil lway chute lengths in cxcess of f ive tintes the hydraulic head. a 20 percent loss

of hydraulic head should be considered. For more accurate estimates of head loss,

the equation of gradually varied flow can be solved along a spil lway chute of con-
stant slope, as described in Chapter 5, exccpt in the vicinit l of the crest where the
flow is not gradually varied and the boundary layer is not fully developed. For this
region, the two-dimensional Navier Stokes equations in boundary layer form must

be solved numerically (Keller and Rastogi 1977).

3.4
SURGES

Although a consideration of surges rightfully belongs in a discussion of unsteady
f low surges can be analyzed by the methods of this chapter by transforming them
from an unsteady flow problem to a steady one. This transformation, as shown in

Figure 3.15, is accomplished by superimposing a surge velocity, 4, to the righl so
that the surge becomes stationary. From this viewpoint, which is that of an observer
moving at the speed of the surge, the problem is nothing more than the steady-flow
formation of a hydraulic jump.

Surges occur in many open channel f low situations. The abrupt closing of a
sluice gate at the downstream end ofthe channel, shown in Figure 3.15, would cre-

ate a surge as shown. Other examples include the shutdo$ n of a hydroelectric tur-

bine and the resulting surge in the headrace, a tidal bore, and the surge created in

the downstream river channel by an abrupt dam breali,
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(a) N.4oving Surge

(b) Surge t\"lade Stalionary

FIGURE 3.15
The moving surge in (a) is reduccd to the staiionary jump in (b)

( V ' + Y , ) r ' ' : ( % + % ) , v ,

which can be rewritten in the form

In this form, the continuity equation states that ihe net flow rate through the surge

is given by the raie of volume increase effected by the surge movement'
-The 

momentum equation writ len for the stationary surge in Figure 315b

becomes

( v , + 4 ) r  l l ' , / , , ) r \

- i  
: t t \ ' - i /

-l

By making the surge stationaD'. the steady-flow form of the continuity and

rno*"ntur equations can be applied to Figure 3. l5b. Thc continuity equation for a

rectansular channel of unit width is

( 3 .  l 5 )

( 3 . 1 6 )

( 3 .  l 7 )

This is of the same form as the hydraulic jump equation except tiat the Yelocity of

flow, V,, has been replaced by ( yr + 4) ln effect, the left hand side of the equation

,"pr"r.nta the Froudi number as seen by the moving observer' Because -r'rl1't ) I'

-----+ V1 + V"
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the  Froudc  nur rbcr . rs  sc r 'n  by  an  ob :er re r  n ror ing  r r i th  thc  surgc  is  suJx- ' rc r i t i ra l
c \cn  though th r  l lo r r  i r r  ln rn t  o f  th t '  s r r rgc  cou ld  hc  , .u l ^ - rc r i t i c l r l  o r  s t rb t ' r i t i ca l  as  secn
b)  l  \ t .  ron l ry  obscr r r ' r  I l  a lso  c l rn  bc  conc luc jcd  t l r r t  thc  l l ( l ! \  l th ind  thc  surge  is
:u r .L r i t rca l  l ronr  lhc  r  i c r i  po in t  o f  th r  r ro r  ing  obscnr r .  .A  funhcr  conc lus ion  tha l  can
bc  dr l r rn  [ ron ]  Equ i t l jon  3 .17  is  tha t .  rs  _ r , / r ' ,  approachc 's  zc ro  fo r  an  in f in i tcs in ra l
sur face  d is lu rbancc ' .  thc  c r - l c r i t y  o f  tha t  c j i s tu rb lncc  in  s t i l l  $a ter  (V ,  =01 is  g i !en
by (gr',)r 'r as r.lcrircd prc'riously in Chaptcr 2 from ln cnc'r8y argun)r'nt

Equat ions  3 .16  and 3 . l7  p ror idc  o r ly  t rvo  equ l t ions  io  thc  th rce  unknowns;  \ . t .
V.. and V,. Thc third equation rcquired for :olulion ofrcn conrr's frorn a spt'cif i, 'd
boundary  cond i t ion  In  thc  case o fa  ga tc  s la rnnr ing  shut  u t  thc 'do i rns l rc rn r  cnd  o f
thc  chanoe l  in  F igure  -1 .15 .  fo rerarnp le ,  lhc  ncccssaD cond i t ion  is  V ,  :  0 .

l : xA\ lP l .E  -1 .1 .  A  \ te i ldy  f lo r , ,  occurs  in  a  rce t rngu la r  chrnne l  u ls t rcam Lr f  as lu ice
gnlc. Tlc \el(x' it) '  is 1.0 nVs (-' l  - l f l /s) rnd thc dcpth of f lo* is - ' l  0 rn (9 8 fr) jusl
ups t ream o f  thc  g l l f .  l f  lhe  s lu ice  ga tc  sur l , l t ' n I  i s  s lu r t rn rcd  shut ,  $ l )a l  a re  thc  hc igh t
lnd slo-cd of lhe ul)\trt lnl \urge?

So/!r/rrn. Fronr continuity, F-rlualion I I6. and after subsll lulion ofr, = -1 0, v, = 1 9,
and 11 = 0, *e obtain:

1.0

) :  3 0

Equalion -1. 17. the morrcntunr cquation, then gives

( l  o  +  Y , ) ' j  =  t t t t  i  ^ ( '  . . ' - )
1 .0 \  3 .0 /

Tlese l*o cquations can be solved by trial by first substiruting a value of ,r', in the sec,
ond cq!at ion that is Sreater than ,rr and solr ing for V,, * hich then can be compared with
the value of 4 from lhe l l rst equation. I teral ion is continued unti l  the values of y, are
equal. Alternatively. a furct ion could be forrred from (3. l6) and (3.17) by substi{ut ing
y, from (1. l6) in(o (1.17) and rearanging so thal the r ight hand side is zero. The zero
of thc function t ien could be deternined from a nonlinear algebraic equation solver. ln
eirhercase. rhe resulr is _yr = 3.58 m (11.8 fr) and y, = 5.20 nVs (17 I f t /s).  This speed
ofthe surSe is $hal eould b€ seen by a stat ionary obsener, *,hi le an observer moving
w i th thespccdo f  t hc  su rge  *ou ld  see  a  F roude  nu r r rbe r  o f  ( y t  +  l ' , ) / ( g_v , )0J :  l . t 4  i n
front and a l i roude nurnber of V,l(S:)nt -.0.88 bchind the surge.

3.5
I}RIDGE PIDRS

Monrenturn analysis can be useful when applied to the obsruction caused by bridge
piers in river f low. Thc resulting obstnrction leads to backwater effects upstrcant in
subcrit ical f lo*'and can cven cause choUng.

Two types of f low are shown in Figure 3.16. Type I is a subt-rit ical approach
fl, w rvith a d('crcase in d' pth whcn prssing thlough the constdclion with the flow
rcrna in ing  subcr i t i ca l .  In  l ype  I I  f lou ,  chok ing  occurs  u i th  c r i t i ca l  depth  cx is l ing
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(a) Plan View of Bridge Piers

(b) Profi le ol Type I Flow

Ya > Yca

Y4 > Yc4

(c) Profi le of Type ll Flow

FIGURE 3.I6
Flow between bridge piers.

in the constriction. For Type I flou the momentum equation can be written between
\ect ions I  and 4.  in  F igure 3.16.  to  g i re

M 1 = M a + D f y ( 3 .  l 8 )

in which M, and M., are the momentum function values at sections I and 4, and D
is the drag force exened by the piers. For known conditions at the downstream sec-
tion 4 and with the drag force given as D : CrpA,Vil2, the change in depth or
backwater ,T = 0, - )a) can be determined. In the erpression for drag, An is the

h t ' = f t - f q
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CDa /s
O B
0 4
o 2
0 1
0  0 5

E ]

*

0  0 1

0 001
0 1

Downstream Froude Number, Fa

FrGt iRE 3.17
Solution for back\aler caused b) bridge piers in Type I f low.

frontal area of the pier and Co is lhe drag cocfflc ient with a vrluc bctween L 5 and 2.0

for a blunt shrpe. Substituting into E{luation 3. l8 for a reclangular channel. \\ 'e have

0  0 1

) i  q :  ' ;  q '  C p a r , V l

2 8_r'r 2 go 7gs
( 3 . l 9 )

(3 20)

i n  wh ich  c  =  p ie r  w id th ,  and s  -  p ie r  spac ing .  Equat ion  3 .19  can be  nond imen-

sionalizcd in tcrms of tbe dou ns{rclm Froude number, F", to produce

-  l r l  +  l ) ( l  +  2 )
F ; =  ^  -  - " ,

I  D a /  s  r  t A

i n  wh ich  I  :  , iA { ,  wh ich  is  r } re  ra t io  o f  the  backwater  to  the  downs l rcam dcpth .

Equation 3 l0 is plotted in Figure 3.17. from which thc backwaler caused by piers

can be estimated, provided their coefl icient of drag is knou'n.

ExAMPLE 1 .2 .  A  br idge is  supponed by  e l l ip t i ca l  p ie rs  hav ing  a  w id th  o f  1 .5  m
(4.9 ft) and a spacing of 15.0 m ('19.2 ft). The piers have a drag coefflcient of 2.0 If the
downstream depth and velocity are 1.90 m (6.23 f0 and 2.40 m/s (7.87 ft/s), respec-
tivcly, what is l} ic backwater causcd by the piets?

Sollt ioz. First, the value of Coalr = 2.0(1.5)/i5 = 02 The do*nslrealn Froude
nunrber is 2.4/(9.81 x 1.9)o: - 0.56. Ftonr Figure 3.17, lr ' f lr 'o is appLoxinlatell '0.04,
from which the hackwater I ' i  .- 0.01(1.9) - 0.076 m (0.25 ft). If Equation 3 20 is
s,,hed r;,rrrcrically, the value of /r ' f lro - 0 O1l, shich conllnnt l l ie graphical solution-
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Whilc this bi ick\rar! ' r  valuc nral sec sl]ral l .  i t  could rcprc\! 'nt a signif icant incrcasc in
tht 'area l lur led up.treant of thc bridgc in vcry l l r l .  * idc l loodplains.. ' \ lso clear l iorn
Figure 3.17 is that thc snal ler are the f low blockasc (o/.\)and thc do*n:lrcam Froucle
numbcr. thc le\s back$atcr lhl t  s ' i l l  dcrelop.

3.6
SUPERCRITICAL TRANSITIONS

Transil ions lbr u'hich the approach llcxv is sttpcrcrit icrl offer a dcsien challcnge
bccluse of thc existcnce and propagation of standing uave fronts. The rcason for
the occurrence of standing wavc fronts in supercrit ical l lo!\ '  can be visualized frorn
the vic\\point of an observer Liding on a small panicle or disturbance tnor itrg ut r
cons tan t  spccd.  y .  in  s t i l l  ua ter ,  as  shou 'n  in  F igure  3 .113.  A t  cach ins la r t  o f t in re .

( a l V < c

( b )  V -  c

(c )  V> c

I'IGURE 3.I8
Movement of a point disturbance, P. at speed V in sti l l  water (c : *ave ceJerity).
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the disturbance. P. scnds a circular wave front outuard that moves at a spccd cqull

lo  lhc  wave cc lc r i t y ,  c .  l f  V  (  c ,  as  in  F igure  3 .  |  8a ,  the  wave f ron ts  ou td is t lncc  the

nroving disturbance. so that no pileup or addition of rvave fronts occurs. (Jn thc

o lhcr  hand.  fo r  cascs  o f  l ' )  c .  as  in  F igure  3 . l8c .  thc  d is tu rbance,  P '  n lovcs  fas le r

than the  t lave  f ron ts . ' fhc  rcsu l t  i s  an  accumula t ion  o f  wavc  f ron ls ,  thc  ou t t r  l ( rus

o f  wh ich  fo r rns  a  s t ra igh t  l inc  a t  an  ang l ! '  p  to  the  pa lh  o f  the  d is tu rbancc  lha t  can

be dc'f ined as a standin8 \\ave flont. In br't*een thcse (\4o extrcmes, V : c. and the

standing wave front is pcrpcndicular to thc path of thc disturbance, P, as s[tou n in

Figure 3. l8b. lf the disturbancc is infinitcsirral, so that c - (3-r)0 t, whcre ,r = flow

depth, lhen obviously V/c is thc Froude numbcr and case (a) in Figure 3 18 is for

sub,crit ical f low, whilc case (c) rcpresenls supercrit ical f low.
Thc supcrcrit ical casc in Figure 3.18c can be analyzed in more dclail to deter-

mine  the  ang le  B .  [n  {he  t in re  t r ,  the  d is tance moved by  Po in t  P  to  po in t  A  is  V t ,

while, at the same Iime, lhe inil ial wa\e frolt grows front P to point I over a radial

d is tancc  g ivcn  by  c l , .  Then.  s in  p  =  l /F ,  u 'herc  F  is  thc  Froude nun lbcr .  l f  thcv iew-

point of the obscrver is changed, the 0uid moves at a spccd y in the supcrcrit ical

case and any boundary inegularity, such as that caused by a change in wall direc-

tion in thc contraction shown in Figure 3. 19. gives rise to a standing wave front at

an angle, B,, relative to the original f low direction. This analysis indicates that

larger Froude numbers rcsult in smaller angles of deflection of the standing wave

Y1 sin P1
V2sintpt - el

Sec A-A

FIGURE 3.I9
Straight wall contraction in a supercrit icai f low \a ith standing oblique waves.

s5

Plan
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front, but the possibility of a finite height of the standing waye front is not consid-
ered. In this circumstance, the analysis must be modified.

Design of Supercritical Contraction

Consider a straight-walled contraction, as shown in Figure 3.19, with a wall
angle of 0, an approach supercritical Froude number F,, and contraction ratio r
(- bllb). Standing waves of finite height are formed at the initial change in wall
direction having an angle of pr. They meet at the centerline of the contraction
and are reflected back to the wall with an angle of (.82 - 0). The goal of good
contraction design, as outlined by Ippen and Dawson (1951), is to choose the
value of 0 for given values of Froude number and contraction ratio that minimize
the transmission of the standing waves downstream. This can be accomplished if
the combined length of the first two sets of standing waves terminates precisely
at the physical end of the transition, so that subsequent reflections downstream
are cancelled out by the negative disturbances emanating from the end of the
contraction.

Tbis design problem can be solved by applying the momentum and continuity
equations across the wave fronts in much the same way as for the hydraulic jump.
With reference to section A-A in Figure 3.19, the continuity equation across the
wave front is given bv

V1y,  s inB,  :  Vr_r ,  s in(B,  -  0) ( 1 . 2 1 )

and the momentum equation components parallel and perpendicular to the wave
front are given by, respectivell,.

V, cosB, -  V, cos(p, -  0)

' ) l ' '
Now Equations 3.21,3.22, and 3.23 can be solved for Br, Vr, and ,r',, given the
value of the contraction angle I and the approach Froude number Fr. With these
results, the solution can be repeated across the second set of standing wave fronts
in Figure 3. t9 to obtain p2, V.,. and _r',. First Equation 3.21 is divided by Equation
3.22 to yield

)2 _ tan pr

)r ran(pt - 0)

which is substituted into Equation 3.23 to obtain

(3.24)

sinr' = f l# (; .
(3.22)

(3.23)

(3.25)
l [ l  t a n B ,  f  n n p ,  _ \ l ' 'srnpr  -  

r '  L ;  * ' tB-  o f  \ tuntp,  -  o l  
*  ' /J



C t ^ P T € R  J :  l { o n r c r r t u m  8 7

Fina l l y ,  Equat ion  J .2  |  i s  *  r i t t cn  in  l cnns  o f  thc  ups l ream and downs( rcam Froude
numbcrs rclative to the first wavc front, F, and Fr, resp€cti\cly, to givc

,  b , - b t  b l

2 ran0 2 tan Bl

s i n B l  I

2 tan(p2 - 0)

F r =

F l s in (p ,  0 l
(3 26)

(3 .27  )

(i)"
Equat ion  3 .25  is  so lved fo r  p ,  fo r  g iven  va lues  o f  d  and F , .  Thcn thc  va lues  o f

- r ' ,  and  F ,  can  be  ob ta incd  f rom (3 .24)  and (3 .26) .  respcc t i \e ly .  I f  th is  so lu t ion
procedure  is  rcpeatcd  across  the  second wave f ron t ,  the  ra lues  o fB . .  %,  and - l . r
follow.

The so lu t ion  jus t  ob ta ined d<rs  no t  neccssar i l y  min i rn izc  t ransnr iss ion  o f
wavcs downslream. An additional condition rcquircd is for thc toral lcngrh of rhe
t rans i t ion ,  L .  to  bc  exac t ly  equa l  to  lhe  sum o f  the  lengths  o f  lhe  tu 'o  sc ts  o f  s tand-
ing wave fronts, L, and Ia:

br

However, as shown by Sturm (1985), the condition given by (3.27) is entirely
equivalent to satisfying continuity through the transition, as given by

(3.28)

With Equation 3.28, the solution procedure determines a unique value of r for
minimization of wave transmission, as well as Br, Vr, and yr, when values of d and
F, are given. The solution curves ar€ shown in Figure 3.20. Solution curves of
d = /(r, F, ) also are given by Harrison ( 1966) and Subramanya ( 1982). For a given
F,, either r or 0 can be given but not both (llarrison I 966; Sturm I 985). For exam-
ple, from givcn values of r and F,, Figure 3.20 detcrmines the unique values of 0
and yr, while Equation 3.28 can be solved for the corresponding Fr. The result is
nr in i ln iza( ion of  wave t ran\nr is5 ior .

In the lo*'er half of Figure 3.20, the choking conditions,4 and B described in
Chapter 2 are shown. Choking condition,4 is based on the occurrence ofa hydraulic
jump upstream of ihe contracljon followed by passage through critical dcpth in (he
contJaction. Cuwe I is obtained by conserving the momentum function for the
hydraulic jump upstream of the contraction and specific energy through the con-
traction itself. The second choking criterion, given by curve I in Figure 3.20, is for
the case of F, becoming equal to I, so (hat the flow goes directly from the approacb
supercrilrcal flow to critical depth in the contraction but witlr energy loss included.
Curve I is derived from the solution procedure just rlescribed for F, approaching a
value of unity so that energy loss is inhercntly incluried, as shown by Sturm ( 1985).
lf 0 lies bet*ecn curves A and 8, choking may or may not occur, depending on the
existencc of a hydraulic junrp, but if it is tb the rj8ht of curve B, choking definitely
will crccur.

I  b ,  F . / v , \ r / 2
r  b r  F r \ y r  , /
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'10 20

Contraction Angle, 6

(a) Ratio of Depths Through Contraction

0 1 0 2 0 3 0
Contraction Angle, d

(b) Contraction Ratio, r

TIGURE 3,20
Supercritical contraction with the minimization of standing waves: A, B = choking criteria
(Sturm 1985). (Source: T. W Sturm, "Simplified Design oJ Contractions in Supercritical
Flou," l. Hydr Engrg., @ 1985, ASCE. Reproduced by permission of ASCE.)

The energy loss associated with choking condition B can be derived by writing
the energy equation between sections I and 3 in Figure 3- 19, including the unknown
energy loss AE. Then, the specific energy at section 3 is set equal to its minimum
value for which F., = l, and the eguation is solved for A,E in dimensionless form to
produce (Sturm 1985)

0.8

E o.o
fL

c

o.2
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A E Ie: ( ' ;9 '-
F i  3 / F ,  \ " 1
T - t \ , . )  l

(3 29)

(3.30 )

i n w h i c h r - : c r i t i c a l c o n t r a c t i o n r a t i o g i v e n b y c u r v e B f o r w h i c h F l : l V a l u e s
of fflf ' "tong curve I exceed 0 1. or l0 percent' only for values of Froude num-

ber F' in excess of approximately 4'

ExAItPLE 3.3. A straiSht-walled reclangular contraction has an approach channel

width of 3.0 m (9.8 ft) and a contracted width of l 5 m ('19 f0 The approach flow has

u O.pttt of O.lO nt (0.j3 f0 and a vel*-ity of 3 0 n/s (9 8 fvs)' wha{ are the values of

downstream depth and velocity and ubar should the contraction angle and length be to

minimize transmission of standing $a\es? Will choking occur?

Solution. Tl,e approach Froude number is V,/1g,11)05 = 3'0(981 x 0l)05 : 30'

* t i te  r=b , /b ,  =^ i .s l3 :0 .s  ] - t t .n .  t ' rom F igure  3  20 'd  =  I I "andI i / - r ' r :25approx-

it"i.ry' ,o'rr ' i , h = 25 x 0l = 025 m (082 ft) ' From Equation 3 28' Fr ---

iii ' i iijO,rt,l' i ': (l/0.5) x 3.0/2 51 5 : 1.52 and so v1 : 1 52 x (9 81 x 0 2s)0r
: 2 3&;;i7.sl ftls). The length of dre t'ansition fron (3 27) with 0 = I l ' is (br

b.)/(2 tan 0) = (3 - l 5y(2 tan l l") = 3 86 m (12 7 ft) The solution-lies in the region

iJ,*."n "u*.t e and I so that choling is possible Note that 0 < 5' is required for

choking not to occur under any circumstance tn this example' 0 = Jo would necessi-

i"i. iitiui"g the cont.action ratio' .' to approximately 067 for an approach Froude

number of I and the contraction lengrh would increase to 8 57 m (28 1 ft)

Design of Supercritical Expansion

In sonre instances, it may be desirable to design an expansion for supercritical flo$

at points where high velocity, supercrirical flow issues from sluice gates' spillways'

or'rt."p .hut.r. Ai described by Chori (1959), the flow will separate if the expan-

sion isioo abrupt; and the transition may be too long if the flow is forced to expand

t- g*Ouuffy. In addition, local standing waves may tmanate from the walls of the

traniition and cornbine at the centerline with funher propagation downstream.

Rous", Bhootha, and Hsu (1951) studied this problem both €xperimentally and ana-

lytically. They suggest a two-part wall curvature, as shown in Figure 3 21 The most

efn.ient strape ior the divergent ponion of the expansion is given by

.  = 1 [ ] /  l - ' 1 " * r l
b r  2 1 . 1  \ b r F r  /  I

in which i = lateral position of the \\ all from the centerline of the expansron; 'r :

uoorou.h.hunn"l width;.r : longitudinal coordinate measured from the beginning

oi rh. .*pun.ion, and Fr = Froude number of the approach flow This curve con-

tinues diverging in the downstream rlirection, which requires the second portion of

the ransitio-n ,u-ull g"ot"try downstream of point P in Figure 3 21' for example' lt

"onrirt, of u ,"u"..1" .u-utur" obtained from an analysis of the positive and nega-

tive disturbances from the wall to Promote cancellation of their effects and elimi-

nation of the propagation of excessir e standing waves'
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o  1 2  3  4  5  6  7  8  9 1 0  1 1  1 2

xllb1F1)

FIGURE 3.2I
Generalized boundary curves for expansion (best fit of Rouse et al. (1951) curves by
Mazumdar and Hager (1993)\. (Source: H, Rouse, B. U Bhootha, and E. y. Hsu, ,,Design of
Channel Expansions," A 1951, ASCE. Reproduced by permission of ASCE.)

The length of the first portion of the transition, 1,, and the total length of the
transil ion. 1.. are given by Mazumder and Hager I l9i3 r ro be

L"

44:  
o ' t "

L .

a 6 = t + 3 2 5 ( r . - l )

in which r" = expansion ratio : brlbr, and the lengths L, and L,are as defined in
Figure 3.21. The geometry of the reverse curvature downsrream of point p is given
approximately by a best fit of the odginal boundary cun,es of Rouse, Bhootha, and
Hsu (1951) obtained by Mazumder and Hager (1993):

b , / 2  - ; "
=  s i n  9 0 '  ' l

2.5

(3.3 I  )

(  3.3 2)

in which r, is determined from Equation 3.30 for x = l" given by Equation 3.3 l.
Mazumder and Hager (1993) experimentally studied exparsions designed accord-
ing to the generalized Rouse et al. boundary curyes and concluded that the maxi-
mum Froude number can be as much as 2.5 rimes the design Froude number with-
out significantly changing the wave heights or the pattem of standing waves. As a
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practical maner, this means that the expansion can be shoner, because lt can be
designed for a smaller Froude number
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1.1.

3.2.

3.3.

3.4.

EXERCISES

-1.5-

A hydraulic jump is 1<l be formed in a trapezoidal channel with a base width of 20 fl
atd side slopes of2:1. The upstream depth is 1.25 ft and O = 1000 cfs. Find the
dou nstream depth and the head loss in the junlp. Solve by Figure 3.2 and verify b1
manual calculations. Compare the results fo. the sequent depth ratio and relative head
loss with those in a rectangular channel of the same bottom width and approach
Froude number

Detennine the sequent depth for a hydraulic jump in a 3 ft diameter srorm sewer wirh
a flow depth of 0.6 ft at a discharge of 5 cfs. Solr e by Figure 3.3 and verify by man-
ual calculations.

Derive the relationship between the scquent depth ratio and approach Froude number
for a triangular channel and verify with Figure 3-5. Repeat the derivation for a para-
bolic channel.

A flume with a triangular cross section contains uater f lowing at a depth of 0.l5 m
ard at a discharge of 0.30 mr/s. The side slopes of the flume are 2:1. Determine rhe
sequent depth for a hydraulic jump.

A parabolic channel has a bank-full depth of 2.0 m and a bank-full width of 10.0 m.
If the downstream sequent depth of a hydraulic j ump in the channel is I .5 m for a floq
rate of 8.5 mr/s. what is the upstream sequent depth?

A hydraulic jump occurs on a sloping rectangular channel that has an angle of incli-
nation, 6. The sequent depths are dr and d, measured perpendicular to the channel bot,
tom. Assume that the jump has a length. L' and a l inear profi le. Derive the solution
for the sequent depth ratio. and show that it is identical to the solution for a horizon-
tal slope ifthe upstream Froude number, F,, is replaced by the dimensionless number.
G, ,  g iven  by

3.6.

Fr
G r  =

3.7,The discharge of water over a spil lway 40 ft wide is 10,000 cfs inro a sri l l ing basin of
the same width. The lake level behind the spil lwa), has an elevation of 200 fr, and tbe
river water surface elevation downstream of the sti l l ing basin is 100 ft. Assuming a l0
percent energy loss in the flow down the spillway. find the inven ele!ation ofrhe floor
of the sti l l ing basin so that the hydraulic jump forms in the basin. Select the appro-
priate ti.S. Bureau of Reclamation (USBR) sti l l ing basin and sketch it showing all
dimensions.

A spil lway chute and the hydraulic jump sti l l ing basin at the end of the chure are rec-
ta,rgular in shape with a width of 80 ft. The floor of the sli l l ing basin is ar an ele\'a-
tion 787.6 ft above the datum. The incoming flo$ has a depth of 2.60 ft at a design
discharge of 9500 cfs. Within the basin are l5 bame blocks, each 2.5 fr high and 2.75
ft wide.

3.8.

L, sin9

d t -  d ,
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(a) Assuming an effective coefficient of dlag of 0.5 for lhe baffle blocks, based on
the upstreanr velocity and combined frontal area ol-lhe blocks. calculate the
sequenl depth and compare \r irh the sequent depth without baffle blocks.

(b) what is the energy loss in the basin with and wilhout the blocks?
(c) If the tailwater elevation for Q = 9500 cfs is 797.6. wil l the sti l l ing basin per-

form as designedl Explain lour answer.

3.9. In a shon, horizontal. rectangular f lume in thc laboratory, the dcpth just downstream
of a sluice gate at the upstream end of the flune is I -0 cm and the depth just upstream
of the sluice gate is 60 cm. The \r idth of th€ flume is 38 cm. If the tailgate height is
l5 cn, over which there is a free orerfall. wil l a hydraulic jump occur or u,i l l  i t be
submerged?

3.10. A steady flow is occurring in a rectangular channel, and it is controlled by a sluice
gate. The upstream depth is 1.0 m. and the upstream velocily is 3.0 m/sec. If the gate
is slamrned shut abruptly. deterrnine the depth and speed of lhe resulting surge.

3.11. The depths upstream and downstream of a sluice gate in a rectangular channel are 8
ft and 2 ft, respectively, for a steady flow
(a) what is the value of the flow .ate per unit of width q'l
(b) lf 4 in part (a) is reduced by 50 percent by an abrupt panial closure of the gate.

what will be the height and speed of the surge upstream of the gate?

3.12. Write both the momentum and energy equations for the subcritical case of flow through
bridge piers of diameter a and spacing r. lf the head loss in the energy equation is w.iG
ten as KLVll2g. in which K. is the head loss coefficient and yr is the approach veloc-
ity, sho$, that Kr = Clh for the special case that (yr - !r) is very small (Figure 3.16).

3.13, For a river f low between bridge piers 3 m in diameter with a spacing of 20 m, deter-
mine the backwater using the momentum method if the downstream depth is 4.0 m
and the downstream velocity is 1.9 nts. Assume a coefficient of drag of 2.0 for the
bridge piers.

3.14. A st.aighFwalled contraction connects two rectangular channels 12 ft and 6 ft wide.
The discharge through the contraction is 200 cfs, and the depth of the approach flow
is 0.7 ft. Calculate the downstream depth, Froude number, and the length of the con-
traction that will minimize standing waves. Will choking be a problem?

3,15. For Exercise 3.14, calculate the \aave-front angles Br and 82. What variables do they
depend on? Produce a generalized plot for B in terms of the dimensionless variables
on which it depends.

3.16. A supercritical transition expands from a width of 1.0 m to 3.0 m, and the approach
flow depth and velocity are 0.64 m and 10 m/s for maximum design conditions,
respectively. Calculate the downsream depth, and design and plot the fansition
geometry. What would be the lenglh of the expansion if it were designed for a Froude
number lhat is 40 percent of the design value?

3.17, Write a computer program that f inds the sequent depth for a hydraulic jump i[ a
trapezoidal channel. First, compute critical depth and determine if the given depth is
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subcrit ical or sup! 'rcr i t ical to l i f i i t  thc root scarch. Then. use the bisccl ion mcrhod lo
f lnd the sequenl depth.

-1.18. The fol l . | \r  ing datr for a hr drau l ic ju ntp have been mcasu red in a laboruon f l  unte bl
two dif ferent lab tcams. Tle l lume has a width of 38 cnl.  Tle upsrrcant sluice gale
was set to produce a supercri t ical f low for a givcn nteasurcd discharge. and the tai l-
gate was adjusled unti l  the hydraul ic junrp was posit ioneri at the desired lcrat ion in
the f lumc. Thr'dcpths nreasured by a point gauge upstream and dorvnstream of rhe

Jump, ]"r and r ' . .  respecl i \  elv, arc givcn in the fol lowing table as is the discharge nrea-
sured by a cal ibrl ted bend mctcr with rn uncerlainty of a0.0(X)l mr/s. Thc estinrated
uncertainty in the upstrcam depths is :10.02 cnr. while the downstream deprhs have a
Iarger esl imaled uncenainty of : t0.30 cm due to surface wives. Photographs of the
flume and hydniul ic jumps at selected Froude nu bers are shown in Figure - j .22.

(a) Froude number : 1.9

{b) Froude number : 4.4

(c) Froude number : 7.2

FIGURE 3.22
Hydraulic jump with different upstream Froude numbers (phorographs by G. Srurm).
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Team A Team B

) r ,  cnl .Yrt cm Q. nrr/s ) t i  cnr J2, cm q, mr/s

L,l1
l . 6 1
2 .22
I � t 0
l . 3 0
1 . 3 8
l . 5 9
2 . 1 0

r 5 . 8

1 2 . 3
I0 .2
r 3 . 3
I1 .0
l  l . 9
9.9

0 0 r65
0.0165
0.0 t65
0.0r65
0 . 0 1 3 1
0 . 0 l ] I
0.01-t I
0 . 0 t 3 1

1 . 7 6
2.20
2.61
t . 2 l

1 .70
t .87

l 5 . 1
14 .5
12 .8
I 1 . 0
13 .0
I 1 . 7
10 .9
10 .0

0.0166
0.0166
0.0166
0.0r66
0.0125
0.0125
0.0125
0.0125

(a) Calculate and plot the sequent depth ratios as a function of the Froude numbers
of the experimental data and compare them with the theoretical relationship for
a hldraulic jump in a rectangular channel.

(b) Calculate and plot the dimensionless energy loss 1E/E, as function of Froude
number for the experimental data and compare it \\ ith the theoretical
relationship.

(c) Estimate the experimental uncenainty in _y,/_yl and the Froude number and plot
error bars on your graphs. Does the estinrated uncenainty account for the differ-
ences between measured and theoretical values? Are the results for Team A and
Team B consistent?

(d) Based on the photos in Figure 3.22, describe the appearance of the jump as a
function of Froude number and indicate the relative energy loss IE/EI for each
photo.
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Uniform Flow

4.1
INTRODUCTION

Uniform flow in open channels often is used as a design condition to determine the
dimensions of artificial channels. The design discharge is set by considerations of
acceptable risk and frequency analysis, and the channel slope and cross-sectional
shape are determined by topography, soil conditions. and availability of land. Spec-
ification of the resistance coefficient results then in a unique value of the depth of
uniform flow, known as the normal depth. The determination of normal depth
establishes the position of the free surface and the required channel depth necessary
to complete the design of the channel dimensions. The resistance coefficient is a
vital link in this design process, and its estimation has commanded the attention of
hldraulic engineers since the l9th century. An understanding of its variation with
the surface roughness of the channel developed slowly, and only in recent times
ha\.e other factors that influence its value been studied.

The hydraulic resistance of conduits flowing full is one of the most extensively
studied areas in hydraulic engineering, but many difficulties remain for the case of
flow resistance in open channels. In the case of full pipe flow, Nikuradse's experi-
ments on sand-grain roughened pipes. and the subsequent work by Colebrook
( 1939) and Moody ( 1944), led to the development of the friction factor-Reynolds
number plot. now known as the Mood," diagranr, in which relative roughness is a
parameter The Moody diagram has been applied with considerable success by
practicing engineers to the problem of determining pipe flow resistance. FIow
resistance in open channels, on the other hand, has been more diffrcult to quantify.
A much uider range of roughness is encountered in open channel flow, and the
exra degree of freedom offered by the free surface in open channel flow gives rise
to tie complex effects of nonuniformity, cross-sectional shape, and surface waves.

The importance of the resistance coefhcient goes beyond its use in channel
design for uniform flow. The computation of flood stages in gradually varied flow

9'7
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and of the movement of translatory u ar es in unsteady flow depend on an accurate

estimate of the resistance coefficient. \ luch of our present understanding of the

resistance coefficient is due to a combination of theory and experiment applied to

uniform flow. but much renlains to be leamed about flol resistance in gradually

varied and unsteady flow.
Determining flow resistance in morable-bed channels is especially challenging

because of bed forms, such as dunes and ripples, that create form resistance that

varies with the flow conditions. Funher discussion of this case can be found in

Chapter 10.

4.2
DIMENSIONAL ANALYSIS

Because of the significant role played by experimental work in establishing values

of flow resistance, it is useful to begin with a dimensional analysis of the problem'

For a channel of any general shape, we write the functional dependence of the nrean

boundary shear stress 70 as (Rouse 1965)

ro - f r(p, tL, e, V, R, k, C, N, U) ( 4 . 1 )

in wbich p - fluid densityl p = fluid viscosityl g = gravitational accelerationl
y = mean cross-sectional flow velocity; R : hydraulic radius, which is a charac-

teristic length scale of the flow, defined as flow area divided by wetted boundary

perimeter; and k - measure of roughness element height. The last three parameters

bn the right ofEquation 4.1 already are dimensionless. The parameter C reflects the

effect of cross-sectional shape; N indicates the degree of nonunifonnity of flou';

and U represents unsteadiness effects. Dimensional analysis of the ftrnctional rela-

tion given as Equation 4.1 yields

#:r (*  : ryR":* ,F,c  N,u)
in which Re = Reynolds number; Rr = relative roughness; F = Froude number:

and C, N, and U already have been dehned The length scale used in the Reynolds

number and relative roughness is four times the hydraulic radius, and this will be
justified subsequently. From the control-volume form of the momentum equation

ipplied to a steady, uniform pipe flow and the Darcy-Weisbach equation, which

defines the friction facto( /, in terms of pipe diameter as the length scale, the

dependent dimensionless parameter on the left of Equation 4.2 becomes

(4.2)

(4.3)
^t./  2 e

in which V is the cross-sectional mean velocity Equation 4.3 can be taken as the

dehnition of the Darcy-Weisbach friction factor /, and we want the definition of/

to remain the same for open channel flow The functional relation of Equation 4'2

is the basis for the Moody diagram, which gives values of the friction factor' /. in
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pipe flow as a function of Reynolds number and rclative roughness with the influ-
ences represented by the remaining dimensionless parameters in Equation 4.2
neglected. In open channel flow, the Reynolds number often is large, so that the
flow is in the fully rough turbulent regime and the primary independent parameter
is the relative roughness.

!1.3

MOMENTUM ANALYSIS

Consider a control lolumc of length Al in steady, uniform flow. as shown in Figure
4.1. By definition, the hydrostatic forces, F,, and F,,, are equal and opposite. In
addition, the mean relocity is invariant in the flow direction, so that the change in
momentum flux is zero. Thus, the momentum equation reduces to a balance between
the gravity force component in the flow direction and the resisting shear force:

TALL sin 0 = roPLL (4.4)

in which 7 = specific weight of the fluid; A = cross-sectional area of flow; ro =
mean boundary shear stressi and P : wetted perimeter of the boundary on which
the shear stress acts. If Equation 4.4 is divided through by PAl, the hydraulic radius
R : AlP appears as an intrinsic variable from the momentum analysis. Physically,
il represents the ratio of flow volume to boundary surface area, or shear stress to
unit weight, in the flow direction. Equation 4.4 can be written as

(,1. s)
if we replace sin0 with S : tand for small values of 0. Funhermore, if we solve
Equation 4.5 for the bed slope, which equals the energy grade line slope, lrrll,, in
steady uniform flo*, and express the shear stress in terms of the pipe flow defini-
tion of friction factor/from Equation 4.3, we have

_fpv'18 : t '  v'
yR 4R 29

Fp2=

FIGURE 4.1
Force balance in uniform flow.

ro : 7R sin0 : 7RS

h t  
= ' o

L t R
(4.6)

W =.lAaL
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from which it is evident that the appropriare iength scale in the Darcy-Weisbach
equation for open channel f low is 4R to replace the pipe diameter. It would seem
reasonable to use 4R as the length scale in the Reynolds number and relative rough-
ness as well. The unexpected benefit of this approach is that friction facrors in rur_
bulent open channel f low are similar (but not exaclly the same) to those obtained
from the Moody diagram developed from pipe flow results. In other words, the
hydraulic radius embodies much of the effect of channel shape on friction factor but
not all of it. The effects of nonunifornr shear stress distribution and secondary cur-
rents also are related to shape and must be accounted for separatelv.

Before applying uniform flow formulas to the design of open channels, the
background of their development is considered. First, Chezy's and Manning's for_
mulas for steady, uniform flow in open channels are presented. Then, rne equanons
for the friction factor as a function of Rel,nolds number and relative roughness in
pipe flows are reviewed and extended to open channel flow. Finally, the effects of
the Froude number, nonuniformity, and cross-sectional shape on open channel f low
resistance are explored.

4.4
BACKGROUND OF THE CHEZY AND MANNING FORMULAS

While Equation 4.5 gives a formula for the calculation of mean shear stress in uni_
form flow, the problem of determining the depth of uniform flow for a given dis_
charge requires an additional uniform flow fornrula. Historically, such formulas
have been presented for velocity of flow as a function of hydraulic radius and slope.
If Equation 4.6 is solved for velocity, we have

[  8P  ]  r / 2
" = 

L;l vRs = cvRs (4.7)

in. which C is called the Chezy C in honor of Antoine Chezy, who first proposed
this formula. Chezy, a French engineer, was charged with the task of de;ig;ing a
water supply canal from the Yvette River to the city of paris in 176g. His final rec_
ommendations in l7?5 contained the Chezy formula wrinen in terms of ratios of
velocities of two rivers; and in a later memorandum in 1776, he save the formula
for velocity as we now know it. He presented a conslant ualue fo-r C, but he real_
ized that it varied from one river to another Unfortunately, Chezy's work was not
published and so did not become widely known unril after 1897, when it was pub_
lished by Herschel in the United States (Biswas 1970). Du Buar, a contemoorarv of
Chezy, arrived at the same uniform flow formula some four years later than Chezy.
although he concluded that the effects of boundary roughness could be neglected.
His work was published in an eady book on hydraulics. Many other uniform flow
formulas of the "universal type" with no variation of the coefficients with roush_
ness were proposed in the early l9th century such as those of Eytelwein and prJny
(Dooge 1992).

Within this context of extensive work on uniform flow in the first half of the
lgth century Robert Manning began his career as a drainage engineer in 1g46. He
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was self-taught and greatly admired the French writings on hydraulics. The uniform
flow formula bearing Manning's name was not proposed until the end of his career,
when in 1889 at the age of 73 he presented it in a paper while he was stil l chief
engineer of the Board oi Works of lreland. His formula was based primarity on the
pioneering work of Darcy and Bazin on outdoor experimental canals from 1855 to
1860. This work u,as published by Bazin in | 865 after rhe death of Darc), and it
showed conclusiyelv that the Chezy C depended on the nature of the surface rough-
ness of the canal boundaries (Dooge 1992).

In his 1889 paper, Manning selected seyen well-known uniform flou.formu-
las for velocity in an open channel expressed as a function of hydraulic radius and
slope. He calculated the velocities over a range of hydraulic radii from 0.25 to 30
m from each formula for a given slope and analyzed the mean of the results. From
these preliminary results, he concluded thal the velocity was proportional to the
hydraulic radius to the; power and to the slope to the j power. but he realized there
might be a more generally applicable value of the exponent on hydraulic radius.
He then took the crucial step of analyzing the results of som€ selected experiments
of Bazin on scmicircular canals lined with cement and with a sand-cement mix-
ture. Manning concluded that the exponent in both cases was very close to the
fraction ]. The resulting uniforn flow formula was given as formula V in rhe 1889
paper:

y : crR:/ls r/l (4.8)

in which the subscript on C has been added to distinguish the coefficient from the
Chezy C. Manning proceeded to compare the resrlts of this formula u,ith 170
observations. of which I04 \r'ere those of Bazin. He concluded that this formula
performed better than tlrose of Bazin and Kutter, the latter of which was very pop-
ular at the time.

Manning was dissatisfied with formula V however because of its lack of
dimensional homogeneity and the necessity of taking a cube root in the evaluation
of the velocity. He therefore proposed a second formula, formula I, which overcame
these objections, although it used the barometric pressure head to achieve an artifi-
cial nondimensionality. It performed nearly as well as formula V and seemed to be
Manning's formula of choice. Ironically, this formula has been discarded and for-
mula V bears Manning's name. Manning concluded his paper with the following
statement: "Although the author makes no pretension to mathematical skill. he may,
in conclusion, be allowed to express the hope that the results of his labors. such as
they are, may advance, even in a small degree, a science, in the study and practice
of which he has spent a long professional life."

The dissemination of the uniform flow formula that now bears Manning's
name was greatly enhanced bv Flamant's publication of it in his l89l textbook and
his reference to formula V as Manning's formula. A careful review of the historical
record by Williams (1970), however, shows that some l0 investigators proposed a
formula of this t),pe. The first suggestion of the exponent of ] on the h1'draulic
radius actually was made by the French engine€r Gauckler in 1867. Gauckler's for-
mula also was based on Darcy and Bazin's experiments but it never receired wide
acceptance, partly because of the widespread use of a formula proposed by Gan-
guillet and Kutter in 1869 for Chezy's C. This formula for C was very complex and
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had a dependence on the slope and a single roughness coeflicient, n, called Kutter's
rr. This was the result ol attempting to reconcile Darcy and Bazin's data on small
canals of nroderate slope with the observations of Humphrel and Abbott on the
Mississippi River for very small slopes. Manning, in fact, eliminated Humphrey
and Abbott's data from his 170 observations because of the difficulty he perceived
in measuring such snrall slopes and showed no small disdain for rhe complexity of
Kutter's formula in his 1889 paper

The final ironic twist in the development of what is nol known as Manning's
formula was the suggestion by Flamant that Cr in Manning's fonnula V could be
expressed as the reciprocal of Kutter's n in metric units. Sereral subsequent texts
repeated this assenion, and the American hydraulician King ( l9 | 8) advocated this
step while referring to n as "Manning's r," What we now knou'as Manning's for-
muf a, which Williams ( 1970) suggests really should be called the Gauckler-Manrtirtg
fornulq. ts written todav as

y :  & 4 : , r 5 r , :
n

(1.9)

in which V is velocity; R is hydraulic radius; and S is bed slope. The value of K, -
I .0 with R in m and y in n/s, and K- = 1.49 for R in ft and V in ft/s. The latter value
comes from a conversion in which Manning's n maintains the same value in either
SI or English units. so that the dimensional units of Koln, originally mr/t/s, have (o
be converted to ftr/3/s by the factor (3.28 ftlm)r/r : 1.49. That Equation 4.9 has
endured for more than a century as a unifomr flow formula u ould seem to indicate
that Manning's labors were not in vain, although the formula that bears his name
probably would be surprising to him.

4.5
LOGARITHMIC FORMULA FROM MODERN FLUID MECHANICS

The facility with * hich modem engineers design pipes for the condition of full pipe
flow is due in large pan to Prandtl's pioneering research on the velocity distribu-
tion in turbulent boundary layers. Prandtl's turbulent mixing length concept and
von Karman's similarity hypothesis for turbulence result in the logarithmic veloc-
itv distdbution

( 4 . l 0 )

in which u. is the shear velocity - (rJ t'2:' x: von Karman's constant = 0.40t
:0 : constant of integration: and rr and : are the point velocity and distance from
the wall, respectively. In the case of a smooth wall surface. a dimensional analysis
for 3o as a function only of a. and kinematic viscosity l sho\\'s that u.:o/z is a con-
stant: therefore. Equation 4.10 can be rewritten as

l n 5 + e , ( 4 . 1 r )

t n  -
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in which A, is a constant detennined by Nikuradse s experiments on smooth pipes
to ha\ e a value of 5.5. Equation ,1. I l, known as the lav' of tlte lr a11, strictly speak-
ing applies only to a near-wall region where :/h < 0.2, in whicb /r is ihe boundary-
layer thickness. This region is called the logarithmic overlap later, in which both
viscous and turbulent shear stresses are imponant. lt unexpectedly can be applied
over nearly the full thickness of the flow. VeD near the wall, in the viscous sub-
layel only viscous shear applies, and the lat of the wall simplifies to

v
( 4 .  I 2 )

The viscous-sublayer velocity distribution given b\ Equation 4. l2 applies only for
u,:/v 1 5 but often is applied up to its intersection with the logarithmic law, at
u.zlv : | 1.6 (Roberson and Crowe 1997). Sereral investigators have improved the
fit of the velocity distribution in the transition from rhe laminar sublayer to the log-
arithmic overlap region, and these relations are summarized by White (19721). The
complete law of the wall for the velocity distribution is il lustrated in Figure 4.2.

20

: l +

\

1 0

5

0
1 c

? = z u '

FIGL RE 4.2
Velocity profiles in turbulent wall flow (White 1999). \Source: F White, Fluid Mechanics,
1e, @ 1999, McGravt-Hill. Reproduced with pemission ofThe McGrav-Hill Companies.)

Llnear U'= Z*
viscous I

sublayer, j
Eq. 4.12 --4

I
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In the outer region, far from the viscous influences near the wall, early obser-
vations of boundary layers in pipes and channels showed that a velocity defect law
is applicable (Daily and Harleman 1966):

l z
-  -  l n : + A ,

K h

in which a.", is the maximum point velocity at the outer edge of the boundary layer
and i is the boundary layer thickness. Eguation 4.13 is applicable for smooth or
rough walls and can be extended into the logarithmic overlap layer

The combination of theory and experiment that led to the logarithmic velocity
distribution for turbulent flow replaces the exact integration of the momentum
equation, which is possible only in the case of laminar flow. The result for laminar
flow is Poiseuille's law for the friction factor,/ = 64lRe. Our objective is to obtain
a relation for the friction factor in turbulent flow based on the semiempirical loga-
rithmic velocity distribution given by Equation 4.1 l. The logarithmic velocity dis-
tribution is transformed into a resistance equation by integrating it over the flow
thickness to obtain an expression for the dimensionless mean velocity, y/r.. The
relation for mean velocity can be expressed in terms of the friction factor,f, by rear-
ranging Equation 4.3 as

(4. r4)

The result for a smooth-walled pipe, as first given by Prandtl (Roberson and Crowe
1997).  is

( 4 . 1 3 )
U r

( 4 . 1 5 )

For a rough-walled pipe or channel, the viscous sublayer is disrupted by
roughness elements if they are larger than the thickness of the sublayer itself. In this
case, the viscosity no longer is imponant. but the height of l}Ie roughness elements,
l, becomes very influential in determining the velocity profile. A dimensional
analysis indicates that the velocity distribution should depend on:/t and the
dependence must be logarithmic to satisfy the overlap of the outer, or velocity-
defect, law into the inner, or wall, region. The resulting velocity distribution for a
roush wall is

(4 . t6 )

Nikuradse determined the value of .4, to be 8.5 for sand-grain roughened pipes in
fully rough turbulent flow, for which l,Av > 70.If Equation .1. l6 is integrated over
a pipe cross section to obtain the mean velocity, we can derive the friction factor
relation lor fully rough turbulent pipe flow:

l l d- . -  l n .  * 1 . 1 4
vf ^ ti

( 4 . 1 7  )

in which d = pipe diameter and /<, - sand-grain roughness height from Nikuradse's
exDenments.

v E

l n :  +  A ,
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ln between thc turbulent pipe relations for friction factor for smooth and fully
rough conditions given by Equations,l.l5 and 4.17, respectively, is a transitional-
rough regime, defined approximately by 4 1u.k,/v 170. The beharior of the
friction-factor relation in this transition regime depends on the type of roughness.
It is different, for example, for Nikuradse's sand-grain roughened pipes and com-
mcrcial pipes. Colebrook ( 1939) ht a transition relation for commercial pipes that
is asymptotic to both the smooth and lully rough friction-factor relation::

(4.  l8)

in which the commercial pipe roughness is expressed as an equivalent sand-grain
roughness by determining the sand-grain roughness height that would give the
same friction factor as for the commercial pipe in fully rough turbulent flow. Equa-
tion 4. 18 is the basis for the Moody diagram shown in Figure 4.3 (see Rouse 1980).

Keulegan (1938) applied rhe logarithmic velocity distribution to flou'in open
channels. He proceeded to integrate the Nikuradse velocity distribution for fully
rough turbulent flow (Equation 4. l6) over a trapezoidal open channel cross section
to obtain, for the friction facto(

|  ^ .  l k , l d  2 . s t l
r = - z  I o E l - *  +  , l

V f  L  s . t  R .VFI

: .03 foe |  + 2.2t  -  z.oj  tosS- k, - k,

, = 
*fir/"'n'iu

K "  / R 1 " u
(&)" \ r , /

I

Ur (4.19a)

in which the value of 6 : 12.26 on the right hand side of (4. l9a). In realin, f varies
slightly with the channel shape, but a value off - l2 is recommended b1 an ASCE
Task Force (1963) and the slope of 2.03 often is rounded to 2.0. Keulesan derived
the expression for { for rectangular channels to be

(4.19b)

in which b : channel width and,t : flow depth. For the aspect ratio b./,I varying
from 5 to 100, for example. { takes on values from 12.6 to I l.l, respecd\,ely.

The relationship between Manning's n and Darcy-Weisbach's / now can be
obtained from their definitions to determine the applicability of Manning's equation:

i  :  " -o[ ' ( '  .  r ; )  -  
i .  'o)

z.o r"e(rz"a)
n

&1,"

(4.20)

in which K, = L0 for SI units and 1.49 for English units. If we substitute Equation
4.19a into Equation 4.20 with f = 12 and the slopeof2.03 rounded to 2.0. we have

(4.2t)

which has been plotted in Figure 4.4 for both English and metric units. Or er a fairly
wide range of values of R/ii,. the value of a/tli6 is constant and therefore oot a func-
tion of flow depth, an essential assumption of Manning's equation in which the depth
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FIGURE 4,4
Manning's n variation with relative smoouness.

dependence of the velociry for a given roughness height is assumed to be contained
enurely In lhe Rrr rerm. The minimum value of cn : n/t,r/6 in Figure 4.4 is 0.039 for
merrc unrts and c, - 0.032 for English units at R/1, : 33.7, although these values
varl slightly with rhe constants assumed in the Keulegan equation (yei 1992a). More
generaily, the value of r(r/6 can be shown to be within 

-+5 
percent of a constant

y.alu^1gv9r a r3nq9 o.f R//<, given by 4 < R/t, < 50O as shown by yen ( 1992a). Hager(1999) gives the limits on the consrancy of n with depth and so on rie range ofappli-
cability of the Mannjng equarion to be 3.6 < Rlk,< 3t0. The limitation ofiully rough
turbulent.flow for the lr4anning equation also is implicit in the comparison with
Keulegan's equation. This limitation requires a.t/z > ?0, which can be translated
into the limit

6
. -  f  - ' l

V p R S  I  a V s  I
| > ) 1 Y r n  I

u  I  v  I  
- ' -

L  " ,  I
(4.22)

using the minimum value of ngt/1|(K,,k,',u) - 0.122 from Equation 4.21 to substi-
tute for,t. For example, a 2 ft (0.61 m) diameter storm seweiwith z = 0.015 flow_
lie^l^ust !il at a slope of 0.001 would exceed rhe limit given by the inequality in(,1.22) and be in the fully rough turbulent regime.

The literature contains some disagreement about the value ofcn = n/lll6 as dis-
cussed by French (1985), panly because its value depends on whether the units oft,
are melric (m) or English (ft). The Strickler value of c, is given by Henderson ( 1966j
to be 0.034 in English unirs (0.041 in SI units) based Jn rneasurements made by
Strickler (1923) in gravel-bcd srreams wirh t : dso, the diamerer for which 50 pei-
cent of the sediment particles are smaller by weighi. tne minimum value of c- from

-( Ksin
i l

meters
L]l t

( s l n e )
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1  1 0
R6 /dsa

- - Bathurst (ks = 2.4 d8a) r Dickman (1990)
- ' - '  ' L i m e r i n o s  ( k s = 3 2  d e r )  . T h e i n ( 1 9 9 3 )
_ Best fit (ks = 1.4 dsa)

FIGURE 4.5
Friction factor in fully rough turbulent open channel flow with large ro!ghness elements.

Keulegan's equation is 0.032 in English units (0.039, SI) as noted earlier, which
agrees well with the Strickler value considering that the effective size in the gravel-
bed stream is larger than r/ro due to bed armoring, as argued by Henderson ( I966).
However, several other sources, including Hager (1999), give the Strickler value of
c" : 0.039 in English units (0.048 in SI units). This point is considered again u'hen
discussing the resistance coefficient for rock riprap later in this chapter.

Some laboratory and field measurements of Darcy-Weisbach's / are compared
with Keulegan's relation (Equation 4.l9a) in Figure 4.5. The data points by Thein
(1993) and Dickman (1990) were measured in a 1.07 m (3.5 ft) wide tilting flume
with a coarse gravel bed in which uniform flow was set for several combinations of
depth and slope. The Bathurst ( 1985) data in Figure 4.5 were obtained from high-
gradient gravel and boulder-bed rivers in Britain. Limerinos (1970) measured the
resistance coefficient in I I gravel and cobble-bed streams in California. The data
in Figure 4.5 are presented in terms of the bed friction factor, r, and the bed
hydraulic radius, Rr, to indicate that the flume data have been corrected for the
effect of smooth sidewalls. By comparing the intercepts in Figure tl,5 (where Rrldro
: 1.0) with the Keulegan constant, a value of the equivalent sand-grain roughness,
k., can be determined as a multiple of dro, which is the sediment grain size for
which 84 percent of the sediment is smaller by weight, It can be determined from
Figure 4.5 that l./4r has a value of 1.4 for the lab data, 2.4 for the Bathurst data,
and 3.2 for the Lirnerinos data. Hey ( 1979) concluded that k,ldu = 3.5, based on
data from several sources on gravel-bed streams, and suggested that wake interfer-

1
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FIGURE 4.6
Comparison of field data from Blodgett ( 1986) on flow resisrance in boulder, cobble, and
gravel-bed streams with Keulegan's equation for Manning's z.

ence losses downstream of the larger roughness elements may account for the large
value of 1..

Results for the friction factor in gravel-bed streams also can be presented in
tcrms of Manning's r, according to Equation 4.21. Data assembled by Blodgen
(1986) for boulder-. cobble-, and gravel-bed streams in the western United States
are plotted in Figure 4.6 in terms of /<,, which can be determined to be 6.3 dro from
fitting the Keulegan equation (Equation 4.21) for Manning's n. Only the values of
d50 were reponed by Blodgett, because the interest was in obtaining a relationship
for rock-riprap lined channels based on natural channel data. The data in Figure 4.6
are given in terms of the average or hydraulic depth, D, instead of hydraulic radius
because Blodgett found them to be virtually identical. The Blodgett dara include the
data by Limerinos (1970), who reported a standard deviation in the percent differ-
ence between measured and fitted values of nto6e ! 22 percent when d5o was used
as the characteristic grain size and t l9 percent when dro was used.

4.6
DISCUSSION OF FACTORS AFFECTING/AND n

The dependence of/on the Reynolds number and relative roughness has been dis-
cussed with respect to the Moody diagram for pipe flow. The Reynolds number
dependence is not as important in open channel flow, especially in large natural
channels, for which the Reynolds number is quite large. If a smooth-walled conduit

1 0

s J >

0.01
0 . 1 1001 0



l l0  CHAPTER 4:  Uni form Flow

is flo*ing partly full in the smoolh turbulent regime. however. Manning's equltion
is not directly applicable, because Manning's n can be expecled to vary with the
Reynolds number (Henderson 1966). In this case, the use of the Darcy-Weisbach's

/ is preferred, although Yen ( 1992a) shows that for Re) nolds numbers less than the
fully rough turbulent values, there is a narrower range of R/k,, within which Man-
ning's n stil l may be reasonably constant.

The dependence of/on relative roughness in open channel flow is not as well
known as in pipe flow because it is difficult to assign an equivalent sand-grain
roughness for the large values of absolute roughness height typically found in open
channels. Rouse (1965) discusses the importance of roughness concentration,
shape, and arrangement on the equivalent sand-grain roughness height, ,t,. He
repons experimental results that indicate the maximum value of relative roughness
occurs at a roughness concentration of 20-25 percent. Kumar and Roberson ( 1980)
and Kumar ( 1992) made significant advances in obtaining an analytical relation for
the variatjon of relative roughness with concentration and shape for randomly
arranged roughness elements. This research has led to a completely general algo-
rithm for determining rough conduit resistance (Kumar and Roberson 1980) that
seems to work well for artificial roughness elements, but more limited comparisons
with natural channel roughness have been made. The analytical method utilizes a
drag coefficient determined for an individual roughness element, the average heiSht
of roughness elements, and an areal projection factor to describe the projection of
the roughness elements on a plane perpendicular to the flow as a function of dis-
tance from the boundary. With this information, the equivalent sand-grain rough-
ness can be estimated as a function of the concentration and shape of roughness ele-
ments. The method cannot be applied directly to in-line roughness elements,
however. because it does not account for wake interference effects.

The dependence of flow resistance on cross-sectional shape occurs as a result
of changes both in the channel hydraulic radius, R, and the cross-sectional distri-
bution of velocity and shear. Therefore, applications of the Moody diagram in open
channel flow in which pipe diameter is replaced by 4R may not completely reflect
the effects of cross-sectional shape on flow resistance. Kazemipour and Apelt
(1979) suggested that two dimensionless parameters are required to characterize
shape effects on the resistance coefficient/:

/  K .  P  B \
/ -  r [ne .  i , a .a  ) (4.23)

in which F denotes "function of": Re : Reynolds number; k, : sand-grain rough-
ness height; R = hydraulic radius; B : channel toP width: D : hydraulic depth;
and P : wetted perimeter The first shape factor, P/8, is a measure of the influence
of the shear distribution oni and the second shape factor, 8/D, is a channel aspect
ratio. Using the data of Shih and Grigg (1967) and Tracy and lrster (1961) for
smooth rectangular channels, Kazemipour and Apelt (1979) showed that the oPen
channel friction factor, t, can be obtained directly from the pipe friction factor,t,
determined from the Moody diagram:

f. = ofu (4.24)
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The function ty'2(B/D) is proposed as a besr fit of the experinrental relationship pre-
sented by Kazemipour and Apelr (1979) based on the eiperimental data for smooth
rectanguiar channels that they used over a range of g/D from approximately I to:10. Thcy also applied their experimental relationship succersfuily to limited data
for fully rough turbulent flow in rectangurar channeri and an addiiionar data set of
their own for sntooth rectangular channels (Kazernipour and Apelt l9g2). Using
Equation 4.25, the value of o for a rectangular channel varies from approximatel!
1.04 to Ll0 as the aspecr ratio (b/y) increases from I ro 40.
. Experimental research by Sturm and King (l9gg) on the flow resistance of
horseshoe-shaped conduits flowing partly full has shown that the Kazemrpour and
Apelt (1982) relations for shape effects in rectangurar channels cannot be extended
to horseshoe conduits. The Neale and price (1964) data for partly full flow in
smooth circular conduits also show considerable scatter from Equation 4.25. For the
horseshoe conduit flowing partly full, the shape effect depends on the ratio of depth
to diamet€r, -r.y'4 with greater influence at larger values of _v/d. A summary of the
results is shown in Figures 4.7 and 4.g. In Figure 4.7, the vilue of o for th! horse-
shoe. cond-uit essentially is unity for relative dipths less than 0.4, but it increases to
a value of approximately L25 for larger relative depths. For the smooth, circular
conduit data of Neale and price (1964), an average value of q : 1.05 occurs for
1ld > 0.2.In Figure 4.8, rhe horseshoe data for thi velocity ratio V/V,, where V =partly full velocity and 4 : full flow velocity, are.olnpurid with relationships for
circular and horseshoe conduits. The horseshoe data iollow Manning,s equation
with constant^r at low relative depths but then approach the pomeroy ( 1967) empir_
ical relation for circular sewers (V/_V, : 1 .g9j(114; ttal ar large ielative. depihs.(The theoretical relationship for VtVi with consrant Manning's i essentrally is thesame for circular and horseshoe conduits.) Thus, in Figure-4.g, the reduction invelocity observed in both circular and horseshoe conduits for depths greater thanhalf full seems to correspond to an increase in flow resistance due to the shape fac-
tor, but the velocity reduction is not as large as predicted by Camp (1946).
. 

Nonuniformity of the open channel boundary in the diiection'oi flow, in eitherplan or.profile view, necessarily causes a change in the velocity distribution and
hydraulic resistance to flow. As an example, the development of tire boundary layer
in a supercritical flow discharging under a sluice gate results in a deceleration and achange in surface resistance due to the nonuniformity of the flow cross sectlon. Ingradually varied flow (e.g., a gradual nonunifonnity in rhe llow direction), the flowresrstance com:nonly is assumed to be the same as that obtained in a uniform flow at
the same depth. The enor associated with this assumprion may be small in most
cases, but it is essential that measured values of Manning's n for leneral engineering
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FIGURE 4.7
Friction factor correction for partly full flow in horseshoe (transition) and circular (smooth)

conduits (Stunn and King I988 ). (Sorrce : T. W. Stunn and D. King, " Shope Efects on Flow
Resistance in Horseshoe Conduits," J Hydr Engrg, A 1988' ASCE. Reproduced by per-
mission of ASCE.)

applications be obtained only for uniform flow to eliminate the effects of nonunifor-

rnity. Uniform flow in laboratory flumes is difficult to obtain unless they are very
long. Tracy and l,ester (1961), who measured the friction factor for a smooth chan-
nel in the 80 ft (24 m) long tilting flume at Georgia Tech, devised a procedure for
determining uniform flow depth. Their technique was to establish two conrol gate
positions, one of which provided a water surface profile that asymptotically
approached uniform (normal) depth from above and the other one from below. Only
in this way were they able to obtain an accurate value of uniform flow depth, even in

a relatively long flume.
Nonuniforrnities due to changes in form resistance as a result of cross-sectional

changes may be considered to be Froude number dependent. Thus, flow around
bridge piers or flow with a boundary that has large, widely spaced roughness ele-

ments experiences wave formation, and Froude number effects on the resistance

coefficient are introduced. Supercritical flow around bends or in contractions is
anotber case in which the resistance is Froude number dependent.

2.O1 . 81 . 60.80.6o.4o.2
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FIGURE 4.8
Relative velocity relationships for circular conduits compared to data for horseshoe conduits
(Sturm and King 1988). (Source: T. W. Stunn and D. King, "Shape Efects on Flow Resis-
rance in Horseshoe Conduits," J. Hydr Engrg,, A 1988, ASCE. Reproduced by permission
of ASCE.)

Unsteadiness of open channel flow also brings with it changes in velocity dis-
tribution and resistance to flow. The occurrence of surface instabilities in supercrit-
ical flow, commonly called roll wayes, is an example of the unsteadiness effect.
Rouse (1965) suggested that the increase in resistance due to roll waves could be
related to the ratio of the flow Froude number to the critical value of Froude num-
ber above which instability occurs (: 1.5 to 2. for wide channels). Berlamont and
Vanderstappen ( l98l) confirmed this formulation and funher asserted that these
resistance effects are more likely io occur in wide channels. They indicated that
Froude number effects in supercritical flow may have been overlooked by some
investigators because these effects are small and independent of Reynolds number
when it rs large.

ln summary, the effects of unsteadiness, Froude number, nonuniformity, cross-
sectional shape, and roughness element concentration and arrangement, as well as
the usual Reynolds number and relative rougbness effects, all can be expected to

't .2o.4o.2
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affect open channel f low resistance. Continued use of the Manning's r means sim-
plv that we lump all ofour ignorance about flo* resistance into a single coefficient.
For example, it is diff icult to establish the physical significance of observed
changes in Manning's n with river stage because of the many factors that affect it.
Engineering experience wil l continue to dictate the choice of Manning's r values,
but tbey should be verif ied by field measurernents as much as possible. In the case
of turbulent, partly full f low in smooth conduits. the Darcy-Weisbach / may be the
preferred resistance coefllcienti however, the constancy of Manning's n over a wide
range of f low conditions for a given boundary roughness, panicularly in natural
cbannels, make it a valuable tool for assessing the effects of open-channel f low
resisiance.

4.7
SELECTION OF MANNING'S,, IN NATURAL CHANNELS

As mentioned previously, there is no substitute for experience in the selection of
Manning's n for natural channels. Table 4-l from Chow (1959) gives an idea ofthe
variability to be expected in Manning's n. The pictures of channels with measured
values of Manning's n as given by Arcement and Schneider ( 1984), Bames ( 1967),
and Chow (1959) are very useful for developing preliminary values of Manning's
n. Some of these photographs are given at the end of this chapter In addition, for
those channels outside the engineer's previous experience, the more regimented
procedure suggested by Cowan (1956) is helpful:

n =  l n b +  n t +  n ? +  n 1  +  n a ) m (4.26)

in uhich n, = the base value for a straight, uniform channel; n, = corection for
surface inegularitiesi a2 : correction for variations in the shape and size of the
cross section; n3 : correction for obstructionsi n4 : corTection for vegetation and
flo\* conditions; and m : conection factor for channel meandering. Values for each
of these corrections are suggested by Arcement and Schneider ( 1984) for both nat-
ural channels and floodplains.

4.8
CTIANNELS WITH COMPOSITE ROUGHNESS

Under some circumstances, a natural or anificial channel may have varying rough-
ness across its wetted perimeter; for example, u'ith different lining materials on the
bed and banks or vegetated banks with an unvegetated bed. The methodologies pre-
sented in this section are not meant for compound channels in which the geometry
and the roughness are signihcantly different on the floodplains compared to the
main channel. For compound channels, it is more appropriate to divide the channel
into main channel and floodplain subsections with different values of the roughness
coefficient to obtain the total conveyance. as will be discussed soon.
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T A B I - E  { . I

Values of the \Ianning's Roughness Coeflicient a

tpe of Channel and Description l l inimum Nonnal Maximum

A. Closed Conduit\  Flot! ing Panly Ful l
A I.  \ telal

a. Brass. smoolh 0.009 0.010 0.011
b. Steel

L Lt l*kbar aDd ",elded 0.010 0.012 0.Ot-1
2 .  R i \ e l ed  and  sp i ra l  0 .011  0 .016  0 .017

c. Cast iron
L  Coa red  0 .010  0 .013  0 .0 t . 1
2 .  Unco r l ed  0 .011  0 .01 ,1  0 .016

d. WrouSht iron
L  B lack  0 .012  0 .0 t4  0 .01 -s
2 .  Ca l \ an i zed  0 .013  0 .0 t6  0 .017

e. Corrugsted metal
L  SuM. r i n  0 .0 t7  0 .019  0 .011
2. Srorm drain 0.02t 0.024 0.030

A-2. Nonmetal
a. Lucire 0.008 0.009 0.010
b. ctass 0.009 0.0t0 0.013
c. Cemenl

L Neal. surface 0.010 0.011 0.01j
2. Morlar 0.01| 0.01i 0.015

d. Concrete
l.  Culven. slraight and free ofdebris 0.010 0.01| 0.0t3
2. Cul\ert with bends, connections. and

some debris 0.01 I 0.011 0.0t.1
3. Finished 0.011 0.012 0.0t.1
4. Se$er with manholes, inlel.  etc.,

suarshr 0.013 0.015 0.0t 7
5. Unfinished, sreel form 0.012 0.013 0.01J
6. Unfinished, smoorh *ood form 0.012 0.014 0.016
7. Unfinished, rough wood form 0.015 0.017 0.010

e. Wood
L Sta\e 0.010 0.012 0.01.1
2. laminared. rreated 0.015 0.017 0.0]0

f. Clay
L Common drainage t i le 0.011 0.013 0.017
2. \arr i f ied se\rer 0.011 0.014 0.0t7
3. \alrified sewer with manholes,

rnrel erc. 0.013 0.015 0.01?
4. Vitr i f ied subdrain wirh openjoinr 0.014 0.016 0.018

g. Brick*ork
L Clazed 0.0t I  0.013 0.015
2. Lined wirh cement monar 0.012 0.015 0.0t7

h. Sanita4 s€wers coated witi se*age
sl imes. with b€nds and connections 0.012 0.013 0.016

r. Paved inren, sewer, smooth boltom 0.016 0.019 0_0:0
j. Rubble masonry, cemenred 0.018 0.025 0.030
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T A B I , E  J - l  { C o n i i n u c d )

Type of Chann€l and Descripl ion Il inimum Nornral i \ [axinrum

B. Lined or Bui lrup Channels
B -  1 .  Mera l

a. Snrooth slcel .urface
L Unpainted
:. Painled

b. Conugded
B 2. Nonmctal

a. Cement
L Nert. surface
2. Monar

b. Wood
L Planed. untreared
2. Planed. creosoted
3. Unplaned
,1. PIank l \ i th banens
5. Lined \\'irh roofing paper

c. Concrete
l_ Trowel finish
2. Floal finish
3. Finished. u i th gravel on botlom
,1. Unfinished
5. Cunite. good secl ion
6. Cunite, *ayv section
7. On good excavated rock
8. On irregular excavated rocK

d. Concrete bo[om f]oal finished with
sides of
L Dressed stone in monar
2. Random stone in monar
l. Cement rubble masonry. ptastered
.4- Cement rubble masonry
5. Dry rubble or riprap

e. Gravel bo(om u ith sides of
L Formed concrete
2, Random stone in monar
3. Dry rubble or riprap

t Brick
l.  Glazed
2, In cement mortar

g. Masonry
l.  Cemented rubble
2. Dry rubble

h. Dressed ashlar
L Asphah

l�  Smooth
2. Rough

j. Vegeral l ininS
C. Excavated or Dredged

a. 8anh, straighl and uniform
L Clean, recenrly compleled

0.0  
0 .0 r2
0.011

0.010
0 . 0 1 1

0.010
0.01  I
0 .01  I
0 . 0 r 2
0 .010

0.0  
0 .013
0.0 t5
0.0t.1
0 .0r6
0 .0 t8
0 .017
0.022

0.0r5
0 .017
0.0r6
0.020
0.020

0.0i 7
0.020
0.023

0.01 l
0 .012

0.017
0.023
0.0t 3

0 .013
0.0t 6
0.030

0.0 t6

0.0r1
0.0 t -1
0.01,5

0 . 0 t 1
0 .013

0.011
0.01 l
0 . 0 t 3
0 .0r5
0 .01{

0 . 0 r 3
0 .015
0.017
0.017
0.019
0.022
0.020
0.027

0 . 0 r 7
0.020
0.020
0.025
0.030

0.020
0.021
0.03.1

0 .0r3
0 .015

0.025
0.032
0.015

0.01 l
o 
llu

0.0t 8

0 .01 .1
0 .017
0.010

0 . 0 r 3
0 .015

0.0t.1
0 .015
0.0 t5
0 .018
0.017

0.015
0.0r 6
0.020
0.020
0.023
0.025

0.020
0.02,1
0.024
0.030
0.035

0.025
0.026
0.036

0.0 t5
0.0t 8

0.030
0.035
0.017

0.500

0.020



CH {PTER 4 :  Un i f o rm  F low I t'7

l )pe of Channel and Descrip{ion i\ t inimum Normal ! laximum

D,

2. Clean, afrer weathering
3. Cravel, unifomr secl ion, clean
4. With shon grass. few weeds

b. Eanh. \r inding and sluggish
L No leSellltion
2, Crass. sonre weeds
l .  Den .e  ueed r , , r  aqua t r .  p l dn t .  ' n

decp channels
L Ea(h borrom Jnd rubble ' 'de\
5. Stony botlon and weedy banks
6. Cobble borlom and clean sides

c- Dragl ine excavated or dredged
L No vegetation
2. Lighr b.ush on banks

d. Rock cuts
L Smoolh and uniform
2. Jagged and irregular

e. Channels not maintained. weeds and
brush uncul
L Dense,reeds. high as f lo\,r 'depd
2. Clean botlom. brush on sides
3. Same. highest srage of f low
;1. Dense btush, high srage

Nalural Streams
Fl - Minor slreams {lop \lidrh at flood

stage < 100 ft)
a. Streams on plain

L Clean. s(raighr, full srage. no rifis
or deep pools
Snme as above. bul nlore slones

Clean. \ \ indinB, some pools and

Same as above, bul some weeds
and slones
S.rme rs above, lower stages. more
incffect ive slop€s and sections
Same as 4, bul more stones
Sluggish reaches, weedy. deep pools
Very weedy reaches, deep pools, or
floodways wilh heavy stand of
limber and underbrush

0  0 1 8
0.0t2
0 0:l

0.0:l
0.c!15

0.030
0.018
0.0t5
0.010

0 0t5
0 0t5

0 015
o.015

0.050
0.0.10
0.015
0.080

0.0t5

0 0t0

0.033

0.035

0.0.10
0.0.r5
0.050

0.0?5

0.022
0.025
0.027

0.025
0.030

0.035
0.030
0.035
0.0.10

0.028
0.050

0.035
0.0.10

0.080
0.050
0.0?0
0.100

0.030

0.035

0.040

0.045

0.0,18
0.050
0.070

0.100

0.040
0.050

0.030

0.025
0.030
0.031

0.030
0.033

0.0.10
0s35
0.0.10
0.050

0.033
0.060

0.040
0.050

0 . 1 2 0
0.080
0 . 1  t 0
0. l,t0

0.033

0.040

0.045

0.050

0.055
0.060
0.080

0.150

-t.

,t.

5 .

6.'L

8 .

b, Mountain streanrs, no vegetation rn
channel, banks usually steep. rees
and brush along banks submerged at
high stages
L Bortom: gravels, cobbles. and

few boulders
2. Boltom: cobbles wilh large boulders

D-1. Flood plains
a. Pasture. no brush

l. Short Srass

0.0-r0
0.0.10

0.025

0.050
0.070

0.015
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TABLE , l -  I  (Cont inu€d)

'rype of Channel and Description \l inimum Normal Maximum

2. High Brass
b. Cult ivated areas

L No crop
2. Mature row cfops
3. Marure f ield crops

c. Brush
L Scatlered brush. heavy weeds
2. LiSht brush and lrees, in \ l inter
I �  Lighl brush and trees, in summer
:1. Medium to dcnse brush, in \1in(er
5. Medium to dense brush, in summer

d. Trees
L Dense wil lows. summer, straight
2. Cleared land with trce slumps,

no sprouts
3. Same as above, but wi lh heavy

growth of sprouts
4. Heavy stand of limtr€r, a few do\\n

trees, liltle undergrowth, flood stage
below branches

5. Same as above, but with flood stage
reaching branches

D-3. Major streams (lop width at flood srage
> 100 ft). The n value is less than that for
minor streams of similar descriplion.
b€cau\e banls offer le\s effe{t i \e re\ istance.
a. Regular section with no boulders

or brush
b. Irregular and rouSh section

0.0i0

0.010
0.015
0.0,r0

0.0-15
0.0-'15
0.or0
0.o15
0.0t0

0 .   0

0.0-r0

0.050

0.080

0.100

0.0r5
0.035

0.035

0.030
0.03-s
0.040

0.050
0.050
0.060
0.070
0.I c)0

0 .150

0.0.10

0.060

0. 100

0.120

0.050

0.0,10
0.0,15
0.050

0.070
0.060
0.080
0 . 1 l 0
0 .160

0.200

0.050

0.080

0.120

0. r60

0.060
0. 100

Source: Chow 1959. Used with pe|mission ofChow eslare.

Chow ( 1959) presented methods by Honon, Einstein and Banks, and Lotter for
obtaining a composite value of Manning's n for a single channel; that is, for the main
channel only of a compound channel or a canal *ith laterally varying roughness.
The Horton method is based on the assumption that the velocities in each wetted-
perimeter subsection are equal to one another as $'ell as equal to the mean velocity
of the whole cross section. The resulting composite value of Manning's n, denoted
n", is given by

f  v  l : l

I > P,'l'' l
, . .  = I  '= '  I. L P )

in which P,, n, : wetted perimeter and Manning's n of any section i; P = wetted
perimeter of the entire cross section; and N - total number of sections into which

(4.27)
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(he wetted perimeter is divided. The Einstein and Banks ntethod assumes that rhe
total resisting force is equal to the sum of the resisting forces in each subsection and
thc hydraulic radius of each subsection is equal to the hydraulic radius of the whole
section. The result is given by

f  x  l r , 2
I  f  p " r l
I  z t  t ' t  l

. L P ) (.4.28)

Lotter's fornrula is based on writ ing the total discharge as the sum of the discharges
in the subsections:

PR5/]
(4.29)

Finally, Krishnamunhy and Christensen (1972) derived another formula based on
the logarithmic velocity distribution, which gives n" as

P,tli2 ln n,

l n  n ,  : (4.30)
P,Yl i '

in which -v, = flow depth in the ith section. Morayed and Krishnamurthy (1980)
used cross-sectional data from 36 streams in Maryland, Georgia. Pennsylvania, and
Oregon at U.S. Geological Survey gauging stations to test the four formulas just
given. An average value of the slope of the energy grade line obtained from the
measured depth and velocity distribution a[ a cross section was used to obtain a"measured" composite value of Manning's n to compare with the formulas. The
results showed that the mean error between the computed n. and the measured z.
was by far smallest for the Lotter formula.

4.9
UNIFORM FLOW COMPUTATIONS

Whether the Manning or Chezy equation is used, there exists a unique value of the
uniform flow depth for a givcn channel geometry, discharge, roughness, and slope.
This depth is called the normal depth, and its magnitude relative to the critical
depth determines whether or not uniform flow is supercritical or subcritical for a
given set of channel conditions. If the normal depth is greater than critical, then the
uniform flow is subcritical and the slope is classihed as mild. For a steep slope the
normal depth is less than critical depth. The actual classification of a given channel

A  p  { r 5 l
' \ -  ' , '  I
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slope can change with the dischrrge as the relative magnirudes of nornral and crit-
ical depth change.

The conrputation of normal depth using Manning s equation proceeds by rear-
ranging the equation as

r 5, -r

K N S ,  .
( 1 . 3 1 )

in which the right hand side is conrpletely specified b1 design conditions. The
design discharge may be set by flood frequency considerations; the roughness oftcn
depends on the choice of a stable l ining; and the slope is a function of the topogra-
phy. Equation .1.31 can be solvcd by trial or by a nonlinear algebraic equation solver
for a known geometry. In the case of a trapezoidal channel. for example, the equa-
tion in nondimensional form becones

A R ]  
1

uQ

[ .  ( '  * r y )1 "
[ b \  b  / )

[ '  *  ]1 r  + , , ' ) ' i ' - l " '  b8 '3
l o l

nQ

t '  ( l  : A 8  l
(.1.12)

(.r.33 )

in which b - channel bottom width; rz : sideslope ratio: and _r0 = normal depth.
As presented. the equation can be used in SI or English unirs simply by substituting
the appropriate value of K, and units for C and b consisrent with K,,i thar is. 4 :
l .49forQ in  c fs  and b in  f t  whi le  K"-  l .0 forQ in  cubic  merers per  second and b
in meters. Equation 4.32 is shown as a graphical solution for normal depth in Figure
4.9 (Chow 1959). A similar solution can be developed for a circular channel. and it
is included in the figure with the diameter as the nondimensionalizing length scale.

When the flow is in the fully rough turbulent regime. Manning's equation is
appropriate for computation of normal depth, but for the transitional and smooth
turbulent regimes, the Chezy equation should be used:

trp''. - Qf t''

(88s) '/r

in which/ = the Darcy-Weisbach friction factor It has been placed on the right
hand side of the equation, although it depends on the Rel nolds number and relative
roughness, u hich in tum are functions of the unknown normal depth. Equation -1.33
can be solved for normal depth by assuming a value of ./ and iterating \iith the
Moody diagram or Equation 4.18 (the Colebrook-White equation) with the pipe
diameter replaced by 4R and the constant 3.7 replaced b1' 3.0, so that the first term
on the right hand side reflects the Keulegan constant as /i,/l2rt (Henderson 1966).
The iteration required to solve Equation.l.33 may have discouraged its use in the
past, so that Manning's equation often has been used witiout consideration of the
unknown variability of Manning's n outside the fully rough flow regime. An alter-
native formulation of the Chezy equation for the smooth turbulent case is consid-
ered in the next section.
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ARz3lbw3 or

0 . 1

AR2J3/das

FIGURE 4.9
Curves for calculating normal depth in circular, rectangular, and trapezoidal channels (Chow
1959\. (Source: L'sed xith permission of Chorr estate.)

4.to
PARTLY FULL FLOW IN SIVIOOTH, CIRCULAR CONDUITS

ln the case of PVC plastic pipe used for gravity sewers and detention basin outlets,
the Chezy equation with the Darcy-Weisbach/rather than Manning's n is preferred.
Experimental *ork by Neale and Price (1964) has shown that PVC pipe can be con-
sidered smooth. Furthermore, their results indicate a relatively small effect due to
shape. The relation for/ in smooth pipes is given by

I
r = r.o los (R€y'/) 0.8 (4.34)

in which Re : l/d/z is the Reynolds number;d - pipe diameter: and ? = kinematic
viscosity. If we replace d by 4R in the Reynolds number, where R is the hydraulic
radius, and / b1 8gAzRS/Q2 from the Chezy equation, then Equation ,1.34 can be
recast into one u ith a more useful set of dimensionless variables:

q+ : ql la,kds)1/?l:

Re+ : d(gdS)r r,/yl

and r/d. the relative deDth.
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Y/o =1 5
0.8

0.61 0

o.7

o.4

0.3

0.2
0
1E4 1 E 5 1 E 6

Re.

FIGURE 4.TO
Discharge capaciry of smooth, circular conduits nowing panlv full.

The results of plotting (4.34) in terms of these dimensionless variables is
shown in Figure 4. 10. This figure can be used to find the parrly full flow depth in a
smooth pipe without trial and error.

4. t l
GRAVITY SEWER DESIGN

The design of storm and sanitary sewen involves the derermjnation of panlv full
flow capacity for a given design depth or normal depth for a given discharge in cir_
cular conduits. The design is based on discharges determined either by population
estrmates and conesponding wastewater rates per capita or by hydrologic calcula_
tions of peak runoff rates due to storm events. Because pressurized flow is avoided,
especially in sanitary sewers, the design probrem is to select a conduit size that will
flow panly full for the design discharge. Even in storm sewers, undesirable flow
conditions can develop as full flow is approached. When the relative depth or fill-
ing ratio,,r/d. nears t.0, air access to the free surface is reduced with intermittent
opening and closing of the section (Hager 1999). Such a condirion, referred to as
slugging h culvert hydraulics. results in streaming air pockets at the crown of the
pipe and pulsations that could damage pipe joints or cause undesirable fluctuations
in discharge. The only practical way of avoiding these difficulties rn sewers rs to
design for panly full flow.
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A further complication of the circular cross section occurs due to changes in
geometry as the pipe fil ls. The wetted perimerer increases more rapidly than the
cross-sectional area near the crown of the pipe with the result that the discharge
capacity decreases as the crown of the pipe is approached. This can be seen in Fig-
ure 4.9, as the curve for normal depth reaches a maximum in ARrl and then
decreases as1/d approaches 1.0. ln effect, there are t*o possible normal depths near
the crown of the pipe, and the upper one is unlikely to occur without slugging or
fil l ing the pipe.

It is sound practice to avoid these difficulties by designing the pipe for a fil l ing
ratio of about 0.8 or less at maximum design flow. Older design criteria may have
specified 1y'd = 0.5 as the design fil l ing ratio. but this does not make efficient use
of the pipe capacity. The initial pan of the design is to calculate a pipe diameter thar
u'il l carry the maximum dcsign discharge at. say,.r'/d - 0.8. This corresponds to a
value of rrQlK,Sr/2d8lr : 0.305 from Manning's equation, as can be verified from
Figure 4.9. The initial diameter then is calculated from

(4.1s)

assuming fully rough turbulent flow, which can be checked as described previously.
If Manning's equation is not applicable, then the Chezy equation with the Colebrook-
White expression for the friction factor can be used. The initial diameter usually is
rounded up to the next commercial pipe size, and the actual flow depth is computed
for the commercial diameter. The uniform flo$' equation can be solved by trial and
error, with a computer program, or graphicall)' using Figure 4.9 or Figure 4.10, as
appropriate, to find the normal depth.

The second part of the design is to check for the occurrence of self-cleansing
velocities to prevent the build-up of deposits in the sewer. It is desirable to have a
minimum velocity of at least 0.61 m/s (2.0 fVs) to scour sand and grit from the pipe
at maximum discharge, although a value of 0.91 m/s (3.0 ftls) is prefened (ASCE
1982). Velocities as low as 0.30 m/s ( 1.0 fVs) at low flows are sufficient only to pre-
vent deposition of the lighter sewage solids. according to the ASCE manual. Hager
(1999) recommends a minimum velocity of 0.60 to 0.70 n/s (2.0 to 2.3 fVs). Once
the normal depth has been determined for the selected commercial pipe diameter,
the actual velocity follows from Qd".,""/A, u here A is the cross-sectional area cor-
responding to the normal depth: and Qa."g" is the design discharge.

An altemative approach to self-cleansing velocities is the notion of equal self-
cleansing, so that nearly the same average boundary shear stress occurs at both
maximum and minimum flows. This may not always be possible without increas-
ing the slope of the pipe (ASCE 1982). Hager ( 1999) suggests a critical shear stress
r. of about 2.0 Pa (0.O42lbs/ft2) for self-cleansing in separate sewer systems. The
corresponding critical velocity and its variation with fil l ing ratio are obtained by
setting the shear stress r0 : rc so that the slope S = z./yR in Manning's equation.
Solvrng for the critical velocity, 4, the result in dimensionless form is

I  r ro  l r  8
d = 1.561 ---i- |

L / ( " S ' . 1

V - n Y p  l R l ' "
"  -  

r ^ u . . , ' o  
-  

l a )
(4.36)
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..- A./AI

1 . 0

0 .8

0.6

o.4

o.2

0.0

\

0.4 0.6

NAt and Vc'

FIGURE 4.I I
Dimensionless critical velocity for self-cleansing of circular sewers.

0.80.2

in which a.. : critical value of shear velocity = (r,/p)t12.'fhe dimensionless
cleansing velocity is a unique function of the fil l ing ratio, 1/d, as shorvn in Figure
4.1 I . However, its value does not change significantly from about 0.8 for -r'/d > 0.4.
although clearly, from Equation 4.36. the critical velocity itself depends on pipe
diameter and roughness. Also shown in Figure 4.ll as a design aid to assist in
determining the actual flow velocity is a plot of A/Ar, in which A = panly full flow
arca and A, = full pipe flow area = rd2l1. For Vl = 9.3,, : 0.015, and r. : 2.0
Pa, the critical velocity increases from 0.68 rnls (2.2 ftls) to 0.86 rnls (2.8 ftls) as
the diameter increases from 0.5 m ( 1.6 ft) to 2.0 m (6.6 ft).

EXAMPLE a.l. Find the discharge capacity of a 24 i,n. (61 cm) diameter PVC
storm sewer flowing at 80 percent relative depth if the slope of the se$er is 0.003.
Assume thal it is smooth.

Soratiorl, First find the geometric p.operties of the sewer at )y'd = 0.8. The angle 0 is

d : 2  c o s ' (  t  -  r l )  :  :  c o . - ' 1 t  - 2  x 0 . 8 )  = 4 . 4 2 8 6  r a d
\  d t

Then the area and wetted perimeter can be determined from the formulas given in
Table 2- l:

) 1  ) 1
A = (d  -  s ino) :  -  

14 .4286 -  \ in (4 .4286) l :  =  2 .69  f r r (0 .25  mr)
t t  - E

,l ',

P = 0 :  =  4 .1286 x  :  =  4 .43  f t  ( l  .35  m)



I
I
i

so thar R = A/P = 2.6911.13 - 0.607 fr (0.185 m). The fr icr ion facror comes from
llquation 4.3.1 lbr \mooth surfaces \r ' i th JR as the length scale in th€ Reynolds number,
Re. This requires tr ial  and error \ \ i th Chezl 's equation beginnning *i th an assumed
value of/.  Forexanrple. assurne/= 0.015. then solve for Q and Re:
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/;-
6 .  r _ . :

. / ^ _ -- . '  :.6qJ . V0.007 ,1 0.001
\  U . U  I )

: 15. I cfs (0..128 mr/s)

|_

\ / ; A V R S  =

(O A )JR
R e :  

- ( r 5 . 1 / 2 . 6 9 1 )  x J X . 6 0 7
:  L l 3  x  1 0 6

tld 0, rad A, ftr R, ft ARut

For this value of the Reynolds number. Equation 4.3.1 gives/: 6.91 14 6t ,rial, which
is used in the next iterarion. In the next iterarion, O: 17.3 cfs (0.,190 mr/s). Re : L30
x  l06 ,and/=  0 .01  I  l .  In  the f ina l  i le ra l ion .O= 17.5  c fs  (0 . ,196 m] /s ) ,  Re =  1 .32  X
106, and/: 0.01 I l. $,hich is the sarne as rhe previous value. Check wirh Figure 4.10
bycomput ingRe*  :  2  x  (32 .2  x  2  x  o .oo- l l rv l .2  x  l0  5  =  7 .3  x  l0 { .FromFig-
ure.l. l0, read Q* = 10.0 and therefore Q = 17.6 cfs (0.499 mr/s), which is acceprable
considering the graphicalenor. The finalanswer is Q : I 7.5 cfs (0..196 mr/s). Note that
the equivalent value of Manning's a from Equation 4.20 is 0.0090, but this wil l vary
with the Reynolds number

ExAMPLE 4.2. Find the concrete seuer (n : 0.015) diameter required to carry a
maximum design discharge of 10.0 cfs (0.28-3 mr/s) on a slope of 0.003. The minimum
expected discharge is 2.5 cfs (0.071 mr/s). Check rhe velocity for self-cleansing.

Solzfibz. First, estimate the diameter from Equation 4.35:

I  a o  l ' *
d =  r . 5 o l  .  _ ' , l  -  r . 5 6 . 1 0 . 0 1 5  \  r 0 . ( r . 4 q  . 0 . 0 0 i r  r / l ' ^

L K _ S ' ' l
= 1.96 ft (0.597 m)

Round the diameter up to the next commercial pipe size of 2.0 ft (0.61 m) and solve for
the normal depth of flow. First, compute rhe right hand side of Equarion 4.3 I ;

0.015 x l0nQ

1.495 I  r 1.49 x 0.003 r/r : 1 . 8 3 8

Then set up a table as follows with assumed values of )/d from which 0, A, and R can
be computed using Table 2- l. Iterate on ,r'// unril ,,lRr/r : | .838.

P, f .

0.6
0.8
0.76
0.'762.

3.544
1.129
4.235
4.215

3.5.14
,1..129
1.235
1.215

1.968
2.69.1
2.562
2.569

0.555 1.319
0.608 r.933
0.605 r.833
0.605 L838

This last iteration is considered
(0.463 m) and, V : 1,0/2.569 :

acceptable: therefore. yo : 0.762 x 2 = 1.52 fI
3.89 ft is (1.18 rn/s). This is considered more than
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adequat€ for self-cleansing at a maximum discharge. At the rc:nimum discharge of
2.5 cfs (0.071 mr/s;. calculate the normal deprh using Figure -!.9:

ARi t nQ

d3 . r  L , l 9S  I , r d8 , r
. 0 1 5  x  2 . 5

1..19 x 0.003r'r x 23 r
: rr 07:

from which -vola is approximately 0.33 and -r,o = 6.66 1t. Now. from Figure 4. I l, A/Ar =
0 .29andA:O.29x . , I  x  21 l ,1  =  0 .91  f t r .ThenV:  Q lA =  2 .5 t t ) .91  :2 .8  f t i s .  Obra in
I}le crit ical relocity from Figure 4.1I in which Vl = 0.75 and. from F4uarion 4.36,

r . + 9 x \ 6 . o 4 r 8 / L 9 + x z ' u
v,: o'7s {:!::! ) = ().t5 x

n v g
= 1.2 ft ls (0.67 m/s)

0.015 x \,4t

in which r. : 0.0.118 lbs/ftr (2.0 Pa). The actual velocity is rrell above the crit ical
value. so this is a satisfactorv desien.

4.12
COMPOUND CHANNELS

A compound channel consists of a main channel, which carries base flow and fre-
quently occurring runoff up to bank-full conditions, and a floodplain on one or both
sides that carries overbank flow during times of flooding. The \{anning's equation
is written for compound channels in terms of the total conve) ance, ,(, defined by
Q/SI/r, in which O is the total discharge and S is the slope of th: energy grade line,
which is equal to the bed slope in uniform flow. Because of the significant differ-
ence in geometry and roughness of the floodplains compared to the main channel,
the compound channel usually is divided into subsections th3r include the main
channel and the left and right floodplains, although the floodplains may have addi-
tional subsections for varying roughness across the floodplain- If it is assumed that
the energy grade line is horizontal across the cross-section for one-dimensional
flow, then the slope of the energy grade line must be the same for each subsection
of the compound channel as well as for the whole cross section. From continuity,
Q : , Qt, so it follows from equality of the slopes that K : tt.. in which Q, and ,t,
represent the discharge and conveyance in the ith subsecrion. respectively. There-
fore, the total conveyance for a cross section is computed as the sum of the con-
veyances of the subsections. For Manning's equation, for example, tie subsection
conveyance is k, = (K1n,)A; R,23, so that conveyance repres€nts both geometric
effects and roughless effects on the total conveyance and total discharge. As dis-
cussed by Cunge, Holly, and Verwey ( 1980), it is misleading to !-alculate, for a com-
pound channel, a series of composite values of Manning's n from Manning's equa-
tion for increasing values of depth and discharge. The result is likely to be a
composite n value that varies in an unexpected manner as deprh increases, because
this approach lumps both roughness and geometric effects into Manning's n. What
is sought instead is a smooth function of increasing conveyance with increasing
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dcpth and discharge obtained by defining the total conr eyance as the sum of con_
vcyances in individual subsections. This is referred to as the divided-channel
netlod.

Some diff iculty ariscs in the divided-channel method when the hvdraulic
radius and \r,etted perimeter are defined for the floodplain and main chrnnel sub-
sections. The customary division into subsections, as shown in Figure 4.12, uti_
lizes a vertical l ine between the subsections along rvhich the wetted perimeter
often is neglected. This is tantamount to assuming no shear stress between the
main channel and floodplain flows. In fact, significant momentum exchange
occurs between the faster moving main channel f low and the floodplain flow, so
that the total discharge is less than what would be expected by adding the dis-
charges of the main channel and floodplains as though they acted independently
(Zhe leznyakov  l97 l ) .  Myers  (1978)  and Kn igh t  and Demet r iou  (1983)  measured
the apparent shear force on the vertical interface bet$een the main channel and
floodplain and found it to be significant. Furthermore. the mean velocity for the
whole cross section actually decreases with increasing depth for overbank flow
until i t reaches a minimum and then begins increasing again as demonstrated by
field measurements on the Sangamon River and Salt Creek in Il l inois by
Bhowmik and Demissie (1982). The minimum in the mean velocity for the total
cross section occurred at an average floodplain depth that was 35 percent of the
average main channel depth.

Several attempts have been made at quantifying the momentum transfer at t le
main channel-floodplain interface using concepts of imaginary interfaces included
or excluded as wet(ed perimeter and dehned at varying locations. with or without
the consideration of an apparent shea_r stress acting on the interface. Wright and
Carstens ( 1970) proposed that rhe interface be included in the werted perimeter of
the main channel and a shear force equal to the mean boundary shear stress in rhe
main channel be applied to the floodplain inrerface. yen and Overron 0 973), on rhe
other hand, suggesred the idea of choosing an interface on which shear stress is in
fact nearly zero, This led to several methods of choosing an interface, including a
diagonal interface from the top of the main channel bank to the channel centerline
at the free surface and a horizontal interface from bank to bank of the main cban-
nel, as shown in Figure 4.12. Wormleaton and Hadjipanos (1985) compared the

Centerline
I

FIGURE 4.I2
Compound channel with different subdivisions (H : horizonr.al; V = venical; D : diasonal).
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accuracy of the vertical, diaSonal. and horizontal interfaccs in predicting the sePa-

,u," tuin channel and floodplain discharges measured in an expcrimental flunle of

. iOtt t .Z t m (3.97 ft) and having a fixed ratio of floodplain width to main channel

half-width of 3.2. The wetted perimeter of the intcrface was eiiher fully included or

excluded in the calculation of wctted perimeter of the main channel The results

,no*.d th"t, even though a particular choice of interface might provide a satisfac-

tory estimate of total chinnel discharge' nearly all the choices tended to overpredict

th. ,"p".rt. main channel discharge and underpredict the floodplain discharge' It

uas further shown that these errors were magnified in the calculation of the kinetic

energy flux correction coefficient.
Several empirical methods for rletermining discharge distribulion have been

developed, based on experimental data collected in the flood channel facility at

Hv,lraulics Research, Wittingford, England. as described by Wormleaton and Mer-

reit tt990t. Tne cnannel is 56 m (184 ft) long by l0 m (33 ft) wide with a total flow

capaciry of Ll ml/s (19 cfs). In the experiments, the ratio of floodplain width to

-iin "|ronn"t half-width raried from I to 5 5, and the relative depth (floodplain

depth/main channel depth) varied from 0 05 to 0 50 Two ofthe methods developed

fromthisdata inc|udeaconect iontotheseparatemainchannelandf loodpla indis-
.t'ri!"t .otput"O Uy Manning's equation \f,/ormleaton and M-enen (1990) applied

a coiection iacto, called the O index to the main channel and floodplain discharges

calculated by a particular choice of interface (vertical, diagonal' or horizontal)'

which was eitlei included or excluded from wetted Perimeter The @ index was

defined as the ratio of boundary shear force to the streamwise component of fluid

weight as a measure of apparent shear force' The calculated main channel and

flooiplain discharges, when multiplied by the square root of the O index for each

subsection, showe-<l considerable improvement when compared to measured dis-

c h a r g e s : a n d t h e b e s t p e r f o r m a n c e w a s o b t a i n e d f o r t h e d i a g o n a l i n t e r f a c e ' A
regression equation was proposed for estimation of the <D index as a function of

veiocity difference between main channel and floodplain, floodplain depth' and

floodpiain width. Ackers (1993) also proposed a discharge calculation method for

co-pound channels using the Wallingford data He suggested- a discharge adjust-

meni factor that de pends on coherence, defined as the ratio of the full-channel con-

veyance (with the channel treated as a single unit with perimeter weighting of

boundary friction factors) to the total conYeyance calculated by summing the sub-

section conveyances. Four different zones were defined as a function of relative

depth lratio oi floodplain to total depth) with a different empirical equation for dis-

chige a justment for each zone. In both methods, the regression equations are lim-

ited io thi range of experimental variables observed in the laboratory'

An altemitive appioach to obtaining the discharge distribution has been the use

of numerical analysis to solve the goveming equations Wark, Samuels' and Ervine

( 1990) and Shiono and Knight ( l99l ) used lhe depth-averaged Navier-Stokes equa-

iion, ior rt"udy uniform flow in a prismatic channel to solve for the lateral distri-

bution of veloiity. Their approach requires specifying the lateral distribution of

eddy viscosity. Pezzinga ( 1094) applied a t-e turbulence closuremodel to the three-

dimensional i3l) Navier-stofes equations for steady, uniform flow to Predict sec-

ondary currents and the lateral veloiity distribution' He showed that using the diag-
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onal interface i l lustrated in Figure 4.l2 to compute the total conveyance grve the

least error in the discharge distribution in comparison with the numerical model

Othcr methods for conrpound channel discharge distribution have appeared in the

literature. Bousmar and Zech ( t999) proposed a lateral momentum exchange model

based on the one-dimensional momentum eguation applied to the main channel with

lateral inflow and outflow. They derived an additional head loss term conesponding

to the exchange discharges at the interface. but it has to be obtaincd fronr the simulta-

ncous solution of three nonlinea.r alSebraic equations for the main channel and Ieft and

right floodplains with spccification of two empirical coeFficients. Myers and Lyness

1t ell l suggesteO two entpirical power relations: ( | ) the ratio of total discharge/bank-

full discharge as a function of the ratio of total depth,rbank-full depth, and (2) the ratio

of main channel discharge/floodplain discharge as a function of the ratio of floodplain

deptlvtotal depth. Stunn and Sadiq ( 1996; measured an increase in the rnain channel

vaiue of Manning's n of approximately 20 percent for overbank flow in comparison

to the bank-full value for tuo different laboratory compound-channel geometries'

While it should be apparent that much research effon has been expended on the

problem of discharge and its distribution in compound channels, a final solution

iemains elusive. The methods based on laboratory data are limited to a speciltc

range of compound channel geometries. The 3D numerical approach of Pezzinga

( 199,1), with a more advanced turbulence model and more extensive verif ication by

experimental data, holds some promise for solving the problem ln the interim,

eit-her the divided channel method, using a venical interface with the wetted

oerimeter included for the rnain channel but not the floodplain (Samuels 1989), or

ih. diuid.d channel method with the diaSonal interface that is excluded from wet-

ted perimeter seems to give the best results.

4,13
RIPRAP.LINED CHANNELS

As an application of uniform flow principles, the design procedure for riprap-lined

channels as developed in NCHRP Repon 108 (Anderson, Paintal. and Davenport

1970) is given in this section. lt is an extension of the method of tractive force

developed by the Bureau of Reclamation for stable channel design (Chow 1959)'

Furthei modifications of the procedure by Chen and Conon ( 1988) are discussed'

In contrast to a fixed channel lining such as concrete, rock riprap forms a flex-

ible channel lining that has the advantage of adjusting to minor erosion without fail-

ure and continuing to provide channel stability. The design philosophy is to choose

the channel dimensions and riprap size such that the maximum boundary shear

stress does not exceed the critical shear stress for erosion. As a part of the design

procedure, the flow resistance of the riprap is estimated.
Experimental data on the resistance of rock riprap are summarized in Report

108, and Manning's n is taken as

n : O.Oadt5[6 (4.3'1)
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in which drn : median panicle siTe in leet This equation is of the same form as

Strickler's equation for sand t\ ith the constant c, = 0 0'1 in English units'

The crit ical shear stress relation, also based on rock riprap data, is of the same

form as the Shieltls relation, u hich is described in detail in Chapter l0:

in which r* = critical shear sress required for initiation of motion in lbs/ftr and

d:o = median panicle size in feet. Equation 4.38 implicitly assumes that the parti-

ciJ Reynokls number is large enough that viscous effects are unimponant (i e '

Shields r." : constant; see Chapter l0).
Shear stress distributions are analyzed on both the bed and sides of trapezoidal

channels and the following relations are adopted in NCHRP Repon 108:

(-1.l8)

(4.39)

(4.40)

(4.41 )

( r r ) , -  =  l .57RS

(ri )-* = I 27Rs

in which (rj).", : maximum bed shear stress' and (rD.* - maximum sidewall

shear st.ess.-Alib shown from the theory of stable channels (see Chapter l0) is that

the tractive force ratio, K., at impending motion is given by

rA I  r in]9 l '  :
K , : : : : , l l _ . , , 1

rk L stn-@ I

in which 0 = side slope angle: d - angle of repose of riprap; 16. : critical shear

stress on the sidewall; and 70. : critical shear stress for initiation of motion on the

b e d . T h e t r a c t i v e f o r c e r a t i o . K , , i s l e s s r h a n l i n v a l u e b e c a u s e a s m a l l e r c r i t i c a l
shear stress is required to initiate motion on the side slope due to the gravity force

component down the slope. Angles of repose and suggested side slopes' chosen

such that the ratios of maximum shear stress to critical sheal stress are approxi-

mately equal on the bed and banks, are summarized in Figure 4' 13'

The riprap design procedure can be summarized as follows:

I . Choose a riprap diameter and obtain { and 0 from Figure 4 13'

2. Calculate the iritical bed and wall shear stresses from Equations 4 38 and 4 41'

3. Determine Manning's n from Equation 4.37.
4. For a given channel bottom width, discharge, and slope, find the normal depth

from Manning's equatlon.
5. Calculate rnuiimu* bed and shear stresses from Equations '1 39 and 4 40 and

comDare them with critical values
6. Repiat with another riprap diameter and/or bottom width until the maximum

shear stresses are just smaller than the critical values

This procedure is simplified by Chen and Cotton (1988) in FHWA publication

HEC-15 ior the special case of channel side slopes that are 3:l or flatter In this

case, the riprap on the side slopes remains stable, and failure occurs first on the

channel bed. In addition, Manning's n is computed from the relationship developed

by Blodgett (1986) for the data shown previously in Figure 4 6 Blodgen (1986)

obtained a best fit of the data given by
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which is slightly different than the Keulegan equation u,ith a constant of 1.85 mul-
tiplling the logarithnric term rather than 2.0. [n addition, Blodgett substituted the
hldraulic depth for the hydrrulic radius because they were nearly equal. This equa-
tion gives values of c, = r/d{f of approximatell 0.0-16 to 0.0-1.1 in English units
(0.056 to 0.054 in SI) for 30 < R/dro < 185. ir hich is the upper limit of applica-
bilitv. Therefore, Equation 4.42 gives slightly higher values of Manning's n than the
Andcrson et al. equation (,1.37), for which c, = 0.0,1 in English units. Recall that
the Strickler value for cn is 0.039 in English units usinS the value given by Hager
( 1999). Furthermore, Maynord ( l99l ) dctermined c, : 0.038 in English units from
flume experinrents using rock riprap in the intermediate scale of roughness (5 <
R/dr' < l5) and suggested that this value also could apply in the lower range of
small-scale roughness (15 < R/d50 <.15). Therefore. Equation,l..l2 should give
conservative estimates of Manning's n for riprap design.

The simplified procedure given in HEC- l5 can be summarized as follows:

l. Choose a riprap diameter.
2. Calculate the critical bottom shear stress from Equation.1.38.
3. Estimate Manning's n from Equation 4.42 with an assumed depth.
4. Calculate the normal depth )0 from Manning's equation and iterate on Man-

ning's n from Equation 4.42.
5. Calculate the maximum shear stress on the bottom as 7_r'oS and compare it with

the critical stress.

4.11
GR{SS.LINED CHANNELS

Channels also can be designed for stability with vegetative linings. This has been
done successfully by the Soil Conservation Sen ice for many years. Vegetative lin-
ings are classified according to their degree of r egetal retardance as Class A, B, C,
D. or E. Permissible shear stresses are assigned to each retardance class, given in
Table 4-2 (Chen and Cotton 1988t

A description of each retardance class is given in Table 4-3. The flow resrstance
as expressed by Manning's n value is presented in HEC-15 as a function ofchannel

TABLE 4 .2

Permissible shear stresses and constant o0 for vegetative linings

Retardence
Class P€rmissible rr, psf Permissible tr' Pa

oo in Resistsdce
Equation

1'�7'�7 24.7
100 30.?
,{8 36.,1
29 10.0
l7 12.7

B
C
D
E

3.70
2 . l 0
L00
0.60
0.35
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T A B L E  l . J

Classification of vegetal cover as to degree of retardance (SCS-TP-61)

1 3 3

Vegetal
Retardance
Class Cover Condil ion

\leeping lovegrass

Yellow bluestem

I\chaemum

Kudzu

Bemruda grass

Native grass mix(ure
(l ir l le blueslem, blueslem.
blue gamma, and otlEr
long and sho( Midwesl

Srasses)

\\reeping lovegrass

Lespedeza sericea

Alfalfa

\\'eeping lovegrass

Kudzu

Blue gamma

Crabgrass

Bermuda Saass

Conmon lesp€deza

Grass-legunre mirture-
summer (orchnrd gmss,
redtop, Ilalian ryegrass,
and common lesp€deza)

Centip€degrass

Kentucky bluegrass

Bermuda grass

Common lespedeza

Buffalo grass

Grass-legume mixtur€
fall. spring (orchard grass.
redtop, Italian ryegrass.
and common lespedeza)

[,espedeza sericea

Bermuda grass

Bermuda grass

Excellen! sland, tal l  (avera8e 30 in-) (76 cm)

Excellent stand, tal l  (averaSe 36 in.) (91 cm)

Very dense growth. uncul

Cool sland. tal l  (average l2 in.) (30 cm)

Good stand. unmowed

Good stand, tal l  (average 24 in.) (61 cm)

Cood stand, not woody. tall (average l9 in.) (48 cm)

Cood stand, uncul (average I I  in.) (28 cm)

Cood stand, unmow€d (average I3 in.) (33 cm)

Dense growth. uncut

Cood stand, uncut (average l3 in.) (28 cm)

Fair stand. uncut ( |  0 to .18 in.) (25 to 120 cm)

Good sland. mowed (average 6 in.) ( l5 crn)

Good stand. uncut (averaSe I I  in.) (28 cm)

Co(d stand, uncut (6 to 8 in.) (15 to 20 cm)

Very dense cover (average 6 in.) (  l5 cm)

Good sund. headed (6 to l2 in.) (  I5 to 30 cm)

Good sland. cut to 2.5 in. height (6 cm)

Excellent stand, un ut (average 4.5 in.) ( l  I  cm)

Cood stand. uncul (3 to 6 in.) (8 to l5 cm)

Good stand. uncut (4 to 5 in.) (10 lo l3 cm)

After cuxing to 2 in. height (5 cm)

Very good sland before cutting

Good srand. cut ro L5 in. hei8ht (4 cm)

Bumed stubble

Note: Covers classified hale been te(ed in exp€ n menral cbanne ls. Covers were green and generally unrform
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slopc and hydraulic radius, R. based on the work of Kouwen, Unny, and Hill ( 1969).
Thcse curves are shown in Figure {.1-1. and they are based on the equation given by

R r /6
(4.43)

ao + 16.1 log(R lsoa.1

o)
. E  o l

c

0.01

0.01

0.1

0.1

1
R, meters

Class B

1 0

1
P, meters

'10

FIGURE 4.I4
Manning's n for vegetated channels (Chen and Cotton 1988).
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in which the h)'draulic radius R is in meters; S = channel slope in merers per merer;
and values of ao are given in Table 4-2.

The design procedure can be sunrmarized as follows:

L Choose a vegetal retardance class A, B, C. D, or E and determine the permissi_
ble shear stress, r,,, from Table 4-2.

o)
c
-
c

1
R, meters

Class D

ol
'-

o
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FIGURS 4.14 (ContinueA

2. Estimate a flow depth for given bottom width b and side slopes (m:l; m > 3)
and calculate the hydraulic radius, R.

3. Obtain Manning's n value from Figure 4.14 or Equation 1.43 for the appropri-
ate vegetal retardance class and the given channel slope.

4. Calculate the normal depth from Manning's equation for the design discbarge
and compare with the assumed depth. Iterate on the depth until the correct Man-
ning's n and depth ,r'o have been determined.

5. Calculate the maximum bottom shear stress as rmax = 7-ro.l and compare it with
the permissible shear stress, tp. Adjust the channel bottom width, slope, or veg-
etal retardance class until rme = r p.

This design procedure can be used to design temPoral-v linings such as jute,

fiberglass roving, straw with net, and synthetic mats that are useful for stabilizing
channels immediately after construction before a stand of grass develops. The per-
missible shear stresses and roughness values for temporary Iinings are given in
HEC-15 and by Conon (1999).

ExAMPLE 4.3. A tmpezoidal roadside ditch has a bottom taidth of 1.5 m and side
slopes of 3:1. The channel slope is 0.012, and the proposed channel l ining is a grass-

legume mixture that has a height of l5 to 20 cm. what is the maximum allowable dis-
charge for this lining?

Solation. This example illustrates an altemate design procedure from the one Just
given that is useful for selecting the initial lining. From Table 4-3' the vegetal retar-

o)'e
c

Class E

B, melers
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dance class is C. and the permissible shear stress r, = .18 Pa from Table,l-2. Then the
maximum allowable depth comes from setling r.", : y),J = ro and solving for _r.o:

9 8 1 0  x  0 . 0 1 2
= 0 .408 m (1 .31  f t )

The geometric propcrties of area and \retled perimeter of the cross section for this
depth are

A  : , r ' o ( b  +  n ) o ) : 0 . , 1 0 8  x  ( 1 . 5  +  3  x  0 . , 1 0 8 )  :  l . t l  n r r ( l 2 . 0 f C )

p  =  b  +  2 r o t / 1  + , n  :  1 . 5  +  2  x  0 . 4 0 8  x  \ 4 - : 4 . 0 8 m ( 1 j . 4 f r )

Then the  hydrau l i c  rad ius  R =  A/P:  l . l l / -1 .08=0.272m(0.892f r ) .F romFigure . t . l4
or Equation 4..13. rhe value of Manning's n is 0.074. The allowable discharge from
Manning's equation is

^ -  1 .0
Q  =  

n "  
e R :  ' ,  '  -  

* ;  
/  l . l l  /  1 0 . 2 1 2 ;  

'  
{ 0 . 0 1 2 ) '  r

: 0.690 mr/s (24.4 cfs)

The allowable discharge is compared wirh rhe design discharge ro decide if this lining
is suitable. The final design depth is determined from the procedure given previously.

4.15
SLOPE CLASSIFICATION

Aside from its primary use in channel design, the normal depth used in conjuncrion
with the critical depth of flow is a useful concept in classifying slopes as mild or
steep and ultimately in classifying gradually varied flow profiles. A mild slope is
dehned as a slope on whjch the uniform flow depth is subcritical; that is, normal
depth,.ve, is greater than critical depth,v.. For a steep slope, the uniform flow depth
is supercritical $o < -r"). At the boundary between these two cases, it is obvious that
),0 = )., so that it is useful to define a critical slope as that value of bed slope for
which uniform flow would occur at critical depth. Using Manning's equation, the
critical slope, 5., becomes

-  n tQ '

K:A:R ' /1

1 3 7

T ^

YJ

(4.44)

in which A. and R" represent the area and hydraulic radius evaluated at critical
depth. A mild slope can be dehned as having a bed slope, So, less than the critical
slope, S", while for a steep slope, 56 > S". The critical slope is understood to be a
calculated quantity to be used only as a criterion for classification of a slope as mild
or steep.

The critical slope is a function of the discharge, so that a particular bed slope
may be mild at some discharges and steep at others. This point is il lustrated easily
with a very wide, rectangular channel. For this shape, the hydraulic radius may be
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'1 .0
n =  0 .015

Mild \ Steep

0.002 0.004 0.006
Critical Slope, Sc

0.008 0.010

-  0.8
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d 0.6
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5 o.a
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)  o.2

FIGURE 4.I5
Critical slope for a wide, rectangular channel'

approximated as the depth of flow, and the Manning's equation simplifies consid-

erably so that the critical slope becomes

s.: ld:4]n-,*,
from which the critical slope decreases with increasing discharge For example' a

*id" ,".tungulu. channel with a Manning's n value of 0 015 has a bed slope of

O.OO4 as tnJtun in Figure 4.15. At this value of bed slope, the slope changes from

.ild to ,,""p at a disJharge of 0.216 mr/s/m (2.32 cfslft), which is called the criti-

cal dischargi, 4.. The minimum possible value of the critical slope for the wide rec-

tungut. "ft"unn.t asymptotically approaches zero, and this is called,the limit slope'
"Ttre 

limit slope for a rectangular channel that cannot be classified as very wide is

finite (nao and Sridharan 1970t. If the expressions for area and hydraulic radius for

ui..,ungutar channel are substituted into Equation 4 44 and fte discharge is elimi-

nated bithe relation between critical depth and discharge, the critical slope becomes

(.4.45)

(4.46)

(4.47\

Ifthis cxpression for critical slope is differentiated with respect to -!c and set to zero'

tt".inl*urn critical slope, or limit slope, occurs at y./b : l/6 and has a value of

^ 2.67 g nz

Kr,  b t , '

sn2 lu + 2y,1or'
F"Y' l  un )
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FIGURE 4.t6
Critical slope for a rectangular channel in terms of the Iimit slop€.

The expression for the critical slope in Equation 4.46 can be nondimensionalized in
terms of the limit sloDe to Droduce

a
*

1 . 0

0.8

0.6

0.4

o.2

2.01 . 20.8o.4

( '  . ' ) ) "s.
sr

s o _
sL

-  0.375 (4.48)

(4.49)

( ; )  
"

This equation is plotted in Figure 4.16, from which we see rhat, for a bed slooe less
than the limit slope, the slope remains mild for all possible discharges.

The limit slope can be used to nondimensionalize the expression for bed slope
5o from Manning's equation written in terms of the Froude number of the uniform
flow F^:

0.375F8
( '* ' f ;)" '
(f)'"

in which So is the bed slope; S. is the limit slope; and 1'o is the normal depth. For
the case of Fo : l, this equation reduces to Equation 4.48 with So = S. anO _vo =
,i.. Equation 4.49 is plotted in Figure 4.17 for different constant values of the
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1

0.01

1 0

0.001
0.01

so/sL

FIGURE 4.17
Normaf depth vs. slope for a constant Froude number lRao and Sridharan 1910J (Source:

N. S. L. Rao antl K. Srilharan, 'Linit Slope h Llnifornt FIox Conpnatiotts" J' Hycl Div '

A 1970. ASCE. Reproduced bt pennission ofASCE.)

Froude number. It can be shown that the maximum I'alue of the Froude number

occurs at,r ',,/D : l/6 and hls a value of

(.1.50)

1 0

F."-

This raises the possibility of designing a rectangular channel such that a given yalue

of the Froude number is not exceeded for any discharge the channel may experi-

ence. It is desirable to prevent the maximum Froude number from becoming too

close to unity because of the free-surface instability' associated with critical flow'

EsAl tPLE, l .4 .  A  concre te- l ined  rec tangu ls r  channe l  has  a  bo t tom wid th  o f  3 '0m

(9.8 ft) and a Manning s n of 0.015. The bed slope is 0.007. and the discharge is

expjcted to vary from zero to 60.0 mr/s (2120 cfs). Determine i l the slope is steep or

mild over the full range of discharges. At what slope uould the channel be mild for all

discharges?

So/ation. First, find the limit slope from (4.'17):

: . 6 7 R  n :  2 . o 7  ̂ 9 . 8 1  . U l 5 :
c : -  -  t , _ t l l l 4 u v' '  

K -  b  '  l o '

t;
/ J o

V S ,
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Thus. the acrual slope of 0.&)7 is greater rhan the l imit slope, and discharses in both
the  r t t i l d  and  s te rp . l , ' p c  u l r r r . i l i c : r r i on  a re  po . , r b l e .  Sc t  j  -  0 .00?  rn  F , l uu r r Jn  l . { g  and
solte tbrJ,.  This is a tr ial ,and-error rolurron \^irh r$o r,rnt. .  one tbr \  / ,  > i /6 and
a n o t h e r l b r r ' , / b < l / 6 . T h e r o o l s a r e . \ , / h : l 0 9 8 a n d 0 . 0 l l 5 . f r o r n $ h i c h _ v , = 3 . 2 9
m ( 10.8 ft)  and (1.03.15 m {0.1 l3 l i ) .  The correspondirrg discharges come from lhe rela_
tionship bcl lveen l low r ir te per uni l  of width q and r.,  for rectangular channels:

. / .  \ {a Vrrr  -r  jq '  -  18.? rn:  .  { tot  f r :  . )
in.$hieh onl.v rhe upper rrlue of r '. has bcen il lustrated. The other ralue of4, is 0.020
mr/\ (0.12 frr/5,. The r\ro ralues of crit ical discharge. O.. (= g.b). are 56.1 ,i ir l |! ItSSO
cfs) and 0.060 mr/s {2.1 cfs). Bet$een these two discharges. the slope wil l be sreep, ano
for O > 56.1 mr/s or Q < 0.060 mr/s. the slope wil l be mild. This can be secn in Fie-
ure -l. l  T for the intersection of a venical I ine, along u hich S,y'S. : 0.007/.00.109 : L i l
and the curve for Froude nurnbcr : L0. If the slope could be consrructed to be less than
the Iinlit slope oi 0.00,109, rhen it would be mild for all discharses.

.t.16
BEST HYDRAULIC SECTION

From economic considerations of minimizing the flow cross-sectional area for a
given design discharge, a theoretically optimum cross section can be derived,
although many other factors, including channel stability and maximum Froude
number, may be thc overriding design criteria. Minirnization of flow area implies
maximization of velocity for a given discharge and, therefore, a maximization of
hl,draulic radius, R, for a given channel slope and roughness based on any uniform
flow formula. The problem can be recast rhen as minimizing the wetted perimeter,
P, for a fixed cross-sectional area, A, since R : A/p. Under this criterion. it is clear
that a semicircle would provide the best hydraulic section of all. For the rectansu_
lar section, the wetted perimeter. P, is given by p : b + 2) and subsriruting b-=
A/,1, we can differentiate P with respect to ]. while holding A constant and set the
result to zero:

d P  d l A  ^ l  e
.  - - .  i  + 2 \ ' l - - - - 2 = 0

o )  d ) ' L )  J  r -
(4.5 r )

Then, we see that the best rectangular section has,4 : 2).: and b = 2.y, so that a
semicircle can be inscribed inside it. From the same reasoning (see the Exercises),
the best trapezoidal section is one for which R - _iy'2 and m = l/30J. so that the side
slope angle 0 : en t(l/m) = 60. and rhe shape is thar of a half-hexagon inside of
which a senlicircle can be inscribed.

The best hydraulic section might be desirable only for a concrete_lined pris_
matic channel. lf it is rectangular, an aspect ratio of &/y : 2 for the best section
qould mean that a subcritical Froude number would be less than rts maxlmum
value at b/,y = 6 for a given slope. In addition, secondary currents would be much
more likely in the best section because of its small aspect ratio. However, once
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channel stabil ity beconles an issue, thc asp!'ct ratio is l ikely to grcatly increase to

keep tbe shear stress below ils crit ical value.

4 .17
DIMENSIONALLY HONIOGENEOUS NIANNING'S FORI\'TULA

While N'tanning's r is firmly entrenched in engineering practice, there is I nrsging
clesire to transform Manning's equation in some way that wil l make it dimension-

ally homogeneous. *'hich actually was the intent of Manning when he rejected the

equat ion  tha t  now bears  h is  name.  Equr t ion ' l  2 l  i rnp l ies  tha t  Mann ing 's  n  can be

thought of as having dimensions of lcngth to the ; Po\\er, with K,, then having

dimcnsions of Lrl:/ l  The nondimensionality of the equation, however, sti l l  is qucs-

tionable. because K- u'ould have to take on a value of l.8l ft l /:/s compared to

1.0 ml/2/s in the SI systenl if lUanning's n were to be converted from ml/6 to ft l/6'

Yen (1992b) suggested that this confusing siate of af-fairs could be alleviated by

def in ing  Mann ing 's  equa l ion  to  bc

"- (+)
\ 9 . , -  /

(#)**: (f),c* r A  S ) \

in which n, : ngtt?|K,. This would allow the equation to be truly homogeneous
with the capability of converting n" from ftr/6 to mr/6 or vice versa with no corre-
sponding change of coeflicients in the equation, so long as the dimensional units of

all other variables remained consistent. However, the current values of Manning's
n would need to be conyerted to n" in ftr/6 by multiptying them by 32.2t/211.19 =

3.8 I and to r" in mr/6 by multiplying them by 9.81 rn = 3. 13. Yen ( 1992a) converted
Chow's table"s of Manning's n in this way. In addition. he derived values of equiv-
alent sand-grain roughness, &,. for these tables. Given the established nature of cur-

rent values of Manning's n, the use of the tables for n, is likely to be unpopular
despite its desirability.

4.18
CHANNEL PHOTOGRAPHS

These photographs are provided by courtesy of the U.S. Geological Sun'ey and

come from the work by Bames ( 1967). For each river shown, the discharge and the
water surface profile over several cross sections were measured for a flood event,
and Manning's n was calculated from the equation of gradually varied flow
described in Chapter 5. Figures 4.18 to 4.32 give Manning's n values for main-
channel flow only (Bames 1967). The caption for each photograph shows the mea-
sured depth at the cross section along with the Manning's n value. In some cases,
multrple events with different depths arc shown, and the Manning's n does not nec-
essarily remain constant. This could be due to changes in vegetation inundated for
different depths, effects of large roughness elements in shallow flows, or changes
in bed forms with stage, which will be discussed in more detail in Chapter 10.



FIGTJRE 4.18
Salt Creek at Roca, Nebraska: z = 0.030; depth = 6.3 ft. Bed consists ofsand and clay. (U..r.
Geological Surtey)

FIGTIR-E 4.19
Rio Chama near Chamita, New Mexico: n = 0.032, 0.036; depth = 3.5, 3.1 ft. Bed consisrs
of sand and gravel. (U.5. Geological Survey)
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FIGURE 4.20
Salt River below Stewart Mountai! Dam, Arizona: z = 0 032; depth = l 8 ft'

Bedandbanksconsistofsmoothcobbles4tol0in.indiameter,ar.eragediameterabout6
in. A few boulders are as large as l8 ir. in diamete' (U'S Geological Suney)

FIGURE 4.27
West Fork Bitterroot River near Conneq Montana: n = 0'036; depth = 4 7 ft'

Bed is gravel and boulders; dro = l"l2 rsm'' du = 265 mm (U S' Geological Suney)
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FTGURE 4.22
Middle Fork Vermilion River near Danville, Illinois; n : 0.037; deprh = 3.9 ft. Bed is gravel
and small cobbles. (U.5. Geological Sun'ey)

FIGURE 4.23
Wenatchee River at Plain, Washington: z = 0.037; deptl : I l.l ft. Bed is boulde$: dso: 162
mm; dro = 320 mm. (U.S Geological Suney\
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FIGURE 4.24
EtowahRivernearDawsonvi l le ,Georgia:n=004t ,0 '039 '0035;dePth=98'9 '0 '44f t '
Bed is sand and gravel with several fallen trees in the reach (Il S' Geological Survey)

FIGURE 4.25
Tobesolkee Creek near Macon, Georgia: n= 0'043' 0 041' 0 039; depth = 92' 87'63 ft'

Bed consists of sand' gravel, and a few rock outcrops (IJ'S Geological SuNe!)
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FIGURE 4.26
Middle Fork Flathead River near Essex, Montana: z = 0.041; depth : g.4 ft. Bed consists of
boulders; dro : 142 mm: d* = 285 rnm. (LI.S. Geotogical Suney)

FIGURE 4.27
Beaver Creek near Newcastle, Wyoming: z : 0.043; depth = 9.0 ft. Bed is mostly sand and
silt. (U.5. Geological Suney)
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FIGURE 4.2E
Murder Creek near Monticello, Georgia: lt : 0.045; dePth = 4.2 ft. Bed consiss of sand and
gravel. (U.S. Geological Suney'1

FIGURE 4.29
South Fork Clearwater River near Grangeville, Idaho: n = 0.051; depth = 7 9 ft. Bed con-

sists of rock and boulders; d.n = 250 mm; d6o = 440 mm. (U.5. Geological Survey)
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FIGUR.E 4.30
Mission Creek near Cashmere, Washington: z = 0.057; depth = 1.5 fL Bed of angular-shaped
boulders as large as I ft in diameter. (.U.5. Geological Survey'1

FIGURE 4.31
Haw River near Benaja, Nonh Carclina: n = 0.059; depth = -1.9 fr. Bed is composed of
coarse sand and a few outcrops. (U.S. Geological Suney)
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FIGURE 4.32
Rock Creek near Darby, Montana: n = 0.075; depth = 3.1 ft. Bed consists ofboulders;4n =
220 mm; d* = 415 mm. (U.5. Geological Survey)
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EXERCISES

4,1. Detennjne the normal depth and crit ical depth in a trapezoidal channel $.irh a bottom
width of .10 ft. side slopes of 3: l, and a bed slope oi 0.0O1 fuft. The Manning's n value
is 0.025 and the discharge is 3,000 cfs. ls rhe slope sreep or mild? Repear for n =
0.012. Did the crit ical deprh change? Why or why not?

4.2. Compule normal and cri l ical depths in a concrete cul\en (n = 0.015) with a diame,
ler of 36 in. and a bed slope of 0.002 fVfr if rhe desjgn di\charge is l5 cfs. ls rhe slope
steep or mild? Repeat for S : 0.02 fr./ft.

4.3. For a discharge of 12.0 mr/s, derermine the normal and crirical deprhs in a parabolic
channel that has a bank,full width of l0 m and a bank-fujl deprh of 2.0 m. The chan_
nel has a slope of 0.005 and Manning's 11 : 0.05.

;1.4. For the horseshoe conduit shape defined in Figure '1.1. derive rhe relarionships for
AlAf. RlRt and QlQr. where Ar, Rr, and 01 represenr rhe full flow \,alues of area,
hydraulic radius, and discharge, respectively. On the same graph. plol rle relation-
ships together with those for a circular conduit. plot J././ on the venical axis. Note that
for the horseshoe conduit, A/ = 0.8293 dr and Rr: Q lj lg /.
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4.5 .  A  d ivers ion  tunne l  h isahorseshoeshaper l i rhad ian te tc ro f l l .gm.Thes lopeof thc
runnel is 0.022, and ir is l ined wjlh gunire (| l : 0023). Find rhe normal deDrh for a
discharge of 950 mr/s. Is thc slope steep or mildl

4.6. A trapezoidit channel has vegetated banks \{ith \tanning.s a = 0.0-10 and a stable
bolrom \rith Nlanning s a : 0.02-5. The channel borrom \.\ idth is l0 l. l  and the side
slopes are ,l: l . Find the composite value of lvlanning's n using rhe four methods given
in rhis chaprer if the flow deprh is 3.0 fr.

,1.7. Find the nomral depthina l2 in. diameter pVC slonn sewer flowing at a dlscharge
of L2 cfs if i t has a slope of 0.001. Treat the pipe as smooth, and use the Chezy eou-a-
rion. Verify your solution wirh the graphical solution given in rhe re\1. Whri is'rhe
equivalent value of Manning's n for your solution? Would the value of rl be the same
for other pipe diarleters l

,1.8. A circular PVC plastic (snrooth) storm sewer ha-s a diameter of lg In. At the desien
flow. it is inrended ro have a relarive deprh of 0.9. Ar whar minimum slope can ir 6e
laid so rhat the velocity is ar least 2 fr,/s at desien flow and deposited solids wilt be
scoured out by the design flowl Horr would rour rnswer foi rhe mininrum slope
.h.rnge for I concrele \e\rer?

;1.9. Design a concrete sewer that has a maximunr design discharge of 1.0 mr/s and a mini_
mum discharge of 0.2 mr/s if its slope is 0.0Olg. Check rhe velocity for self-cleansing.

4.10. Derermine the design dcprh of f low in a rrapezoidal roadside drainage ditch wirh a
design discharge of 3.75 mr/s if rhe dirch is l ined with grass having a rerardance of
class C. The slope of the ditch is 0.00,1 and it has a botrom $,idth oi 2.0 m with side
slopes of 3:1. Is the channel stable?

4.11. A very wide rectangular channel is to be l ined \rith a tall stand of Bermuda grass to
prevent erosion. If the channel slope is 0.01 fuft. determine the maximr_rm aliowable
flow rate per unit of width and velocity for channel stabil ity.

4.12. Derive a relationship between the trapezoidal channel side slope ard the angle ofrepose
of the channel riprap lining such that failure of the rock riprapoccurs simultaneously on
rhe bed and banks. Allow tie angle of repose to r.an, between 30. and 42.. What is lhe
mtnimum value of the side slope. m: l. so tlat failure always would occur on lhe bed first?

il. l3. Design a riprap-lined trapezoidal channel rhat has a capaciry of 1000 cfs and a slope
of 0.0005 fr-lft. Crushed rock is ro be used and rhe channel bottom widrh is nor io
exceed l5 fr. Determine the riprap size, the side slopes. and the design depth of f low.

;1.14. A rectangular channel has a width of l0 ft and a \, lanning's a value of 0.020. Deter-
mine the channel slope such that uniform flow uil l alwayi have a Froude number less
than or equal to 0.5 regardless of the discharge.

4,15. A rect:rngular channel in a laborarory flume has a width of 1.25 fr and a Manning,s /]
of 0.017. To erode a sedimenr sample, rhe shear srress needs to be 0.15 lbs/fl. A
supercrit ical uniform flow is desired rl ith the Froude number less than or equal to 1.5
to  a ro id  ro l l  qa t  e . .
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(a) Calculate the nraximum and minimum slopes to satisfy the Frouqe numDer
cnterion.

(b) Choose a slope in rhe range detemined from part (a) and calculare the deprh
and discharge to achiere the desired shear stress.

4.16. A mounlain srream has boulders with a median size (r./ro) of 0.50 ft. .Ihe 
stream canbe considered approximarel! rectangular in shape and vefu wide, with a slope of 0.01.You may assume that k, = 2.d50.

(a) For a discharge of 7.0 cfs/ft, calculate rhe normal depth and critical depth and
classify the slopc as steep or mild.

(r) Discuss how a Manning,s n that is variable wift depth affects the cnrical slopeand the slope cla..rf icarron.

4.17, Find the best hydraulic section for a trapezoidal channel. Express rhe wetted perime-
ter of a trapezoidal channel in terms of area, A, and depth, r, ihen differcntiate p withrespect to ), setting the result ro zero to show that R = ,r/2. Also differentrate p withrespect to the sideslope ratio. rr, rnd set the resulr to zero What is rhe besr value of't and what do you conclude is the best trapezoidal shape?

4.18. A. comporind channel has symmetric f loodprains, each of which is lo0 m wide withManning's.r = 0.06, and a main channel, which is trapezoidal witi a uottom widthof l0 m, side slopes of 1.5:1, and a bank_full depth of ).5 m. Ifthe ctrannet slope is0001 and the rotal deprh is 3.7 m, compute rhe uniform flo* Ji."hu.g" u.,ng tf,"divided channel method, frsr with a venical inrerface borh with and wtthout wetredperimeter included for the main channer, then with a diagonar interface wrti wettedpenmeter exctuded.

4,19, The power-law velocity disrribution in a very wide open channel in unilbrm flow is
stven bv

in which a is rhe poinl velocity; l l . is rhe shear velocity; d is a constanr: z is the dis-tance above lhe channel bed: k, is the equivalent sand-grain roughness; and m is theglven Iracttonal erponenl thal is constant.
(a) Find the mean velocity, y, in terms of a.., and ra, \4here !-., is rhe maximum
, 

vtloclly at i - )oi vu - depthofflow: and m - etponent in power taw.
{D) wnte the expression for y from pan (a) in the form of a uniiorm flow formura

and deduce the value of the exponent ft that is compatible with Manning,s
equation.

4.20, Velociry dara have been measured at the cenrerline of a tilring flume having a bed ofcrushed.rock wirh d50 = 0.060 ft. Consider the Run 12 data"rhar forows, tor which
0 = 2..10 cfs and S : 0.0O281. The elevations. a,, are given *i,f,..rp"o to rhe bot-rom of rhe flume on which rhe rocks have been laid one-layer thick. ,Iire 

average bedilevation of the rocks is 0.055 fl above the flume bortom. iaking this etevalion as rheorigin of the logarithmic verociry disrribution, determine the s-hear stress from thevelociry distribution and compare it with the value obtained from the unifbrm flowrorTnuta. Lrlscuss the resulls

u  (  z \ '
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t,. ft vebcit), tys

0..1.10
0.368
0..t 27
0.285
0.265
0.1,1,1
0.221
0.201
0 . r 8 2
0 . 1 7 0
0 .  r 5 7
0.1 .15
0.  [ ]
0 . 1 2 0
0.108
0.096
0.08?
0.079

2 . 1 9
? . 1 0
2.03
1 .95
l . E 7
1 . 8 3
1 . 8 0
t . 69
L6,r
! . 5 8
! . 5 6
r.,19
L35
t .30
r . 1 5
L05
0.97
0 .E8

4.21. Write a computer program, in the language of your choice, that computes the normal
depth and crit ical deplh in a circular channel using the bisection method. The input
data should include the conduit diameter, Manning's roughness coefftcient. slope, and
discharge. I l lustrate your p.ogram with an example and verify the results for normal
and crit ical depth.

4.22. Write a computer program Io design a trapezoidil channel uith a vegetative or rock
riprap l ining if the slope and design discharge are given. Allow the user to adjust the
vegetal retardance class, or the rock size and angle of repose. and the channel bottom
width and side slope interaclively.

4,23. Using the computer program Ycomp in Appendix B, f ind the nomlal and crit ical
depths for the following compound channel section given in a data fi le. The discharge
is 5000 cfs, and the slope is 0.009. Plot the cross-section. Is this a subcrit ical or super-
crit ical f low?

"DUCKCR". 19..1
-480.796
-.140,788
-,{20,786
-305,784
-t't 5,182
,95,780
-50,778
-30,176
- ) \  7 1 t

2,172
17.172
20;114
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28.780
50.780
670.780
990.782
1070.784
I  r  20.786
l  ?60.8 10
, 9 5  .  . t  . 2 8 , . 0 ' + , 6 7 0 . . 0 8 .  l ? 6 0 , . 0 5
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Gradually Varied Flow

5.1
INTRODUCTION

Gradually varied flow is a steady, nonuniform flow in which the depth variation in
the direction of motion is gradual enough that the transverse pressure distribution
can be considered hydrostatic. This allo$ s the flow to be treated as one dimensional
with no transverse pressure gradients other than those created by gravity. The meth-
ods developed in this chapter should not be applied to regions of highly curvilinear
flow, such as can be found in the vicinirv of an ogee spillway crest, for example,
because the centripetal acceleration in cunilinear flow alters the transverse Dres-
sure disribution so that it no longer is h\ drostatic, and the pressure head no longer
can be represented by the depth of flou.

Even with the assunrption of gradually varied flow, an exact solution for the
depth profile exists only in the case of a u.ide, rectangular channel. The solution of
the equation of gradually varied flow in this case is called the Bresse function,
which provides useful approximations of water surface profile lengths subject to
the assumptions of a very wide channel and a constant value of Chezy's C. The
solutions to all other problems, in the past, were obtained graphically or from tab-
ulations of the varied flow function based on hydraulic exponents as developed by
Bakhmeteff(1932) and Chow ( 1959). Cunently, the use of personal computers and
the application of sound numerical techniques make these older methods obsolete.

5.2
EQTTATION OF GRADUALLY VARIED FLOW

In addition to the basic gradually varied flow assumption. we further assume that the
flow occurs in a prismatic channel, or one riat is approximately so, and that the slope

159
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of the encrgy grade line (EGL) can bc evaluated from unifornr t low formulas s irh
uniforrn flow resisltnce coelicients. using the local depth as though the l lo\\ \\ere
locally uniform. With respect to Figure 5.1 . the total hcad at anv cross scctlon is

v 1
H  =  a  +  |  +  0 * ( - 5 . I )

in which I - channel bed elevarion; l - depth; and V = mean velocity. If this
expression for H is differentiated with respect to _r, rhe coordinale in the flou direc-
tion. the following equation is obrained:

dH

d , ,  
:  s " : - s o * ( 5 . 2 )

in which S" is defincd as the slope of the cnergy grade line: So is the bed slope ( =
dJdt); and E is the specific energy. Solving for dEldr gives the first form of rhc

equation of gradually varied flo*:

dE
dt

: S o - S . (5. l . )

dE

d,{

dH

I
i

EGL

Bed

I
I
1

FIGURE 5.1
Definition sketch for gradually varied flow.
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I

2
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It is apparent from this tbrn of the cquation that thc specil ic encrgy can either

increase or decrease in the dou'nstream direction. depcnding on the relative magni-

tudcs ofthe bed slope and the slope ofthe energ)'grade line. Yen ( 1973 ) sho\r'ed that,

in the gencral case. S" is not the same as the friction slope .t/ ( = r,,/7R) or thc encrgy

dissipation gradient. Nevenheless. we hare no better rray of e\aluating this slope

than uniforn flos fornulas such as those of Manning or Chezy. It is incorrect. how-

ever, to mix the friction slope, which clcarly comes from a tnontetltunt analysis' u' ith

terms involving a. the kinetic elerg,! correction (Martin and Wiggert 1975).

The second form of the equation of gradually varied l low can be derivcd if i t is

recognized that dEldt : dEld-r' ' dr'/dr and that. from Chapter ?. dEld.r' = | - Fr
provided that the Froude number is properly defined. Then' Equation 5.3 becomes

d,r' So S"

d { l F r

The dellnit ion of the Froude nuntber in Equation 5.4 dcpends on the channel geon-

etry. For a compound channel, it should be the compound channel Froude number

as defined in Chapter 2, while for a regular, prismatic channel, in which dald-r' is

negligible, it assumes the conventional energy definit ion given by ap:8/gA1.

5.3
CLASSIFICATION OF WATER SURFACE PROI'ILES

Equation 5.4 can be used to derive the expected shapes of water surface profiles for

gradually varied flow on nti ld. steep, and horizontal slopes. for example. It is

imponant to identify these shapes before running a water surfacc proll le program

because the location of the control, where a unique relationship cxists between

stage and discharge, and the direction of computation (upstream or downstream)

depend on this knowledge. ln effect, identif ication of the control for a given profi le

amounts to specification of the boundary condition for the numerical solution of a

differential equation.
Equation 5.,1 provides the tool for determining whether or not the depth is

increasing or decreasing in the downstream direction and also for determining lhe

limiting depths very far downstream and uPstream ior particular gradually varied

flow prohles. In order to deduce the shapes of the profi les, it is sufficient to deter-

mine qualitatively the relative magnitudes of the terms on the riSht hand side of

Equation 5.4. For this purpose and in the numerical computation ol gradually var-

ied flow profi les, we assume that the local value of the slope of the energy grade

line, S", can be calculated from Manning's equation using the local value of depth

as though the flow were uniform locally. Therefore, the following inequalities hold

when cornparing the magnitude of the local depth ) at any point along the profi le

with normal depth ,ln:

(5.4)

_ r  (  l o :  S " ) S o

) > ) o :  s . ( s o

(s.5 )
(5.6)
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In  add i t ion .  i t  i s  apparent  tha t  the  va lue  o f  thc  Froude number  squared rc la t i ve  to
unity is determined by the magnitude of thc local depth relative to the crit ical
dcp th  r ' , :

-r' ( -r',: F: > I

) > ) , ;  F r < I

(s.7 )
(s .8)

With the\e inequalit ies and Equation 5..1, the graduall l varied Uorv profi le shapes
can be drtcrmined, as shown in Figure 5.2.

The l-low prolrlcs shown in Figure 5.2 are designated M, S, C, H, or A for mild,
steep. crit ical, horizontal, and adverse slopes. respectively. The flow profi les are
funher identif led numerically as l. 2, or 3 counting from the largest depth region
do\l nward. based on the two or three regions delineated by the normal and crit ical
depth l in.'s. Only two rcgions occur for crit ical, horizontal. and adverse slopes.
bccause normal depth does not exist in the latter t$o cases. while in the former
case. normal depth equals crit ical depth. Funhermore, all profi les are sketched
assunring rhat f low is from left to right. It is important to keep in mind that the con-
trol alwals is downstream for subcrit ical f lows and upstream for supercrit ical
flo$ s. Hence, the direction of computation of subcrit ical profi les is upstreanr, and
for supercrit ical profi les. it is downstream.

Consider the rnild slope in region I for which,r' ) ,r 'o ) _r'... From the inequal-
it ies in Equations -5.5 through 5.8, we can conclude tlat d_r'/dx > 0 so that the Ml
protrle aluays must have an increasing depth in the downstream direction. As y
approaches ]0 in the upstream direction, dy/dr approaches zero asymptotically,
while in the downstream direction d_r/dr approaches S0, so that a horizontal asymp-
tote exists. The Ml profi le sometimes is called the backwater profle and exists
r,,here a reservoir "backs up water" in the tributary stream flowing into it. In region
2 on a mild slope, where,r'. ( _r' ( _ro, S. > So, and F < I so that d_)/dr < 0. As I
approaches,ln in the upstream direction, dr/dr approaches zero, so we have an
asymptotic approach to normal depth from below. In tie downstream direction, the
M2 profi le approaches crit ical depth where F : l, but the manner in which it does
so is not immediately obvious. However, if we consider a mild slope followed by a
steep slope. S" > S0 upstream of the slope break, where crit ical depth occurs, while
dou nstream of the slope break, S" ( So because _r > r'o on the steep slope. It can be
reasoned then that S0 = S. at the slope break and boti the numerator and denomi-
nator of (5.,1) approach zero, so that d]y'dr is finite as the water surface passes
through crit ical depth. In region 3 on a mild slope, u here _l ( _r. ( _yo, S. > So and
F >1, so that d,I/dr > 0. As _y approaches ,r. in the downstream direction, F
approaches I, and d_ry'dr approaches infinity, although a hydraulic jump would
occur before that happens. In the upstream direction, both the numerator and
denominator of (5.4) approach infinity as the depti approaches zero, and dy/dr
approaches some positive finite l imit that is of no practical interest, since there
would bc no flow for no depth.

It is of interest to note that both Ml and M2 profi les, which are subcrit ical,
approach normal depth rn the upsteam direction, as controlled by the value of the
dou'nstream depth. The other profi les in Figure 5.2 can be deduced in the same way
as for the mild slope. In contrast to the Ml and M2 profi les, the two supercrit ical
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profi les, S2 and S3. approach nornral dcpth in the r/orlrrslrrrrnr dircction. as detcr-
mincd by the value of the upstream depth.

Composite florv profi les for a variety of f low situations can be sketched as
shown in  F igure  -5 .3 .  In  F igure  5 .3a .  a  mi ld  s lope is  fo l lowed by  a  mi lder  s lope.
If the downstrcam slope is rcry long. with uniform flow established as the con-
trol, then the depth rnust remain at rormal deplh all thc way to the upstrcanl

- s 2

16.{

Reservoir

f" l i lder
(very long)

(b)(a )

(d)(c)

Reservoir

NDL
CDL

Mitd
(very bngl

t
Free
overfall

Mitd
(short)

(f)(e)

,j n?

(s)

FIGURE 5.3
Composite flow profiles with various contJols.

( h )

M2
-  - r -  C D L

Reservoir
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slope. This is becausc thc nli ld slope profi les cannot approach normal depth in
the  downst ream d i rec t ion  bu t  on ly  d i re rge  f rom i t  ( i .e . ,  M I  and M2) .  As  a  rcsu l t ,
the upstream ir{l protrle does not bcgin unti l thc upstream slope is rcached. Fol-
Iorving the same reasoning. the stecp slope followed by a steeper slope in Figure
5.3b must have an S2 or S3 proti le on the upstream slope that reaches normal
depth  and remains  there ,  i l  the  s lope is  very  long,  un t i l  the  break  in  s lope is
reached.

The occurrence ofcrit ical depth is a very imponant control, sho*n at the break
between a mild and steep slope in Figure 5.3c. Based on th€ preceding reasoning.
the water surface must approach somc finite slope as it passes through crit ical
dcpth. Crit ical depth also occurs at the entrance from a reservoir into a steep slope
and at a free overfall, rvhere there is a similar release or acceleration of the flow, as
shown in  F igures  5 .3d  and 5 .1e .

The entrance from a reservoir into a mild slopc is shown in Figures 5.3e and
5.3f. For the long mild channel in Figure 5.3e, the control is normal depth at the
entrance, if the channel is very long (hydraulically). but s*itches to the tailwater
depth if the channel is short as in Figure 5.3f.

Flow profi les on a mild or a steep slope with a sluice gate installed midway along
the channel are shown in Figurcs 5.3g and 5.3h, respecti\ely. In Figure 5.3g, the
sluice gate forces an M I profile to occur upstream and an M3 profile to emerge from
undcr the gate downstream. The M3 prolile has an increasing depth until tbe momen-
tum equation is satisfied for the sequent depth occuffing in the downstream M2 pro-
fi le. The result is a hydraulic jump (HJ). A similar situation is shown in Figure 5.3h,
except that the slope is steep and there is an 53 profile upstream of the jump and an
S l profi le dor,' nstrean of the jump controlled by the position of the tailwater.

5.4
LAKE DISCHARGE PROBLEM

The flow situations i l lustrated in Figures 5.3d, 5.3e, and 5.3f lead to an irnponant
problem if the discharge is unknown. because it is unclear whether the given slope
in fact is mild or steep. lf the head H at the channel entrance is given, we can write
the energy equation for the steep slope in Figure 5.3d between the upslream lake
\!ater surface and the channel enlrance where the depth is crit ical (neglecting
losses) io cive

For depth equal to the crit ical deprh. the Froude number must have a value of I
so that

O 1
' '  ) . a :

ctO1B..
l

(5.9)

( 5 . l 0 )
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On the other hand, if the slopc is mild and the channel is very long as in Figure 5.3e,
the entrance depth is normal depth and the relevant equations for solving for Q and the
entrance deDth are

H : : " 0 ( 5 . 1 r )

( 5 .  l 2 )

+ 4
2eAa

o = f  eon i 's ; '

in which 1o is the normal depth. Which of the tu.o conditions prevails can be deter-
mined by assuming that the slope is steep and solving Equations 5.9 and 5.10 for the
critical depth and critical discharge, ,r'. and Q.. These values of _v. and Q. then are
substituted into Manning's equation to calculate the crit ical slope. lf the bed slope
So > S., then the slope indeed is steep and rhe discharge is Q.. On the other hand, if
S0 < S., then the slope is mild and Equations 5. I I and 5.l2 musr be solved to deter-
mine the actual Q, which will be less than O.. In case the slope is not very long, the
normal depth,1,o in Equations 5.11 and 5.12, must be replaced by an entrance depth,
_v. * 1,0, which can be determined only from r.r'ater surface profile computation. ln
that case, Eguation 5. l2 is replaced by the equation of gradually varied flow, which
must be solyed numerically as shown in the following section.

E X A M P L E 5 . l� A very long rectangular channel connects two reseryoirs and has a
slop€ of 0.005. The channel has a width of l0 m (32.8 ft) and a Manning's n of 0.030.
If the upstream reservoir surface is 3.50 m ( I 1.5 ft) above the channel inlet inven and
the downstream reservoir is 2.50 m (8.20 ft) above the outlet inven. determine the dis-
charge in the channel.

Sotuttba. Init ially assume that the slop€ is sreep. In this case, Equarions 5.9 and 5.10
are panicularly simple for a rectangular channel. They become

) )
r ,  =  

:  H  = ;  x  11 .s .1  
' :  

2 .33  m (? .66  f t )

q = Vs.v: : Vs.st x 2.33r : I l .t mr/s (r20 fr?/s)

in which Il : upstream head of the resenoir surface relative to the channel inven and
q : discharge per unit of channel widrh. The crirical slope can be computed from

0 . 0 3 ' �  x  ( t 0  x  l l . l 4 ) ,

L o r  .  ( r o  r  u . r r r ' ^  
l ( r 0 + 2 x 2 . 3 3 )

( 1 0  x  2 . 3 3 )

] "

= 0.01 I

Now, since So < S,, the slope musr be mild. In rhat case, Equations 5.1I and 5.12 must
be solved simultaneously:

n lo  
j

,  
K:A:R"3

o 2
J . ) = ! n i - - - - = v ^ +' "  2eA(,

Q .
1 9 . 6 2 x ( l 0 x - r o ) ' �

p = K' 
1;q;r5 'r' = rc

( 1 0 + 2 . y 0 ) : 1

(10 x -vo)51r

( 1 0 + 2 x y o ) ' � r

Q ,: to * 
rs6D( *

x  (0.0o5)r ' �  :  109.4 );/'
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By tr ial  and eror. assutue a ralue of r, ,  (<1.5) and sub\t i lute i t  inlo the second equa_
lron to solve for p. Then. substi(ute O and t.o into the f irst equation and i terate unti l  the
result is 3.5 m (11.5 f l)  tbr rhe heacl. Alternal irely, the second cquation can bc substi ,
tuted into the l l rst and a nonl inear algebraic equation solver can be applied Solr ing by
tna l  and  e r ro r .  $e  f i r s l  r r i a l  g i \ es  r0  =  3 .0  m  (9 .8  f 1 ) .  O  =  l 08mr / s (3g l0c f s ) . and ,y :
3.66 m ( 12.0 ft) .  For lhe \econd tr i l l .  r ,o :  2.5 m (8.2 ft) .  Q = 6.r.3 1rr7. 1'r920 cfs). antt
H :3 .06m ( l 0 .0 f t ) .  Fo r the  rh i r d  and  f i na l  r r i a l . ) o  =  2 .87  m{9 . {2  f r ) .  e :  IO I  mr / s
(3565 cfs), and H = -] .50 n) ( I  1.5 fr),  which gives rhe l lnal anslr.er. The crjr ical depth
can be calculatcd ro be y, = {?r/g)r/r = 2.18 m (7.15 fr).  so the slope jDdeed is mild.
The Froude nuntber of the uniform f lo$ is 0 66. The l \ l l  prof i le \rsn\ from a depth of
2.5 m (8.2 ft)  al the downstream end of thc channel and approaches normal deprh before
it  rcaches the upstream lake. since the chanrrel is very long. This also can be referred tcr
as a hdraul i tal l t  l<tng channel. We explore how long this realh, is in the next section.
This exanrple negiecled the approach lelocity head and the channel entrance loss. but
these can be added easi ly \4ithout changing the sotut ion procedure.

5 . 5

IVATER SURFACE PROFILE CON{PUTATION

The compuration of water surface profiles has many imponant apptications in engi-
neering practice. A prismatic drainage channel, stomt sewer, or culven designed for
uniform flow ntay be checked for its performance under gradually varied flow con_
ditions. Floodplain mapping, which is the determination of the extent of f loodins
for a flood of specified frequency, requircs water surface prohle computation\ in ;
natural channel of irregular and variable geometry. slope, and roughness.

The problem formulation in $'ater surface profi le computations usually speci-
fics a dcsign di:charge set bY fiequerrs).r,:urrsidcrrtions and requrrcs tlre sclcit ion
of channel roughness, slope, and geometry. In the case of a nirural channel. the
channel roughness, slope, and geometry are measured for a series of reaches within
which these parameters are relatively constant. With this information given. the
mathematical problem is to solre the equation ofgradually varied flo\,, roibrain the
depth as a function of distance along the channel, ,r. - F(.r), subject to a boundary
condition established by the channel control. The control can be a measured stage-
drscharge relation, nornal deprh. cntrcal depth, or a depth set by a hydraulic con-
trol structure.

Two types of methods can be used to solve the equation of gradually varied flow
in the form of either Equation 5.-j or Equarion 5.4. In the firsr type, rhe disrance is
dctermined for a specified depth change. This approach can be classified e.rplici l and
sometimes is called the direct step method, because the soiution is direct, requiring
no iteration. Equation 5..1. for example, can be reprcsented symbolically as d,r,/dr -
f,r '), where /lv) is the nonlinear funcrion of r specified by rhe right hand side of
Equation 5.,1, in which both S. and F depend on the local depth r,. This is an ordi_
nary differentirl cqurrion for q hich rhe varilble:, can be ,epaiared a.

. d,f

,t t)l
( 5 . 1 3 )
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' fh is  
equat ion  can be  so l red  by  numer ica l  in tcgr i r t ion  or  i ln i te -d i l le rcnce. rp l r r , r r i -

na t ion l  in  e i ther  case.  a  change in  dcp th  I  i s  spcc i f i cd  and the  cor respond i r )g
chan-ce  in . r  i s  computcd  cxp l i c i t l y .  Th is  n teans  no  cont ro l  e \ i ! l \  o \c r  the  pos i l ions
.r, or channel stations. qherc the solutions for depth are obtained. thich is no prob-
lem in a prisnratic channel. because the cross-sectional propcnies do not change
u i th  d is tance. r .  In  a  na tura l  channe l .  on  thc  o ther  hand.  c ross- icc t iona l  p ropen ies

are determined belorchand at particu)ar locations. so thal a dit lercnt approach is
requ i red .  in  r ' "h ich  depth  is  computed as  a  lunc t ion  o fspcc i l red  changes in  d is tance.
In this case, the rariabl-'s arc scparated as

d_r. = /(_r.) dr (s. r.1)

and it appears that the numerical solution procedure has to bc- iteratir e to conrpute
the value of Jr for a specihed Lr. because the unkno$n appcrrs on both sides of
rhe equation. If i teration is required. the approach is considered inplicit. On thc
other hand, a cfass of techniques, callcd predi< tor-t offedor tnetltods. thrt esscn-
tially are explicit also can be applied to the problen posed in this \\ 'a)'. r, ' i th the
depth unknown at specified locations along the channel.

Regardless of the nunerical solution technique chosen for solution of thc cqua-
tion of gradually varied flow, \re wil l assume that the slope of the energy grlde l ine,
5", can be evaluated from Manning's or Chezy's equation using the l@-al value of
depth. Essentially, the flow is assumed to behave as though it rvere locally uniform
for the purposes of evaluating the slope of the energy grade line. Effects of nonuni-
formity can be lumped into the resistance coefficient. but the condition of gradually
varied flow sti l l  must be satisf-red.

5.6
DISTANCE DETERNIINED FROM DEPTH CHANGES

Dir€ct Step Method

ln principle, the direct step method could be applied to either Equation 5.1 or 5..1
but usually is associated with the former. Equation 5.-3 is placed in Inite diflbrence
form by approximating the derivative dEld\ with a fbrward dif-fcrence. as described
in Appendix A. and by taking the mean value of the slope of the energl- grade line
over the step size Ir - (-r,+r - -r,) in u'hich distance t and the subscript i inererse
in the downstream direction. The result is

F F
L I + I

J o  -  J .

uhere S" is the arithmetic mean slope of the energy grade line bctuecn scction: i
and i * I, with the slope evaluated individually from Manning's equilt ion rt euch
cross section. The variables E,-,, E,, and 5" on the riSht hand side of Equation -5.l-5
all are functions of the depth r'. The solution proceeds in a step$'ise flshion in Lr

( 5 . 1 5 )
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b1 assurning values of dr. 'pth _r' and therefore va)ues of specific energy. E. As Equa-
tion 5.l5 is *ritten. -r increases in the do\\nstream direction. In gencral. upstrc,am
compura t ions  ur i l i ze  Equr t ion  5 .15  rnu l t ip l ied  bv  l .  so  thar  rhe  cur renr  va lue  o f
specific energv is subtractcd from the assumed r aiue in the upstream direction and
It becomes (.r, - .r,_,). rvhich is negative. Thcrefore, iI the equation is solved in
the upstrean) dircction fbr an M2 profi le, for erample, the contpured values of Jr
should be negative fbr increasing values of _1. Decrcasing values of _r'should rcsult
also in ncgative yalucs of Ir for an Ml profi le. For an M3 profi le, which is super-
crirical, incrc-asing values of depth in the do\\ nstreant direction correspond to
decrcasing values of specific energy. and Equation 5.l5 indicates positive values of
\r since S, > du

Although the direct srep method is the easiesr approach. it requires inrerpola-
tion ro find the final deprh at the end of thc profrle in a channel of specified length.
Some care nrust be takcn in specifying starting deprhs and checking for depth l im-
rts rn a computer program. In an M2 profi le, for exantple. rhe staning depth should
be taken sJightlv grearer than the computed crirical deprh. if i t is the conrrol.
because of the slight inaccuracy inherent in the numericrl evaluation of crit ical
depth. ln addition, the M2 profi le approaches normal depth asyntptotically in the
up\tream direction. so that some arbitrary stopping l imit must be set, such as 99
perccnt of normal depth.

ExAl tpLE s .2 .  A  r rapezo ida l  channe l  has  a  bo t tom widrh .  b .  o f  9 .0  m (26 .2  f i  )  and
a sideslope rario of 2:L The Manning s n of rhe channel is 0.025. and it is laid on a
slope of 0.001.Il rhe channcl ends in a free overfall, compute the warer surface profi le
for a discharge of -j0 mr/s.

So/rltbt, First. norrnal depth and crit ical depth nlust be determined. From llannine.s
equation.

i-r',18.0 + 2r,,)l ' l

from which r,,: t.75.1m (5.755 fr). Set the Froude nunrber (OBl.r)/(V.SA: r) = I and
solve for crit ical depth:

lr.(8.0 + 2r, )lr r

It.o r :-'.v/i + l]r'

l8 .o + ,1 t ,  ] r  
r

0.015 x 30

1 . 0  x  0 . 0 0 t  , ,

30=  _  =  o  s q
v  9 . 8 1

= 0.028 m (-0.092 fr)

from which t. = 1.03 m (3.18 fr). Therefore, rhis is a rnild slope and we are compul,
ing an M2 profi le that has crirical deprh ar rhe free overfall as rhe boundary condition.

The direct step method can be programmed as shown in Appendix B or solr.ed in
a spreadsheet. as sho$n in Table 5-1. The values oi r are selected in the first column:
and the formulas for determining the specific energy. E, and slope of the energy grade
line, S". for a given depth are shown at the bonom of the spreadsheet. The arithmeric
mean of S" (Seba.r) is compured in column 7. and the change in specific energy lE {Del
f) i l  the upstream direcrion is shown in column 8. Then, the equation of gradually var,
ied flow in finite difference form is solved for the distance steD. I(. as

s - - s
r.6:E.0,1

lo 0o r 6.o9f-03 r



-

i 4 q q f ? 5 5 n : ; 7 r t = - s
i i = a

t

- E

o

y . n

a >  *

> Et l i l  1 - .

E

: - . L

3 :

170



a

; a 2 3

E
:

+ a
€ 4 , o - <- - l  i  d
l r t l l l

t7 l

) l l a c = ( . ' . ' :
i  - ,  ;  :  :  :  :  I  1 : j  r j ; l  t  ;  r . t ;  =  s  ; :

i i l '

:  =  :  :  - -  a  f  3  -  =  a ?  ? o o  =  5 q  - _  : _ '  :  :
-rt rJ -:: _ -d Jl J tlj.rJ J --,: r r _ :! i --i -:- -:i :- _:i -:_l :  *  f  i . l  =  = . ; . 2  r : ; ; ;  i ;  t ;  a  =  5  3
ci cj ci ci .i .i .i -j -: : -: : :

3 : i  = " :  i  i :  €  i  f  :  i  i  i  f  :  2 n i r n

a- 4 Y. .t ? r,.- 9 ' ' : b I - 4. d - = J t x , t (.- . -  -  - .  - j €  ? .  1 r , r I " . q r ^ n . r o - . a j :r r , 6 € €  o , 3 3 3 _

2 . i = _ 1 i  I : :  !  ? 7 . i i  !  !  M  !  i  i  F

: €  ?  6  3 5  *  !  c e F  R E 5  €  s €  q f r  ; j  ;  s



t12 CHAPTER 5 :  C radua l l y  V .U ied  F Iow

000 -€00 _600 -40o -200

Distance UPstream, m

E
i

<D
o

0

T.ICURE 5.4
M2 uater surface profile computed by the direct step method

in the f irst step. Note that at least three signif icant f igures should be retained in AE to

avoid large roundoff enors when the differences are small in comparison to the values

of E. In the last column, lhe cumulative values of lr  are given' and these represent the

distance from the staning point to lhe point where the specified depth -! is reached After

t} le f irst step, uniform increments in depth,\ ' .  $i th \  increasing in the upstream direc-

t ion. are ut i l ized. The values of ]  are stopped al the t ini te l imn of 1.745 m (5 725 ft) '

*hich is 99.5 percent of normal depth. The length required to reach this point is I27l

m (,1170 ft),  which is the length required for this channel to be considered hydraul ical ly

long, but that length varies. in general.  The depth increments can be halved unti l  the

change in prof i le lengrh becomes acceplably small- Alte.natively'  smaller increments in

depth can be used in regions of rapidly changing depth, and larger increments may be

appropriate in regions of very Sradual depth changes. A portion of the computed M2

profi le is shown in FiSure 5.4.

Direct Numerical Integration

The direct numerical integration method is applied to Equation 5 4' which also can

be solved by the direct step method, but in this case numerical integration is

employed. In the integrated form, Equation 5.4 b€comes

t '  f '  l - F :  [ '
I  a ^ - , , . , - , , = l  ^  ^ d ' = l  g ( \ ' )  d . r  ( 5 . 1 6 )
) ,  J ,  Je  r ,  ) .

The integrand on the right hand side of Equation 5. l6 is a function of .r, glr '), which

can be integrated numerically to obtain a solution for !r, as shown in Figure 5 5'

Normal
depth M2

h
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FIGURE 5.5
Water surface prol i le computation by direct numerical integration.

g[r',-r) + g(l ' i)
(,r',. , - l ')

A variety of numerical inregration techniques are available. such as the trapezoidal
rule and Sinpson's lrule, which are cornmonly used to find the cross-scctional area
ofa natural channcl. lbr example. Sinrpson's rule is ofhighcr order in accuracy than
the trapezoidal rule. which simply means that the sarne numerical accuracy can be
achieved with fewer integration steps. Application of the trapezoidal rule ro the
right hand side of (5. l6) for a single step produces

To determine thc full length of a flow profi le. (r, .r0), multiple application of the
trapezoidal rule results in

el

( 5 . 1 7 1

(5. r 8)L - x n - . r - 0 - , [

n l

g ( , \ ' r ) + s ( , \ ' , ) + Z )
r = 1

where L - profi le length and tr_] : (-I,,- | 
- y) = uniform depth increment. Because

the global truncation error in the mulriple application of the trapezoidal rule is of
order (A_r)r, halving the depth increment wil l reduce the error in the profi le length
by a factor of l/4. By successively halving the depth interval, the relative change in
the profi le length can be calculated with the process continuing unti l the relative
error is less than some acceptable value.

r,"^



C H  \ P l l  k  5 :  C r r d t r ; l l r  V u r r c r l  l  l ' r *

f , .  /

DEPTI{ CONTPUTIl I )  FRO}{ DISTANCE CHANGES

Thc second approach to thc solulion of thc eqtrction of gradually raricd l low is

exac t ly  oppos i tc  to  th r  t l r \ t .  ln  th is  c lass  o f  mcthods ,  dcp th  changes are  de tcnn ined

for specified changes in di\tancc. This solution strxtegy is ntore appropriate for nar

ural channels in u hich cross-sectiontrl properties arc determincd by surreys at spe-

cit lc locations along the channcl. but it can be used lbr artif icial channtls as rvell '

I f  Equat ion  5 . -1  i s  in tegra ted  to  ob ta in  a  so lu t ion  lb r  dcp th  as  a  lunc t ion  o f  d is tance.

l I  Decomes

i '  so  -  S"
r , - r - r , = J ,  - f  " . ,  o . - (s. l  e)

Thc dilf icultv with (5.l9 t is readily apparcnt whcn we recognize that the integrand

itsclf is a l lnction ofthe unknown depth. -v An altcrnative is to use the Tlylor series

expansion foli,-, and drop all terms beyond the l lrst derivative tem''

- r ' , r1  =, r ;  +  / ( - r ' , ) l . r (5 .20)

where /(,r) : clr '/dt, wbich can be evaluated at point.r, from Equation 5.4 This

method, known as Euler's nrcthod, sinply extends the slope of the solution curve

for depth -v forward from .t, as a straight l inc to obtain the next estimate of) at ri*r '

The terms dropped from the Tay)or scries expansion make the local truncation error

O(Arr) as discussed in Appendix A, while the global truncation error (local plus

propagated) for multiple steps is O(Ir) (Chapra and Canale 1988) This is referred

to as a first-order method. In gencral, it requires very small step sizes' and there-

fore considerable computational effon. to achieve acceptable accuracy

An improved Euler's method can be formulated by evaluating the slope of the

function at both ri and ,r, - ' , then applying the arithmetic mean of the two slope esti-

mates to move the solution forward However, because the slope cannot be evalu-

ated at i + I , since -r is unkno* n there, the value of 1',* , is first predicted by the

Euler method to evalua(e the sloPe/(ri* r) The value of ,v,* , then is conected using

this estimate of the slope in the determination of the mean of the beginning and

ending slopes over the interval. The resulting predictor-conector equations' known

As the Heun method, or corrected Euler method, are

l ' t o r *

, r l - r  :  t ,  +/( , r ; )Ar (s .21)

(s.22)Lf(v,) +/(-I l - ,) l
Ar

in which the superscript zero is used to identify the predicted value of -v,*r in (5 21),

which then is substituted into the corector formula given by (5 22)' This, refened

to as a one-slep predictor-corrector method, is part of a larger class of solution

techniques known as Runge-Kutta methods Also apParent is that Equations 5 21
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and 5.22 can be i terated back and forth to inpro,,e the .r, lut ion. Hou$er. the i ter_
ative approach must be used with caution because rhe c,rror lctul l ly nlay grow
rather rhan shrink (Beckett and Hun lg6T). l f  Equation. _i. l l  and -5. l l  rr" not i t" .-
ated. the)'can be shown to bc a second{rde-r iunge,Kutta method (Chapra and
Cana le  1988 )  w i t h  a  g l oba l  eno r  t ha t  i s  O ( I r r ) .

E IA I I pLE  5 . j .  Compu te  t he  M2  p ro t i l c  o f  Examp le  5 .1  us ing  t he  c r r r r ec ted  Eu le r
melhod \r i (houl i terat ion and conrpare the results.

Solul ion. fhe solurion is accomplished in the spreadsh:cr sho*.n in Iable -5_2, using
Equations 5.2I and 5.:2. Firsl ,  the values of area (A I).  hl i j raul ic radius (R l).  and rop-
width (B I) are conputed for the rnit ial  \  t luc of depth ,, , ,  i , .  h".,rr," (her are neeoerl 1o
calculale the functionjr( l)

f t r r :  l '  -  s j
' t

The value of/Iyl) is given in column 6 Thc predlcled r.alue ofr. (,\f:pred) at the endof.the spatial interval is given in column 7, compured fronr Equerion 5.21 using rhevalue of/(r ',) in column 6. Coluntns g. 9, and l0 are ne.ded lo compute the value of
f(y2:predJ in column I l. The corrected value of _y. is compured from Bquarion 5.22 incolumn 2 of the next row for a given step size in i. anO r-t " pr*er.-begins again_ At adrsrance of l27l m (4170 fr). the correcred Euter merhod gires a deprh of 1.744 m(5.722 fl), whilc the airecr step method yields a deprh of 1.7{-5 m 15.72S frl at the samelocation. This is a relarive difference in depth of iess *an O.f f"r".nr. If rhe intervalsize in depth _r, is halved in rhe direct step method, the resulring depth rounds to | .744 m(5.722 fl) in agreemenr wirh rhe conected Euler method. ..fr it," f,.glnning of rn".o.putatlon in Table 5-2, the steps in the spatial coordinite.t hare be-en taken to be verysmall because of the steep, rapidly changing slope of the \12 *.ater surtace prol.i le nearcrit ical deprh.

The 
-most 

popular Runge-Kutta method is the founl_order method, which

:,e-1u-tle: 
four equarions or sreps ro proceed from point i ro poinr i i L fhe equa_tlons are recursive, in that each uses a value computed from the previous one. Themethod can be summiLrized by

,v,+r = )i * 
flto, 

* ro, + 2kr + e.,)]l.r

. f * , )
A r \* t o ' )

(5.23 )

(5.23a)

(5.23b)

(5.23c)

(5.23d)

in which

i<, = /(r" -v,)

/  n "
r ,  = / (x ,  +  

] , r r

. - ( A x( t  = / \ . r ,  +  
T , r ,

ka=f(x,+ Ax,,r ,  a Axk.,)
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The founh-order Runge Kutta rnelhod can be applicd u,ith adaprive \rep rire con-
trol such that. at each srep. thc stcp size is f irst taken as a full srep and thcn taken
as l$o half steps. Thc djffcrence between thc t*o esrimares of depth is used to
adjust lhe step sizc so lhat some specificd rclative error critcrion is rnet on a step-
by-s tep  bas is  (Chapra  and Cana le ,  1988) .  In  genera l .  the  d i rec t  s rep  mcthod o f ien
is sufficient for water surface proli le computation. but the founh-order Runge,
Kutta metbod may be useful u,here a high dcgrce of accuracy is required.

An iteration prcredure 1or the sccond-order predictor-corrector ntcthod of
(5.21) and (5.21) has been proposed by Prasad (1970) for water surface profi le
con)putation in rirers. His procedurc is summarized by the follo$ ing:

l. Calculate f(r ') for r - r ' .:

. , . , _ s e - s " l r , )
" I l \ '  |  -" 

I F.(,r,)

2. Set/(vi,r) =,f(.r ' ,) as an init ial guess.
3. Calculate .v,-, lbr a given Ir front

L,f(r,) + ,f(,u,- ,) l

(5.24)

(5 .2s  )- l r l l  
-  t r  '

. i ^ . a  d \ ' / , l r  =  a r  '  l

J  C " l r r r l q t c  f r  '  t  f r n m

(5.26)

5. Check/(,r,-r) from step.l against the previous value and repeat stcps 3 through
5 un t i l  lhey  agree u  i th rn  a  cena in  enor  c r i te r ion .

While this method does converge, numerical problems can arise when crit ical
depth is approached as in an M2 or M3 profi le. When rhis happens, rhe denomina-
tor in/(),) approaches zero as Fr approaches 1. These problems can be handled by
using smaller step sizes near the crit ical depth and starting and stopping the profi le
computation u ithin some finite interval away from crit ical depth. It also should be
apparent that, for overbank flow. the compound channel Froude number should be
used in the equation of gradually varied flow. Otherwise, incorrect values of crit i-
cal depth are accepted, and the resulting profi le is incorrect as well.

E x A v p L E s.l. Consider rhe lake discharge problem of Example 5.1. excepr that
the rnild slope (S : 0.005) has a length of 500 m ( 16.10 fr), followed by a slope with a
value of 0.02 and a length of 200 m (656 ft). as shown in Figure 5.6. The Manning's n
cf the do$'nstream channel is 0.030 and irs widrh is 10.0 m (32.8 fr). \\ 'hich are rhe same
values as for the upstream channel. Sketch the possible water surface prohles and com-
pute one of them for a downstream lake level of 5.0 m ( 16.4 ft) above the outlel inven.
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FIGURE 5.6
Water surface profiles and momentum function for the location of a hydraulic jump in
Example 5.1.

So/zrion. We assume at first thal the mild slope length of50O m (1640 ft) qualifies it
to be hydraulically long, so the discharge is controlled by normal deprh on the mild
slope and it is l0l mr/s (3565 cfs), as determined in Example 5.1. Thii means that the
cntical slope of 0.01 1 in Example 5.1 still is valid, and therifore the downstream slope
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T.ICURE 5.7
Possible water sudace profi les for increasing tailwater \\ ' j th normal depth control on a mild
slope.

of 0.02 is steep. The crit ical depth of 2.18 m (7.15 ft) is the same for the sreep slope.
but its nomral depth needs to be calculated from \' lanning s equation:

. lo l . ,  ] "  0 .010 to l  _  ) r  r )
l l o  -  2 ' o _ : '  L o  o o t  :  -  -

from which r.o = 1.78 m (5.8:1 ft). The downstream li le level is above both normal and
crit ical depth on the steep slope, which means an Sl profi le. as sho*n in Figure 5.6a.
At the upstream end of the slope, crit ical depth rri l l  occur at the bfeak in slope. One
possibil i ty for the composite water surface profi le is ln M2 on the mild slope lblloued
by an S2 on the steep slope and a hydraulic jump to the S I profi le. Other possibil i t ies
are sho\rn in Figure 5.7 as the downstream lake le\elrises. At some le\el. rhe hvdraulic
jump and the crit ical depth wil l be drouncd out, and the Sl profi le u i l l  or, 'cur along the
entire steep slope and join the M I profi le on the mild slope. Which of these possibil i-
t ies actually wil l occur can be detennined only b1' a water surface proli le conrputation.

The computer prograrn WSP in Appendix B. lrhich uses the direct step method.
was applied to this problem u,ith a downstream lalie level of 5.0 m ( 16..1 ft). as the tail-
water condition. First. the M2 profile was computed upstream from c.itical depth al the
break in slope, then the 52 proflle was computed downstream from the same point.
Finally, the Sl profile u'as computed upstream from the do*nstream lake level. The
results are shown in Figure 5.6a. The location of the hydraulic jump is determined in
Figure 5.6b from the intersection of the momentum function curves computed at each
step of the water surface profi le computalion. The length of the.jump is neglected so
the location is at the unique point where both the momentum equation and the equation
of gradually varied flo* for the 52 and S I profiles are satisfied simultaneously.

As a check on whether the mild slope is hydraulically long,99.9 percent of nor-
mal depth is reached at r : 65 m (213 ft) downstream of the channel entrance, so the
slope in fact is long enough that the control remains at the entrance to the ntild slope.
The 52 profile reaches normal depth $ithin 0. I p€rcent ar .! = 595 m ( 1950 fr), which
is upstream of the channel exit, so it can be considered hydraulically long as uell. The
hydraulic jump also occurs at -r = 595 m (1950 fi).

; H J
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5.8
NATURAL CHANNELS

The nrethod of depth determined from distancc is used in narural channels by solv-
ing the equation of gradually varied flow in the form of rhe energy equation writ-
ten from one station to thc next:

w S .  +  a r l :  W S r  +  , , *  -  O , (5.27\

in which the terms are defined in Figure 5.8. This, in effecr. is the integrated form
of Equation 5.3, except that minor losses are added to the boundary losses in ft,:

(5.28 )

in which S" = mean slope of the energy grade line; L = reach length; K. = minor
head loss coefficienti and a is evaluated by Equation 2.1 l- The form of Equation
5.27 is written for cross-section numbers increasing in the upstream direction. The
solution is obtained by iterating on the difference between the assumed and calcu-
lated water surface elevations, using a mcthod such as inten al halving or the secant

d2V2212g EGL

dy12t29

Bed

Datum

FIGURE 5.E
Dellnit ion sketch for the slandard srep melhod (U.S. Army Corps of Engineers 1998).

l 8 l
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method. The programs HEC-2 and HEC-RAS (U.S. Arnry Corps of Engineers
1998) use the secanr ntcthod for solution. When apptic,d to natural channels, this
orcralf solution procedure is referred to as the slarrdrrrri step nethod and also is
used by WSPRO (Shearrnan I990). Rhodes (1995) applied the Newton-Raphson
technique to the ircri lr ion required in the srandard step nerhod and il lustrated the
nethod lbr the panicular cases of prismatic recrangular and trapezoidal channels.

The default value of the nrinor herd Ios\ co€fflcienr, /K,, in a5.2g) is taken to be
0.0 for contractions and 0.-5 fbr cxpanrions by \\ SPRO I Shiumrn 1990). In HEC-2
or HEC RAS. the recommendcd values of K, are 0.I and 0.3 for sradual contrac,
tions and cxpansions. respectively. and 0.6 and 0.8 for lbrupt c"ontractjons and
( ' \p rn i iOn\ .

The computation of thc mean slope of the energy grade line can oe accom_
plishcd by several optional equarions. [n general, S, = (O/Kjr. in which K is the
conveyancc for any particular cross section. To obtain thc mean value of S, for two
cross sections, the following options are avaiiable:

l. Average conveyance

2. Avcrage EGL slope

J. Gcometric mean slope

-1. Harmonic mean slope

s"

f  K ' . +  K , l '
t 1 l

_ Q '
K ' K ,

- S"' *- 5.,
',

(5 .29)

(5. .30)

( 5  3 1 )

(5. -12 )

s"

) (  (  -

J ' t  r  J ' l

Nlethod I is used as a default by HEC-2 and HEC-RAS, while rnerhod 3 is the
delault used by WSPRO. Method 2 has becn lbund to be most accurate for M I pro_
files, while method 4 is besr for M2 profiles (U.S. Arrny Corps of Engineers 199g1.

The conrputation of water surface proliles in nalural channels must proceed in
the upstream directjon for subcritical profiles and in the downstream direction for
supercritical profiles because the control is located downstream for subcritical and
upstream for supercritical profiles. Whether a profile on a given slope is subcritical
or supercritical depends on whether the depth is greater or less rhan critical depth,
*'hich is detennined by the discharge and the boundary condition.
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In a natLtral chann!-l divided in ro subrcaches. the norntal dcpth changes for each
subrcach as the slope, roughnes,<. and geometry change. 1'hcrefore, water surface
profi les in natural channels can b: r ' iewed as transition profi les betueen normal
depths: that is, a collection of i\t l  and M2 proti les on mild slopes. If thc normal
depth at a specific location is desired as a downslream boundary condition, several
\\ ater surface profi les can be started from funher do$ nstrean unti l asymptotic con-
vergence to normal depth is achiered (see the Ml and M2 profi les in Figure 5.2).
In reality, when thc depth rcached by two backu,ater proli les is within a specified
tolcrance. convergcnce is assumed. Davidian (198,1) suggests the use of trvo M2
profi les to deterrnine convergence

Cross sections for water surface profi le computation are selectcd to be repre-
senlative of the subreaches benreen thenr. rs shown in Figure 5.9. Such locations
as major breaks in bed profi le, minimum and maximum cross-sectional area, abrupt
changes in roughncss or shape. and control sections such as free overfalls alrlays
are selected for cross sections. Cross scctions need to be taken at shorter intenals
in bends, expansions, low-gradient streams, and where therc is rapid change in con-
veyance (Davidian 1984).

Some cross sections may require subdivision where there are abrupt transr,erse
changes in geometry or roughness. as in the case of overbank flows. This must be
done with care, however, or unexpected results are obtained. [n general, if the ratio
of overbank width to depth is greater than 5 or if the ratio of main channel depth to
overbank depth exceeds 2, subdir ision is recommended (Davidian 1984).

The occurrence of both supercrit ical and subcrit ical depths in a river reach,
referred to as a mi.red-Jlow' reginre. requires special attention in natural channels. In
a prismatic channel in which a hldraulic jump is expected, as for example in a
reach with an upstream supercrit ical and dow,nstream subcrit ical profi le. the
momentum function is computed for each profi le and the intersection of the two
nromentum function profi les determines the location of a hydraulic jump, as shown
in Example 5.4. In a natural channel with a slope near the crit ical slope, however,
finding the exact location of the jump is not possible because of the continuous
variation in geomelric properties of the cross sections. Instead. the HEC-RAS pro-
gram computes a subcrit ical profi le in the upstream direction, starting from the
downstream boundary condition. t ien computes a supercrit ical profi le in the down-
stream direction. usually beginnins from crit ical depth. At each cross section where
both a supercrit ical and a subcrit ical solulion exist, the value of the momentum
function is computed and the depth with the higher yalue accepted. If, for example,
the subcrit ical depth has the higher value of the momentum function, this means the
jump would be subnrerged at this location and nrove upstream, so the subcrit ical
depth would be accepted. At an\ cross section where the HEC-RAS program or
WSPRO cannot "balance" the energy equation, the crit ical depth is taken as the
solution and computations proceed. If the depth is crit ical for both supercrit ical and
subcril ical profi les at a given cross section, then it is l ikely to be a crit ical control
section.

Water surface profi les computed using the Prasad method and the compound
channel Froude number (Sturm. Skolds, and Blalock 1985) are i l lustrated in Figure



1 8 4 CH \P r tR  5 :  Cmdur l l y  \ / i r r i ed  F low

1 0

8

F t -

2

0

Segrnenls

Scanered

/ ) r
-< sec\\oo 

2

CloY

20 4A 60 80 Fr

Cross Section 2

Subseclrons

1.000

Cross
secl ion 1O

3 8

6
F l a

2
0

Cross Seclron 3

FIGURE 5.9
Hypothetical cross section sho*ing reaches, segments. and subsections used in assigning n
values (Arcement and Schneider 1984).

5.10 for a laboratory model study. The channel is a 21.3 m (70 ft) long movable-
bed model of an alluvial river A total of eight river cross sections were used in the
computaiions for a constant di scharge of 0.0341 m3/s ( I .20 cfs). Water surface pro-
files were measured after the sediment bed had approached equilibrium The sedi-
ment size was uniform with dro : 3.3 mm (0.0108 ft) and Manning's n : 0 016'
The compound channel Froude number was used to calculate the critical depth lor
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Cross section no.
1 4  1 3  1 2  1 1  1 0

l l
9 8 7

O = 0.0341 m3/s

0 2  4  6  8  1 0  1 2
Station, m

1 4

- Bed - - Computed supercril ical - Computed subcrit ical

B Crit ical ^ Measured

FIGURE 5 . IO
lvteasured and computed qater surface profi les in a ri\er modcl (Slurm. Skolds' and Blalock

1985). (Sorrrce. T. ll. Srunn, D M. Skolds' and M E Blalttck. "lVater Surface PruJi[es in

Conpountl Channels. I'roc. of the ASCE Htd. Div Specialo^ Cttnference' Htdraulics and

Hyt!rologt h the Sntttll Cttnrputer Age. O /98J ASCf. Reprotlucetl bY pentrissittn ofASCE )

each cross section and to idenlity a panicular solution of the energy cquation ls

supercrit ical or subcrit ical. Both subcrit ical and supercrit ical profi les were com-

puied. as shown in Figure 5.10. At cross sections l0 and 13. crit ical depth was

returned as the solution for both profi les because neither a subcrit ical nor a suPer-

crit ical solution could bc found. The measured depths also are in close agreement

with the computed values of crit ical depth at these two cross sections, indicating

that they indeed are crit ical. At cross sections l2 and 9. just downstream of cross

sections I 3 and 10. respectively, both a supercrit ical and a subcrit ical solution exist

but the rneasured ralues are subcrit ical. This would indicate a weak hydraulic jump

or perhaps simpl! standing waves between cross sec(ions l3 and I2 and bet\."een

l0 and 9. Computationally, the depth with the higher value of the momentum func-

tion is chosen between the supercrit ical and subcrit ical depths at cross sections l2

and 9 (U.S. Army Corps of Engineers 1998) lf '  for example. the subcrit ical solu-

tion has the higher value of the momentum function. then the jump would be

dro* necl out at that section and moved upstream. The importance of correctly pre-

dicting the crit ical depth in this example should be apparent: othenrise. an Incor-

rect interpretation of the profi le and selection of the u rong regime can occur.

E X A I l I P L E  5 . 5 .  ( A D A P T E D  F R O \ I  U . S .  A R \ T Y  C O R P S  O F  E } i G I N E I ] R S

l998 ) .  Appl)  the HEC-RAS program to Ski l le l  Creek.  as shown in Figure 5 l  l ,  and

compute the oater surface profi le for a discharge of 2000 cfs (56 6 mlls; In lhe upper

."u.h. 500 "f, ( 1.1.2 mr/s) in Possum Creek. and a total of 2500 cli (70.8 mr/s) in the
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FIGURE 5.I I
Stream layout schematic for HEC-RAS, Example 5.5.

entire lower reach of Skillet Creek. Assume a subcritical protile and use a downstream
boundary condition of the slope of the energy grade line equal to 0.0004 at Slarion
2500. The difference between stations indicates reach lengths in feer in Figure 5.11.
Manning's n values are 0.06 in rhe lefi f loodplain,0.035 in the main channel, and vary
from 0.05 to 0.06 in the righl noodplain. (All cross-sectjon data are not shown.)

Solutitn. ' fhe schematic layour of the river system shown in Figure 5.1I is enrered
graphically by the user, and the cross,section geometry data are entered and edited
inleractively. The user must then enter discharge data and boundary conditions before
computing the profile. The computed water surface profrle, along with the critical depth
line, are shown in Figure 5.l2 for the main srem, with the disrance scale indicating dis-
tance upstream of Station 2500. The water surface profile is computed up to Station
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Computed water surface profi le for HEC'RAS, Example 5.5.

3450 at the Crosstown lunction. Then, the en€rgy equation is applied across the junc-
tion. first from Station 3450 to Starion 0 on the tributary and then from St ion 3450 ro
Station 3500 on the main stem. A length of 50 ft was specified across the junction. Both
friction losses and minor losses (contraction and expansion) are included in the energy
calculation. Once the junction has been crossed, the separate profi les in the main slem
and tributary can proceed. For a subcrit ical f low split in the downstream direction, the
program requires a trial and-error distribution offlow unti lthe energies calculated from
the two branches just dou nstream of the junction are equal. For supercrit ical and mixed
flow cases, see the HEC-RAS manual (U.S. Army Corps of Engineers 1998).

Figure 5.13 i l lustratcs the most upstream cross section at Station 5000 on the main
stem. The compulation determines only one crit ical depth, which occurs in the main
channel. and the \aater surface elevation (WS) indicates overbank flooding. The output
data for this cross section are given in Table 5-3- The water surface elevation is 81.44
ft (24.82 m) and the vel(rity is 2.67 ft/s (0.81 m/s). The flow is split into main channel
and overbank contributions by taking the ratio of the conveyances of each \ubsection to
the totalconveyance and multiplying times the total discharge. The main channel veloc-
ity is approximately four times greater than the overbank velocities. The geometric
propenies of each subsection are given in the table, leading to a value of the kinetic
enersv correction coefficient a : 2.10.

500

Example 5.5 Existing Conditions
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Example 5.5 Existing Condil ions
Upstream boundary of Skil let Creek Station 50 RS = 5000

70

Plan: Erist River: Ski l lel  Creek Reach: Upper Riv Star 5000 Pro6le: 50,,-r
E.G. Elev (f t)  81.67 Elemenl l ,ef i  OB Channel
Vel Head (ft)  0.13 Wt. n Val. 0.060 0.0t5

WS. EIev (f t)  8l .-1{ Reach Lrn. ( i)  150.00 5(y0.0u
Crir W.S. (f1) 16.21 Flow Area lsq fr) 105.98 162..16

ts.G. Slope (f/ f i )  0.000656 Area (\q l i )  105.98 l6t lE
Q Total lcf!)  1000.(n Flow tcfs) 2.|  :8 I568.tJ

TopWid th  ( f r )  131 .87  TopWid rh ( f r )  81 . .H  10 .00
Vel Total ( lL\) ) .61 Av8.Vir l .  ( l ts) l . l? ,1.31

Max Chl Dplh (f t)  I  l . . l - l  Hldr. Depth (f t)  2.51 9.06
Con\. Total (ct\) 78102.3 Conv. (cf\) 9121.1 6l l l7.,
Lenglb Wtd. (f t)  198..17 Wexed Per. (f l )  8:.06 J5.6t)

Min Ch El (f t)  ' /0.W 
Shrar ( lbl \q l i l  0.10 0.31

A lpha  : . 10  S r ream Power  ( l b / f r  s )  0 . t :  l . 1 l
Frcrn Loss (tr) 0. ]2 Cum Volume tacre-fr) 6.58 t j . l

C & E Loss (f t)  0.00 Cum SA (acres) l . l t  ! .18

95

c
:9

d B 0
LU

100 150 200 2so 300 350 400
Slation, ft

- - i- - Crit 50 yr -----o- Ground
____.r_ WS 50 yr _____._ Bank stalion

FIGURE 5.I3
Upslream cross section and computed water surface elevation from tlEC-RAS. E\ample 5.-5.

TA I} I, tJ 5,]

HEC-RAS cross-section output table for the upstream end of Ski l let Creek

R igh t  OB
0.053

550.00
180 .65
r80 .65
r90 .58
I t0.,{{

L05
1.64

71-12.3
I I0.6.1

0.07
0.07
6.8,1
3 .58
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Encroached waler

Letl encroachment
station

FI(;LRE 5.t,1
Fleod\r ay encroachment analysis.

Right encroachmenl
stalion

5.9
FLOODWAY ENCROACHMENT ANAI}'SIS

Floodway boundaries are established for land-use planning and in flood insurance
studies based on the amount of encroachntent on the floodplain that can be allowed
without exceeding some specified regulatory increase in water surface elevation.
Floo<Jway boundaries and floodway encroachment are i l lustrated in Figure 5.14. In
the encroached areas. all t loodway conveyance is assumed to be lost. ln the United
States, the 100-year peak flood discharge is established as the base flood for f lood-
wal analysis. and the increase in the natural $'ater surface elevation caused by
floodway encroachment cannot exceed I ft.

Floodway analysis proceeds by first running a water surface profi le for the base
flood under natural conditions. Then, encroachments of varying amounts are added,
according to certain criteria, so as not to exceed the target water surface elevation
increase. The resulting boundaries from the floodway analysis usually are the result
of several i lerations and may have to be adjusted for undulations from cross section
to cross section and for unreasonable locations when compared to existing land use
and topography.

Five separate methods crn be selected in HEC-RAS to determine floodway
boundaries. These are summarized here (Hoggan 1997; U.S. Army Corps of Engi-
neers 1998):

I - In encroachment method l. the exact locations and elevations of the encroach-
ments are specified in each floodplain, as shown in Figure 5.14.

2. Encroachment method 2 specifies a ltxed top width of the floodway that can be
specified separately for each cross section. Each encroachment station is set at
half the specified width, left and right of the channel centerline.

3- Method 3 calculates encroachment stations for a specified percent of reduction
in conveyance of the natural profi le for each cross section. The conveyance
reduction is applied equally on each side of the cross section, but the conrputed
encroachments are not allowed to infringe on the main channel.

surlace
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- 1 .  T h e  i n t e n t o f  n l c t h o d J i s 1 ( ) s p e c i f v a l a r g e t f o r t h e a l l o $ a b l c i n c r e a s c i n t h e n a t _
ural watcr surface clcvation. The rerulting gain in convclancc in rhc f. loodwar
is  taken up  equa l ly  on  rhc  le f t  and r ighr  f loodp la ins .  As  shou.n  in  F igure  5 . l j .
the increase in conveyance JK - ,(. + K&. where K, l ind Ko arc the blockcd

- l lnfellqccs on the lefr and righr fltxrdplains and K. : KR : JK/?.
5. N'Icthod 5 is an oprirnization Iechnique that automatiiallv i icrates up to 20 times

to achieve the target water surface ele\ ations for all cros.s scctions. Both a tarcet
water surface elevltion increase and a target energy grade line clcvation irc
specified. In each iteration. the entire \vater surface proli le is conrputed for a set
of encroachments, and then the encroachments arc adjusted where the target was
violated for the next iteration.

Methods 4 and 5 are n]ost useful to esrablish an inil ial solution for the flood-
\\ 'ay boundarics. [n fact, they can be run u,ith several different rarget Increases in
$'ater surface elevations. The final determination of the l loodway boundary usually
is made with rnethod l. which defines the specific encroachments at each cross sec_
tion and allows engineering.judgmenr to be applied to the tlnal adjusrments.

s . l0
BRESSE SOLUTION

Only u.nder very special assumptions is an analytical solution to the equatlon of
gradually varied flow possible. This solution was first obtained by Bresse for very
wide rectangular channels. The solution approach was extended by Bakhmeteff and
finally fully developed by Chow (t959) into a method called the hvdraulic e.rpo-
trcnt nrctlnd.lt is a numerical method in rhe fornr dereloped by Chow, but a very
ted iour  one tha t  no  longer  i r  in  usu .

To obtain the Bresse solution, the equation of gradually varied flow is written
in the form:

/  c \
s " {  l  - 1 )

d )  " \  
S n /

d " :  o . 8
I - - '

gA'

(s.3 3 )

(5.34)

Now if Manning's equation is written in rerms of conveyance, K = e/Srn, the ratio
of S"/So in Equation 5.33 becomes (KnlK)2, in which K^ is the uniiorm flow con-
vel ance and K i\ the conve)ance conerponding ro thc l;cal deprh r.. Funhermore
Q'lg in Equation 5.31 can be replaced b1, AjlB. for the crirical cbndition of Froude
number squared equal to l. With these substitutions, Equation 5.33 becomes

'.1'- (?)']d_y

dr A:/B "
l - - -

A'/B
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The hydraulic exponenl assunptions are made at this point. \*re assume thrl the t\r 'o
ratio terms in thc nunerator and denontinator on the right hand sidc of Equation
5.3-l can bc set cqual ro rhe ratio ol either the nornral or the crit ical depth to the
local dcpth taken to a po* cr dcsignated M or N:

' . [ ,

(5  3s)9l
dr

For a rectangular channel. it is easily shorvn that M = 3. Howcver. the value of N
is a constant integer onlv for a wide. reciangular channel using the Chezy equation
\l i lh constant C; and it. too. has the value of 3. Under these assumptions, the equa-
tion of gradually raried florv can be integrated exactly to give the solution

(  5.36 )

(+)"1
' (+)"

so,  - ' '  -  "oI r  ( ; ) ' ] r ( " . )
in uhich d is a function of -ry'r 'n - l, given by

t .  f  a : - r r  t l  I  I  l r  I  I
o t u t  -  

6 ' " 1  i ,  r i  ]  . , ,  ,  t t t t " n f 2 ,  
-  t J ] t  

A ( 5.37)

in which A is an arbitrar_v constant. The value of the constant is immaterial because
the function is evaluated between two points located a distance (x, , ,r,) apan, and
so the constant A cancels. The Bresse varied flow function d is shown graphically
in Figure 5.15 for subcrit ical and supercrit ical profi les. ln the cases of Ml, M2, 52,
and 53 profi lcs. the approach to normal depth is asymptotic as shown.

The determination of the downstream boundary condition for a subcrit ical pro-
fi le in a natural channel with no crit ical control section requires an asymptotic
method, as discussed previously. The computation is staned further oownsrream
than the reach of interest and several depths are tried successively to find an asymp-
totic depth as the do\\'nstreanr boundary condition for the reach of interest. The
Bresse method for a very wide channel can be used to answer the question of how
far downstream to stan the process, at lerrt in an approximlte manner The length
of an M2 profi le from 75 percent of normal depth downstream to 97 percent of nor-
mal depth upstream can be shown from the Bresse solution to be given by (David-
ian  1984)

lJ^j  -  0 .57 -  0 .79F'  (M2 curve)

in which L is the required total conrputation length: S0 is the bed slope;,vn is the nor-
mal depth: and F is the Froude number of the uniform flow. In a similar fashion.
the leirgth of an Ml profi le from 125 percent of normal deprh downstream to 103
percenl of normal depth upstream is given by

0.86 - 0.64Fr (Ml  curve) (s.39)

(5.3 8 )

ljo

. , 0
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FIGURE 5. I5
Bresse varied flow iunction d for very wide channels with constant Chezy C.

For example, a channel * ith an average slope of 0.00 t, normal depth of 3.0 m (9.8
ft), and a Froude number of 0.25 would have an M2 profile length of approximately
1560 m (5 120 ft) while the N'l I profile length would be greater, with a value of 2460
m (8070 ft).

5 . 1 1
SPATIALLY VARIED FLOW

Spatially varied flow is a gradually varied flow in which the discharge varies in the
flow direction due to either a lateral inflow or a lateral outflow The goveming
equation in these two cases is different. and considerable confusion can center
around which equation is appropriate for a given case.

For the case of lateral inflow, such as a side channel spillway. the momentum
equation is more appropriate because the energy losses are not well known, while
the lateral inflow momentum flux can be specified. lf it is assumed that the momen-
tum correction factor B is approximately unity and that the inflow enters in a direc-
tion perpendicular to the main channel flou the general unsteady momentum equa-
tion (derived in Chapter 7) can be simplified to

2 q  ' Vs " - s .
dv gA

I F ,
(s.40)

dd
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in r"hich Sr: friction slope - r,/yR and 4. : lateral inllow rate per unit ofchan-
ncl length. In the case o[ the side channel spil lu'ay, g. is a constant, such that the
channel discharge Q(.x) = qrr, where r : 0 at the upstream cnd of the channel.
Because Q varies rvith,r, Equation 5.+0 has to be solred numerically by specifying
a r alue of -r and iterating on _v in a stepwise fashion along the channel.

The variation of B with r also complicates the determination of the crit ical sec-
tion. Crit ical depth can occur at an)'point along the channel, with subcrit ical f low
upstream and supercrit ical f low dou nstream of the crit ical section. lf i t is assumed
that crit ical depth occurs when the Froude number l '  = I and the numerator of
(5..10) is zero, so that d-y/dr * 0, then the location of the crit ical section can be
shown to be given by (Henderson. 1966)

8q i
(5. .11)

t  , P  l '
r r 'Ls"  - ; ; ]

in which r. = location of crit ical section; 4L = lateral inf' low per unit channel
length; 8: channel top width; S0 = bed slope: P - wetted perimeteri and C =

Chezy resistance cocfficient. Equation 5.,11 is solved simultaneously with the cri-
rerion that the Froude number is ecual to unitv at the crit ical section:

,. , Q'6)a, ,
eAi

(s.42)

where Q(.r) : qrr. lf r, > L, the charnel length, the control is at the downstream
end of the channel with subcritical flow in the entire channel. Otherwise, the flow
is subcritical upstream ofx" and supercritical downstream, as shown in Figure 5.16.

FIGURE 5.16
Spatrally varied flow u ith lateral rnflou.
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FIGURE 5 . I7
Spatially varied flow wirh lateral ourflou from a side discharge weir

d-r gbt)' '  - Q'

for a rectangular channel of width D. Equation 5.43 can be placed in the form

QtV

d l _  g A

d r  t - F ' �

In the case of lateral outflou such as in the side discharge weir shown in Fig-
ure 5.17, the direction of the Iateral momentum flux is unknown. Furthermore.
because the weir is a local disturbance, energy losses along the weir are relatively
small. For these reasons, the energy approach is used more often than the momen-
tum equation. Thercfore, if we assume that dtldr = 0, on differentiation of the sDe_
cific energy, E, with respect to .jr, w.e have

dy o(-.),'(- #)

and it only remains to specify 4. : -dQltr from the discharge equation for a
sharp-crested weir as

. ln

Q t :  f : c ' V z s ( ) - P ) "

(5..13 )

(5.#)

f 5  l 5 l

in which C, = weir discharge coefficient, : (2/3)C o from Chaprer 2. Because *,e
assume the energy grade line to be horizontal, the energy equation giyes the dis-
charge at any section as

O: by\6s@ - ),) (5.16)

F__ 4______l



Cr rAp rER 5 :  G radua l l r  Va r i ed  F low  195

in which b = width of the channel and E = known constant specific energy. Sub-
st i tu t ing (5.45)  and (5. .16)  in to (5. -14)  and in tcgrat ing,  the resul t  as obta ined by De
Marchi (Benefleld, Judkins. and Parr 198'1) is

' {C r

b

) F  l P  F  t  t  \ '
. /  -  t \ r n  . l  -  '  c o n \ l a n t  ( ) . 4 / )

E  P  V y  P  V E  P

in which C, = weir discharge coefllcient; [ : specific energ) of the flow; p =

hcight of weir crest above channel bottom; and b : channel u'idth. The subcrit ical

case is shown in Figure 5.17. but it also is possible to have a supercrit ical profi le

either alone or tvith a hydraulic junp (see the Exercises).
Hager ( 1987) shou ed that the outl low equation uscd by de \tarchi is exact only

for srrall Froude nunbers. He developed a generalized outflow equation for side

discharge weir f low that includes the efltcts of lateral outflo*'angle and longitudi-

nal channel ridth contraction. Hager (1999) gires gencral solutions o[the iree sur-

face profi le for the enhanr'r 'd outflou cqurtion.
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EXERCISES

5.1. Prore from rhe equation of gradually varied flow thar 52 and 53 profi les as).mprori_
call),approach nont)al depth in the downstream direction.

5.2. A reservoir discharges into a long trapezoidal channel lhat has a bottom \r.idth of 20
fi, side slopes of 3: l, a Manning's n of 0.025. and a bed slope of 0.001. The resenoir
water surface is l0 ft .rbove the inven of the channel entrance. Determine the channel
discharge.

5,3. A reservoir discharges into a long, steep channel followed by a long channel \r,ith a
mild slope. Sketch and label the possible flow proli les as lhe rail$ater rises. Explain
hou you could determine if the hydraulic jump occurs on the steep or mild slope.

5,4. Compute the water surface profile of Table 5- I in the lext using the method of numer-
ical integrarion with rhe rrapezoidal rule. Use the same step sizes as in rhe uble and
determine the dislance required to reach I dcpth of | .74 m. Discus( rhe results.

55. A rectangular channel6.l mwidewithn = 0.014 is laid on a slope of 0.001 and rermi-
nates in a free overfall. Upstream 300 m from the overfall rs a slurce gate that produces
a depth of0.47 m immediarely do\{,nsrream. For a discharge of 17.0 mr/s. wirh a spread_
sherl compute the water surface profiles and the location of the hydraulic jump using
the dircct srep merhod. \'erify with rhe program WSp, or with a program thar you u.rite.

5.6. A very wide rectangular channel carries a discharge of 10.0 mt/Vm on a slope of
0.0O1 with an z value of 0.026. The channel ends in a free overfall. Compure rhe dis_
tance required for the depth to reach 0.9y0 using the direct step method and compare
the result with that from the Bresse function.

5.7. Derive Equations 5.38 and 5.39 using the Bresse function.

5.E. For a very wide channel on a steep slope, derive a formula for rhe lengrh of an 52 prohle
from critical depth to l.0l yo using the Bresse funcrion. Whar is rhis lengrh in meten if
the slope is 0.01, rhe discharge per unir of widtr is 2.0 mr/Vm, and Mannjns's n is 0.025?
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5.9. A trapczoidal channel ofbottom width l0 ft with side slopes of 2:l is laid on a slope
of 0.0O05 and has an n value of 0.0'15. It drains a lake vtith a constant water surface
level of l0 ft above the inv€rt of the channel entrance. If the channel ends in a free
overfall, calculate the discharge in the channel for channel lengths of )ff) and 10,00O
ft using the WSP program.

5.10. A 3 ft by 3 ft box culvert that is l0O ft long is laid on a slopc of0.00l and has a Man-
ning's a of0.013. The downstream end of the culven is a free overfall For a discharge
of 20 cfs. calculate the entrance depth using the wSP program, and the head upstream
of the culvert using the ener8y equation with an entrance loss coefftcient of 0 5 for a
square-edgcd entrance. Compare the result with the head calculated from an assump
tion of a hydraulicrl ly long culven u ith an entrance depth equal to normal depth.

5.11. Using IIECRAS. compule the water Jurface profi le in Some Creek for a discharge of
10,000 cfs. Bcgin with a subcritical profile and a downstream *'ater surface slope of
0.0087 as a boundary condition. Then do a rnixed flow analysis with an upstream
boundary condition of critical depth. The cross-section Seometr,v" reach lengths,
roughness values, and subsection brealpoints are shown iD the following table. Ana-
lyze the results indicating where any hydraulic jumps may occu.

The upstream cross section for Some Creek at River Station 6000 (ft) is given by

X (ft) Elevation (ft) n

,165
,161
458.8
.158
,r5?.8
458.3
.158.1
,155.9
.r55.8
- l  ) ) . )

455.3
455..r
:15,1
:152
,r50.3
,150.2
.150 5
. r5 t .5
152.1
.15.1.5
: l ) ) . -1

455.6
455.3
456.3
.158
,157.8
,158
.161
,r65

0
0

36

99
I  l 0
I  l 9
| ] 3
1,13
150
t54
1 5 5
160
r68
r 8 8
l 9 l
200
205
: 1 0
229
?5d
266
2'�7 6
305
31,1
380
380

0.055

0.0,10

0.065

0.065

0.055
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The lefr and right banks are at X: 150 ft and 210 ft, respectively. Al subseguent sta-
tions downstream. the cross section should be adjusted with a uniform decrease in ele-
vation from lhe previous section as follows:

Rirer station (ft) Decrease in elevation (ft)

{qlo
3000
1500
1000

2.0
6.0
2 .8
6.0

5.12. Compute the water surface profile in the Red Fox River for Q : 1000 cfs, for which
the downstream water surface elevation WS : 5703.80. and for O : 10,00O cfs *ith
lys = 5? 15.05. The stations for the four cross sections are shown here, and the ele-
vations (a and n values are given in the tbllowing table (Hoggan 1997)

Cross s€ction Station (ft)

I
l
l
I

0
500
900

t300

Cmss s€cIion I Cmss section 2 Cross section 3 Cross seclion 4

x (fo z (ft) x (n) z (ft) x&) z (rl -x (fo z (ft)

?0 ls
30 l+

60 :0
n 0  1 8
, r  15  11
610 16
650 l{
655 l l
660 l l
670 :
675 l
690 0
69't 0.1
700 0.8
7 l o  r
7 I O  I ]
9,10 r-1.5

1020 1.1
|  215 t , l
1 2 3 5  l l
I 5 ? 5  r l
1590 l {
1 6 1 5  t  6
1630 20
1635 15

l0 25
.10 21
50  :2  0 .10

l l 0  : 0
100 t0
295 lrt
415  17  C" r
,155 16
505 l3 0.05
575  9 .5  @
585 5
596 .1.2
6t 5 .1.5 0.01
615  16
6 . 1 0  l 8 @
9.10 18.5

I  1 8 0  l 8
I  1 9 5  t 8
1205 20 0.10
t225 22
1245 21
1250 25

.10 25
90 2{

260 22
310 20
-170 18.7
'120 15
,160 I L2
500  T . l
530 1.5
550  l l
560 17.8
580  19
6m 20
850 22
865 2{
875 25

30 26
15 2.5

r30  21

3-r0 23
360 1,1
310 9.5
.r00 9.8
. t  l0  13
,160 22

6 1 0  2 2
650 :.{
675 25
700 26

0.100

@l

0.050
@

0.030

(9

0.050
@

0.10

0.  t0
@

0.05
@

0.03

@

0.05

0.10
@

0.05

0.036

@)
0.05

@

0 . 1 0

@ = Subsertion breakpotnt.
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5.13. The cross-secrion geometry fbr Ronring Creck follows:

X (ft)  Elerarion {f l)

10 .0
9 .5
9.-3
9 . J
9 .1
7 .0
6 .1
6.0
6 , I
6 .1
6.0
1 . 1
6 .3
8 .3
8.9
9.0
9.5
9 .3
9 .6

I0 .0

,1
l 0
20
l0
.10
12
.16
50
5'{
58
62

70
'72

76
80
90

t00
I  t 0
I  l 6

.035

.060

050

.0-r0

The measured $ater su.face elevation is g.g ft.
(a) Manuall l calculate rhe normal discharge for a slope of 0.0OOg.
(b) Manually calculare the value of a and ihe specific energy.
(c) ls the flo\ subcril ical or supercrit ical?
rJ r  Ver i fy ;our  m. rnua l  ca lcu la i ionr  w i rh  rhe  HEC_RAS program.

5.14, Write a compuler program in the language of your choice thal computes the watersurface profi le in a circulal culvert using the method of inr.grution by the trape_zoidal rule.

5.15. Write a computer program in the language of your choice that compures a warer sur_face profile in a trapezoidal channel using the iounh_order Runge_liuna metiod. -fest
ir wirh rhe Ml profi le of Table 5_ l.

5.16. For the floq over a horizontal bed with. constanl specific energy and dischargedecreasing in rhe direcrion of f low, derive the shapes oi.the .uU".irluf and supercrit_
ical profi les for a side discharge weir as shown in Figure 5.1?.

5.17. Derive the enersy equarion for sparially varied flow in the form of Equation 5.44, butdo not assume that So and S,. the bed slope and slope of the energy grade line, areequai to zero_ Compare the result with Equation 5.40 and discuss.

5.18. A recrangular side discharge weir has a height of 0.35 m. Ir is located rn a rectangu-lar channel having a c,idth of 0.7 m. If the downsrream deprtr i, O.li m to, a aiscf,u.g.
of 0.27 mr/s. how long should the weir be for a lateral diicharge oi O.Z f rn,lrf



2U) C s apren 5: Gradually Varied Flow

5.19. A concrete (n : 0.013) cool ing tower col lect ion channel is rectangular with a length

of 45 ft in the flow direction and a widlh of I I fl. The addition of flow from above in

the form of a continuous stream of droplets is al rhe rale of 0 63 cfs/f t  of length Find

|}le location of the critical section and compute the r''aler surface profile How deep

should $e col lect ion channel be?
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Hydraul ic Structures

6.t
INTRODUCTION

In this chapter, we consider a l imited set of hydraulic strucrures (spil lways. cul_
verts. and bridges) that provide \\ ater con\evance to protect some other engineer_
rng structure. Spil lways are used on both large and small dams to pass flood flows.
thereby preventing ovenoppin-s and failure of the dam. Culveni are desisned to
carr,v peak flood discharges under roads,ays or olher cmbankt,.nt, to ir.r"nt
enrbankment overflows. Finallv. bridges convey rehicles over u,ateru.avs. but thev
nrust accommodate through-flous of f lood\ aters uithout failure ,1ue io orenop_
ping or foundation failure by scour.

Of prinary imponance fbr the hydraulic structures considered in this chaprer
is the magnitude of backwater they cause upstream of the structure for a given
design discharge; that is. the head-discharge relationship for rhe structure. ln gen-
eral, this relationship can assume the fornr of weir f low. orif ice l low. and in the case
of culvens, full-pipe flow. Each tl pe of f lou has its own characterisric dependence
bctween head and discharge. For spil lways. rhe pressure distribution on rhe face of
the spil lway also is imponanr, because of rhe possibil i ty of cavitation and failure of
the spil lway surface.

Both gradually varied and rapidlv varied flows arc possible through these srruc-
tures, but one-dimensional nrethods of analtsis usually are sufficient and qell_
developed in this branch of hydraulics. Essenrial to rhe ..hydraulic 

approach" is the
specification of empiricai discharge coefficients that have been well established by
laboratory experimenrs and verif ied in the fierd. The determination of contrors in
the hydrlulic analysis also is imponanl. and crit ical deprh ofren is the control ol.
interest. The energy equation and the specific energy diagram are useful tools in the
hydraulic analyses of this chapter.

?0r
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6.2
SPILLWAYS

The concrete ogee spil lway is used to transfer large flood discharges safely from a
leservoir to the downstream rivel usually lvith significant elevation changes and
relatively high lelocities. The characteristic ogee shape shoqn in Figure 6.1 is
based on the shape of the undcrside of the nappe coming off a ventilated, sharp-
crested weir. The purpose of this shape is to maintain pressure on the face of the
spil lway near atmospheric and well above the cavitation pressure.

As an init ial depanure on the task of developing the head-discharge relation-
ship for ogee spil lways, it is useful to use the Rehbock relationship for the dis-
charge coefficient of a sharp-crested weir given previously in Chapter 2 as Equa-
tion 2.12. For a Yery high spil lway. the contribution of the term involving H/P
becomes small and the discharge coefficient, Cr. approaches a ralue of0.6l l; how-
ever, this value of C, is defined for a head of H' on a sharp-crested weir as shown
in Figure 6.1. If i t is converted to a value defined in terms of the head, H, which is
measured relative to the ogee spil lway crest, then Cd = 0.728 because H : 0.89H',
as shown in Figure 6.1 (Henderson 1966). As a result. C - Ql(LHrtz) has an equiv-
alent value of approximately 3.9 in English units for a very high spil lway.

For lower spil lways, the effect of the approach velocity and the venical con-
traction of the \r 'ater surface introduce an additional geometric parameter given by
HIP or its inverse, in which P is the height of the spil lway crest relative to the
approach channel. Funhermore, the design value of the discharge coefficient is
valid for one specific value of head, called the desigrr head. Ho, because the pres-
sure distribution changes from the ideal atmospheric pressure associated with the
ogee shape whenever the head changes. As the head becomes Iarger than the design
head, the pressures on the face of the spil lway become less than atmospheric and
can approach car itation conditions. Pressures are larger than atmospheric for heads
less than the design head. On the other hand, the risk of cavitation at heads higher
than design head is counterbalanced by higher discharge coefficients because of the

Concrete spil lway crest
conforming to the underside of

nappe of sharp-crested weir

FIGURE 6.7
The ogee spil lway and equivalent sharp crested weir
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h h pen istiott ol Cltov. estate.\

tower pressures on the face of the spil lway. In other uords, the spil l*.ay becomes
more efficient because it passes a higher discharge for rhe same head with a larger
value of rhe discharge coefficient. The spil lway discharge coefficient rs given in
Figure 6.2 for the srandard WES (Waterways d^p".im.ni Station) or.erflow spil l-
way in terms of the influence of the spil lway height relative to the design lead,
PlH,,, and the effect of heads orher rhan the disign-head as indicated by H"lHu, in
which H, is the design total head and H" is the actual total head on the spil lway
crest, including the approach velocity head. The discharge coefficienr. C. wittr p in
cubic feet per second and both L and H. in feet is definJd bv

in which L is the net effective crest length. The inset in Figure 6.2 sho\rs that a slop_
ing upstream face. which can be used to prevent a separation eddy thal mlght occur
on the venical face of a Iow spil lway, causes an increase in the discharge coefficient

C/Co in which Co = 4.03
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for P/I!,,< 1.0. The lateral contraction causcd by piers and abulmcnts lends to

reduce the actual crest length. L', to its ellectivc value, L:

L : L'� 2(.\'4 + l(.,)H" ( 6 . 1 )

in which N : number of piersl K, : pier contraction coelficicnt: and K, = abut-

ment contraction coelficient. For square-nosed picrs. K, = 0.02. while for round-

nosed piers. Kn = 0.0 | , and lor pointcd-nose picn. K, - 0.0. For square abutments

with headqalis at 90' to thc flow direction. K., = 0.20. uhile lbr rounded abut-

ments  \ \ i th  the  rad ius  o f  curva ture  r  in  the  range.  0 . l5  Ht<  r3  0 .5  /J / .  K , ,  !  0  10 .

Well-rounded abutnlents with r > 0.5H, have a value of K, : 0 0 (U S. Burcau of

Rcc lamat ion  1987 ) .
A well-estlblished design procedurc. u hich has been developcd by the USBR

(U.S. Burcau of Reclamation) and the COE (Corps of Engineers). takcs advantage

of the higher spil lway efficiency achiered for herds greater than the clesign head.

Essentially. the design procedure involres sclccting a design head that is less than

the maximum head to conrpute the spil l* ay crcst shape: this is called tudertlesigtt '

irrg the spil lway crest. Tcsts have shown that subatmospheric pressures on the face

of the spil lway do not exceed about one half the design head when H'.,/H./ does

not excced 1.33. This is shown in Figure 6.-1, in which the actual pressure distribu-

tion on a high spil lway with no piers is given for HlHu varying l iom 0.5 to 1.5

where H - H". At HlH,t = 1.0, the pressures indeed are very close to atmospheric.

The minimunr pressure for HlH, = 1.33 is 0.'1-j l /, at X : -0.2Ht where X -

0.0 at the centerline of the spil lu'ay crest.
Instead of arbitrari ly setting H"/H./ = l. l3 at the maximum head' Cassidy

( 1970) suggests that a better design prtredure is to establish a minimum allo\{able

pressurc on the spi)lway tace and then deternlinc the design head The pressures on

spil luay faccs are not constant but 1'luctuate around a mean raluc. so the COE norv

rccomnrends a more conscrvative design procedurc tt l l-not allo\. ' ! ing the average
pressure head to tall below 15 t] to l0 ti. cven though calitation may not be

incipient unti l a pressurc head of 25 ti is reachcd (Reesc and Maynord 1987) ln

this design approach. the ntinimum allos able pressurc' head becomes the control-

l ing feature olthe design ofthc spil lqav crcst. rather than a flxed value of H"lHr.

Once the design head is determined. the actual shape of the spil lwa-r- crest

downstream of the apex. in what is callcd the doru.stn'an .luodruttt. is given bv:

X' : K,rH', 't 'Y (6. .3)

in which K.,, = 2.0 and a = 1.85 tbr negligible approach I 'elocity; H; : desiSn

hearl: and *. f lrc nreasured from ihe crest axis as shown in Figure 6.'1. The

upstreont quatlrant of thc spil lway crest is construcled fiom a compound circular

curve, as shown in Figure 6.21. 1o tbrm the standard WES ogee spil lway shape. The

0.0,1 H, radius curve was added in the 1970s resulting in a sliSht increase in the

spif f way coetlicient in Figure 6.2 for H,/H, > 1.0 and PlH,t> 1.33.

Rccse and Maynord ( 1987 ) proposed. instead, a quaner of an ell ipse. u'hich is

tangent to the upslream face. for the shaPc of the upstrcam quadrant as shorvn in

Figure 6.5a. The discharge coetilcients for this shape are given in Figure 6 5b for a
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FIGURE 6.6
Ell iptical crest spil lway cavitation safety curves, no piers and with piers (U.S. Army CorPs
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Note:
Hd = Design Tolal Head, tt
He = ActualTotal Head, tt

(b) with Piers

FIGURE 6.6 kontinued)

vcrtical upstream face. Reese and Maynord also developed a set of cavitation safety

curves in which the design head is determined by the allowable cavitation head.

Thesc are given in Figure 6.6 for ell iptical crest spil lways with and without piers.

Instead of selecting H 1H d as | .33, a tial design head can be chosen for a minimum

pressure head of l5 ft. Then from Figure 6.6, the value of HlHoand the maxi-

mum head H" can be obtained to compare with the given value.

209
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ExAt\tpI-E 6.1. Fbr a nraxinrunr disch.rrge of 200.000 cfs (5666 mr/s) and a maxi-
mum total head ()n the spi l lqay cresl of 6J f l  (19.5 nr). deleft) ine the crest length with

no piers, the nrininrunr pressure on lhc.resl.  and the discharge at thc dcsign head for the
standard WES ogee spi l l \ \ 'ay. The herghl of the spi l lwny cresl,  P. is 60 ft  (  l8 m).

,So/arioa. For this example, usc thc dcsign proccdure of sett ing the ral io oi the maxi

munr head to design head lcl  the value 1.3-1. so thc dcsign head H,/ = 6.1/1.33 = ,18 ft
(1,1.6 m). Also caleulate the ft io PlH,t - 60/.18 = 1.25. Then, from FigLrre 6.2 for the

standard WES high-overf lor" spi l lway (con]pound circular cune for upstrcam crcst).  the
va lueo fCTC, , :  1 .02  and  C :  1 .02  x .1 .0 - l  =  4 .11 .  Now ' l he  requ i red  c res l  l eng lh  i s

. o-,. :00.000
L  -  i  -  c ) l l { , l e m )

c H ) '  L l l  x  ( 6 1 ) '

Frorn Figure 6.3 lor II, lHo = 1.33. the nrininrun pressure head is 0.,13H,i, so P"r,d/y
= -20.6 ft ( 6.3 m). rrhich is an acceptable lalue. l jowever, ifa lcss negoti\c pres-
sure head is desired, the value ol H"/H, can be adjusled. Now the shape of the spil lway
crest is designed for the dcsign head. Hr, of ,18 fi (1,1.6 m). For example. thc shape of
the downstream ponion of the crest wilh X and y in feet is 8i\en by

X r 8 5  :  2 . 0 f l ? 8 s f  =  ( 2 0  x  4 8 0 3 5 ) f  :  5 3 . ? l y

The discharge at the design head wil l have a differcnt discharge coefflcient as obtained
from Figure 6.2. For HJH,j = 1.0, C = ,1.01 and the design discharge, Br. is given by

Q1: 4.ol x 95 x 48r1'� : l2?,000 cfs (3.600 mr/s)

To design this spil lway for an cll iptical crest. the discharge coefficient is taken from
Figure 6.5, and the minimum pressure is determined, or specified, using Figure 6.6.

6.3
SPII,LWAY AERATION

Even though the shape of ogee spillways can be dcsigned to minimize the risk of
damage due to cavitation, small imperfections in the spillway surface sometimes
can lead to localized acceleration and conesponding pressure drops that may be
unacceptable. The cost of providing a spillway surface that is smooth enough or is
strengthened by surface reinforcement may become prohibitive. This has given rise
to the use of artihcial aeratjon on very high spillways to introduce air at pressures
close to atmospheric pressure near the spillway face, thus preventing cavitation.

The concept of artificial aeration has stimulated interest in self-aeration, in
which the natural entrainment of air at the interface with the atmosphcre leads to
bulking of the flow with the commonly observed white-water appearance on the face
of high spillways. Early work on natural surface aeration of spillways was done by
Straub and Anderson ( 1960) in a 50 ft ( l5 m) long by L5 ft (0.46 m) wide flume
with slope angles,0, varying from 7.5' to 75o. A sluice gate was located at the flume
entrance and adjusted to achieve uniform flow and aeration conditions. The air con-
centration distribution was measured and shown to have two distinct regions: a
lower, bubbly mixture layer and an upper layer consisting primarily of spray.
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Bccause the depth bccon)es i l l  defincd in aerated florv. Straub and Anderson used a
rcfcrence depth. r '0, u'hich was thc unifornr f low dcpth of nonirerated flow. h cone-
sponded to a measurcd Chczy C value of90.5 in English units for their ! 'rpcrintcnrs.
The eflectire dcpth of water, r,,,, which was defined by J; ( I - q)dr., in which C,
represents the poinl air concentration in volume of air pcr unit total volume, was
related to the referencc depth and mean air concentration. C,,,, by the relation

l r = r .0  -  r .3 (c ,  -  0 .25) : (6..+)

The effective depth of water also could be defined in terms of continuity as q/V, in
which 4 = flow rate per unit of width and V - mean velocity. The ntean alr con-
centration \\ as determined fiom a best f it of the experimental data in terms of the
slopc of the spil lway. S (: sin 0), and the flow ratc pcr unit of u,idth, .11

+ 0.876C . : 0 . 1 4 3 ' " r , r (  * )\ q  - / (6 5)

Equation 6.5 applies for a range of air concentrations from 0.25 to 0.?5, and q has
units of cubic feet per second per foot. For example, for a spillway slope of 75' and
a flow rare per unit oI widrh of 600 cfs/ft r56 m'/5/m r. thc mean air concentration
would be 0..15 (or 45 percent), defincd as the ratio of volume of air to total volume.
The coresponding effective depth of water from Equation 6.4 *'ould be 95 percent
of the reference depth. The effective depth of water should be used in the momen-
tum flux term in the momentum function for the design of a stil l ing basin at the
base of the spillway (Henderson 1966). The hydrostatic force term in the momen-
rurn function for rhe aerared flo$ becomes (r^ rrll2r t C)1.

Whether the air concentration predicted by Equation 6.5 can be achieved
depends on the the length of the spillway face. In general, the point of inception of
surface air entrainment would not be expected to occur until the boundary layer had
grown to the point of intersection with the free surface. Keller and Rastogi (1977)
solved the boundary layer equations numerically on a standard Waterways Experi-
ment Station spillway with a vertical upstream face to obtain values of the critical
distance, r., for the length of the boundary layer measured from the crest. Wood,
Ackers, and Loveless ( 1983) developed an empirical formula for .t from a multiple
regression analysis of Keller and Rastogi's results:

x .  I  a  loTr '1  I: :  t l A  I
r ,  

' " t \ ' i t : I  
s o r 7 r

(6.6)

in which S : spillway slope - sin0; g - flow rate per unit of width; and &. =
roughness height for the spillway surface. From this equation, we can conclude that
the distance required for inception of surface air entrainment depends primarily on
the slope of the spillway and the flow rate per unit of width. For a concrete surface
roughness height of 0.005 ft (0.0015 m), and for a spillway having 4 = 600 cfs/ft
(56 m3/s/m) and 0 : 75", as in the previous example, the length of spillway
required for self-aeration to commence would be approximately 550 ft (168 m),
which corresponds to a spillway height of 531 ft ( 162 m).
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FIGURE 6 .7
Definit ion sketch of a spil lway air ramp

For sontc spil lways, even though they are high enough for sclf-aeration surtlce

air entrairtntent nray be insufficicnt to prevent cavitation on the facc of the spil lwly.

espccially ncar the crest. whcre it may not occur at ali. Undcr these circuntst'tnecs.

aeiation rantps have becn used to induce an air cavity that allo$ s entrainrncnt of air

near atmospheric pressure on the underside of the jet coming off the aerution rrnrf '

A sketch oi a typical air ramp is shown in Figure 6.7. in which the air is supplied

to the air cr!ity from the atmosphere through lateral wedges at thc edge of the spil l-

u,ay chute or through rccesses or ducts underneath the ralnp that are fed by chint-

neys. Turbulence causes disruPtion of the lvater surface on the undcrside of thc

nappe and air is dragged and entrained into the jet, which then is nixcd with the

flow downstream. The pressurc in the cavity below the nappe wil l be slightly less

than atmospheric because of head losses in the air delivery system. so that thc tra-

jectory lnd length of the jet wil l be different from that of a free jet
' 

With rcferencc to Figure 6.7, a dimensional analysis of the problcm leads to the

following expression for the length of the jet. 1-' coming ofT the ramp:

t l l n - l

;  /Lt p, .  ne we. r lmP gconrctrv j (6.7 )

in which ft and V = approach flow dcpth and velocity' respectivel)'. on the spillway

chute; F = approach Froude number : V/(gh)D5l I'p" = pressurc drop in the air

cavity relative to atnospheric pressure; Re - Reynolds number : l ',/v: and We -

l'l(o/pl)or. The Reynolds number and Weber number effects tend to be small in the

prototype spillway, so that for a fixed ramp geometry, the primary variables of

interest are the Froude number and the subatmospheric pressure difference lt has

been suggested from tests of prototyPe spillways that the air flow per unit of width

of spillwiy q.: kvL, where k is a constant of proportionality (de S Pinto 1988)

It follows then that
L

C ^ :  k ;

The drscharge ratio on the left-hand side of F4uation 6.8 is equivalent to the air con-

centration, C., as shown, which should be 5 l0 percent to prevent cavitation dam-

age, based on past exPerience (de S. Pinto 1988). Thus, provided the constant k is

q.

q
(6.8)

Qa
I
I+
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known fronr prototype experience, the required value of /fh can be deterntjned
fronr Equation 6.8 for the de:ired air conccntration. Then, front the relalionship
given by Equation 6.7 fronr phl sical nrodcl studies or numerical analysis of the jet

trajcctory for a given ramp geometry, the requircd undcrpressure Jp, can be deter-
mined for the specificd value of Z/fi and the known valuc of the Froude number.
Finally, the air delivery system can be designed to provide thc air f low rate $ ith the
specifi cd pressure drop.

The value of k in Equation 6.8 has bcen detemined to be 0.033 from the Foz
do Areia prototypc spil lway tests (de S. Pinto 1988), but it can vary for difterent
flow conditions and diffcrent ranp geomctrics. What is required is a ntodel study
wi th  a  re la t i ve ly  la rge  sca le  (  l :10  to  l :  l5 )  to  c l in ina te  Reyno lds  nunber  and Wcbcr
number effects and so detemrine soecific dcsign values of t.

6.4
STEPPED SPILLWAYS

Stepped spil lways have been used extensively around the world since antiquity, but
they became very popular in the past few decades with the advcnt of roller-
cornpacted concrete (RCC) and gabion construction of dams (Chanson 1994a).
They provide good surface aeration but also increase the energy dissipation in the
flow down the spil lu,ay in comparison to a smooth spil lway. This latter feature of
stepped spil lways may rcduce the cost of the downstream sti l l ing basin.

Stepped spil lways can operate either in a nappe llow regime or a skimning
flow reginre. In nappe flow, u,hich tcnds to occur at lower discharges on flatter
spil lways, the flow consists of a serics ofjets that strike the floor of the succeeding
steps. Each jet usually is follorled by a partial hydraulic jump. In skimming flow.
the jets move smoothly without breakup across the steps, which act as a series of
roughness elenrents. A recirculating vonex forms on each step in which energy dis-
sipates. The skimnring flow regime is shown in Figure 6.8. Rajaratnam ( 1990) sug-
gested that thc onset of skimming flow occurs for values of _r'./ i  exceeding 0.8,

FIGURE 6.8
Dellnirion skcrch of r \teppcd .l i l lq rl
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.,,., 
chrislodoulou (1 993)

0.2 0.3

FIGURE 6.9
Model study resulL\ for head loss on a stcpped spil lway in skimming flow with N steps (Rice

and Kadavy 1996t. (Source. C. E. Rice attd K. C. Kadat':-. "Model Stuh ofa Roller Con'
pacted Concrete Steppcd Spillnar" J. Hvdr Eagrg-, A 1996. ASCE. Reproduced b'- per-
nission oJ ASCE.)

where _v. is the crit ical dcpth for the flow on the spil lway and lr is the hcight of an
individual step.

'fhc 
amount of energy dissipation that occurs on a stepped spil lway lor skim-

ming flow is one of the prirnary design variablcs. Christodoulou (1993) suggested
that the energy head dissipated. ,\H, in ratio to the totl l head. H,,. upstream of the
dam relative to the toe is relatcd to r'./N/r, in which _r',. = crit ical dcpth; N : number
of steps; and ft : the height of each step, as shown in Figure 6.9. Rice and Kadavy
( 1996) have confirmed the validity of Figurc 6.9 for a physical model of the Salado
Creek spil lway in Texas. Based on lheir data points, the Christodoulou curve in Fig-
ure 6.9 is valid for Vl values in the range of 0.7 to 2.5. r ', / lr < .1.5, and r. /Mr < 0.5.

Chanson (1994b) analyzed experimcntal data for stepped spil lways from a
large number of investigators and conrpared the results for relative energy loss with
an analytical formulation for uniform flow conditions given by

'1 .0

I
I  u .5

0 .0
0.50.40 . 1

At/ CrL"t .nt d + 0 5Ct: r
- l

H^ H.n,.
l . )  +

(6.9)

in rvhich C, = /8 sin 0):/ - fr iction factor; 0 : tan I lh/l): t/,/,,,,, = dam crest
height above the loe: and _r,. : crit ical f low depth. He found rcasonable agreement
with the cxperimental results, considering the degree of scatter. using/ = 1.0(non-
aerated flow) and 0 - 52" over a \rery widc range of H,,,,,,[ ' , from approximately 2
to 90. Usually, H t,,,. = Nh, so Equation 6.9 corresponds with the variables of Fig-
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ure 6.9 exccpt that it covcrs a wider rangc in -1./Nir' Eqr'ration 6 9 rnust be used with

c,rt. bc."urc ol the uncertainty in tl le friction factor due to the cffects of aeration'

Stcpped spil lways offcr the advantaSe of elhanced air cnlrainn'lent as well as

"ncrgy i irrip,rt ion. ih.n.on (199'1b) shows that the inccPtion of i l ir entrainnent

.,..ui, in a shortcr distancc on a stepped sPil lway than on a snooth spil lway

because of the nttlre rapid rate of bcundary-la) er gro\\ 'th Howevcr' the equil ibrium

air concenlration is similar on stepped and smooth spil lr lays and printari ly is a

function of stope. For more details on the clcsign of stepped spil lways refer to the

comorehcnsivc trealtnent of the subject by Chanson ( 199'1b)'

6.5
CUI)/ERTS

Culverts seem to be simple hydraulic structures but in fact are among the []ost

complicated becausc of the \l ide variety of f low conditions that can occur in them

Flow can be gradually varied or rapidly varied and also a function of t ime A cul-

ven can flow full, in which case it operatcs under pressure-flow conditions as in

pipe f1ow. or it can flow partly full, as an open channel The open channel f low can

Le ,upe.crit i.ol or subcrit ical, and its analysis may include computation of a grad-

ually varied tlow profi lc or a hyilraulic jump Culverts flow full when thc outlct is

submerge,t due to high tailwater but also may flow full for a very high headwater

u ith thJ outlet unsubnrerged. In both tull and partly full f low' the submergence of

the inlet or outlct is an important criterion in determining the type of f low that

occurs. Perhaps the most inportant distinguishing characteristic of a culvl:rt f low is

u,hether it is under inlet or outlet control ln the casc of inlet control ' the hcad-

discharge relation is deternincd entirely by the inlct geometry' including the inlet

areo, e.[. rounding. and shape Tailwater conditions are immaterial for inlet con-

trol. In;tlet control, on the other hand, the head-discharge relation is affected not

only by the inlet but also by the barrel roughness' lcngth, slope' shape' and area as

*.i l oi,n. tailwrter elevation. These influences on inlet and outlet ct)ntrol are sum-

marized in Table 6- I . lnlet control generally occurs for short' steep culverts with a

free outlet, while outlet control prevails for long' rough-barreled culverts with high

tailwater conditions.
Culvert design usually is based on the selection of a design discharge deter-

mined from freq-uency an;lysis. lnterstate highway culverts' for example' may be

designed to carry th; 100 year peak discharge The culvert is sized to l imit the

heaJwater resulting from the design discharge to a specified valuc to prevent over-

topping the highwiy embankment. Once the design culvert size is detertnined' its

p.*o.i lun.. riay be analyzed over a wide range of discharges' including dis-

iharges that overtop the embankment This analysis can be summarized by a plot

of t lt le conrplete head-discharge relation. called lhe performance curve Thisstepis

imponant io accurately determine whether the culven operates under inlet or out-

let control for the design discharge The design process is based on a selected peak

discharge in steady flow, and a conservative approach is taken in which both inlet
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T A  B I , E  6 . I

Factors inf luencing culvcr t  pcr formance

Factor
Inlet Oullet

Control CoDtrol

s.rh.: Dara ftom Federal Hrghqav Administfutrcn ( 1985 ).

Qc Qee

Discharge, O

FIGURE 6.IO
Culven performance curves for the determination of inlet or oullet control (Federai High-
way Administralion 1985).

and outlet control head discharge relationships are checked to determine the l imit-
ing control. The higher head resulting either from inlet or outlet control is com-
pared wirh the allowable headwater elevation. If, at the design headwater as shown
in Figure 6.10, for example, the inlet-control discharge, Qr., is less than the outlet-
control discharge, Ooc, then the inlet capacity is less than the barrel capacity, and
the inlet controls the head-discharge relation at the design condition. This is the

Head!\ater  e le\at ion
Inle l  area
Inlct  edge conf i  gural ion

Inlet  shape
Barrel  roughness
BalTel area
BalTel \hape
Barrel  lengrh
Barrcl slopc
Tai lwaler  e leval ion

c
.9

-9
LU

3
!

I
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sanre as choosing the highcr head for a givcn discharge. as can bc sccn in Figure

6 .10 .  As  the  head increases  in  F igure  6 .10 .  the  cu lvc r t  remains  in  in le t  con t ro l  un t i l

the intersection betrveen the inlet-control and outL't-contlol curvcs, bcyond which

it is assumed to be in outlct control.
The hcad-discharge relationship of a culven follows rvell-known hydraulic

bchavior. The culven nay ng1 ns 3 seir, an orif ice, or a pipe in prcssure l low. For

an unsubrnerged inlct, the culvert-opcrates as a ueir at the inlct and the discharge

is proponional to the hcad to the : po\\ cr. tf the inlet is submerged and thc culven

is in inlet control, ori l lce flow occurs and the discharge is proportionll to thc head

to the j power This neans that the hcad incrcases more rapidly rvith un incrcrse in

discharge than for rreir f low. ln pressure flow, the hcld-discharge relation is dcler-

mined by the etTectivc head, which is the difference in total head betwcen thc head-

u'ater and tailwater.
The U.S. Gcological Survcl' (Bodhaine 1976) classifies culvert l low into six

types, dcpending primarily on the headwater and tailwatcr levels and whcthcr the

slope is mild or steep. These types offlow also have been givcn by French ( 1985),

but Chow ( 1959) used a different numbering systcm for the same six types of f low.

Additional types of culvert f low can be idcntif ied; however, a simpler classification

dcpcnds only on the type of hydraulic head-discharge relationship. In this classifi-

cation, the most inrponant criteria are whether the culvert is in inlet or outlet con-

trol and whether the inlet is submerged or unsubmerged. Submergence of the inlet

occurs when the ratio of inlet head to height of the culvert, HW/d, is in the range of

1.2 to 1.5, with the latter value usually taken as thc submergence criterion. Inlet

head, HW, is dcfined as the height of the hcadwater above the inven of the culvcrt

inlet, as shown in Figure 6. I 1.

Inlet Control

Sevcral types of inlet control are i l lustrated in Figure 6. I L In Figure 6. I la, both the

inlet and outlet are unsubmerged on a steep slope. Flow passes through the crit ical

depth at the inlet and the do\\ 'nstream flow is supercrit ical (52 curve) as it

approaches normal depth. This is U.S. Geological Survey (USGS) Type I f low. The

outlet is submerged in Figure 6.1lb. which forces a hydraulic jump in the barrel

As long as the tailwater is not high enough to move the jump upstream to the inlct.

the culvert remains in inlet control: that is. the head-discharge relationship does not

change. In Figure 6.I 1c, the inlet is subnerged and the outlet is unsubmcrged. Crit-

ical depth occurs just downstream of the inlet, but the culven is in orif icc flow

(USGS Type 5). Both the inlet and outlet are subnerged in Figure 6. I I d. and a vcnt

must be provided to prevent an unstable flow situation, which oscil latcs between

full f lorv and partly full f low. With the vent in place and the hydraulic jump remain-

ing downstream of the culvert entrance, this remains inlet control with orif ice f ' low

at the entraDce.
The head-dischnrge relationships for inlet control are based on either weir flow for

an unsubmcrged inlet or orifice flo$ for a submcrged inlet. ln other words, only two

types of flow occur in inlet control in terms of the type of head-discharge relationship
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(b) Outlet Submerged,
Inlet Unsubmerged

Median drain

(d) Outlel Submerged

FIGURE 6.I I
Types of inlet control lFederal Highway Adrninistration 1985).

that govems: ( 1) inlet submerged and orifice flow, which we refer to here as Type
lC- 1 I and inlet unsubmerged on a steep slope with $ eir flow, which is called Type
IC-2. The head-discharge relation for weir flow (lC-2) is derived from the energy
equation written from the headwater to the critical depth section, neglecting the
approach velocity head:

o :H W - . t . + ( l  + & ) ; f t (6.  l0a)

in which HW : head above the inven of the culvert inlet: r; : critical depthl A" =

flow area corresponding to critical deptht and K" = enlrance loss coefftcient. An addi-
tional equation is needed to eliminate the critical depth- ard it comes from the condi-

(a) Outlet Unsubmerged

(c) Inlel Submerged
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tion of sctting the Froude number equal to unity. Equation 6. l0a can be rearranged to
solve for the discharge, Q:

q: coe,^r/-Zg@ - ,) (6. r 0b)
or it can be placed in the fonn of a u eir equation. Note that the coell icient of dis_
chargc.C, : l/( l + 4)r/2. The USGS (Bodhaine 1976) dcveloped values for the
coefficient C, as a function of the head to diameter ratio, Ml/i, for circular cul_
l9 l1 f .Fo . -p ip"  cu lvcds  w i rh  a  square  edge in  a  ver t i ca l  headwal l ,  Cr :0 .93  fo r
HWld < 0.1, and it decreases ro 0.80 at IIW\d - 1.5, where the entrance becomes
submerged. The coefficient C, can be corrected for bel.els and rounding of the
entrance edge. For a standard 45" berel with rhe ratio of bevel heighr to-culven
diantcter wy'd - 0.0.12, the correction to the coefficient Cd is approxintately l. | . For
machine tongue-and-groovc reinforced concrcte pipe from tg to 16 in. in cliameter,
the value of C, - 0.95 rvith no sysren)aric variation found bctween C, and HW/d.
For box culvens set f lush in a vertical headwall, the value of C, - 0.95 for USGS
Type I f low (lC-2).

Once the inlet is subnrerged (Type IC_ I), the governing hydraulic equarion is
the orif lce-flow equation given as

in which C, : coefficient of dischargc; A, = cross-sectional area of inlet: and HW= head on the inlet invert of the culren. Some values of C, for orifice flow are
given in Table 6-2 for various degrees of rounding with radius r and for bevels of
height w as a function of HW/d.The purpose of bevcls or rounding is ro reduce the
flow contraction at the inret of rhe cur\ ert to obtain a higher discf,arge coetticient.
The FHWA (Federal Highway Administration) developerl head_discharge relation_
ships for inlet control using bcvels of -15. or 33.7" uith rry'b or y+,ld = 0.042 and

T A I } L E  6 . 2

Orifice discharge coefficients for culverls [e = CaA.(25 lllr\tnl

O : c,A.\/2s(Hw) ( 6 . 1 l  )

rlb, r/d; x)lb,eld

0. t0 0.t4

1 . 5
t . 6
| . '7
t . 8
1 . 9
2 .0
2 5
3.0

,{.()
5 .0

0.1.1
0..16
0..17
0.,18
0..19
0.50
0 . 5 1
0.5.1
0.55
(r.) /
0 .58
0.59

0..16
0..19
0 .51
0.52
0.5.r
0.55
0.56
0.59
0.61
0.62
0.63
0.64

0.{9
0.52
0.5J
0.55
0.57
0.s8
0.59
0.61
0.6-1
0.65
0.66
0.61

0.50
0 .53
0.55
0 .57
0 .58
0.59
0.60
0.6,1
0.66
0 .67
0.68
0.69

0.50
0.53
0.55
0.57
0.58
0.60
0.61
0.6{
0.67
0.69
0.70
0.71

0.5 r
0.5,{
0.56
0.57
0.58
0.60
0.6 t
0.65
0.69
0.70
0.71
0.'t7

0 .51
0.5.{
0.56
0.57
0.58
0.60
0.62
0.66
0.70
0.? I
0 .12
0.73

Sura /  Ddra  i rom Bodharne 1 lq l6 r
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0.083, respcctivcly, where n is thc height of the bo,el; b is the hcight of a tor cul
vert; and r/ is the diarrleter of a circul.rr cujrert. The 15. bevel is recontmend.,d fbr
ease of construction (Fcderal l l igh*ay Adnrinislration l9li5). Fronr 

.l.able 
6_1. we

see that thcse two sttndard berels increase thc discharge coell icient by approxi
mately l0 to 20 pcrcent in comparison with a square,cdge inlet (r - 0; x. : 0). For
a grooved-end concrete pipe culvcrt, bevcls are unnecessary, because thc sroovc
gives about the same inrpro\ entcnt in the dischargc coefficient.

Bctween (he unsubmerged and submcrged portions of the inlct control hcad_
discharge equations, a smooth transition curve connects the two. Bascd on cxten_
sive experimental results obtained by the National Bureau of Standards. (.ust-fi l
power relationships havc been obtained fbr both the unsubmerged and submerged
portions of thc inlet control head-discharge rcllt ionship. For thc inlel unsubmr-rged.
two fbnns of the equalion are rccommended:

t r v '  E .  l o ) u- f = i  + ^ ' L A d o s l  - o 5 s

H w  I  o 1 , l
/  " l a ; u : 1

t 6 . l 2 a )

{ 6 . 1 2 b )

( 6 . 1 4 )

in which HW - heaci above jnvert of culvert inlet in fcet; E : minimum specific
energy in feett d = height of culvcn inler in feet; Q = design discharge in cubic
fcct per second; A : full cross-sectional area of barrel in square fcet; S : culven
banel slopc in feet per foor; and K, M - constanrs for different tyrrcs of inlers from
Table 6-3.  Equat ion 6.12a is  Form I  rnd preferred:  Equat ion 6.  12b is  Form 2,
which is used more easily. For the inlet submcrged, the best-fit power relarionship
is of the form

H \  | O l :
/  

: ' L o l , l  + Y - o 5 s ( 6 . l 3 )

in which c and f are constants obtained from Table 6-3 for e, A, and d in English
un i ts  as  fo r  Equat ions  6 .12 .  F4uat ions  6 .12  app ly  up  to  va lues  o f  e / (A t lo t l  =  3 .5 ,
while Equation 6. | 3 is I alid fot QllAdo 

5) > 4.0. lnlet control nomographs bascd on
Equations 6.l2 and 6.13 hare bcen developcd for manual culvert design and can be
found in HDS 5 (Fcderal Highu,ay Adminisrrarion I985). A ful inlet conrrol cuNe
can be developed graphicail i by connecting Equarions 6.12 and 6.13 with sntooth
curves in the transition region. For conlputcr applications. polynomial regression has
been applied to obtain best-fir relationships for the inlet control curve of the form

HW

d
= A + BX + CX2 + DXr + EXl + FX5 - C.S

in which C" = slopc correcrion coefficient; S : culvert slope; and X : e/tBd1t2),
where 0 = discharge in one barrel: I = culven span of one banel; and d : cul_
vert hcight. Thc polynonrial and slope correction cocfl lcients are available in Fed_
era l  H ighway Adr l in is r ra r ion  (  |  982  and 1979) .
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w.s.

FIGURE 6.I2
Types of outlet conlrol (Federal Highway Administration 1985).

Outlet Control

Types of outlet control are shorvn in Figure 6. 12. Flow condition (a) is the classic
full-pipe flou in which pressure flow occurs throughout the banel. In flow condi-
tion (b), the outlet is submergcd but the inlet is unsubmerged for low values of
headwater because of the flow contraction at the inlet. The outlet is unsubmereed
in flow condition (c), but the culven stil l flows full due to a hish headwater. ln tlow
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coldit ion (d), the ou(let not onl)' is unsubtncrged' thc barrel f lo\\ s partly full ncar

thcout le tandpasses t l r roughcr i t i ca ldepth thcre . I - . ina l l y , in f lo r rcond i t ion(e) .bo th
the inlet and outlet are unsubtnergcd and we havc open channcl f low that is sub-

crit ical on a mild slope Flow conditions (a) and (b) are USGS llow Typc:1' while

conditions (c) and (d) can be considered USGS flow Type 6 Flo$ condition (e) for

op"n.h"nn.i f low is cither USGS flow Type 2 or 3' depcnding on uhether the

downstrcam control is crit ical depth (M2 profi le) or a tailwatcr Ereatcr than cri l ical

depth (M I or M2 profi le), respectivcly As shown next' l low conditions (a)' (b) (c)'

,nl (i) ,tt can be rreatcd as full f low with sonte adjustnent for condition (d)'

Hence, we refer to these flow t1'pes here as OC-l for outlet control with submerged

inlet. Flow condition (e), on the other hand' has an unsubnrerged inlet' so it is clas-

sif ied OC-2.
Flow conditions (a)' (b)' and (c) (Type OC- 1 ) all are govcmed by thc cnerg)'

c ( ru f , l ion  \ \ r i l t cn  f ron t  thc  herduu lc r  lo  thc  ta i l \ \ J lc r :

Hw -- 7w- sor + (r .  r , .  th) #

in which IW: tail\\ 'ater depth relative to the outlet inverti S0 = culven slopel L =

culven length; K" - entranie loss coefficient;/ = Darcy-Weisbach friction factor:

R = lull-f l-ow hydraulic radius; A = culvert cross-scctional areai and 0 - culven

discharge. This equation can be reananged and writtcn in the form

2gn2L

t , :  R4  r

(6 .  r5 )

(6.  l6)

(6.17)

u - ^

The term in parentheses in the numerator on the right hand side of Equation 6 16 is

calfed the eiectit 'e heur1, H"u, because it is the difference in elevations of the head-

water and t;lwater. Outlet control nomographs based on H.r (H in Figure 6 12) can

be found in HDS-5 (Federal Highway Administration 1985)- It should be empha-

sized that the only reason why the culvert slope appears in Equations 6 15 and 6 16

is because of the d.finition of the head. HW, relative to the invert of the culven

inlet. As long as the effective head is the same, the full-flow discharge through a

culvert of specified length will be the same regardless of the barrel slope'

Ttre treaO loss tenn in Equation 6. l6 sometimes is written in terms of Man-

ning's equation instead of the Darcy-Weisbach equation, in whichp/4R is replaced

as follows:

in which n : ManninS's rt value for full flow, and K^ - I 0 for SI units and l'49

for English units, as in Chapter 4. Typical values of Manning's n for culverts are

shown in Table 6-.4.

2 g ( H w - I w + s / - )

L
' 4 R
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Rccomnrended I \ Ianning's n values for  selected condui t -s

l lydftrul ic Stnlcturcs 225

Tl pe ofconduit \ \ 'al l  and joinl descript ion \ l a n n i n g ' s  a

Con.r.re pipe

Con.rr ' le box

('()rrusrred melal pipes and boxes.
lnnular corRrgrt ions

( i r r ru- !3ted metal  p ip€s.  hel ical
corru!a l ions.  fu l1 c i rcular  f lor

Spira l  r ib n le la l  p ip€

Cclod Joinls, \mrxnh $i{lls
Cood jLrinrs. rou!h walls
Poor. joints. roush !\  al l \

Good Joinrs. \m(xnh i jnishcd ral ls
Poo.joinrs. rough. unl ini\hed \r al ls

2 i  by 1 in. corrueations
6 b) I  In. corru-qal ions
5 b) I  in. corrugarions
I by I rn. conxlal ions
6 b) I  in. slr lrc{ural plrte
9 b1 l  I  in. structural plate

2 i  by j  in. corrugarions. 2,1 in.
pl i te r idth

] by., l  in. recesses at l l  in. spacing.
g{x loinls

0.01 l  .0 .0 t1
0 .01 .1  0 .0 r6
0 .0r6  0 .017

0.012 { ) ) �0 l5
0 .0r1  0 .018

0.027 11.021
0.025 0.022
0.026 0.025
0.02rJ 0.02?
0.015--().013
0.017 0.033

0.0t 2 11.02.1

0 .012 0 .0  r3

i -ar . .e D.ra i rom Federal  HiChway Adminisrrar ion (1985).

Values of the entrance loss coefficient for outlet control are given in Table 6-5.
The value of K" for a square edge in a hcadwall is 0.5, while for beveled edges and
the groove end of concrete pipe culverts, K" = 0.2. On box culverts with a square
edge. a small reduction in K" to a value of 0.4 is obtained for wingwalls at an angle
of 30'-75' from the centerline of the banel; otherwise, wingwalls have either no
effect for concrete pipcs or a detrimental effect if constructed parallel to the sides
of a box culven.

The flow condition (d) in Figure 6. l2 actually requires computation of the sub-
crit ical f low profi le from the outlet to the point where it intcrsects the crown of the
culvert. Numerous backwater calculations by the FHWA, however, led to a simpler
procedure for manual calculations. A full-f low hydraulic grade line is assumed to
cnd at the outlet at a point halfway between the crirical depth and the crown of the
culvert. Cy. + d)/2, and is extended to the inlet as though full f low prevailed through
the entire length of the culven. Then the full-f low equation, Equation 6.15, can be
used to calculate the head-discharge relation with flV replaccd by (),. + d)/2. If the
tailwater is higher than (,". + Al2, then the actual tailwater depth is taken as rhe
value of ZW. ln computer programs such as HY8 (Federal Highway Administration
1996). the water surface profi le for condition (d) is computed unti l i t reaches the
crou,n of the pipe, after which full-f low calculations are made. Thus, it is given a
special lype 7 in addition to USGS Types I through 6, which are used in the pro-
gram. Since it is a mixture of OC-l and OC-2, as defined here, it should be given
its ou n designation of OC-3 in HY8.
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' I ' A B L E  6 . 5

l lntrance loss cocfficienf,s: Outlct control, full or partly full entrance head loss, where
/ v , \

H , = K  I  l'  ' \ 2 s i

T]-pe of \ l ructrrre and dc\ign of eotrance Co€mcient i'.

Pipe, concrete
Projecting from fill, socket end (groove end)
Projecting from f i l l ,  square cul end
Head$all  or headwall  and wing$alls

Socket end of pipe (groove end)
Square edge
Rounded (radius = l l  d)

Mitered lo confonn to fill slope
End seclion conforming lo fill slope
Beveled edges, 33.?'or 45' bevels
Side- or slope-tapered inlet

Pipe, or pipe arch. corrugated metal
Project ing from 6l l  (no headwall)
I leadwall  or headwall  l rnd wingwalls, square edge
Mitered to conform to fill slope. plved or unpaved slope
End section conforminB 10 fill slope
Beleled edges, 33.7' or. l5" bevels
Side or slope'tapered inlet

Box. reinforced concrete
l leadwall  paral lel  to embankment (no wing' al ls)

Square edged on three edges
Rounded on tbree edges to radius of .r barrel dimcnsion, or b€veled

edges on three sides
Wingwalls al30'-75' to barrel

Square edged at crown
Crown edge rounded Io radius of * barret dimension, or be!eled

top edge
Wingwall  at l0'-25'to banel

Square edged at crown
Wingwalls paral lel (extension of sides)

Square edged at crown
Side or slope-tapered inlet

0.2
0 .5

0 .2
0 .5
0 .2
0.'l
0.5
0.2
0.2

0.9
0.5
0.1
0.5
o.2
o .2

0 .5

0 .2

0.4

0.2

0 .5

0.'7
0.2

Sdlr"r Data irom Federal IiiShway Administrarion ( 1985).

Outlet control condition (e) (Type OC-2) in Figure 6.l2 requires the compura-
tion of a gradually varied flow profile from the outlet proceeding upstream to the
culvert ixlet. This will be either an M2 or an Ml profile. Ar rhe inlet, the velociry
head and entrance losses from Table 6-5 are added to tie inlet flow depth to obtain
the upstream headwater, HW. The flow profile is computed in HY8 using the direct
step mcthod.



3 . 1  0

d. 3.00

2.90

3 . 1  0
3.00
2.90

d - 2 . 8 0
2.70
2.60
2.50
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Cn= krC,

0.80

0.70

0.60
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0.6  0 .7  0 .8  0 .9  '1 .0

ht/Hwr

(c) Submergence Factor

0.50
0 1.0 2.o 3.0 4.0

HWr, t\

(b) Discharge Coefficienl tot HW/ L,< O.15

I.'IGURD 6.13
Discharge coefficients for roadway overtopping (Federal Highway Administration l9E5).

Road Overtopping

When the roadway overtops, the roadway embankment behaves like a broad-
crested weir, as shown in Figure 6.13. The equation for a broad-crested weir is writ-
ten for this case as

Q  =  C , L ( H w , ) t ' � (6 .18)

in which Q : overtopping discharge in cubic feet per second; C. = weir discharge
coefflcient; L = length of roadway crest in feet; and HW, - head on the roadway
crest in feet. Figure 6. l3a gives the discharge coefficient for deep overtopping, and
Figure 6.13b shows its value for shallow ovenopping The correction factor tr in

Figure 6.13c is for submergence of the weir by the tailwater An iterative procedure

Gravel

\

cravel

I
Paved

\\/ Paved,,,/

/o'i*'
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has  to  bc  cnrp loycd (o  dc tern) ine  thc  d iv is ion  o l  t lo \ \  bc t \ \ 'een  the  cu l ren  lnd
crnbankrDent  ovcr f low.  D i l l c rcn t  hcadua lc r  c lcva t ions  are  lssumcd un l i l  thc  sum o l '
thc culvcn flow and crubanknrent ovcrllow cquals thc spccil icd ciischargc.

Improved Inlets

Whcn a  cu l |c r t  i s  in  ou t le t  con t ro l .  on ly  min in ra l  i rnprorcn lcn ts  can bc  rn ldc  1o
incrcase the dischargc for a given headwalcr elcvation. Bevcling of lhc cnlrunce
reduccs thc cntrancc hcad loss. but the barel friction loss is l ikelv lo be the doni-
nant head loss. Thc barrel friction Ioss can be rcduced b1 using culrcrts ftrbricated
from materials having lowcr valucs of N{anning's rt. but this becomes an ecL)lonric
issue.  On the  o ther  hand.  a  cu l \ ' c r t  th l t  i s  in  in le t  con t ro l  i s  anrenab le  to  consrder -
ablc inrprorcment in perltrrnrance by dcsign changes to thc inlct itsclf.

The purposc of inrproved inlets is f lrst to reduce the Ilow cootraction. which
increases the effectivc flow arca as well as decreases the head loss that occurs in
severe contractions. In addition, improved inlcts can include a/n//. or depression.
that increases the head on the throat of the barrcl. uhere thc control section is
loca ted ,  fo r  the  .ame hcrdu l te r  e levr l i ' rn .

At the first level of inlet improvement, the inlet edges can be beveled. The
dcgree of inrprovement can be seen in Figure 6.1,1, which is a set of inlet control

i -

3.0

2.0

'1.0

Mtitercd \//

Thin edge
i

pr
I

oiectinsf7
z7 1,, r

Square edge

4 <el,'.a ul,as"

z 7

a
'1 .0 2.0 3.0 4.0 5.0 6.0 7.O 8.0 9.0

Q lAdo 5

FIGURE 6.14
Inlet control curves-{ircular or ell iptical structural plate comrgated metal conduits (Fed-
eral Highway Administration 1985).
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cunes for different entrance conditions constructed from Equations 6.l2 and 6.I3
for a circular or ell iptical structural plate comrgated metal conduit. The maxinrunr
incrcase in discharge at HWld = 3.0 due to bcvcling is about 20 perccnt in cont-
parison to a thin edge projecting inlet.

The next lcvel of improvement is the side'tapered inlet shown in Figure 6.15.
The side-tapered inlct has an enlarged face section with a 4: I to 6;l side taper as a
transition to the entrance to thc barrcl of the culvert. called the t/rroal. The floor of
the tapered section has the same slope as the barrel of the culvert, and the hcight of
the face should not exceed l. I t imes the height of thc barrel. The headwater height
on the throat is greater than on the face due to the slopc of the tapered inlet. How-
ever. an increased head on the throat can be achieved by rotating the culvert about
its dow stream end such that there is a fall from the natural streambed to the invert
of the face. Thc sidc-tapcrcd inlet is designed by first calculating the head on the

L r S

Symmetrical
wingwall f lare
angles from
'1 5" to 90'

FtcuRti 6.15
Side tapered inlet,  no fal l  (Federal Highway Administrat ion 198-5).

Face section

t o  6 : 1 )

Plan
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throat, Hly,, for a gir en design discharge, culven size, and allowable headu,ater ele-
vation using inlct conl-rol nomographs or cquations dcveloped for this case. The ele-
vation of the throat thcn is sct as the hcadwatcr elevation ninus the head on Lhe
throat. This may require thc inclusjon of some fail in the throat below the normal
streambed elevation. Then inlet control equations or nomographs for face control
are used to obtain the minimum u idth of the face for the given head on the face,
assuming a maximum increase in elevation of I ft from the throat to the face in\en.
The face width is rounded up slightly to be conservative, so that control wil l be at
the throat and not the face. Once the facc width is f ixed, the length of the side taper
is calculated from a chosen taper ratio bctween,l: l and 6:1 (longitudinal:lateral ),
and the actual elevation of the face can be determined from the slope of the barrel.
If i t is more than I ft higher than the throat, the calculation must be repeated with
a rrew face elevation.

The final level ofinlet inprorcment is shown in Figure 6.16, which depicts the
slopc-tapered inlet. In this inlet improvement, the entire lall is concentrated from
the face invcn clevation at the nalural streambed elevation to the throat inven ele-

Bevel
(optional)

Symmetrical
wingwall f lare
angles from
'1 5" to 90'

r'tGURE 6.t6
Slope'tapered inlet (Federal High*ay Administration 1985).

-T_

l"
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vation dctcrmined for throat control. Separate face control nomographs or equa-
rions lor thc slope-tapered inlet are used to find the nininrunr face width. The lall
slope is selected to be in the range between 2:l and 3: | (horizontal to vertical), and
the side taper remains in thc range of .1:l to 6:l to determine the length of the
trpered section. The amount offall should bc in the rangc betwcen 0.25dand 1.5d.

E x A ]l P t, D 6 . 2 . Design a concrete box culverl to carry a design discharge of 500
cfs ( 1,1.2 m1/s) rr ith an allo*able headwatcr of 10.0 ft (3.05 m) above the inlet inven.
The culvert is l0O ft (91-.1 m) Iong and has a slope of 0.02. The do\\ nstream channel is
rrapezoidal wirh a bottom qidth of 20 ft (6.1 m), side slopes of 2: I, r : 0.020, and
slopei = 0.001 frft.

S(,,1ll/ror. Slan by choosing a 6 ft (1.8 rn) by 6 ft (i.8 m) box culven with a square
edgc in a head*all. Assume inlet control with the inlet snhmerged (lC-l). so that. from
(6. I I ). the head for the design discharge is

a ' 500 r -r.00
c)

Then, irom Table 6 3, for rr/D : 0, itssume a value of HW/d : 2.O fot vhich C, : 9.51
afld HW : 3/0.51I : I L5 ft (3.5 1 m). Repeal with HW'ld = l l .7 16 = 1.95, and C, =
0.505. so that Hltl = l l  .8 ft (-1.60 m). This is acceplable agreement, so lor inlet con
trol, the head. dly, of I1.8 ft (3.60 m) exceeds the allowable head$ater. The next slep
could be to increase the size of the culven, blt it would be cheap€r to bevel the edges.
With l'l, : 0.012, the ileration on C, from Table 6-2 produces C, : 0.-55 and illtz =
9.9 ft (3.0 m). $ hich is jusl les\ than the allowable headwater. On the other hand, Equa-
tions 6.12 and 6.13 are somewhat more accurate for inlet control. The value of
Ql(.Adat1 :500(36 x 6"t) = 5.67, so Equation 6.l3 is applicable. Table 6-3 gives c
=  0 .031,1  and l ' :  0 .82  fo r  a .15 'beve l  and a  90 'headwal l .  Subs t i tu t ing  in to  Equat ion
6.13 resulls in HIV : 10.9 ft (1.32 m). This is slightly greater than the allowable head-
water. For a grealer factor of safety, increase the culvert size to ? ft (2. I m) by 6 ft ( l �8
m) high but sti l l  use beveled ed8es. ln this case, Equation 6.l3 remains applicable and
Hly: 9.3 ft (2.8 m). This might be an acceptable design, but we should also check for
outlet control. In fact, from Manning's equation, the normal depth in the culven for Q
:  500 c fs  (1 ,1 .2  mr /s ) , , l  :  0 .012,  S :  0 .02 ,  and b  =  7 .0  f t  (2 .1  m)  i s  2 .97  f t  (0 .905 m) .
and crjrical deprh '-,. : 1600n)1132.21tt1 = 5.41 fr (1.65 m). Consequenrly, rhis is a
steep slopc and inlet control is l ikcly to govern unless there is a high tailwater

The tailwaler for 0 : 500 cfs ( 14.2 mr/s) can be calculated from Manning's equa-
tion with rl : 0.02 and S = 0.001 for the given dimensions of the downstream trape-
zoidal channel. The result is a tailwater depth of 3.83 ft ( l. l7 m) above the outlet inven.
Calculate (y. + d)/2 : \5.11 + 6)12 : 5.'1 fr ( 1.7 m). *hich is grearer than the tailwa-
ter deprh of 3.81 fr ( l. l7 m), so use 5.7 ft ( 1.7 m) in the fr-rl l  f low equation. Subsritut
ing into Equation 6.l5 \\ ' i th the friction loss term evalualed by Equation 6.17 and K" =
0.2 for beveled edges from Table 6'5, we have

2g(CuA,,)' 6,1.,1 x -16r x C;

H w - s 1  0 0 2 , , 0 0 , ( '  o , .

= 3 .8  f t  (  1 .2  m)

Clearly the inlet control head of 9.3 fl (2.8 m) is higher, and it \\ ' i l l  control.
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While this is a perfccrly acceprable design. ir is \\onhwhilc lo explore rhe effccr of
uti l izing sidc-rapered and slope tapcred inlers on Lhe onginrl 6 fl bj 6 fi box culvert
design using the FHWA prograrn H\'8 (Federal t. l ighu,ay Adminisrrarion 1996)..fhe
progranr HYS allows interactive entry of culven and inlet data and do$,nstream chan,
nel characterislics. It then calculates the tail$'ater mting curv-e and dcvelops a full per_
fomlance cune for lhe selected culven. It calculales complere *.ater surface profi les
\\Jren requirc'd and provides graphicat screcn results and prinled ourput lables and fi les.

To design a side-tapered inlel. as\ume a larrral erprnrion of,t: l and specify
bevcled edges. Then choose a face widrh larger than lhe culvcn \ridlh. and the prograrn
computes the face controlcurve as well as the throal control performance curve. Adjust
the face width unti l the face control cune is belo$ the throat control curve so that the
throat is the control, at least for p greater than or equal ro the design discharge. The
pertonrance curve for the 6 fl by 6 ft culven rrirh sidc-tapered intet having a face
\\ idth, B/, of 9 fr (2.7 m) is shown in Figure 6. l7 in comparison wirh rhe perfonnance
curves for a squarc edge and beveled cdge on the 6 ft by 6 ft culvcn. At the design dis-
c h a r g e o f 5 0 0 c f s i l , l . 2 r n r / s ) , r h e h e a d f o r t h e s i d e , r a p e r e d i n l e t ( S D T ) i s 9 . l l f l ( 2 . 7 g
m), which is a 26 percent reducrion from rhe head of 12.39 fr (, '1.7g m) for a square-
edge inlet. AIso shown jn Figure 6.17 is the performance cun.e for a slope_tapered rnlet
(SLT)wi tha fa l l  o f  2  f t  (0 .61  m) ,a fa l l  s lope o f  l :  l .  and  a  face  q , id rh  o f  l2 .0 f r (3 .66
m). The head at 500 cfs ( 14.2 mr/s) is 7.23 fr (2.20 m), or a .l2 percent reduclion from
the head for a square-edge inlet. It is apparent thar rhe cutverr banel could be reduced
in size further if a side tapered or slope tapered inlet were used.

Just below thc perfomrance cune for thc slope-tapcred inlet in Figure 6.l7 is the
outlet control performance curve for the slope-tapered inlet design. We see thrt the out_

l l
Concrete Box Culvert

6 f t  x  6 f t ;  S = 0 . 0 2 ;  L = 3 0 0 t t
,27

Allowable
headwater
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1:1 bevel -1

)

'1"
4

-,2
'/'r'

Outlet control

z .?
S D T - 4 : 1 , 8 / = 9 t l Design

discharge

tr SLT-4 : '1 ,  2 :1 ,  B /=  12  f t
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1 2

q  1 0
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FIGURE 6.I7
HY8 results showing effect of intproved inlets on culren perfonnance curves.
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let control curve intersects the slope tapcred inler curvr 'ar a discharge sl ightly grearer
lhan 600 cfs ( l7 Inr/s). For al l  di \charges grel l ! ' r  lhan rhe intcrscction point. lhe cut\ cr l
is in outlel control.  and the head r ises.rr a grcaler rate rhan for inlet control.  One design
philosophy is to use a tapcred inlel * i lh a fal l  such that rhc intersectjon with the oul lel
control curve occurs exactly at the al lorrable head of l0 f t  (3.05 m) qhere e is greatcr
than the design value. This ful ly ut i l izes the inlet capacity of the cul\cn at rhe design
head and provides a factor of saferl  in culvert capacitt ' .  Alternatively. the culvert wi lh
inrprored inlet can be designed !\ i th a fal l  such lhat rhc inlet controt curve rnlcrsecls
exactly lhc poinl corresponding 1() lhe design discharge and al lowable headwater. This
often is acceptablc. i f  some addit ional headwater can be toleraled or i f  road o\ crtopprnB
is al lowed. The f inal possible design point is the inler\!-ct ion of the inlet control curve
u,i th thc design discharge al the lo\\csl possible hcad, $hich is l imiled b1, the natural
wlter surtace eleYation in the stream upstream of the culvc'rt .  The f inal choice of desisn
pornt nrus{ bc milde by thc engineer bascd on local condit ions and judgment

6.6
BRIDGES

The flow constriction caused by bridge openings and bridge piers gives rise to both
contraction and e:pansion energy losses, wilh a resulting rise in water surface ele-
vation upstream of the bridge in conrparison to that which would occur without the
bridge. This excess watcr surface elevation in the bridgc approach cross secrron,
referred to as bechrater, is shown in Figure 6. l8 as h'f. Type I flow shown in Fig-
ure 6.18 is defined for subcritical flow throughout the approach, bridge, and exit
cross sections. In Type II flow, the constriction is so serere as lo produce choking
and the occurrence of critical deprh in the bridge opening. In Type IIA flow, the
llow dcplh does not pass through the downstream critical deprh, so a hydraulic
Jurnp does not occur. However, in the casc of Type IIB flow, the flow downstream
of the bridge beconres supercritical and a hydraulic junrp forms irnmediatcly tlown-
stream of the bridge. Finally, Type III tlow. which is not shown in Figure 6.18.
occurs when an approach supercritical flow remains supercritical through the
bridge opening. In Type I flow, rhe bridge backwater is rhe result of head losses,
including the approach friction loss, contraction loss. and expansion loss. In the
case of Type II flow, the choked condition, additional backwater is caused by the
upstream dcpth necessary to increase the available specific energy to rhe minimum
value in the bridge opening.

Several differcnt methods are available for derermining the bridge backwater.
especially for Type I flow, which is rhe most common. These methods are discussed
individually here and include empirical, monentum. and energy approaches to the
problem.

HEC-2 and HEC-RAS

In the nornrrd bridge routine in HEC-2 (U.S. Army Corps of Engineers l99l ) or the
energy method in HEC-RAS (U.S. Army Corps of Engineers 1998). the gradually
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? ?
fz > fzcw.s.

Normal waler sudace

t  t c

(a)Type I Flow (subcrilrcal)

W.S,
Hydraulic jump

Cril ical depth
Normal water surlace

fo > fzc

r-tGURE 6.18
Flow through a bridge openinS (Bradley 1978).

varied flow profi le calculations are continued through the bridee using the standard
step method, as though the bridge opening were just anorher river cross section.
This nrethod usually is used when there are no piers or rhe head loss caused by the
piers is very small. The cross sections are located as shoun in Figure 6.19, num-
bered for consistency u ith other methods presented here. Cross sections 3 and 2 are
located irnmediately downstreatn and upstream of the bridge opening, respectively,
at a distance of only a few feet from the face of the bridge. The approach section I
in Figure 6.19 is in the region ofparallel f low before flow conrraction occurs, while
the exit section 4 is located at a point where the flow has reexpanded. Traditionally,
the Corps of Engineers has rccommended that the lengrh of rhe contraction reach
from cross section I to 2 be taken as I t imes the averagc length of the side obstruc-
tion caused by the embankments (CR = 1). In addirion. the expansion reach length
from cross section 3 to.1 has been recornmended in the past to be 4 times the aver-
age length of the side obstruction (ER = 4). However. the Corps of Engineers con-

I Crii ical depth
i r .vu 16* 

'  
r-" 

-- -  --, , '

(b)Type llA Flow (passes through crit ical)

(c)Type llB Flow (passes through crit ical)
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Expansion reach

I+
- @

FIGURE 6 . I9
Cross section locations at a bridge (U.S. Arnry Corps of Engineers l99g).

ducted a numerical study of the contraction and expansion reach lengrhs using a
two-dimensional numerical modcl (U.S. Army Corps of Engineers l99g). The
results showed that rhe Iengrhs required for expansion of the flow depend on rhe
geontetric contraction ratio, the channel slope, and the ratio of overbank to main
channel values of Manning s rr, while contraction reach lengths depend only on the
latter two variablcs. ln gcneral, contraclion reach lengths were in ihe range of I to
2 times the average obstrucrion lcngth. and expansion reach lengths fcll in the range
of I to 2.5 times the average obsrruction length. Best f its of the numencal results
were obtained. but they are specific to the values of the independent variables tested
in the nunerical rnodel. which included britJpe opening lengrhs from 100 ro 500 ft
(10.5 to I-52 m), a floodplain width of 1000 fr (305 nr). overbank Manning's n val-
ue s lrom 0.0-1 to 0.16, main channcl Manning's rr of 0.0.1. discharges fron5,000 to
10.000 cfs (1.12 to 8-50 nrr/s), and bed slopes from 0.00019 to 0.0019 (see U.S.
Anry Corps of Engineers 1998).

Twc addirional cross sections are created by HEC,RAS inside the bridge open_
ing. Only the effective l low area from I to C is used in the cross-sectron DroDenles
of cross section 3 as rvell as cross scction 2. Standard step flow profi lei are com_
putcd through this total of six cross sections with friction losses and expanslon and
contraction losses computcd in the usual way.
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In the spcciri l  bridge nrethod in HEC-2. the program computcs a momentum

balance betwcen an upslream cross section and a section just insidc thc bridge sec-

tion and bctwccn the bridge section and a dorvnstreant scction. to determine if the

flow is Type I or Type ll. If the flow is T1'pe I. thcn the enlpirical Yarnell cquation
(Hentlerson 1966) is used to detcrrl l ine thc changc in watcr surlace elevation'

IH. ,. thror.rgh thc bridge oPening

' {4n=r , , r l1r "+sFi  -  0 .6) (A.  + l5A:) r 6 . l 9 )

(6.20)

in which 1., = downstrcanr dcpth: l 'r : downstrcam Froude nunrber, K" : pier

coefllcicnt varying from 0.9 lor a picr with scmicircular nose and tail lo 1 25 for a

pier with square nose and tail; and A, = arca ratio - obstluctcd area due to

piers/total unobstructcd area. If the flow is Type II. then l lEC-2 sets the depth equal

to crit ical depth in the bridge and deternincs the upstream and downstrearn depths

from a momentum balance (Eichert and Peters 1970)

In I]EC-RAS. the Yarnell method or the nlonel)tun nlcthod can be chosen as

the dcsired bridge hydraulics analysis method for Type I f low ln the momentum

nlethod, the mon]entum cquation is written in three steps: ( I ) from just upstrearn of

thc bridge to a pointjust inside the bridge. (2) through the bridge opening itself '  and

(3) from just inside the bridge cxit to a point just downstream of the bridge. This

provitlcs a solution for thc depth at the t\!o cross sections inside the bridge and the

cross-section immediately upstream ol the bridgc. The pier drag force is included

in  s tep  (  1 ) .
Dctection of Type II f low and calculation of the approach depfh can also be

accomplishcd using a contbination of the monlen(um and energy approaches. First'

the monrcntum cquation is written hctween thc bridge section and do$'nstrcanl sec-

tion 4, with crit ical dcpth assumed in the bridge scction. Thc rcsult. which is given

in tcrms ofthe width ratio r = b,lht thJl causes choking. is (lJenderson 1966)

(2 + r  i  r ) rFl
'  

( l  +  lF l ) r

in which b, = width of bridge opening: b, : exit channel width; and F. - down-

strcam value of the Froude number. The approach depth is obtained by writ ing the

energy equation betwecn the approach section I and the crit ical section inside the

bridge with an appropliatc head loss coefllcient.

HDS-  I

The Fcdcral HiShway Adnlinistration de\ eloped an energy method of bridge analy-

s is  pub l i shed in  the  t {ydrau l i c  Des ign  Ser ies  (HDS- l :  Brad ley  1978)  l t  was  used

prior to the development of WSPRO. Refening to Figure 6 20' the cnergy equatron

is applicd bet$'ecn sections I and 4 to obtain

r r  t  ;  o .V
S , . / , . ,  r '  - ' l :  - r . , - * ' j ' - , / , , (6 .2  |  )



W.S. along bank

g " ' r { r  |  ?
\ ' 2

Sec t l on  . , . 1  v4  \
a i \  \  2 a ta"l

s - / .  ̂
t h

(a) Profi le on Stream Centerline

YlmatWS. 
Fto* *  

"o I  
n i  Actuatw.S. on q

Section

Section

Q6 Qa

(d) Plan al bridge

}.IGURE 6.20
Normal crossing: Wingwall abutments (Bradley 1978). 231



2-18 CH, r l  t  r - r  6 :  l l ]d rxu l i c  S lRrc lu res

in which lr, is thc rotal cnergy loss bet$'ccll sections I and l With respcct lo tl)c

nnrm"l *at., surface. thc unifornt-flow rcsislanc€ portion of ir, is just l- ' l l 'rnced by

the vcrtical fall in thc channcl botton so that frorn Equation 6 21 ' we have

a . V i  t l L Y i
.  _  t   L) -  ) , ,

(6.22)

in which h,, is t ic additional head loss due to the bridge constriction and can be

expresscd in temrr ol 'a tninor loss cocll lcicnt. r( ' delined b1

d 1 V : 1

h,  Y* 
"  '
t 8

(6.23 )

where {,2 - the mean vclocity in the contracted section based on the flow area

bc lowthe.normalwa lc rsur lace inc lus iveof thcareaoccup iedbybr idgcp ie rs 'Now
if (,r ' , 1o) is replaced by ft ' f and [lquation 6 23 is used to substitule for f i,, '  Equa-

tion 6.22. with the aid of continuity, becomes

, , i= r .+ - " [ ( * ) '/4"\ ' l I" :  (6.r{)
\ A '  , /  l 2 s

The second term on the righr hand side of Equation 6 24 represents the difference

in velocity heads between sections I and 4' This term generally is mucb smaller

than the irrst term, ancl Equation 6.24 is solved by iteration with the second tcrm

equal to zero in the first trial. tt is important to note that A,' is the gross water area

i [ t h e c o n t r a c t e d s e c t i o n m e a s u r e d b e l o w n o r n t a l s t a g e , a n d V , ' i s a r e f c r e n c e
velocity equal to QlA"..The value ofa, = 1 0, and it is assumed that ar - cr1'

To'calculate tn. Lo.k*ot"t, the vaiue of the minor head loss coefficient' K'

must be detcrmined. Values of K have been developed from laboratory and field

studies. and K is considcred to consist of additive components

K * = K t r a l ( r " + a K . + a K ,

in which K, : contraction coefficient; JKn = prer coefficienrl AK. = eccentncrty

coefficientiand AK, - skewness coefficient For simplicity' we consider only a

normal bridge crossing with no eccentricity or skewness effects- The values of K,

and AK- can"be obtairied from Figures 6 21 and 6 22' respectively The contraction

lo"fn.i".nt K, in Figure 6.21 depends on Mo, the bridge opening- discharge ratio

given as Q/Q and d-efined in Figure 6'20 for the normal water surface elevation in

itr" uppt*itt t .tion. For abutments exceeding 200 ft in length' the lower curve in

figuie O.Zf is recommended regardless of abutment type' ln Figure 6 22' the pier

co".fficient i. given as a function of "/, the ratio of area obstmcted by the Piers to the

gross area of ihe bridge waterway below the normal water surface al section 2 The

ialue of AK is determined hrst as a function of "/, and then it is conected for the value

of Mn to give \K, = 5Yo.

USGS Width Contraction Method

The USGS has an interest in bridges from the viewpoint of using them as flow

measuring devices by measuring upsfeam and downstream stages As a result' it

(6.2s)
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Backwater coefftcient base curves-subcrit ical f low (Bradlev 1978).

der eloped an energy approach (Kindsvater and Carter 1955; Kindsvater, Carter, and
Tracy 1958; Matthai l9?6) that uti l izes a bridge discharge coeflicient, C. Firsr, with
reference to the cross section locations in Figure 6.20, the energy equation is writ-
ten between cross sections 1 and 3, but with section 3 inside the bridge, to obtain

o , V t ,  a , V  1

2 r ' '  
" '  

1 ,  
I  h \  |  h '  h ' (6.26)

in u,hich h, = stage (water surface elevation) in the approach section l; ftr : stage
in the bridge section 3; l" : entrance head lossl and hr: friction head loss from
sections I to 3. If the entrance loss is expressed in termi of a minor Ioss coefficient
as h" = K"(\)212g and if continuity for the bridge section is writren as

Q = C,b)"3v3 16.21 )
in rvhich b : bridge opening length, and C. : the contracrion coefficient, thcn
Equation 6.26 can be solved for V, and expressed in terms of O using Equation 6.27
to glve

1 . 00.9o.40.3o.2

In Equation 6.28, the bridge discharge coefficicnr, C, is defined by

C"

\/"t + K-

(6.28)

(6.29)
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and A l  =  l r ,  i ,  uh i le  . ,1 r  :  b r r .As  an  example .  v r lues  o f  the  bdc lce  d ischarse
coclficicnt are given in Figurc 6.2.1 lor a Type I bridge consisting oirectangul-ar
abutnrcnts with or wirhour * ingrvals. 

' fhe 
base coefficient c' is cletermined fronr

the upper graph and corrected for the Froudc number and comer roundjng bv mul_
tiplying C' by lo and k, to get C. Curves of rhis type have been developeJfor rhree
additional bridge types, discussed in thc scction on WSpRO. (For the conplete set
o f  curves .  see  Mat tha i  1976:  French 1985;  o r  U.S.  Army Corps  o f  Eng ineers  199g.
The purpose hcre is only ro show the conncction betwecn rhe USGS method and
WSPRO.) Each hridge tvpc has jts own sct of correcrion factors. In addirion. some
corrcction factors are common to a)l four bridge types. such as thc concction for
piers or piles as shown in Figure 6.2.1, and thcse are mulriplied rintes rhe base coef_
ficient. The pile and pier adjustmenr factors ,Jepc,nd on thr. rrrio/ = ArlA,, where
A, is the submergcd area of the picrs projccted onto the plane of cross section 3 and
,4r is the gross arca of cross scction -1, L/b : rxio of iburnrenr \\ idrh in the flow
direction to bridge opcnina lcngth, and |n : channel contracrion ratio. The value of
the base discharge coefficient c' is a function of the channel contraction ratio. ,r.
which is defined as the obstructed discharge in the approacb channel cross sectlon
divided by the rotal discharge. and L/b.ln terms of HDS-1. nr = (l - M,) where
M, is the unobstructed discharge ratio, defined as in HDS-l except that it is evalu_
ated at the approach water surface elevation. i r. in\tead of lt the normal water sur-
face elcvation. To delcrmine the backwater. Equation 6.2g can be solved for Aft. but
this is only the drop in tvater surface from the approach to the bridge section.
WSPRO, to be described next, uti l izes this ponion of the energy balance involving
C but also the encrgy equation written from sections 3 to 4.

WSPRO N{odel

The USGS in cooperation with FHWA devcloped a compurer program that com_
bines step backwater analysis with bridge backwater calculations. The program,
namcd WSPRO (Shcarman er al. 1986), is recommended by FHWA. It is c-onti ined
in the,HYDRAIN suite of programs (Federal Highway Adminisrration 1996).
WSPRO allows for prcssure flow through the bridge, embankment overtopping,
and flow rhrough mulriple bridge openings including culuerrs. Tne Liidg-e
hydraulics rely on the energy principle but have an improred technique for detei_
mjning approach flow lengrhs and an explicit consideration of an expansion loss
coefficient. The flow lengrh improvcment was found necessary when the approach
flow occurs on very wide. heavily vegetated floodpiains.

The cross sections necessary for the WSpRO energy rnall,sis rre shown in Fig-
ure 6.25 for a single-opening bridge with or without spur dikes having a bridge
opening length ofb. Cross sections l, 3, and 4 are required for a Type I f low anal-y_
sis, and they are referred to as the approach section, bridge sectiin, and, exit sec-
Ir.rn, respectively. In addition, cross section 3F, called the full vallet. section, is
needed for the water surface profi le cornputation without the prcsence of the bridge
contraction. Cross section 2 is uscd as a control point in Type Il f low but requiris
no input data. Two more cross sections must be defincd if spur dikes and a roadway
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4: Exit
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(b)Wilh Spur Dikes

FIGURE 6.25
WSPRO cross-section locations fo. stream crossing with a single watenlay opening (Shear_
man et al. 1986).

profi le are specified. The approach section is located a distance of b upstream of the
upstream face of the bridge, while the exit section is a distance of b downstream of
the downstream face.

The basic methodology for a single-opening bridge wirh no spur dikes and
free-surface flow consists of writ ing the energy equation, f irst between cross sec-
tions I and 3 and then between cross sections 3 and 4, as defined in Figure 6.25:

(6.30)

(6.3 r  )
in which l, : the water surface elevation at cross section i i h,.i - velocity head at
section i; h/i i_./) : the friction head loss bctween cross sections i and j: h,,, = normal.

b b

(a) Without Spur Dikes

ht = ht + h4 t h11-21 ! h1p-t1 h"r

h3 :  hon  I  hua ,  +  h t14 )  +  h "  -  h , l

3: Bridge opening
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Loss bet\retn
secl ion numbers

Tl p€ of
toss l:nergJ loss equalion

I 2 (no spur dikes) Frict ion
I I ljriction
3 -1 Fricr ion
3 -1 Lxpansion

h t  '  \ =  L , ,Q ) IK  tK  t
h t  1  \ t  =  I .  . Q : t K i
h]  , ) ' :  bQl l \K,  K4^)

1,"  -  pt tpsAl t ' ] f i .  . r j1 2p,(A. /Ar)  *  . r .  (Ar/Ar) : l

r h c r c  a ,  =  l / C r i n d  P r  =  l / C

S. ! r . . r  Da la  i f t ' n  Shcr .n r ln  e r  3 l  i1986) .

water surface elevation al cross scctionj: and r,, : exit head loss bet\\ 'een cross sec-
tions J and '1. Equations 6.30 and 6.3 | arc solved by assuming init iai tr ial elevations
for lr, and 12.,, which are used to computc thc right hand sidcs of thc 1\r'o equations
to obtain updated values on the Ieft. Iteration is continued unti lthe changes in hr and
h, are small.

Energy loss expressions necded in Equations 6.-30 and 6.l l are surnmarizcd in
Table 6-6. F'iction loss calculations uti l ize the gconrctric mean convcyance
between any two cross sections, and the flow lenSth fronr section I to 2 is the aver-
age length. L,,, as determined by thc nrethod developed by Schneider et al. (1977)
and shown in Figure 6.26. The approach flow is dividcd into 20 streamtubes of
equal conveyance, and the flow distance of cach slrcamlubc lronr the approach sec-
tion 10 the bridge is areraged for the calculation of the approach friction loss. The
length L,,0, is thc distancc from the bridge opening to lhe approach seclion where
the flow is nearly one dinrcnsional. detcrnrined as function of the geonretric con-
traction ratio based on potential f ltxv thcory (Schncider et al. 1977). Thc value of
Loo, is equal to the bridge opening length. b, at a geonrclric contraction ratio, lr lB =

0.12. lt L,,pt is Icss than b as in Figure 6.26a. then the parallel straight-l ine lengths
of each streamline fronr thc approach section to the dashed line at L.,", plus the con-
verging straight-l ine lcngths to thc bridge opening are averaged to obtain L"". ln
Figure 6.26b, L.fl is greater than b for a very severe contraction. In this case, a
parabola approximating an r'quipotential l ine is constructed from the edge of the
water at the upstream distance of b. Then, the parallel streamlines are extended to
intersect with the parabola bcforc bcing turned to thc bridge opening, if the inter-
scction point is downstream of the dashed line located a distance of Loo, from the
bridge opening. The approach head loss also depends on the geometric meln con-
veyance squared from I to 2, dellned as thc product of (, and K,, rr hcrc Kl is the
conveyalrce of the approach section. and K, is the minimum of the conveyance at
section 3 (trr) or the conveyance K,, defined as the conveyance of the segment of
apprcach flow that can flow through the bridge opcning with no contraction.

'fhe 
friction loss through the bridge is based on the conveyance K, as shown in

Table 6-6. The lcngth of the expansion reach used in the friction loss calculation is
one bridge opcning lcngth. b. and so the bridge exit cross section location should
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(a) For Relatively Low Degrees of Contraction

FIGURE 6.26
WSPRO definit ion sketches of assumed streamlines (Shearman et al. 1986).

not be changed. A separate expansion head loss computation is based on the
approximate solution of the momentum, energy. and continuity cquations fbr an
abrupt expansion given by Henderson (1966) and discussed in Chaprer 2. It
depends on the coefficient of discharge for the bridge as developed by Matthai
( 1976). By comparing Equations 6.28 and 6.30, it can be shown that q1 = l/Cr.The
USGS width contraction method is used to find the bridge discharge coefllcient,
which then appears in the expansion hcad loss expression.

Pressure flow through the bridge opening is assumed to occur when the depth
just upstream of the bridge opening exceeds l. l t imes the opening hydraulic dcpth.
The flow then is calculated as orif ice flow with the discharge proportional to the
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(b) For Relatively High Degrees of Contraction

FIGIIRE 6.26 (continu ed)

square root of the effective head. Unsubnrerged orif ice flow is i l lustrated in Figure
6.27 with the orif ice discharge, Q,, computed by

q"  coe, . , , lze1r ,  -  z  z  r  t , , .1 (6.32)

in which A,"", = net open area in the bridge opening, and Z = hydraulic depth =
,4.,,"/b. Submerged orif ice flow is treated similarly, with the head redefined as
showr in Figure 6.28, and given by

Q. :  CoA. " " , \ / 2sLh (6.33 )
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FIGURE 6.27
WSPRO definil ion sketch for unsubmerged oriltce flow conlprlations (Shearman et al.

1986) .

FIGUR.E 6.2E
WSPRO dcftnit ion sketch for submerged orif ice flow computations (Shearman el al. 1986)
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TA B I , I '  6.7

Rridge flow classificalion according to submergence conditions

Flo\\ through bridg€ op€ning onl, Flo$ through bridgt opening and oter road

Class l .  Free surface f los
Class 2. Orifice flo\r'
Class 3. Submerged ori f ice f lou

Class -{. Fr!'e rurflcc flo\r
Class 5. Orif ice io\ l
Cl.r\!i 6. S brnert!'d oritice io$

T A  t l l .  E  6 ' 8

Bridge tlpe classi{ication

T}'pe Embanknlenls Abutments Wingwalls

I
1
l
-l

\ t f l ical
SbpinS
Sloprng
Sloping

Ve(rcal
Venical
Sloping
Venical

With or wrrhoul
None
None

In unsubmerged orifice flow, the discharge coeflicient is 0.-5 over a wide range of
YjZ, whlle it is equal to 0.8 for the submerged orifice case.

WSPRO also can consider flow through the bridge opening simultaneously
with embankment overflow, which is computed as a weir discharge rvith discharge
proportional to head to the ] power (see Figure 6. l3). This leads to classification of
ilow classes I through 6 (Shcarman et al. 1986), as shown in Tablc 6-7. ln [ree-
surface flow. there is no contact belween thc water surface and the low steel elcva-
tion of the bridge. In orifice flow. only the upstream girder is submerged, while in
submerged orifice flow both the upstrcam and downstream girders are submerged.

A total of four different bridge types can be treated by WSPRO as describcd in
Table 6-8. Further details are given by Shearman et al ( 1986)

Comparisons of WSPRO results with several other models and field measure-
ments of water surface profiles through several bridges are given in Figure 6.29
(Shearman et al. 1986). The methods HEC-2(N) and HEC-2(S) are the normal and
special bridge routines. while E.131 is an older USGS mcthod. \\'SPRO compares
very well with the observed water surface profiles. Maxinum errors are 0 3 ft tbr
Buckhom and Cypress Creek, and 0.4 ft and 0.6 ft for the higher and lower dis-
charges, respectively, on Poley Creek. The results from WSPRO and HEC-2 are
comparable for thc entire Cypress Creek profile as well as for the profiles upstream
of the bridge for Buckhorn Creek and the low discharge on Poley Creek The water
surface profile through the bridge. however. is not reproduced verl *'ell by HEC-2

Kaatz and James (1997) comparcd backwater values computed by WSPRO,
HEC-Z, and the modified Bradley nethod with measured backu ater values for l3
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(a) Buckhorn Creek, near Shiloh, Alabama

I'IGURE 6.29
Comparison of water surface profi les (Shearman et al. 1986).

flood events at nine bridges in Louisiana, Alabama, and N,lississippi. The modified
Bradley method used essentially $,as the HDS-l method given in this chapter,
except that t ie contraction reach length was taken ro be one bridge opening length,
as in WSPRO. The bridge opening lengths varied from 40 ro 130 m ( 130 to 430 ft)
and the discharge contraction ratio, rn. defined in the USGS method, varied from 54
to 79 percent of total flow obstructed in the approach section. Both the normal
bridge meth.rd and the special bridge method were used in HEC-2, in which rhe lat-
ter method simply is an application of the Yarnell equation to determine the water
surface drop through the bridge. The downstream expansion reach length for the
HEC-2 methods was taken to be one bridge opening lengrh. as in WSPRO, but the
HEC-f recommended value (4 times the average obstrucrion length) also was tried.
When using the expansion reach length of one opening length, the HEC-2 normal
bridge method gave the most consistent results, with computed backwater values

)
a

TL

c
.9

UJ

U)
(D

3 - Observed
- - -+ - -  wsPRo
- -o- - l]EC-2 (N)
- . { . -  HEc-2 (S)
- - { - -  E431



CHApTER 6 :  Hydrau l i c  S t ruc tures  251

0 1000 2000 3000 4000 5000
River Dislance, ft

(b) Cypress Creek, near Downsvil le. Louisiana

FIGURE 6.29 kontinuedt

showing an overall average of 2 percent less than measured backwater values, while
WSPRO gave computed values with an overall average of 3l percent greater than
measured backwater values. The HEC-2 special bridge method (yamell) and the
modified Bradley method both gave consistently low values of computed back-
water, which is not too surprising, since neither method was developecl for bridges
in wide, heavily vegetated floodplains. When the expansion rario of 4:l was apptied
in the HEC-2 normal bridge method, rhe overall average of computed backwater
values was 36 percent higher than measured values and the computed water surface
elevarions downstream of the bridge uere significantly higher. It was concluded
that, although the WSPRO model gave backwater values that were somewhat high,
it provided an accurate representation of the downstream water surface elevations
and the water surface elevations in the immediare vicinity of the bridge.

In laboratory experiments conducted at Georgia Tech. water surface prohles
were measured in a large compound channel (4.3 m (l: l fr) wide by lg.3 rn (60 fr)
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(c) Poley Creek, near Sanlord, Alabama
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long) for which the lvtanning's rr values were determined in uniform flow experi-
ments to be 0.0155 and 0.019 in the floodplain and main channel, respectively, for
compound channel f low. The compound channel was asymmetric with a floodplain
width of 3.66 m ( 12.0 ft) and a trapezoidal main channel bank-full width of 0.55 m
(1.8 ft). The measured water surface profi les for a bridge abutment in place are
cornpared with WSPRO results in Figure 6.30. in which the total depths relative to
the botton of the main channel are given. The bank-full depth is 0.l5 m (0.5 fi).
The abutment/embankment length for this case is 4.1 percent of the floodplain width
(l,JB, = 11.141. Almost exact agreement is lound bet$een the WSPRO depth and
the measured dcpth at the downslream face of the bridge. while WSPRO depths
upstream of the bridgc are approximately 2 to 3 percent high. Measured and com-
puted velocity distributions are superimposcd on the shape of the compound chan-
nel at the bridge approach section in Figure 6.3 l. The WSPRO velocrtres are com-
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. Measured - Normal depth ^ WSPRO
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X Station. m

Fr(;uRE 6.30
Conrparison of measured dcpths and WSPRO computed dcpths in a laboratory compound
channel (Stumr and Chrisochoides 1998). (Soxr.?. Tern W. Stunn uru! !. lt lonis Chriso-
elnit les. Ott-Ditertsiottal und T*o Dintensbtnl Estinutes oJ Abutntent Scour Prediction
Vtriubles. In Trunsport ti)n Rescar<'h Reconl 1617, Transportotion Research Board,
Nlltional Reseor.'|1 Countil, Wushitgton, D-C., 1998. Reproduced br pennission ofTrans-
po rtot iotl Re sea rch B oo rd. )

puted fiorn the discharges in each of 20 strcamtubes haring equal conveyance
dividcd by the flow area of each streanltube. Relatively good agreement between
measured and computed depth-averaged velocities is sho* n both in the floodplain
and main channel. ["[owever, WSPRO vclocities conrputed in this wav did not agree
at all with measured resultant velocities near the face of the abutnrent, where the
flow was not one-dimensional (Sturm and Chrisochoides 1998).

A user's instruction manual for WSPRO was developed by Shearman ( 1990),
and it should serve as a source for more dctailed information on using the computer
model. The application of the nethod is described briefly in the follo\\ ing seetions
and an example is given.

WSPRO Input Data

All the input data records for WSPRO are identif ied by a two-lener code at the
beginning of each record. These codes, summarized in Table 6-9. can be divided
into four groups: t it les, job parameters (optional), profi le control data, and cross-
section definit ions. The record identif ication codes must appear in the first two
columns of each input record. Data values are entered in free format ('F as the first
data record) and can be separated by comnas or blanks. Default values of certain

O = 0 0 g S m 3 / s ;  S = 0 0 0 2 2
Verlrcal wall  abutmenlt La/q = 0 44
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. Measured velocity ^ WSPRO velocity
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FIGURT] 6.3I
Comparison of measured velocity and WSPRO computed \elq:ity in a Iaboratory compound
channel (Stumr and Chrisochoides I998). (So&rce.' Terr\^ llt. Sturfi oru1 Artonis Chriso-
choides. One-Dirrensional a d T)ro-Di ensional Estimates of Abuttrent Scour Prediction
Variables. In Transportation Research Reutrul 1647, Transportation Research Board,
National Research Council, Washington, D.C., 1998. Reproduced bt permission of Trans-
po rt tt I iort Re se a rc h Boa rd. 1

parameters can be used by entcring an asterisk or doublc commas. The input data
records are created easily using word-processing soft*,are that has a text-fi le cre-
ation feature or within HYDRAIN (Federal Highway Administration 1996). The
input and output data can be in either SI or English units.

Profi le control data consists primarily of Q, WS, SK, and EX records. The Q
record allows a whole series of discharges to be analyzed in a single computer run.
The stafiing waler surface elevation can be specified directly for each Q with a WS
record, or the crit ical water surface elevation wil l be assumed ifWS has a value less
than crit ical, such as the lowest ground elevation. Alternatively, a slope of the
energy grade line can be entered on an SK record to obtain a starting water surface
elevation by the slope-area method. The EX record is used to specify a computa-
tion in the downstream direction (supercrit ical) with a lalue of unity or an upstream
(subcrit ical) computation with a value of zero (default). The ER record ends the
data input f i le.

Cross'section data constitute the bulk of the input data and include ground ele-
vations and locations, roughness coefficients, and bridge and spur dike geometry.
Header codes for cross-section data are given in Table 6-9. The actual r--l coordi-
nate data for each cross section are entered on GR records and must be referenced
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- T A I } L E  
6 . 9

\\ 'SPRO input data rocords

T  l .  1 : .  I 3  ' A l p h i r n u n r e r i c  l r r l c  d i t a  t { ) .  i d c n r r f i . r t i o n  o t  o u r p u r

J l  { r ror  t ( ter !nces.  le\ t  value\ .  etc.
J l  inpur Ind oul lu l  conlro l  prrantetcrs
Jl  \Ncia l  t rb l r  ng pa|antcters

I'nlilt .o tnl dnta

Q Ji r .harsc(s)  l i r r  t ( ) i j le  conrpulal ion(s)
\ \ 'S staning wrter  surf l .e e le!at ion(s)
SK -ncr8y gr i rd ienl( \ )  for  s lope-con\e\ i tnce coInpular ion
EX e\ecul ion in\r rucr ion ind computat ion di rect ion(s)
LR . indrc.r te\  end of  inpul  (cnd of  run)

Cn!i \cLtion L|?li itio,l
Herder\
XS--regular  \a l lcy secl ion ( inc luding approrch sccl ion)
BR bndge-openinesect ion
SD spur d ike secl ion
XR -()ad gfade sect ion
CV {ol \ 'en sect ion
XT lemplarc scct ion

Cro\ \ - \ect ioni l  gcomcrry data
CR . t .  r  coordinarcs of  ground points in a cros\  secr ion (some cxcept ions al  br idges,  spur d ikes,
roads.  culvens.  and in data propagat ion)

Roughness data
N-foushness coel f lc ieots (Manning s, l  \a lue\)
S A  (  ( , ' , ' J r n . l ( . ,  o l  . L h , r ( a  b r e r l p , , r n r .  r n  d  1 r . . .  . e \ t r . n
ND iepth bfeakpoinls for  venical  lar ia l ion of  N values

FIo\r  length dara
FL f low lengths and/or  f ic t ion s lope averaeing rechnique

Bndge secr ion data (M = rnandalory i  O :  opr ional)

D€ri8lr ,ro./r (no GR da{a) Fi.ted gettmetn nod€ (requires CR dara)
BL-bddge lenglh.  locat ion {M) CD bndge opening l }pe (M)
BC b. idge deck parameters (M) AB-abulment roe elevat ion (M, Type 2)
AB--abutrDenl  s lopes (NI.  Typ€ l )  PD pier  or  p i le dara (O)
CD br idge opening rype (M) KD .onveyance brcakpoinrs (O)
PD pier  or  p i le dala (O)

KD {on\eyance breakpoints (O)

Approach secr ion data
BP hor izontal  datum corect ion belreen br jdge and approach secl ions

Template geometry propigt l ion
GT replaces GR data \ Ihen propagat ing lemplare sect ion geometry

(nar ,  D i r  f rum Shearn ,Jn  (  lq90) .
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to a cornmon datlrnr- Roughncss data are entercd on N rccords and ntust con.espond
to the subsection dcllnit ions civen by SA rccords. Thc SA record gives thr- rjghr
hand boundary as an.r r.alue for each subsection going from Iefr ro r.ighr. L'\ccpt fbr
the last onc, rvhich is the l imiting right boundary. The l\ lanning's rr \ alues rhen cor,
respond to  each subsec t ion .  Thc  r t  va lues  can vary  u i th  e lev l t ion  u i th in  each sub-
scction by using an ND record. u'hich gives thc vcrtical brcakpoinrs for rhe addi-
tional values of rr cnlcrcd on the N record.

ln rvhat is called thc desigtt nrode, specific bridgc parametcrs can be varjcd on
the BL, BC, and AB recoriis. as sho*,n in Table 6-9. Other bridge records dcfining
bridge and cmbanklrent confisuration (CD), pic'r or pile dara (PD), spur dikcs (SD),
and road grades (XR) are discu\sed in more dctail in the user's rranual. Four bridge
typcs arc possible in thc desien mode. as shown previously in' lbble 6-8. In the fixed
gcometry n)ode. thc bridge section is cntercd as a series of slations and elcvations as
for natural channel sections. except that the seclion Inust be 'closcd" by reenlcring
the first gcometric point at the ieft abutmcnt as the last geornetric point.

Data propagation is a r ery convenicnt ltature of WSPRO, * hich avoids reen-
tcring data that do not change frorn onc cross section to the next. Data on N, ND,
and SA records. for example. can be coded only once and propagated from one sec-
tion to the ncxt unti l they change. A single cross scction defined by GR records also
can be propagatcd by specifi, ing only rhe slope and longitudinal distance to each
succeeding scction or by dcfining a tcmplate secrion (XT).

WSPRO Output Data

The user can specify ccnain rypes of data output. but of more interest is a definit ion
of the output variables that appear in thc computer prinlouts shown hcre. These def-
init ions are summarized in Table 6-10. In general, the output consists of an echo of
input data and cross section computations for each succeeding cross section followed
by the water surface profile results. The bridge backwater is the differcnce between
the constricted and unconstricted water surface elevations at the approach section.

E x A \t p L E 6. i. A nomlal, single-opening bridge is to be constructed ar the cross
section shown in Figure 6.32. which shows the subsections and roughnesses. The aver-
age stream slope in the viciniry of the bridge is 0.00052 ftlft. The bridge opening begins
at Starion 230 ft (70 m) and ends al Sration 430 ft ( l3 | m) for a loral bridge opening
lenglh of200 ft (61 m). It has vefticai aburmenrs and embankments (Type I bridge) and
a bridge deck elelarion of 35.0 ft ( I0.7 m) wirh a low chord (or low sreel elevation) of
32.0 ft (9.75 m). The bridse has three piers wirh a spacing of 50.0 fl ( 15.2 m) and a
width of 3.0 ft (0.91 m) each. No overtopping is allowed. For a discharge of 20,000 cfs
(567 mr/s). calculate the backwarer caused by the bridge and the mean velocity at rhe
bridge section using WSPRO.

Solulion. The input data records are shown in Table 6-l l. The specified discharge of
20.'J00 cfs (567 mr/s) is enrered in rhe O record, and rhe concsponding sranrng \larer
surface elevation is obtained by the slope-area method using the slope of 0_00052 on
the SK record. The exit cross section is located at station 1000 fl (305 m). and the
ground points shoxn in Figure 6.32 are entered in the GR records. This single cross
section is propagated upstream in rhis example. The bridge opening is 200 fr (61 m), so
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T A  B t . t i  6 -  1 0

\\ 'SPRO dcfinit ions of output variirbles

AI.PH \t l .{ i r}  head conecrion faclor
AREA Crosq seetion area
BETA }lomenlun) cor.ect ion facrn
B I -EN B r i dg t , opcn ing l cng rh
C Ccti l lc icnt of discharle
CAVC A\.rase wcir coeff icient
CK Conrracrion loss coetf icienl (0.0 default)
CRWS Crir ical \- !  a lcr- \urfacc ele\al ion
DAVG A\.rage depth of f io$ o\cr road$ay
DI\{AX l{a\ inrum deprh of f loq over road$ay
EGL Energy grade l ine
EK E\pansion loss cocff icienl (0.5 default)
IjRR Error in cnLygv/discherle balance
I"LEN Roq dinance
FLOW FIoq cla\si l lcal ion code
FR# Froude nunbe.
HAVG A\era8e lolal head
HF Fricrion head loss
HO }t inor head losses (expansio contracnon)
K Cross sectjon conveyance
KQ Con\eyance of Kq sccrion
LEW lrfr edge of water or lef i  edge of $eir
LSfl .  Lo!\ \reel r,ubmcrgencr, <lc'arr"n
M(K) Flo* conlract ion rat io (conlcyance,
i \ '1(Cl Geomelric conrracl ion ra(io (* idlh)
OTEL Road olenoppinS ele.r'ation
Pl!-D Pier or pi le code
P/A Pier area ratio
Q Discharge
REW Rieht edge of l l 'aler or dghr edge of *eir
SKEW Skeq of cross section
SLEN Sraight- l incdislance
SPLT Stasnalion poinr, lefr
SPRT Sragnarion poinr, r ighr
SRD Sec(ion reference disrance
TYPE Bridge opening lype
VAVG A\erage velociry
VMAX Marimum velocity
VEL Velocity
VHD Velcriry head
WLEN \\ 'eir len8lh
WSEL \\hter,surfaceeleval ion
XLAB Abulment stat ion, left  l lx
XRAB Abulrncnt stal ion. r ighl toe
XLKQ L-efi edge of Kq secrion
XRKQ Righr edge of Kq secrion
XMAX }faximum stat ion in cross section
XMIN  V rn rmum . ra r ron  i n  c ro l r  5cc l r on
XSTW Cross-secrion lop widrh
XSWP Cross,sectionwelredpenmeler
YNIA\ Var rmum elevarion rn . ro\s .r,  r ion
YMIN N{rnrmum ele! l ,nn rn.ro\\  ,( .r ion

-So!r..r Dara from Shearrnan (1990).
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T { B l - E  6 - l r

\ \ 'SPRO input data f i le for Exanrple 6.3

S I  O
T I
T:
T]

S K

XS EXIT IOOO.

Example 6-3.-Normal Bridge Crossing
Bed Slope = 0. iX1052; LSEL = 32.0 ft ;  No Ovenopping
Bridge Opening (Typc I):  X = 2l0lo, l30 f(;  3 piers

Discharge
10000.

Slope for slope-area melhod
0.00052
EXIT secl ioo
Section rcference distance, skew (0), ek (0-5), ck (0.0)

GR
CR
GR
GR
GR
GR

0..35.0 0.,28.0 1.10.,23.5 200..21.5
230..21.0 250.20.5 280.20.4 300..20.0
3r0..19.0 330..10.0 360.,3.0 380,8.0
400.18 .0 ,130. .21 .0  450. ,20 .0  175.11 .0
500..17.5 5,{0..I8.0 600..20.0 730.,?8.0
730.,35.0

* Subsection n values and subsection breal points
N 0.0.15 0.07 0.035 0.0.15
sA 200. 300. 430.
* PropaBate geomelric data from exit section to full valley

Ir 
FULV 1200. * * * 0 00os2

* Create bridte section
BR BRCE I2OO,

* low chord eleva(ion

BC J2,O

' hndge lengd. left  abr-tt . . ta..  r i8hl abut. sta.
BL 0 200. 210.430.

' pier elev., gross pier width, no. of piers
PD0  8 .0 .3 .0 , t 10 .0 ,3 .0 ,110 .0 .6 .0 .220 .4 .6 .0 .220 .4 ,9 .0 ,1

* bridge lype, bridge \^ idth
cD I 40.0
* Approach section
XS APPR 1440.

EX

ER
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FIGURE 6.32
Example 6.3, bridge cross section.

both the full ralley and bridge section are located ar slation 1200 fl (366 m) ar rhe
downslream face of the bridge. The approach section is one bridge opening length or
200 ft (61 m) upstream ofthe upsrream face ofthe bridge. As a result, rhe approach sec-
tion is at Station 1,140 taking inro accounr the widrh of rhe bridge of ,10.0 ft ( 12.2 m) as
given in lhe BL record.

The bridgc record (BR) is given in the design mode. in which the program creates
the bridge cross section from rhe succceding records. The BC record enlers the low
chord elevation of 32 lt (9.75 m), which is needed to determine if the flow is free-
surface flow or orifice flow. The bridge lengrh of 200 fr (61 m) beginning ar r : 230 ft
(70 m) and ending ar.r = 430 fr ( 131 m) is given in rhe BL record. The elevarions at
the bottom of the piers and their cumulative widths are shown in the pD record. Finally,
the CD record indicates a Typ€ I bridge opening and a .10 fr ( 12.2 m) bridge width- No
roughness data are given, so these are propagated from lhe downstream station.

Sample output is shown in Table 6-12 for Q = 29.11p.r, (567 mris). Inpur data
echo has been suppressed for brevity. First, the water surface elevations for the uncon-
stricted flow are given at the exit, full valley, and approach sections to represent the
waler surface profile without the bridge in place. These results are followed by the
water surface elevations al the bridge sectjon and the approach section for constncled
flow, or with the bridge in place. The cri l ical water surface elevations and Froude num-
bers at the bridge and approach sections both indicate subcritical flow at these secrions.
The backwater of L12 ft (0.34 n]) is obrained by subrracling rhe unconsrricted warer
surface elevation at the approach section from the conesponding constricted value
\29.37 - 28.25). The bridge opening velocity is 8.14 fvs (2.54 m./s), and the approach
velocity is 3.16 ft ls (0.96 m/s). The flow is Class I, or Type I in rhe ourpur, which is
free surface flow through the bridge opening without embankment overtopping, and the
bridge discharge coefficient is 0.7.15.
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Output data for Fixanple 6..1

s P R O * * * * * * * + + *
l 'ederal High$a] Administral ion-U. S. Grologicsl Survey

l\ lodel for \ latcr-Surfacc Profi  lc CoInputations.
lnpu( t lniL!:  English / Oulput thits: English

EXA\ IPLE  6 . . ] . .  NORMAL BRIDCE CROSSINC
BED SLOPE = 0.ql05l i  LSUL = 31.0 I: f ;  NO OVERTOPPING

BRIDCE OPENING (TYPE I),  x = 130 TO J-10 l--T.3 PIERS
wsEI-  v l tD a
ECEL I]F V
CR\\ S HO FR #

AREA SRDL
K FLE\
SIi  AI-PHA

I-EW
REW
I]RR

Se,rt ioni EXIT
Hcadcr Typc: XS
SRD: 1000.000

Section: FULV
Header Type: FV
SRD: 1200.000

Section:APPR
Headef Type: AS
SRD:1140.000

28.008 .150 10000 ft)o 551:.0t9 .t00
:E -r_i8 1628 876n61 t0 7.r0.(xx)
2 r .895 .101 1.70E

?8.1t7 .3.{9 20000.000 5515.t02 200.000 .100
28.{66 .r0.1 1.6:6 8775,17.80 200.0)0 7t0.000
2l.999 .000 .304 .0005 L108 .00.1

<<< The Preceding Daia Reflecr The Unconsrricted Profile >>>

28.1{6 .t.19 20000.000 55t8.52.1 240.000 .100
28.595 .125 l.611 8781t3.{0 2-10.{X}0 7-t0.000
22.121 .000 .30,1 .0005 I.708 .001

<<< The Preceding Dara Retlecl The Unconstricled" Profile >>>

<<< The Following Data Reflect The Constricted Proflle >>>
<<< Beginning Bridge/Culven Hydraulic Conrpulations >>>

WSEL VIID
EGEL HF
CR\\'S HO

Q AREA SRDL I-EW
V K FLEN REW

FR # SF ALPHA ERR

Section: BRGE
Header Type: BR
SRD: 1200.000

SpecificBridge Information
Bridge Type I Flow Type I
Pier/Pile Code 0

27.135 1.941 20000.000
29. ,182 .189 8 .339
22.508 .835 .124

1198.501 200.000
5 r0355.60 200.000

l.800

P/A PFELEV BLEN

230.0.12
.130.058

.001

XRAB

.7453 .055 32.000 200.000 230.000 .130.ffX)

WSEL
EGEL
CRWS

VHD
HF
HO

AREA
K

SF

a

F R #

SRDL LEW
FLEN REW
ALPHA ERR

Se{tion: APPR
Header Type: .\S
SRD| 1140.m0

29.169 .25,r 20000.000 6338.016 200.000 .08,r
29.623 .t ' �73 Ll56 10-585,13.00 220.202 ?30.0t6
22.t24 .069 .242 .0005 1.6-t2 .00r

Approach Section APPR Flow Contraction Information
KQM ( G )  M ( K ) XLKQ XRKQ OTEL

.'726 .398 636363.5 242.723 112j39 29.369

260
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EXERCISES

6.1. A high olerflow spil lway wtth plHd > i.33 has a maximum discharge of 10.000 cfs
with a maxinlum head of 20 ft. Delermine the design head. spil lway crest Iength, and
the minimum pressure on the spil lway. plot the complcte spil lway crest shape for a
compound circular curve in the upstream quadrant of rhe crest.

6.2. Repeat Example 6.1 for an ell iptical approach crest, using a dcsign procedure lhar
guarantees a mtnlmum pressure head of - l-5 ft. plot the head-dischargc curve.

6.3, An ogee spil lway has a cresr heighr of 50 fr above the roe and a nraximunt head of
15 ft. A minimum pressure of 1.5 psi is allowed. The maximum discharge is
16,000 cfs.
(.r) Delermine the crest length of the spil lu,ay assuming a conrpound crrcutar curve

for lhe upstream crest shape. What is the pressure at the r.r,sr for the maximum
discharge?

(b) If the spil lway is designed as a stepped spil luay. rvith each srep 2 fr high by l.-5 fr
long. what is the energy djssiprl ion in feet of water at the maximum discharge?
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6.4. An exist ing ogee spi l lway with an el l ipt ical crest has a cresr height of 7.0 m rnd a
crest length of 15.2 m. A nrinimunr gage pressure of Tero (atn)ospheric prcssure)
occurs at a head of 1,1.0 nt. Whal maximum head and discharge uould you recom
rnend for this spi l l*ay )

6.5. A 0.91 m diameter com-rgaled metal pipe culven ( l  = 0.021) has a length of90 m and
a slope of0.0067. Thc entrance has a square edge in a hcadwall_ At rhe design discharge
of 1.2 nrl /s, the lai lwater is 0..15 nt above t ie outlet in\en. Detennine the head on the
culve11 at the dcsign discharge. Repcat the calculat iotr for head i f  rhe culven is conerele.

6.6. Show lhat Equalion 6.10a for a box culverl  in inlet control ui lh rhe entrance un\ub-
mcrgcd can be placed in a form in *hich Q is proport ional to rhe head, F1ly. to rhe
3/2 power.

6.7. A 3 ft  by I f t  concrete (n : 0.011) box culven has a slope of 0.006 and a lcngrh of 250
fi .  The enirance is a square edge in a headwall .  Determine the head on the culvert for
a discharge of 5{) cfs and a discharge of 150 cfs. Thc downstreanl lai l \- \ ,ater elevation is
().5 ft above the outlet intert for 50 cfs and 3 ft above the o!l/?/ i/llet at 150 cfs.

6.8, Design a box culven to carry a design discharge of 600 cfs. The culven inven elevarion
is 100 ft and the allowable head$ater elevarion is I 1,1 ft. The pared roadway is 500 ft
long atrd ovcnops at I15 ft .  The cul\en length is 200 ft  wirh a slope of 1.0 percent. The
fol lowing tai lq ater elevations apph up to the maximunr discharge of 1000 cfs:

8, cfs Tll', tt

:00 t0) .1
,100 102.6
600 !03 . I
8m 103.8

1000 lol I

Prepare a perfonnance cune for the culverl design by hand and cornpare with the result.s
of IJYS. Also use HY8 to prepare a perfonnance cur"'e if the slope is 0.1 percent.

6.9. A circular concrete culvert has a diameter of 5 ft with a square-edged entrance in a
headwall. The culvert is 500 ft long with a slope of 0.005 and an inlet inven elevarion
of 100.0 ft. The downstream channel is lrapezoidal with a bortom width of l0 ft, side
slopes of2:1, slope = 0.005. and Manning's a = 0.025. The paved roadway has a
constant elevation of 130 ft wirh a length of 100 ft and a widrh of 50 ft. The design
discharge is 250 cfs and the maximum discharge is 500 cfs. Use HY8 to consrruct and
plot the performance curve for these data. and compare this \rith the perfonnance
curve for a 5 fl diameter comrgated steel pipe. Also compare this with the perfor,
nlance cunve fo. the 5 ft diameler concrete culven * ith a side-tapered inlet.

6.10. Prove that or : l/Cr in the WSPRO methodology where (rr : kinelic energy flux
correction coelicient at section 3 and C: USCS bridge discharge coefficient.

6.11, Apply the HDS-l melhod to the data given in Example 6.3, and conrpare the back-
\vater to that oblained from WSPRO.

6.12, Using the USGS width-contracrion curves in Figures 6.23 and 6.2,1, verify the value
of the bridge discharge coefficient and the discharge ralio tn (= M(K)) given in the
WSPRO output for Example 6.3.
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6.13. Change rhe bridge rype ro Type 3 for thc WSpRO example (E\anrple 6.1), rnd dr,rer_
minc rhe backwarer for p values rrnging from 5.00O lo 25.000 ct\ .  plot the results in
a graph contpring lhe Type I and Type 3 bridses in this range of discharges for a
bndge lcnSrh of 200 ft .

6,14. For a b dge lenglh of 200 f l  rnd a Type I bridgc-. change the lo\\  chord elevarion in
rie WSPRO cxantple to:8 ft  with a coDsli lnr road\\a\.ele\al jon of -t l  f l .  Al lo\r over-
topping to occur and detennine thc back*.ater for the santt range ol.dischargcs as in
Exercise 6. 13. Plot the resul ls in conparison * ir l r  Erample 6.- j .  Note: Thc XR heade.
rccord is rcquired to locate the centcrl ine of the road\ay fol loxcd br CR records to
give the road\\ay prof i le for overlopping anall  sis.

6,15. For Exanplc 6.3. reduce rhe bridge length ro 150 ft  ( \r  i rh trr.o bridge piers). and inlro,
duce a rel iel  bridge with a length of 50 ft  al a loearion of your choice in one of the
floodplains. Plot rhc resulrs for bdckwater o\er rhe stnte range of discharges ls in
Exercise 6.I3 in conrparison wjth the results from E\ample 6.-1.

6.16. Anallze the exisring bridge o\cr DLrck Creek using \\ 'SPRO or HEC,RAS (WSPRO
option) and the fol lowing table of cross-section dara. Use the f ixed gconletry mode for
the bridge secrion. The bridge is Type . l  wirh a rr idrh of j0 fr,  embrnkment side slopes
of l :  l .  enbankmenl elcvation of 790 fr,  and wine* al l  angle of 30.. T}e tow chord ele-
rarion is 788 ft .  The design discharge is 6950 cfs $ i th a watcr surface eleval lon of
78'1 66 in the exit  cross secrion The ful l  va ey section should be idcnricar ro rhe bridge
section over the bridge opening width and essenrial l l .  is the same a\ the e\rt  secLron ln
both floodplains.
(a) Determine the backwater for the exist ing b. idge.
(b) Design a new bridSe lo replace the old one so that the back*ater is <0 25 l t .

Duck Crcek cross sections

Exit,  Stat ion 1000

Point Distance Eleval ion

I

2
3
1
5
6
1
8
9

I O
l l
t 2
I ]
l ,{
l 5
t 6
1 i
l 8

192
780
780
'778

1't 3
1'�72
172
780
780
1'�79
'779

780
78:
78,1
786
788
798

150
-  r05
-'70
-28

-20
l 8
22
_15
50

2 1 0
600
E60

1005
1050
l  2
l ]60
I 3  r 0
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Subsrcl ion X Subsection l \ tanninq's n

I
)
-l
4
5
6

2tt
35

: t 0
600
860

l 3 l 0

0.08
0 0.1
0.08
0.05
0.08
0.05

l l r idge, Stat ion I100

Point Distance Elevation

I

2
l
.l
5
6
1

'71
- 7 1

30
t 5

25

7E8
778 .1
1 1 6
112 .5
712 .5
7'�7 5
788

Subs€ction X Subsection Nlanning's a

0.04

Approach, Station 1230

Distance Ele\at ion

I

2
l
1
5
6
'7

8
9
l 0
I I
t 2
l 3

l 5

t 7
l 8
l 9

796
788
786
7 8.1
1'42
780
7?8
'7'�l6

112
'7 

72

780
780
780
'782

78.1
786
8 1 0

-.r80
1-10
.120

- 305
-  1 7 5

-30
- 2 5

2
t 7
20
?8
50

670
990

1070
l D 0
l:60

Subsection X Subsection Nlannins's z

I

2
-l
:1

28
670

t :60
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6.17. Apply HEC-RAS ro Eraniple 6.3 using thc encrgy. monrentunr. and yamelt nrerhods.Set up the cross secrions in the schcrnatic layoJi staning at the up.irerm ,tation of1450. Use a consranr slope of 0.00052 and aid rhe appr-opriare ailount r,r att eteva_ttons glven lbr station lO00 in Exarnple 6.j. Thcn in ihc geonrerric dara erlrlor, copythe cross seclions do!|nstreant adjusting the elevafion d-own*ard accorJrng lo theslope and distance bet*een stalions. Use values of0.3 and 0.1 for the erp:nsron andcontractron loss coefficients. respectively. Eslablish slalions at 1250. l2m. and 1000to correspond with the \\ 'SpRO seclions. Add a bridge at station 1225 usi] ' ]! lne geo_metnc data edjtor. In the bridge/culvert editor, enter the deck and roao\\a) data. pterdata, and check the boxes for all threc methods of compuration as *ett as rhe boxchoosing the highest energy answer in rhe brrdge moelelrng.rpproach uindow. Alsoenler a picr drag coefficient of 2.0 and a yarnell prer.oati,.,.n, of 0.9_ In the crosssection data editor, add ineffcctive flow areas at stations t 2SO ana t iOO ro $e lcfr anddght of lhc bridge opening specified at elevarions abo,,.e the low choro et!-\ ation bulbelow the_ top of the road*ay. In_lhe steady fl()\! Llala menu, enter the or.cnarge ot20,000 cfs and choose normal depth as the downstream control urrn 3 slope of0.00052, Finally. choose sleady flow analysis and click rhe compute brrron. Colnporethe results with WSpRO. and then make a second run with the exit sectron at station800 instead of l0{D_ Discuss the rcsurrs.
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Governing Equations of Unsteady F'low

7 .1
INTRODUCTION

In unsteady flou. r 'elocil ies and dcpths change wilh time at any fixed spatial posi_
tron tn an open channel. Open channel f low in natural channels almost alwavs is
unsteady, allhoush it often is analyzed in a quasi-steady state for channel de.ign or
floodplain rnapping. Unstcady flow in open channels by nature is nonuniform as
\\,ell as unstcad) bccause of the free surface. Mathcmaticallv, this nteans that the
trvo dcpendent flow variables (e.g.. velocity and depth or discharge and depth) are
functions of both dislance along the channel and time for one-dintensional aoolica_
tions. Problem formulalion requires two partial differcntial equations repreienring
the continuity and ntomcntum principles in the two unknown dependcnt variables.
(The differential fonn of the cnergy cquation could be uscd in cascs where the flow
variables are continuous. bul the ntontcntum cquation is required where they are
discontinuous. as in surges or t idal bores.) The full differential forms of the two
governing equations are cnlled the Saint-Uenant equutiotts or the dvnamic u.ave
equatiott.s. Onlt in rather sevcre simplif ications ofthe governing equalions are ana_
Iytical solutions arailable lor unstcady flow. 1'his situation has led to the extensive
development of appropriate nurncrical techniques for the solution of the govenring
equations. Scveral of these rechniques wil l be explored in the next chaprer.

Unsteady flou. problems arise in hydrauJic cngineering in a variety of settings,
ranging from *aves formed in irrigation channels by gate operarion or in hydio-
electric plant headraccs and lailraces by turbine operation to natural f lood waves
and dam-break surges in rivers. Thc types of waves considered in these slruauons
are called lrarislalon war,er because of their continuous mo\ement along the chan-
nel as cpposed to periodic or oscil latory ocean waves, which are not considered
here. In addition. only shallou water waves are considered, in which water move_
ment occurs o\c'r the full depth and venicai velocity and acceleration can be
neglected to allo\\ the usc of one-dimensional fornrs nf the govcrning equations. In

261
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V - c < 1 - - +  V + c

(a) Subcrit ical Flow

FIGURE 7 . I
\\ 'ar e plopngirl ion in subcrit ical and supcrcrit ical t lo\\.

(b) Supercrit ical Flow

all the wavc problcnrs considercd, thc pur-pose of obtaining the solution of the gov-
em jn8 equations (referrcd to as rurrtirg in the context of l lood wavcs) is to describe
the flow velocity and depth as functions of space and 1in'rc. ln other words. thc spa-
tial shape and temporal devclopmenl of thc translalory wave are sought.

A nrore fomral dcfinit ion of thc tanslaton rlar,e clescribes it as a disturbance
mor ing in the longitudinal direction that gives rise to changcs in discharge, velocity.
and depth with time. Il propagates with an absolute spced, dcsignated by dr/dr, which
is the sum of thc nrean u,atcr vclocity, V, and the wave celeritv \rith respect to sti l l
!rarer, c. as i l lustrated in Figure 7.1, with positive y in the positive r direcrion.
Because thc tvave can Inove in both upstream and downstrcant direclions, its absolute
speed is given by V 1 c. The celerity of a long rvave of small amplitude is given by
(-gr )ra. in which,r' is dcpth, so thc valucs of dr/dt dcpend on the Froudc number, F,
dr'f incd by V/c. In subcrit ical f low in which V { t and l '  < l. dVdr has two possible
r alues given by V * c in the downstrerm direclion and V - c in the upstrearn direc-
tion. as shown in Figure 7. la. On the othcr hand. thc t$,o possible wave proplgation
speeds in supcrcrit ical f low, givcn by (V + c) and (V (). are both jn the down-
streanr dircction, because V ) c and I ' > I . as i l lustrated in Figure 7. ib.

Thc physicrl propeny of two possible rvar e propagation spceds is particular to
hl perbolic panial dilferential equations, which have the mathenratical prope(y of
tso possible characteristic directions or paths along which discontinuities in the
deri!atives travcl. Thc conncction between the physical and mathematical proper-
ties of the Saint Venant equations allows them to assume a simpler fbrm tn charac-
teristic coordinates associated with the path of two ntoving observers travcling at
the speeds of (y :l c). As a result. u,e first derive the Saint Venant cquations and
then begin thc study of unsleady l low. uith a translbrnration of the equarions to
characterislic fornl to provide a deeper undcrstanding of the physics of wave prop-
asation.ts well as thc init ial and boundary conditions necessary to solve the Saint-
\. 'nanl equations. The characleristic equations arc sirlplif ied for the case of a "sim-

ple rr 3v9." with no gravitv or friction cffccts. and applicd to sluice gate operation
prob)ems as a lcarning tool for undcrstanding the characteristic form. In thc ncxt
chapter, which covcrs numcrical solution techniques for thc govcrning equrlions.
$e also apply finite difftrence techniques to the \olution ofthe governing equations
in characteristic form. which has come to be called the nethod of tharactertsrtts.

- r - "
l----+ V + c
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l r  add i l ion .  uc  cons idcr  cx l l i c i t  and  ur rp l i c i t  l l n i t c  d i l - f c rcncc  tcchn iques  app l ie rJ  ro
lhe  un t l l |n \ to  Dcd S l in t ,V 'cnant  cqU; r i , r ) ,1 \  and d iscuss  {hc  ad \an lagcs  and d isad-
vilntascs ol elch ntcthod. r\pplicatiorr., rrrcluclc lhc problcnts o1 h;droelcctric po*.er
load acceptancc ard rcjcction. drnr frreaks. and llood routing.

7.2
DF]RI\A'IION OF SAINT-\'ENANl' I'QUATIONS

AlthoLrgh thc govcrnjn-c cquations of continuity and mon)!'ntunl cln be dcrived in
lu nunrbcr of ways, we uppll '  a conlrol r olume oI snall but l lnite lcngth, Ir. that is
reduced to zelo lcngrh in rhc l imir ro obrain lhc l lnal diiTcrential equarion. The der_
i \a t ions  nrake thc  t i r l k rs ing  assurnp l ions  1Y* jo ich  I975:  Chaudhry  1993) :

l. Thc shallow water approxinralions apply so that vcrl ictl accclcralions are negli_
gible, rcsulting in a vertical pressurc disrribution lhrt is hydrostatic; and the
depth- t, is sntall contplrcd to the \\ 'avelength so that the wave celcrity c =
(.g,r')"1.

2. The channcl bottont slope is sntall. so that cosl 0 in thc hydrostatic prcssure
force fonrulation is approximatelv unity. and sind - rand - So, the channel bed
slopc, where d is the angle of thc channel bed reiativc to thc horizontal.

J. The channcl bed is stable, so that lhe bcd elevatjons do not change wirh time.
4. The flow can be rcpresented as one -dimensionti l with (a) a honzontal water

surface across any cross scction such that tri lnsvcrsc velocities are ncgligible
and (b) an average boundary shcar stress that can bc appJied to the whole cross
sec t ion .

5. The frictional bed rcsjsttrnce is the santc in unstcadv l low as in steady flow, so
that the Manning or Chezy cquations can be uscd to craluate lhe nean bound_
ary shear stress.

Additional simplifying assumptions made subscquenrly may be true in only certain
rnstances. The momentum flux correction factor. B, for exantple. wil l not be
assumed to be unity at f irst because it can be significant in river overbank flows.

Continuity Equation

First, consider the continuity equation. which wil l be derived fronl the control vol_
ume of height equal to the depth, ), and length, A.r, as shown in Figure 7.2. As in
the derivation of continuity in Chaprer l, which used the Reynolds transpon theo-
rem, the basic statenlent of volume conservation for an incompressible fluid flow_
ing through the conrrol volumc is Ner Volume Out - - Change in Slorage in the
time interval, Ar. This can be expressed as

a O  A A
. -  - \ r l r  .711. rJ r  }  , -  l l
rrr dt

(1 . t )
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Lateral inf low, gl lx

f t t t i \ i l f l

t, Q + \d Q/n x)Jx

Protile

r
I

*----- j

Cross Section

in which 4. : lateral inflow rate per unit length ofchannel and A - cross_sectronal
area of flow. Dividing by A,rtrl and taking both the control volume lensth and the
time interval to zero, the continuity equalion is

( 7 . 2 )

Substituting d,,1 : Bd.r.from Figure 7.2, jn which B : channcl rop widrh at rhe free
\ur face,  L o l inu i tv  become\

a) *  
uP 

=, t , (  7 . 1 )

FIGURE 7 .2
Conirol voluine for dcrivarjon ol unstcirdy conlinuity cqurlion.

! , * u u t _ o a v , v l l  4 r
dt  d f  ax  B  dr  I ,  B

By definit ion of the discharge as 0 - AV, in which V = rnean cross-sectional veloc_
ity in the flow direction (r), rhe dQlar term in (7.3) can be wrirten as A(Ayldr) +
V(dA/6x), using the product rule. However, the term involving d,4/Ar must be eval_
uated carefully because A can vary u irh borh depth. _r. and distance, r, if the chan-
nel width is changing:

aA ao
i � t '  a t - q L

A A  a A I  d r
a r  , .  1 ,  

" a x (1 .4)

where the first term on *re right hand side of (7.4) represents the derivative of A
with respcct to.r while holding -r'con\ranr. For pri.rnaiic charrnels, rhis term goes
to zero. Finally, with these substirurions for Ael6x and then dAldr, and dividing
through by the top width. B, the continuity equation reduces to

(7 .5)



( - -  t l  ̂ p T E R  7 :

Laleral inflow, qr.\x

i l \ t t i l t
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r  r  D l - ,
* {

VL

Fpt = fh6A

w =yAJx

profi le

I.'IGURFJ 7.3
Control voiume for derivation of unsteady monlenlum equalion.

(7 .6\

in which 4 : V_r' - f low rate per unit of width. In this form, it is evident that tem-
poral changes in depth at a point must be balanced by a longitudinal gradient in
flow rate per unit of width.

Momentum Equation

The momentum equation is derived with reference to Figure 7.3, in which the forces
acting on ttte control volume are shown. Pressure, gravity, and shear forces are con_
sidered, and these must balance the time rate of change of momentum inside the
control volume and the net momentum flux out of the control volume. In the.x direc-
tion, which is taken to be the flow direction, the momentum equation can be written

4 , + 4 , - r , .

a)' da

= ,q f f *.*]o' . * ll ou:aef* - pqlrru. cos{

\________y_/

\\ ^ .1,. //
\ \  C e n t r o i d  / /, - v

Cross Section

in which D - A/B = hydraulic depth. For a prismatic channel with no lateral inflow,
the founi temt on the left hand side as well as the right hand side go to zero. Fur-
thermore, if a rectangular cross scction is considered, the continuity equation becomes

(1.1\

in which Fo, : pressure force component in the _r direction; F", = gravity force
component in the r direction; F,, : shear force conlponent in thi x direction; u, :
point vefocity in the r direction; q, = lateral inflow per unit of lcngrh in the flow
direction; and u. = velocity of lateral inflow inclined at angle g to the r direction.
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Expressions can be derelopcd for each of lhe force Ierrns. Assurnine a hydro-
s ta t i c  p rcs \u fc  d is t r ibu t ion .  the  pressure  fo rce .  Fr ,  :  F , ,L  1 , , .  and is  g iven  by

iJ .ir
r,,, - (7/r,..1)-\.r - 7I l\

.r-t r, \
( 7 . 8 )

in which l. : vcnical distance below lhe fiee surfhce to the centroid of thc l low
cross-sectional areal A = cross-scctional arca on which thc lbrce lcts; ancl ,1lr,. :

Idl ' 'L\(r) - I lb(n) dn, which represents the l lrst ntoment of lhc area about the frcc
surface with b : local width ofthe cross section at height rl lron) thc bottorr 0fthe
channcl. Notc that the pressure fbrcc contribution arising l iom a chrngc in eross-
sec t iona l  a rea  duc  to  an  cxpand ing  or  cont rac t ing  nonpr isml t i c  channc l  i s  jus t  ba l -
anced by the componcnt of prcssure force on thc channrl banks in thc floq, direc
t ion  ( l - igge t t  1975;  Cunge,  Ho lJy .  and Verucy  l980) .  Conscquent ly ,  thc  eva lua t ion
of the derivative shown on the far righl hand sidc of Equrtion 7.8 ignorcs the vari-
ation in channel width with .r ancl comes only from the intcgral dcllnit ion of A,,
and the Lcibniz rule. The gravity force componenl in the.t direction is given by

F., = 7A -\,rJx ( 1  . 9 J

in which Sn :  bed s lope :  tan0.  which has bcen used to approx i r ratc  s ind for
small values of slope. Finally, thc boundary shear force in the .r directron can be
expressed as

( 7 . l 0 )

in which 2,, - mean boundary shear strcss: and P = boundlry wctted pcrimeter.
On the momentunr flux side of thc momeotum equation. the net convective flux

of nromcntum out of lhe control volume can be $,ritten

with B = momentum tlux correctjon factor and y : mean cross-scctional velocity.
The time rate of change of momentum inside the control volume for an incom-
Dressible fluid becomes

(7 .12)

Substituting Equations 1 .8 to'7 .12 into Equation 7.7. dividing by pAr, and let-
ting A-{ go to zero results in

c o s  0  ( 7 . 1 3 )

in whi;h Q : AVISr- friction slope = ro/(yR); R = hydraulic radius - A/P; and
g. = lateral inflow per unit of length with velocity, uL, and at an angle of { with
respect to the r direction. In ofder from left to right, the terms on the left-hand side
of Equation 7.l3 come from: ( I ) the time rate of changc of momentum inside the

. '  f  i  r , ' rolr,  -  o ppv',r - \ ,  (r  rr)
d r L J 4  J  ' r r

, l t t  d
.  I  I  pu , , tA  J r  =  p ;  l vA lJ t
o { t  I  I  o I

#. *( 'uI).  ua{rr.o) 
= ro{ro s1) t  4,u,
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cont fo l  \o lume.  (2 )  thc  nc t  lDonten tun ' t  f lux  ou t  o f  thc  cont ro l  vo lume.  and 1 j )  lhc
nct plcssure torce in the.r ciirt 'ction. On the right-hand side. \\,e havc the contdbu-
t ions  o f :  ( l )  thc  g rav i ty  fo rcc .  (2 )  the  boundary  sh tar  fo rce .  and (3 )  thc  momcnlurn
f lux  o f  the  la te ra l  in f lo rv ,  a l l  in  the . r  d i rcc t ion .  Ec lua t ion  7 .13  r t 'p rcscn ts  the  n to rnen-
tlrm cquation in conserr,alion lbrlrr fbr a prisnatic channel. This simply mcans that,
if the ternts on the right hand sidc of (7.13) go to zero, thc force plus ntomentum
flux tenls on the lcft hand side oI the equation are conserved; and this rral ' be the
most appropriate fbrnr in * hich to apply sonle nuntcrical solution schemes.

Equation 7.13 somclimes is placcd in reduccd lbrm by applying the product
mle of differentiation. subsriruting for 4,,1/rr front continuity. and dividing through
by cross-sectional area, A, to \ ield

# * r t u -  r ) r , 1 I + ( B  r ) v r 4 +  e v . f + s +
-  s , 5  . s . t  '  

q '  
, u ,  c r ) . d t  -  Y )

( 1 . 1 4 )

Funhermore, the monrenlunt equation oftcn is gitcn for the case of F - I and
ABlilr - 0 for prismatic channels:

AV aV aI '

* 
* ,t;; * -s ar:I 

g(si, - sr) + 
! Qr, cos6 y)

It is intcresting ro note thar rhe two lateral inflow tcrms on the right hand side of
(7 .15)  inc lude cont r ibu t ions  f rom borh  the  e , rn rec t iv r '  montcu tuDl  f lux  and the  loca l
change in rnomentum, respectively. The convective term goes to zero if the lateral
inflot\. is at right angles to the main flow ($ :0), bul rhe local contriburion remains
unless 4,_ : 0.

Ifthe lateral inflow is zcro, and (7.l5) is rearrangcd as fbllows. the contribu-
tion of the various terms in the monentunr equation with respect to differcnt types
of f low can be identif ied:

(1  . t  5 )

( 7 . l 6 )

3 y  V a V  l d V
J , = J n  : - - -'  "  d x  g ' i r  8 a r

I
s le30v .  unr lo rm r iow I
\ teaJ) .  Brudua l ly  \ r r ied  l luw ]
un . teady .  g radua l l )  v r r ied  l low I

The steady, uniform flow case sirnply mcans that ru : 7RSo. as derived previously
in Chapter 4. The momentum equation for steady, gradually varied flow can be
derived in a more familiar forn by starting with Equations 7.2 and 7.13 $,irh the
lime derivative terms set to zero. The result in terms of d-r/dr, with dBldr = 0, is
given by (Yen and Wenzel 1970)

d1 
so St+ 

;QL 
cos$ -  2Pv)

(1 . t1)
t - F 2dr
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in which Fj - B\/)l(gD\ = momenlunr fornt of the Froude nunrberi and D =
hydrau l i c  depth  =  A/8 .  Equat ion  7 . l7  can be  used fo r  spa t ia l ) r ' ra r icd  l low or  fo r
steady. graduallr r aried flow with no lrteml inflow. 

' lhc 
dif lbrcnccs betwecn (7. l7)

and the encrgy fonn of the cquation for gradually varied flou. derir,ed in Chapter 5
l ie  no t  on l )  in  the  d i f le ren t  dc f in i t ion  o f  thc  Froude nunber  (s  i rh  B  ins tead o f  r r l
but also in the friction slopc S' which is defined as inl7R and replaces the siope of
the cnergy grade iine S" in the energy cquirticu. As a practical nrartcr, both S.and S"
are evaluated bl, the Manning or Chczy equarions. but (he) havc differcnr Llcfini-
t ions  (Yen I973 ) .

The choice of depcndcnt variables nay dcpend on rhe numerical technique
applied to solve thc Saint-Venant equations. [n the prefcrred conscrvation form.
u'ith discharge Q and depth r. as rhc dependent variablcs. Equarions 

'/.2 
and 7.13

would be appropriate for the continuity and n'tomenlunt equalions, respcctivel),.
Anothcr commonly used form is the reduccd form of the continuity and momentunt
equations with r,elocity V and depth r, as dependent variables. as given by Equations
7.5  and 7 .15 .  Numer ica l  techn iques  are  c l i scussed in  the  nex t  chapter .

7.3
TRANSFORI\TATION TO CHARAC'TERISTIC FORNI

The transformation to the characteristic form of the pair of partial differential equa-
tions given by (7.5) and (7.l5) allows them ro be replaced by four ordinary differ-
ential equations in the,r-r plane (r represents the flow dircction and r is t ime). Much
sinrpler, ordinan,differential equatjons must be satisfied along two inherent char-
acteristic dircctions or paths in the.r-l plane in the charactcrislic form. Although
numerical analysis by thc method of characteristics has fallen out of favor because
of the diff iculties involved in the supercrit ical case with the formation of surges, it
has the advantage of being more accurate and lending a deeper underslanding of the
physics of shallow water wave problerns as well as the mathematics of required ini-
t ial and boundary conditions. In addition, the method of characteristics is essential
in some explicit f inite difference techniques, specifically for the evaluation of
boundary conditions. Finally, the method of characteristics is useful for explaining
kinematic wave rouring in Chapter 9.

There are t\r'o methods of arriving at a characteristic form: (l) taking a linear
combination of dle momentum and corrtiluity equations and rearranging the terms
and (2) performing a matrix analysis that relies on the fundamental mathematical
meaning of the characteristic form. We begin with the first approach because of irs
simplicity. We assume a prismatic channel without Iateral inflow for the same reason.

The momentum equation (Equation 7.15) wirh the foregoing simplif ications is
multiplied altemately by the quantity x(.Dlg)tt2 and added ro rhe conrinuity equa-
tion (Equation 7.5) to give two new equations, the solution of which is the same as
the original pair- The quantity D is thc hydraulic depth given by A/B for a general
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nonreclangular cross s!.ction r',here A is the cross-\cctjonal area ancl B is lhe top
r r id th .  The resu l t ing  t * 'o  new equa l ions  eas i l y  a rc  sho* ,n  to  be  g ivcn  by

1 v  +  c ; 1 ] r  + (v - ' t )  ( 7 .  l 8 )

(v .tf  ]u 
= <s, .t) (7.re)

l , t . ; l ; . '
l j , . , '  . ,*.] , .  i  [*.

Df af af dx
= * f

D, dt dr dt

/ o ' \  c / o v \
\ D , / ,  -  

t  \ D i

/ o r \  c  / D Y \_ t  _  I  +  |  _  |
\  D r , / ,  g  \  D r  / ,

, l
c) . ,  

lv 
:  c(so

i n  *h ich  c  =  (gD) t t1  :  wave cc le r i t y  in  a  nonrec languJar  channe l .  as  shown ln
Chapter  2 .  Ofpar t i cu la r  in te res t  in  (7 . l8 )  and (? .19)  a rc  the  two opera lo rs  appear_
ing in brackets on the lcft hand sides ofthese t\\o equations. First the operalors are
applied to dcpth _r. and lhen to velocity V in both equations, and rhcy differ only in
the  mul t ip l i c r  on  rhe . r  der iva t ive .  wh ich  is  g iven  by  (V  +  c )  in  (7 .1g)  and (V  _  c )
in (7.19). This particular operator can bc recognized as rhe total or matcrial dcriy_
atire D/Dt found elservhere in fluid ntechanics operating on the density, p, in the
continuity equation or on the velocity vector to give the acceleration in the equa_
tions of motion. In general, if a function/varies \\, jth both position. . jr, and rime, r,
the total derivative is given by the chain rule ro be

Equation 7.20 can be interpreted to define the toral t ime rate of change of the func_
tion / as seen by an observer moving through the fluid with spced dr/dr, with the
first term on the right hand side of (7.20) giving the local change in/wirh rime and
the second term reprcsenting the convective change inl Applying this inrerpreta_
tion to (7.18) and (7.19), it can be said rhar Equation 7.lg i ian oidinary differen-
tial equation that must be satisfied along a parh in the x-l plane described by an
observer nroving with the speed (V + c), whiJe Equation 7.19 nlust be satisfied
along a path described by a second obscrver u jrh sper<J 1V - c). Mathematically,
the pair of goveming partial differcntial equations has been transformed into four
ordinary differential equations that have the same solution as the original system:

(7 .20)

(7.21a)

(7 .2tb)

(.7.Zlc)

(7.2td)

- c(So - Sr)

dr =  ( y  +  c )
CT

: c(56 - 57)

dr

dr
: ( v  c )

in *hich the subscripts I and 2 refer to the two total derivative operators defined
in (7.18) and (7.19) with two differenr <peeds of moving observirs, (y + c) and

along C I :

C I :

along C2:

C2:
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FIGT]RE 7.4
Characterislics in the.r-r planc Llcfining the solution surfrce for dcpth I = lt, r).

(y r '), respectively. The lnmily of charlcteristics defined by ( 7.I Ib). along which
(7.21a) nrusl bc satisfied. are designated Cl characteristics, rvhich have also been
referrcd to asfrn|urd clnructeristics or ytsit irc < lurut'tcritr i( r. The C2 characte r-
istics, also knonn as bac'ktard or rrcgotive charucteristics. are defined by (7.21d).
a long wh ich  (7 .21c)  must  be  sa t is f ied .

The two familics of C 1 and C2 characteristics are shown in the -r,r plane in Fig-
ure 7.,1 for a case of subcrit ical f lo*. Observer A, bcginning at point A, follows the
Cl characteristic path to meet obsencr B, who follou'ed the C2 parh, at point P. Ar
point P, both observers nrust see the same values of depth and vclocity, even though
they got there by different paths and experienced differcnt rates of change in their
init ial values of depth and velocity. which they picked up ar rhe srarting points. A
and B. The solution for the values of depth, _r'", and velocity, V". at point P comes
from the simultaneous solution of (7.21 a) and (7.21c) ar rhe posii ion r" and time 1".
determined by (7.21b) and (7.21d). This prrrcess can be rcpcated lbr each pair of
C I and C2 characteristics emanating from the r axis, along u'hich init ial conditions
are specified, to determine the solutions for velocity and depth as well as positions
of all points P at the first set of intersections or t ime lcvels. These solutions become
the init ial conditions for the next t ime levels unti l the solution is defrned at all inte-
rior points in the r' l  plane. The boundary conditions complele the solution for the
cntire x-t plane. ln essence, the characteristic grid is a curvil incar coordinate sys-
tem built as pan of thc solution process to define points whcre depth and velociry
can be obtained in a simultaneous solution of all four equalions given by (7.21 ).



C , \p rER 7 :  Gorenr ing  Ec luar ions  o fUnsteadv  F)ow 2 .7 j

Numer ica l  so lu t ion  techn iques  l i r r  Equat ions  7 .21  are  dere loped in  thc  ncx t
chapter Thc assuntptions of no lateral inl ' low and a prisntatic channel need not be
n'rade. Thc rciaxation ofthesc assunrptions sintply produccs ailci it ional sourcc ternts
on the  r igh t  hand s ides  o f  Equar ions  i  .2 la  au l7 .2  l c .  i \ t  rhe  orher  cnd o f  the  conr -
p lex i ty  spcc t rum,  Equat ions  7 .21  take  on  a  s inp lc r  lb rn r  fo r  the  spec ia l  case o f  a
reclangular prisrnatic channel. Bccause c = (g).)r, l for this case. i1 can be shown
that dry'd/ - (2.clg) d<'/dt. from u'hich it follows lhat rhc characlcri\rrc cquilrions
leduce to

I  Dry  +  2 . ) ' l
along cl: 

[-.''.'�o, .1, 
- t{t,, 'tr)

C I :

a long C2:

C2:

dr- , _ = 1 V + c )
OI

I D ( Y  -  2 c )  l
^ - r . i  =  s ( s , ,  s , )

dr
dI

: ( v  c )

' (7  .22a)

(1 .22b)

(7 .22c)

(7 .22d)

From Equations 7.22. ir is clear rhat rhe firnction subject to time variarions is (y +
2c) along thc Cl characteristics and (y 2c) along the C2 characreristics. This
sugSests thc inleresring case, although nol very practical. of the right hand sides of
('7.22a) ancJ (7.22c) becoming zero so thar (y + 2.) and (V , 2c) become consranr
along the Cl and C2 characterisrics. respectively. Such a sirnplif ication forms the
bas is  o f  the  s in rp le  *ave  prob len t  fo r  uh ieh  rn r l l r rc . r l  \ r ) lu t ions  c \ i s t .  Thc  s imp le
wave problem is cxplored in morc detail Iater in this chapter.

The ph1 's ic l l  conncc t ion  bc t \ \een ch l r rc rc r is t rc  d i rec t ions  and pa ths  o f  wave
propagatron norv should be clear. The n]oventcnt of clementary waves both
upstream and downstream from a di\lurhilnce u ith ,,peeLJr rV + c) and (y - c) in
subcrit ical f low delineatcs paths along which the charactcristic cquations are \atis,
f ied .  The complc te  so lu l ion  descnber  a  sur f l cc  i tbore  lhe . r - l  p lune tha t  g ives  the
values ofdcpth and vclocity for all_r and I, as i l lusrratcd in Figure 7..1 for rhe depth.

The propagation of waves both upstream and downstrcam is l imited to subcrit_
ical f low, whilc in supercrit ical l low thc absolute speeds of (V + c) and (V - c)
result in downstream travel only as shown in Figure ?.-5, in which both the charac_
terislics are inclined doq'nstream.

7.4
MATHEN,TATICAI- In\TERPRETATION OF CHARACTERISTICS

As mentioned prcviouslv, a second approach for transforming the governing equa_
tions into characteristic fornr is a nratrix analysis that arises from the mathematical
intcrpretation of characteristjcs. Characteristics are defined mathematicallv as Daths
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t 1

A B

(a) Subcritical Flow

A B

(b) Sup€fcrit ical Flow

I-IGURE 7.5
Characteriit jcs in subcrit ical and supcrcrit ical f low.

in the r-r piane. along which discontinuities in the firsr, and higher_order cleriva_
tives of the dependent variables propagate. physically. such disJonlrnurties corre_
spond to propagation of infinitesimally small u,ave disrurbances in the l imit.

To translate thc idea ofdiscontinuities in derivalives into characlensttc form for
the simplest case. the continuity and momentum equations for a prismatic rectan_
gular channel without lateral inflow are rvritten in matrix lbnn as

r , l  I  o  I
. r ' ,  l _  l s ( s o  -  s 7 )  |t ,  l - i  d ,  I
Y,l  L or '  lJ]t-

v 0
g l

d r 0

0 d l

(7 .23)

in which rhe subscripts in the column vector on the leti hand side denore partial
derivatives with respect to time, 1, and distance. r. The second two equauons ln
(7.23\ are simply rhe definit ions of rhe total differentials of dcpth. r.. and velocity,
v lfa unique solution forthe dcrivatives exists, then from cramer'srule, lhedeter-
minant of the coefficient matrix in (7.23) must be nonzero. Therefore. a condition
fbr the solution to be indeterminant (and lor the derjvati\cs to be discontinuous) is
that the deterntinant of thc cocfficient matrix is exactl] zero. Setting thc delcrmi_
nrn t  to  zero  re .u l ts  in

d\'

dt
- v t \ 6 : v : t t (7 .24)

which describes the characteristic directions. However. there is no solutton of
(7 .23)  un less  the  de le rn inant  o f  the  coc f f i c ien t  mat r ix  $  i lh  one co lumn rcp laced
by the  r igh t  hand s ide  vcc tor  o f  (7 .23)  a lso  is  zer . ,  in  u  h ich  case.  the  soru t ion  has
the indeterminare form 0/0 based on Cramer's rule (Lai l9g6). Sell inq this deter-
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rn inant  to  zc ro  resu l ts  in  thc  charac ter is t i c  equat ions  th l t  n rus l  bc  sa t is f ied  a long
the  chr rac tc r is t i cs

D y  c  D l '
. 8 , * ;  

o  
= c ( . S n - S ) (1.2s)

in q,hich the total derivatives D/Dr lppear and are dcfincd along rhe Cl character-
i s t i c  w i th  the  p lus  s ign  and a long the  C2 charac tc r is r i c  w i th  thc  n t inus  s ign ,  as
before. Now thc transfornation of varirbles from I to c in (7.25 ) yiekls the charac-
te r is t i c  equat ions  in  the  fonn g iven prer  ious ly  by  Equat ions  7 .22 .

/ . :
INITIAL AND BOUNDARY COn'DITIONS

1'hc dcpcndence of the solution 10 the characterisric cquations on init ial conditions
is i l lustrated in Figure 7.6. 1'he solution for dcpth and velocity at the intcrscction of
Cl and C2 charactcristics at point Pdepcnds on knouledge ofthe init ial conditions
at A and B, as wcll as on all points bct*ecn A and B. As observer I proceeds from

!-IGURE 7.6
Domain of dependence and ranse of influence defined bv characteristics in the .{ t plane.

Observer

Domain of
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point A. C2 characteristics emanating from thc interval ;18 continuously intersecl
the path and alter the dcpth and \.elocity. In thc same $ av, 0bserr er 2 reccir es infor-
ntation from the Cl characteristics originating frtrm interval .{B unli l mecting
obserycr  I  a t  po jn t  P .  As  a  rcsu l t .  the  so lu l ion  a t  P  dcpcnds on  thc  in i t ia l  cond i t ions
along the interval AB. which is callcd thc intervl of dt,pcndcrir.c. In reality. an inf-r-
nite nunrber of characteristics continuously interscct AP and BP so that the region
ABP is called the donrait of dapertdencr lor point P. Fronr a differenr poinr of Yicw.
a  s ing le  po in t  C on  the . r  ax is  has  in i t ia l  con t l i t ions  rha t  in l luence rhe  reg ion  CeR
because all the C I characterisrics coming from rhe lcft of CQ and all the C2 char-
acteristics intersecting CR from thc righl are influenced by rhe iniriat values at C.
For this reason, thc region CBR is called rhe rorge oJ inllucnce.

As a conscquence of r"arc propagation in characteristic directions. both init ial
conditions and boundary conditions nrust bc specified carefull),. Thc scneral rulc is
tha t  (he  nunrber  o f  in i t ia l  and boundary .  cond i t ions  nus t  co inc idc  u  i rh  the  number
o f c h a r a c t e r i s t i c s c n t e r i n g a t t : 0 f o r a l l - \ o r a t b o u n c l a r i e s . r = 0 a n d r : L f o r a l l
t ime. as shown in Figure 7.7 (Liggett and Cunge 1975: Cunge, Hollr,. and Verwel,
1980). For the ini(ial condirions, we scc in Figure 7.7a lhar t\\o conditions rnust be
specified at point A to dererminc the init ial slopcs of the C I and C2 characteristics
as given by (7.24). Wirh refercnce to Figure 7.6, the modific:uion of the init ial
slopes at A and B comes from pairs of init ial dara spccil ied on .48 unril lhe two
characteristics intersect ar point P. At this point. the characrcristic. or compatibil-
ity. equations (7.25). are solvcd simultaneously for the depcndenr variables ar p. As
this process marches fonvard in time, the solutions at subsequent intersection
points depend less on the init ial conditions and more on infomrarion carricd by
characteristics conring from the boundaries and hcnce on the boundary conditions.

c1 c2
, / | \

c'l I c2
I

;

I

;4C
/ ; ,

c 1  / '
C 2 "

I
c2

c1

(a) Subcrit ical Flow (b) Supercrit ica] Flow

FIGUR,E 7.7

Spccif icat ion of boundary condit ions and init ial  cL]ndir ions iD subcri l ical and supercri t ical
flow (after Cunge. Ilolly, and VeNey 1980). (.t.xrc?. Fisure used cott']est of Io\a Institut.
of Hydraulic Rcsearch.)
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ln  subcr i t i ca l  f lo * ,  as  shoun in  F i tu rc  7 .7a .  o .c  charac lc r is r i c  car r i cs  in lb r r .a t ion
upstrean at thc do\\ nslreanr bounclarv, .r = 1-. and onlv one charlctcristic lransrnits
infornration do$ nslrcan into the solution domuin jrorn thc upstrclnr Dounoarl, at
- r  :  0 .  ln  o ther  r ro rds .  on ly  on ! 'boundary  cond j l ion  shou ld  be  spcc i f ied  a t  borh  the
ups t ream and dorvns l rearn  bound l r i cs  rn  su t re r i t i r . . r l  f lou .  81 ,96111;151.  tNo bound,
ary conditions nust be spccified at the upslrelnr boundary rir cn bv .t : 0 fbr super_
cr i t i ca l  f low ls  shorvn  in  F igure  7 .7b ,  uh i le  no  bounc la ry  cond i r ions  are  spec i f ied  ar
the  downst rcam boundary  fo r  th is  case.

The fac t  tha t  in i t ja l  cond i t ions  have lcss  and lcss  in f luence as  t i r l r c  p rogrcsses
means th  t .  in  some s i lua t ions  such as  t ida l  l ' l ows in  r ' s tudr ics .  thc  in i t ia l  cond i t ions
need not be knos n very accuratcly. so long as a startup pcriod is used un(il thc solu-
l ion  bccomes dependent  on ly  on  boundar l  cond i t ions .  In  rap id  t rans len ts .  such as
t-rccur in hydroelectric tailraces or bcaclraccs. on the other hand. the init jal condi-
t ions  must  be  knoun very  rve l l .  because thcy  u i l l  i n f lucnce thc  ear ly  pan o f  rhe
so lu t ion .  wh ich  is  re ry  in tpon ln t  in  thc  ana lys is  o l  the  t fans ien ts  tha t  occur .  ln  add i -
t ion '  i f  I i t l l c  o r  no  f r i c t ion  cx is ts ,  rhc  i ' i r ia l  cond i t ions  can conr inue (o  bc  re f lec ted
from upstream lnd downstream boundaries for a very lonr time. as the transient
oscil l l tes about sonrc steady state

The init ial and boundary conditions rhat are spccifled musr bc indcpendent of
one another. Specifying both the Ialue of the depth and its derivarive wjth time. for
example. as init ial conditions does not satisty the condition of independe,nce nor
does the specification of both depth, !. and delit.r. becausc they are related by the
continuity equation. In gcneral. a stage or discharge hydrograph. or some relation
between stage and discharge as given by a rating curvc. can be specil ied as singlc
boundary condirions in subcrit ical f lorv. A rating curvc should nor be specil ied as
an upstreant boundary condition. hou,ever. bccause of the fcedback bet\r.ccn deDth
and discharge as tine progresses (Cunge, tlollv. and Vcrqel, l9g0).

A l inal consequence of characterislics to be discussed has tremcnckrus jnflu_
ence on some of thc nuncrical solution techniqucs described in the nexr cnarrcr.
By referring to Figure 7.8, we see that the chrracterisrics deflnc a nttural coordi_
nate system which l imits the size of rhe time step that can bc taken in a finite dif_
f-erence approximation. lf we attenpt to approxintate the timc derivati\e o\cr x trme
step AI > At. \r 'e arc seeking a solution outsjde the domain of dependence estab_
lished by the characteristics (Liggett and Cunge 1975). The result is instabil iry in
the numerical solution, in which a snrall perturbation grou.s $ ithout bound unii l i t
swamps the  t rue  so lu t ion .  The Courant  cond i t ion .  wh ich  l im i rs  rhc  t ime s tep  such
that the numerical solution stays inside the domain of depcndencc. can oc srated as

. l . r
1 r  <

v : c
(1 .26)

Altematively, the Courant number C, can be deflned as lhe rario of aclual ware
'e loc i i y  to  numer ica l  wave ve loc i l y ,  w i th  the  resu l t  tha t  rhc  s lab i l i t ' cond i t ion .  a lso
ca l led  the  Courant -Fr iedr ich-Le$ y  (CFLtcund i t i , ,n .  beconrer  145 in11 1975,

Y 1 c
a  _ _ ,  < < 1

\ .  \ , ( 7  . ) 1  )
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FIGURE 7.E
Limitations on the time step imposed by the Cou.anl condition.

Because the vclocity and wave celerity continuously change with time, the time
step must be adjustcd constanrly during the nunterical solution process to avoid
instabil ity.

7.6
SINIPLE WAVE

A simple wave is defined to be a wave for which So = St: 0, with an init ial con-
dition of constant depth and velocity and with the water extending to infinity in at
least one direction. While neglecting gravity and friction forces may not be yery
realistic, the simple wave assumption is useful for i l lustrating the solution of an
unsteady flow problem in the characteristic plane. Equarions 7.22a and j.22c, the
characteristic equations for a rectangular channel, assume a panicularly sinrple
form when the right hand side goes to zero. The result is

a l o n g C l :  Y +  2 c :  c o n s r a n t

c l :  | : v * .
o l

alongC2:  Y -  2c = constant

which states that V + 2c is a constant along the Cl characteristics and V - 2c is a
constant along the C2 characreristics. The constant values in general are different

C 2 :  * = u - .
OI

(7 .28a)

(7.28b)

(.7 .28c)

(7.28d)

V +  c
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FIGURE 7.9
Straight l ine C I characteristics for the simple wave.

fbr each characteristic and are calied the Riema n inrori.utts (Abbott 197-5). How_
evcr, the simplif ication is even more powerful because it can be shown that y and
c are individually constanl along each Cl characteristic. all of which are srrajght
l ines, and tha( the C2 charactcristics degencrate into a constant value of V 2c
everyw,here in the r-t plane (Stoker 1957: Henderson 1966).

With rcferencc to Figure 7.9 and following the proof by Stoker ( 1957), the ini-
t ial C I characteristic, C!, is shou n at the boundary of a constant depth region. It is
a straight l ine inasmuch as dr/dt - Vo + cu, where Vn and co arc the init ial constant
values of vclocity and wave celerity, respectivcly, as rcquircd by rhe conditions of
the simple wave problem. The constant depth region extends to the right of the ini-
t ial cl characteristic. where the init ial f low is undisturbed; this reaion is called the
aone o fqu ie t ,  w i th in  wh ich  bo th  CI  a r rd  C l  chr rac ter is r i cs  r re , r ia igh t  l ines .  each
with the sante constanr value of depth and velocity. Wc extend r*o i2 .haru.te.is-
tics front the init ial C I characrcrisric to a second C I characteristic. Cl , as shou,n in
Figure 7.9. By definit ion of rhc characteristic equations lor rhe C2 charactensrics.
we nrust have V - 2c - constant. so that

V p  2 c r : V ^  2 r *  e . Z g )

Vp - 2cp = V5 2., (7.30)

but, by definit ion of the init ial condition. ue also musl have l,/ = Vo and c, - co,
w i th  the  re :u l r  lha  {7 .29 j  r r rd  17 .J01 r in rp l i f i  ro

Vr - 2ca = V, - 2c5 ( 7 . 3  r )



Af te r  add ing  and subt ra i t ing  (7 . -31)  aod (7 .321.  rve  read i l v  can  show tha t  V*  =  V .
and c^  =  c . ,  wh ich  lcad .  to  thc  conc lus ion  tha t  t l r c  second C l  charac ter is t i c  a lso  is
a straight l inc rlong \\hi. 'h thc velocity and rvalc cclcrity, or dcpth. are constant.
Gent - ra l i za t ion  o i  (7 .29  t .  t7 .10) .  and (7 .31  )  to  any  C I  and C2 ch i i rac te r is t i c  ncans
tha t  y  -  2 .  i s  a  cons tanr  cvcry r rherc  in  the . r  /  p lane.  The C2 charac ter is t i cs  them,
se lvcs  arc  curvcd  ins tead o I  s t ra igh t  I ines .  bccause whcrc  a  s ing le  Cf  charac ter is t i c
crosscs dil lcrcnl Cl char?ctcri\ l ics. there must be diffcrcnt vllues of rclocity and
dr-pth. as at R and P, for examplc; so a different sJopc is givcn by V c. The C2
characteristics in f;rct nr, longcr i irc nccdcd in thc sinplc rvavc problem il V - 2c
is  cons tar t  evcrywhere  rd ther  than. jus t  on  ind iv jdua l  C2 charac(er is t rcs .

1'hc region of Cl characteristics a(l j lcent to thc init ial Cl characteristic and the
zone of quict in Figure ?.9 is refcrr.cd to a\ the ri/r?/r1c tore rcgiort. \/clocit ics and
wave celerit jes arc dcternrinc'd complctely in this rcgion by the fact that y 2c -

constlnt e\ery\vhcre and tha( the slopcs of thc Cl charactcristics are given by dr/dl
= V * r '. If V and c are the velocity and wave celerity at any point in the simplc
wave region. and if V,, and .0 arc the constant init ial conditions, the conrplctc solu-
tion fbr yand c at specil lc locations and timcs dcfined by the slopcs ofthe Cl char-
ac ter is t i cs  i s  e i \en  bv
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In  rdd i t ion .  a long the  se- -ond C l l  churac tc r is t i c .  V  +  2c  :  cons lan t  o r

l, '* * 2c*: V. 1 2r'.

V  2 c - V j  2 c o

V * c = V o  2 c o *  3 c

dr 3 Y,,- = l i  + c =  y  : + c "
d t 2 . 2 "

(7 .32)

(7.3 3 )

(?.34a)

(  7 .34b )

d . -

dr

i f  the wave celerity. r ' {or dcpth), is specified as a boundary condition on the right
hand s idc  o f  i7 .34a) .  o r  b1

if the velocity V is specified as a boundary condition. Thus. boundary condition.
expressed at,r - 0 in Figure 7.9 for all t ime determine the slopes of the character-
istics along which both c and y are indiridually constant. Obscrvers lear.ing from
.r = 0 carry r.,", ith them unique values of depth and velocily that can be located at
any  subsequent  t ime in  thc . r - l  p lane.

Thc sinrplc $,ave rcsion is applicablc to ncgative wavcs. u hich are formed by
a smaller depth propagating into a region of larger depth. Because a decreasing
depth  resu l ts  in  a  smal le r  ra lue  o l  d r /d t  f rom (7 .3 '1a) .  the  s in lp le  warc  res ion  con-
sists of divcrging charactcristics in the .r-t planc. A positivc w,avc, on thc other hand,
results in conlerging characteristics. which eventually inlersect and can form a
surge for u'hich the as\unltion of infinitesimal wave disturbances is no longer
valid. A diffcrent sct of characlcristics would bc rcquircd upstream and downstream
of the surge, across uhich there is an cnergy loss. In this casc. the surge can be
treated by the application ol the continuity and momentum equations to a finite
conlrol volume that has hccn made stalionary. as described in Chapter 3. Numeri-
cal solution tcchniqr,rts l()r surgcs arc discussed in thc next chapter.
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E \ \ \ t p L t :  7 . t .  T h c i n i l i t l  l l o \ \ ' c o n d i r i o n s  i n  a n  e \ l u a r v  t r e  - g i r e n  b 1  a  r c l o c i t y
11 )  =  -1  l v s  (0 .91  n / s ) , r nd  dep (h  ! 0  -  l l  l l  ( l . l  n r ) .  as  \ hoqn  i n  F iqu re  7 . I 0 .  The  bound
iir) condrt ion i l t  thc nlouth of the estultr) whcre _r = i)  i \  ! i \en by

(1c , r0  -<  I  =  l ) ( 7.3-5 )
-  / r t  n \
I  c o s l  i

\ 6  2 /

in $hich I i \  l ime in hours and J,r is thc dcplh in l icr ar rhc left  hand boundary. Fincl the
d e p r h p r o l r l e r t / = I h r .

Solut i<tt t .  Both the physical and chi lr lclcr ist ic pl lncs are showninFigureT.l0.The .r
coordinate hts bc-en cho\cn posit i \e in lhc direcl ion ol th.- ad\incinq negatire wave. The
inir ial  rr lue ofdr/d/ (= lr , ,  * c,,)  :  i  + 16.05 l- j  05 fr ls (3.9g nr/s). shown as rhe
s lopco f t he l l r s tC l cha r i t c t c r i s l i c l ha l se la fa t cs lhe loneo fqu ie t f l omthenc lau \ cwa le
regron Addit ional Cl charlcrcrjst ics el l tanit le from the I axis a( 0..5 lu intenals * i th
slope\ givc'n b) '  t7. l- la). in *hich r:  is rpcci lred by rhe boLrndarl,condit ion cxpressed by
(7.15 r.  Along cach ol thcsc churitclerisl ics, borh thc deplh and \cloci lv are conslant. wlth
the deplh, r ' .  spt 'ci f icd by lhc boundary conditrcn and \elocitv. y. delelnl ined fron]

1 0

l -  3  h r

3 fvs

5  1 0  1 5

x, mtles

FIGURE 7.IO
Simplc u ar e solution of estuary problem.
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(7 .13 ) .  The  i n te r sec t i on  o f cach  C l  cha rac rc ' r i s r i c  \ \ r r h  t h r ,  t i n t e  l i nc  o l  t  =  ]  h r  dc t c r_
mines the.t posit ion of lhc depth and velercrt l  i tssocialr-d $ith thnl characlcf isl ic. and
thus the depth profi lc as wcl l  as lhe velcrir ]  along the dr, lrh prol l le arc delernt in!-d For
cxa rnp le .  t hc  cha rac le r i , i t i c  t ha t  beg ins  i l t  I  =  l h rh r \ r dc l l ho l  T  0 l i  ( l . l  n l )  $ i t h .  =
15 .0  f l / s  ( . 1 .58  n / s )  f r om 17 . . 15 )  and  a  s l o ; ^ -  r t r / d r  =  I  ( t  x  16 .05 )  +  (3  x  15 .0 )
=  9 .90  f t l s  13 .02  nVs l  l i om  (7 .3 .1a ) .  l l s  r e i oc i r )  t ,  -  - i  i l  x  t 6 .05 )  +  (2  x  15 .01
-  - 5 . l 0 f t t s  ( - l . 55  r r / s )  f l o  ( 7 . - l l ) .  Th t ' i n re r sec t i on  \ v i r h  l hc  r i  ) e  l i ne  r ,  =  3  h r  i s
located ar-r = (d!: /dr) x (t t  t)  :9.9O x I x j60{l /5180 13.5 nri  ( I  7 trn). So Jr
a local jon of l l .5 nri  (21.7 km) upstream of lhe c'rruar\ r lxrurh. the depth is 7.0 f l  (2.I
m) and the velocity is 5. l0 fr, /s ( L55 ds) ar /  :  3 hr.

Dam-Break Problem

As another applicarion of the mcthod of characterislics applicd to the simple u,ave,
we consider next lhe suddcn removal of a r,cnical platc behind u,hich a known
depth of water is at rest. The simple-wave solutior] of this problcrn. rvhich Stoker
(1957) refened to as rhe breaking ofa dam. is oversintplif ied in comparison to the
solution of a realistic dam break discussed in more detti l  in the next chaDter. How_
cver. it i l lustrates rhe application of a velocity boundary conclit ion and rh., formr_
tion of a surge in a submerged downstream rivcr bed. and provides further insight
into thc unsteady development of a negarive wave as interpreted by the method of
characteristics. The next two exantples are prescnted following more closely the
practical approach of Henderson (1966), u,ho rclared the dam-break problem to
sluice gate operation and hydroelectric load acceptance in a headrace, than the
mathematical treatnlent by Stoker ( 1957).

EXAIUpLE; .2 .  Aven ica l  p la le  i s  f i xed  ar  t ime /  . -  0  a t . {  =  0  w i th  a  cons tan t  deDth
of water upstream equal to 1o while the channel do\\ 'nslream ofthe gate is dry, as shown
in Figure 7.11. The water upstream of rhe plate inil iallv is at rest. Ar r > 0, the plate
suddenly is accelerated to the left to a conslant speed yp. Determine the simple wave
profi le for thjs case and also for the case of the plale being renroved instanraneousty.

Solution. The physical and characterislic planes are shown in FiAure 7.1 L The zone
of quiet, denoted Region I. is esrablr\hed on rhe righr hrnd side of rhe characreristic
plane by a characteristic having an inverse slope ofco conesponding lo the init ial depth
)b since the init ial velocity is zero. On the lefr bouDdary, which is moving, the charac_
teristic path is described as a straight line beginning at the origin \\,ith an inverse slope
of - ye. Because the water is in contact u i l}| the mo\ ing plale, it nlust have a constant
velocity equal to that of the plate. As a result, a constant depth regron rs creareo
upstream of the plate because y 2c must be a constant along the path of the plate.
which forms the left boundary in thc characreristic plane. Because both yand. are con-
stant, dr/dr also is a constant, so that the characterislics are parallel l ines in Region III
in FiSure 7.1 L

In between the zone of quiet on the right and the constant depth region on the left,
the characterislics fonn a fan shape in Region II due to the decreasing values of &/dr
= 3r: - 2co occasioned by decrea\ing values of depth. For t harl,:terisirc A0 in Region
II, fo. example, the inverse slope of the characteristic is fixed. The deprn ls constant
along the characterisric and deremined from (7.3Ja) ro be.; : ( l/3) (dr/dr)o +
(2/3)co. The velocity, too, is constant along the characteristic and equal to (2co - )c,r)
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F IGURE 7 . I  I

Sinple wave solut ion of vert ical plate renlolal al consfanl speed lo left  with a reservoir

behind i t  (after Henderson 1966). (S.xrr.e: OPEN CHANNEL FLOIf bt l lenlerson, Q 1966.

Reprinted bt pernissiotl of Prcntice Hall, Inc., Upper Saddle Rivr NJ.\

from (7.33). Sol\ ing for lhe depth profi le in Region I l  is onl) '  a matter of f ixing a series
of values of dr/dl and determining the -r posit ions of thc inlersections of a f ixed t ime
line, r :  r , ,  wi lh the characterist ics. Then associated with each charactenstic is a con-
stant depth and velocity, *hich can be cxlculated from (7.3.1a) and (7.33), respectively.

In Region II I ,  we must be careful to avoid an impossible situation when specify-
ing the constant plate vclocity. Vn. For example, along characterist ic BBr in the con'
stant depth region. the q a\ 'e celeri ty from (7.33) is r,  :  co - Vnl2, which cannot be neg-
ative. The l imit ing case is c, = 0. for which fn = 2c,,.  Hencc. we must have yp < 2c0
fo r  l he  ! on . l un l  dep lh  reE ron  l o  e \ i . t .

The l imit ing case of co = 0 is interesting because i t  can be seen to have a leading
feather edge of the advancing *ave. which mo\es downstream at a speed of zco, as
shown in Figure 7.12. In fact. for this case, the plate can be el iminated and inragined to
be removed instantaneously because i t  has no real inf luence. For this reason, the situa-
t ion shown in Figure 7. l2 has come to be known as the dam-break problem but could
also apply to the abrupt raising of a sluice gare. Note thrt the fan shaped Region II  has
cxpanded and Region II I  has disappeared in Figure 7.12- Furt-hermore, the t ime axis has
itself  become a characterisl ic along which velocity and depth are constanl. I t  is easi ly
shown from (7.34a) that. since d/dr : 0 for this characteristic. xe must have c : (2/3)cn

or l  = (4/9)rn = constaDt at -r :  0. Likewise. from (7.34b). t \e see that the constant

I
---- ' - i --s---
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t ^ ^

t 'tGURE 7.t2
Simple wave solution of the instantaneous dam-break problem *,ith a dry downstream chan_
nef (after Hcnderson 1966). (Soarce. OpEN CHANNEL f'LOW b\ Hentlerson, @ 1966.
Reprinted b'- pemission o;f Prentice-Hdl, Inc., Ltpper Satltlle Rn,er ,VJ. )

velocily at r = 0 is -(2/3)co. The resulr js a constanr discharge per unir of widrh, q, at
the origin, which can be shown to bc a maximum, given by

R _
q m u  = ; ) 0 v g ) o

The coDstant discharge occurs because I y | = . at the origin u.ith the water verocrry
equal and opposite to the wave celerity.

FiDally, the wave profi le can be deduced from setring dr/dr = r/r in (i.34a). since
the characteristics all issue from the origin. The result for any l ime tj is

u 
: rn6 2\..4; t.'7 .3'l )

(?  36)

which can be seen to be a parabola tangenl 10 the channel bed at the leading edge of
the wave.

ExA M pL E 7.-1. I f  the inir ial  condir ion in rhe dam-break problem of Exanrple 7.2
includes a submerged downstream channel with depth = ), !  and no velocity, while Ihe
upstream depth remains constant at,yo, f ind the wave profi le at any t ime ,r i f  the plale
suddenly is removed, or a sluice gate suddenly is raised, at r :  0.
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F ]GURE 7 . I 3

Sirnple wave solurion of the instantaneous dam-break problem with a submerged down_
sueam channel (after Henderson 1966). (Source. Opt,N CHANNEL FLOW bt.Henderson,
A, 1966. Reprinted bt pernission of Prentite-Hall. Int., Llpper Soddle Rirea NJ.)

.So14fibr. Wilh reference ro Figure 7.13. the simple wave profi le cannor simply inter-
sect lhe conslanl do\,\,nslream water surface *.ith depih = ,),r because this would cause
a discontinuily in the velocity. The discontinuit) can be resolved only by the formation
of a surge with a speed V, to the left, as shown in rhe figure (Henderson 1966). The
intersection of the sintple wave profi le with the back of the surge results in a constant
deplh rcgion and parallel characteristics. While l/ 2. sti l l  must be a constant for the
simple wave, the surge must be analyzed separately by applving the momentum and
continuity equalions after the surge has bcen made stationary. as discussed in Chapter
3 and shown in Figure 7.14. The unknown values in the problem are now q, )r. and y,.
First. the conlinuity equation can be written wi*l reference to Fieure 7.1,1 as

1 , , 1 . = ( 4 - t , ) . , :

r89

(7 .38)

Se.-'ond, the momentum equalion also can be v,,nnen for the stationary surge in Figure
7 .14  to  y ie ld

' ) ]  
'v ,  f  l . r ' 3 / . r ' ,

Vgr., L 2 .Yr \,t .
(1 .39t

Y 3 + C a
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F- v3

- V s - V z

y s +

FIGURE 7.I4
Making thc surge in
analysrs.

the dam-break problem stat ionary for momentum and continuity

in which the negative square root ha\ been taken to agree with the sign convention in
Figure 7.13 $at has both y, and 4 in rhe negative r direclion. Finally, rhe simple wave
equation belween points A and B in Figure 7.13 must be satisfied so that

vj: 2^,Gi - 2^vEa (7..10)

In principle. Equations 7.38 through 7.40 can be solved for thc unknown values of V,.
,I l, and y,. Ho$ever. it is instructjve to present the solution in dimensionless form, as
in Figure 7.15. Equation 7.38 is dirided by co : (g_r1)1/2 and solved for yrl.!. In rhe
same way, Equation 7.40 is divided by co and solved for _y.,/_yo, keeping in mind that V,
is inherently negative in the sign convention. Equation 7.39 is solved as a quadratic
equation for,r ',/ro. The nondimensionalized solutions for yrlca, yr^r. and r!/)o from
(7.38), (7.39), and (?.40), respectively, now can be plorred as a function of V1c.,, as
shown in Figure 7.15. For a given initial ratio of ].r/_)0, all three unknowns can be deter-
mined directly from the graph in Figure 7.15. Nore thar. as _r,.,A,o approaches l. V.
approaches co for a small wave disturbance. Also. V, is of the same sign as V, and
always is smaller in magnilude.

As drau n in Figure 7. | 3, it is apparent that points B and D both move downstream
with the distance between them gradually increasing. Howcver, point B could be posi,
tioned to the right of the -r axis and move to the right in the upsrream direction. Under
these circumstances, the constant depth region extends across the.t axis and submerges
the constant depth of (4/9).ro that orherwise would occur, with the result thar rhe dis,
charge at the origin is smaller rhan rhe maximum valuc given by (7.36). Tle l jmiring
case, ofcourse, is for point B to l ie exactly on the .t axis, so that yt = -(2/3)co and r.l
: (4/9)yo. We can show thar this l imiring condition corresponds to !.,4,n = 0.138. lf
)r/) 'o exc€eds 0. 138, then point B nroves to the right, $hile it moves to the left for 1./ro
< 0.138. For the latter case. the Froude number, as seen by a stationary obsener at
x = 0, has a value of unity so that the depth must be crit ical and the discharge a maxr-
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I'IGURE 7.I5
Variation of surge speed. depth behind the surge, and velocity br:hind the surge with the ini-
t ial submergence ratio.

nrum. Under these circunstances, the flow to the left of the point r : 0 is supercrit ical
behind the surge as seen by a slationary observer and subcrit ical as seen by an observer
nroving at the speed of the surge.

Tle simple $ave solution is not applicable generally; however, it i l lustrates lhe
method of characteristics in graphical form. This wil l be useful in inte.p.eting the
results of the next chapter. in wbich the simplifying assumptions of the simple wave no
longer are made and numerical solutions of the goveming equations in characteristic
form are sought.
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EXERCISES

7.1. Starting $ith Equalion 7.11, derive Equation ?.1.1.

7.2. Derire Equations 7.18 and 7.19. the characteristic equations.

7.3. In the estuary problem gilen as Exanrple 7.1, determine ulgebraicallt. (not graphi_
cally) from the sinrple *ave merhod the tiDre in hours required for rhe dcprtr io drop
to 6.50 ft al a distance upstream ofr = 25,000 ft. plot on the sante axes rhc deplh
hydrographs atr = 0 andr = 25.000 fr.

7.4. Water init ially is al rcst upstrcam and downstrcant of a sluice gate. which is com-
pletel) ciosed in a rectangular channei. The upstream depth is 3.0 m and the down_
streanr depth is 1.0 m. The gate suddenly is opened conrplctely_ Dctermine lhe spced
of the surgc, rhe depth and velocirl behind the surge, and the speed of lengrhening of
the constant deplh region. Show your resuhs in both Ihe physical plane and the char-
acteristic plane.

7,5. Water flows in a reclangular channel under a sluice gate. The upslream depth is 3.0 m
and the downstream depfi is 1.0 m for a steady flow. If the gate is slamnred shut. com
pute the height and speed of rhe surge upsrream of the gare and rhe deplh just down-
stream ofthe gate. Linder what condil ions would the depth downstreamof ihe gate go
to zero? Show your results in both r-he physical plane an<i the characteristic plane.

7.6. W-ater init ially f lo\\s at steady state under a sluice gate. The upsrream flow depth is
3.0 m and rhe downsrream flow depd is 0.30 m. The stuice gite is raised abruprly,
completely free of the flowing *'ater.
(d) Find the depth and discharge at rle gate after the gate has been raised.
(b) Dctemtine rhe height and speed of the surge.

Stetch your results on rhe physical plane and rhe characterjstic plane. Neglecr bed
slope and resistance effects.
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7 .7 .  P ro !e  t ha l  t hc  I rmr t rng  cond r r ron  o f  \ r / \  -  0
letu delef lnrne) !{hcther the aonstint dapti
upstream or do* nstrcam

'r thc 'rrnple uare dam break prob

: n  r p o r n t  I  r n  F r g u r e  ?  l J t n t o r e s
l : l

7.E. ln the srnple l  are dam break problcm. denr e i-  :rprerrron for t ie dischargc pcr unl l
o f  * r J th  a t  r  =  0 .qo .  as  a  f unc ( ron  o f  t he  ra :  , r f  I n r r l a l  dep t i s .  r o / r , .  \ ond imen
sionalrzr 91, as qt/(,) t)  and plor lhe re\ulLs.

7,9. Det.nnine (he mir\ imum pos\iblc heighr of t l . :  , ;rge. I ,rr -  Ir) .  in Er.ample ?.3 in
lemrs of lu. and the valuc of r.r /ru for *hich rt  :r :urs.

7.10, The headrace for a turbine is a long rectangula. i .anal that feeds water from a lake to
the Iu.bine penst()cks. Suppose that the design c: iharge for a turbine is 68 ml/s. The
canal * idth rs l l  m. and the canal slope rs ver.,  , :al l  !rrrh an a\e.a8e r later depth in
the canal of 1.5 m \ai0r no f low. I f  the turbrr rs brought on l ine suddenly ( load

acceptance). whal wi l l  be lhe depth of no,, ar thc Jownstream end of thc canal whcre
lhe penstock inlet is located? Ho\r long u i l l  rr  : ie for the negative *ale lo reach lhc
rescr\oir r I  the canal is 2 km long?

7.1l.  Suppox that lhe lurbine in Exercise 7. l0 is oprlr:ng at steady state at a discharge of
68 mr/s. and the conespondinS normal depth oi !.low in the canal is 3.0 m. lf the tur-
bine is shut dow n suddenly ( load reject ion ).  * h.: :  r  i l l  be lhe height of $e sur8e at the
downstream end of the canal?

7.11. l f  a dam ' i lh a maximum *ater depth of 54 ft  fai ls abruptly. est imar the t ime
required for the surge to reach a communily 5 t.lt: do$ nsream of tie dam. \l'hat will
the surge herghr bel Ini l ial ly. the do\a nstrearn r-.rer has a ncgl igible \elocity and a
deDlh of 5 f t .  \  

'hat 
faclors al ler vour estrmate!.L1d in ,*hat direct ion?
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Numerical Solution of the Unsteady
Flow Equations

8.1
INTRODUCTION

Several numerical techniques have been developed to solve the panial differential
equations of unsteady flow. Some of these techniques are more applicable in spe-
cif ic types of engineering problems than in others. The purpose of this chapter and
the next one is to introduce the engineer to the more commonlv used techniques,
especially those found in well,known commercial codes, as well as ro assist in iden-
tifying the most appropriate technique for a given problem. This chaprer concen-
trates on solving the govcming equations developed in Chapter ? with no major
simplif ications. Chapter 9 considers simplif ied forms of the gorerning equarions
and corresponding numerical solution techniques that often are employed in some
types of f lood routing problems.

The methods developed in this chapter depend on approximations of the deriv-
atives in the goveming equations, either in characteristic form or in the original par-
tial differential form. The major difference between the two approaches is tiat the
derivatives are approximated on the characteristic grid along rhe characteristics
themselves in the case of the characteristic form of the equations or on a fixed rec-
tangular r-l grid in the case of the original panial differential equations. The former
case is refened to as the method of charac te ristics, while the laner includes both
explicit and implicit f inite difference methods. Explicit f inire difference merhods
advance the solution to the end of the time step at a single grid node, using an
explicit tunction of the dependent variables already determined for several grid
nodes at the beginning of the time step. Implicit methods, on rhe other hand,
approximate the derivatives using values of the dependent variables both at the
beginning of the time step, where they are krown, and at the end of the time step
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fcrr more than one grid node, u'here the dependent variablcs are unknown. In the lat-
ter case, a system of simultaneous eqLrations must be solved to adlance the solution
by one time step.

The method of characteristics generally is uti l ized only in special cases, often
as a check on some other nrethod. However, it frequently is used in explicit f inite
difference tcchniques for a more accurate approxinlation of boundary conditions.
The explicit f inite difference method is used in problenrs of rapid transients such as
those in the headrace or tailrace of hydroelectric turbine operarions. A nunrber of
readily available codes such as BRANCH (Schaffranek, Baltzer. and Goldberg
l98l), FLDWAV (Fread and l-ewis 1995), and UNET (U.S. Army Corps of Engi-
neers 1995) inrplement the implicit f inite difference nrethod to solve problems of
flood routing and dam brcaks.

ln contrast to finite difference methods. f inite clement methods approximate
the solution rather than the differential equrtions by using polynonial shape func-
tions that dcpend on the unknown nodal values of the dependent variablcs. In rhe
Galerkin approach, the residuals between the approximate solution and the exact
solution are minimized by integrating the product of weighting functions and the
residual over the solution domain of f inite elements and setting the result to zero.
The finite element method has bcen applied to problems of discontinuous open
channel f low caused by surges (Katopedes and Wu 1986). Because it is not used as
extensively as finite difference methods in widely available numerical codes for the
solution of the one-dinensional unsteady flow equations, it is nor discussed here.

In finite difference techniques, the continuous governing equarions are approx-
imated and transformed into discrete difference equationsl lhercfore, it is essential
that methods be chosen for which the truncation error in the approximation of $e
equation goes to zero as the time step, At, and spatial step..&. approach zero. Such
a condition is refened to as colrsiste/rc) (Ames 1969). Without consistency. extra-
neous terms that are incompatible with the original differential equations may be
introduced. Consistency alone, however, may not guarantee the ultimate goal of the
finite difference approximation of the governing equations, which is for the solu-
tion to approach the true solution as Ar, Ar -J 0; that is, converge. If small errors
such as roundoff errors grow during the numerical solution process. then the solu-
tion becomes unstable, so that the enor grows without bound, swamping the true
solution and preventing convergence. The pitfall of instabil ity is rhat a perfecrly
reasonable finite difference approximation can lead to garbage for a solution. The
remedy may be to place l imits on the discretization size, but in some cases it may
be necessary to switch to a completely different approximation scheme. Such diff i-
culties can cause unacceptable mistakes through uninforned use of commercial
codes or casual programming of seemingly straightforward finite difference tech-
niques, as is i l lustrated in this chapter.

Application of numerical techniques in hydraulics has become commonplace
as computers have become more powerful. Desktop computers that are as fast as
mainframe computers of a only a decade ago are very affordable. In addition. cum-
berso:ne batch processing and text-based output have been replaced by user-
friendly program interfaces and colorful graphics. In this environment of readily
accessible computational hydraulics, the importance of proper calibration and ver-
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if ication of numerical models of unsteady flow cannot be overenrphasized. Appli-
cation of any of the numerical techniques discussed in the next two chapters
rcquires comparisons of computed resuits with measurements in the field or labo-
ratory and appropriate adjusttnent of calibration factors that have physical validity.
The model also should be verif ied with entirely different data sets from those used
in the calibration procedure. It is insufficient to accept numerical nrodel results on
the basis of qualitative similarity with what might be expected to occur. Engineers
must be demanding of numerical methods and never ignore the crucial l ink between
numerical analysis and laboratory and field data.

8.2
I\{ETHOD OF CHARACI'ERISTICS

As discussed in Chapter 7, the transfonnation of the equations of unsteady flow
into characteristic form gives rise to two families of characteristics that form a kind
of natural coordinate s)'stem that is part of the solution. In the numerical method of
characteristics, a numerical solution of thc tlansformed equations is sought along the
characteristic directions, Cl and C2. With reference to Figure 8.1, *'e seek a solu-
tion for velocity y and depth ) at point P in the characteristic plane as a function of
the values of the dependent vadables at L and R. For simplicity, the rectangular

ty

XL xp XR X

FIGURE 8.1
Numerical solution of the goveming equations in characteristic form on the characteristic
gnd.
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channel case is considcred so that the characteristic equalions to be solved are
Equations 7 .22 of Chapter 1 . The equations can be wrilten in integrated form as

V p + 2 c p = V t * 2 c y 8(So Sr) dt ( 8 . 1 )

(  8.2)

(8.3 )

(8.4 )

in which c : (.gr-)'o.Now by evaluating the integrals approximately using the
trapezoidal rule, Equations 8.1 to 8.4 in discrete form become

Vr i  2cr :  Vr- r  2c,  + j  ( r "  -  r r ) [g(S,  -  S7p)  + g(So -  S7r)J  (8.5)

xc - xt : ! Q, - tr)(V, * cp 't V1 r c1) (8.6)

Vp-  2cp:  V^-  2ca + j  ( r "  -  r * ) lg(Ss -  Sy")  + g(So -  S7n) l  (8 .7)

Xr - xn : L, (tp - t;(Vp - c, I V^ - c^) (8.8)

The discrete forms given in Equations 8.5 to 8.8 also could have been obtained
from a forward difference approximation of the derivativcs, as described in Appen-
dix A, and taking the mean value of the integrand between points Z and P and
points R and P. In an1'case, the result is four nonlinear algebraic equations in the
unknown values x", tr, Vr, and c", which have to be solved by tteratron.

One method of iteration begins by sening V" and r" cqual to yL and c., respec-
tively, on the right hand side of (8.6) and equal to V^ and c^, respectively, on the right
hand side of (8.8) and solving for,t" and t". Then, by setting +p 

- S/L on the right
hand side of (8.5) and S/p = S/n on the right hand side of (8.7) and using the initial
value of t" just computed in the previous step, (8.5) and (8.7) can be solved for V"
and cr. Thereafter, the new values of V" and c" are substituted on the right hand sides
of (8.6) and (8.8) to obtain new values of .r" and t"; then (8.5) and (8.7) are solved
for the next values of V" and c" in iterative fashion. Liggett and Cunge (1975) sug-
gested an iteration method with improved convergence properties that defines two
residual functions from (8.5) and (8.7) that are driven to zero by Newton-Raphson
Iterauon.

Regardless of the iterative procedure used, the solution is obtained on the
:-r grid at irregular intervals determined by the characteristics, as shown in Figure
8. I . This requires interpolation of channel properties if they are known only at fixed
grid intervals of x. In addition, the final solution must be interpolated if the water
surface profile is desired at a specified time or if a stage hydrograph is required at
a specified location, for example. This inconvenience is overcome by the Hartree
method, also called the method of specrfed time intervals.

.l, '
x p - x L + f ' { u * . )  o ,

Vp - 2cp: Vt z.^ + 
f s(So s/) dr

xp : , rR  +  
[ , _ ' t r ,  oo ,
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^{

FIGURE 8.2
Numerical solution by the method of specified time intervals on the charactedstic grid over-
laid on a rectangular grid.

In the Hanree method, f ixed time intervals and uniform spatial intervals are
specified, and the solution at point P is projected backward in time to points R and
S, as shown in Figure 8.2. In this case, the general nonrectangular cross section is
considered, so that the equations of interest are (7.21a-d). The finitc difference
approximations of the derivatives along the characteristics are substituted, and the
resulting discrete equations are given by

I  A R  c
t l

,\x

vp - vR +fi {-t" - r^) = s(s, - .s/^)Ar

rp -  xn = (V* + c^)Ar

V, - V, -.q {,," - .rr) : g(Se - S75)Ar

r c - r s : ( V r - c r ) A r

(8.e)

(8 .10)

( 8 . 1 l )

( 8 . 1 2 )

To avoid ileration, tie values of {, and wave celerity, c, in (8.9) and (8. I 1) are eval-
uated at points R and 5, where they are known, as are the right hand sides of (8.10)
and (8.12). Strictly speaking, the Hartree method uses a second-order approxima-
tion in which the mean values of Sr, c, and y 1 c between points R and P and
between points S and P are substituted in the finite difference approximation. The
first-order method suggested by Wylie and Streeter (1978) is presented here for
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simplicity. In either case, the values of the dependent variables at R and S havc to
be determined by interpolation before they are known. [f l inear interpolation is uti-
I ized, for the velocity at point R with reference to Figure 8.2, *'e have

V c - V n - r(V* + c*) ( 8 . l 3 )
V c - V ^  A x

in which r - Al/i1!r and Equation 8.10 is used to substitute for (r" r^). In a sirn-
i lar intcrpolation, the value of cR can be obtained from

= r(V^ + c^) ( 8 .  l 4 )

If we solve for V^ and c^ from (8. l3) and (8. l4), we have

V, L r( Vrc^ + crV^)
vR

cI

|  +  r ( V , -  V ^ |  c r -  c ^ )

c c * r V * ( c o - c c )

|  +  r ( c r -  c ^ )

l + r ( - V r * V u * c g - c 6 )

gqjj.Yr(.. _, ,,, )
l * r ( c 6 - c 6 )

( 8 .  l 5 )

( 8 .  l 6 )

In the same manner, the values of V" and c" can be obtained from

V, I r\crV" ctVc)
(8. r 7)

(8 .18)

These interpolations assune subcrit ical f low, as shown in Figure 8.2, and would
have to be rederived for supercritical flow. Now, with the dependent variables
known at R and S, we can subtract (8.1 I ) from (8.9) and solve for _1" to give

r  I  f ( v "  v )  ^  , .  l l . ^ . ^ ."t '" : 
(." * .r) frsc* 

+ .r '"c, + .".r l-f (S/R - .ts)Arl. l  (8.19)

Then, it follows from (8.9) that yp is given by

/  l  D  
-  

\ ' D  \
V p = V n  S t  ^  l -  ( S , "  -  S e ) g J r

\  ( 8  /

(8.20)

Equations 8.19 and 8.20, together with the interpola(ion equations, can be used to
solve expiicitly for y and ,y at all interior points of the r-r plane. beginning with the
initial conditions specified on the -r axis. At the right and left boundaries for subcrit-
ical flow, (8.9) and (8.1 l) are solved simultaneously with the boundary conditions.
The tirne step, however, must be chosen such tha( the Courant condition is satisfied
for all grid points at a given time level unless the modifications suggested by Gold-
berg and Wylie ( 1983) for an implicit timeline interpolation are imple menred.

VJ
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o= o0( r )
t L

!++Pftrl-J�,

I 'IGURE 8.3
Boundary condit ions for the hydroclectr ic turbine Ioad acceptance problem.

8.3
BOUNDARY CONDITIONS

As an init ial i l lustration of the application of boundary conditions, consider the
hydroelectric turbine load acceptance/rejection problem shown in Figure 8.3. The
reservoir at the upstream end supplies water to a headrace channel, which in turn
conveys the discharge to the turbine shown schematically at the downstream end
although in reality it is at the bottom of the pensrocks. When the turbine is brought
on-line in a relatively short t ime, a netrtive wave propagates upstream from the tur-
bine and then is reflected back as a positive wave. This is the load acceptance prob-
lem. In contrast, the load rejection problem occurs \\,hen the turbine is shut down
in a finite but shon time interval, causing a surge to propagate upstream. In either
case, the boundary condition set by the reservoir ar the left hand boundary is the
maintenance of a constant value of head H = H^ in the reservoir. At the downstream
boundary, the turbine discharge is specified as a function of t ime. 0 : O0(r).

Consider first the upstream boundary condition at r : 0, i l lustrated in the char-
acteristic plane in Figure 8.3 bclow the headrace entrance. Onll the backward (C2)
characteristic from 5 to P is of interest, and the equation to be satisfied along that
characteristic is Equation 8. I l, which can be rearranged to give

P | o  S Y c
Y" -  - .  =  V,  - :  g(Sr5 -  Se)Ar  -  K,

Headrace :----+ o(l)
Fieservoir

Turbine

Ho - constant

(  8 . 2  1 )

in which the right hand side, designated r(, for convenience, is known from the
solution at the previous time step and the interpolation equations for point S given
by (8.17) and (8.18). The boundary condition is applied as a condition of energy
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conservation at lhc enlrance to the reservoir where, ftrr simplicity, the entrlncc Ioss

coefficient is neglected:

r / l
H r = ) , + ;

Equation 8.22 is soived for -\ 'p and substitutcd inlo (8.21), which is rearranged to

give a quadratic equation in V,, that is solved by the quadratic fornula:

u": arf  '  *

(8.22)

(8.24)

(8.27)

(  8 .23 )

At each time step, (8.23) gives thc value of V" at -t : 0 and (8 2 | ) or (8 22) pro-
ducer  the eorrcsponding v l lue o l  r ' " .

At the downstream boundary, the forward (C | ) charactcristic is shown in Fig-
ure 8.3 where the boundary condition is given by Q - QoQ) at x : xL The equa-
tion to be satisfied along the characteristic is (8.9), which can be reananged as

v,*T = u^ * 
? s(srr - so)ar = Kn

where, this time, the right hand side is designated as K* and obtained from the inter-
polation Equations 8. t5 and 8.16. From the continuity equation, the boundary con-
dition can be stated as

Qolt) : VpAp (8 2s)

in which A, is the cross-sectional area of flow tbat depends on the unknown depth,
yo, and on the geometric parameters for the given channel shape. On solving (8 24)
for Vp and substituting into (8.25), the result is a nonlinear algebraic equation in Ip.
Since this boundary condition must be applied at eYery time step, the Newton-
Raphson technique is chosen for its solution, with the function f defined by

(^) (8.26)

Then the Newton-Raphson iteration at each time step is given by

Fop) : co(,) - o"(-T .

. , r + l - - . � - , r  -  r ( Y * ' )
.tP .tP l..,b,!)

in which the superscript ,t indicates the value ofyp at the ,hh iterationl k + I des-
ignates the value of )p at the (t + I )th iteration; and f is the first derivative of the
function F in (8.26) evaluated for )p at the kh iteration. Equation 8 27 is iterated at
each time step until there is some negligibly small change in y", after which V" can
be solved from Equation 8.25.

Additional boundary conditions are shown in Figure 8 4 Illustrated in Figure
8.4a is the specification of stage, ,, or depth, -r, as a function of time at the upstream



CHApTER 8: Numerical Solut ion of the Unsteadv Floq' Eouations 303

P 1 o

o P 2

O = lo9p2l
Rating curve

(a) River Flood Routing

Main stem

Y P 1 = Y P 2 = Y P z

Qp1 + Qp2 = Qp3

Qp1= e.l3')Cd(2dltzLlyn - P)Y

Qpt = Qpz

Qpt+

-_-_;- ep2

(c) Weir

FIGURE E.4
Additional types of boundary conditions for unsteady flow.

end of a river reach. In this instance, Equation 8.I I is solved for V", given the value
of yp at the boundary. In a typical flood routing problem, the upstream boundary
condition could be of this type or, altematively, it could consist of the specification
of O(l) as the inflow hydrograph to a river reach. The downstream boundary con-
dition in a flood routing problem also might be a stage or discharge hydrograph, but
in some cases, it could be a depth-discharge relationship as illustrated at the down-
stream end of the river reach in Figure 8.4a and given by

^  -  |  r ,  -  r / - .  \
U - ^ P v P - J o \ l P l (8.28)

in which /o(v") is a specified function determined by a gauging station, a weir, or
some other control that could include uniform flow. Equation 8.24 for the right

P2P'l

(b) River Junclion
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hand boundary is multiplicd by A" and rearranged to produce a funclion, F, that can

be solved for -r '" uti l izing Ncwton-Raphson iteration:

r0,")=/.,(r,") ++ A,Kr

Tbe valuc of V" follows from (8.28t.
In sornc situations, irtcrnal boundary conditions may be required, as illustrated

in Figures 8.,1b and 8.4c. Figure 8.4b shows a junction formed by two tributaries
flowing into a main stcm river. If no significant energy is lost and the differences in
velocity head are small, the internal boundary conditions bccome

-\'Pt 
= ,) Pl 

: 
,rPl

A p t v p t +  A p 2 V p l -  A p l V p 3

with unknown values of r'"', -r'".,,l ra, Vrr,Vrr, and Vn,. The thrce equations repre-
sented by (8.30) and (8.31 ) are solved simultaneously with two forward (C I ) char-
acteristic equations written for tributaries I and 2 and one back$ard (C2) charac-
teristic equation \r ritten for the main stem. The two forward characteristic
equations are expressed in terms of two separate interpolation points for the two
tributaries. The system of equations can be solved by Newton-Raphson iteration.

For a weir or spillway, as shown in Figure 8.4c, there are t$'o grid points, Pr
and P2, separated by a negligibly small distance with unknown ralues of -t'",, V",,

)F2, and yp, just upstream and downstream of the weir. The solution for this inter-
nal boundary requires two boundary conditions, the forward characteristic equation
upstream of the weir and the backward characteristic equation downstream of the
weir for subcritical flow. The boundary conditions are written as

g ", = i cot/zs t(_y", - p),',

Q n - Q c z = A p t V p z

in which P and L : height and crest length of weir and C, : discharge coeffi-
cient. The interpolation equations at R and S have to be written in terms of two
separate points, Pr and P2. for which velocity and depth are determined in the
previous tlme step.

Both the boundary conditions and the characteristic equations for the interior
grid points are expressed in this section as first-order approximations They also
could be expressed as second-order approximations, as described by Liggett and
Cunge (19?5), but in any case the same order approximation should be used for the
boundary conditions as for the interior grid points.

All the boundary conditions in Figure 8.4 are described for subcritical flow. If
the flow is supercritical, both unknowns must be specified on the upstream bound-
ary, while no boundary conditions are specified at the downstream boundary, as
explained in Chapter 7. The two characteristic equations for the Cl and C2 charac-
teristics are solved simultaneously at the downstream boundary'

Boundary conditions are specified using the method of characteristics as
described in this chapter for both the numerical method of characteristics and the
explicit finite difference method to be discussed next. Otherwise, instability or
overspecification of the yariables at the boundaries can result. In the implicit finite

(8 29)

(8.30)
(8 .31 )

(8.32 )
(8.33)
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difference mcthod, both inlcrnal and cxtemal boundar) conditions simpl;,bccorne
thc additional compatibil i t) 'equations necessary to sol\e the matrix r 'cluations at
each time step, as explained later in this chapter.

8.4
EXPI,ICIT FINITE DIFFERENCE METHODS

Although explicit finite dilfercnce techniques are relatir ely simple to program, they
arc fraught with difficulties associated with instability that go beyond the satisfac-
tion of the Courant condition. As an example, consider the cornputational molecule
illustrated in Figure 8.5a. The conrputational molecule defines the grid points used
in the finire difference approximltions of thc dcrivatir es for a particular numerical
scheme. The grid points are identified by the subscripts i and superscripts t to indi-
cate spatial intervals and time intervals, respectively. For example, 1f-r is the dis-
crete value of the depth at a distance of (iAr) from the left hand boundary, where x
: 0, if uniform spatial intervals are used, and at a time that is (k + I ) time steps
from the initial time of t : 0, but the time steps may be nonuniform due to the
requirements of the Courant condition. The time and space derivatives in the orig-
inal panial differential equations are approximated on this grid and within the com-
putational molecule, which is applied repeatedly for all the interior points at any
given time step.

For the computational molecule illustrated in Figure 8.5a, an unstable finite
difference scheme results if the V and y derivatives are approximated as

av
At

: 
d,r' _ -rl- 

' - -"1 (E.34)' a t l t

av  _  v :+ t  -  v ;_ t  .
Ax 2Ar

d-v _ )f-r 
- _vf- r

Ax 2-\-r
(8.3s)

where the dependent variables y and ) in Figure 8.5 are represented by the general
functionl Ifthese finite difference approximations are substituted into the reduced
form of the continuity and momentum equations, (7.5) and (7. l5), we can show that
the resulting solution usually is unstable (Liggen and Cunge 1975). In some cases,
stability can be achieved by artificially increasing the friction terms, but in general
it is better to avoid this scheme.

Lax Diffusive Scheme

With nrinor modification, the unstable scheme can be made stable in the Lax diffu-
sive scheme. The computational molecule shown in Figure 8.5b no longer uses the
point (i, l) in the evaluation of the time derivative but some weighted average of the



306 C H A P T E R  8 : Numerical Solution of the Unsteady Flow Equations

(k  +  1 ) . \ t

klt

( l -  1 )Ax  lAx  ( l+  1 )Ax

(a) Unstable Scheme

( t -  1 )Ax  l l x  ( l+  1 )Ax

(b) Lax Ditfusive Scheme

( k  +  1 ) A l

kAt

(k -  1)ar

( k r  1 ) l t

(k + 112)Jt

klt

Ax Ax

+ 1 1 2
.1t2

- - t -
Lt/zl
-  - t -

11i I

(c) Leapfrog Scheme

( l -  1 ) . l x  i  l A x l ( i + 1 ) A x

(i- 1/2)Lx (i+ 112)Lx

(d) Lax-Wendroff Scheme

FIGURB 8.5
Computational molecules for some explicit finite difference schemes.

solution at adjacent grid points at the lrh time level. Using the general function, /,
to represent the dependent variables, the derivatives become

tf_,

( l  -  1)Ax tAx ( t  +  1)" rx

ar ri.' - lxri * 7 c:., * r:-,t)

2L,

A tAt

a f ,
d.r

(8.36)

(8.37)
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in which X is a weighting factor betrleen 0 and l. For ,1, = 1, wc recover rne unsta-
ble schemei while for X = 0, we har,c a pure diffusive scheme called the Lax dif-
fusive scheme, which is stable so long as the Courant condition is satisfied.

If the finite difference approximations suggested by (g.36) and (g.37) with x :
0 are substituted into the rcduced fclrm of the continuitv and momenlum equations
as given by (7.5) and (7. I5) for a prismatic channel without lateral inflow, the result
is two differcnce equations that can be solved explicit ly for depth and velocity at
the grid point (i, t + l) with the "free variables" or cocfficients evaluated as the
mean of the values on either side of the grid point (i, t):

|  \ t  t  l / '  -  r / l
* r . r  _  , r \ . ^  

.  , . r  . r  _ a  {  
' r . r  ' _  

] r , . *r ,  : 2 1 . \ ,  r f  . v i ' ) ' : f . . \  -  
I  7 t r ; . , - r ' , , )

L)rul., - ul r

vir, = Ivi., + v! ) -* (4j1-)rvi-, - v1_,;

+ st'so ,.,[qd.
+
2

(si)f '

(8.3 8)

(8.3e)

(8.41 )

in which S, = QlQl/K, and K - channel conveyance. The absolute value siqn
applicd to O in rhe definition of the fricrion slope S, ensures rhe proper sign l-or rie
shear force for flows with changing direcrions. Liglett and Cungi 11975) show thar
the Lax scheme is not consistent, since the finite difference approximation intro_
duces diffusive terms that should nor appear. but it is stable provided that the
Courant condition is satisfied and accurare so long as (It]:/Jl is small enough that
the diffusive terms do not influence the solution.

The l-ax diffusive scheme can also be applied to the preferrcd conservatron
form of the conrinuity and momenrum equations as given by (7 .2) and (7 .13) for a
prismatic channel. The difference equauons are

e!.' - Iai-,+ Al.,) - 
ftrcft, - oi-,1

o!" =;@: , + et.,) #J+ * ,o4):., - (* . *r"), , ]

(8.40)

+  a , rd i . , +  d l , , )
\ 2 /

in which d - gA(S0 - S/). The source term d has been evaluated as the mean of
the values at poinrs (i - I . ,t) a-nd (t + l, t) as suggested by Terzidis and Strelkoff
(1970) and Chaudhry (1993). The values of e and A are determined at each time
step, from which the values of velocity, V, and depth, )., can be calculated for the
given channel geometry, and the values of Ah. follow from its definition for the
given prismatic channel shape (see Table 3-l,) for use in the next rime srep.
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Leapfrog Scheme

Anothcr explicit nlcthod that has been used extcnsively is thc leapfrog scheme'

rvhich has t 'hc computarional nrolccule shou'n in Figure 8 5c ln ternls of the gcn-

eral function,f, thc timc and space derivatives are e!aluated by

a t  t : ' t i '  ; t f  I : .  - f :  ,
At 2 l r  

'  ar  2 l . t

and any coefficients are e\aluated at (i '  t) ( l- iSgett and Cunge I975) lf the finite

clifference approximations given by (8'12) are substitLttcd into the consetvlt ion

form of the continuity and momentum equations as for the l-ax schenle' the result-

ing clifference cquations for Q and A are given by

Ar r l  -  A r - r  -  
i l t o l - '  Q i  , )

I  o i  ' ) l
2 )

(  8 . 1 2  )

(8.43)

( 8.4s)

(8.46)

e : . '  :  e : ' '  * l ( *+sA l , . ) ' . ,  ( * - ' * ' . ) , , 1  +z r ro i
( 8.44)

in which d - pA(Sn - S) as before An alternative expression for the sourcc term

can be deueloie,J using'the grid points (i ' k + l) and (i, 't l) in a weighted

implicit-explicit fashion so that

d i = ' A t [ s , #
(01-  '  +

in which K : channel conveyance (Liggett and Cunge 1975) ln comparison with

the Lax diffusive scheme, the leapfrog scheme is of second order rather than first

order, provided that Ax and At ari uniform, and it is nondissipative: that is' no dif-

fusionlike numerical terms cause smearing of a wave front' This necessitates use of

5ome artificial damping tcrms to simulate sleeP wa\e fronts'

Lax-Wendroff Scheme

The Lax-Wendroff scheme is developed directly from a Taylor's series expansion

in the time direction in combination with the continuity and momentum equatrons

in conservation form. Up to this point, the governing equations have been wntten

out separately, but it sometimes is convenient to write them in the vector form:

au*s=s ru l

in which

l o
l A l  |  .  

-

u  -  l ^ l ;  F ( u )  :  l 0 '
l  t t  I  I  -  1 _ ,rr]' 

sru) = 
lrers.o- s/)] (84?)
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The Taylor 's series expansion for Ur* I  is develo;rcd tround the known values of Ut as

r r { + l (  8 .18 )

in which all terms bcyond the second-order term are droppcd. Values for the first
and second time derivatives then are expressed in rerms of F(U) and i(s derivatives,
using the original equations given by (8.46). Finally, f inirc difference approxima-
tions are substituted for the r derivativcs of F (see Ames 1969). The resulting dif-
ference scheme can be simplif ied and is cqui\ alent to a two-step merhod (l-iggett
and Cunge 1975; Abbott and Basco 1989) in which the Lax diffusive scheme is
used in the first half of the timc stcp at (* + l)fr and rhen rhe leapfrog method is
applied in the second half of the tinte slcp. The computational nolecule is shown
in Figure 8.5d, jn rvhich thc circles represenr rhe grid points involvcd in the first
stage and the x symbols identify the computational points in the second stage of the
scheme.

Applying the Lax,Wendroff scheme to the continuity and momentum equa-
(ions in conservation form results in first-stage difference equations given by

r r r  .  _ f  a u l '  : r r  i a : u  l ru , -  r j l  I -  -  l _ ,
L  d I  j ,  :  L , t l -  ) ,

Aii i i :  =:@:,,  *  ol)  -  
za,A(of . ,  -  o:) (8.49)

(  8 .50)

oi ; t i : : :@: . ,  +  o : )  , - f |  [ ( *  
*  ror , ) : . ,  -  (#  "  * " ) , ]

A T

1

o:' ' = Qi *" [(#-' *,.):_', - (#. *,.): ;]

\ Q , - t  +  Q , )
1

Equations 8.-19 and 8.50 are applied a second rime to obtain values of A and Q at
the grid point (/ - i, [ + i.). as shown in Figure 8.-5d. In rhe second srage of the
scheme. the values dcternrined at the half rime step are uti l ized in a leapfrog type
of evaluation. as given by

Al ' '  :  A l -  f  fO i :1 , ' -  o l r l ; ) (8 .s  1 )

+ J I
( d 1 l L : :  +  d 1 l , r  i )

(8.52)

The Lax-Wendroff two-step scheme is of second order and dissipative (diffusive)
for shoder $ave components only. so that it has been used to model moving shocks
(surges), as is discussed later in this chapter. This propeny of the method tends to
smooth thc $ avy water surface behind rhe surge. However, fbr a hydrauiic jump in
steady flow, instabil it ies can (rccur at the jump, so that some additional dissipation
is needed through a "dissipative interface" (Abbott and Basco 1989) or an artif icial
r iscosity (Cunge. Holly. and Verwey 1980).
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Predictor-Corrector Ntethods

For unstcady flow problenrs involving regions of both supercrit ical and subcrit ical

flow that move with time (mixed-flo$ regintes or transcrit ical f low), computing
through the discontinuities can introduce severe nunrerical diff icult ies. The predictor-

corrector methods involYe a two-step contputation lt each time step in which there
is first a forward sweep in the spatial direction to carry the influence of upstream

boundary conditrons in the predictor step followed by a back\\ 'ard sweep in the cor-
rector step that propagates the effect of downstream boundary conditions. The Mac-
Cormack schenre (Fenncrna and Chaudhry 1986) is a good example of this class of
ncthods in which the two-stcp computations, with reference to the vector form of
the equations in (8..16). are givcn by

u i - Fi)  + l ls iu i  -  - .  ( F ) - ,
I t

u ;  : u i  
f l t o l - F f  , ) + l r s f

(8.53 )

( 8.5'1)

in which the 2 superscript rcfers to the valucs ol lhe variables conpuled in the
predictor step and the c superscript refers to the values determined in lhe correc-

tor step. Note that the spatial deri\atives use only two grid points and they are

computed as forward differences in the predictor step and backward diffcrcnces in

the corrector step. The order of the pr€dictor and corrrec(or steps can bc revcrsed

at every other time step, but Chaudhry (1993) suggcsts that the predictor step

should be in the direction of the advancing wave front. At the end of the predictor-

coffector steps, the solution is taken as the mean of lhe prcdicted and corrected

values:

u i - '  -  I  (u1 '  +  u , ) (  8 .551

Fennema and Chaudhry ( 1986) and Carcia-Navarro. Alcrudo. and Saviron ( 199? )
applied the MacCormack scheme to transcrit ical l1ow in opcn channels. albeit with

different adaptive artif icial viscosity schemes to dissipate oscil lations at surge dis-

continuities. These dissipation methods are considered adaptive bccause they are

applied only in regions where the water-surface gradients become large.

Meselhe, Sotiropoulos, and Holly (1997) introduced a predictor-conector

scheme derived by replacing the panial derivatives in the governing cquations with

Tay lo r  ser ie .  approx imut ionr  \ 'en le rcd  l round thc  Sr id  po in t  r i  +  l t  lo r .p r t ia l

derivatives and (t + i.) for the time derivatives. Their MESH schenre uses only two

points for evaluation of the spatial derivatives and allows for inrplicit evaluation of

the source tcrms. It also employs artifrcial dissipation terms in the predictor-

corrector cquations. Sinrulations of choked flow over a channel bottom hurnp fol-

lowed by a hydraulic jump as well as a jump on a steep slope downstream of a

slope break agreed well with analytical solutions. They also showed satisfactor)
performance of the numerical scheme for supercri l ical f low on a steep slope fol-

lowed by a hydraulic jump upstream of a weir located midway along the channel.



CHApTER 8 ;  Nunrer ica l  So lu t ion  o f the  Unsteady  F lo*  Equat ions  3 l l

passage to supercrit ical f low downstream of the weir, and another hydraulic junrp
downstream of the weir, which moved upstream with time due to a rising tailwater
ievel. For further detail on these predictor-cofiector methods, refer to the original
papers.

Flux-Splitt ing Schemes

Flux-splitr ing schemes take advantage of the characterisric directions of the gov-
erning equations. The vector fonn of the equations, given by (8.46), can be rewrit-
ten in the form

l V *a f : s ru r (8. s6)

where the matrix A is the Jacobian of l-(U), wbich is refened to as theflux vector
because its componcnts consist of the mass flux and the force plus momentum flux
per unit of density. The Jacobian matrix is given by

AF

dU

r l
- l

o '  2 0  1- - - - - '
A ' A ]

1,,
tn

(8.57)

as can be verified by rhe reader in the Exercises. We can show that the eigenvalues,
I, of the matrix A in fact are the slopes of the t$ o characreristic directions given by
y 1 c by setting detlA AI] : 0, in which I r. rhe unit matrix with diagonal val-
ues of ones and zeroes for all othcr elements (see the Exercises to this chapter). The
diffcrence evaluation of the flux, AF, can be evaluated approximately as AAU.
which can bc split into positive and negative pans, corresponding to the local char-
acteristic directions. Then space derivatives involving the positive and negative
components of A are evaluatcd by backward and forward finite differences to pre-
serve the directional propenies of signal propagation in subcritical and supercriti-
cal flow. Fennema and Chaudhry (1987) have applied the Beam and Warming
scheme, which is of this type, to rhe dam-break problem described in Chapter 7.
The flux splitting scheme has been modified and improved further by Jha,
Akiyama, and Ura (1994, 1995). A variation of it has been introduced by Jin and
Fread (1997) into the National Weather Service compurer program FLDWAV for
regions of mixed flow (supercritical and subcritical) near the critical state, with a
moving interface between them. Such situations arise in rapid dam breaks with
large differences between upstream and downstream depths.

Stability

A complete discussion of stability is beyond the scope of this introductlon to numer-
ical methods for the unsteady open chanriel flow equations. Stability analyses
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involve substitution of Fourier series terms for the solution into the finite differcnce
schenre and detenrrining whether the penurbations increase in amplitude with timc
(instabil ity). Such classic stabil ity analyses typically are applied to Iinearized forms
of the equations. so that nonlinear instabil it ies can bc found onJy through numerical
experimcntation. Sufllce it to say that, for any explicit scheme. the Courant condi-
tion must bc satisfied for stabil itv:

Ar
\ r  <

V ! c l
(8 .s8)

The Courant condition seems to imply that Ar can be increased to keep the tirne
steps from becoming too small. Horvever, the Koren condition for explicit nrethods.
which results from the explicit treatment of the friction slope evaluation. places a
l im i t  on  the  spat ia l  s tep  s ize  as  we l l  (Huang and Song 1985) .  Us ing  numer ica l
cxperiments, l luang and Song show that the Koren condition is applicable to the
method of characteristics as well as to exDlicit schemes. The Koren condition is
srven Dv

A t <
Vl  - r r r ;  I

(8. s9 )
F,, 8so

" y o

in which Fo - Froude number of initial steady, uniform flow of velocity, Vo, on
which a disturbance is supcrimposed and So : channel bed slope. lf the Koren con-
dition is combined with the Courant condition so that the Courant number is exactlv
I, then a maximum step size, A-rmar, is given by

SeA.r.o"- (V' + rq - r)1r + r',,; (ri.60)

in which 1,0 - hydraulic depth of uniform flow. Because this l imitation on A.r can
become somewhat restrictive at small values of the Froude number. Huang and
Song (1985) suggested several semi-implicit methods for evaluation ofSrthat ease
th is  cons t ra in t .

While several other explicit schemes have been used successfully. the ones that
have been presented provide a sufficient i l lustration of applications in unsteady
open channel f low. lt is not advisable to extend an explicit scheme to the evaluarion
of the boundary conditions because ol ambiguities and redundancies that can occur.
The method of characteristics is better suited for the boundary condirions in com-
bination with the explicit scheme for interior grid points. In general. explicit
schemes may seem easier to program than other merhods. but the combination of
characteristics-based boundary conditions, the need for anificial dissipation, and
the stabjl ity constraints on explicit methods make them more demanding to imple-
ment than may first appear. The application of the explicit method is l imited to rel-
atively shon-duration transients, such as occur in hrdroelectric turbine or sluice
gate operations. for example, because of the l imitation on the time step imposed by
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the Couranl condition. Explicit merhods ordinarily are not applicd to flood routing
problcms in large rivers, which more oftcn are lreared by inrplicit methods. as
dcscribed in the next section, because of their nrore favorable st;bil i ty propenres.

ExA\ tpLE 8 . t .  A  hydroe lec t r i c  tu rb ine  inc reases  i t s  load  l inear ly  f rom 0  to  1000
cfs (28.3 nrr/s) in 60 sec. The headrace channel is rrapezoidal wirh a length of 5000 ft
(1520 m) .  a  bor tom widrh  o i  20 .0  f r  (6 .10  m) .  s ide  s lopes  o f  1 .5 :1 ,  Mann ing .s  a  =
0.015. and a bed slope of0.0002. Compure the deplh hydrographs at.r/ l = 0.0. 0.1. 0.,1.
0.6, 0.8. and 1.0. using the nerhod of characrerisrics with specitied l ime inrer\als and
the l-ax diffusive scheme.

So/l/ ion. The channel length is divided into 50 spatial inlervals, and lne ume slep rs
selected so that the Courant number is = I for all grid nodes at the curent trme level.
The Lax diffusive method is applied to the conscrvation form of ihe go\ernins equa
tions. The merhod of characterisrics is used for the boundary condirioni for borh rnirh_
ods. The upstream boundary is a rcservoir for whjch the energv equation ts written tor
flow from the lake into the entrance of the headrace channcl. The downstream bound-
ary condirion is a discharge hydrograph with a l inear increase in turbine discharge fiom
zero to tic steady state value in a specified time. which is 60 sec in this example. At
hme t = 0, the water in the headrace is at rest with the same $.ater surface elevalion as
the resenoir.

_ .The resulrs are shown in Figure 8.6a for the Lax diffusire nrethod. and Figure g.6b
for the rnethod of characteristics. A very rapid decrease in depth is observed at the tur_
bines during the stanup period, then we see a more gradual decrease to the nunimum
depth. This is followed by a gradual approach to the sready_state depth ar bolh the
upstream and downstream boundaries. The solutions are nearly indistinguishable
excepr ar rhe minimum deprh region at the turbine (x/L = 1.0). The rrinimum deerh for
the Lax scheme is 4.67 ft ( L42 m), $,hile it is ,1.94 ft ( L5 I m) for the nrcthod oi char_
acferistics. There also is a very slight widening or smcaring of rhe minimum depth
region b! rhe Lax scheme, due ro diffusion. which may account for the slightly smailer
mininrum depth.

8.5
IMPLICIT FINITE DIFFERENCE METHOD

The implicit method uti l izes more than one grid value of the dependent variables at
the forward time in the computationrl molecule, a! shown in Figure g.7. ln Figure
8.7, the computational molecule is a.,box" used in the preissmann method (Cunse.
Holly, and Verwey 1980). The spatial derivatives are found as weighted averages'of
the first-order difference approximations at the two time levels with a vadtble
weighting factor, 0, while the time derivatives depcnd on the difference in the arirh_
metic average of the grid values at each time level (or a weighting factor of 1).
Specifically, for any function/ the spatial and time derivarive, or" *.,,r.n u,

d f  , / f [ + . r  -  f { * r \  +  / l 0)ui- ,  -  f ) ( 8 . 6 1  )
A Idr
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(k  +  1) . \ t

ktt ll

TIGURE 8.7
Prcissmann implicit scheme.

lAx  ( i  +  l )Ax

f l - '  + , f l ; i )  f l  + , f 1 . , )af
A t  2 ^ t

(8.62)

while the evaluation of the coefficients in the governing equations is given by

o( f i . '  +  f i : i )  +  ( l  -  0x l f  +  / l -  r )
(8.63)

These finite differcnce approximations are applied to the continuity and momen-
tum equations in the conservation form of Equations (7 .2) and (7 .13\ for prismatic
channels without lateral inflow. In the vector form of Equation 8.46, this can be
written as

u f - r+  u l i i  -  u l  -  u f . ,  +  2+ ld (F i i r ,  -  F l * , )  +  ( l  -  0 ) (F ,
A-r '

-  a4o(s f - ,+  s l i i )  +  ( l  -  oxs l  +  s f - , ) l
in which the vectors were previously defined by (8.47). These equarions are non-
linear, especially in the evaluation of Sr, which depends on the dependent variables
Q and A as well as the conveyance K. In addition, it is much easier to work with
stage Z and discharge Q as the dependent variables in a natural river. Therefore, the
simpler system of governing equations derived from (7.3) and (7.13) is given by

dz ao
B -  +  : : 0

At dx

A 7  o o l
+ s A : + 8 A - - 0

o x  A -

A Q  A  ( Q , \

r - r \ ; /

Ff  ) l
(8.e)

(8.65)

(8.66)
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in which Z : stage : :, 4 ,r and :6 = bcd elevation, is used nrorc often in thc
irnplicit mcthod. al(hough the systenl is not stricrly conservatir e. This usually is sat-
isfactory as Iong as thc implicit method applied to this form of rhe equations is not
uscd to modcl ven stcep wave fronts. where conservation of mass and nlonlenluul
must be observed nrore strictly (Cunge, Holly, and Verwey 1980t. Nore rhat thc bed
slope, 5n. does not appear explicit ly in (8.66), bccause it has been incorporated into
dZld-r, since S,, : -6:r/ itx where:, = bed elevation. If the implicil approximrrions
of  (8 .61) ,  (8 .62) ,  and (8 .63)  a re  app l ied  to  Equat io t ' rs  8 .65  and 8 .66 .  the  resu l r ing
algebraic dif ' ference equations are

E (z l -1  +  z f : l t  z :  z i t ; )

: l r+ ;  ia {o i i , '  o f ' ' )  +  ( l  o ) (o l . ,  -  o l ) l  =  o

@ i ' ' + o i i i  - o i " o i - , )

+! gA:.e1zi ; l  -  zf- ' )  + ( t  o)(z: , ,  -  z l))

. ' � l f : - f l rn:. '  n:. ' t  + er: ;  er: i '1)

+9r9o:o i t  +

.*{,[(+): - (*),.].,' ,,[(?), (*),]]

o i , ,  o f  - , ) )

(n.67 )

(8.69a)

(8.69b)

(8.68)

in which the coefllcients with an overbar are cvaluated according ro Equation 8.63.
Equations 8.67 and 8.68 form a pair of nonlinear algcbraic ecluations with four
unknown values at the forward time level. By extension, the conputational mole-
cule wil l yield 2(N l) equations with 2N unknowns as ir is applied repeatedly
with overlapping across the grid in the ,r direction, where the rotal nunlber of com-
putational points is N and the number of reaches is (N I ). The remaining two
equations must come from the boundary conditions, and the slstem of equations
has to be solved simultaneously.

Solution of (8.67) and (8.68) is accomplishcd by the Nellon Raphson tech-
nique for multiple variables. If we dellne rhe left hand sides of (8.67) and (8.68) as
G and H, respectively, the equations for each application of the computational mol-
ecule can be written as

G , ( 2 "  Q "  Z , , r  Q , * , )  : 0

H , ( 2 "  Q "  Z , * , .  Q , . t )  =  0

where  i :  l ,2 . . .  . .  N  I  fo r (N -  l )  reaches .  The superscr ip ts  onrhedependent
variables are omitted for convenience because they all are (t - l): that is, we seek
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the  so lu t ion  I i r r  thcsc  lbur  unknorvns  a t  the  ( l  -  l ) th  t i r le  l cvc l  in  te rms o f  the
kntrs n valucs of the clependcnt variables at the (th time Ievel. Each nonlinerr Iunc-
tion has a subscript becluse the known values are diifcrent for each appliclt ion of
the cquations. Thc tuo additional equations nr'r 'dcd fronr the boundary conditions
al:o can bc cxprcsscd as flnctions set to zcro. For cxample. ln upstrean specified
sta-.^e hydrograph and a do$nstream specified slage-discharge relationship are
g l \  en  Dy

Bt  =  Z t  Z j ( t )  =  g

B , : 2 " - f ( Q \ ) : o

in u hich 2,,(l) is the specified stage as a function of t ime and the stage-discharge
refationship. or ratin!: curye. is givcn by Z : ftQt.

The genera l  so lu t ion  o f the  sys tem o fnon l incarcquat ions  represented  by  (8 .69)

can be obtained using Ncwton's iteration method. Thc solution begins u,ith csti-
mates of the unknown values of Z and O that u i l l  result generally in the right hand
sides of the system of equations in (8.69) being nonzero. or in other words, having
residuals. At the rth iteration, this can be expressed as

(8.69c)

(8.69d)

(8.70a)

(8.70b)

(  8.70c)

(8.70d)

Blz'1. Qi\ -  Bi

c , (z ' i .  Q ' i .  z ' i r , .  Q i_ , ) :  G ' i

H , (Z i ,  Q ' � i ,  Z " ' * , ,  Q i - , ) :  H i

B,\(Zft' Q\) : 8""

i n  $h ich  I  -  1 ,2 , . . . ,N  I  and the  superscr ip t  r  re fe rs  to  the  present  va lues  o f
the unknowns and the functions at the nth iteration. Note that the residuals on the
right hand sides of (8.70) simply are the evaluations of the functions with the nth
estimates of the unknowns. To obtain the (d + I )th estin)ates of the unknouns, the
functions are expanded in a Taylor series while retaining only the first derivative
terms. For example. for the ith continuity function, G,. we have

.  ac: aG'; aG: aG:
c i ' '  =  c :  -  - . :  J Z , '  .  ̂  [ ' Q .  '  ^ -  ) 2 , .  ,  ^ ^ -  l O , . '  1 8 . 7 1 )

d Z ,  A Q ,  d l , .  ,  d Q , .  ,

in  wh ich  AZ,  =  (z )^ ' t  Q i )^ :  lQr  :  ( .Q) " - t  -  (Q)^ :  L2 , , ,  -  (Z i * ) " ' t  -

(2 , - , ) " ,  and AO,* ,  =  (O,* , ) ' * '  (0 , * r ) ' .  Equat ions  o f  the  fo rm o f  (8 .71)  can be
u ritten for each of the original nonlinear equations in (8.69). Then. as in the Newton-
Raphson technique for a function ofone variable, we set (G)'*r and all sirnilar
functions to zero to obtain the root. The result can be reananged as

aBi aBi
u ' , t ' ' *  a . . . ' J Q ' -  

- B i  r 8 1 2 a )

acl  aG: aG: dc:
=  \2 ,  .  = :  Lo ,  -  _  JZ ,_ ,  +  . ^  10 , . ,  -  c i  t 8 .72b l
dL ,  ov ,  oL , .  t  dv ,_  t
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aH"' . __ dH,,' at!: dH,
^ , ' J 7  . . , ; .  1 0 . .  , . ; '  \ 1  . . . ^ '  - \ 0 . .  .  H i  r x . 7 1 c 1, t V .  t , / . , .  1  , , L 1 ,  .

' . ' ..0,1 
,r, l l l i  rc,., di (x 72J)

d/ ,  \  ( tV , ,

i n  w h i c h i  =  1 . 2 . . . . . N -  l .  E q L r a r i o n s  8 . 7 2  r e p r c s e n t  a  j i n e a r  s y s r e n  o l  e q u a -
t ions  tha t  can  be  p laced in  n rar r i x  fo rm as  IE I  { ' \_ r }  =  {D)  in  wh ich  { l r }  -  uec_
tor of changes in the unknowns at each iteration: {b } : I.ector of negative resitlu_
a ls ;  and IE ]  =  na t l i x  o f  der iva t ivcs  bandcd a long the  d iagona l  u , i rh  a  max inum
width of four cler.cnts. This banded property alows fbr more efficient sorution of
the system of equations. The system is solved rcpearedly unli l the changes in the
unknown va lues  bccome acceptab ly  smal l .

An ad\antagc of the inrplicit method conrpared ro the mclhod of characterisrics
and the explicit method is its inherent stabil ity r{, ithout having ro satisfy the Courant
limitation of small t ime steps. Stabil ity of a numerical scheme occurs when srnall
pedurbations in the solution do not grou exponcntially wirh rinre. It is derermincd
mathematically by substituting a Fourier series representation of the finite dilference
solution at the grid points into lhe difference equarions and determining the condi-
tions under which the enor in the sorution grows with time. The Fourier stabirity
analysis, often attributed to von Ncumann (Strelkoff 1970), generalty is applied to a
simpler I inearizcd set of equations with the assumption that the results also are appli-
cable to the more complex nonlinear system. Numerical experimcnr gcnerally ion-
firm the validity of this approach. l_iggert and Cunge ( 1975) show for a l inearized
form of the goveming equations, that the condition for stabil ity of the preissmann
scheme depends on the weighting factor 0. If 0 = ], then thc solution is not damped
wjth time nor does it grow with time. \ hile for 0 < 1 rhe solurron grows with time
and always is unstable. For 0 > ]. the solution always is stable buisome dampins
occurs. l is tempting then to use a value ofd = j, but because ofdifferences berweei
the numerical wave celerity and the actual wave celerity, srnall undesirable oscil la_
tions in the solution can occur, although they do not grow with time. For this reason,
a slightly larger Ialue ofd is needed to damp out the oscil lations. As a practical maG
ter, Liggett and Cunge ( 1975) recommend 0.6 < 0 < I .0.

Samuels and Skeels ( 1990) included both the convective term and the friction
slope term in their stabil ity analysis and showed analytically that g > j is required
for numerical stabil ity in agreement with previous investigators; howevir, they also
showed that the absolute value of the Vedernikov number, V, must be less than or
equal to unity, where V is defined by

v : s A q t F
b R d A

(8.73)

in which a : exponent on the hydraulic radius and b - exponent on the velocity in
the unifomt flow evaluation of the friction slope; A - crois-sectional area of flow;
R : hydraulic radius; and F : Froude number of the flow. The Vedernikov num_
ber adscs in stability analyses of steady. uniform flow in open channels (Liggett
and Cunge 1975; Chow 1959). When the Vedemikov number exceeds unitv, ioll
waves form. The roll waves are a series of transverse ridges of high voniciiy that
occur in supercritical flow (Mayer 1957). The roll waves Can break and resemble a
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s u c c e s s i o n o f m o r i n g h l d r a u l i c j u m p s . F o r I u l l l r o r r g h . t u r b L r l c n t f l o u , , , h = 2 , a n d
us ing  the  Mann ing  equat ion ,  a  =  .1 .  so  rhu t  l i r r  3  , " r ,  u i tJe  ch lnne l .  the  Vedern ikov
s tab i l i t y  l im i r  reduces  ro  ! -  <  I .5 .  Wha l  the  anr lys is  by  Samuels  and Skee ls  shorvs
is that the Prcissnrann schemc musr sa(isfy not only 0 > l bul also the physical sta_
bil ity l inrit i 'rposed br roll w.ves for numerical srabil ity io be achie,'ed. This is the
reason fbr the statcment in sorne established numerical codes using the irlplicit
m!'thod that lhey do not apply to supercrit icai f lorv (e.g., BRANCH).

I fd i f f i cu l r i cs  occur  in  thc  appp l ica t ion  o f  the  pre issmann schente .  evcn  thouqh
the stabil iry l imirs on t and the Vedernikov number are satisfied. then oth-er
sources of thc diff iculrjes rrusr be sougbt. The stabil ity analyses. for exanrple,
assume a uniform grid spacing in the flow direction, whereas the spacing is l ikely
to be nonuniform in applications to rivers. The irregularity of the cross_sectlon
gcornetry. the occurrence of rapidly varied flow. and the application of the bound_
l r l  cond i t ions  a l l  cou ld  cont r ibu le  ro  p rob lcnrs  u i th  the  inp l i c i r  n te thod;  ncver_
thcless. it has been widely used successfulJy in several cslablished cocles (UNET
(U.S.  Arn tv  Corps  o fEng jneers  1995) .  BRANCH (Schaf f ranek .  Bat tzer .  and Go ld_
berg  l98 l ) .  FLDWAV (Fread and Lewis  1995) ) .

8.6
CONIPARISON OF NUI\{ERICAL METHODS

From the foregoing presentation of the numerical method of charactenstics with
specified time intervals (MOC-STI). several explicit f inite difference methods, and
the implicit f inite difference method (preissnann), it is apparent tbat an obvious
advantage of rhe inrplicit nlethod is its uncondirional stabil ity with no l imits on the
time step. In addition. the compactness of the preissmann implicit scheme rn panrc_
ular allows it to be applied with spatial sreps of variable length. As a result, the
Preissrnann schente has beconre very popular for applications in large rivcrs such as
routing of f lood hydrographs or dam-break outflows. Reach lcngths in such appli_
cations are variable because of changes in channel geomerry anJ roughness in ihe
flow direction. In addition. the absence of a time step l imitation is advantageous for
flood hydrographs thar have long time bases to avoid a large computational t irne.

Amein and Fang ( 1970) applied the box (preissmann) implicit scheme to rhe
routing of a flood on the Neuse River from Goldsboro to Kinston, North Carolina,
which is a river reach having a length of 72 km. The upstream boundary condition
was specified to be the measured stage hydrograph, while the downstream condi-
tion was the measured rating curve. lnit ial conditions were determined from back_
water calculations. staning with the measured downstream depth. For comparison
of the method of characteristics (MOC), explicit, and implicit methods, a compos_
ite channel cross section was assumed, with geometric properties determined as an
average over the entire reach. The computed results for all three methods were com-
pared with thc measured stage hydrograph at Kinston for two different f loods over
a tinre period of about l5 to 20 days. The results showed similar accuracy in com_
parison with the obsen ed hydrographs, but the implicit method was much more
effrcient. The explicit method required a time step of 0.025 hr for a subreach length
of 2.4 or 4.8 km ( I .5 or 3.0 mi) to maintain stabil ity. Time sreps of as large as 20 hr
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were possible for the implicit nrethod with a subreach lengrh of :1.8 knr, although a
sonrewhat shoner tinre siep might be desirable if ntore rapid changes are taking
place in stage or discharge. For the same subreach length of -1.8 km and a time step
of 5 hr in the implicit method, the computcr t ime \.\ 'as more than four tinres grcater
for the explicit ntethod rhan for the implicit method.

Price ( 197.1) conrpared the N{OC, cxplicit. and implicir mcthods for a nrono-
clinal wave, l l  hich is a translatory wave similar to the front of a flood wave in very
long channels. It approaches a constant depth very far upstream and a smalier con-
stant depth downstream with a wave profi le in between that does not change shape
as it travels dorvnstream at a constant wave speed, c,,. The monoclinal u'ave is a sta-
ble, progressive wave fornt that results after long tintes !\hen an init ial constant
depth is increascd abruptly to a larger constant value at the upstream end of a riyer
reach. If the *ave profi le is gradually varied in a witle pri,marrc channel, f iere is
an analytical solution for the profi le (Henderson 1966;. The monoclinal wave is
useful for numcrical comparisons because it retains thc nonlinear inertial ternrs in
the full dynamic equations while having an analytical solution. lt has a nra.rinrum
speed of (V * c) and a mininrum speed equal to that of the ..kinematic" wave, dis-
cussed in the next chapter, for which the inenial terns and the d_trldr term are small
in comparison to the bed slope in the momentum equation. Of interest in this chap-
ter, however, is the comparison made by Price between specific numerical solution
techniques and the analytical solution for the monoclinal wave. He selected an
upstream depth of 8.0 m (26.2 fr), a downstream deprh of 3.0 m (9.8 fr), ancl chan-
nel slopes of0.00l and 0.00025 over a roral reach length of 100 km (62 mi) having
a Chezy C of 30 mr/2/s. These data resulted in monoclinal wave speeds of 3.31 m,/s
(10.9 ft ls) and 1.65 m/s (5.,11 frls) for a very uide channel *iLh the slopes of 0.001
and 0.00025. re\pectively.

Price cornpared two explicit techniques (Lax-Wendroff and the leapfrog
schcme), the method of characreristics, and the implicit scheme with the analytical
solution of the monoclinal wave. Price found that the expljcit and method of char-
acteristics techniques had the least error when At/At u,as approximately equal to
the maximum Courant celerity, y + c; that is, a Courant number equal to l. The
implicit method exhibited the smallest error for Ar/At approximately equal to the
monoclinal wave celerity. This resulted in a larger possible rime step for the implicit
method than for any of the other methods and so greater computational efhciency.
Furthermore, Price determined that the error in the implicit method is much less
sensitive to changes in Al for a fixed value of Ar.

8.7
SHOCKS

In the hydraulics of unsteady open channel flow, shocks are the same as moving
surges at which there is a discontinuity in depth and velocity. ln the method of char_
acteristics, the shock conesponds to an intersection of converging positive charac-
teristics at which the methods of gradually varied flow no longer are applicable
because of strong vertical accelerations and a pressure distribution that no longer is
hydrostatic at $e shock itself. Across the shock, both mass and the momentum func-
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tron nust be consened, as discussed in Chaptcr 3. On either side of the shock, grad
ually varied unstcady flow usually exist-s and can be treitted using any of the nunrer_
ical ntc(hods in this chapter The diff iculry then is in compurir; rhe disconrinuity
causcd by the shock itself. This importanr problem ariscs in'dam_irear wave fronts,
ralld opcration of gates in canal systems. and transients in the headrace or tarlrace
of a hydrocicctric plant that occur upon rapid stanup or shutdoq,n of the turbines.

There are two methods of solving the problcm of shock conlputation: shock fit_
ting and shock capruring, also known as .,con]puling 

through.,, In the first method,
the position of the shock front at t ime I - Jl is computed uiing the method of char-
acteristics combined with the shock compatibil i ty equations, ivhich srrnpty are the
continuity and monientum equations written across the shock or surge as gtven pre-
viously by Equations 3.12 and 3.13. Six unknowns are found at r i Ar:1fre Oeptir
and velocity. at.the back of the surge, r, and V,; cleprh and velocity at the front of the
surge. r '. and %; the speed ofthe surge. l/.; and the position ofthe surge r,r.,. How_
ever. only thrce equations are given by rhe two shock conrparibit ity equahons and
thc ordinary differential equation for the parh of lhe shock, V = d,"/dt.-Fo., .rrg.
advancing in the positive r direction, two forward characteristics and one backward
characteristic can be sketched from the unknown position and time at point p in the
x-l plane backward to time ievel ,tAr, as shown in Figure g.g. Each of rhese charac-
tenstics has two equations associated * ith it, as OescriUea in Chapter 7, and three
more unknown values are introduced as the r positions of the intersections of these
characteristics with the krown time line. In all, a total of nine equattons can be
solved for nine unknown values to obtain not only the new position of the shock but
also the depth and velocity on both sides of the shock. These latter variables then can
be used. as intemal boundary conditions ro solve the SainFVenant equations for the
gradually varied flow regions both upstream and downskeam of the ihocx.

( k  +  1 ) d t

FIGURE 8.8
Shock fitting using characteristics (Lai l9g6). (Source: Figure from 

,,Numcica! Modeling of
Unstead,v Open Channel Flow,, by Chinru tai in ADVANCES IN HyDROSCIENCE, Volune
11, copyright @ 1986 by Acatlemic press, reproduced b,- permission ofthe pubtisher)
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In the second mcthod of compuring shocks (shock eapturing), the numerical
solution procedure for rhe Saint_Vcnanr equutions is simply corniured through thesurge with no special treatntent of rhe discontinuity. IfArriin ana D.Fa.io 0909)applied the cquivalent of the Lax diffusive scheme on a ,taggered grid to the prob_
Icm ofhydroelectric load rejection in thc headrace due to slirit.rown"of turbines andshowed good agreement with measured water surface proliles of an uDdular surge.Manin and Zovne (197l) used thc nterhod to show reasonable agreement bet\\,een
computed 

_solutions for the propagation of shocks due to an iisrantaneous dambreak in a horizontal frictionless channel with the analytical solution of Stoker, dis_cussed previously in Chapter 7. Terzidis and Strelkoff ( 1970) demonstrated the useof the Lax diffusive scherne and Lax_Wendroff scheme in computing through thepropagation of a shock wave in nonuniform flow. Numerical OissipatLn cauied bythe nunterical method itself tends to smoorh rbe abrupr discontiuuiiy in the Lax dii_fusive scheme, whjle anificial dissiprtion may be required for rh! Lax_Wendroff
scheme to smooth oscillations behind the shock, although Terzidis and Strelkoff
achievcd 

^similar.results simply using a time step equal to eight_tenths the value
required for srability. On the orher hand, use of nondiisipative ;ethods such as rheleapfrog scheme rcquires an anificial viscosity to oampen the osciltations. In thePreissmann method, taking the weighting facto; g > 0.j introduces Oissipation rhatmay avoid oscillations on the back of the shock resulting from hydroelectric loadre.lection in a turbine headrace; however, a value of0 : I ifully im;licit) may cause
excessive damping. Wylie and Streeter (197g) showed that a value of g _ (i.O p.o_
duced good agreement between rhe impricit method and the method of characteris-
lj.r 

f:i ,h. hydroelecrric load rejection problem. For very abrupt shocks such astnose that occur downstream of a very large, rapid dam break and for transcntical
flow, the Preissmann method no longer miy be useful, and explicit schemes havebeen devcloped for this case, as dcscribed previously (Fennema and Chaudhry
1987; Jha, Akiyama, and Ura 1995: Meselhe, Sotiropouios, and Holly 1997). U,hile
::m1y 

not 
!e as imponanl in lhe gradually varied flou regions. ir is imperative rharrne govemlng equatrons be wrinenin conservation form for computing through theshock to conserve the momentum function and mass flux.

ExAMpLE 8.2. A hydroelecrric rurbine decreases its load linearly from l0OO cfs
128 3. r,/:l^ g zero discharge in t0 sec. The t "uOru". .t -n.i i, irJpezoiaat wirh alength of 5000 fr (1520 m), a bonom widrh of 20 fr (6.1 m),sideslopelof 1.5:1, Man_
l,:8: I ^ 9 ?ll. :ld a bed rtope of 0.0002. compure rhe deprh hyjrographr ar .r/L _u.v, rr.z. u.4. u.o, u.6. and LU ustng the method of characteristjcs with specified time
Intervals and the Lax diffusive scneme.

Solalron. The channel length is divided into 50 spatiat inrervals and rhe trme step isselected so that the Courant number is S I for all grid nodes at the currenl time level,
as in Example 8.l. The upstream boundary is a re-seruoir, as in Exanrple g.l, and thedownstream boundary condition is a discharge hydrograph u ith a Iinear decrease in tur-
bine discharge from the steady_srate ualu" oi IOOO "is ()g.3 mr/s) lo zero in l0 sec. Artime t : 0, the water in the headmce is in steady uniform flow with a normal depth of1.66 ft (2.33 m) and a crit icat depth of 3.85 ft (i.tZ mt.
- .The 

results are shown in Figure g.9a for the Lax diffusive method, and Figure g.9b
for the method of characteristics. An abrupr increase in depth at the iurbrne is tottou.ea
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FICURE 8.9
Depth hldrographs between the reservoir (i/L = 0.0) and the turbine (;/L = r.0) for road
rejection.
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br a morc grtdual increrse in depth due to lhe incnia ofthe l lo$ins *att-r Tlre posi-
t ive rr avc is rcf lcctcd back from thc reservoir with lo\r er deplhs. ard i t  is applrent lhat
a relal i \ 'ely lo g t irnc is required for the \Iater to come contplelely to rest. as ref lect ions
conlinue back and forth along the headracc. The solut ions by the tuo melhods are eren
closer in agreement than in Extimple 8. l .  The only dif fercnces are a sl ishrl) more grad-
ual r ise and a very sl ight rounding al thc peak of thc deprh hydrographs at iDlemtediare
points l long the channel for the Lax scheme. The marimunt depth for the Lax scheme
is  l 0  31  f t  ( 3 .15  m) .  nh i l e  i t  i s  10 .36  f l  ( 3 .16  m)  f o r  t he  n le thod  o f  ch i r ac rc r i s r i c s .

8.8
DAIII.BREAK PROBLEM

Several largc dam failures in the United State\. including the Tcton Dam failure on
the Teton River in ldrho in 1976, have led to dam safety progranrs in many states
and the need to predict the peak discharge and time of travel of dam-breach flood
waves. In the dam-break problem. the routing of shocks in the downstream ri\er
channel dcpends greatly on the hydrograph created at the dam, which in rum
depends on the time of failure and the geonretry of the breach. The National
Weather Service combined an implicit f lood routing technique (Preissmann
method) with a paramcterization of the breach geometry to generate the ourflow
hydrograph resulting from a dam break and route it downstream in the program
FLDWAV (Fread and Lewis 1988), which combines the formerly used programs
DAMBRK and DWOPER (Chow, Maidment, and Mays 1988). The dam breach
geometry is trapezoidal in shape, as shown in Figure 8.10 and given by Fread and
Harbaugh (1973) and Fread (1988):

br: b", m(ha - h) (8.7+)

FIGURE 8.10
Definition of embankment dam breach Darameters.

Dam

\ _ _ _ _ _ _ _ _ _ _ _  /

! _  _ _ _ _ /
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in which b, : f inal bottom width of the trapczoidi b,, = average breach width:
nr : side slope of the breach (horizontal:venical): fta = elevation of rhe top of the
dami and i, = final elevation of rhe bottom of rhe breach. Triangular atrd rectan-
gular breach shapes also can be simulatcd with br: 0 and ra = 0, respcctively. The
instantaneous elevation, lrr,, of the bottom of the breach is given by

h r , , :  h , t  ( h t ( 0 = r < r ) ( 8 . 7 5 )

in which ,l?, = elevation of the top of the dan;' h, = final elevation of rhe bottom of
the brcach (taken to bc the bottom of the dam unless there is an erosion .retarding
layer); I = time from the beginning of the breach; 7 = total faiiure time; and p =
I to 4, with the l inear rate usually assunred. Likewise, thc instantaneous value of
the  b( ) l lom u  id th .  b . .  r r l '  rhc  b reach is

(  8 . 7 6  )

in which b, is the final bottom width of the breach. Estimates of the failure time, r,
and average brcach width, 6,,,, are needed to complete the description of the time-
varying geometry of rhe brcach. Froehlich ( 1987) sratisrically analyzed zt3 embank_
ment dam failures for dams ranging in height frorn l2 ro 285 ft (3.7 ro 87 m) and
proposed the following relationships:

, *  :  0 .47&o(Y*)o:5

r*  :  79(V*)ot1

_ , i ( : )

, - r(:)'

(.8.71)

(8.7 8)

in which b* = b,,/ lt; /t,, = I.4 if rhe failure rnode is ovenopping antl tn : 1.6 1g
the failure mode is not overtopping; V* : V,lH): Ha = height ofdam: y" = vol-
ume o f  water in  reservo i r  a t  t in tc  o f fa i lu re ;  and r *  -  r (g /H1\05 .  Equat ions  8 .??  and
8.78 have coefficients of deternrinarion of 0.559 and 0.913, respectively. If the
height of the dam. H,r, is nor equal ro rhe height of the breach, (&d - f), then H, is
replaced by (ft, l /) in the definirions of the dimensionless variablei. In a subse-
quent study, Froehlich ( 1995) recommended a side slope ratio m : l., l  for over-
topping and ra : 0.9 otherwise.

The outflow hydrograph from the breached dam is computed either by level
pool reservoir routing (see Chapter 9) or dynamic routing by the inrplicit numeri-
cal model with the breached dam outflow as an jnternal boundary condition
between thc upstream reservoir reach and the downstream river reach. Level oool
routing is used for wide, f lat reserroir surfaces with gradual changes in u,arer sur-
face elevation, while dynanric routing is needed for narrow valleys with significanr
water surface slope in the reservoir. The outflow relationship for the breach uti l izes
the head discharge relationship fbr a trapezoidal broad-crested weir given by

Qh =  C,K, [3 . ]  b , (h"  hh) ts  +  2 .45n(h , , .  h ) . t ] (8.79)

in which Q, : breach outflow in cubic feet per sccond; C,, = approach velociry cor-
rection factori K, : weir submergence corTection factor: b, = instantaneous bottom
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width of the breach in feet (Equation 8.?6); ft" = elevation of the water surfacc in
feet: and ,r, - instantaneous elevation of the bottom of the breach (Equation g.75).

The FLDWAV model deals with transcrit ical f low and shocks or surses bv
two different methods (Fread and Lewis 1988; Jin and Fread 1997). The first
method is an approximale approach using the inrplicit method in which the entire
riyer reach is divided into supercrit ical and subcrit ical subreaches at each time
step. For supercrit ical subrcaches, two upstream boundary conditions are applied
that consisr of the discharge frorn the next upstream subreach and crit ical denth.
For subcrit ical subreaches, rhe downstream boundary condition is crirical deoth
and the upstream boundary condition is the dischargc from the next subreich
upstrcam. The position of surges is adjusted unti l thc shock compatibi)ity equa-
tions are satisfied before moving to the next t ime step. In the second method, an
explicit, characteristics-based scheme is available, as described pre\.iously, to be
used in contbination *ith the implicit schemc for different reaches during the
samc routing. For transcrit ical or mixed-flow subreaches, the explicit schemc is
applied alongside the implicit method for subreaches u,here niar_crit ical f low
does not occur.

To further simplify the dam-break problem and provide quicker forecasts of
dam-break flood waves. dimensionless solutions havi been develoDed: for exam-
ple, Sakkas and Strelkoff (1976) for inslrnraneous failures and the NWS simplif ied
dam-break method for gradual embankment failures (Wetmore and Fread l9g3).
These methods are based on a large number of routed hydrographs for typical val_
ues of the independent variables, with the results presented in dimensionless form.

Wurbs (1987) tested a nuntber of dam-breach flood wave models. includins
simplif ied models, with measured field data and concluded that a dynamic routing
model provides maximum accuracy although none of the rnethods could be con_
sidered highly accumte because of uncertainties in the breach devclopmcnt with
timc, rapid changes in dorvnstream channel gcometry, lack of one-dinensionrl f low
conditions, and loss of f low volume. Another contributing factor to inaccurucy is
that rnost dam-break flood waves exceed stages experienced for any historical
floods so rhat calibration of parameters such as Manning's a is not possible.
Regardless of these diff iculties, dam-break flood wave propagation can be modeled
to provide reasonable estimates of the consequences of a catastrophic dam failure.

E.9
PRACTICAL ASPECTS OF RIVER CON,IPUTATIONS

Rivers seldom are prismatic and further experience an abrupt change rn cross sec_
tion as the flow transitions between bank-full flow and overbank flow. The main
channel may meander across the floodplain and consist of numerous branches and
loops. Under these trying circumstances, the one-dimcnsional l-low assumplons are
severely strained. As long as the flow remains in the main channel or the flow com_
pletely inundates the floodplain following the general direction of the valley, one-
dimensional flow is a reasonable assumption. In the transition between these two
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cxtrcmes, it is a question of how nruch lateral drop in the \\ ater surface can be tol-
erated as the flow moves into the floodplain on the rising side of the hydrograph
and returns to the main channel on the fall ing side. sontetimes only partially.

Several anifices hare been devised for thc rolc of f loodplain srorage in flood
wave propagation. One possibil i ty is to include an inactive area of f low in the flood-
p la in  in  the  cont inu i t ) 'equat ion  wh i le  us ing  the  ac t ive  \ \ id th  in  the  momcntum
eqLration. In the continuity equation, the tirne derivative becornes d(A + A0)/Al, in
which z1o represents the inactive flow area. In this way rhe storage cffects of the
floodplain are takcn into account in an cd lroc manner, but considcruble skil l  on the
pan of the modclcr is necessary to dcsignate inactive flo* areas. Another approach
is to treat the main channel of the river with one-dimensional methods but with stor-
age pockets at specific nodes coming off the main channel (Cunge, Holly, and Ver-
wey 1980). Then the challenge becomes correctly modeling the exchange of f low
between the main sten and the storage pockets, usually by anificial weirs. If the
storage areas are l inked. lhen a kind of two-dimensional network of loops can be
generated. and the SainrVenant cquations may be simplif ied in thc storage reaches
by neglecting the inertial tenns (see Chapter 9).

For meandering channels with flow in the floodplains. the flow path in the main
chrnnel may be longer than in the floodplains, and the device of a conveyance-
weighted reach length can be used. in which an average length is based on the rel-
ative magnitudes of the conveyances of the left and right f loodplains and the main
channel. In some instances. as in the flow through multiple bridge openings, one-
dimensional methods simply no longer may suffice, and two-dimensional, depth-
averaged models nray be required, depending on the purpose of the hydraulic mod-
eling effon.

Calibration and verif ication of unsteady flow models are essential to gain con-
fidence in their use. The selection of a panicular one-dimensional model, whether
the dynamic form or sonre simplif ied form as described in the next chapter, is an
imponant consideration. Considerable time and effort are required for calibration
and verif ication, so a simplif ied model should not be used if engineering river
works or extensive floodplain and channel alterations are expected in the future that
wou ld  rcqu i re  ex tens ive  reca l ib ra t ion .

The calibration of a one-dimensional model often begins with selection of
Manning's n values based on past experience and running a steady-flow model to
verify previously measured peak stages. This should be done for the entire range of
discharges expected to be encountered in the unsteady flow model. Once the
steady-flow values of the resistance coefficient have been established, rhen the
unsteady flow model is implemented, with further tweaking of the resistance coef-
ficients to reproduce measured flood hydrographs. The init ial condition for the
unsteady model can be the steady, gradually varied flow computation, but running
the unsteady model during a startup or warmup period by maintaining steady flow
may be necessary to dampen any init ial instabil it ies.

Stage hydrographs rarher than discharge hydrographs are best for calibration of
the unsteady model because of the uncertainty of the stage-discharge relationship.
The stage-discharge relationship, or rating curve, often is looped with higher dis-
charges occurring on the rising l imb of the hydrograph than on the recession l inrb.
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Use of a rneasured downstream stage hydrograph is a prelcrled downstream bound-
ary condition, except that such a hydrograph may not be available for future mod-
eling runs to determine the effects of changes in the river Therefore, it is useful to
have a stage-discharge relationship that has been measured over a wide range of
discharges. The downstrcam boundary should not bc subject to significant back-
watcr effects caused by a reservoir, for cxamplc. Either the dou nstream boundary
should be moved downstrealn all the way to the dam or moved upstream out of the
backwater jnfluence. The establishment of a steady-state, single-valued rating
curve at the downstreanr boundary essentially causes reflection of wavcs upstream
that otherwise would not occur in a "free-flow ' condition. This can work only i l the
boundary is far enough downstream not to influence the river reach of interest. One
of the options offered by FLDWAV for the dorvnstream boundary condition is a
computed looped rating curve using Manning's cquation with S, detcrmined from
the implicit f inite difference solution of the monlentum equation for the last two
spatial grid points.

The deviation of a looped rating cune for unsteady flow from the single-
valued, steady-flow relationship is influenccd by the rate of rise of the discharge
hydrograph, roughness coefficients, and channel slope among other factors. The
more rapid the hydrograph rise, the greater the deviation from the steady-state
curve. For channel bed slopes in excess of approximately 0.00 | , loops usually do
not occur, while thcy always exist for slopes less than 0.0001 (Cunge, Holly. and
Verwey 1980). Increasing Manning's n during the calibration to reduce the com-
puted flood peak also may cause a widening of the looped rating cur\e at i l  panic-
ular cross section.

Compound channel sections are particularly challenging during the calibration
process, because tbe wave celerity is drastically reduced in the transition from
bank-full to overbank flow due to the abrupt increase in area. The wave celerity
reaches a minimum at relatively shallow depths on the floodplain, thcn begins to
increase again. The wave celerity therefore is very sensitive to both flooded valley
width and elevation oi the main channel banks at which floodplain inundation
begins. Calibration may require checking these particular geometric data very care-
fully rather than adjusting Manning's n alone to accommodate large differences
between observed and computed peak travel t imes. Also, the location of cross sec-
tions may be deficient in that the chosen cross-section location is not reprcsentalive
of the river subreach of interest, especially the floodplain width.

If calibration diff iculties occur. then several sources of errors should be exam-
ined. The size of the time step or distance step may be too large. Aside from sra-
bil i ty considerations in explicit methods, the size of the time step should be small
enough to adequately discretize the boundary conditions such as tidal variations or
flood hydrographs. The distance step depends on the slope of the water surface and
the desired accuracy. Jin and Fread ( 1997) recommend a distance step for the FLD-
WAV ;nodel selected by

T-
. M ( 8.80)
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in which ?", = rise time of the inflow hydrograph: Cr, = bult wave celerity of thepcak discharge; and, M = constant value, ,e.on,,n"nded to be about 20 for theimplicit scheme. Other sources of en.or may be or,ersintplihc-ation of the basiccquatrons (see Chapter 9 for i imitarions), inadequate or inaJcurare flood stage dara,and insufficiently detailed topographic dara.

, 
Topographic and hydrauljc data needs for calibrating and verifying adynamic flow routing nrodcl includc detailecl eleration data, jescriprions 

of r eg_etation and other roughness elements, bridge geometry, f l;; i ;;" boundaries,
and stage hydrographs at several 

. locations along the river. Existing topographic
maps may be insufficient to establish variations ln topography necessrtalrng sporaerial or ground surveys to ausm;;;;ii ;; "",;;;i;,i"; il;:.;;#ili ::il:i:: .":,:"',:L?:iTfr"Jl,l 

:::ffi,.Jmay require as buirt prans or e'en ground truth me.surements. The exrstence ofpeak slage measurenrents alone may require establishment of several gaugingstations to obtain contprehensive. consistent data very .u.ff in tfr. projecr, er enif it turns out not to be data for arhe n,ore dara rhar u,. uuu'utrJ.ut"# iiili iiii;#ll,ir: T,ffi"J""il::i:;
unsteady fl ow variations.

For a more detailed discussion of the application of unsteady flow models torivers along wirh case studies, refer to Crnge, ffrffy, unJ V".*.'y itCgOl.
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EXERCISES

8.1. Write out the complete difference equations for an internal boundary condition of a
weir What if the weir were in a submerged condition?

8.2. What causes lhe diffusive behavior in the Lax diffusive method?

8,3. Derive the Lax-Wendroff method using the Taylor's series expansion for ,(l + A0
about a(t). Hinl: Write the second derivative of a with respect to r in terms of deriva_
iives of F using lhe governing equarions and subsrirure A,lU : AF.

8.4. Verify the definirion of A given by (8.57) by taking the Jacobian of F (aF/aU).

8.5. Show that the eigenvalucs. i, ofA are given by y +. and y - cby laking the dcrer-
minant of (A l l).

E.6. Rederive the Lax diffusive scheme using the method of treating the source term grven
by (8..15).

8,7. Apply the simple wave merhod of Chapter 7 ro Example 8.l. Calculate the nrinimum
depth at the turbine and compare it with the computer resulrs. What is rne maxrmum
discharge that can be supplied to lhe turbjne by the negative wave?

8.8. Apply the momentum and continuily equations in finite voiunre form (shock compat_
ibil i ty equations) to rhe surge developed in Example g.2 and compare the resulrs to
the numerical results.

8.9. For an eanhen dam rhar is 80 fi in heighr wirh a volume of water in srorage of 50,000
ac-ft. estimare rhe time of failure and the average breach width. What wil l be the
height and botrom widlh of rhe breach al one third rhe time to failure I

8.10. Use the computer program CHAR (on the website) to route a triangular dam,breach
hydrograph wirh a peak discharge of 100,000 cfs at a rime ro peak of I hr and a base
time of I hr in a downstream reclangular prismatic channel having a width of 200 ft,
a slope of 0.0003. and Manning's rr = 0.025. The init ial discharge in the channel is
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2500 cis, and it is l0 mi long. \ lhar wil l be rhe pcak discharge ar rne oownstream
boundary and how nruch time will it take for thc peali discharge to ilrrive?

8.11. Apply the conrpurer program CI{AR (on rhe websire) for a hvdroelectric load accep_
tance problem in a trapezoidal headrace having a bottom width of l0 rn, side slopes
of 0.-5:1, Manning's a of 0.016. and a bed slope of 0.0001. The sready_stare lurbrne
discharge is 40 nrr/s, which is broueht on l ine in 2 min. The headrace is 3 km lone.
Repcdt for a .lope of 0.0004.

8.12. Apply the computer program CHAR (on the website) for the same condiriorls as in
Excrcise 8.1 I except for the load rejection problem.

8.13. Apply the computer progranr LAX (on rhe wcbsite) for lhe same conditions as in
Exercise 8.11 and compare the resuhs with those from CHAR.

8.14. In the load acceptance problem. shou that the negative wave cannot supply the stead!
state turbine discharge if the corresponding Froude number of the unjform flow. F,.-
exceeds 0.319. Set the steady state djscharge per unit ofchannel width, Vy,r, equat ro
the unit maximum discharge for $e negative wave, which depends on the ups[eam
head or specific energy, 80, if the slope is snrall. Then solve for Fn.

E.15. A steady discharge of 8000 cfs is released by hydroelectric turbines at a ctam rnto the
downstream river at full load. The discharge is increased linearly from the minimum
release rare of 700 cfs to 8000 cfs in 20 minutes, held steady at g0O0 cfs for 2 hr, and
brought back down to 700 cfs l inearly in 20 ninutes. The river cross section is
approximalely rrapezoidal in shape u ith a bortom width of 300 ft and l: I side sloDes.
The bed slope is 0.0005 ft lft, and Manning'srr : 0.035. What wil l be the rime lo Deali
and the peal discharge at a locarion 25,000 ft downsrream of rhe daml Use rhe iom-
puter program LAX or CHAR.

8.16. In the dam-break problenr of Exercise 8.10, repear rhe compurarion using CHAR or
LAX, but for a Manning's n : 0 05 instead of 0.025. plot on the same axes the max_
imum stage as a function of distance downstream of the dam for both values of Man-
n tnP s  n ,
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Simplified Methods of Flow Rouring

9.1
INTRODUCTION

While in the previous chapter. rhe full dynamic equations of continuity and momen-
tum werc solved numericallr,. this chapter prescnts simplif ied methods in which
one or more ternls of the gor erning cquations are neglccted. These simplif ied nreth_
ods are presented in the context of f low routing problerns, where they most often
are used. Bylorl rorirlag. * e refer to the tracking in time and space of a wave char_
rcteristic such as the peak discharge or stage as it moves along the flow path but
superimposed on the physical f low itself. FIow routing problems range from the
routing of a flood or dam-break surge in a river to rouring runoff from a parkng lot
or upland watershed to generate a runoff hydrograph. The general solution sought
in the flow rourine probJem is the disrribution of discharge or stage with time at the
downstream end of a rivcr reacht that is, the outflow hydrograph, given the inflow
hydrograph at the upstream end of the reach and the stream geometry, slope, and
roughness. In particular, the translation and attenuation of the peak discharge or
stage with respect to time most often are of interest.

While flow routing metiods can be classified in a number of ways, one of the
most important distinctions is betwecn htdrologic routing tnd hvlraurlic routing.In
hydrologic or storage routinc. rhe momentum equation is ignored altogether and the
one-dimensional continuir) equation is integrated spatially in the flow direcrion so
that it becomes a Iumped svstem spatially, with no yariation of parameters, within
the resulting control volume. Hydraulic rouling is a disrributed system method that
detennines the flow as a function of both space and time (Chow, Maidment. and
Mays 1988) .

The continuity equation in hydrologic routing simplif ies to the storage equa-
lion civcn as

: I - Od5

dt
(e . l  )

333
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in which S : storage in thc reach (control volumc); / = inflos late Io thc reach;
and O - outflo* rale from thc rcach. An additional cquation is requireci to solve
for the outl low in Er;uation 9. l. and it is pr.ovided by a known functional rclarion_
ship between storage and thc inllow and outflow; thar i\, S = /(/, O). In contrast,
hydrau l i c  rou t ing  inc ludes  the  fu l l  onc-d imens iona l .  uns tcad l ,  con t inu i ry  cquat ion
and all or part of thc. ntomentunt cquation, as lbllows:

do aA
Ax at

AV ; tV ; r r
+  Y  + 9  .  - 8 ( S o  5 / ) =  0

(tt OX ., t

( 9 . 2 )

t - - -  l l i n e m a r i c

l-- -] cl i lTusion

l - - -  - l  d ;nam ic

As shown in Equarion 9.3, dynamic routing includes all terms in the momenrun]
equation, while diffusion routing neglects the inenia terms (lcrat and convective
acceleration), and kinematic routing includes only the gravity and flow resistance
terms. In terms of spatial variarion, all the hydraulic routing methods can be consid-
ered distributed models bur applicable only under conditions for u'hich the neglected
terms are small relative to thc remaining teflns. The previous chaptcr considered the
case of dynamic routing, while this chapter treats sinrplif ied routing methods, borh
lumped and distribured.

Finite difference numerical tcchniques are described for the sinrplif ied meth_
ods of f low routing in this chapter. Proble ms of stabil ity and numericai diffusion are
considered because they are just as important as in the previous chapter, when solv-
ing the dynamic routing equarions. Solutions of the simplif ied equations also are
compared with solutions of the dynamic equations so that the conditions of appli_
cabil ity of the simplif ied merhods can be identif ied. In addition. we show that the
kinematic routing method can be recast in terms of the method of characteristics
with a result analogous to the simple wave probJem, treated in Chapter 7. Finally,
we see that a hybrid method, the Muskingum-Cunge method, can be developed by
matching numerical diffusion and physical diffusion terms in the routing equations.

9.2
HYDROLOGIC ROUTING

With reference to the control volume shown in Figure 9.1, the one-dimensional
continuity equation given by (9.2) can be integrated along the flow path from the
inflow section at r, to the outflow section at,r. as follows:

d r + d r = 0I T[ \  do
t "

(9.3 )

(9.4)
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+ Q o = O

O .  Q , + A d r : 0

s= s,"+ sp xa

r-IGURE 9.I
Inflow. outflow, and storage in hydrologic routing rhrough a river reach.

The first inrcgral in (9.4) becomes the difference bctwcen the discharge evaruatedat.r, and r,, (0. - q, or simply the difference between ourflow and in ow rateslor thc conrrol vorumc. By application of the rribniz rure, the time derivative canbe brought  our r idc  rhe .e iond in regra l  so  rh r t  (g .+)  bccomes

*t' (e.5)

(e.6)

Nou'recognizing the integral in rhe.third terrn as the storage volume, J, and replac_ing the outflow rare, O,, wirh O and the inllow rate, 0,, J,i l, *";"ver the sror_age equation given by (9. l).

_ In the Muskingum method of river routing, rhc second relationshtp (in additionto the. storage. equation) required to.solve rhe-routing p.oUI.rn ir rrppfied by a lin-ear relationship between storage and a u.eighted funiiion of inflow'and outflow:
s :  d [ x /  +  ( 1  x )o l

inwhichd = t ime constant ;  X= weight ing facror  (< l ) ;  S = s torage;  , f  =  in f low
Jate:,and 9 

= outflow rate. Equation 9.6 somerimes is justified physically by argu_rng_that channel storage consists of prism srorage and weOge ;;;r;", * il lustratedin Figure 9.1 ; thus, it depends on boih in no* an-d outflo*.-F'irrn"rl".ug. i. ,t u, po.-tion of storage associared wirh a sready uniform flow piofil"'O"f.nj.n, onry on ouuflow, while wedge storage is the remaining storage trat occursiu.ing rn. un.t.uOyrise and.fatt of stage, so it depends on thJ differ"ence b",;;;;;;ii;* and ourflowfor the,river re.ach. Alternativeiy, it can be argued ,f,ut lquution l.i'o srmply a con-ceptual model with the parameter 0 indicitive or trr" t."n.iution' of. the inflowhydrograph and the parameter X considered a weigbting ru"ioi r.iut"o to storageand attenuation of the flood peak, with both 0 and-X to i. O"r..rin"O by calibra_tion. If the time consrant, 0, indeed is,held consranr foruf f Ji*fr_g*, then Equa-tion 9.6 establishes a linear relationship bet\r,een storage and weighted flow in
l:h.t"c'lr jl': co€qcient of proportionatity ian u. inte.p.ete'J"; ;. ;;u" havel rimeIn the n\ er reach as will be iustified later.

As will be discussed subseouently, rhe value of the Muskingum X generallyfalls.jn the range of 0.0 to 0.5 (although not alwa),s). these timiti on rhe range ofX values establish two different behavrors u ith respecr to the propagation of a floodwave. For X : 0, Equation 9.6 simplifies ro rhe srorage *;ii;;;o lbr a linear

Wedge storage, S,v

Prism storage, Sp
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(a) Reservoir Routing (X = 0.0)

FIGURFJ 9.2
Routing of hydrographs with pure sloraSe (a)and pure translat ion (b).

reservoil several of whicb sometimes are used in series for catchment routing.
Reservoir routing can be interpreted as a special case of Muskingum river routing,
in which the storage depends only on outflow. So long as the reservorr water sur_
face can be assumed to be approximately horizontal. otherwisc known as let,el pool
routing,both the storage and the outflow depend so)ely on the rescrvoir wilter sur-
face elevation and therefore on each other As the reservoir inflow increases with
time and a portion goes into reservoir storage, the outflow is reduced, as shown in
Figure 9.2a. The result is a peak outflow arrenuated in comparison to the peak
inflow, which is precisely the purpose of a flood conrrol reservoir. It is instructi\e
to note that the peak outflow occurs at the intersection of the inflow and outflo$,
hydrographs. This is because the maximum storase occurs at the same tlme as the
maximum outflow when dS/dr : 0 and therefore / = O. Reservoir routing provides
the limiting case of pure storage wirh associated attenuarion and spreading in time
of the outflow hydrograph which is sometimes referred to as diffusion.

At the other extreme, X - 0.5, the Muskingum routing technique weights
equally the inflow and outflow in the storage relationship. The result, as is shown
subsequently, is pure translation of the inflow hydrograph, in which each discharge
is delayed in time by the wave travel time in the reach determined by d. In this spe-
cial case, the inflow hydrograph theoretically underg<xs no attenuation or change in
shape, as shown in Figure 9.2b. Mosr rivers behave betueen the two extrcmes given
in Figure 9.2 and exhibit both diffusion and translation of the inflow hydrograph.

Reservoir Routing

Equations 9.1 and 9.6 can be solved numerically using a finite difference technique.
If a forward difference is taken for the time derivari\€ in Equation 9.1 with the
mean values of 1 and O evaluated oYer the time interval A/, the following results:

Outfiow,

(b) ldealized Biver Routing (X = O.S)
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:sr-s,111111111111111� \!!: -9tj!.
.1r 2 2

in which the subscriprs I and 2 ref'er to the beginning and end of rhe rinre inrerval,
analogous to the indices I and,t + | for the currcnt and subsequenl l ime levels used
in Chapter 8. In the storage indicarion rnc'thod, ls ir sonrerimes is called, Equation
9.7 is nultiplied by 2 and rearranged to l, ield

25,  25,
t r + O , = 1 , * 1 7 * t - O ,

Because both storage and outflow are functions of resenoir stage, a separate rela-
tionship can be developed between thc left hand side of Equation 9.8 and outflow
O.. Then the right hand side of Equation 9.8 is computed in subsequenr rirne steps
to determine the lcft hand sidc, frorn which O, fbllows, based on the seDarate rela-
tionship of 2SlAr + O Ys. O.

EXAI\tPLE 9.1. A small water supply lake has a normal pool elevation given by
Z = 0.0 m with an emergency spil lway crest elevation given by Z : 0.50 m ( 1.6,4 ft).
The emerSency spil l\\ ay is a broad-crested weir q,ith a discharge coefficient C, : 0.848
and a crest lengh of 20 m (66 fr). The elevarion storage-ourflow relarionship is given
in Table 9- 1. If the lake level init ially is ir rhe noonal pool, roure rhe inflow hydrograph
given in Table 9-2 through the spil lway and detemrine rhe peak ourflow.

Solution. First. the rouring inrenal lr = 0.5 hr is chosen such rhat rhe rising side of
the inflow hydrograph is adequarely discretjzed. Then, in Table 9-1, calculations are
shown for the quantiry 2sll/ + O to be used in the routing wjth careful attention being
paid to using consistent unils, which are cubic meters per second in this example. The
routing table (Table 9-2) is developed based on Equation 9.8. To sran t}le routing, the
flrst outflow value is set to zero and the corresponding value of 2sllt + O is placed in

(e.7 )

(9.8)

T A B I - E  9 . I

El€\'ation-storage-outnow relationships of
Example 9.1

Z, m .!, m3 o, mr/s LsldJ + o

0.0
t r .J

1 . 0
1 . 5
2.0

3 .0
3 .5
4 .0
4 .5
5.0

0.0
0.0

10.2
28.9
53.1
8 t . 8

I  t4 .3
150.2
r89 .3
2 3 1 . 3
2'�7 6.0

7668
8579
9546

I0569
| 1642
t216'�7
t3942
t5166
| 6440
t/"763
1 9 t 3 6

6.90E +06
"l.-l2E+ 06
8.588 +06
9.,198+06
I .o:lE + 07
L l. lE +07
L2.lE+07
L35E+07
L,l6E+ 07
1.58E+07
1.708+0?
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T A B L E  9 . 2

Storage-indication method of f lov, routing of Example 9.1

Time, hr zS/At - O 2S/At + o 0, mls
0.0
0.5
t . 0
1 . 5
2.O
t . t
3.0
3 .5
4.O
1.5
5.0
)_J

6.0
6.5
7.0

8.0
8 .5
9.0
9.5

10.0
10.5
I 1 . 0
I  t . 5
12.0
t2 .5
t3 .0
13.5
14.0
14.5
15.0
t5 .5
16.0
16.5
t't.o
17 .5
t8 .0
18.5
19.0
19.5
20.0

0.0
79.2

212.5
320.5
3  8 1 . 9
400.0
386. I
352.3
308.,1
261.1
2 t6 .5
r75 .6
140.1
I 1 0 . 2
85.7
65.9
50.3
3 8 . I
28.6
2 t . 4
15.9
I  t . 7
8 .6
6.3

t . 8
l . l
0.9
o.'7
0.5
0.3
0.2
0.2
0 . 1
0 .1
0 .1
0.0
0.0
0.0

1668
'/718

8039
8512
9260

10003
10722
r  1362
I i 897
t 2 l  l 9
t2632
12846
12971
t3038
13044
r 3009
t2912
12852
t2716
12631
r  2510
12386
12261
t2t3'7
12016
|  1898
l  r785
I 1675
I 1570
1r469
l t3 '72
|219
l l l 9 0
l l t 0 5
I1023
t 0945
r0871
t0799
I0731
10666
t0601

7668
77.18
8039
857 :
9?15

100.12
r0789
I r.160
i2023
1216'l
t 2 t91
i-r024
r  3 1 6 2
t3221
13234
1 3 1 9 6
l 3 l 2 5
r 3030
1 2 9 1 8
t2796
12668
t2531
12,106
12216
121 .18
t2024
I I 90.1
l  I 789
l 1 6 7 8
 512
l l  4 7 1
I 1 3 7 3
I |  280
l l l 9 l
l l l 0 5
11024
10945
i08? l
10199
l0?31
10666

0.0
0.0
0.0
0.0'|.3

19.3
33.9
.t9.0
62.8
71.1
82.6
88.9
92.1
94.5
94.7
93.1
91.7
89. r
86.0
82.6
'79.3

7 5.9'72.6

69.3
66.0
62.8
59.8
56.9
54.0
5 1 . 5
19.2
47. l
45.0
42.9
4 1 . 0
39.2
3'�1.4
35.7
34.1
32.6
3 l .  t

the table corresponding to the initial conditior of normal pool elevarion (Z = 0), whichis telow the spillway cresr. The value of 2SlAr _ O follows from ,i. ,ufii ln *. zSla,+ O column minus twice the outflow at rhe same value "irirn..'fir"", ilr"i- S.S i.solved for 2SlAr + O in rhe nexr time srep and inrerpolated in fuUi"'i-llo oUt"_ tt "corresponding outflow value. The outflow remains at zero uniil Je- IakJ- tevel rises
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ri"]J r',' 
15 20

I.'IGURE 9.3
Inflow and outflow hydrographs for reservoir routing. Exampte 9.1.

above the spillway crest, after which finite values of outflow are obtarned from theinte.poration in Tabre 9-r. This process is continued un,i i ,r," o*no,u tals to somesmall rarue. The peak outflow rare- which occurs at rhe poini oiinr.ir..t,on *,tr, tr,"inflow hydrograph, is 9.1.7 m3/s (33,10 cfs) , , = 7.6 ;; ;;';,iur'ii.n ..ou."a r.ornrhe pe{k inflow rate of 400 nrr/s ( 14, r 00 cfsr at l : z.s rr. rt"-r".rrtio." .r,o*n in nig,

River Routing

f::Yl-r\llt:r 
river rouring. Equation 9.6. can be emptoyed ro evatuare J.2 and Sr$r th  the  rcsu l ts  subs t i tu ted  in to  {9 .7 r ro  y ie ld

0lx( r2-  r )  +  ( l  _xxo,  -  or  ) l  :  ]1 , '  *  r )  _  (o ,  +  o, ) l  I .g)
Collecting terms in (9.9) and solving for Or, we have

Ot : Colz + CJt + C?Ot (9.10)
in which the coefficients Co, C,, and Cr, called routing coeficients, are defined by

-  -0X + 0.5Ar
"  0 - 0 X + 0 . 5 L t

E
o

( 9 . l l )
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0X + 0.51t( - .  =  , . .- '  
0  { rx  + 0. -51/

-  0X 0.51t

dX + t ) . -5 l t

Q l ; , '  -  c o Q i ' ' '  c  Q : '  c . . Q : . (9.1,1)

0
- 0

(9.12)

( 9 . 1 3 )

Because the dcnominalor is the sanrc for all thc routing coefllcients. we readilr sec
that (C0 + Cr + Cr) - l. Thus. at least conccptually. the routing coefficients can
be viewed as wcighting factors applied to the intlows al thc beginning and end of
the time inlerval and to the outflorv at the bcginning of thc l inrc intcrval to solle for
the outflo$' at thc cnd of the time interval. The rouling cquation as deflned by (9. 1 0)
can be applied repcltcdly to obtain the outflorv hytlrograph at the end of the rivcr
reach. given the inf' low hydrograph that cn(ers the reach.

In thc context of the finite difference notation uscd in Chaptcr 8. Equrtion 9. l0
can be reu ritten as

in which the cornputational molecule is rectangular, representing only one reach and
a single time step. Note from (9. 1,1) that, for pure translation over the time interval
At, the values of C, and C. should equal zero so that Cr = | and Of- i = Qf. These
conditions are satisfied in Equations 9. | | through 9.13 for the special case of X =

0.5 and At : 0, as stated previously. The lattcr rcquiremcnt of At = d is equivalent
to specifying a value of unity for the Courant number, provided that A can be inter-
preted as the wave travel t ime over the reach lenSth Ir as is proven later.

The choice of the time step. -\t, and the spatial interval. ,Lr, are imponant. and
some general l imits must be considcred. First, Jt should be chosen such that the ris-
ing l imb of the hydrograph is approxirnated rdcquately by a series ol straight l ines.
which usually rcquires At < /5. where lp is the time to peak of the inflow h1'dro-
graph. Second, it would sccm that negative values of the routing coefficients are
counterintuit ive if they indeed represent weighting values for the inflow and out-
flow (Miller and Cunge 1975). However, Ponce and Theurer (1982) showed from
numerical experiments that it is necessary only for Co > 0, while C, and C. can be
negative without affecting the accuracy of the routing (defined as avoidance of neg-
ative outflows). Requiring Co > 0 is equivalent to developing an inequalit l such
that the numerator of Co in (9.1 I ) remains nonnegative, so that the following l imit
on A/ must be satisfied:

Lt > 20x (9 .  1s)

If 0 is the wave travel t ime dcfined by Ar/V", where V" is a representative value
ofthe wave travel speed, then (9.15) can be viewed as a l imit on ,l.r for a value of
Al determined by the required discretization of the time of rise of the inflow
hydrograph:

v ^ t
2X

(9.  l6)
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Weinrnann and Laurenson (1979) suggest a less scvere l iIrrit, in which A/ on the
r i g h t h a n d s i d e o f  t h e i n c q u a l i t y i n ( 9 . 1 6 ) i s r c p l a c c d b y f  - r i s e t i m e o f  t h e  i n f l o w
hydrograph. Cunge ( i 969) shows from r rrrhrj iry anal) \ i\ rhrr the condition for sta-
bil i ty is X < 0.5 and funher suggests that X > 0 for thc physical interpretation of
wedge and prism srorage ro make sense. However, ponce and Theurer (19g2) argue
that negative values of X arc possible. This is discussed later in more detail for an
exlension of the Muskingunr mcthod called thc M u.skingun-Cunge or Muskingum
dilfusion schene.

While the Muskingunr method appears complcte, it dcpends strongly on the
parameters 0 and X. In peneral, these arc taken to be constant for a given nver reach,
and the original method of estinating them rcquires measured values of inflow and
outflow for the river reach under consideration. Because they essentially are cali-
bration constants when deterntined in this way, thcre is no assurance that thev wil l
havc the sante values for a flood different from the calibration flood.

If it is assurned rhat the complele inflow and outflow hydrographs have been
measured for a given river reach, then the cumulative storage can be computed from
a rearrangement of Equation 9.7 as

s , - s ,  +  ! r ' r t . , t ,  o .  o , )

Rcpeated application of (9. l7) for successive values of t ime allows the determina_
tion of the cumulatir e storage, S, at any time r. The init ial value of storage is usu_
ally taken as zero. Then, according to Equation 9.6, we seek a l inear relationship
between relative storage, S, and rhe weighted flow value {X1 + (l ))O}, whicir
also can be computed from the inflow and outflow hydrographs as a function of
time. However, river relationships gencrally display .orni d"g... of hysteresis
because of greater storagc on the rising side of the hydrograph lBras 1990). Thus,
as a practical matter. the valuc of X that produces the best single_\,alued relation_
ship, or narrowest loop, is detcrmincd by trial and enor, and thi slope of the best_
fit straight l ine gives the value of 0 as requiretl by Equation 9.6 an; i l lustrated in
Figure 9.4 for Example 9.2.

As an alternative to the graphical method for estimating 0 and X shown in Fig_
ure 9.4, these parameters can be determined by a least_squares parameter estima_
tion technique. Singh and McCann (1980) show that the least_squares method of
minimizing the difference between observed and estimated storage is equivalent to
maximizing the correlarion coefficient between .t and the weighted flow in the
graphical method. The Jeasrsquares technique seeks to minimiie rhe error func_
tion. E. siven bv

(9 .17 )

(e .  r8)l A t ) + B O ) + S ,  -  S , ] ,

in which A : 0X: B : 0(l !; S, : inirial srorage; and Sr = observed retarive
storf,ge at the jrh time srep. Gill ( 1977) proposed such a tech;ique, and the values
ofA and I are given by Aldama (1990). The summarion takes piace wirhj running
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1.0E+06

Slorage, S, m3

A

x 2 0
I

+

x

5.0E+05 2.0E+06

FIGURE 9.4
Graphical merhod for determining Muskingunr 0 and X, Example 9 2

from I to N observed values of inflorv, outflow, and relative storage for a given river

reach. The error. E, is minimized by differentiating with respect to A and B and set-

ting the results to z-ero. The rcsulting equalions are solvcd for A and B to give the

following expressions:

A  =  
: t ( )  

r r o t >  o r  - : / i ) o ; )  ) l

+  (N:O;  -  ( :  O, ) t )  >  4S i  +  ( :  I r>  Ot  -  N>t to t )>o 's , )

8  :  
a  t ( :  t r>  t to t  - :  / ; :  o , )  :  s ,  (9  20)

+  ( > r j 2 o j  N > r r o j ) : r t  +  ( N : / , r  ( : / , ) ' ) : q s , l

c - N f > r: >o; , 12 r,o,)1.t + 2> tr> ot: ItO)

-  ( :4 ) :  >  o ;  -  :  / j :  ( :  o r ) l

Once A ald B are computed' 0 and X can be determined fiom

A
0 = A + 8 .  X = - -

A + I J

The Muskingum-Cunge technique is an exiension of the Muskingum method'

in which the values of 0 and X can be related to the discharge and geomctrie prop-

( 9 . 1 9 )

(9 .2  |  )

\9.22\

- €  X = 0 . 1
-'c X = O.25

'  + -  X = O . 4

1.5E+06
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erties of rhc channcl. To achicve a betrer undcrsranding of how this is accomplished,
the kinernatic wave and dil lusion routing tcchniques 

-are 
considered next.

EXANtpLE 9.2. Util ize thc obsen.ed inflows and oulflo*,s for a river reach glven in
Table 9-3 (Hjclmfelt and Cassidy 1975) ro ob(ain ralues of d and X using both rhegraphical method and rhe least-squares nrcthod. Then dcrcrmine the routing coefficienrs
and route the inflow hydrograph through the ri ler reach.

Solrttion. 'lhe slorage is calculated from lhe avcrage inllow and oufflow rares over asinglc time step using Equation 9.17 and accunulatcd beginning wirh zero init ial stor,
age as shown in Table 9-3. Then various values of X are substituted to obtain the
weighted inflow and ourflow quanrily. X1 + 0 - X)O. ar rhe cnd ofeach rime srep. The
srorage.is relaled to rhis quanrity by F4ualion 9.6. so the plor shown in Figure 9.4
allows the determination of the inverse slope, rvhich is equal to the Muskingum time
constant, d. Figure 9.,1 shows the results for values of X _ 0. 10, 0.25. and 0.40. By trial
and eror, the narrowest loop occurs for X approximately cqual to 0.25 wlth Infersec-
lion of the rising and falt ing l inrbs about midway along the storage axis. The best_fit
I ine of rhe dara for X : 0.25 gives a value of 0 : 0.92 days from igure 9.4, ancl these
are rhe resulrs for rhe graphical method. Alrernatively, Equations 9.l6 rhrough 9.22 can
be solved for the dara given in Table 9-3 ro produce rhe v;lues X = 0.243 and 0 : O.g97
days. These la(er values are chosen as the Muskingum parameters, with .1, : 0.5 days
to calculate the Muskingum routing coefficients from Equations 9.l l through 9.13,
with the result

C6 = 0.034, C' : 0.504, C.t: 0.462

For this case, Al > 2dX so thal Co > 0. Finally. lhe solution of the rouung equauon,
Equation 9.10, can proceed as shown in Table 9-.1. The outflow injt ially ls assumed to

TA BLE 9..]
Computatiort of storage and Muskingum parameters of Example 9.2

x r + ( l - x ) ' o

0.0
0.5
1 .0
t . 5
2.0

3.0

4.0
4.5
5 .0
f . )

6.0
6 .5
7 .0

2 .2

28.4
l l . 8
29.'�7
25.3
20.4
16.3
t2 .6
9 .3

5 .0
,1.I
3 .6

2.0'7.0

I  l . ?
t6 .5
21.0
29.1
28.4
23.8
t9 .4
l5 . l
 . 2
8 .2
o.4
5 .2

8..1 .1.5
2 l . 5  9 . . 1
30 .1  14 . I
30.8 20.3
2'�7.5 26 6
22.9 28.E
lE . , {  26 .1
r.1.5 21.6
I1 .0  t ' 7 . 1
8 .0  t 3 .3
5 .9  9 .1
4.6 7.3
3 .9  5 .8
3.0 4.9

0.00E +00
L66E +05
6.89E +05
1.388+06
I .838+06
1.87E+06
I.62E +06
1.29E+06
9.76E+05
7.008 - 05
.1.73 E + 05
3.0?E+ 05
t .888+05
|.0.18+05
2. l6E + 0,1

2 .0  2 .1
7.8 8.9

13.4  15 .9
t 8.0 20.3
24.6 25.1
28.7 28.2
27.6 76.1
23.  |  2 t .9
18.7 t '7.7
11.7  t3 .8
10.8  l0 . l
7.9 7.4
6.2 5.8
5.0 4.8
4 .4  4 .1

2 . 1
10.0
18.4
22.6
26.3
27.6
25.2
20.8
t6.7
12.9
9.4
6 .9
) .J
4 . 6
3.1
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T A B L E  9 - 4

l \ tuskingum routing (C0 = 0.03J. Cr = 0'504' C: = 0'462) of Exanrple 9-2

t, days 1, nr_r/s C o x  l z  C r  x  l r Ctxor  0 r .  mr /s

0.0
0.5
1 . 0
1 . 5
2 .0

3 .0
3 .5
4 .0
,r.5
5.0
5 .5
6.0
6 .5
? .0

2 .2

28..1
3 1 . 8
29.1
25.3
20.4
r6 .3
12.6
9 .1
6 . 7
5.0
4 . 1
1 .6
2.4

0.50
0.97
r .09
r 0 2
0.86
0.70
0 5 6
u.,13
0.32
0 : 3
0 . 1 ?
0. l , l
0 . 1 2
0.08

L l  I
7 . l  l

t .1.12
16 .03
l,1.9rl
t2.'/6
10 .29
6 .22
6 .35
.1.69
3 .38
1 .52
2.01
1 . 8 2

L0l
l . l l
.r lE
9 . l l

r : .09
l t 8 9
1 2 . 1 6
r0.62
E.89
7 .  1 8
5 .59

3 . 1  7
2..18

2 .2
:.62
9.19

19.19
1 6 . l E
17 .93
:6.1,1
l l .00
19.2'�7
I5 .56
1 2 .  1 0
9 . 1 4
6 .88
5 .17
1 .3  7

35

30 ,\-Observed 
outflow

X = O.243
1' = 0.897 days\i-

I \
Calct
/ l

rlated outllow

I o \
(

I / ooJ"*"o,n,lo* \

l " t \ o\

D-.-,.J -]-!

25

lQ 20

E
o  t s

1 0

5

0

l, days

FIGURE 9.5
lnflow and outflow hydrographs for Muskingum rouling, Exarnple 9 2.

be equal to the inflow, and the routing progresses from one time steP to the next. The

results are shown in Figure 9.5 in which the calculated and obsened outflows can be

compared. The routed outflow peak is within approximately 4 percent of the observcd

value at the same time to peak. There generally is a betler fit of the data on the falling

side of the hydrograph than on the rising side.
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9.3
KINEN{ATIC WAVE ROUTING

As shoun in Equation 9.3. the monrenlurn cquation is simpli l ied in kinentatrc wave
routing by neglecting both thc inertia terms and the pressure graclienr term, so tbat
it becomes

S,, .- S,'

1.15

Equation 9.23 is incorporated into the continuity cquation givcn by (9.2) to obtain
the kinematic wave equation. One interprelation of (9.23) is rhat unifornr f. lorv can
be assumed in a quasistcady fashion from one time step to thc oext orer each reach
length in a finile difference numerical solurion of thc continuity equarion. Thus,
Equation 9.23 is cquivalent to exprcssing the discharge e in ternts of a uniform
flou fornrula such as Manning's equation, which cln bc rearranged as

(9.23 )

(9.21)

(e.2s)

(9.26)

(9.27)

(e.28)

(9.29)

in which bo = constant for a wide channel of constant slope and rougnncss: A =
cross-sectional f low area; and exponent a - 5/1. Under these conditions. the dis_
charge 0 is a funclion of cross-sectional area A alone so that

do
i - a b a A " ' = a v

in which V : Q/A : mean flow velocity. The significance of (9.25) cln be seen by
writing the continuity equation given by (9.2) as

uhich c;rn be rearrangcd In the form

aQ dA aQ / ,r ,A\ tQ 0d . r  a t  a . \  \ O e /  u , -

a o  / , t o \  h o

dr  \d ,4 /  i t

do : !9- a t

dQ dQ aQ
- = - + c , - = ( ,
dI A/ Ax

We assume a unique relationship bctween stage (or area) and discharge, so that
dQld4 is an ordinary derir,ative. The physical meaning of deld,.1 can be shown bv
settinS rhe total differential of Q to zero resulting in

do
d t + . - d r = 0

On c,rmparing (9.27) and (9.28), ir is obvious rhar de/dA = dx/dr, u,hich can be
inteipreted as an absolute kinematic wave celerity, c,, in the kinematrc wave equa-
ticn. which now can be rvritten as
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From the fbregoing. rlc can conclude that Equation 9.29 has a single lamily ol-
charac ter is t i cs  a long $h ich  the  d ischargc  Q :  cons tan t  in  the . r  l  p lane * ' i th  a  pos-
it ive slope given b) the kinenratic uave cclerity, r '^. The characteristics arc straight
l ines becausc of the a\sumption of a uniquc dcpth-discharge relationship so that a
given characteristic has a conslant value of discharge and depth and. therefore. con-
stant wa!e celerity. In tcrms of our discussion of characteristics in Chapter 7, an
observer moving at the spced c/, along a particular characteristic path would see no
change in the discharge Q associatcd with that characteristic. In othcr words, the
partial differential equation (9.29) can be expressed in characteristic forrn by the
following pair of equations:

0 = constant (e.30)

( 9 . 3 1  )

in which the constant and thc kincmatic wave cclcrity in gcneral are different for
each characteristic. Furthermore, frorn (9.25), (9.27), and (9.29). the absolute kine-
matic wave celerit l, cu, can be expressed as

dQ
-' 

d4

in which B = water surface top width. Equation 9.32 states that the kinematic wave
celerity can be determined from the inverse of the flow top width times the slope of
the stage-discharge relationship, which was shown to be equi\alent to a constanl
times the mean velocity. The constant d - ;, using Manning s equation. and, = l,
from Chezy's equation. Implicit in this estimate of the wave celerity is the existence
of a single-valued, stage-discharge relationship.

In general. r: j, u ould be expected to vary with depth and therefore with Q: how-
ever, a simplif ication often is possible, in which c* is assumed to be constant and
equal to a reference value corresponding either to the peak O or an average Q for
the inflow hydrograph. Under these conditions, the characteristics become straight,
parallel l ines, as shown in Figure 9.6. Along these characteristics. a specific value
of 0 (or depth) is translated at the constant speed of cr. Therefore, the kinematic
wave equation for constant wave celerity is l ine:[ with an analytical solution rep-
resented by a pure translation of the inflow hydrograph.

When allowed to be rariable, it is clear that c* wil l increase with increasing Q
and also with increasing depth,,I. Therefore, higher discharges wil l move down-
stream at a higher speed, resulting in a steepening of the wave front, or leading edge
of the kinematic u ar e. (The rising l imb of the hydrograph also s i l l  steepen.) How-
ever, attenuation or subsidence of the kinenatic wave sti l l  wil l not occur, because
of the omission of the prcssure gradient and inenia terms in the momentum equa-
tion, which are imponant in a "dynamic" wave.

Whilc it is well knou'n that river f loods usually subside or attenuate, the ques-
tion remains as to the condit;ons for which the kinematic wave method is applica-
ble, since it does not allou for subsidence. If the momentum equation is solved for
Sr, the following results:

dr
d,l

I d o
8 d y

(e.32)
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FIGURE 9.6
Pure translation of thc l inear kinefialic wave.

5 r -  S o  - t
a-r

t ' d v l a v
(e.33)

(9.35)

(e.36)

What is required then is to detcrmine the relative nagnitude of the bed slope, So, in
comparison to rhe remaining three dynamic terms on the right hand side of (9.33).
From an order of magnitude analysis, Henderson ( 1966) concluded that S^ is much
larger than the remaining terms fcrr f loods in sreep rivers; while for very iat riuers
u ith low Froude numbers. So and rlry'd-r are of the same order and the inertia tenns
are negligible. Equation 9.33 can be nondirncnsionalized in ternrs of a sreaoy-srare
unifornt f low I'elocity. Vo; a concsponding normal depth. I.n: and a reference chan_
ne l  reach length .  Lo .  Nond imcns iona l i z ing  and d iv id ing  th rough by  So resu l ts  in  a
dinrensionless equation givcn bl

.8 d.r 8 a l

s/ [  . t i ,  lar"
I

So 11-656 1n,r"

I  v : "  ) /  i i v "
I  t  v "  -  +
I s 1 - , , S , ,  I \  , 1 r "

in which )r' ' = ,r/,r'o; ,l = _r/ Lct: V. = V/Vu: and t, _ tV,,/Lo.The dimensionless num-
bers multiplying the inertia tcrms and pressurc force terms, rcspectively, can be
transformed as

v; _ Fi).n = 1
LoS,, k

a y ' \
.'r ) 

(e 34)

8Lo5o

, \0  I

1-uSo ,tF;

in which Fo = Vol(g.ro)l ' : : a reft 'rence Froude number and k : a klnematic flow
number defined by Woolhiser and Liggetr (1967). For large values of &, rhe
dynamic terms are small relative ro the bed slope. If /< > 10, the kinemarrc wave
approximation is considered satisfactory, especially for overland flow for which /t

___-_l
I
I
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can have valucs in excess of 1000 (\\r-rclhisc'r and I_igrert 1967). Also, Millcr and
Cungc (  1975)  suggesrcd  tha t  rhe  Froudc  nurnbcr  shou ld  bc  less  than I  fo r  the  k ine-
nratic $avc cquation to apply, not onl\ because ol thc forntlt ion o[ roll waves for
larger values but also because this is the Iimit at \\ hich thc kjnenllt ic wavc celcritv
becomcs equal to the dynamic wave celerity, as sho$ n by Equltion 9..18 luter. Also
uscful to note is that, from thc rario of thc coefllcienls in 19.j5) and (9.j6). the iner,
tia terms approach thc same ordcr as the pressurc lbrcc tcrur as thc Froudc nunlber
approaches unity.

Ponce,  L i .  and S inons  (1978)  app l i cd  a  s inuso ida l  pe  urb t r ion  10  a  un iForm
flow and cxanrincd the arrenuation facror to derernline rhe applicabil ity ollhe kine-
matic wave nodcl. Ponce ( 1989) suggcsled from the results that the kinetnatic ware
mode l  i s  ann l i cab le  i f

1,11,-s! > 8s (9 .37 )

in which Vo and,r,u represent average rclocity and flou depth. respectivcly; So :
bed slope; and Z : t ime of rise of the inflow hldrograph. This criterion indicates
that both steep slopes and long hydrograph rise tinres tend to favor the use of kine-
malic wave routing in which inertia and pressure -qradient tcrms can bc neglecled
in comparison to the resulting quasisready balance bctween gravity and friction
terms in the momentunt equalion.

In spite of these limitations on the use of the kinematic rvave approximation, ir
can be shown that both kinen'tatic wave and dynantic uave behavior occur ln a nver
flood wave (Ferrick and Goodman 1998). Hendcrson ( | 966) argued that rhc bulk of
a nalural f lood wave of small height nrotes at the kinematic $ave speed, c*. while
the leading dge of the wave cxperiences dl,nanric et' lecrs and rapid subsidence.
Because th! r. inentatic wave moves in the downstrelm dircction only, its specd. r,,.
can be comlr.rred with the downslream specd of the dynlrnic uavc, *,hich has been
given previously as V * c, by taking rhe ratio of thc t$o wavc speeds:

C t _

V + c
aF

( 9 . 3  8  )F + t

in which F = Froude number - Vlc and c: (gr.)r/r. It can be shown from (9.3g)
for q = 3/2(Chezy) that c( < (y + t.) so long as F < 2 and attenuation of rhe"dynamic forerunner" wil l result (Hendcrson 1966). lt $'ould seen then that the
kinematic wave moves downstream more slowly than the dynamic wave fbrerunner
unless F > 2. at which time it wil l steeDen to form a surce.

The ques t ion  ar ises  as  to  $  hc ther  thc  \ leepen ins  o f  th ;  L  incn t l t i c  wave can lead
to some stable tbrm befbre actually becorring an abrupt surge as the dynamic tcrms
rn the momentum equation become imponant. This leads to thc concept of a uni_
formly progressive wave called the nonoL.linal rislrrg unr.e shown in Figure 9.7.
The monoclinal wave can be conceptualized as the result o[ an abrupt increase in
discharge at the upstream end of a ven, long prisntatic channel. Vcry far upstream.
the flow is uniform with a depth of ,r., and velocitv. Vr. uhile very far oownstream
the flow is uniform with dcpth r,, such lhll \, < ! < r,. whcrc \.. = crit ical depth
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( c^  -  v )A1=  G^  v )A , :  Q ,

o , -  o .
A t -  A '

l:19

vr ----'--+

(a) lMonoclinal Wave Definit ion Sketch

(b) [.4onoclinal Wave Celerity

FIGURE 9.7
Monoclinal wave definit ion and wave celerity from discharse-aJea cune.

for the moving wave profi le. A stationary observer would see the depth gradually
increase from the init ial uniform flow value, )i, to the final value,,yr, as the wave
profi le moves downstream with time. The slope of the profi le is relatively gentle so
that it cannot be considered a surge, but bccause it does not change lorm as it moves
downstream, it can be treated using the sarne methodology as for surges. For a
monoclinal wave moving downstream at a constant absolute speed. c., the problem
can be made stationary by superimposing a speed of c. in the upstream direction.
Tbe continuity equation then is applied at points i and/along the wave profi le, as
shown in Figure 9.7a, to yield

(e.3e)

in which p, is referred to as the ousrrar discharge rhat is seen by a moving
observer with the speed c,. If Equation 9.39 is solved for the monoclinal wave
spced, the result is the so-called Kleitz-Seddon principle (Chow 1959), given by

(9.40)
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r,r 'hich can bc i l lustrated, as in Figure 9.7b. hy rhe slope ol thc \lrright l inc bcl\\cen

points P, and Pr. The curve in Figure 9.7b is shown concarc ul. bccause thc vcl(xity

generally increascs with stage and llow area lbr f lo*' in the nlain channel alone. \\ 'c

can deduce from thc l igure that c,,, is greater than the l ' lo$' \ clocit) ' at either Point i

or/and that the max imunt value of c,,, occurs as the depth. I,. approaches r;. For the

special case of a \ei-y widc channel. I iquation 9.'10 bccones

V1y1 - V,.v,
(9. .11 )

With the aid of the Chezy equation for a vcry u idc channel. the ratio of the mono-

clinal wave cclerity. c,,,. to the kinertatic wave ce)erity of the init ial unilomr flow,

cri, can be detcrmined from Equation 9..11 as

(rr)" - ,
c,, 2 \ r',,/
c*i 3 ,)i

, ) i

in which c1, has been determined from the Chezy equation and Equation 9.32 as
(3/2)yii that is, a - 3/2.It is clear from (9.'12) that the monoclinal wave celerity is

greater than the init ial kinematic wave celcri ly as well as the init ial unifonn flow

velocity, y,, and it depends only on the specified ratio of depths .r7/,rr and yr. As )i
approaches -vi, we can see from (9.42) that the monoclinal wave celeri ly

approaches, as a lorver l imit, the kinematic wave celerity of the init ial rrniform flow.

Determination of thc shape of the monoclinal wave Profi le requires the use of

the momentum equation app)ied from thc viewpoint of a moving observer with the

constant absolute speed, cn, who sees a steady, gradually varied flow profi le. Under

these circumstances, the equation of gradually varied flow for a very wide channel

with Chezy friction becomcs

( l -

(9.43)
q :

l - -
g I '

in which 1 = depth; x - distance along the channel; 17 - f low rate per unit of $'idth
- y-y: C = Chezy resistance coefficient; and 4. = ovcrrun discharge per unit of

width : (c. - D-r. Note that the evaluation of the friction slope depends on the

absolute velocity and discharge, while the Froude number squared term 4:/(8)r).
which comes from convective inertia, is based on the relatiYe Yelocity and overrun

discharge as seen by the moving observer Therefore, the crit ical depth that defines

rhe l imit of stabil ity of the monoclinal wave is given by 1. : lqlle)t13, conespon-

ding to the overrun Froude nunber having a value of unity. As ,r'r approaches l'.' the

denominator of (9.,13) approaches zero and the slope of the prohle becornes infinite

with the formation of a surse.

(9.42)

d t _

dr



(e..14)

Equation 9.4'1 can be solved to obtain the marintum lalue of c,,, = y, + c,, whcre
6, : 1gr';)l/:. In other words. the monoclinal u ave has a matinrum celerity corre-
sponding to the dynamic wavc celerity of the init ial unifomr flow, while it has a
minimum celerity equal to the kinematic war e celeriry of the init ial uniform flow,
as shown by Equation 9.42. This can be placed in dimcnsionless form (Fcrrick and
Ger,,rdman 1998) and cxorcsscd as

(9..1s)

in ri hich F, : Froude number of init ial uniform flow, and the kinematic wave celer-
ity has been taken as (3/2)y, from the Chezy equation. The same conclusion for the
upper l imit was reached previously when comparing the kinematic wave celerity
and dynamic wave celerity in Equation 9.38. Hence, lor a given Froude number of
the init ial uniform flow, there is a maximurn celerity for the monoclinal waye that
decreases as the Froude nurnbcr increases to a value of 2, at which time the upper
and lower l imits both collapse to the kinematic wave celerity. Setting the right hand
side of Equation 9.,12 equal to the upper l imit giycn by (9..15), rhe stabil iry l imir on
the init ial Froude number can be defined in ternts of the ratio of the final and ini-
t iol nomal depths (Ferrick and Goodman 1998):
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The surge tha l  fbnns  a t  the  s tab i l i t y  l io l i l  o f  the  nronoc l ina l  ware  de f incs  a
mlinrum celerit] that is rcachcd. If thc continuitl, definit ion of ovcrrun discharge
fr..nr Equation 9.-19 is sinrplif ied for a rery uide channcl and set equal ro the l im-
it inc value for thc orenun Froude nunrber equal to I uith \,, = 1.,, the result is

s,: k. r1)r, - r4i

0 l ' '  t )
(9.46)

in which r,, = )f/,)i. For a given initial Froude number, Equation 9.46 gives the max-
imum value of the depth ratio, beyond which the monoclinal wave becones unsta-
ble and remains at its maximum dynamic celerity.

There is an analytical solution to Equation 9.,13 for the profile of the stable
monoclinal wave (Lighthill and Whitham 1955;Chow 1959; Henderson 1966).The
details of the solution are given by Agsom and Dooge ( l99l ). The result is

S o r  r  , ,: - + ar ln(r' r',) * a. ln(,r', - ,i) + a,ln(r, Y0) + Cr Q.47)
) t  - t i

in which

1 g ! 5 1 ( ' _ l )
cr ,  -1  \  F , /

F,

r l  r :
J,()', ) i)(,t, - Yo)

- r (1  - - r , ) ( r7 -  ro )
) ;  r :

(9.48a)

(9.48b)
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Yr "vi (9..18c )

(9.4 8d )

.1 , ( l i ,  l , ) ( ro  r i )

,)Ji

(Vi * rtu)'
v

and C/ - constant ofintegration. To obtain the wavc proti le at any time Ir, the solu-
tion for the profi le given by Equation 9.47 is translated a distance of c,,/r with c.
given by Equation 9..12. Because the profi le is infinitely long, some depth sligbtly
less than the final normal dcpth can be specified at,r = 0 with thc constant of inte-
gration. q, determined accordingly. Alternatively, C, can be determincd such that
the mid-depth of the *ave occurs at r : 0 when I = 0 and subsequcntly travels at
the speed c,,,, l ike all other points on thc wave profl le.

Agsom and Dooge (1991)  conf in red  thc  cx is tcnce o fa  s tab le  monoc l ina l  ware
profi le using numerical experiments. The theoretical solution was used to obtain an
upstream hydrograph that then was routed downstream using the method of char-
acteristics for the full dynamic equations. The resulting routed hydrograph propa-
gated downstream at the specd givcn by the Kleitz-Seddon principle without
change in shape. Funhermore. there was convergence to the theoretical monoclinal
shape for a uniformly rising inflow hydrograph. Therefore, thc monoclinal wave is
a special case of a dynamic wave of equil ibrium shape at large values of t ime in
which kinernatic steepening is balanced by dynamic smoothing effects. It has been
used for testing numerical methods and evaluating the effect of various terms in the
momentum equation when compared to sirnplif ied routing methods.

9.4
DIFFUSION ROUTING

Because kinematic routing cannot predict subsidence of the flood wave but only
translation, it is appropriate to consider the etlect of including thc pressure gradi-
ent terms of the dtnamic equation while stil l neglecting the inertia terms. With this
simplification, the momentum equation becomes

(9.19)
a\'

Jo 
dr

Writing.t: QrlKr, in which K - channel conveyance, substituting into (9.,19) and
differentiating with respect to time, the simplified momentum equation becomes

2Q aQ _ zQ'� dK _ d'],
Kr at Kr at atax

The right hand side of (9.50) can be eliminated by differentiating the continuity
equation (Equation 9.2) with respect to distance r to obtain

(9.50)
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d lo  d ry

at- rlr. lt

in  wh ich  we har .e  assuntcd  a  rec tangu lar  channe l  o f  cons lan t  w id th  B .  Subs t i lu t ing
(9 .50)  in to  (9 .5  I  ) .  we har  e

AQ _ ?Q.
6t  K l

(9.54)

(9.s6)

aK 1 AtQ

(9 . s  1 )

(9.5 2 )
B ,J.r l

Because thc convcyance r( is a single-valued function of dcpth 1 and thcrcfore of
cross-sectional arca A. its derivative with respect to time in the second tcrm on the
Ieft of (9.52) can be transfonrcd. with the aid of the conlinuity equltion, to

AK dK AA d K  r Q
(9.5 3 )a t  M a t tL4 d-r

lf we further assune that dKld,l can be evaiuated from the uniform flow forntula
in which K = 9/Sl]5 and rhen substitute the resulr from (9.53) back into (9.52), we
have

_  Q _ A ' Q
2B5o 3.t r

If dQldA is interpreted as the kinematic wave celerity, c*, as previously, the left
hand side of (9.54) is the same as the kinematic rcuting equation, but the right hand
side now has the appearance of a 'diffusion term," with an apparent diffusion coef-
ficient given by D : Q/(2BS). From the behavior of the diftu sion/djspersion rerm
in river mixing probJems. the diffusion analogy makes it clear thar attenuation in O
will be produced by this simplif ied rouring equarion in addition to advection at rhe
kinematic wave speed.

For constant wave celerit l 'and diffusion coefficient, Equation 9.5'1 is the gov-
cming equation for l inear diffusion routing for which there are exact solutions. The
same equation results if depth rather than discharge is the dependent variable. For
example, Henderson (1966) gi\,es the Hayami (1951) solution for rouring an
upstream depth hydrograph rhat consists of a series of unit step changes in depth.

It is instructive to derive the l inear diffusion equation for depth from a slightly
different viewpoint than rhar used to obtain (9.5.1) to gain further insighr into the
limitations of diffusion routing. If the depth, 1, and velocity, y, are written in terms
of their init ial uniform flow values, r,, and V,, plus small perturbarions from these
values as _r' - ,), + )' and V : V, + y', then using an order-of-magnitude analysis
the continuity equation for a wide channel becomes

a\'' dr,' AV'" + v, : - l, -.- = 0
al d,r ' dt

Likewise, the momentum equation absent the inenia terms is

- ' ) = o

2 Q

ao do do
0 r  d y ' . O x

dr'' / S,] l ] ! + s " I . -
6 x  " \ S o
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The rario .5rlS,, can be evaluatcd using the Chczy equation fbr a wide channel.

Ncglccting the appropriate tcrms in this ratio from order-of-magnitude considera-

tions, thc momcntum cquatlon reduces to

(9.5 7 )

The nonlentum equation is differentiated \.'" ith respect to -r. and the ternr dy'ldr in
the rcsul t ing equat ion is  c l iminated by subst i ru t ion f rom rhe cont inu i ty  equt t ion.
With some algebra and rearrangement of terms. thc result is given by

Y:
v,

2

* - '  * ( ; )  
= ,

a6 a6 a26
At "  Ax 3r '

(9.5 8)

in which @ : .r 
' i cr = (3/2){ frorn Chezy; and D : ( Vrr,)/{150) for a wide channel.

It is apparent that, once again, we have derived the linea| diflusion routing equation,
but it is strictly valid for small deviations in deprh from rhe inirial deprh. Neverrhe-
less, of particular intercst is the solution to (9.58) for the upstream boundary condi-
tion of an abrupt increase in stage from the initial value d. to d;. The variable {
could be redefined easily in dimensionless terrns as dd - (v - r.,)/tri - -r). The solu-
tion to the linear diffusion equation then is given by Carsla* and Yeager (1959) to be

t [  / . ,  c , / \  / c , - r \  / . . , . , , \ l
d a -  l  l e r f c  t ; ; . , -  /  . * p (  ̂  f  e r f c [ , , ^ . , -  J l  r 9 . s 9 r

\ \ + u t l  /  \ t 4 u r l  / )

in which erfc : the complementary enor function. The solution indicates that the
wave wil l move downstream at the speed cr while spreading or "diffusing" at a rate
controlled by the apparent diffusion coefficient, D. By dehnitjon of D, more diffu-
sion wil l occur for smaller slopes and larger values of depth.

Some contparisons have becn made by Ferrick and Goodman (1998) to entpha-
size the effect of the diffusion term with respect to the inenia terms. They compared
the solution of the l inearized dynamic form of the momentum and continuity equa-
tions with the diffusion routing solution for a flood wave. The boundary condition
consisted of an abrupt increase in depth and discharge at t ie upstream boundary,
starting from an init ial condition of steady, unifonn flow. They found that the ini-
t ial shock traveled downstream with the dynamic forerunner at the speed of (y; +
c,) and remained distinct from the diffusion r,ave profi le unti l after the shock atten-
uated. Then, the profi le celerit ies converged and approacbed the kinemaric \\ave
celerity.

We must point out an inconsistency in the derivation of the diffusion routing
equation (9.54) that occurs because of the assumption in irs derivation that d(/d,4
can be evaluated from the uniform flow fornula: that is, b) specifically invoking the
bed slope in place of the friction slope. By definit ion, the diffusion routing equation
includes the pressure gradient term as represented by dy,/dr: yet to obtain the final
form of the diffusion equation, dr/dr in effect is taken to b€ zero in the evaluation of
the parameters. so that S0 : S, as in kinematic routing. The second derivation of the
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linear cji l l irsion routing equation (9.58) further implies that r ' : .| ' ,  for the evaluation

of corslunt values of c, and D. Thercfore, in the slrictcst sense, Equation 9.54 is

applicahlc only fbr thc case of quasiuniform flo* s rvith relatively small values of the

pressure gradient. whilc thc Iinear forn given bl Equation 9.58 further suSSests the

limiution of small deviations from the init ial unifonn llow depth.
In the variable-parameter case, in which the paraneters c^ and D are allowed

to vary with 0 but are obtained from a uniform flow fonnula. Cappeleare ( 1997)

sho\\ 's that mass (or volumc) is not conservcd in thc routing: that is, the outflow vol-

ume under the oulflow hydrograph tends to be smaller than thc inflow volume

under the inflow hydrograph. lJe proposes a nore accurii le nonlinear diffusion rout-
ing nrcthod that propcrly accounts for the pressure gradient effect on the evaluation
of the variable paramelcrs, but it requires a more sophisticated numerical solution
technique. The advantage of the l inear approach in u'hich the parameters are con-

stant is that volume is conserved. and the rirer can be divided into a series of
reaches with paranreters varying from reach to reach as the physical characteristics

of the channel change as descrjbed in the next section.

ExAMPLE 9.t. A very wide river channel has a slope of 0.0005, and init ially it is
flowing at a uniform depth of 1.0 m (3.3 ft). The Chezy C = 2.1 in SI units (/t : 0.042).
If the depth of f low is abruptly increased to L2 m at the upstream end, where r = 0,
compute the monoclinal wave profile and compare it with the diffusion wave solution
at various values of t ime.

SollJr.or. The initial flow velocity follows from a solution of the Chezy equation

y , :  c r l  t s , l ' =  2 4  x  ( 1 . 0 ) r  :  x  0 . 0 0 o 5 r 1 =  0 . 5 3 7  m / s  ( 1 . 7 6  f t l s )

so that the kinematic wave ccle.tty cL: Ql2)v,: 0.805 rn/s (1.6,1 ft ls). The diffusion
coefficient then is

: ?:lt^:^:9 = s37 mr/s (5780 r,:,rs)
2 x 0.00rc5

The monoclinal xave celerity is computed from Equation 9-.l l  to give

2  ( 1 2 ) 1 2  -  1  .  .
c^  -  ( ) .805 0 .811 m s  (2 .77  f t  r )-  ]  t . 2  I

The monoclinal wave celerity is only slightly greater than the kinematic wave celerity
because the increase in depth is only 20 percenl of lhe init ial deplh. Such a small
increase is necessary for the solution of the l inear diffusion equation to apply. Equa-
tion 9.59 is solved for a series of r values at a specified time lo obtain the diffusion
wave solution. The values of t ime are taken to be 50, 100, 200. and 400 x l0r sec as
sho\rn in Figure 9.8. The values of d, are defined by lr - r ' ,)/(!r ,r;), where,1, and

_v, are the init ial and final depths of f low, respectively. The solution for the monoclinal
uavepro f i lecomes f rom Equat ions  9 .47  and 9 . ,18  w i th  a r  =  -6 -814,a2=9.2 '7 l ,and

.rr = 0.0160. The integration constant is chosen such that the mid-depth point (dd =

0.5) travels at the speed c- from,r : 0 at I = 0. As shown in Figure 9.8, the shape of
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FIGURE 9.E
Comparison of dif fusion wave and monocl inal wave prohles at various ! imes.

the monocl inal wave profi le does not change at successjve t imes. The dif fusion wave
profile shows increased spreading due to diffusion as rime progresses until it approaches
the shape ofthc monocl inal wave. I t  lags the monocl inal wave sl ightly, however. because
of the smaller kinematic wave speed. Both the time and corresponding distance required
for the diffusion uave to approach the shape of the low-amplirude ntonoclinal *ave are
long, so that a very long river \r,ould b€ necessary to achieve convergence. The applica-
bi l i ty of the dif fusion wave solut ion for this problem depends on rhe l jme being long
enough for the init ial  shock to have dissipated. The rate of dif fusion depends on rhe
channel slope, ini t ial  depth, and channel roughness with greater dif fusion and a[enua-
tion occurring for smoother, deeper flows in channels of flatter slope.

9.5
MUSKINGUM.CUNGE METHOD

The Muskingum-Cunge method is a generalization of the Muskingum method that
takes advantage of the diffusion contributions of thc momentum equation by allow-
ing for true wave attenuation through a matching of numerical and physical diffu-
sion. First, a numerical discretization of the kinematic wave equation is developed
to set the stage for quantifying numerical diffusion within the context of the Musk-
ingum rnethod. With reference to the computational molecule shown in Figure 9.9,
the kirematic wave equation as given by Equation 9.29 is discretized with weight-
ing factors X and Y to give

Diffusion wave
- l\,4onochnal wave

t in 1000s of sec
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FIGURE 9.9

Cornputational molecule for numer-

i ca l  so lu t i on  o f  k i ncma t i c  wave

roul ing problem.

x(Ql- '  -  o: )  + ( t  -  x)(o i : i  Q: , , )

+  . .
Y ( Q : - ,  -  Q : )  +  ( t  -  Y ) ( Q : : t '  Q : - ' ) (e,60)

(9.61)

Treating the kinematic wave celerity as a constant, some special cases of Equa-
tion 9.60 can be considered. For example, a centcred, second-order finite difference
scheme results if x = Y = 0.5. If these substitutions arc made and Equation 9.60 is
rearranged in the form of the Muskingum routing equation, as given by Equation
9. 1,1. then the routins cocfficients for this case become

C" I I C,
C o = ,  ' - :  C r  -

r  i  ( ,  r -  I  t  c ,

in which C, is the Courant number defined by c;tr/Ar. If the Courant number is
exactly l, then the coeficients become Co = 0, Cr = l, and q = 0: that is. pil l  =

Qf, so that the centered finite difference scheme produces pure translation only for
the Courant number equal to I, and thus it reprcsents an exact solution of the kine-
matic wave equation for this special case.

ExAI lpLE 9 .4 .  Route  the  t r iangu la r  in f low hydrograph shown in  F igure  g .  l0  us ing
the approximation to the kinematic *ave equation given by Equation 9.60 \rith X : I:
0.5 and C- = 1.,1.

Solution. The routing crxif icients from Equations 9.61 become

Co =  0 .167;  Cr  =  l .0 i  C t :  -O.16 '7

The value of trl is chosen to be 0.5 hr and the routing computations are carried out as
shown in Tablc 9-5. The scheme appears to be stable. but the shape of the hydrograph
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Comparison of nunrerical and analytical solutions of kinemalic wave equation for X = f :
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T A  B L E  9 . 5

Numerical solution ofl inear kinematic wave equation (X : 0.5i I/ = 0.5; C, = 1.' l ;

Co : 0.161i C, : 1.0; C, = - 0.167) o{ Example 9.4

Numerical,  AnalJ{ical

, ,  hr C o t  I t C r x l t  C t x O r 0,, m1s o1, mr/s

0.0
0 .5
1 . 0
1 . 5
2.O
/ . )
3 .0
3.5
,{.0
.1.5
5 .0
) . J

6.0

0
100
200
300
,r00
500
600
500
.100
300
200
100

0
0

16.67
33.31
50.00
66.67
83.33

100.00
83.33
66.67
s0.00
13.33
t6.6'�7
0.00
0.00

100
200
300
400
500
600
5m
,r00
t00
200
100

0

0
1 1

r 3 l
128
129
.ll9
5 :9
595
161
372
2 t I
t 7 1
1 l

- t 2

0
0

100
100
t00
{00
500
600
5C)0
.100
.tm
200
100

0

0.00
1 .78

2 t . ' 76
18.04

-51.71
-  7 l . ' 13
- E n . r 0

99.2 t
'n .91
62.01

-28.-57
- I 1.9{)

X =  Y = 0 . 5
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Outf
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changes as shown in Figure 9.10. xi lh the nunt.r ical solut ion leading the analyt ical
solut ion on both the r ising and ft l l ing sides of the outf lou hydrograph. The numerical
peak outf lo!\ ' is only sl ighth sntal lcr than the anall l ical value. The distonion is caused
b] the numerical solul ion i lsclf .

Exanrple 9..1 brings up the nrorc gcneral qucsrions of nunrerical s(ability and
consistency for variable values ofX and fl that is. does the solution of the finite dif-
fcrence equation antplify and grow without bound or not and docs the solution con-
verge to that ol the original partial differcnlial equation, respectively? To answer
these questions, the renainder, R, or difference bctween the finite difference
approximation of thc differential equation and the differential equarion itselfcan be
determined from a Taylor series cxpansion of the function O (t.!r, l jr) about the
point (llt, lAr). As shown by Cunge ( 1969) and Poncc, Chen, and Simons ( 1979),
the remainder R can be expressed as

^ -.,,,i(j -,) . *(.1 ,,)l#
* . ^ . r , ' { i r  ,  c . ) [ ; ( x - ,c.Y) I  , ,  . " ,1)  9 ' !  -  orr , , , r  {e 62)

The coefficient multiplying the second derivative of Q behaves l ike an anificial or
numerical diffusion due only to the numerical approximation itself, because it does
not appear in the original kinematic wave equation. It is ciear that. for X = I/ : 0.5,
the nunrerical diffusion coefflcient goes to zero (convergence) and the appro.r*imr-
tion error is of second-ordcr O(,!r2) unless the value of the Courant number C. - L
ln this case, the coefficient multiptying the third derivative term, which causes numer-
ical dispersion or changes in shape, also goes to zero. For the Couranr numDer not
equal to I, as in Example 9.4 and Figure 9.10, numerical dispersion results, even
though numerical diffusion is not present. Furthermore, for f: 0.5 and X > 0.5, we
see that the numedcal diffusion coefficient becomes negative. which causes numeri-
cal amplif ication ofthe solurion and insrabil ity, as proven by Cunge (1969).

E x A II p L E 9. s. Roule the rriangular inflow hl drograph of Example 9.4 using the
finite difference approximation of thc kinematic ua\'e equation with X : 0.I and y =
0.5. Set the Courant number C- : L0.

So/ufion. The routing coefficienrs are recalculared from Equation 9.60 for X = 0.I, f =
0.5. and Courant number of 1.0 to vield

Co : 0 286; C , : 0 . 4 2 8 ; c , : 0 . 2 8 6

On examination of Equation 9.62 for the remainder of the numerical approximarion, i t
is apparent that the numerical dif fusion coefl lcient has a f ini le value but the dispersion
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T A A L E  9 . 6

Numerical solution of kinematic rrale equation (X : 0.l i  y = 0,5; C, = 1.0; Co :

0.2857 i Ct : 0,42E6: C1: 0.2857) of Example 9.5

\umerical,  Anall t ical

O, nrr/sI,  hr C o x  I z C t x  o t O} mr/sC r x  I 1

0.0
u.)
1 . 0
1 . 5
2.O
2.5
3.0
3.5
4.0

5.0
5.5
6.0
6 .5

0
100
200
300
.100
500
600
500
4U)
300
200
100

0
0

0.00
E . l 6

l0 90
5 1  8 l
85.90

 4.1,1
I ' l l .8?
1 5 5 .   
t 3 E . t 9
1 1 2 . 9 5

57.01
2n.5.1

0
29

108
202
l0 l
100
500
5{l
18.1
195
199
200
100
29

0
0

100
200
100
.100
500
600
500
.100
100
200
t00

0

28 .57
5 1 . l 4
85 .71

1 1 4  2 9
1,12.86
l7l . ,13
t,12.86
l  r { . 29
85 .71
57 .  t , 1
28 .57
0.00
0.00

0.(x)
.12.86
85 .71

l2 r J .57
l? L,{3
211 .29
257 .  I . 1
)14 .29
r7t . . r3
128 .57
85 .71
42.86
0.00

800

X =  0 . 1 ,  Y -  0 . 5
C , -  t ' 0

lnl low 
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i I \

-.- Outflow, analytical
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// \ t'ni"*'i"
nertcal
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T ime .  h r
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T'IGURE 9.II
Comparison of numerical and analytical solutions of kinematic ware equalion for X = O l.

I = 0.5, and C, : 1.0.

tenn goes lo zero. The routing computations are shou'n in Table 9-6 and plotled in Fi8
ure 9.1L The striking result in Figure 9.1I is the atlenuation ofthe peak outflow caused

by pure numerical diffusion that is a property of lhe numencal approximahon and not

of the analytical solution of the kinematic rvave equatton.

I
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To generalize the conlputi l ion of thc routing crxfficit lrr l,rr lhc specific case
of  f  -  0 .5  bu t  X  var iab le .  iubs t i tu t ions  arc  mlc i i  so  th r t  l r ( t r r i r t lo r r  9  60  beconres

x ( O i - ' - O ) + ( r  , x X O i - ' , ,  0 1 . , ) * - : , ( 0 1 . , - t , i  ,  r , j  i  O l - ' )  : 0

(9 .63)

Collecting terms and placing Equarion 9.63 in the fornr o! l lrr '  fr ' luskingum routing
equat ion  as  S iven by  Equ i l t ion  9 . l -1 ,  thc  rou t ing  coc f f i c ic l t \  . r r

c,,
0.5c, - x

I  - X + 0 . 5 C ,

0.5q + x
l - x + 0 . 5 c ,

l - x - 0 . 5 c , ,
I  - X + 0 . 5 C ,

(9.64)

(9 6s)

(  9 .66)

Now if both the numerators and dcnominators of Equations 9.6-1 through 9.66 are
multiplied by the Muskingun constant, 0, and contpared u ith the Muskingum rout-
ing coefficient definit ions given by Equations 9.1 I through 9. 13, it is obvious that
they are identical if 0 represents the kinematic wave trarel t ime given by lr/co,
where c* is the kinematic wave speed, and if X represents the Muskingum weighting
factor It follows that the Muskingum method in fact is a numcrical solution of the
linear kinematic wave equation that shows attenuation of the flood wave through
numerical diffusion, as i l lustrated by Example 9.5. For the special case of X = 0.5
and C, - l, lhe Muskingum method provides the exact solution of the l inear kine-
matic wave with pure translation. as detennined from Equations 9.60 and 9.61 .

Under these circurnstances. it would seem that the N'luskingum method is not
very useful unless the numerical dif lusion that it produces is related in some qay

to the apparent physical diffusion and wave attcnuation that actually occur in a
river Cunge (1969) set the numerical diffusion coeflicient from the approximation
enor expressed by Equation 9.62 for f : 0.5 and variable X equal to the apparent
physical diffusion coefficient as derived in Equation 9.54. The resulting expression
can be solved for the Muskingum weighting factor X to produce

(9.67)

with 0 = Ar/c* as before. When X in the Muskingum method is calculated from
Equation 9.67, the nrethod is referred to as the Mastirrgrrn-Cunge method, in which
the routing parameters depend in a known way on the flow characteristics and chan-
nel properties, so that numerical and physical diffusion cffects are matched. Either
yariable parameters or constant parameters can be used as is discussed in more
detail larer.

Koussis (1980) refined the Cunge approach by maintaining the lime dcrivatives as
con(inuous but stil l weighted, while discretizing only the.r derivative in the kinenratic

x : 0 . 5 ( , - u * o g )
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wave equation. He thcn assumed a l inciu varia(ion in the inflos hydrograpn ovcr me
time interval At ard obtaincd altemate expressions for thc N,lu\kingunt coefficients:

1 - p

t - p

C,,

B

c : : p - " - r ( - * )

in which C, - Courant nunrber = \tl| and 0 = travel time in reach = .l"r/c,. Fol_
lowing the same proccdure of marching physical and numerical diffusion, Ktussis
developed an expression for the Muskingurn weighting facror X gilen by

X : l -

C,

(9.68)

(9.69)

(9.70)

(9 .7  t )

(e.72)

C,

,  / l  + A + q \
l n l  -  I

\  I  + l  -  c" , /
in which

BSec,^\r

Although this expression for Muskingum X seems nrore refined than (9.67). which
gives X : 0.5 ( | I), Koussis found little to recomnrend one formulation over
the other. Later. Perumal (1989) showed that the conventional and refined Musk_
ingum schemes were idenr ica l  for  IC" / (1 X) ]  s  0.18.1.  uhi le  rhe convenr ional
Muskingum-Cunge scheme \r'as slightly berrcr than the refined scheme when both
were compared u ith an analytical solution given by Nash ( 1959) outside this range.

The issue of constant vs. variable parameters in rhe Muskingum_Cunge rneth-od
already has been alluded to, and it really is a question of wherher c, and i are cal_
culated as a function of the varying discharge e to produce variable routing coeffi_
cients or they are taken as constant as a function of a reference discharse. It should
be clear from the outset, however, that allowing the coefficienrs to varyi* irh e does
not remove the approximation of evaluating them based on a uniform flow formula
as a function of the bed slope with the actual depth assumed ro be normal. Koussis
( 1978) proposed the use of a constant value of X but a variable d = ,\r/c^ with dis-
charge. Ponce and Yevjevich ( 1978) tcsted scveral nrerhods of dcterntining variable
parameters and suggested that the best performance came from evaluating c. and,\
for each appiication of the conrputational molecule from either rhree-point or four_
pornt averages of c^ and Q (to be used in the computation of ,\). In the three_point
method, 0 and c^ are taken as the average of the values at grid points (1, k), (i + l,
k)and( i , t  +  l ) inFigure9.9.  In  lhe four-poinr  method.  a l l  iourgr idpoinrs are used
in the averaging process, which necessarily requires iteration becauie the values at
( t+ I ,k+ 1)  in i t ia l ly  are unknown.  The three-point  average r .a luesofc*and eare
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used as staning valucs in the four-point iteration methcxl. Both methods, however,
display somc loss ol' lolume in thc routed outflow h\drograph. whereas the con-
stant parametcr nrclhod conserves volunre. Ponce and Chaganti ( 199,1) repon sJight
improvements in volume conservation if ci is computed from a three-point or four-
point alerase value of p rathcr than being itself averaged. On the other hand, the
variable paranrcter methods reproduce the expected nonlinear steepening of the
flood wave. In a contparison between an analytical solution and the constant param-
eter method of routing tbr a sinusoidal inflow hydrograph. Ponce, Lohani, and
Scheyhing ( 1996) show that thc peak outflow and the peak travel t inre vary between
I and 2 percent from the analytical values.

Tang. Knight, and Sanucls ( | 999) investigared the r olume loss in the variable-
parameter i\, luskingum-Cunge nethod in more dctail and confirmed that the use of
an average 0 rather lhtn an average (.( slightly irnproved the volume loss (by about
0.I perccnt). In general. greater volume loss was reponed for the rhree-point meth-
ods than the four-point nlcthods. and routing on very nild slopes (S = 0.0001) pro-
duced the greatest volume loss, with values up to 8 percent. An attempt was made
to incorporate the correction suggested by Cappaleare (1997) for including the
effects of the pressure gradient ternts in the estimation of routing parameters but
only in an approximate way. Some improvement in yolume loss was shown but it
depended on an empirical adjustment factor in the pressure-gradient correction for-
mula for Q.

If we return to the questions of stabil ity and accuracy with respect to the
Muskingum-Cunge method, it must bc true that X < 0.5 for stabil ity as shown by
Cunge 1 1969), but the criterion for the routing coefficient C0 to be greater than or
equal to zero to avoid negativr' outflows (or a dip in the ourflow hydrograph) can
be expressed in a different way. Ponce (1989) rcfcrred to A, defined by Equation
9.72, as a cell Reynolds number. In terms of A, the accuracy criterion of Co > 0,
*hich is equivalent to the critcrion given by (9.15), becomes (C,, + A) > I from
Equations 9.64 and 9.67. Bascd on routing a large number of inflow hydrographs
with a realistic shape given by the gamma function, Ponce and Theurer (1982) sug-
gested a stronger condition of Co > 0.33 to ensure accuracy as well ai consistency
(in the sense of removing the sensitivity of the outl low hydrograph to grid size). As
a practical matter. this criterion becomes (C, + A) > 2, which defines the maxi-
mum length of the routing reach, &, for given values of the time step and the waye
celerity as well as the flow rate, channel top width, and slope, as follows:

(9.71)

Note from (9.64) that the simple criterion of naintaining Co greater than some
positive constant based on the cmpirical studies of Ponce and Theurer ( 1982) does
not precluJe the value ofX from becoming negative. Dooge (1973) as well as
Strupczerlski and Kundzewicz (1980) justif ied marhemarically rhe possibil iry of
X < 0. ln the conventional Muskingum method, an additional criterion of C, > 0
often is specified to ensurc the avoidance of negative outflows, which generally
is satisfied for C, < I and X < 0.5. bur Hjclmleldt ( 1985) demonstrated rhar rhis

r "  =  I  l t . , r ,  +  o  - ' \
2 \ BS,,c 1 /
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crilcrion can be rclaxed for most realistic in11ow sequences in agrecnrent with
Ponce and Theurer ( | 982). Thc additional critcrion does guarantec, hou n'cr, posi-
tive outflows for any possible positire inflow sequence.

Although the Muskingum-Cunge method gives the exact analytical solution of
the l inear kincmatic wave routing prob)em for C, = I and X = 0.5, the more usual
case is for X < 0.-5. From Equation 9.62, we see that. for f : 0.5, X < 0.5, and
q : 1.0. the dispersion term is zero and the numerical diffusion cocfficient exists,
making the numerical method first order: that is, the approximation enor is O(l.r).
However. under thc same conditions but tbr the Courant nunber not equal to I,
numerical dispersion occurs as well as numcrical diffusion. For this reason, Ponce
(1989) recommends that the Courant nunbcr be kept as cJose to unity as possible.
not for stabil ity reasons but to l imit nunrerical dispersion. In fact, stabil itv condi-
tions require no specific l imits on the Courant number, as are dictated in explicit
f inite dif lcrence approximations of the hl pcrbolic dynamic cquations.

The applicabil ity of the Muskingum-Cunge method is l inited to flood waves
of the diffusion type with no significant dynamic ellects due to backwater, such as
looped stage-discharSe rating curves. Ponce ( 1989) suggests the following criterion
for applicabil ity:

>  t 5 (9.11)

in which I, is the rise tinle of the hydrograph; So is the botlom slope; 1o is the aver-
age flow depth; and g is gravitational acceleration. Overall, the Muskingum-Cunge
method is a significant improvement over the Muskingum method because hydro-
graph data are not rcquired for calibration, so that it can be uscd on ungauged
streams with known geometry and slope. The variable-paranreter method may be
useful $'here slopes are moderate to lar8e. so that volume loss is acceptable, but
large improvenlents in accuracy should not be expected over the constant-parameter
approach. Corrections for the pressure-gradicnt term havc the potcntial to improve
diffusion routing so long as the numerical methods remain sirrpler than full
dynamic routing; otherwise. dynamic routing should be used in the first place.

EXAttPLa 9.6. An inflow hydrograph fbr a river reach has a peak discharge of
45m cis { I28 mJ/s) at a l ime to n€ak of 2 hr with a base time of 6 hr Assume that the
inflow hydrograph is triangular in shape with a base flow of 500 cfs ( l. l  mr/s). The river
reach has a length of 18.0fi) ft (5-190 m) and a slope of 0.0005 ftlft. The channel cross
section is trapezoidal with a bottom $ idlh of l(X) lt (30.5 m) and side slopes of 2:1. The
\' lanning's r for lhe chdnnel is 0.025. Find lhe outflow peak discharge and time of
o(currence for the rivcr reach usin-q the Muskingum-Cunge method and compare them
1() rhe dynamic routing nrelhod using thc method of characlcrislics.

Soll, lt lor. Fir\t the kinenrdtic ware speed is calculated based on Manning's equation
and a reference discharge of 2-500 cfs (70.8 mr/s). which is midway between the base
ilo!\ 'and the perk discharge. For the given conditions. the .esulting normal depth is
5.71 fl ( 1.7,1 m) and lhe \clocity. \/.f is -1.93 fvs ( 1.20 rn/s). lf we consider the channel
to b€ \ery wide as a first approximalion. thcn c, : (5/3)y0 = 6.55 ft/s (2.00 m/s). The

" i;1"
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valuc of l l  is tenlal i \  elv cho\en to be {).5 hr based on discret izal ion of the t ime to peitk,

r lhich is equal to 2 hr. Then \r can bc csl imrled fronr the incquali ty of (9.73):

C  \ r  ,R  a :  S r r r r p l r f r cd  \ l c rhod l  o f  F l o *  Rou r i ng

*  !_ )  :  I  io . r , ,  o .5o  x  1600 +
IJS,,:'' / I \ n 2 . 8 x 0 . 0 0 0 5 x 6 . 5 5

x = o s ( t  ^ , , * - )  
= o s ( r -

122.8 x 0.0005 x 6.55 x 9000) : o ' r t

C o : 0 . 3 3 1 1 C' = 0.5'10; C. = 0.121

r .  -  l  / . , - l r
2 \ "

:500

: 9003 fr (l?'1'1 m)

Thcrefore, two routing rcaches. each t\ ith a lcng(h of 9000 ft (27,13 m), can be used.
This gives a Courant numt'er of cr3r/Ir = 6.55 r 1800/9000 = 1.3 I , * 'hich is slightly
grcater thrn unity. and the \ alre of X froln (9.67) is

2 500

If the value of eilher Cn or X seems unsatisfactory, further slight adjustment-s of Al and
Ir are possible, since the c.i lcrion gi\en by (9.73) is conservative and guarantees Co >
0.33 rather than Cn > 0. \\ hich is all that really is required to avoid negati\e outflows
in most cases. The values of the routing coefficients are conrputed from (9.61) through
(9.66) to yield

which sum to unity as required. The routing equation is solved step by step in Table 9-7
for the first subreach of 9tXlO ft (2?,13 m). Then the outflow becomes the inflow for the
next subreach, for * hich only the final results are shown in the table q'ithout the inter-
nrediale computalions. The Muskingum-Cunge results ate compared with dynamic
routing resulrs from the method of characteristics (MOC) in Figure 9.12. It js af'parent

T A  B L E  9 . 7

Muskingum-Cunge routing {C0 : 0.333; Cr = 0.540; C, : 0.127) of Example 9.6

Time, hr Inllow, cfs Co x 12 Cr x 1l
r = 9000 ft; .t = 18000 ft;

Ct x Or 01, cfs 02, cfs

0.0
0.5
1 .0
1 .5
2.0
2.5
3.0
3.-5
4.0

5 .0
5.5
6.0

'7.O
'7 .5

-500
1500
2-s00
1500
,1500
,1000
3500
3000
2500
2000
1500
lmo
500
500
500
5CX)

500
t33

r 166
I {99
133 2
I t66
999
8-r3
666
500
313
167
167
161
t67

270
8 r 0

1350
1890
2{10
2 r60
lE90
1620
1350
r080
8 ! 0
540
110
270
270

64
106
222
34E
174
538
491
429
366
303
239
t76
t t2
'70

64

500
833

t'7 4E

3736
1236
386,1
3380
2882
2382
1882
I t82
882
549
506
501

500
6 t  I

l  0
t99'l
297 6
3806
4058
3 727
3258
2'�7 63
2261
t'164
1264
8 1 9
569
512
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FIGURE 9.I2
Inflow and outflow hydrographs for Muskingum-Cunge and MOC routing.

that the assumption of a constant wave celerity in the Muskingum-Cunge method fails
to capture the nonlinear steepening and flattening on the rising and fall ing sides, respec-
tively, ofthe outflow hydrograph. Howcver, the pcak outflo* rates agree very well. The
occunence of the outflow peak is at r : 3.0 hr, but this is l imited by the time stcp of
the approximate routing method. The method of characteristics gives a peak time of 2.8
hr. Note that the criterion of Equation 9.74 for diffusion routing is not met, but reason-
able agreement sti l l  is obtained between the two methods in this exanrple.
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EXERCISES

9,1. A stormwater detenl ion basin has bonom dimensions of 700 ft  b],  700 ft  q' i th inlerior
4: I  side slopes. The outf low structures consisl of a l2 in. ditmcler p;pe laid through
the f i l l  on a steep slope \! i th i ln jnlet inren ele\al ion of 100 f l  at the boftom of the
basin and a broad-creslcd weir with a crest elevation of 107 fr and a crest length of l0
ft .  The top of the berm is at elevarion 109 f i .  The design inf lou hydrograph can be
approximated as a tr iangular shape \\  i tr  a peak discharge of 125 cfs at a t ime of 8 hr
and with a base t ime of 2.1 hr. I f  rhe delention basin ini l idl ly is empt]-.  rolt te rhe inf low
hydrograph through the basin and determine the peak outf lo\\  rate and stage. How
could thcsc bc funhcr reducedl Explain in detai l .

9.2. Prove that the temporary storage in reservoir routing is givcn b\ the area bctween the
inf low and outf low hydrographs. For tr iangular inf lo$ and oulf lo$, hydrographs.
dcrive a relat ionship for the dctention storage as a function of inf low and outf low pcak
discharges and the base t ime of the inf low hydrograph.

9.3. The inflow hydrograph for a 25,000 fl reach of the Tallapoosa Riler follo$,s. Route
the hydrograph using Muskingum routing with At = 2 hr. - ! l  :  25.000 ft ,  I  = 3.6 hr.
and X = 0.2. Plot the inf low and outf low hydrographs and determine the percenr
reduction in the inflol peak as well as the travel time of the peali.

, ,  hr Q. cfs t. hr C, cfs

0
2

6
8

t 0
12
1,1
l 6
I 8

100
500

1500
2500
5000

l 1000
22fi)0
28000
28500
26000

20 22000
22 1'�7 5AJ
24 14000
26 10000
28 7000
30 .1500
32 2500
3.r t 500
36 1000
38 500
40 100

9.4. Route the inflow hydrograph of Example 9.6 through the sarne river, but for a total
reach length of 27.000 ft, using the method of characteristics computer program
CHAR (on the website). Then use this outflow hydrograph *iti the inflow hydro-
graph to derive 0, X, and the Muskingum routing coelficients using the least-squares
fitting method. Finally do the Muskingum routing and compare the results with the
ou(flo\ hydrogrrph from dynamic routrng.

9.5. Derive the kinematic wave celerity for a trap€zoidai channel. Plot the ratio of kine-
rratic wave celerity to average channel flow velocity, cnlV, as a function of tte aspect
:atio b/) for several values of side slope ratio |n including rn = 0 for a rectangular
channcl and discuss tbe results.

9.6. For uniform flow at a depth of 5 cm on a concrete parking lot having a slope of 0.01
and a flow length of 200 m, calculate the kinematic wave number, t Would kinematic
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routing apply'l Repeal for a \ery \r ' ide river channcl with a slope of0 00l n = 0 035'

lr depth of 5 m, and the sanle flow lcngth of 200 ur' Discuss the results'

9.7. For thc same parking lol of Excrcise 9.6, suppose lhe hldrograph rise l ime is l5 rnin

Would the kinemalic rra\c routing nethod apply bascd on Equation 9 171

9.8. Route an overland no\l hydrograph ol er a distance of 300 m using the anal) rical kine-

matic wave solution with \ariable rvave celerity The ovcrland flow occurs orer a 100

n wide plane strip of conslant slope 0 006 and l] = 0 0l5 The inflow hydrograph is

triangulir *' i th a peak of 1.25 mr/s at a time to peak of l5 min and with a base time

of 4imin. The inil ial base flow is 0.25 mr/s Plot the inflow iind outflow h)drograPhs

and discuss the shape of the outflow hldrograph

9,9. Derive Equation 9.'12 and then show that. as ) aPproaches -ti '  the monoclinal wave

. r l c r i l l  approuche '  lhc  in i l r r l  l i nc r r l i ' l i .  \ \ ' 1 \ 'e  'e lc r i t v '

9,10. Conlpute and plot the rnonoclinal *ave profi le in a very wide river *ith an init ial

depth  o f  1 .0  n r  and a  ina l  dep lho l  :10n l .Thes lopeof ther iver is000 l  and$eMan-

n ing 'sn  is  0 .0 '10 .  Assume tha l  the  dep lh  a t  - r  =  0andt :0 is  399 m A lso  ca lcu la te

the nronoclinal wave celerity and conipare this to the init ial kinematic $ aYe celerity'

9.11. Derive Equation 9.58. the l inear diffusion rouling equatron'

9.12. Using thc numerical approximation of Equation 9 60 for the kinematic \ 'r3\e equation

with X : I and y : 0. derile the routing coeflicients and route the hydrograph ofExam-

ple 9.4 for C" : 1.5. Wirh reference to Equation 9 62' what haPpens to the outflow

irydrograph if C" : 1.0? Explain why the method becomes unstable for C' { l 0

9.t3. Using thc numerical approximation of Equation 9 60 for the kinemaric ua\e equation

wirh X : 0 and / : 1. derive the rouling coe fficients and route the hydrograph of Exam-

ple 9.4 for C, = 0 67 With reference to Equation 9'62. what happens ro the outflow

irydrograph iic, : l 0r Explain why the rnethod beco es unstable for C. > l 0'

9.14. Using the numcrical approximation of Equation 9 60 for the kjnemalic \*a\e equation

with X = 0 and y : 0. derive tre routing coefficients and route the hyd'ograph of Exam-

ple 9.4 for q : l.0 wi$ reference to Equation 962 what hapPens to the outflow

irydrograph ii C" + l.0l Does the method bccome unstable for any value of C"?

Explain your answer.

9.15. Express the rouling coefficients of Ihe Muskingum-Cunge method in terms of l and q'

9,16. Use the Muskingunl-Cunge merhod to route the hydrograph of Example 9 6 for So =

0.001 and compare $ith the results from the computer program CHAR

9,1?. Rcpeat the Muskingum-Cunge routing of Example 9 6 for a very w-ide channel using

the three point variable parameler method with cr and i calculated from three-point

averages of O at each time step Compare the results with the constant parameter

method.

9.18, Write a computer program for Muskingum-Cunge routing using the four-Point vari-

able parameler me$od and apply i l to Example 9 6'
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Flow in Alluvial Channels

r0.1
INTRODUCTION

Rivers, which are naturar open channels, often have movabre alruvral sedimentboundaries at rhe bed and banks that add another deg.ee of cornit.^,ty to tt, "rti-mation of flow resistance. Because the sediment b-ed itself is'sublect to move_ment, the flow creates perturbations of that boundary, o.hich amount to sanOwaves that propagate either dOwnstream or upstream depending on the flow con_ditions and sediment properties. The amplitude of,l. p."urU-utions affects theflow resistance and hence the stage at a given discharge, ",nif.l i ',n. same timethe flow condirions control rhe am.plitud-e anO *av.te'r,gtt oi-tli" p..trruutiou..For this reason alluvial rivers have been described ^,Aiin,rrtirrr" ^nd sculptor(Vanoni  1977) .
Aside from rhe problem of additional flow resistance, the sediment regime ofopen channel flow in a river is responsible for bed unj b_k instability, scou.around structures such as bridge pieri and abutment., O"po.irion unO Uu.l"t of nrlhabitat, los_s of clarity in the iuaier column and i"friUiti6. ,i pf,.i"rynthesis, andtransport of adsorbed contaminants. Such problems asso.iut.d Juith-r"u,-enr rans-pon are lntertwined with the pure hydraulic considerations of open channel flowand so deserve some attention in this text, especially with respect to flow_sedimentinteractions.
This chapter describes sediment properties and discusses methods for predic!ing bed and bank stability by identifying ihe threshold of ,.Oi."ni'rnouern"nt. S.O_lment ln motton and the bed forms created are discussed next along with the cou-pled problem of flow resistance and stage_discharge pred;.tion. a Uf,"f ou.*i.* ofbedload and suspended load fanspon equations and the carculation of total sedi_ment load are presented followed by a consideration of raou. p.ott"rn, assocratedwith bridges constructed across rivers.

37r
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10.2
SI'DI}IENT PROPERTIIiS

Sorne propcrtics of inclividual sedintent grains ale importanl l irr cohesionlcss sedi-
Incnts (slDds and sravcls). such as grain size. shape. and specil ic gravity. as well as
Iall relocity. which is a function of all the previouslr mentioned properties. The
hehavior of scdinrcnt grains or particles in bulk mar be ol intercst. too. The bulk
specific s cight of scdinrents cleposited in a lake bed. for exanrple. or rhc grain size
distribution of sands and gravcls in a well-graded strcambed aff 'ect thc behavior of
the bed as a whole. In addition, fbr clay or cohesivc scdinrcnrs, identifying the inter-
actions of platclctl ike particles with variablc surface charge is cssential to an under-
standing of thc stabil ity of the bed with respect to erosion or resuspension (Dcnnert
et al. 1998), but this chaptcr focuses on rroncohesivc scdintenls.

Particle Size

The grain size of a scdiment particle is one of its most inponant propenies. The
American Geophysical Union (AGU) scale classifies size ranges as shown in Table
l0-l *ith each size class reprcsenting a geomerric series in which the maximum
and minimum sizes in the range differ by a factor of 2. Thc size of sand panicles
usually is measured as the sieve diameter, which is the length of the side of a square
sieve opening through which the given particle wil l just pass. The size of silts and
clays, on the other hand, often depends on sedimentation methods and the relation-
ship between fall velocity and sedimentation diameter. which is defined as the
diameter of a sphere of the same specific weight haling the same terminal fall
velocin'as the given particlc in the same sedimentation fluid. Thc rclationship
between sedimentation diameter and fall velocitv is discussed in the section on fall
velocit\ ' .

Particle Shape

Sand grains in panicular have a shape that varies from angular to rounded depend-
ing on the fluvial environment in which they are found. Ri\er sands tend to be wom
somewhat by fluvial action and deviate considerabl) from a spherical shape. One
way of defining shape is the so-called shape facror (l\{cKnown and Malaika 1950)
siven bv

S,F. ( r 0 . r )

in which S.F. = shape factor, and the variables a, b, and c are the lengths of three
mutuall l perpendicular axes such that a is the shortest axis. In other words, the
shape factor is defined as the length of the shonest ari is divided by the geometric
mean length of the other two axes. A sphere obviously would have a shape factor
of 1.0 \ ' i th no preferential direction of axes. For an ell ipsoid with axis lengths in

a

^ / -v o c
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' I ' A B L E  
I  O . I

Sediment grade scale (AGU)

Class name Size range, mm

3't 3

Very larSe boulders
LarSe boulders
lVedium boulders
Small boulders
Largc cobbles
Small cobbles

Very coerse gravel
Coarse gravel
Medium gravel
Fine gravel
Very f ine grarel

Coarse sand
Medium sand
Fine sand
Very fine sand

Coarse si l t
Medium si l l
Fine si l l
Very fl ne silr

Coarse clay
\ ' ledium clay
Fine clay
Verv fine clay

4.09G2.0i8
2.0.18- 1,02.{
1 ,02 . {  5  r l

5  r2 -256
256- r :8
12E 5,1
61-32
3 2  l 6
lG-8
8 - 1
.1 2

2 .0- t .0
LH.5

0.50 {.25
0.250-{.125
0.125 0 .062
0.062 {.031
0.03r -0 .0 r6
0.0I6-0.008
0.008 {.(x}1
0.004 {.001
0.00t-0.001

0.(J0 r0 {.0005
0.0005,!.0002,1

the ratio of l: l:3, the shape tactor would be 0.577. A shapc facror of 0.7 has been
found to be about average for natural sands (U.S. Interagcncy Committee 1957).
The shape factor can be determined using a microscope.

Particle Specific Gravity

Because the predominant mineral in sand and gravel often is quanz, the specific
gravity (SG) usually is taken to be 2.65. However, for less wom sediments thar
retain the mineralogy of the parent rock, several minerals such as feldsoar. mica.
barite, and magnetite, for example, stil l may be present in appreciable quintiries. so
that specific gravity may need to be measured at each investigation site. Clay sedi-
ments generally are hydrous aluminum silicates with a characteristic sheet structure
having a specific gravity from 2.2 to 2.6 (Sowers 1979).

Once the specific gravity is known. the specific weight, 7,, of the sediment
soli,J is simply the specific gravity times the specific weight of water. Sand and
gravel have a specific weighr of approximately i 65 lbs/ftr or 26.0 kN/m3. The mass
density, p., is the specific gravity times rhe mass dcnsity of water, so quanz sedi_
menls have a mass density of 5.14 slugs/ftr or 2650 kg/mr.
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Bccause the sedinrent grains of inlerest in sedinrent trtnspod usually are sub-
incrged, another propeny of interest related to specific gravity is the submerged
specitic wcight, which is given by yl = (f. - y) = (SG I )7, in which 7, - spe-
cif ic weight of the sediment solid and 7 - specific wcight of water The subrnerged
specific wcight of sand grains, for example, is 103 lbs/ftr or 16.2 kN/mr.

Bulk Specific Weight

As sediments are depositcd in relati\ely quiescent environments, they occupy a \ ol-
ume that includes the pore space fi l led with water subject to consolidation o\er
time. Estimates of sediment carried into a reservoir by weight can be translated inro
volume occupied only by use of the bulk specific weight. Such predictions of the
volume of scdiment deposited as a function of t inre are essential to estimates of the
useful l i fe of a reservoir, or the time between dredging events to maintain naviga-
ble waterways. The bulk specific \aeight of a sediment deposit is defined as the dry
weight of sediment divided by the total volume occupied by both sediment and pore
space. Lane and Koelzer ( 1953) proposed a relationship tbr the specific weight of
deposits in reservoirs given by

y o :  y o ,  I  B l o g r ( r  0.2)

in which 7, : bulk specific weight in lbs/ftr of a deposit with an age of r years;
7r, : initial bulk specific weight of the deposir in lbs/ft' at the end of the first year;
and B = constant (lbs/ftr). For a sediment that always is subnrergcd or nearly sub-
merged, 70, and B have values of 93 and 0 for sand. 65 and 5.7 for silt, and 30 and
l6 for clay, respectively.

Fall Velocity

The fall velocity of sediment is defined as the terminal speed of a sediment grain in
water at a specified temperature in an infinite expanse of quiescent water It plays
a very important role in distinguishing between suspended sediment load, in which
the sediment grains are carricd in the water column, and bedload, which consists of
individual grains transported near the bed with intermittent or continuous contact
with the bed itself. Fall velocity is closely related to the fluid mechanics problem
of estimating drag around a submerged sphere due to a fluid flow of specified
velocity. The only differences lie in the viewpoint of the observer (the sphere is
moving and the fluid is at rest) and in which of the relevant quantities are unknown.
In the case of flow around a fixed sphere, the unknown is the drag force; while for
a sphere dropping at terminal speed in a fluid at rest, the unknown is the fall veloc-
ity. In the latter case, the drag force must be equal and opposite to the submerged
weight of the sphere at terminal velocity to give

pA rtrl rd'c , ;  = ( r ' - r )  
o ( 1 0 . 3 )
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in which C, - drag coefficient of thc sphere; y and p : specific weight and den-
sity of the fluid. respectively: 7, : specific weighr of the solid; A,. : frontal area of
the-sphere projected onto a plane perpendicular to the palh of the fall ing sphere (=
nd2/1); d: diamerer of the sphere; and x7 = fall velocity of the sphere. Solving
for the fall velocirv- we have

( 1 0 . 4 )

Unfortunately, Equation 10.4 cannot be solved explicit ly for the fall velocity
because the coefficient of drag, Cr, is a function of the Reynolds number (Re :
t!;r1lz), where z is the kinenratic viscosity of the fluid. The Reynolds number obvi_
ously involves the unknown fall velocity. The Co vs. Re diagram for a sphcre is
shown in  F igure  10 . l .

The dilemma of solving Equation 10..1 can be overcome in several ways. One
approach is to assume a value of Co, solve for the fall velocity from Equation 10.4
and compute the Reynolds number to use in Figure 10.I to obtain the next value of
C, in an itcrative prtxess. To develop a numerical solution procedure involving a
nonlinear algebraic equation solver, best-fit relationships are available for Cr,, such
as the one given in Figure l0.l as suggested by.White (1974):

21 6-  +  _  r  n , t
R e  r + \ & ;  

" (  10.5 )

1 E 4

1 E 3

1E2

1 E 0

.9

.9

o

(i

o

1E-3 1E-2 1E-l 1E0 1E]  1E2
Reynolds Number, Fe

I ' IGURE IO.I
Coefficient of drag for spheres (besr-fir equation from Whire 1974).

r t J 1 E 4  1 E 5
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u ,h ich  is  va l id  up  to  a  Rcyno lds  nu tnber  o [  approx imr tc ly  2  /  I05  when the  drag

crisis occurs as the lanlinar boundary layer changes to a turbulcnt boundary layer

and the separation point moves further downstream on the surface of the sphere.

Iteration or a nunterical solution of(10.4) is unnecessarl '. ho*'ever, for the Stokes
range (Re < l), for which there is an exact solution by Stokes for the drag force
and cocfficient of drag under the assumption of negligible inertia terms in the
Navicr-Stokes equations; that is, creeping motion. In this special case, Co = 24/Re
or rhe drag force D = 3zpr1d. Substituting the Stokes solution for drag force on
the left hand side of ( 10.3) and solving for the fall velocity gives Stokes' law for the
fall vclocity:

|  O,l t  t)sd'
(  10.6)rr'l

v

in which 7, - specific weight of the sphere; 7 = specific weight of the fluid; / :
diameter of thc sphere: and v = kinematic viscosity of the fluid. Stokes' la* is lim-
ited to Re < 1, which can be used to substitute into (10.6) for the fall velocity, l1,,,
to obtain the maximum sphere size for which Stokes'law applies. The result for-a
quartz sphere falling in water at 20"C is d.,, - 0.1 mm. which is a very fine sand.

For spherical panicles outside the Stokes range, an alternative to the iterative
solution involving Figure 10.1, or the numerical solution using Equation 10.5, is to
rearrange the dimensional analysis of the problem. The difficulty with Figure 10. I
is that it was developed for predicting the drag force on a sphere, whereas the prob-
lem of interest here is thc determination of fall velocitl of the sphere, and the fall
velocity appears in the definition of both CD and Re. However, according to the
rules of dimensional analysis, any dimensionless group can be replaced by some
combination ofthe other groups as discussed in Cbapter l. In this case. a good
choice would be CrRe: because the fall velocity is eliminated in this group. The
evaluation of a reiated dimensionless srouD can be obtained from

l 8

I c'n; : QJt - t)sd'
(  1 0 . 7 )

in which the constant of 4/3 on the right hand side has been moved to the left band
side. Now define a more convenient dimensionless number, d", given by

v '

,  - f
t
0,lt --  1 ) s d r ' J t :

r l
v -  l

(  10.8)

Taking Equation 10.5 for the drag coefficient and plotting Re vs. dr results in Fig-
ure 10.2, in which the abscissa is calculated from (10.8). The Reynolds number
then can be read directly from the figure to determine the fall velocity outside the
Stokes range.

It remains to apply the methods just developed for spheres to sediment pani-
cles that are not spherically shaped. One method for accomplishing this task is to
define the sedimentation diameter as described in the section on sediment size.
which relates the fall velocity to the diameter of a fictitious sphere having the same
fall velocity as the given particle. Unfortunately, sedimentation diameter varies
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1 E 5

1 E 4

rl)
E

1E2

1 E 1

1E0 '1E1 1E2 1E3

FIGURE 10.2
Fall velocity of a sphere as a function of dimensionless particle diameter 1..

1 E 4

with Reynolds number, so it has been standardized for a fluid temperature of 24"C,
and called the sttndard Jall diameter lf the fall velocity of a sedinent has been
measured, its standard fall diameter can be determined from Figure 10. I and Equa-
tion 10.4. However, for sand grains, the sieve diametcr d. usually is measured by
taking the geometric mean of the sie\e sizes just passing and retaining the given
sand grain in a nest of sieves. What is needed then is a conversion fiom the sieve
diameter of the actual s€diment to the fall diameter, which depends on the shape
factor, as shown in Figure 10.3. Once t}re fall diamcter is known. any of the meth-
ods just discussed for spheres can be used to obtain the fall velocity. Fonunately,
the fall diameter does not vary significantly from the standard fall diameter over a
remperature range of 20' to 30"C.

As an altemative to using sedimentation diameter to find the fall velocity, the
coefficient of drag of sand panicles can be determined directly and given in a C,
vs. Re diagram like that of Figure 10.1. Engelund and Hansen (1967) have sug-
gested the following best fit to the data for sand and gravel (Re < 101):

Equation 10.9 can be used in combination with Equation 10.4 for the fall velocity
to obtain an exact solution for the fall velocity, which is given by (Julien 1995):

. D - R e  ' .

u. t l .
* *  -  T '  s [v4 .  oor ro , i l  r l

(  1 0 . 9 )

(  1 0 .  l 0 )
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0 . 1  1 . 0  1 0
Standard Fall Diameter, mm

FIGURI! TO.3
Relationship between fall diameter and sieve diameter for different shape factors of natu-
rally wom sand particles (U.S. lnteragency Comrnittee l95i).

E x A Nt p L E I 0 . I . Find the fall velocity of a medium sand with a sieve diameter of
0.50 mm (0.0O161 ft) fall ing in *,ater at 20"C by two merhods: (l) using Figures 10.2
and 10.3 and (2) from Equation 10.10.

So/,l/ion. From Figure 10.3. for a sieve diameter of 0.50 mm (0.0019 ft) and a shape
factor of 0.7, rhe srandard fall diamerer is 0.,17 rnm (0.00154 ft). Then, we calculare ./,
for the sphere *irh fall diameter, dr, as

. I t.os x 9.81 x o.ooo4?3 1'13d ' - L - - t r  
^ r o Y  I  

- l l e

From Figure 10.2, Re - 33 so that bi = 33 x (l x 10-1/0.00047 = 7.0 x l0-2 rn/s
(0.23 ft ls).

In the second method, which can be used only for sand grains, d. is recalculated
fo. the sieve diameter, d,, of 0.5 mm to give a value of 12.6. Then, we substiture into
( 10.l0) to obtain

\+id,. l i l  = s ;1 t\4 + oolltt l tF - r l  = rsv

from which hl : 35 x (1 X l0 6)/0.0005 : 7.0 x l0 : rn/s (0.23 frs).

Grain Size Distribution

While some natural sorting occurs in rivers with the formation of a thin armor lar er
of coarser panicles in the bed under conditions of degradation, generally a .*.ide

1 0

E
E

6
E
i:
9 1 0
.9
g)

.9

E
o

( ' w l

s.F. = 0.3 05 0.7 0.9
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range of sizes can be found in transport and in the riverbed. Some measure of the
degrce of sorting of thc grain sizes is required using slatistical frcquency distribu-
tions. The lognormal probabil ity density function commonly is applied to river
sands, with an estimate of its parameters (mean and standard deviation) being used
to characterize the particle size distribution as obtained from sieve analysis. The
lognormal probabil ity density function simply is the normal probabil ity density
function applied to the logs of the sieve diameters, so it is given by

f(o ( 1 0 . 1 l )

in which ( - (log 4 
- p)/o, t l, rs sieve diameter; p is the mean of the logs of the

sieve diametersi and o is the standard deviation of the logs of the sieve diameters.
The geometric standard deviation, on. is used more often to describe grain size dis-
tributions, and it is defined by logtr, = o.

The cumulative distribution function, F((), is used to relate the theoretical prob-
abil ity distribution of ( 10.I I ) to the results of a grain-size analysis. lt represents the
cumulative probabil ity that a grain size is less than or equal to a given sieve diame-
ter, and it is measured as the cumulative weight passing a given sieve size as a frac-
tion of the total weight of the sediment sample. Mathematically, it is obtained from
the area underneath the probabil ity density function as

F @ =  r [ '  " , ' , a ,
y2t r  J  _

(  10 .12 )

in which t is a durnmy variable of integration, and 100 x F(O - percent finer of
the theoretical lognormal distribution. Shown in Figure 10.-1 are the individual data
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Size distribution of a sand sample on log,normal scale.
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points of a sier e analysis plotted on a lognornral grid. The abscissa values represent
sieve sizes plotled on a log scale, while the ordinates are perccnt f iner values plot-
ted on a nomral probabil ity scale such that a theoretical lognormal cumulative dis-
tribution function plots as a straight l ine. The actual data show some curvature and
deviation from the lognornal distribution, especially at the tails of the distribution.
The data are fitted by drawing a straight l ine between the 84.1 percent f iner size
(dr.r,) and the 15.9 percent f iner size (d15e), uhich represents the distance between
plus or minus onc standard deYiation from the mean. Expressed in terrns of . ' !, lhe
distance is plus or minus one times log os, as i l lustrated in Figure 10.4. The inter-
section of the straight l ine with the 50 percent f iner ordinate is defined as the geo-
metric mean sieve diameter, dr, as shown in Figure 10.4. shile the intersection of
the curvc connectinS the data points and the 50 percent f iner ordinate is the median
size. drn. These may or may not be the same, depending on the actual size distribu-
tion data.

Both the geometric standard deviation and the geometric mcan size can be
expressed in  te rms o f  d r . ,  and r ! ;su .  By  de f in i t ion ,  logo .  -  ( logdsr r  logd)  =

(logr1" logd,re), which can be expressed as

dso,  d r
" t -  

4  
-  

a , -

Then, by cross-multiplyjng, ir is immediately apparent that dn - (d8.1 rdr5 e)r/r. Fur-
thermore, by back substitution, the value of o, = (dror/d,.e\l/2.

10.3
INITIATION OI- NIOTION

Deternining the stability of the bed and banks of a natural alluvial channel or of
the rock riprap l ining of a constructed channel as in Chapter.l depends on the def-
init ion of the threshold of sediment movement. In a qualitative sense, sediment
grains in a noncohesive sediment bed begin roll ing and sliding at isolated, random
locations on rhe bed as the threshold condition is just exceeded. The threshold con-
dition can be described in terms of a crit ical shear str€ss or a crit ical velocity at
which the forces or moments resisting motion of an indir idual grain are overcome.
The lorces resisting motion in a noncohesive sediment are due to the submerged
weight of the grain, while in a cohesive sediment, physicochemical interparticle
lbrces offer the primary resistance to sediment motion. This section focuses on the
case of noncohesive scdiments.

If the threshold of motion is defined in terms of a crit ical shear stress, r, , i t can
bc given as a function of the following variables:

r. - f 17, "y. d. p, t!) (  1 0 .  l 4 )

in which 7, 7 - subnrerged specific weight of the sedimentl d : sediment grain
sizel and p and g. : f luid density and dynanric viscosity. respectively. Dimensional
ana lys is  o f  (  10 .14)  leads  i rnmed ia te ly  to  the  resu l t

(  r 0 .  r 3 )



(  1 0 .  l 5 )

in which n.. : 1r,/p)tt2 = crit ical value of the shear velocity; atld v - LLl p : kine-
matic viscosity. This is the resulr thar Shields ( 1936) obtained more indirecrll ' .  The
dimensionless crit ical shear stress on the left of ( 10. l5) is refened to as the Srields
poranteter, r"., and the dinrensionless parameter on the right of (10.15) has the
form of a Reynolds numbeq which is called the crit ical boundary ot particle
Reyttolds twnbe r, Re.,.

Shields was an American who, in Berlin in the 1930s, conducted flume exper-
iments on init iation of motion and bedload transport of sediment as affected by the
spccific gravity ofthe scdiment. He uti l ized sediments ofbarite, amber, l ignire, and
granite to obtain a \\ ' jdc range in the subnerged specific weight of sedimenr from
590-32,000 N/mr (4-200 lbs/frr). The sediment grains were subangular ro very
angular, with median sizes ranging from 0.36 to 3.4,1 mm (0.0012 ro 0.01ll f i). He
combined his results with those of previous investigations at the same research
institute that were conductcd on river sands by Casey ( 1935) and Kramer ( 1935),
as well as adding results of Gilbert ( l9l4) and the U.S. Waterways Experimenr Sta-
tion (WES) for river sands. He presentcd the results according to the dimensionless
groups given in Equation 10.15 as a shaded zone for the beginning of sediment
nrotion in what has conte to be called the S/rields diagrum, althorsgh it has under-
gone a number of revisions. Rouse ( 1939) first presented it in the English l iterature
and replaccd the shaded zone with a curve. The Shields diagram is given in Figure
10.5 with additional data and modifications proposed by Yalin and Karahan ( 1979).
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As given in Figurc 10..5. the paraneters have an instructive phvsical intcrpretarion.
The Shields parantclcr. r... can be interpreted as the ratio of the shear sfess to the
submerged weight ()l a grain per unit of surface area at crit ical conditions, while the
boundary Reynolds nurnber, Re.., represents the ratio of thc grain diameter to the vis-
cous sublayer thickncss (ignoring the constant in the exprcssion for the viscous sub-
layer thickness 6 = 11.6 r,/a,). Accordinglv. regions ofsmoorh. rransitional, and fully
rough turbulent f low over a grain could be expected as shoun in Figure 10.5 as the
grain size beconrcs larger relarive to the viscous sublayer thickness and the individ-
ual grains protrude from it, creating boundary,gencrated turbulence.

The data for Re." < I in Figure 10.5 were obtained primarily for f ine,grained
sil ica solids tbat were cohesionless. For this range, in which the boundary layer is
smooth-turbulent or laminar, MantL (1977) proposed a relarion given by

r , .  :  0 .1 (Re. . )  or ( l 0 . l 6 a )

Yalin and Karahan (1979) showed that a separare laminar flou curve, which is not
shown in the figure, exists when the boundary Reynolds number exceeds unity and
suggested that the laminar and smooth turbulent data coincide for Reynolds num-
bers less than unity because the grains are submerged in the viscous sublayer in
both cases. For Re.. ) I, Yalin and Karahan ( 1979) added a considerable amount
of additional data to the original Shields data, u,hich includes data points labeled as
Shields, Gilben, Kramer, Casey, and US'rVES in Figure I0.5 as sumnarized by
Buffington (1999). Based on the additional dara, panicularly in rhe fully rough
region, the constant value of r.. in the fully rough turbulenr region is 0.0,15, and the
transition curve proposed by Yalin and Karahan (1979) can b€ fitted by

r- .  :  )e , ( tog Re. . ) i

i n  wh ich  Ao =  0 .100,  Ar  =  0 .1361,  A :  :  0 .05977,  Ar  =  0 .01984,  and Ao :
0.01134 for I < Re." ( 70 wirh r.. = 0.0.15 for Re,. ) 70. However, the acrual

l imits of the transition region are given by Yalin and Karahan (1979) as 1.5 < Re..
( 40. Because Re-. is defined usually in terms of d50, and raking t, : 2dro, these
fimits correspond to 3 1 u,k,/v < 80, which is sirnilar to the range of 5 to 70 for
u,k,/v glen for the transition region in pipe flow by Schlichring ( 1968).

The manner in which Shields obtained the crit ical shear stress from both his
experiments and those of others is a matter of some contro\ersy (Kennedy 1995;
Buffington 1999). Shields'original rabulared dara were losr during World War II.
and the descriptions of methodology in his doctoral thesis are r ague and sometimes
contradictory. Because Shields conlinued his career in machine design in the
United States after f inishing his doctoral dissenation rather rhan in sediment trans-
port, he was unaware of the intpact of his work unti l near his death and so shed no
light on th,J controversy. The crit ical shear srress can be obtained either from visual
observation of the threshold of motion or from extrapolation of measured sediment
transpo;1 rates 10 zero. Kramer's work is based on the visual classification of sedi-
ment rnotion as ( | ) weak movement. defined as the motion of a few or several sand
particles at isolated points in rhe flunte bed: (2) medium movement, described as
motion of many sand grains too numerous to be counted but without appreciable

(  10. r6b)
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sediment discharge: and (3) general movement, characrerizcd as ntotion of grains
o f  a l l  s izes  in  a l l  par ts  o f  thc  bed a t  a l l  t imes.  Kennedy (1995)  suggcs tcd  tha t
Shields nra;' have uscd the visual observation method de\ eloped by Kraner in pre-
vious experinrcnts in lhe same l ' lume. based on what appears to have been averag-
ing by Shiclds of Kranrer's uidcly varying data for crit ical shear stress. Based on
analysis of the data ol other investigators used by Shields. Bulfington ( 1999) con,
cluded that Shields probably did use the dcfinit ion of '*eak nlovement" as the cri-
terion for thrcshold conditions for the data of Casey. Kramer. and WES, while it
appears that he uscd "general movement" for Gilbert's data. On the other hand,
Buffington surmises that Shields may have used the ntethod ofextrlpolarion of sed-
inrent discharge to zero for his own data becausc of the statement in his dissenation
that this was the appropriate method for uniform sedimenrs and references to his
data else\r'here in the thesis as being rcpresentative of uniform sediments. Regard-
less of the method used for obtaining crit ical shear srress. additional uncenainties
ex is t  in  Sh ie lds 'o r ig ina l  d iagram as  a  resu l t  o f  the  use  o f  bo th  mean and med ian
grain sizes; the existence of bed forms in some of the data, which cause overesti-
mal ion of crit ical shear stress l the lack of true uniformitl of the sediment sizes; and
the variabil ity of sedinrent angularity of the sedimenrs used (Buffingron 1999). We
can conclude that, although the Shields diagram is a ralid representation of the
physics of init iation of sediment motion, its users should recognize it as a band of
da ta  about  a  genera l  re la t ionsh ip  fo r  inc ip ienr  mor ion .

As presented in Figure 10.5, the Shields diagram is not very convenient for
directly estirnating the crit ical shear stress, because it appears in the definit ion of
both the Shields parameter and the boundary Reynolds number. To use the Shields
diagram to estimale crit ical shear stress, a third dimensionless parameter that elim-
inates the crit ical shear stress can be introduced. Such a parameter is given, for
example, by J0. I Re..2/z..Jr/r, so that an auxil iary set of curves can be constructed
on the Shields diagram, the intersection of which with lhe Shields curve allows
direct determination of the crit ical shear stress (see Vanoni 1977). On closer exam-
ination, however. the auxil iary parameter can be recast as the dirnensionless grain
diameter d, : 1Re,l/r.. lr i3 that was encountered in the development of a relation-
ship for fall velocity of sand grains. Accordingly, the Shields diagram is replotted
in Figure 10.6 as 2.. vs. d., as suggested by Julien ( 1995), so that the crirical shear
stress can be determined directly, since d" is a function of only the grain diameter
and specific weight, and the fluid specific weight and viscosity. The curve in Fig-
ure 10.6 has been converted directly from the updated relationship proposed by
Yalin and Karahan (1979) in Figure 10.5.

Of particular interest in Figure 10.5 or 10.6 for coarse sediments is the crit ical
value of the Shields paraneter in the region of fully rough turbulent f low, where it
approaches a constant value. In this region, a constant value of the Shields parame-
ter implies that the critical shear stress is linearly proportional to the grain diameter
Rouse ( 1939) init ially indicated a constant value of r." : 0.060 in his drawing of the
Shields curve near the upper range of Shields data. although some extrapolation was
involved. Laursen (1963), in his development of a prediction equation for bridge
contraction scour, used a value of r.. = 0.039, while the value in Figure 10.5 from
Yalin and Karahan is approximately 0.0,15. Julien suggested that the constant value
of r." : 9.96 ,un t. where { : angle of intemal friction to account for the size and
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FIGURE I0.6
An altemate form of the Shields diagram for direct determination of critical shear stress

(after Julien 1995). (Soirrce; P Y. Julien, Erosion and Sedine tation, A 1995' Canbridge
(J irersity Press. Reprinted with the permission of Cambrid7e Universit\ Press )

angularity of the grains. ln this formulation, r". varies from 0039 for very fine

grivet tob.050 for very coarse gravel to 0.054 for boulders in the constant t'. region

in which d- is grealer than about 40.
The variability of the constant value of r.. for large values of the boundary

ReynoltJs number and the scatter of data in Figure 10.5 emphasize that a range of
"critical conditions" should form the Shields diagram Accordingly, two additional

curves appea.r in Figure 10.6, which are defined by a I times the standard enor in

log unitJ between the curve in Figure 10.5 and the data given there'

Regardless of the value chosen for the Shields parameter, a corresponding

value o] critical velocity can be calculated from Keulegan's (1938) equation for

fully rough turbulent flow. If the critical value of shear velocity, 4.., is related to 7'.

with water as the fluid, Keulegan's equation becomes

I t 2 . 2 R l
v,  -  5 .15 Vr . ,  (SG -  l )gd5s log "  l

in which SG = specific gravity of the sediment; R = hydraulic radius; and ft, =

equivalent sand-grain roughness, which varies, as discussed in Chapter 4, from

l.'4dt4to 3.5du.It is of interest to note that the critical velocity, which is a meao

crosi-sectionai velocity, varies with the hydraulic radius and therefore the flow

deoth for the same value of the Shields parameter. Hence, reports of critical veloc-

ity for sediments of varying grain size sbould correspond with a specific depth

,ung" ou", which they are applicable. If Manning's equation is used instead of

Keulegan's equation with Manning's n expressed in terms of a Strickler-type
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expression 1a : c,,r/]16), lhen the crit ical $'aler velocity for a vcry wide channt' l can

be expresscd as

,, - f,rrtt" 
- t) r,,tl,r.r'i 6 (  10 .  r  8 )

in rvhich K" = 1.,19 in English units and 1.0 in SI unitsl c, - constant in Strickler-

type rclationship for Manning's rr Qr = c,,dllo), which is equal to 0 039 in English

units and 0.0.175 in SI unitsl SG - specific gravity of the sedinrent; 7.. = cnlical

value of the Shields parameter: d<o : nredian grain diameter; and I0 = depth of uni-

form flo*. (Note that a value of c, : 0.03,1 in English units contmonly is used for

the Stricklcr constant, rs discussed in Chapter 4.)
lf the grain size is such that the flow is not fully rough turbulent, then the \ alue

of r-,. is obtained from the Shields diagram and substituted jnto a Keulegan-t)'pe

equation for velocity derived br Einstein (1950) and given by

(  1 0 . 1 9 )

in which u," : critical value of the shear velocity = [r.. (SG - l)gdro]or; R' =

hydraulic radius due to gmin roughness, independent of form roughness caused by
ripples and dunes (to be discussed in the next section)l .r = a correction factor for
smooth and transitional turbulent flow, which is equal to unity for fully rough turbu-
lent flow; and t, - equivalent sard-grain roughness, which Einstein equated to d65,
the 65 percent finer grain size. The correction factor, r, is a function of ,t/6, as shown
in Figure 10.7, where 6 : viscous sublayer thickness : 11.6 vlu'. and al : shear

1 . 4

1 . 0

| 12.2R' xl
I{ : 5.75u..Ios 

L- t:- l

1 . 8

0.8

0.6

0.4
0 . 1

FIGURE 10.7
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veJocity due only to grain or surface roughness : 1gfi 'Ss)o5.Coarse sediments havc
no bed forms so the hydraulic radius R = R', and furthemrore,r = I .0 for fully rough
turbulent f low, with the resu It that Equation 10. I 9 reduces to Equation 10. I 7 for sed-
iments coarse enough to fall in the fully rough turbulent regime.

The relationships for crit ical velocity in Equalions 10. | 7, 10. I 8, and 10. l9 can
bc placed in dimensionless forr in terms of a crit ical value of the sediment num-
ber, N,", as defined by (Carstens 1966)

v

vGF r)s4,
(  10.20)

Neill (1967) has done extensive experiments on "first displacement" of uniforrnly
graded gravel and proposed a best fit relationship as shown in Figure 10.8 and
siYen bv

/ J  \  0 : 0

Ni = z so(.,3) ( 1 0 . 2 1 )

in which d" - geometric mean diameter and yu - depth of uniform flow. As
reported by Pagdn-Oniz (1991), Parola obtained similar experimental results for
uniform flow over a gravel bed when utilizing Neill 's criterion of hrst displace-
ment. Shown for comparison in Figure 10.8 are Equations 10.17 and 10.18 in terms
of N,. (with r-" : 0.045; k, = 2d5o; d5s = d; and the Strickler constant c" : 0.034
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dsotfo

FIGURE 1O.E
Critical sediment number for initiation of motion of coarse sediment (data from Neill 1967).
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in English units). For drol.r,u > 0.I, Manning's n begins ro vary rvith depth as the
roughness elemcnts become large rclative to the dcpth as di\cussed in Chapter 4. In
this zone, ivlanning's equarion tends to overestintate rhe cdrical velocity; wbile
Keulegan's and Neill 's cquations underestimate it and so are on the conservative
side. Manning's equation provides a rnore conservative e\rinrate if c- = 0.039 in
Engl ish uni ts .

EXA l tp t ,E  10 .2 .  F ind  t he  c r i t i ca l  shca r  s t r ess  and  cn r i ca l  ve loc i t y  f o ra  med ium
sand uith dru = 0.3 rnm (9.8 x l0 { fr) and a medium gravel \ \ . j th d.n : l0 mm
(0.0328 fr) for a uniforn f low depth of warer (20"C) of l .O m (3.28 fr).

So/l lnbn. First calculale the dimensionless sediment number. / . .  for both sediment
sizes. For sand with a specif ic gravity of 2.65 and warer u irh a viscosiry of I  X 10-6
mr/s ( 1.08 x l0 5 f tr /s),  .1. is determined by

,  [ ( s c  t ) q d l l  r  I' ' = L  ;  - l  : L l / l

= 7  .59

A similar calculation for the gravel yields d. = 253. Then, from Figure 10.6, r.,:
0.041 for the sand and 0.045 for the gravel with the former in the transitional rurbulent
range and the latter in the fully .ough turbulent range. The corresponding value of crit-
ical shear stress for the sand is

i, - (y, - f)dsor,,: 1.65 x 9810 x 0.OOO3 x 0.041

: 0.20 N/m'� (0.0042 lbs/ftr)

and for the gravel it is 7.28 N/nr2 or Pa (0.152 lbs/frr).
To fi nd the crilicai velocity for the sand, use Equation 10. l9 wirh x determined from

Figure 10.7. Assume thar no bed forms exisr ar init iation of motion, so rhat R, = R. Take
k , :2d \o :0 .0006 m (0 .002 f t )  and 5 :  11 .6  v /u" , :  11 .6  x  t0  6 t  e .2 } t rcm) \n  =
8.20 x l0 a m (2.69 x l0 r fr). Then, t/6 : 0.?3, and from Figur€ 10.7,.r = 1.57 so
that the crit ical velocity is calculated from Equarion 10.l9 as

/ r  |  1 .2 .2v^r  I
v - : 5 . ? 5 . /  l o s l  ' "  

I-  v p  - L  k ,  J

. -  [ { 1 2 . 2 \  1 . 0 \-  5 .?5 x (0.20/1000) ' '  .  log l- L 0.0006

(  1 . 0  x  1 . 5 7 )  l
r - a a  I = 0 3 7 m / s ( 1  

2 f t l s )

For the Bravel, use Equation 10.18 (Manning) with c, : 6.9414 and 4 : l.O for SI
units to obtain

K -
{  -  r V ( s c  -  r ) r . . d l " ' r j 6

1.0= 
0n4t4 

x  (1.65 x 0.045)r i ' �  x  (0.01)r i3  x  (1.0)r /6  = t .42mls

or 4.66 ft/s. For comparison, the reader can confirm that the critical velocity for the
travel from Equation t0.17 ( Keulegan) for the same value of r.. is I .3? m/s (4.50 fVs)
and from Equation 10.21, it is 1.01 m/s (3.31 ft/s). The laner value from Neill 's results
is considerably more conservative rhan either Equation 10.l7 or 10.l8 for this value of
dr/yo: O.O33.
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r0.4
APPLICATION TO S'TABLE CI{ANNEL DESIGN

once the crit ical shear stress for init iation of motion is elaluated, an ubvlou\ engi-

neering applicatiort occurs in stable channel design, as discusscd in Chapter' l The

Oesigriphiiosoptry is ro choosc a rock-riprap l inirrg of sufficient size that the nrax-

i*uii te,l sh."r itress at the design flow dcrs not excced the crit ical shcar s(ress'

ln the simple st problem, which is a very wide channe I with 'stable, barks' r. : r,, :

vr'^ S^. in whicir ],, is the nornral depth and 5o is thc bed slope lf the channel l in-

inj rnureriat is coaise enough to be in the full l  rough turbulent region of the Shields

diigram. which is the uslral case' then the crit ical value of the Shiclds prramelcr is

".Jn.tunt "nd th".rit ical shear stress is directly proponional to the grain diamcter'

For r-" = 0.045, it follows that 7. = 7.,(7, 7)dto Thercfore' setting r, = ro

results in

dso = 13.5r',,50 (  10.22 )

for quartz sediment in water' From (10.22) ue can see that increasing the dePth or

the siope requires a proPonionately larger rock-riprap size for stability of the chan-

nel bei. On itre othe; h;nd, for a given nati\ e sedimcnt size and channel slope the

flow depth must be limited to a specific ntaximum value, rvhich requires the chan-

nel widih to be larger to accommodate larger design flows while maintaining bed

stability.
lf i canal in the existing native sediment becomes too wide to achieve bed sta-

bility at the rtesign flow, then a larger sediment, used as a riprap lining of a narrower

channel, is required. The channel shape usually is chosen to be trapezoidal for ease

of constructio;, and stability of the rock-riprap lining on the sloping bank as well

as on the bed becomes an issue. In general. the value of the critical shear stress on

the banks of the channel is not the same as on the channel bed because of the addi-

tional force of gravity acting down the side slope of a trapezoidal channel This

gravity force .Jrnpon.nt asiists the hydrod-vnamic force.in causing initiation of

irotlon. tn ttre simplest case, as shown in Figure 10 9' the drag force' Fo' coincides

with the direction of motion and the submerged weight' %' has components down

the side slope and perpendicular to the side slope At the point ofincipient motion

on the channel banl, tire ratio of the forces parallel to the bank to the forces normal

T'IGURE 10.9
Stability of a particle on a channel bank.
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to the bank, must equal the tangenl of the anglc of internal friction or angle of

reoosc of the bank material. With rcfcrence to Figure 10.9' this is written as

Iat\ 0 :
\a4l (u,;t"df

(  10 .?3 )
W, cos d

The tlrag force is the critical shear stress on the bank or wall' 7:' times the surface

area ofa grain, A,. Substituting into (10 23) and solving for the critical shcar stress

on the wall gives

w f onto
r l  = - c o 5 t , t l n d , / l -  ,'  A ,  V  tan-O

When applied to the bed. tan d = 0 and cos 0 = l, so that Equation 10.24 implies

r. on the bed is equal to (W,/A,) tan S. If we then take the ratio of the shear stress

on the waff to that on the bed, thich is called the tractive force ratio, K,. lhere

results

rt f t^ to f-;t
K .  

'  =  c o s 9 . '  l -  L  . / l'  ' f . \ tan-@ v \rn @
(  10 .25 )

( r0.2.1)

(  10.26)

The last step on the right hand side of ( 10.25) is the result of a trigonometric identity.

By definition, 0 < d for gravitational stability of the side slope, so K. < l. For a given

side slope angle, 0, and angle of repose, S, which depends on the grain size and angu-

larity, the critical shear stress on the side slope is obtaincd by multiplying the critical

shear stress on the bed from Shields'diagram by the tractive force ratio, K,. It remains

only to compare the ntaximum shear stress on the side slope' which was given by
Lane ( 1955a) as 0.757r',,Sn. with the crilical shear stress on the side slope to determine

stability. Setting thcnr equal. as in the analysis that led to Equation 10.22' the result is

l 0 .  t
d56 = 

O 
_roSo

From ( 10.26), we can see that the flatter is the side slope, the larger the value of K.

and the smailer the minimum sediment size thal wil l be stable on the side slope- The

stabil ity of the bed also must be checked; and for this purpose, Lane (1955a) gave

the maximum shear stress on the bed as 0.977-vfr' Design of a channel rock riprap

lining !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!n this way is referred to as lhe Bureau of Reclanation procedure More

detailed methods for riprap design are given in Chapter 4.

10.5
BED FORMS

Bed forms are irregularit ies in an alluvial channel bed with respect to a flat bed that

are higher than the sediment size itself. The three main types of bed forms are np-

pies. dunes, and antidunes, each \\ ith a diffcrent physical origin. Ripples and dunes

ire caffed lorler rri ine bed fornts. because they occur generally in subcrit ical f low'
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while antidunes exist either near or in supercritical flow. As t-tre discharge or Froude
number increases, a transition zone forms between the lower regime ripples and
dunes and the upper regime, which consists of a flat bed with sedimenr uanspon oi
antidunes. The transition zone can consist of several bed form typ€s occurring in
different parrs of rhe bed simultaneously. Spccifically, ripples or junes and flat bed
can occur together during transition.

Sketches of several bed forms are shown in Figure 10.10. Ripples are approx-
imately riangular in shape with a long, flat upstream slope followed by un it*pt
steep slope approximately equal to the angle of repose of the sediment. HowevJq
ripples sometimes can be nearly sinusoidal in shape. Ripples and dunes move
slowly downstream at a velocity much less than the flow velocity as eroston occurs
on the upstream slope with deposition on the downstream slope. Ripples have
amplitudes of approximately 3 cm (0.I ft) and wavelengths on the order of 30 cm
( I ft); and they usuall), occur only in sands with grain sizes smaller than 0.6 mm
(0.002 ft). Ripples can occur on the upstream slopes of dunes, *,hich are much
larger in amplitude and wavelength.

Typical ripple pattern Plane bed

Dunes with ripple superposed Antidune standing wave

Dunes Antidune breaking wave

Pool

Ciut€

Washed-out dunes Chutes and pools

FIGURE IO.IO
Forms of bed roughness in an alluvial channel (Simons and Richardson 1966).

rii\

<>i
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Whcreas  r ipp les  are  thc  rc \u l t  o f  thc  g ro* th  o f  any  , . r r : r l l  d iscont inu i ty  on  the
b e d c a u s e d b v d c f o r n r a t i o n o f t h e b c d , d u n e s t e n d t o b ( , , l J t c d l o t h e l a r g e s t s c a l e
tu rbu len t  edd ies  in  the  l low $ i th  a  he ighr  on  the  ordcr  , ,1  thc  f lou 'depth .  In  bo th
cases ,  a l te rna t ing  rcg ions  o f  scour  and depos i l ion  ;11g c1 , . ; r t cd  in  the  f low d i rec t ion
tha t  p roduce grou th  o f  the  bed fo rnrs  to  some rc lu r ivc ly  . t rb le  shape.  Ya l in  (1972)
sho$s thal the wavelength of dunes must be relltcd to It,,r dcpth, since the largest
cddy  s izes  are  dcp th  dependent .  Dunes occur  a l  h ighcr  l l r ,w  vc loc i t ies  th rn  r ippJes ,
but thcy are sinri lar in shape with a gentle, slighrly convcr upstream slope followed
by an abrupt drop at the anglc of repose. Duncs ma1' be rrl sufl lcient height lo cause
surlace war es. but these are of nuch snraller antolitudc than the dunes and are out
of phase with the dunes. Ripples can be t\\,o dimensional. rr ith prrallel crcsts trans-
vcrse to the flow direction, or can exist as a three-dimcnsional anay of individual
r idgcs  and ra l leys ;  wh i le  dunes  tend to  bc  th rec-d imcns iona l  except ,  poss ib ly ,  in
narlow laboratory flunes. As the flow velocity increases to cause ripples just
beyond the threshold of motion and thcn dunes at higher r elocities. sedirnent trans-
port increases. With funher increases in velocity or stream power, the dunes are
washed out to form a plane bed with sediment transpon.

In contrast to ripples and dunes. antidunes are not caused by either bed defor-
mation or disturbance due to the largest-scale turbulent eddies, but rather by the
standing surface rraves that occur u'hen the Froude nunrber is near unity (Kennedy
1963;Yalin 1972). The alternating regions of scour and deposition in the flow direc-
tion due to the surtace wares create antidunes in phase with the surface waves,
which can become breaking waves. Antidunes can move upstream or downstream
or remain stationary. Kennedy (1963) shows that the uavelength of antidunes
depends on the Froude number of the flou as givcn by

.\ 'o 8)o

in which A = rvavelength;,r 'o - f low depth; and V: f lou lelocity. Sediment trans-
pon continues to increase as the bed passes through transition to flat bed and
ant idunes .

Several other bed form types have been classified (Vanoni 1977). Bars are bed
fbrms having a triangular longitudinal profi le, l ike dunes. but are of a scale com-
parable to the channel \.! idth and depth. Point bars occur on the inside of meander
bcnds, while alternating bars occur in relatively straight river sections as the thal-
weg undulates from one bank to the other. Chutes and pools, as shown in Figure
10.10. consist of large deposits on which supercrit ical f low forms a chute that
serves to connect deep pools.

Because bed forms depend on flow conditions in the river, they generate a vari-
able form roughness due to flow separation in the lee of the bed form with atten-
dant separation eddies and turbulent energy dissipation. This has led to the idea of
separation of the total bed shear srress into a ponion that can be attributed to form
roughness (ri l) and the remainder due to surface or grain roughness (r;). Assuming
linear superposition of the shear stress components. this is written as

(  10.28)

( 10.27 \
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i

- o Standing waves or antadunes
I

Transition
zone

t / .

LOWer regrme
(dunes)

a

7,

Upper regime
(plane bed,

slanding waves,
antidunes)

a

a

1 0

5
€
(r
.9
(!

I

1 . 0

0.5'1 .0

Velocity (fvs)

FIGURE IO.I1
Relationship ofhydraulic radius to velocity for Rit Grande River near Bemalil lo, New Mex-

ico (Nordin 1964).

where ro is the average boundary shear stress in uniform flow given by 7Rnlo, in

which Rn is hydraulic radius and So is the channel slope. Such a separation has been

found to be necessary to correctly predict stage-discharge relationships for alluvial

channels, as described in the next section. The existence of a changing flow resis-

tance due to variable bed forms as river discharge increases giYes rise to discontin-

uous stage-discharge rating curves, as sho*n in Figure l0.l I for the Rio Grande

River, for example. ln the lower regime, the tlos resistance is high, but as the dis-

charge or velocity continues to increase, the ripples and dunes are washed out in a

transition zone to produce a plane bed with lower resistance. albeit with a larger
value of sediment transport. Thus, for a given slope, more than one depth-velocity

'10
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FIGURE IO.I2
Prediction of bed form type from sediment fall diameter and sream pou,er (Simons and
Richardson 1966).

combination is possible as the roughness and conesponding sediment transpon rate
change (Vanoni and Brooks 1957; Kennedy 1963).

Numerous attempts have been made to identify bed forms as a function of flow
and sedirnent properties. The Simons-Richardson diagram ( 1966) shown in Figure
10.12 plots stream power, defined as the product of mean bed shear stress and
velocity, against sediment size to identify regions of occurrence of various bed
forms. Figure t0.12 is based on extensive flume data collected by Simons and



CH. \prER l0 :  F low in  A l luv ia l  Channe ls

Richardson, and reponed by Guy, Simons, and Richardson (1966). on rircr dara
from the Rio Grande at several srations and the Middle Loup Rirer at Dunning,
Nebraska, and on irrigation canal data from Indja and Pakistan. Ripples occur at
low values of stream power for f ine sands, whilc lower reginte dunes transition into
antidunes and flat bed as thc stream power increases. Simons and Senrurk (1977)
report that the diagram performs well on small natural streams. bur on rhe l\, l issis-
sippi River, it predicts flat beds for cases that have been obscrved to be dunes.

Van Rijn (198.1cy proposcd a bed form classification system based on the
djmensionless grain diameter. r/,, and a shear-stress parameter related to scdiment
transpon and given by f = Q'./r,, - l), in which zl = value of Shields parame-
ter for the grain shear stress and r-. : crit ical value of Shields' parameter. As
shown in Figure 10.13. Van Rijn suggesred rhat ripples predominare r,,hen d, < l0
and I < 3. Dunes fall in all other parts ofthc region I < 15. Transition is defined
by l5 < T < 25, and upper regime bcd forrns occur for T ) 25. From laboratory
and field data, including sorne of thc same data used by Simons and Richardson.
Van Rijn also developed a direct predictor for the height of dunes, _\, given by

( l - e o i r ) ( 2 5 - r ) (10  29 )

in which -r,o is flow depth; d.o is median grain size; and I is the sediment transpon
variable defined previously. Clearly, if the value of I exceeds 25 in ( 10.29), then a
flat bed is prcdicted rrith A = 0. The wavelength of the dunes ,\ *as given by Van

Upper regime

Transil ion

1 0
Dunes Dunes

Dunes

3

Bipples

1  1 0  1 0 0
Dimensionless Particle Diameter, d.

FIGURE 10.I3
Prediction of type of bed fonn from transpon parameler, I and dimensionless panicle diam-
eter. d. (Van Rijn l98ac). (Source: L. C. trn Rijn. "Sedinent Ttunsport III: Betl Fonns and
Alluyial Roughness," J. Htdr Engrg., A 1984, ASCE. Reproduced bt pennission of ASCE.)
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Ri.jn to be 7.-jr,,. which is in good agreenrcnt with Yalin's ( 1972) theorctical value
of ,\ : 2r.r ',,. Julien (1995) suggested rhar rhc van Rijn classification also suffers
from poor prediction of the upper regimc for vcry large rirers, such as the Missis-
sippi, for u hich dune-covered bcds hare bccn observed for f values well in excess
of 25. This appears to be due 1o the fact rhat lhc Froude nunrber approaches unity
for Z approrintarely equai ro 25 in laboratory experimenrs. whereas in large sand_
bed rivers. the Froude nurnber is considerably less than I atT = 25. As a result.
Julicn and Klaassen (1995) proposcd dropping rhe dependence of bed-form height
on 7 and deternined. front f ield data for several large rirers. that bed-form height
can be sivcn bv

(  10.30)

while bed-forrl length is approximately A = 6.25r'0.
Another diff iculty in bed forrn prediction is caused by water rempcrarure

effects. As discusscd by Shen, Mellema, and Harrison ( 1978), thc Missouri River
experiences a change from dune-covered bed to flat bed from summer to wlnter as
the temperature decreases at rhe same values of discharge and slope. Obviously, the
stream po\\'er in the Simons-Richardson diagram would remain the same evcn
though the bed fornr changes with temperature.

Brownlie (1983) studi:d the transition regime and suggested that it can be
delineated b1' the value of the grain Froude number or sediment number. N- =
y/[(SG I.)gd5pJ050, and the ratio of grain diameter to viscous sublayer thickness,
d.o/6, where 6= 11.6 vlu',. For slopcs greater than 0.006. Brownlie found that all
the bed forms were in the upper regime. while for slopes less than 0.006 he sug-
gesled the following relationships fbr rhe lower l imit of rhe upper regime based on
both flunre and river data:

. N ,,ng 
N;

-o- = r., ( ' ,n)o'
) o  \ . t o  . /

002.r6e + o.rsr;  roef + o.s:sr(nsf 
) '  ,o,  f  .  ,

I  l 0 . l  l a )

where Nf - t.74 S r/r and S = slope. For the upper l imit of the lower regrme,
Brownl ie  p ropo.ed  lhc  hc \ t - f i1  equt t ions

. N. d,,, / d.,, \ ' 'rosg=-ozo :o+00 i0z6 r . s f  *oo ]3o ( r .e f )  i , I .  f  <z

(  10.32a)

rog$ :  Iog t .2s

rog [  =  Iogo.s

o
(  r0 .3  l  b )

( r0.32b)fo, !!! - 2
3
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Nj  =  1 .74S r /3

Lower l imit of
upper l low regime

Transition
Transition

Upper l imit of
lower flow regime

1 0

0.1
1

d5o/6

I'IGURE IO.I4
Delineation of bed form transition zone from lower regime to upper regime (Brownlie

1983). (Soarcer ll. R. Bronnlie. "Flow Deprh in Sand'Bed Channels"' J' Hldt E't|rg'

O 198J, ASCE. Reproduced b!- pennisskm ofASCE)

These relationships for the transition zone ate shown in Figure l0 l4' and we can

see that the variible ,1,0/6, the ratio of grain size to viscous sublayer thickness'

reflects the viscous influence near the bcd and thus indicates a temperrture d!' len-

dencc for the bed forns.

1 0

10.6
STAGE-DISCHARGE RELATIONSHIPS

Perhaps the most fundamental difference between alluvial channel f lows with mov-

able beds and rigid-bed channels is the effect of variable bed forms on flow resist-

ance and therefore on the stage-discharge relationship lt cannot be emphasized

enough that the Manning's rr values of Chapter 4 no longer are applicable in allu-

vial clhannels experiencing active sediment transport, because of the accompanylng

bed forms. During the rising side of large flood hydrographs. dunes formed at low

discharges may be washerl out to prorluce a flat bed at the flood peak, which buffers

large variations in stage with discharge

Many nlethods have been proposed to predict stage-discharge relationshiPs for

alluvial sireams but only a l imited number are presented here. The reader is referred

to Vanoni ( l9?7) and Biownlie ( I983 ) for a more complete treatment Einstein and

Barbarossa ( 1952) were thc first to separate flow resistance into form and surface

(grain) resistance in alluvial channels. as indicated by Equation l0 28 The actual
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scparation .f srrear stress in{o rbrnr and surface conrponr'nts uas lchiercd througrr
rhc defrnit ion of 1\\ o rddiri\ c co^p.nents of the hl ir iauric ratl ius. r{ ' duc t. surfrir.r.
rcs is tancc  and R"  due lo  f i rn r r  res is r rnce .  ruch  rh l r  th r ,  r ,n l l  h ld r  tu l  c  rad ius  R =  / i ,+  R" .  The va luc  o l 'R '  was  dcrermined l - ronr  lb rmulas  lo r  f l ; \ \  rcs i \ t i tnce  In  ng l ( l
bed channels. whire R" camc from the 'bar rcsistance curve" rcritt ing v/rr1. in *hich
V : mcan flow relociry and rrl '  : shear velocity cluc ro bcj lbrnts = (strfS)re. to
thc Einstein sc{.l inrent trtnspon paranr!'ter t! '  = (y, - 

7)r1.r/(7R,S), $hich cssc .
t ia l l y  i s  the  inverse  o f  the  Sh ic lds  pararne tc r  us ing  r / , ,  as  ihe  rcprJscnta t i rc  g ra i r r
size. The physical reasoning behind the bar resistance cune w,s tased on rrrc
inlcrred rclationship betwecn the rate of sedincni transpon and the bed fonll
topography and. thus. the form resistancc of ripples and dunes. Followtng t. inslcll
and Barbarossa. others presented methods for separating the fricl ion lactor or thc
slope of the encrgy gradc l ine inlo lornt and grain resistrnce contDonenls.

Engelund's Nlethod

The method proposed by Engelund (1966, 196?) divided rhe slope of the energy
grade line into two components as S - 5' + S", in which S, is the grain roughness
slope and S" is rhe additional slope due lo form drag on thc bed forms. The value
of S" is expressed in ternts of an cxpansion loss due to the separation zone down_
\ l ream o f  r ipp les  and duner .  Engc lu r rd  app l ied  two r im i la r i ry  h lporheses  g iven as
follows: (l) In two dynamically similar streams, the Shields parameter 11 (due to
grain resistance) has equal values and (2), in two dynamically similar streams, the
expansion loss is the same fraction of the rotal energy loss. The latter hypothesis
can be shown to imply thar, for rhc two dynamically similar srreams, /if i  : /:/r,
in which/, and, are rhe roral fricrion facrors for srreams 1 and 2, and/i and/! ire
the grain resistance friction factors. Front the dcfinit ion of the friction factor. this is
eouivalent to

1 . 2  T , t
(  10.33)

(  10.34a)

However, according to the first similarity principle, the values of rl on the right
hand side of ( 10.33) are equal; therefore, so must the values of r. be equal. This can
be true in general only if z. is a function of ri alone. Engelund plotted hume results
summarized by Guy. Simons, and Richardson ( 1966) according to this conclusion,
as shown in Figure 10.15. It is evident from the data that separate curves for lower
regime and upper regime bed forms exist wirh a rransirion between them. and
apparent discontinuous stage-discharge relationships can occur in alluvial streams.
In fact, Engelund (1967) showed that the use ofFigure 10.l5 produced close agree-
ment with the measured stage-discharge relation for the Rio Grande given in Fig-
u r e  l 0 . l  1 .

The lower regime curve in Figure 10.15 has an empirically fitted cun,e given
by Engelund (1967) as

r', = 0.06 + 0.4 r?
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FIGURE IO.I5
Engelund's rl vs. r. diagram for stage-discharge prediction (Engelund and Hansen 1967;

Engefund 196?, using data from Cu;. Simons, and Richardson 1966). (Source: F. Engelund

Closure to "H\draulic Resistance ofAlluviol Streams," J Hvd. Div., Q 1967, ASCE Repro'

duced bv pennissiotl of ASCE.)

while for the upper regime curve.

r .  -  r ' ,  f o r  r l ( 1 (  10.34b)

(  10.34c)r .  =  ( 1 . 1 2 5  r ' - r 8  -  0 . 4 2 5 ) - r / r 8  f o r  r l  )  I

Equation 10.34b was given by Engelund (1967), while Equation 10.34c was pro-
posed by Brownlie (1983) as an empirical fit of the data.

The application of Engelund's method requires the calculation of the velocity
from a Keulegan-type relationship for fully rough turbulent flow given by
Enselund as

v
, = 6 + 5 . 7 5  l o g

R'

2dos
( r0.15)

in which V - mean flow velocityl R' = hydraulic radius due to Srain roughness;
and al : grain shear velocity = (gR'S)r/2. Note that the equivalent sand grain
roughness, t,, is nken to be 2d6s in Equation 10.35. Implicit in the application of
the Engelund method is a switch from dividing the slope of the energy grade line
to dividing the hydraulic radius into form and grain resistance components. To cre-
ate a depth-velocity relationship. a value of R' is assumed and y is computed from

G:i
|  = O . O 6 + O . 4 t ?
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(10.35)  nhi le  r l  is  ca lcu l r red as R' . ! / [ (SG -  I ) / { ] .  Thcn.  f ronr  F igure 10.15 or
Equation 10.3.1, rhc valuc of r. is obtained frorn ilhich lhc total hydraulic radius,
R.  is  ca lcu iated as

r . (SG -  l )z /*

based on the definition of r,. For a very wide channel. rhc hydraulic radius is taken
equal to the deprh, r,n, which is a common assunrption in alluvial rivcrs. Then, from
contrnuit)'. 4 = V.r'0. so thal llte depth discharge relationship also can be deter-
mincd. If q is given and borh V and r,o are unknown, then ireraiion is required on R,
unt i l  cont inu i ty  is  sat is f ied.

For the transition region of a discontinuous rating curve. such as the one shown
inFigure l0. l l ,Brownl ie l lg83)suggestedextendingahor izonta l  l ine across f rom
the depth at the upper limit of the lower regime to the upper regime curve for grad_
ually increasing discharges. For gradually decreasing diicharg=es, a horizontal line
would exrend from the lower limit of the upper regime to thtlower regrme curve.
Alternarively, an average could be taken of upperind lower regime depths in the
transition region, but ultimately more needs to be known about tie dynamics of the
transition itserf recognizing the stochastic nature and three-dimensionality ofthe bed
form formation.

Van Rijn's Method

An alternative approach for obtaining depth_discharge relationships was presented
by 'ran Rijn ( 198.1c). He used the predictetl height oi the bed form ro inter a form-
resistance component of the equivalent sand-giain roughness such that t, : k, +
tj'. The value of lj = 3dr, which is an average value taken fron a wlde variation
in laboratory and field data between I and lOdno (van Rijn l9g2), is substitured inro
the Keulegan equation to define rl, the grain shear velocity:

(  10.36)

( r0.37)

( r0 .38)

(  10.39)

, v
l2R

).  / )  los -
Ja gct

in which R : rotar hydraulic radius. This is a somewhat different definition of althan in Engelund's method. but the.final velociry for a giren deprh is computed
from Keulegan's  equat ion ut i l iz ing rhe rota l  va lue of  k .  ar id  a, :

_  t2R
v  =  > . l ) u r  t o g : ; -  _

Jq% + k

in wh.ich a. = (gRS)O5 and k,' for the form roughness is calculated from the bed
lorm herght _\ and sleepness A"/I a\

( J :  l . 1 A ( l  -  e - 2 5 r / . \ )
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The application of the method when discharge pcr unit of width r/ is givcn and both

depth and velocity arc unknown is as follo\ s:

l. Estimate a value of the hydraulic radius. R = r',,.

2. Calculate V = q/,r6.
3. Solve for al from Equation 10 37.
,1. Cafculate T = u',1/ui.. - I and the dimensionless grain dianreter, d.'

5. Calculate A from Equation 10.29 and I = 7.3,r'0.

6. Detemrine i i l '  from Equation 10.39 and velocity' V, frorn Equation 10 38' with

k , = k " + k : '
7. Calculate a new depth. 1u - qlV, and repeat, staning from step -j '

If the value of T > 25, then a plane bed results and ti - 0 in the oriSinal van Rijn

mcthod, but as discusscd previously, the value of t i may contintre to increase

beyond T: 25 in very large rivers. according to Julien

Karim-Kennedy Method

A third approach to the stage-discharge problem in alluvial channels was presented

by Karim and Kennedy ( 1990). Nonlinear regression analysis u'as applied to a data-

bise consisting of 339 river flows and 608 flume flows to determine the most sig-

nificant dimcnsionless variables affecting depth-discharge as well as sediment

transport relationships. Thc database included the laboratory data reported by Guy,

Sinions. and Richardson (1966) as well as field data for the Missouri River; Mid-

dle Loup, Niobrara, and Elkhorn Rivers in Nebraska; Rio Grandel Mississippi

River: anri canal data from Pakistan. Depths varied from 0.03 to l6 rn (0 1 to 52 ft):

velocities covered the range from 0 3 to 2.9 rrVs ( I .0 to 9.5 ftls); and sedimcnt sizes

from 0.08 to 28.6 mm (2.6 x l0-a to 9.4 x l0-2 ft) were included. The f'low resist-

ance was formulated in terms of the ratio of friction factors flfo in which / is the

friction factor for flow over a moving sediment bed, and/o is a reference friction

factor for flow over a fixed sediment bed given by a Nikuradse-Keulegan type of

relationship as

I  t 2 r , "  ] l

l5 
?s loc2id:]

(10.40)

in which t, - 2.5 dro.It was assumed. based on Engelund's ( 1966) analysis of flow

over lowei regime beds, that //0 varies linearly with the ratio of ripple or dune

height to flow depth:

f AL : 1 . 2 O  +  8 . 9 2 -
fo )o

with the coefficients detcrmined from the river and flume data lt remains to oblain

a relationship for A/yo, which was developed in the original Karim-Kennedy

(  10 .4  r  )



CHApTER l0 :  F lo*  in  A l luv ia l  Channe ls  401

Inethod from data by Allen ( 1978) in terns of the Shiclds parameter. The besr,fit
relationship was given by

I :  0.08 +

( 10.12)

for z. < I.5 and ,1/r'o = 0 for ;. > | .5. Karim and Kennedy then applied regres-
sion analysis to their data set ro obtain a relationship for dimensionless velocity as
a function of relative roughness. slope, and//0, which is given by

."Gc - Drd,
= 6.683(,/lq)""s"',( / 

) 

"*'

' , . ( : )  , 8  i i ( ; ) ' .  ' o n ( ? ) ' -  8 8 3 3 ( ; ) '

(  10.43)

in which SG - the spccific rrarity of the sedintcnti d50 = the median sediment
size; S: bed slope; _Ih = deprh: antl flfo is obtained from Equations 10.41 and
10.,12. For a given depth, the \elocity can be calculated directly from Equation
10.,13. The bed forms are identified as being in lower regime for r" ( 1.2, transi-
tion for 1.2 < r. < 1.5, and upper rcgime for r- > 1.5.

It is interesting to contpare Equation 10.43 with Manning's equation for a wide
channel by rearranging it for SG = 2.65 and g = 9.81 m/s2 to yield an expression
for Manning's a given by

( 10.44)

in which very small exponents on S and ro haye been neglected. Equation I0.44 is
in SI units and similar to the S trickler.equation with an exponent on dro of 0.126,
which is close to the Strickler r alue of;, but with the very important addition of the
//o term, which reflects the resisrance of the bed fonns. This equation emphasizes
the signif-rcant role pJayed by bed forms in alluvial channel resistance and under-
scores the mistakes that can be made by applying estimates of Manning's n for
hxed-bed channels from Chapter 4 to alluvial channcls with movable beds.

Karim and Kennedy also de\eloped a simplified procedure for computing the
transition ponion of discontinuous depth-velocity curves. The upper pan of the
lower regime is assumed to occur at about r. = 1.3, while the lower pan of the upper
regime is defined at r- = 0.9. The corresponding depths for these transirion points
then are calculated from the definition of r.. The lower regime relationship is con-
structed as a straight line on log-log scales from the computed depth-velocity point
fbr the minimum depth to the lorler-regime transition depth-velocity point with//0
= 4.5, the maximum value. The upper regime relationship is developed in the same
way from the maximum depth ro rhe upper-regime transition depth with l7i = L2.
Horizontal lines are drawn from the lower to the upper regime relationships at both
the transition poinrs at the upper limit of the lower regime and the lower limit of the
upper regime to represent the falling and rising portions, respectively, of the depth-
velocity rating curves for rising and falling hydrographs.

Subsequent research by Karim (1995) revised the relationship for A/_r'o in terms
of the ratio a./x7, the ratio of shear velocity to sediment fall velocity, which is an

o o:za3;"(rl)""
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indicttor of the relalivc contribution of bedload and suspended sediment load to the
roral sediment load. One slated advantage of this changc is to include the tempera-
ture effect on the bed forrn height, since fall velocity depends on the fluid tcmper-
ature. The resulting relationship for J/_r'o is given by

I  =  - 00+*o : s r ( l . )  -  0 . 00u6 fu . ) '  00J re (a . - )  ,  ooo r r r { ' , . )
.\'o \wJ / 1 tr,, ,/ \ tri / \wt /

( 10..r5 )
for 0.15 < uJu, < 3.64, and A/,r 'o : 0 for u,/w, < 0.l5 or r,/r, > 3.64. Equation
10.45 is based on only the laboratory flume data reported by Guy, Simons, and
Richardson (1966) and some Missouri River data. Equation 10..15 in combination
\r' i th Equations 10..10 through 10.42 is applied to the full data set of rhe Karim-
Kennedy method as well as to l3 flows in the Ganges River, Rio Grande, and Mis-
sissippi River to predict depth-velocity rating curves. Mean normalized errors in
both depth and velocity for all data sets are approximately l0 percent.

More recently, Karim (1999) developed another r€lationship for A/.r 'o that pro-
vides a better f it than previous methods for a data set consisting of f ield data from
the Missouri River, Jamuna River, Parana Rivel Zaire River, Bergshe Mass River,
and the Rhine River as well as Pakistan canal data. The relationshio of Julien and
Klaassen (1995) given as Equation 10.30 also perfornred well for rl i is data set.

f , xAMpLE 10.J .  The Midd le  Loup R iver in  Nebraska has  a  s lope o f  0 .001 anda
median grain size d5o = 0.26 mm (0.000852 ft). The values ofdu, : 0.32 mm (0.00105
ft) and deo : 0.48 mm (0.00157 ft). For a discharge per unir uidrh of 3.0 ftrls (0.28
m:/s), find the depth and velocity of flow using the Engelund merhod, van Rijn method,
and Ka.im-Kennedy method.

Solaft'oz. Assume that the channel is very wide so that R = yo in all the methods.
|. Engelund Method. Assume a value of y6 = 0.3 ft (0.09 m). Then calculare 11 as

, 7)65
(v, - v)ds,'

The velocity is given by

Y = VeIi,S 
L6 

- s.75 loc 
2dd5 l

I  o r  ]
=  v32 .2x  0 .3  x  0 .001  x  

L6  
+  5 .7s , . r ,  ,  o00 , * l  

:  l . 8 l  f t l s

or 0.55 rn/s. From Figure 10.15, f ind r. or use Equation 10.34a assuming lower
regime bed forms, from which

,. = fLs?t - aoq: Vzs .x 1o:r - ooo; : o.or
Now calculate )o from the definition of r. to give

0.3 x 0.001
1.65 x 0.000852

r(SG l)dro 0.61 x 1.65 x 0.000852
, l o : 0.86 ft (0.26 m)

0.001
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Finallr. calculare z7 : {r 'o = 1.31 X 0.86 = I 56 l ir/s 10.145 nr:/s.1. Because this is
smallcr than the given value of 3.0 ftr/s (0_lS mr/s) , rcpeat for a larger value of yi.
For vj, : 6.5 fr (0. l-5 m), rl = 0.36 and V = 1.50 ftrs (0.76 m/s). Then r. = 0.86 and
i{r = l. l  I f l  (0.37 m) so rhar q = 3.p2 frr/s (0.2g1 mr/s.1. This is ciose enough, bur
check lbr lower regime bed forms. Calcutale 7o: TliJ = 62..1 x l.2l X 0.001 :
0.076 lbs/frr (1.6 Pa) rod srream power = rat, = 0.0'16 X 2.5 = 0.19 lbs/(ft_s) (2.8
N/(nr-s)). Then, for a fall diameter of 025 mm (see Figure 10.3), rhe Simons,
R ichardson d iagrarn  (F igure  I0 .12) ind icaresdunes.so th is isasn l i s facroryso lu r jon :
r ,  -  L i I  f r  r0 .J?  mr  rnd  V -  2 .50  t r - l s  10 .76  rn  \ )

2. Van Rijn ivlerhod. Assume a depth of 1.0 fr (0.10 m) and from conrinuity, V = q/r-o :
3.0/1.0 = 3.0 f/s (0.91 m/s). Then calculale u: from

3.0-  
r r ^  r n  

-  0 .  I  5  I  f t  .  ( 0 . 6 , 1 6 6  .  .  ,
5  7s los-ooo;-

By definit ion. rl = !lr l[(Sc - l)sdr,J :0.t53:/0.65 x 32.2 x 0.000852) = 0.52.
Obtain ;,, by first calculating d. as

,  f  { s C -  r r s d l n l  ,  I  r . o s . . r 2 . 2  I ,
i  I  L r r : " 1 6 ' , ' l  

< o o o o 8 s 2  - 6 l

sothar... - 0.047 from Figr-rre t0.6and,T: r ',/r", l:O.52t0.04:' - I = 10.1.
The height of the dunes is obtained from Equarion 10.29 as

.t
( l - e o r r ) ( 2 5 - T )

/ 0.000852 \o 
,

0 .  ^ l  - I  - . n '  t u t ) r 2 5  -  I 0 . l ;  -  6 . 2 9
\  1 . 0  /

so rhar .1 = 0.20 x 1.0 : 0.20 fr (0.061 m). Having rhe dune heighr and with the
wave length, , l = 7.lfo, the equivalent sand-grain roughness height due to the bed
forms can be estimated from Equation 10.39 as

r?  =  l .1A(1  -  e - :s r / r )  =  l . l  x  0 .20  x  ( l  _  e i -25x0?or r )

= 0.109 ft (0.033 m)

Finalll, tie velocity can be obrained from F_{luation 10.3g based on rhe totai shear
velocit!:

- 3d,() + k"'

T= 5.15V32.2 x 1.0 x 0.0Ot loel
3 x 0 . 0 0 1 5 7 + 0 . 1 0 9

I 2  <  1 . 0

) =  r * n r "

l2ri,
5 .75  los  -

o rrr&)"
\ ) 0 , /

or.!.6a n/s, The resulr for discharge per unir *'idrh is 4 : V1o = 2.09 frrls (0.194
m'/s ). \r'hlch requires a second iteration with a larger value of depth. For yo = 1.3 f1
(0.40 m), rhe trial value of velocity is 2.31 tus (0.7M n/s) and al =d.lt+ fvs
(0.0347 rnis). Then r'. : O.28'7 and T = 5.1 l. This gives a dune heighr A = 0.291 fr
and t" = 0.171 fr (0.0521 m). Finally, the velocity is 2.29 ft/s (0.7b m.rs), wtrictr is
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verv close to the init ial  vl lue. so the solut ion by the vrn Rijn nrethod isr '0 = l . l0 f l
{0..10 m) and V = 2.-10 ftrs (0.70 r s).

3. Karin-KtnneLly MethoJ. First calcuhle the value of lhe Shields parameter lbr an
i l r r un r .  d  dc l ' r h  u f  I . 1  f r  , 0 l 0  m  r  t o  g i r e

\ o s
'' = 

6ci - I)ri-
L3 r  0 .001 = 0.925

rvhich is lcss than l . l  and therefore in thc Io*er regime. The rel i i l ive dunc hcighr
fbl lows from Equdtion l0.. l l  into \ \hich the value ofr" has bct 'n substi tuted'

t  . o o , - : : r f  " : r s ) , r . , . , ( 0 " ' ) '
f , , \ 1 . / \ 1 , /

.  70 ef  
"  el5 

) '  so. :- , f  
o ot t  

) '  . -  n. . , t
\ l ' l \ l ' l

Therefbrc, the rclal ivc ralue of the fr ict ion factor is obtained from Equation 10.,11 as

I :  , . , 0  *  s . s : f  :  r . : o  +  8 .92  r  0 . i 27  =  4 .12
,/o -ro

Finally. the velocity comes from substituting into Equilt ion 10..13 to give

{sc - Dsd,
- - b 6 8 i  /  ( r J . ' r r r )  

" "  
o . * , 0 \ 1  v  4  1 2  ' h ' -  r 0 . 5

t.65 x 0.000852

so that y: 10.5 x 0.65 x 32.2 x 0.0008-52)05 = 2.23 ft ls (0.68 m./s). The dis-
charge per unit of width then is 2.90 ftrls (0.269 rnr/s), \r,hich is close. but an adddi-
tional i leration yields )o : 1.33 ft (0.'11 n)) and V = 2.26 ft ls (0.69 nts).

The results of the lan Rijn method and the Karim,Kennedy nrethod are vinually
identical, while the Engelund nrethod gives a depth and velocily both of which are
within about 8 percent oi the values from lhe other two methods.

10.7
SEDIMENT DISCHARGE

The prediction of total sediment discharge in an alluvial stream is an important
aspect of river engineering with applications from the assessment of changes in
stream sediment regime due to urbanization to the evaluation of long-term bridge
scour. This section focuses on the bed-material discharge; that is, the ponion of the
sediment discharge consisting of grain sizes found in the streambed as opposed to
wasb load, which is defined as the fine sediment resulting from erosion of the
watershed.

Two distinct approaches are taken to the problem of determining total bed-
materirl discharge. The first was pioneered by Einstein (1950), in which total bed-
material discharge is divided into bed-load discharge and suspended-load discharge
and summed to estimate total sediment discharge. The bed load is that portion of
the sediment carried near the bed by the physical processes of intermittent roll ing.
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s l id ing .  and sa l ta t ion  (hopp ing)o f  ind iv idua l  g ra ins  a t  var ious  random lc ra t ions  in
the bed, so that tbe sediment remains in contact with the bed a large perccntage of
the time. Suspended load, on the other hand, is composed of sediment panicles that
arc l ifted into the body of t}le flow by turbulence, where they remain and are trans-
poned downstream. An equil ibriunr distribution of suspended sediment concentra-
tion develops as a result of the balance between turbulent diffusion of the grains
upward and gravitational settl ing of the grains downward. The sedinrent concentra-
tion near the bed as determined by the bed-load discharge is the essential l ink to
estimalion of suspended load discharge because it provides the boundary condition
for the vertical distribution of suspended sedinlent concentration.

ln general, the opposing forces of turbulent suspension and gravity are
reflected by the dimensionless ratio u,l\\, in which u, is shear velocity and r, is the
sedinrent fall vclocity. Bcd load is the dominant transpon mechanism for t l-/wr {
0.4, and suspended load is the primary contributor to sedinrcnt load for lJx', > 2.5
(Julien 1995). In between these two linrits, nrixed load occurs, with components of
both bed load and suspended load.

The second approach to determination of total sediment discharge is to directly
rclate the total rate of transpon to hydraulic variablcs such as depth, r 'elocity, and
slope and to sediment properties. This method depends on large databases of f lume
and field data to be applicable to a wide variety of situations, and the best-fit rela-
tionship often is presented in terms of dinrensionless variables for the same rcason.
In either approach, issues of water temperature, the effcct of f ine scdiment, bed
roughness, armoring, and the inherent diff iculties of nreasuring total sediment dis-
charge can cause significant devialions between estimates and measurements of
total sedimcnt discharge as demonstrated by Nakato (1990). Nevenheless, such
estinrates ol sedimcnt discharge must be made for engineering purposes. This often
inrolves the use of several different formulas dctcrmined to bc applicable to the sit-
uation of interest and reliance on engineering judgment to make the final estimate.

This section presents a few selected formulas fbr estimating sediment dis-
charge and lirnitcd comparisons with field measurcmcnts. For a more complete
treatment, refer to the references at the end of this chapter. The transpon formulas
are presented in terms of the volumetric transport rate of sedinrent per unit of
stream width, g, with a subscript of b for bed load, s fbr suspended load. and t for
total load. The sedimcnt transport rate also can be expressed in terms of dry weight
of sediment transported per unit of width and time as the symbol g u,ith the same
subscripts, so that 8, = 1,qo lor bed-load discharge, for example. Thus 4r, for
example, has dimensions of t:/f (ftr/s or ml/s;. while go has dimensions of F/I/L
(lbs/s/ft or N/s/m). In the English systenr. lhe weight rate of transpon rr i l l  be used,
but in the SI system a mass transpon rate traditionally is used. The nrass transpon
rate per unit of channel width can be obtained b1 dividing the corresponding weight
rate by gravitational acccleration to obtain dimcnsions of M/T/L (slugs/s/ft or
kg/s/m). The sediment transport rate for the full stream width is obtained as the
product of transpon rate per unit of width and stream width, and the synrbols Q and
6 are uti l izcd for this purpose for volumetric and weight rates of transpon, respec-
tively. with the appropriate subscript to indicate bed load (b), suspended load (s), or
total load (l).
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Bcd-Load Discharge

Bed-load formulas tend to be empirical by necessity. because of the complexity of
the physics of movement of individual grains by roll ing, sliding, and saltation.
Early views of bed-load transport, such as that of DuBo) s ( 1879), assumed that the
bed load moved in sliding bed layers having a l inear relocirl distribution. which
although incorrect in theory, ncvertheless led to a useful ranspon formula depcnd-
ent on shear stress wilh coeficients determined by experiments by Straub (Brown

1950). Graf (1971) shows that the same formula can be deduced from a power

series expansion \\, ith respect to the bed shear stress and imposition of the bound-
ary conditions of no transport rate for ro = r. and ro - 0. where ro is the bed shear
stress. The resulting bed-load transport formula is given by

LD8

Y b  . r ' r r r 0 \ / 0
( d i o , l - '

in which dro : thc median grain size in ntm: r0 - the bed shear stress in lbs/ftr;
z" : the crit ical shear stress also in lbs/ft l; 4b = the volumetric sediment transport
rate per unit of width in ft2/s; and Cr, : 0.17 for this set of units. If the shear stresses
are expressed in N/m: and 4, is in mr/s with d50in mm, then Co, = 6.9 x l0 6 Tbe
most important contribution of the DuBoys formula is the relation between sediment
transpon rate and an excess bed shear stress with respect to the crit ical value.

Several other bed load transport formulas are of the DuBoys type. These
include the formulas of Shields (1936) and Shoklitsch (Graf l97l), although the

latter is expressed in terms of a difference between the actual water discharge per

unit of width and the water discharge per unil width at incipient motion. The
Meyer-Peter and Miil ler formula ( 19.18) is the result of laboratory e\periments at
ETH (Eidg, ncissische Technische Hochschule) in Zurich. Suitzerland. for sedi-
ment sizes from 5 to 28.6 rnm. It can be placed in the dimensionlcss form

6 t -  8 .0 ( r .  0 .047)r  r (  10.47)

in which d, : the sediment size; SG = the specific gravity of the sedimenti and
r. : the Shields parameter. The value of 0.0.17 can be interpreted as the crit ical
value of Shields' parameter, r.... Equation 10.47 applies to the case of no bed forms
in coarse sediment.

Einstein ( 19.12) introduced the concept of probabil ity to the bed-load transport
phenomenon, which resulted in a bed-load formula dependent on shear stress rather

than excess shear stress. [n other words, very small transPon rates were predicted

at shear stresses less than the crit ical value. Einstein assumed that individual sedi-

ment grains move in finite steps of length L, proportional to the grain size. Then,

for a bed area of unit width and length L,, the bed-load transport rate is laken as the
product of the number of grains in this bed area, the volume of a grain, and the prob-

ab i l i t y  tha t  a  g ra in  w i l l  be  moved per  un i t  t ime,  p ,  Thenumbcro fgra ins in thebed
area is L,/C rdi, where C, is a constant of proportionality and d, is the Srain \ize. \o

the volumetric transDon rate is

( r0..16)

Qt'
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L ,
a a  =  

* C : d ; P '
( r 0.'+8)

(  10.54)

shere Crrl] reprcsents the volume of an indilidual grain and L, = Cud,, in which

Co is a const"nt of proportionality for the step length The probability, p,' is con-

\ Jned to a true probability by multiplying by a characteristic time scale, which Ein-

stein expressed as d,/h7, or the time rcquired for a grain to fall through a height

equal toits own dianrcter, d,, since |'7is the fatl velocity Substituting for Lr andp,

results in

Thc resulting dimensionless parameter is seen to be the Shields parameter 2", which

Einstein refened to as l/ry'. The fall velocity, r'r, was expressed by the Rubey equa-

t ion (  1933)  as

in which the probabil ity p - pdlu t Finally. Einstein assunred that the probabil ity,

p. was a funciion of the ratio of thc l ift force on a grain. taken to be proportional to

;odl, to the submerged weight of the grain. which was assumed proportional to (7.

- y)d:r, so that

. t  ro I
n = l l - l'  ' 1 0 , -  t ) d , l

(  10.49)

( r0.50)

wt= F ' (  r  0 .51)

in which

(  10.52)

and d. is the dimensionless sediment diameter defined previously Combining

Equations 10.49 through 10.51 results in a bed-load discharge formula expressed in

terms of dimensionless variables as

Q n : fQl') (  10.5 3)

in which

C.
at = 

,:,Cod'*10

and @r" is defined here (for reasons that will become apparent in the following dis-

cussioij as the Einstcin-Brown dimcnsionless sediment transPort rate such that

6u = 6/F.. Einstein plotted the laboratory data of Gilben (191'l) and the ETH

zirlcn aita (see Meyer-Peter and Mi.iller 1948) for sand, gravel, and coal (0 3 <

E J
v r - d : -

Qt

(+-r )sa,

36
d i
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FIGURE IO.I6
Einstein-Brown bedload transport formula (adapled from Brown 1950) (Soarce; FiSrtrc

used courles\ of Iot|a I stitute of H)droulic Reseorch.)

d5o < 28.6 mm) in terms of these dimensionless paranreters and derived an expo-

nential relation between them. It is given by

0.4656 ER - e-o rer'y' (  10.55a )

However, in the chapter in Engineering H,tdraulics written by Brown (1950) and

edited by Rouse, the same data were fitted by the equation

r , , - * ( ; )  =+o( r . ) r

1 0

n
g

0.' l

0 .01

0.001

0.0001 24201 8

( 1 0 . 5 5 b )

Equations 10.55a and 10.55b, taken together, have come to be known as the Einstein-

Brown bed-load transport formula, with Equation 10.55a applicable for ry' > 5'-5

and Equation 10.55b applicable for ry' ( 5.5, as shown in Figure 10.16. The Einstein-

Brown formula was derived for uniform sediments with no appreciable bed forms

but often is applied to other field conditions. lf bed forrns exist. then it is more

appropriate to express f in tcrms of the grain shear stress' defined as rf" because

the grlin shear stress is primarily responsible for sediment transpon (Graf l97l t.

i inrtein (t950) further developed his bed-load relation into what now is called

the Einstain bed-load furtctiott. ln the expression for probability. the lift force \r as

evaluated in terms of the shear velocity using the grain contribution to the hydraulic

radius. R', in the definition of ty''. ln addition, a hiding factor and a pressure cor-

rection factor were introduced to obtain better agreement with data for sediment

mixtures in which larger grains tend to shelter smaller grains in the bed from trans-

port. The Meyer-Peter and Miiller (1948) formula also has a more genera! form- in
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rr hich only the contribution of grain resistance to the slope of the energy grrde l ine
is included for thc case of significant bcd forms. Chien ( l9-56) shows that the ntore
general form of the Mel er-Peter and Miil ler fbrmula can be modified and exprcssed
in terms of the Einstein variables as

(  10.56)

in which r,l '  : (SG - I )d5olR'S. Chicn shows close agreement between this expres-
sion of the Meyer-Peter and Mtil ler fornrula and the 1950 Einstcin bed-load func-
tion. which uses d.,5 as the representative sediment size. For bolh lbrnrulas, only the
grain shear stress is used in the definit ion of fu' : 11r'-.

Van Rijn ( 1984a) took a different approach to the estimation of bed-load dis-
charge by modeling the trajectories of saltating bed panicies. assunted to be spher-
ical in shape. He defined the bed-load lranspon rate as 4, : ar6rcr. in which ri, is
(he particle vclocity: 6b is the saltation height; and c, is the bed)oad conccnrrarion.
The equations of motion for an individual saltating sphere werc solYed with a tur-
bulent l i ft coefficient of 20, and an equivalent sand-grain roughness height of two
or threc grain diameters, which was used in the logarithrnic velocity distribution for
the fluid. These two parameters were obtained by calibration of the model with
neasured trajeclories. Published values of the drag coefficient were used, and the
init ial velocities of the panicles were assumed to be 2u.. The maxintum thickness
of the bed layer corresponding to the maximum saltation height was approximately
l0 grain dianreters, but the saltation height varied with the transpon parameter, f,
and the dimensionless grain diameter, d,, introduced previously in van Rijn's
method for depth-discharge prediction. From a set of computed trajectory data for
particles from 0.2 to 2.0 mm in diameter and rr* values varying from 0.02 to 0.1.1
m/s (0.066 to 0.46 ft ls), the saltation height and panicle velocity $ere correlated
with the transpon parameter, I and the dirnensionless grain diameter, d,. The val-
ues for bed load concentration c, were obtained from measuremcnts of bed-load
discharge in flumes and the corresponding computed valucs of rr, and 6ri that is, c, =

q,/(u63). The results for c, also were conelated with ?. and d. and combined with
regression relations for l, and 6o to obtain a bed-load transport fomrula given by

6 .=  - -J :  -  f 1  o . , r r l "
V(SC - l ) .c, / ] , ,  Ia l

*  =  - 4 0  = n n . . 7vb 
\,{sc - Ds,i i  

'  
d9'

(  10.57 )

The value of ?'in Equation 10.57 depends on ai., which is calcuiated from Equa-
tion 10.37. In a verif ication data set including flume data and Iimited field data. the
proposed bed-load discharge formula was found to prcdict the measured bed-load
discharge within a factor of 2 for 77 percent of the data points. which was compa-
rable to the variabil ity in the data itself.

The bed-load formulas presented here are l imited to predictions of bed-load
discharge when bed load is the dominant mode of transport or to the prediction of
the bed-load contribution to the total sediment discharge. They are not intcnded for
predictions of total sediment discharge in cases where both bed load and suspended
load are significant components of the total.
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Suspended Sediment Discharge

In steady, uniform turbulent f low in a stream, turbulent velocity f luctuations in the
vertical direction uanspon sediment panicles upward. If the vertical velocity f luc-
tuation is w', and the turbulent f luctuation in sediment concentration is c', then a
positive correlation between c' and r' '  leads to a mean turbulent f lux of sediment
per unit of area eiren by '1,'c' as shown in Figure 10.17. The positive correlation
results from posirire (upward) values of rv' bringing parcels of f luid with higher
sediment concenmtion (+c') with it since the suspended sediment concenrration
decreases in the upward direction. For an equil ibrium sedimenl concentrrtion pro-
fi le in the vertical having no changes in the flow direction, the only other sediment
flux, as shown in Figure 10.17, is due to the gravitational settl ing of sediment par-
ticles given by x;C for a unit area, in which w7 is the fall velocity of the sediment
and C is the time-averaged concentration at a point in the vertical. Now the turbu-
lent f lux is assumed to behave like a Fickian diffusion process with a turbulent sed-
iment diffusion coefficient of €, so that

Equating the turbulent flux to the gravitational settling flux results in the following
differential equation that govems the concentration distribution C(;):

€ , - ; + r r l L = u

This equation immediately is integrable by separation of variables if e, is a constant
with respect to depth. The result is an exponential distribution given by

"-ol-f,r. - "rl (10.60)

FIGURE IO.I7
Suspended sediment flux balance.

( 10.s8)

(  10.59)

C

C"

w c
+
I
I

l l
t l
l l

I
I+

wrC



CHApTER I0 :  F - l ow  i n  A l l uv i a l  Channc rs

in rvhich C, - suspended sediment concentration at z : a. Unfonunately, e, is not
a constant in alluvial channel f lows, particularly near the bed, where the turbulence
characteristics are changing with distance abo',e the bed. The distribution ofe" with
the vertical coordinate z is deduced based on the vertical disrribution of turbulent
eddy viscosity, e, defined by

du

o:

in which r andll represent the point shear stress and longitudinal velocity, respec-
tively, at any distance z above the bed, as shown in Figure 10. 18. First, we assume
that €, = p€, where p is a coefficient of proponionality. Second, we can show, from
the Navier-Stokes equations, that the vertical shear stress distribution in a steady,
uniform flow in an open channel is linear, as shown in Figure 10.18 and given by

(,vo - :)
, - r o  

n

in which ro : the shear stress at the bed and I'n : the depth of uniform flow. From
the Prandtl-von Karman velocity defect law, given previously as Equation 4.13, we
can show that

(10.63)

in which r : von Karman's constant, having a value of 0.4 for clear fluids. Sub-
stituting er : B€ into Equation 10.61, along with Equations 10.62 and 10.63, and
solving for e, gives

e, = pxu. ( 10.64)

which is a parabolic distribution with a maximum value of the sediment diffusion
coefficient at mid-depth. Equation 10.64 can be substituted into the differential
equation ( 10.59) so that it can be integrated to produce

4 l l

d u , u .
dz Kz

z ,

(10 .61 )

(t0.62)

(  10.65)
c  l (vo  -  z )  a  l&
c " = l  ,  L t b - r ) ]

z Yo
*

\ro

U

I 'IGURE IO.IE
Sheal stress and velocity distributions in steady, uniform turbulent flow.
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c/c.
FIGURE I0 .19
Rouse solution lbr venical distribution of su rpended sed iment conce ntration (Vanoni 1977).
(Source: U A. Uanoni, ed. Setlinentatioa Ertgineering, A 1977, ASCE. Reprotluced b"- per-
,nissbn of ASCE.)

in which C" = the reference concentration at the distance: : a above the bed and
R": w/(Bru.). Equation 10.65 was derired by Rouse ( 1937), and Ru is referred
to as the Rorlre ruarlrer (Vanoni 1977; Julien 199-5). Equation 10.65 is plotted in
Figure 10. l9 for different values of Ru Thc \ ertical coordinate is dcfined as (: - n)/
(,r 'u - a) in which, arbitrari ly, a : 0.05-r',,. As the value of Rn decreases, which
would correspond lo a finer sediment for the same flow conditions in the stream
(a.), the concentration disrribution becomes more uniform. On the other hand.
coarser sediment particles corresponding to larger values of Ro result in a sus-
pended sediment concentration distribution carried in the lower ponion of the flow.

The Rouse solution given by Equation 10.65 has been compared favorably with
measured suspended sediment concentration distributions from rivers and flumes
(Vanoni, 1977). Its application to measured suspended sand concenrrations for the
Rio Grande at Bernali l lo. New Mexico (Nordin and Beverage 1965), is i l lustrated
in Figure 10.20 at a single vertical location in rhe stream cross section. The con-
ccntration is pldted on the horizontal scale vs. the rariable (_r; - :)/; on the verti-
cal scale using log-log axes. From Equation 10.65. ue see that the Rouse solution
should plot rs a straight l ine on log-log axes with an inverse slope of Rn as shown
in Figure 10.20. Where there is a wide variation in the size distribution, Equation
10.6-5 can be applied to separate size fractions.

Values of Ru can be obtained from measured conccntration profi les as shown
in Figurc 10.20. but the rcsults do not alwa\ s agree u ith predicred values of Rn :
x',/(Bxu.) with B : 1.0 and r = 0.4. The ron Karman constant can vary from its

r  o 6

0.80.60.4o.2
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FIGURE IO.20
Measured suspcnded scdimcnt concentration in Rio Grande River and determination of
Rouse number. Ro.

clear-water value of 0.4 to a value of 0.2 at high concentrations of suspended sedi-
ment as shown by Vanoni (1953) and Vanoni and Brooks (1957) from laboratory
experiments. Einstein and Chien ( 1954) presented a method for predicting the von
Karman constant in terms of the ratio of the power required to suspend sediment to
the rale of doing rvork by the boundary resistance force. In addirion, the value of B
ordinarily is taken to be unit). but f lume and river data (Chien 1956) sho$ that it
can vary from I to 1.5 as Ro becomcs larger (>2), which corresponds to coarser sed-
iments. Finally, the estimation of the shear velocity, a., from a uniform flow for-
mula as (g-r'f)0 5 introduces errors because river flows seldom are uniform. The
slope often is estimated as the water surface slope, but it is very diff icult to mea-
sure accurately. The estimation of a. affects the value of the von Karman constant
if i t is determined from measured velocity prohles as well as the value of Ro
directly. These diff iculties suggest that measured values of \ may be more reliable
than predicted ones.

The suspended sediment transpon rate is conputed from an integration of the
product of the point velocity and concentration from the reference bed level at : -

c to the free surface where: : r":

s,: J .co: (  10.66)

in which C. is the suspended sediment concentration usually given in mg/L or g/L
so that g, in this case often is expressed as kg/s/m in the SI system or con\ erted to
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the English system as lbs/s/ft. The concentration also can be exprcssed as ppnr
(pans per mill ion) b_v ucight, C..nn., which is related to rhe conceniration in nrg,/L.
C -o". uY

c,. or.
106(sG)c" c'..r, t

r + q.(sc l) I + C,,(SG - i j  ( lo 67)

in which SG = the specific gravity of sediment; and C, - the concentratron by yol_
ume defined by the r'orume of sedinrent divided by t-he rotar vorume of sedinrent
and water. From Equation r0.67, it can be demonstrated that sediment concentra-
tron_expressed in ppm is equivalent to the units of mg/L (within 5 percent) as long
as C, < 0.032 or C,.oo. ( 80,500 ppm.

Einstein (1950) substituted the Rouse solution for suspendcd seclirnent con_
centration (Equation 10.65) and the semi-logarithnric vetocity disrribution (Equa_
tion 4.16) into Equation 10.66 to obtain the suspended sedimint rranspon rate. He
assumed a value of x: 0.4 and used ai in the calculation of Ro. The reference con-
centration, q, was calculated for a bed layer with a thickness of two grain diame_
ters having a bed-load rranspon rate determinecl from the Einstein bed-load func-
tion. The grain vetocirl, in the bed layer was taken as the velocity at the edge of the
viscous sublayer ( l 1.6ll: ) so that

(10.68)

The integration of Equation 10.66 was done numerically and presented in graph-
ical form. Furthernlore, Einstein suggested that the grain size distribution be
divided into size fractions each with a representative giain size,4i, and that the
suspended sediment discharge be computed for each size fraction. The total sus_
pended sediment discharge then is I p,g,,, in which p, is the fraction by weight of
the bed sediment with mean size d,, The bed_load discharge for each size frac-
tion.also is weighred by p, and added to the suspended ,ldirn.nt discharge ro
obtain the total bed-material discharse.

The principal criticism of the EinJein merhodology is the use of rl and r : 0.4
in the Rous€ exponent Ro. The grain shear velocity cl-early is the appropnate choice
for depth-discharge predictors and bed-load transpon formulas when bed forms are
present. However, the full contribution of turbulence to suspended load, as reflected
by the value of a*, should be used in the definirion of \. The decrease of the von
Karman constant from 0.4 to values as small as 0.2 for lieavy sediment concentra-
tions also is nor reflecred in the Einstein methodology. Vanoni1t946y suggested that
the decrease in x results from damping of the turbulence by sediment, especialty
near the bed. Regardless of the criticism of the Einstein methodology, it is an impoi_
tant historical contribution because of its comprehensive approachind the introduc_
tion of the concept of probability applied to sidiment discharqe estimarron.
. Another comprehensive approach ro the estimation of suipended sediment dis_

charge. and the conesponding total sediment discharge has been proposed by van
Rijn (1984b). He employed the paraboric distribution of the seiiment diffusion
coefficient in the lower half of the flow (Equation 10.64) and a constant drstribu-
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t ion in the upper half of the l1orv (cqual to the maxinrurrr of the parabolic distribu-
tion). purponedly to obtain better agreement bel\\een nteasured and predicted dis-
tributions of suspended sediment. The resulting prcdicted concenrration distribu-
tion is a combinalion of Equations 10.60 and 10.65 lbr the upper and lower halves
oi the flow depth. respcctively. Van Rijn separated the ef-fects of B and r on the
Rouse exponent Rn. Based on the results of Colcman ( 1970) for the sediment dif-
tu!ion coefllcient in the upper half of the flow. \ an Rijn suggested a relationship for
6  s ivcn  bv

F = t +

.115

(  10.69)

tbr 0.1 < l7lrr, < l. The effect of turbulence damping on reduction in mixing near
the bed and thc change in the velocity profi le $ as treated by van Rijn by increas-
inr the value of Ro instead of decreasing ,(, so thal R; = & + tr\, in which Ro is
defincd with a value of r : 0.4. while A\ represents a mixing correction factor.
L lt imrtely, the value of ,\Ro was obtained as a result of f itt ing velocity and con-
centration profi les front the laboratory data of Einstein and Chien (1955), Banon
and Lin (1955), and Vanoni and Brooks (1957) for heavy sedimenlladen flows and
simplifying the results to obtain

(10.70)

in uhich C, - the reference concentration (volumetric) and Co = the maximum
\olumetric concentration taken to be 0.65. Equarion 10.70 is valid for 0.01 < wrlr,
< L The reference concentration, C,, is modified somewhat from the value used to
deYelop van Rijn's bed-load transport formula. The reference level a for determin-
in-e C,, is assunred to be half the bed-form height. J,. or the equivalent sand-grain
roughness height, t., i f the former is unavailable. Based on only 20 flume and river
data points, the expression for C, was determined to be

| " ' l :
) l- l u . )

0 8 [ c - . l 0 1
I  1 |
t  Col

c : o.ol5 4! {" a d y . ( 1 0 . 7 1 )

(r0.72)

Finally, instead of using the Einstein approach of weighting the size fractions to
determine the suspended sediment discharge for a sediment mixture, van Rijn
developed an expression for an effective grain size of the suspended sediment, d,
siven by

h = ,  
-  o o r r ( o .  -  l ) ( r  2 5 )

This result was obtained by making several computations using the size-fractions
method and then determining the effective grain size that would give the same value
of suspended sediment discharge. Using the effective grain size (Equation 10.72) to
obtain the fall velocity, the two-pan solution for suspended sediment concenrrrtion
$ith conection of Ro (Equation 10.70), the value of p given by (10.69), and the
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Nikuradse fully rough turbulent velocitv profile, Equation 10.66 for suspendcd scd-
iment discharge is integrated with a reference conccnrrarion givcn by ( 10.7 I ). The
numerical intcgration is simplified to obrain an approxinate relationship lbr rhe
suspcndcd scdiment discharge givcn bv

q, :  I tV loC. (  10.73a)

in which V - mean velocity; _vo - depth: C, = reference concentrationi and the
integration factor /, is crlculated from

(  r  0.73b)

l r 2  -  R ; l

The van Rijn bcd-load formula is used to calculate bed-load discharge, which is
added to the suspended-sediment discharge to obtain the total bed-material discharge.

While the foregoing methodology contains several simplified expressions
based on limited data to describe the very complicated interaction between turbu-
lence and sediment panicles, van Rijn obtained reasonable agreement between pre-
dicted and measured sediment discharges for several laboratory and field data sets.
The agreement was shown to be comparable to the results from several other total
sediment discharge formulas. Using a discrepancy ratio defined as the ratio of com-
puted sediment discharge to measured sediment discharge, 76 percent of the com-
puted values were in the range of discrepancy ratios from 0.5 to 2.0. For compari-
son, the Engelund-Hansen and Yang total sediment discharge formulas, described
in the following section, had performance scores of 68 percent and 58 percent,
respectively, of the computed values falling in the range of 0.5 to 2.0 times the
nreasured values for the same data set.

Total Sediment Discharg€

In contrast to the methodologies just described for separate calculations of bed-load
discharge and suspended-sediment discharge, total sediment discharge formulas
correlate total sediment transport rates directly with hydraulic variables without
distinguishing between bed load and suspended load. This avoids the difiicult prob-
lem of defining the difference between the two types of load and of determining the
bed-load concentration at some reference level. If such formulas perform at least as
well as the bed-load./suspended-load formulations, then there is much to commend
their use, not the least of which is a greater degree of simplicity. However, for total
load formulas to be successful, they must rely on as large a database of field and
laboratoil measurements as possible and be formulated in terms of physically
meaningful dimensionless parameters.

The Engclund-Hansen formula (1967) for rotal sediment discharge, 4,, was
derived from energy considerations and the similarity principles discussed previ-

I o l ^ r  I o ] , ,
t ; t  - [ ; ]

I  a  l R ;

l '  ; l
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ously in connection with the Engelund method for depth-discharge prcdiction. lt is
g rven oy

r r d ,  =  0 . l r l : I  10 .? ,1 )

in u,hich c, - 2rt/pV)', d, = S,/ttSG 
- l)8/i0lr/rt and r, : Shields' Parameter,

defined with thc total bed shear stress : r/[(7, 7)dro]. The cocfflcient and expo-
nent in Equation 10.74 were obtained from correlalion of sedirnent transpon data
fronr the laboratory expcriments reponed by Guy, Simons. and Richardson ( 1966).
antl reasonably good correlation rvas found for dune bed forrns as well as transition

and upper regime bed forms (Engelund 1967).
Yang ( 1972, 1973) developed the concept ofunit stream poweras an important

independent variable that determines total sedinrent discharge. The unit stream
power is defined as the po\rer arailable pcr unit weight of f luid to transport sedi-
ment and is equal to the product of velocity and energy slope. VS. A dimensional
analysis that includes unit stream power, VS; fall velocity, lr7; shear velocity, u.:
median grain size, dro; and viscosity. v, suggests that the independent dimension-
less variables affecting total sediment discharge or concentration C, are VS/wt,
vrrtlrdv, and uJwr. Yang (1971) modified the dimensionless unit stream power,
VSlw,,by subtracting its crit ical value at the init iation of motion, V.!/wr, in which

4 is the crit ical vclocity. A multiple regression analysis of .163 sets of laboratory
data for sand transport in terms of these dimensionless variables gave the following
relationship for total sediment discharge:

rr,rdrn u.
locC, = 5.,135 - 0.286 log ij - 0.457 loe -- v - rNl

+ ( t.tsg - o.+os toe ab - o.:t+ toe t)
U v  

-  r \ /

. l l 7

(  1 0 . 7 5 )

.  (vs  v .s \
- \  u j  t r ' t  /

in which C, - total sand concentration by weight in ppm = lOE x y,q,/yq. The
dimensionless critical velocity is defined by

v,
wl log(u"d5e/z) - 0.06

and V"/w, = 2.05 for u.drolv > 70. Yang's (1973) laboratory data set on which
Equation 10.75 was based includes Ihe data of Guy, Simons, and Richardson ( t966),
Williams (1967). Vanoni and Brooks (1957), and Kennedy (1961) as well as others
for which flow depths were on the order of0.03 to 0.30 m (0.1 to 1.0 ft). Tbe coef-
ficient ofdetermination f for tle regression equation was 0.94. Equation 10.75 was
verified with Gilbert's ( l9l4) laboratory data and field data from the Niobrara River
(Colby and Hembree 1955), l! 't iddle Loup River (Hubbell and Matejka 1959), and
the Mississippi River (Jordan 1965), although the comparisons with the Middle
Loup and Mississippi rivers s'ere not quite as good as for the laboratory data sets.

The Karim-Kennedy (1990) methodology for depth-discharge predictors
described previously also includes a total sediment discharge formula obtained
from nonlinear regression using a database of 339 river flows and 608 flume flows.

u"d^
+ 0.66 for  1.2 (  - i  <  70 (10.76)

v
z . )
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Several physically reasonable dimensionlcss ratios are used \\ ' i th a calibration data

set (615 laboratory and field flows), and nonlinear regression analysis is carried out

for the dimensionless sediment discharge and \elocity. The resulting values of sed-

iment discharge and velocity then are compared u'ith measured values for a control

data set and lhe least significant indcpendent dimensionless variables removed

from the analysis. This process is repeated several t imes unti l the final relationship

is obtained as

log  { ,  =  log \.{sc - lta
= 2.2'19 + Z.g:2l:sl- L

{sG - Dsd'o

+ r .ooo los I- t
\,(sc - l kd,

l
I

V(SG - I  )sdrol

in which 4, : total volumetric sediment discharge Per unit width; V = flow veloc-
ity;y,1 = flow depth; SG = sediment specific gravity; dro = median sediment grain

sizel u. - shear velocity; and r.. = critical shear velocity. The mean normalized
error of Equation 10.77, defined as the mean of the ratios formed by the absolute
values of the differences between predicted and measured sediment discharges over
the measured values, is found to be approximately 43 percent for the control data
set and 40 percent for the combined data set. The combined data set includes flow
depths from 0.03 to 5.9 m (0.1 to 19 ft), velocities from 0.3 to 2.7 m/s (1 0 to 8.9
ftli), dro values from 0.08 to 28.6 mm (2.6 x l0-4 ft to 9.4 x l0 ? ft)' and total
scdiment discharge concentrations from 9 to'19,300 ppm by weight

Karim (1998) proposed a simpler power relationship for the same data sets as

employed in the Karim-Kennedy analysis, with the rcsult given by

\,{sc - Dsd,I'''

q,

' l  
I  u . - , . .  I

l l o e l  |  ( 1 0 . 7 7 )
I  

-LV(SC -  l ) . sd 'o l

+ o r99 bs(*) r.c j

l ; ]  
"  ( ro?8)q, :  0 00119 

[\,{Sc=t4
The mean normalized enor for Equation 10.78 is 45 percent for the control data set,
which is not significantly different from the performance of Equation 10.77. The
mean normalized errors for the Yang formula and the Engelund-Hansen formula for
the same control data set are 63 percent and 49 percent, respectively

Karim applied Equation 10.78 to laboratory and field data having nonuniform
sediments by dividing the sediment into size fractions. The sediment discharge is
computed in each size fraction by Equation 10.78 multiplied by a partial bed armor-
ing factor and a hiding factor. The partial armoring factor is intended to account for
portions of the bed that are armored and unalailable for transpon' while the hiding
factor ukes into account the sheltering effect of larger grains on smaller grains. The
sediment discharges in each size fraction then are summed' and the total sediment
discharge values found to be comparable to those comPuted from Equation 10 78
using only the median grain size, d50.
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Scveral othcrtotal sedintenl dischargc lormulas can be found in the l iter ture,
inc )ud ing  those o f  Bagno ld  (  1966) .  L rurscn  (  1958b) .  Ackers  and $ 'h i re  (  l9?3  ) ,  and
Brownl ie  (1981) .  A  more  comple le  rcv iew and rank ins  o f  ra r ious  fo rmulas  fo r
computalion of total sediment discharge can be found in Alonso ( 1980), ASCE Task
Committee ( 1982), Yang ( 1996), and Bechteler and Vener ( 1989 ). In the lasr refer-
ence, the Karim-Kennedy formula was "recommcnded besl for common use" while
the forrnulas of Yang and Bagnold, "within thc range of validiry." were found to
"yield the most reliable rcsults."

Scdiment transport formulas should be chosen thar have a database within
which the flow and sedinrent conditions of interest f it, and se\ eral formulas should
be used and compared whenever possible. For example. the Ensclund-Hansen for-
mula is most appropriate for sand transport in the lou er regime. while the Meyer-
Peter and Miil ler formula should be choscn when there is coarse bed material in
bed-load transport. On thc other hand, the Einstein-Broq'n formula is not a good
choice when appreciable bed nlaterial is carried in suspension. Where they exist,
gauging stations ale useful for developing sediment rating cunes between mea-
sured sediment discharge and either water discharge or relocit\ ' . However, the wash
load has to be subtracted from the measured suspended sedimenr discharge, and the
bed load and unmeasured suspended sediment discharge usuallv have to be calcu-
lated and added to the measured suspended sediment discharge ro obtain the total
bed-material discharge (see Colby and Hembree 1955).

E x A \I p L E l 0.1 . The Niobrara River has a measured flotv deprh of I .60 fr (0.49 m)
and measured vclocity of 3.5? fl ls ( L09 nL/s) to give q = 5.11 ft:/s (0.53 m2/s) with an
energr slope of0.0017. The median sediment size d50 = 0.27 mm (0.000885 ft), deo :
0.,18 mm (0.00157 ft). and ('{ : 1.58. The temperature is 68' F The mean total sedi-
ment concentration for these conditions was measured to be 1890 ppm by weight. Cal-
culate the total sediment dischargc using the van Rijn metho.1. Yang me$od, and
Karinr-Kennedy method.

Solanba. First, calculate some quantities common lo all three mefiods. For the given
remperarure, y : 1.08 x l0 5 ftr/s (1.0 x l0 6 m?/s) and d, is obiained from

d.  =  dso [ (SG -  I  )s / , ' ] ' ' '  :  0 .000885 x  11 .65  x  32 .?r (1 .08  x  l0 -5) r l r l r  =  6 .81

The fall velocity then is

8 u '' . ,  - ; [ ( r  .  o o r j q / ] r o ' -  t l
ut0

8 x 1 . 0 8 x 1 0 - 5
[ ( l  +  0 .0139 x  6 .81  t )o t  -  l '  =  0 .129 f t l s

4 t9

0.000885

or 0.f,t393 m,/s, and the critical value of Shields' paramerer is ;.. : 0.0,15 from Figure
10.6. The conesponding value ofr.. = ["..(SG - I )gd<o]or = 10.0.15 X 1.65 x 32.2
x 0.000885105 = 0.046 ft/s (0.014 n/s). The shear velocity is

, , : \Gy ,S =  v4r2  x . |  50  '  o  001? :  0 .296 f t  s  (0 .0902 m/s l

Note that a"/n, = 2.3 so that the sediment discharge is mostll suspended load.
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v 1.5  7 = 0.171 fr/s (0.0524 m/'s)
l 2 h  l l  x  1 . 6

5.75 tog 
l,/,,.. 

5 15 lor: 
^ i;.rr,,s;

= 0.053
l l A l l

l . b 5  , 3 2 . 2  '  0 . 0 U 0 8 8 5 '  
' - ; , ,  

0 0 0 t 2 5 t r : ,

or l. l6 x l0-1 mr/s. For the suspended sediment discharge, ratues ofB. \. J\.
a, and C, are needed. For this example. Equation I0.73 gives a relatively small cor-
rection to dro for the effective grain size. so the value of dro is used. The lalue of p
comes from Equation 10.69:

I  u ,  ] :  I  o .  r 2 9 l :
, - t - 2 [ * J  = r ' 2 1 0 2 q 6 ]  -  I r 8

and then from the definition of Ro, we have

R . =  
u ?  -  o l 2 g

-' 
PKu. 1.38 x 0( x 02% 

= 0790

The reference concentration, C,, is calculaled from Equation 10.71, in which the ref-
erence level is taken as half the dune height from Equation 10.29 to give a : 0.1I
ft (0.034 m). The value of Co as a volumetric concentration from (10.71) is

d .n  T t5  o .ooo885 l i .o r '
c ,  -  0 .015 - -  

dg3 
-  0 .015 <  

0 . l  l  6 t8 , ,  
-  0 .0032

Now the correctjon to \ follows from F4uation 10.70:

f x , - 0 8  i c  
' l 0 .  

_  "  s f 0  l : e  1 0  
8  

f 0 0 0 3 2  l ^ .  _  o , <A R o : 2 . 5 1  1 ; lLu . -  LGI  
- "10 . : so l  

[  0 .6s  I
so that R6 = & + A& = 0.79 + 0.15 : 0.94. The integration factor, 1/. to calcu-
late the suspended sediment discharge comes from Equation 10.73b:

| .  Van Rijn's Method. The value of I  is needed. and i t  dcpcnds on rr l .  As jn Erlrn,
ple 10.3, al is obtained from Kculegan s equation using the nreasured velociry and
k', = 3dn:

Then, by definirion. rl = !:/ l(SC - l)8d5J = 0.172rl(1.65 x 32.2 x 0.000885)
=  0 .63 .  The resu l t ing  va lue  o f  T= r i l ; . ,  I  =  0 .61 /0 .0 ,15  -  l :  l3 .0 .and lhe
bed-load discharge from (10.57) becomes

au = o.o-srr.(sc - l;s"rL {

l o l q  f  o l ' ,
t ; l  

-  
t ; l

|  . t e
|  - : l  f  l 2 - R l l

L  } o l  
-

Finally, the suspended sediment discharge is given by

I o . l r  l o "  I o . l  l  I '  r
t l . 6 t  L l . 6  l-  -  _  -  : n t K 6

I  n  r r l o q
I l  _ - : - : : l  [ 1 2  0 . 9 4 1
L  L O l

q, = IrVysC.: 0.166 x 3.57 x 1.6 x 0.0032
= 0.00303 fi '�/s (2.82 x l0-1m:/s)
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The total sediment discharge, q,. is the sum of the bed-load and suspended-load dis-
charges and equal to (0.0o125 + 0.00303) = 0.00428 frrls (3.98 x 10 4 m:/s.). con-
vcrted !o tons/day. 8t = 't,qt: 2-65 >< 62.1 X 0.00428 x 86,400/20q) : 30.6
tons/dar (28.000 kg/day ) and C, : 106 (t Jy)kl,/q) : 106 x 2.65 x 0.00428/5.71 =
1990 ppm.
Yang's Method. First, t}|e cri l ical velocity from Equalion 10.76 is needed, since
udr,/v = O.296 x 0.000885i 1.08 x l0 '= 24.3 < 70, so

|  ) (  I
Y  -  r '  1  - -  I  0b6' '  

L log(r.d.., z) 0.06 l

| 2 . s 1-  0 . 1 2 q  ) ,  - . : -  - ^ ^ .  |  0 . b 6  -  0 . 1 2 8  f r l s ( 0 . 1 0 m  \ )
I  log(2 ] .1 )  u .ub  r

Then, VS/r7: 3.57 x 0.0017/0.129 = 0.0470 and V.S/x : 0.328 x 0.0017/0.129 :
0.00432. The other two indepcndcnt variables required are u.lwr = 0.29610.129 =
2.30 and u,tlrolv = 0.1?9 x 0.000885/1.08 x l0 5 : 10.6. SubstitutinS direcrly
into Equation 10.75, we have

logC, : 5.435 - 0.286 log(10.6) - 0.a57 log(2.30)

+ [1.799 - 0.a09 log(10.6) - 0.31a log(2.30 )][ log(0.0470 0.00432)]

and then C, : 1.740 ppm.
Karin-Kennedy s Metfiod. Three dimensionless variables are required for the total
sediment discharge computation:

v 3.5'7

\./isc rlql- v4.os , .r:: r o.osrrxs
= 16.5

=  l . l 5
0.296 0.0.16

\(sc - | )sd.u \,G5 Lrr2 x orloos8s

1 . 6- - l, iOR
d.,, 0.000885

Substituting directly inro Equation 10.77, we have

tog ---! . : -2.2'79 + 2.972 log(16.5) + | .060 log( | 6.5 ) lo8( I . 15 )-  
V(sc |  )gdl ,

+ 0 .299 log(  1808)  log(1 . l5 )  :  1 .477

Taking rhe anti log and sol\ing, we have q, = 0.00575 ftr/s (5.34 x l0 l mr/s). Con-
vening ro concentration. C, = 106 x 2.65 x 0.00575/5.71 = 2,670 ppm. On the
other hand. if we use the Karim power fonrula (Equation I0.?8). we have

\4sc tlq4l,
-  0 . 0 0 t . r o  ,  i t o . 5 l r a '  ( t . J 0 ) r a '  l s . 5

wilh the resull that q, = 0.00371 ftr/s (3..17 x l0 r mr/s) and C, = 1,740 ppm.
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No conclusions can be drawn about the accur.acy of the methods in ExamDle
10.4 based on a single data point for one river. The Niobrara Rivcr data are
inc luded in  the  conr ro l  daraseto f  3 , l l  da ta  po in ts  used by  Kar im (1998)  to  tes t  h is
method as well as Yang's method, for which the mean normaiized errors are 45
percent and 63 percent. respectively. Funhermore, note that the measured veloc_
ity and depth Ialues are used in rhe sediment discharge predictions, our are pre-
dicted rather lhan mcasured in the general case.

10.8
STREATTBED ADJUSTMENTS AND SCOUR

Thc sediment transport relationships devcloped in previous sections of this chapter
assumed equil ibrium sediment transport conditions, for which the sediment trans-
port rate into a rir er reach was considered identical to the sediment rransDon rate
out of the reach with no net aggradation, degradation, or scour of the bed wlthin the
reach. The bed itself was considered movable wirh bed forms, but on averase. rne
bed was assumed not to be undergoing significant changes in elevation on ai engi-
neering time scale. which ntay be on the order of several years. In the short term,
however, sedinrent storage (plus or minus) compensates for inrbalance in the inflow
and outflow sediment discharges for a river reach. Under these circumstances. the
independent variables are the stream slope and water discharge, in addirion to rhe
sediment properties, and the dependent variables are the depth, velocity. and sedi-
ment discharge, $ hich are intenelaled. The bed forms adjust thenrselves to provide
a roughness consistent with the depth and velocity necessary to cany the equil ib-
rium sediment discharge. On the other hand, thcre may be no depth-velocity com-
bination for the given watcr discharge and slope to cary the equil ibrium sedinent
discharge, so that in the short,term, Iocal scour and deposition may occur, albeit
without altering the stream slope over a long reach (Kennedy and Brooks 1965).

On a much longer time scale, on the order of hundreds of years, the water dis-
charge and sediment discharge become the independent variables: and the stream
width, slope, and stream planform adjust themselves so as just to be able to trans-
port the water and sediment discharge delivered to the upstream end of the stream
reach. This is Mackin's ( 1948) concept of rhe "graded stream." If, for example, the
sedimcnt discharge to a stream reach over many years is too large for the stream to
transport, some sediment wil l deposit, steepening the reach, or the meander length
or stream width *' i l l  change, so that the stream equil ibrium is restored.

ln this section. applications of these concepts are considered for the important
engineering problem of bridge scour Both long-tern.r and short-term channel bed
adjustments as uell as the scour caused by bridge obstructions can undermine
bridge foundations. with possible failure and loss of I ife. First, long-term channel
aggradation and degradalion are discussed, then contraction scour caused by the
restricted bridge opening is analyzed. Finally, local scour caused by bridge piers
and abutments is considered.
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Aggradation and Degradation

Long-tenn aggradation and degradation of an aliur ial stream can occur at a pro-
posed or existing bridge site. In addition to changes jn bed elevation that can be in
the fomr of either scour or f i l l ,  the strean planform can shift laterally away from
the designed bridge opening and cause local scour around the abutments and
embankments. Some brief discussion of different rypes of alluvial streams with
rcspect to planform is nccded to understand the rarious geontorphic changes that
can occur in response lo human activit jes such as building dams and bridges to
cross the stream.

Alluvial streams can be classified as straighr. meandering. or braided, with
transitional forms betueen each type. The sinuosity of a stream, defined as the
strcam Jength divided by thc valley length, is used to distinguish between straight
and meandering streans. ln general, a strcam is considered to be meandering i l the
sinuosity exceeds a value of L5. Even straight streams can have an oscil lating thal-
weg at low stages as the flow moves from one bank to the other around sandbars.
ln meandering streams, the oscil lating thalweg init iates streambank erosion and the
formation of a continuous series of bends connected by crossings, as shown in Fig-
ure 10.21. Erosion of the outside of a bend carries sediment to the inside of the next

(a) Meandering Channel

423

-
==---r--===:= /-\ -)- 

n / \ Low flow

: ' (  _ t  r - 1 , - - .

(b) Braided Channel

FIGURE 10.2I
Schematic of meandering and braided channels.
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bcnd downstream where it is deposited as a point bar. [n addition, bccause of the

centripetal acceleration associated with the turning of thc flow through the bend. a

transverse pressure gradient manifested by a sloping water surface toward the cen-

ter of the radius of curvature develops. The result is a secondary current with a

transverse velocity component toward the inside of the bend at the streanl bottom

and a return circulation at the free surface toward the outside of the bend leading to

a helical f low through the bend. Deeper pools devclop at the outside of the bends.

and they are connected by shallow crossings from one pool to the next. Meander

loops can migrate downstream as well as laterally and forn cutoffs across the neck

leaving behind oxbow lakes. The rate of longitudinal and lateral migration of a

nreander dcpends on the erodibil i ty of the sediments encountered, which can be

quite heterogeneous. In a study of 50 different nreandering rivers, Leopold, Wol-

man, and Miller (1964) found that the ralio of meander radius to stream width var-

ied from 1.5 to 4.3 with a median value of 2.7. The actual cause of meandering has

been attributed to various factors, including heterogeneity of bank sediments
(Petersen 1986), secondary cunents (Tanner 1960), and the need for a stream slope

to be flatter than the valley slope to cary a lower sediment load than was available

during the development ofthe valley slope (Chang I988). Schumm ( l97l), on the

other hand, argued that a cbange in the type of sediment load carded by a stream

accounts for meandering bchavior and the associated increase in sinuosity. A

change from sand carricd predominantly as bed load to wash load transponed only

in suspension would result in an excess slope of the energy grade line which mighr

only be dissipated by the decrease in slope associated with an increase in sinuositl.

For larger stream slopes and increased bed load. the alluvial stream takes on a

braided form that consists of multiple channels around nunlerous sandbars. as

shown in Figure 10.21. The channels are connected in a network to form a wide

shallow belt that is unstable with unpredictable rates of lateral mjgration. As the

sandbars grow and form islands that are large relative to stream width, the braidcd

stream becomes an anabranched stream with somcwhat more permanent channels

that can carry a substantial ponion of the total flow.

Qualitatively, stream sinuosity first increases with slope and levels off before

decreasing with funher increases in slope for a characteristic discharge, which usu-

ally is taken to be the bank-full discharge with a return period of l-2 years. Such a

relationship has been confirmed for several natural streams. as reponed by

Schumm, Mosley, and Weaver (1987). For increasing values of slope, the straight

channel transitions into a meandering thalweg channel with large values of sinuos-

ity and then into a combination of meandering and braided forrns unti l the channel

beconres completely braided with low sinuosity. Changes in the planfornl of the

stream can be analyzed with the help of Figure 10.22, which shows dividing l ines

or thresholds for distinguishing meandering and braided streams as given by

Leopol<i and Wolman (1957, 1960) and Lane (1957). The significance of the rela-

tionship in Figure 10.22 is that any engineering changes that result in a change in

slope; 62n cause major changes in planform of the stream.
Characteristic widths and dcpths of alluvial streams have been related to the

mean annual discharge to the power 0.5 for uidth and 0.4 for depth by Leopold

and Maddock (1953). However, in a study of 36 stable alluvirl r ivers in the Greal
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FIGURE I0.22
Changes in planform of streams with stream slope at a given characteristic discharge
(Richardson and Davis 1995).

Plains of the United States and in the Riverine Plain of New South Wales. Aus-
tralia, Schumm ( 1969) sho*'ed that the stream width and depth also wcre functions
of the percent silt-clay, 7cSC, in the sediment forming the channel bed and banks.
The channel width-depth ratio and slnuosity were found to be influenced prima-
rily by ToSC with little effect of the mean annual discharge. The largcr is rhe per-
centage of silt-clay in the sediment, the smaller rhe width-depth ratio and the
larger the sinuosity.

Analysis of long-term changes in the stream morphology can be achieved qual-
itatively with the aid of the approximate relationship proposed by Lane ( 1955b):

QS - Q 'dyt ( r0.79)
in which Q = water discha-rge; S - energy slope; p, : total scdiment discharge;
and dro : median sediment size. In the channel downstream of a dam or sand and
gravel mining operation, for example, the sediment supply is cut off so that there is
a decrease in sediment discharge, which is balanced by a decrease in slope for the
same water discharge and sediment size. The decrease in slope is accomplished by
degradation of the channel bottom beginning from the dam and moving in the
downstream direction with the largest scour and drop occurring in the channel bot-
tom just downstream of the dam. As shown in Figure 10.22, a decrease in slope can
cause a change in stream planform from braided to meandering, for example. On
the other hand, a more realistic analysis would indicate that decreases in Q also
occur due to flow regulation by the dam, and the sediment size may increase due to
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streanrbed armoring. in which the larger sizes of the size distribution are left behind
in the degradation process. In this case, the slope may increase or decrease, dcpend-
ing on the relative magnitudes of the othcr changes, but degradation l inlited by botl l
a rnor ing  and reduc t ions  in  0  i s  a  common resu l t  (Lagasse e l  a l .  l99 l ) .  Schumm's

analysis ( 1969) further showed that long-term river metamorphosis can result from

changes in water discharge and type of sediment load. Again. using the construc-
tion of a dam as an exanrple, decrcases in both water discharge and bed-nraterial
load (prinaril l  sand) can result in decreases in width and width-depth ratio while

sinuosity increases.

Quantitatir e analysis of long and short-lerm changes in stream morphology can
be accomplished with a numerical solution of thc sediment continuity equalion
(Exner equation) given by

(  10.80)

in which B : stream width; p,, = porosity of the sediment bedl :b : bcd elevation;
,{ = longitudinal distance along the streamt and O/ = total volumetric sediment dis-

charge. The equation can be solved simultaneously uith the one-dimensional

unsteady flo\^'equations as described in Chapter 8, or if the changes in bed eleva-

tion are slow compared to the time scale of the changes in water surface elevations,
a quasi-steadl' approach can be enrployed. In this approach, Equation 10.80 is

solved and the sediment bed elevations are updated for the current quasi-steady,
gradually varied flow profi le. The change in bed elevation is assuned to be the
same at all cross-sectional points within the specified mo\ able-bed width. Then the
watcr surface profi le is recomputed with the new bed eler ations, using the standard
step method for the current quasi-steady water discharge. The sediment and flow

equations are solved alternateJy in this uncoupled fashion at each time step to deter-

mine the development of bed elevation changes. A sediment transpon relationship
is required for the solution of Equation 10.80, and the roughness coefficient has to

be specified. This is the basic approach used by the U.S. Corps of Engineers ( 1995 )
program HEC-6, which also accounts for bed arnoring using the mcthod proposed

by Gess le r  (1970) .

Chang ( 1982, 1984) proposed a similar water and sediment routing procedure,

except that stream width changes are accounted for by minimizing the stream
power per unit of length, 70S. This is equivalent to adjusting the width of adjacent
cross sections unti l OS approaches a constant value along the strean't. If p is rela-
tively constant along the stream. the result is to minimize the variation in the energy
gradient, S, in the streamwise direction. In general, increasing the width at a cross
section corresponds with larger values of S and vice \ersa. A weighted average
energy gradient of adjacent cross sections is computed; and if the actual energy gra-

dient is higher (lower), channel width at this cross section is decreascd (increased)

to decrease (increase) the energy gradient. Once the width adjustment has been
made, the remaining change in sediment cross-sectional area is applied to the bed.
For deposition. the bed is allowed to build up in horizontal layers, while scour is
applied according to the distribution of the excess shear stress with respect to crit-

ical shear stress across the section. Chang ( | 985. 1986) applied his water and sed-

B ( t - r , , ) * - * : ,
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iment routing model (FLUVIAL-12) wirh widrh adjusrntcnt and simplif ied nrodel-
ing of bank erosion due to strean cun alure to define thresholds for different plan-
fomrs of rivers from meandcring to braided.

Thc water and sedinrent routing model IALLUVIAL (Holly, Yang, and Karim
198,1) is a one-dinrensional model developed to predict long-term degradation of
the lvtissouri River. Rather than specifying the value of Manning's l, the sediment
dischargc relationship and the friction-factor relationship are coupled and solved at
cach tinre step to ntodel bcd form changes and their interaction with rhe flow and
sediment transport (Karinr and Kennedy | 981 , 1990). In the first stage of the time
step. the water surface profi le is obtained fronr a quasi-steady, simultaneous solu-
tion of the cnergy and continuity equations as well as the sediment discharge and
friction-factor relationships. In the second srage, the sediment continuity equation
is solved by an implicit f inite-difference approximation to update the bed clevations
uniformly. Bed arrnoring procedures and the option of specifying a known bank
erosion rate are included in the rnodel.

Several other numerical models of aggradation-degradation have been devel-
oped. but all are l inrited to varying degrees by an inconlplete knowledge of the
mechanics of bank erosion and width adjustment. Kovacs and Parker ( 199,1) pro-
vided some insight by developing a vectorial bed-load formulation that takes into
account the particle nrovenrent on steep, noncohesive banks, as influenced by grat'
i ty as well as fluid shear. They applied their bed-load formulation along with the
sediment continuity equation and the montentum ecluation uti l izing a simple alge-
braic turbulcnce closure model for steady. unifbrm flow. The init ial trapezoidal
channel evolved inlo an equil ibrium cross-section shape consisring of a flat bed
near the central part of the channel that connected smoothly to a curr' ing, concare
bank having a slope that approached the angle of repose. Comparisons with exp€r-
imental measurcmcnts showed good agreement.

Several other nrodels of width adjustment have been reviewed by the ASCE
Task Committee on River Width Adjusrmenr (ASCE 1998). Problems of a variety
of different bank failure mechanisms. unknown shear stress distributions in the
near-bank zone, l imited understanding of the erosion behavior of cohcsive sediment
banks, lack of data on the longitudinal extent of mass failures of the bank, and the
significance of overbank flows indicate that much rentains to be leamed about the
mechanics of bank erosion and width adjustment. The compurational tools presently
available for predicting width adjusrments are approximate at best. In spite of this.
evaluation of a bridge-crossing site should include as much qualitative and quanti-
tative information as possible on the current state of equil ibrium of the stream or
lack thereof, and possible consequences of the construction of a bridge crossing.

Bridg€ Contraction Scour

The rccelerrtion of the flow caused by a bridge contraction can lead to scour in the
bridge opening that extends across the entire contracted channel. The contraction
can arise from a narrowing of the main channel as well as blockage of f low on the
floodplain, if the abutnrents are at the banks of the main channel and overbank flow
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is occurring. If the abutments are set back from the edge of the nrain channel, con-
traction scour can occur on the floodplain in the setback area as well as in the ntain
channel. Relief bridges on the floodplain or oyer a secondary stream in the over-
bank area also can cause contraction scour.

The type of contraction scour can be either clear water or l ive bed. In clear-
water scour, the velocities and shear stresses in the approach cross-section upstream
of the bridge are insu,l lcient to init iate sediment motion, so no sediment transpon
is conring into the contracted area. In this case, scour continues in the contracted
section unti l the enlargemcnt of the cross-section is such that thd velocity
approaches the crit ical velocity and no additional sediment can be transported out
of the contraction. This is the equil ibrium condition that is approached asymptoti-
cally in time. I-ivc-bed scour, on the other hand, occurs when sediment is being
transported irto the contraction flom upstream. Scour continues unti l the sediment
discharge out of the contracted section is equal to thc sediment discharge into the
section from upstream. at which time equil ibrium conditions have been rcached.

Laursen ( 195 8a, I 960) developed expressions for both l ive-bed and clear-water
contraction scour, assuming that the contraction is long so that the approach flow
and the contracted now both can be considered uniform. The live-bed case is con-
sidered first with reference to Figure 10.23, which shows the l imiting case of the
contracted section formed by the abutments set at the banks of the main channel in
an idealized sketch. The approach main channel width is 8', and the nrain channel
in the contracted section has a width of 8,. The approach channel discharge is Q",
and the overbank discharge is po. From the continuity equation, it must be true that

(a) Plan

(b) Prolile

FIGURE I0.2.1
Scour in an ideal ized long contraction (Laursen 1958a).

I
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the (otaf discharge in thc contracted section O/ = Q, + Q,t.ln addition. equil ibriur-l] l
ol rhe l ive-bed scour proccss is reached whcn scdinrent continuity is satistled; that
is. assunring sedimcnt transport occurs only in thc rnain channel, we have

C',Q,  -  C ' :Q, (  1 0 . 8 1 )

in which C,, .= lhc nrcan sediment concentralion in the approach section and C," :

thc mern sedinrent concenlration in the contracted section. L-!urscn applied his total
sed in rcn t  d ischarge fb rmula  lLaurscn  1958b)  g ivcn  by

c, . rn*  :  ( l

v '

t )gri"dio'
(  10.83)

in which c, : the constant in the Strickler equationt g : gravitational acceleration;

4  -  t t r .  Mann ing  equat ion  cons tan t  =  1 .49  in  Eng l ish  un i ts  and 1 .0  in  S I  un i ts :
V : mean velocity: and SG : specific grar ity of the sediments, with all other vari-
ables defined as in the previous equation. Laursen applied English units and used
r.. : 0.039. SG = 2.65. and c. = 0.034 in English units (0.041 in Sl units) to give

l i =  v '
7, I 20,y A, 

rd 
ilr

(  10.84)
t r n  p 1 , , 7  l r l  \

which is specific to English units. Furthermore, the shear r elocity also is evaluated
from Manning's equation to give
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(  1 0 . 8 2 )

in which C, is the tolal sedirncnl cortcentration in parts per mill ion (ppm) by weight;
d.,, : mcdian grain size: r 'o - depth of uniform flow; r,! - grain shear stressi r. :

crit ical shcar stress; and/(a./rr;) is a specified graphical function of the ratio of
shear velocitl ' .  u.. to fall velocity, b'r, which Laurscn determined from laboratory
data. The ratio of grain shear stress to crit ical shear stress is evaluated from the
Manning and Strickler equations and from the crit ical value of the Shields param-
eter, rr.., to yield

'" 1+]'"(; - ),t ,";

n^uGo
a . = V e y " S = - - - - : -

K ,8v6  o
(  10.85)

Then, assuming th at r'oh, )) |, and that f(uJwr) is a pou er function : ko @Jw1\',
the sediment transport formula for C, (Equation 10.82) is substituted into Equation
10.81 along with Equations 10.84 and 10.85 to produce

(  10.86)

The values of a are the exponent in the power fit to the graphical function of z*/r.r,,
and have the values a :  0 .25 for  uJw,  (  0 .5;  a : I for0.5<u. /w,  12l .anda-
2.25 for uJv, ) 2. These ranges in a,/u7 correspond to trirnspon modes of mostly
bed load, mixed load, and mostly suspended load, respectively.

v ,  /  o ,  \ " ' /  8 ,  \ 9  l - r  / , r ,  \ -
| | f l - ' " t - . l - ' - "

) ' r  \ Q . /  \ B r /  \ n t /
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The ratio of a values is assumcd to bc close to unity and so is neglectcd. 
' l  

hr:n
special cascs of Ecluation 10.86 can be identil icd. For an ttvcrhlnk contruction in
uh ich  B,  =  8 . ,  the  resu l t  fo r  l i ve  bed cont rac l ion  scour  i s

*h i le  fo r  a  na in  channe l  con t rac t ion  in  nh ich  Qr  =

tion scour becomes

( r  0.87)

0,, the equation for contrac-

(  1 0 . 8 8 )

in u hich p, has values of 0.59 (bed load). 0.64 (ntixed load.). or 0.69 (suspended

load). Finally, Laursen assunred that. at the end of scour. both the change in veloc-

it) head and the friction loss tiom section I to section 2 were small. so that the

energy equation recluces to -v,/,r '  - d,,l)t + l. in which d,. = depth of contraction

scour as shown in Figure 10.23. [t is interesting to observe that l ive-bed contraction

scour for the overbank contraction, as given by ( 10.87). is independent of the mode

of sediment tranport, while for main-channel contraction only, the ntode of sedi-

ment transport makes some difference in the exponent pt.

The clear-water contraction scour formula also can be derived from the long

contraction theory as described by Laursen ( 1963) for relief bridge scour. Follow-
ing a simplif ication of the derivation as presented in HEC-18 (Richardson and
Davis 1995). the value of z0 is set equal to i. at the contracted section (2) at equi-

l ibrium when the sediment transpon rate out of the contracted section approaches

zero. Then Equation 10.83 is solved for depth -r, and divided by depth,r.r to yield

, \ ' r  (  Q r ' \n '

. t r  \ O , , /

l  r  \  B :  /

/ . i s  \ '  ' f
\ ^ ' ; /  i

-)r ( d',

)r \ ,) r
(  10.89 )

in ivhich -y, - depth after scour in the contracted section; \'r = depth before scour
in rhe contractionl 4. = contraction scour depthl q. : QlBi B, : contracted
width: g : gravitational acceleration; dro : rnedian sediment grain size; and SG =

specific gravity of the sediment. The coefficient in front of the square brackets has
the same value in S[ or English units, depending on the choice of the Strickler con-
stant, c,l and so Equation 10.89 is expressed in nondimensional form. For cn -

n/dl[6 - 9.934, in English units or 0.0414 in SI units, for example, (c:glK:)3n :

0.174. The value of 2." was taken equal to 0-039 by Laursen, but other values can
be subst i tu ted in to Equat ion )0.89.

Guidance is provided in HEC-18 (Richardson and Davis 1995) for the applica-
tion of the conhaction scour equations. The first step is to determine if live-bed or
clear-water scour is occurring by comparing approach velocities with the critical
velocity, which can be determined as described in a previous section. If there is an
overr;ank contraction, heavy vegetation on the floodplain may prevent sediment
transport and so the case may be one of clear-water scour even though the sediment
itself has a critical velocity less than the floodplain velocity, based on sediment size
alone. This often is the case for relief bridges on the floodplain. Significant back-
*'ater caused by the bridge can reduce velocities upstream so that what otherwise

+ , ) =
a ,

- r )s,rl rdior.lr " . (SG
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may have becn li le-bed conditions can be changed to cleitr-$ater scour in the con_
traction. Furthennore, if the value of u,/tr 'r is very large. the incoming sedintent dis-
charge is l ikely to be rvashed through thc contraction as suspended loid only, and so
in reality' this is a case of clear-water scour because there is no interaction bet$een
the sediment being scoured out of the contraction and the inconring sediment load.

For overbank contractions or maln chrnnel contrucritrns u,irh no setback of the
abutntcnts fron] rhe banks ofthe main channel, the applicarion ofeither the l ive_bed
or clear-water scour equations is relatively straightfon'ard. For significant setback
orstances, separate coDtraction scour conlputations should be ntacle for the main
channel and the setback overbank areas, with the flow distribution between maln
channel and overbank area in the bridge contraction esrimated by WSpRO, for
example. lf thc setbank distance is less rhan three to fir,e florv depths, it is l ikely that
contraction scour and Iocal abutment scour occur simultaneousiy and are not inde_
pcndent (Richardson and Davis 1995). This case wil l be considered funher in the
discussion of abutment scour

Local Scour

I-ocal scour around bridge piers and abutments is caused by obsrruction and sepa_
ration of the flow w,ith attendant generation of a system of vortices. There is a stag-
nation l ine on the front of the pier with decreasing pressure downward due to the
lower velocities near the bed. This causes a downflow directed toward the bed near
the front of the obstruction that separates and rolls up into a horseshoe vonex
wrapped around the base of the pier In addition, there are \r,ake vortices in the seD_
aration zone. This system of vonices fluidizes the bed and carries the sediment our
of the separation zone to create a highly localized scour hole adiacent to the
ubsrruction. This is i l luslrarcd for a bridge pier in Figure 10.24. whici shows borh
the horseshoe and $ake vonices.

Wake
vonex

..--------> 
^ 

\-/- \_-, n_=-�J

Horseshoe
vortex

FIGURE I0.24
Schematic representarion of scour around a bridge pier (Richardson and Davis 1995).
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Equilibrium scour depth

Live-bed scour

Clear-water scour

FIGURE I0.25
Illustrarion of development of pier scour with timc (Richardson and Davis 1995).

hither clear-water or live-bed local scour can occur jusl as for contraction

scour. The main difference is in the time scale required to reach equilibrium scour'

Because clear-water scour tends to occur in coarser bed material, it takes longer to

reach equilibrium, as shown in Figure 10.25 for a bridge pier. The approach to equi-
librium is asymptotic. so maximum clear-water scour depth is consi,iered to occur

when further changes in the bed elevations are negligibly small. Live-bed scour
occurs more rapidly as shown in Figure 1025 and tends to oscillate around the

equilibrium depth due to passage of bed forms through the scour hole. The equi-

librium live-bed scour depth for piers is only about l0 percent less than the maxi-
mum clear-water scour (Shen, Schneidcr, and Karaki 1969) Scour depth is shown

as a function of approach velocity in Figure 10.26 with the critical r elocity divid-

ing clear-water from live-bed scour. A peak is shown at the critical I elocity with an

abrupt decrease in scour depth as sediment begins to be transponed into the scour

hole. Thereafter, the scour depth increases again to a second' louer Peak that is

associated with planing out of the bed forms (Raudkivi 1986)

Pier scour

Scour depth at a pier is a function of pier geometry' flow variables' fluid prop-

erties, and sediment proPenies:

l0: F'low in Alluvial Channels

Maximum clear-watet scour

d , :  f  J K , ,  K r , b , V , . v y  g ,  p ,  t L , ( p ,  -  p ) , d 5 s . o s )

C H ' \ P T E R

!

i

<D

.9
o-

(10.90)

in which K. : pier shape factor = 1.0 for cylindrical piers; Ku - pier alignment
factor; b : pier width: Vr = approach velocity;.vr - approach dept}t:8 = gravita-

tional acceleration; p - fluid density; p, - sediment density; p : fluid viscosity;

d.s : median sediment size; and a, = geometric standard deviation of sediment

siie distribution. Choosing p, V', and b as repeating variables and carrying out the

dimensional analysis results in

Time
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FIGURX I0.26
ll lustration of clear,warer and live-bed scour at a pier (after Raudkivi l9g6). (Source: A. !.
Raudkivi. "Fu,lctiohal Trends of Scour ttt Bridge piers," J. Htdr Engrg., @ 19g6, ASCE.
Reproduced bt pennission of ASCE.)
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Combining rhe Froude number, V,/t61,, )0 5, w jth {p, - p;/p and y,/dro results in the
sediment nunrberN, : yrll(Sc - l)gd,,]105. which can be replaced-by Vr/u,,from
the Shields diagram in the absence of viscous effects (".c : constant). Funhermore,
it is apparent from the Keulcgan equation written for critical velocity that )r/40 can
be expressed in terms of V.,/r-., in which V. is rhe critical velocity. Finally, ihj ratio
of Vtlu.. to V./a.. just giyes a sediment mobility parameter V,/V.. Thus, an alter-
native choice for the relative submerged density is rhe sediment mobility pamme-
ter ln addition, yrldro can be replaced by b/40. With these substitutions and
neglecting viscous effects, the result is

Most pier scour equations can be placed in this form, but some of rie independent
variables are neglected in all ofthem (Ettema, Melville, and Barkdoll t99ti).

The pier scour equation recommended by the Federal Highway Administration
in HEC-18 (Richardson and Davis 1995) is the Colorado State University (CSU)
formula (Richardson, Simons, and Julien 1990) given by

F! r :

(10.92)

( r0.93)
d .  /  r .  \  0 1 5
.  =  2 0 K , K o K b K , \ b  

)
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in shich (, : pier shape factor; K, = pier skesncss factor; K, : correction fictor
for bcd condition; 4 = beO arnroring factor; r', = approach depth directly
up:tream of the pier: b - pier width; and F, = approach florv Froude nunrber.
Equation 10.93 is based on laboratory data and reconrmended for both live-bed and
clea-r-water scour. The value of K, : 1.0 for round nose. cylindrical, and groups of
cllindrical piers, rrhile it has the value of l.l for square-nose piers and 0.9 for
sharp-nose piers. The skervness fhctor is expressed as a function of the angle of
attack, 0, of the flow direction relatjve to the lon-gitudinal axis of the pier:

(10.9,1)

in s hich Ln = length of the pier and b = width of pier. The rraximum value of Lolb
is talien to be 12, even if the actual valuc exceeds I 2. The value of K" = 1.0 for 0 :
0.0. but it can be significantly different from unir1,. For L,/b = 4, for example, and
0 : 30", K = 2.0. Therefore, piers should be aligned with rhe flow direction dur-
ing flood conditions. For attack angles greater than 5", K, dominates K,, which is
taken to be I .0 for this case. The value of K, reflects the presence or absence of bed
forms and so is related to maximum clear-r'ater vs. live-bed scour. The value of
Kr : l.l for clear-water scour and for live-bed scour with plane bed, antidunes, and
small dunes (0.6 < A < 3.0 m). For dune heights A from 3.0 to 9.0 m, Kb - l.l to
1.2, while for A greater than 9.0 m, K, - 1.3. Finally, the armoring conection fac-
tor is defined by

, ( "  = [1 .0 0.89( t .0  -  yF) : ]05 (  10.95)

in which V, : (Vt - V,)/(Vcn - V), Vt = approach velocity in meters per second
(m/s); V.- = critical velocity for d* bed rnaterial size in m-/s; and y, - approach
velocity in m./s when sediment grains begin to move at the pier The value of V, in
m./s is calculated from

%so (10.96)

where V.ro : critical velocity for dro bed material size in m,/s, The factor K, applies
only for dro > 60 mm. It has a minimum value of 0.7 and a maximum value of 1.0
rhen V^ > 1.0.

Laursen and Toch ( 1956) measured pier scour in the laboratory for conditions
of live-bed scour around cylindrical piers with a subcritical approach flow and bed-
load transpon of sediment. They argued that neither the approach velocity nor the
sedinrent size affected their results for depth of scour because a change in either one
simply caused a proportional change in sediment transport rate both into and out of
the scour hole to set up a new equilibrium in transpon rate with essentially the same
scour depth. The resulting pier-scour formula as given by Jain ( l98l ) is

f : "'[]]"' (10.97)

The experiments covered the range of I = \'t/b < 4.5, and dro from 0.44 to 2.25
mm (medium to very coarse sand ).

/  I  \ L r b 5

K 6 - { c o s 0 + f s n d )
\ D , t

f ,  1 0 0 5 1

' r  - w . l F J t  
,  I

L o  )



CHApTER l0 i  F ' low in  A l lu l ia l  Channe ls  . l -35

Jain (198l) proposed a formula for maxinturn clear-water scour around crl in_
drical piers rhat includes an effect of sediment size. In the dimcnsional urlysis of
Equation 10.92, VrlV, = 1at maximum clear-water scour so that the Froude num-
ber F, - F. = V1(glr)u5, which is rhe crit ical value of the Froude number calcu-
Iated from the crirical velocity evalualcd from Keulegan s equation and the Shields
diagram. as described previously. The resulting fornula is based on the experi_
mental data ol Shen. Schneider, and Karaki (1969) and Chabcrt and Eneeldinser
(  1956) .  I t  i s  g iven  by

F : - ( r0.98)f = '*h]"'
The exponent on -r,,/b is the same as for the Laursen and Toch formula. The ranse
in _v,/b of the data varied from 0.7 ro 7.0, while the nrean sediment sizcs of the daia
were between 0.24 and 3.0 mm Equation 10.98 provides an upper envelope for
the data.

Jain and Fischer (1980) invesrigated live-bed pier scour around cylindrical
piers at high velocities. They measured the scour depths around piers in a flume
using threads placed venically in the sediment bed prior to scour. At the end of
scour, the threads were excavated and lhe scour depth was measured at the eleva_
tion at which the threads were bent over. This procedure was intended to avoid the
bias caused by panial infil l ing of the scour hole whcn the experimental flow was
stopped. The resulting scour formula is similar to Equation I0.9g, except that the
scour depth is related to the excess Froude number (F, - F-), because the formula
applies only to the live-bed case. The results showed a slight decrease rn scour
depth after maximum clear-water scour followed by increases in scour depth with
rncreases in (Fr F"). The live-bed scour formula is

l F ,  -  F " l o "

which provides an envelope of the data. Most of the data had, y,lb values of eirher
I or 2 with three data points in the range of 4 to 5. Sediment sizes varied from 0.25
to 2.5 mm.

Melville and Sutherland (1988) and Melville (1997) developed an empirical
pier scour equation based on a large number of laboratory experiments at the Uni_
versity ofAuckland, New Zealand. It has the form

*:,'[]1"

d , -

b
K,Ke K rKrKdK"

(10.9e)

( 10. 100)

in which ,(, and K, are the shape and skewness correction factors as before: rK, =
expression for effect of flow intensity; (, : expression for effect of flow depth:
K, = expression for effecr of sedimenr size: and K" er,pression for effect of ied_
iment gradation. Raudkivi and Enema (1983) showed that, for clear-water scour,
sediment gradation caused a large reduction in scour depth due to armorine for
o, ) I.3. However. Melville and Sutherland { 1988) presented a method for accJunt-
ing for sediment gradation effects by defining an armor velocity y > % at which
live-bed scour begins. The value of V" is calculated as 0.8 V.. in which'4, is the



. l -16  CHAPTER l0 :  F lo \  in  A l lL rv ia l  Channc ls

crit ical vclocity of the coarscst arntor size given by d","-/1 8, where dn',. is sotrte

reprcsentative maxinrurn grain size in the sediment mixlure' Then, the flow inten-

sity expression, K,, is evaluated from

(v,, rl v, - lv" v,)
i f

v,. v,
v\ (.v" - v)

K r - 2 1 v,

Thcse cxpressions for K, have the effect of collapsing the scour data for both uni-

form and nonunifornl sediments in both clear-water and Iive-bed scour' For uniform

sediments, V = V, so that the det€rrnining sediment mobil ity factor is V'IV. < I

for clear-water scour. For nonuniform sediments, it must be true that l/d > 4; oth-

erwise. 4 is set equal to y.. The depth cffect, which is due to interaction of the sur-

face rollei and the downflow on the upstream face of the pier (Raudkivi and Ettema

1983), is accounted for b!'

<  2 .6  (10 . l 02a )

<  I  (  l 0 . l 0 l a )

>  I  ( l 0 . l 0 l b )

K ,  =  1 . 0 (  10. l02b)

The sediment size effect depcnds on the value of b/d.., as given by

i f  ,  < 2 5
a50

h
i f  :  >  ) s

aTso

For nonunifonn sedirnents, dro is replaced by the arrnor sediment size. d''",/l 8 The

maximum possible value of d/bis 2.4, and this fornlulation provides an upper

envelope to the scour data. The data range for the Melville and Sutherland method

includes sediment sizes from 0.24 to 5.24 mm, 1,/b values from 0 7 to 12, and VrlV,

values between 0.4 and 5.2 (Melville 1997). Slight changes in the dePth expression
(" were made by Mehille (1997) to include wide piers (r' '/b < 0.2) as well as

intermediate width and narrow piers.
Froehlich (1988) completed a regression analysis of live-bed scour at bridge

piers at some 23 field sites. He presented a best-fit relationship given by

(  10.10,1)

yr
-  ,  * [v

x, -  o ur(;)""

> 2.6

t t ;

t f ;

[ .  r e ;  I
Kl - 0.s1 '"tL o_ I
K , i - -  I Q

(  1 0 . l 0 3 a )

(  10.103b)

r  f , .  1 0 1 6  [  A  l 0 o E

I  -  o . :zx . r , l '  I  F9 ' l :  I
b  l b )  L d s o J

in which r(, : pier shape factor; (, : skewness factor = (b' lb)o 67 ' b' = b cosq +

L^sinl,b = pier width; L" - piet length; -vr = depth of approach flow; F' =

F'ioudc numbei of approach'flow; and dro = median grain size The skewness fac-

tor essentially is the same as Equation 10 94 used in the CSU formula The power

on bldrois very small, indicating a relatively minor influence. Tbe coefficient of

iletermination of Equation 10.104 is 075. Froehlich recommended an envelope
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curve oblaincd by adding a factor of safety of L0 to the right hand side of Equation
t0.  104.

Comparisons between several pier scour forlnulas and Iaboratory and field data
have been made by Jones ( 1983), Johnson ( 1995 ), and Landers and Mueller ( 1996).
Jones concluded that the CSU formula enveloped all of the laboratory and field data
tested, but it gives smaller estimates of scour deprh than the Laursen and Toch, Jain
and Fischer, and Melvil le and Sutherland forntulas ar low values of the Froude
number. Johnson found lhat all four of these scour fonnulas havc high values of bias
(ratio of predictcd to measured scour depth) for yr/b < 1.5, with high values of the
coefficient of variation (COV) as wcll. For y,/b > L5, rhc CSU formula performed
well with a low value of COV and a bias from 1.5 ro | .8, providing a re'asonable
factor of safety. In general, the Melvil le and Sutherland formula overpredicted
more than any of the fornrulas tested uith bias values varying from 2.2 to 2.9 for
.r,/b > 1.5. for cxample. Landers and Mueller (1996) evaluated pier scour formu-
las on the basis of a much more extensive data set of 139 field pier-scour measure-
nrents from 90 piers at,14 bridges obtained during high-flow conditions. Data were
separated into l ive-bed scour and clear-water scour measurements. Although the
data sho$ ed considerable scatter, it was concluded thar rhe influence of f low deoth
on scour depth did not become insignificant at large values of the ratio of f lbw
depth to pier width, as indicatcd by the Melvi)le and Sutherland formula. In addi-
tion, no influence of the Froude number and only a very weak influence of sedi-
rnent size were found. Both the HEC- l8 and Froehlich scour fonnulas performed
well as conservative design equations but overpredicted the scour by large amounts
for many cases.

Abutment scour

Melvil le (1992, 1997) proposed an abutment scour formula rhat is similar in
form to the Melvil le and Sutherland pier scour formula, arguing that short abuG
nents behave like piers. The abutment scour fornrula is given by

d,  -  K, rK,KuK,KrKr; (  r0 .105 )
in which K represents expressions accounting for various influences on scour
depth: K,. = depth-size effect; K, = flow intensity effect; K, = sediment size
effect; K. : abutment shape factor; K, = skewness or alignment factor; and Ko =
channel geometry factor. The depth-size factor is defined by the following expres-
s lons:

(  10.  l06a)

( 1 0 . 1 0 6 b )

(  l0 . l06c)
1. .r > 2 5

in uhich -r', : approach flow depth and L, = embankment or abutment length.
These expressions indicate that scour depth is independent of depth for short abut-
mcnts (L,,h,r < I ) and independent of abutment lcngth for long abutments (L,,/-)r >

K,r - I 0.y r;
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25). The flow intensity factor essentially is the same as for piers, except that the

maximum valrc of t l, lb = 2.4 for Piers has been removed to give

. .  v r  -  ( v ,  v . )  -  v t  ( 4 - t , )  _ .
X , = - -  

V  
l o r  

V  
< -  I

v, - (v" v.)
> lK t =  | v,

in which V, - arnror velocity defined in the same way as for piers; 4 = critical
r,elocity; and V, = velocity in the bridge approach section. The depth adjustment
factor, Kr, is the same as for piers, as expressed by Equations 10.103, except that
the pier width, b, is replaced by the abutment length, L,. The abutment shape fac-
tor is assumed to be 1.0 for venical-wall abutments and 0.75 for wing-wall abut-
ments. Spill-through abutments are assigned values of K, - 0.6, 0.-5, and 0 45 for
0.5: l  (H:D,  l :1 ,  and 1.5: l  s ide s lopes,  respect ive ly .  These values of  shape factor
apply only to shorter abutmcnts, for which L/)t < 10. Shapc effects were found to
be unimportant for longer abutments, so that K, : 1.0 for L/.i' > 25. For abutnrent
lengths between these two extremes, a linear interpolation \\'as suggested:

L .
l 0 <  j < 2 5

_1 t

(  1 0 . 1 0 8 )

in which K, represents the shape factor for shon abutments. and Kf is the interpo-
lated value for intermediate length abutments. Values of K, for flow alignment and
Ko for abutments that protrude into the main channel from th€ floodplain are given
by Melv i l le  (1997) .

Froehlich ( 1989) apptied a regression analysis to a laboratory data set fbr live-
bed abutment scour from several investigators to produce the relationship

4 = z.zt x,K,lLlo"utu, *, (  r0 .109 )

in which d, : local abutment scour dePth; .r ' , = approach flow depth; K, : abut-

ment shape factor; Kd = skewness factor; L, : abutment length; and F, - approach

flow Froude number The value of 1.0 added lo the right-hand side of Equation

10.109 is a factor of safety. Froehlich calculated the approach Froude number based

on an average velocity and depth in the area obstructed by the embankment and

abutment in the approach flow cross section. All the experimental rcsults in the

regression analysis came from experiments in rectangular f lumes.

Richardson and Richardson ( 1998) argued that experimental results fbr rectan-

gular f lumes that depend on abutment length as an independent variable do not

accurately reflect the abutment scour process for contpound channels, which have

a nonuniform velocity and discharge distribution across the channel. Sturm and

Janjua (1994) demonstrated that a discharge contraction ratio. M, represents the

redistribution of f low between main channel and floodplain as the flow Passes

for

( 1 0 . 1 0 7 a )

(  1 0 . l 0 7 b )

/  1 . .  \
K l -  K , +  0 . 6 6 7 ( 1  -  K . ) ( 0 . 1 - j  -  l /  f o r
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Oobstt

(a) Plan

Water surface

Floodplain
- - -  

T .  
- - - - -

l os

(b) Section A-A

FIGURE 10.27
Definition sketch for idealized abutment scour in a compound channel (Sturm 1999b).

through the bridge contraction. As shown in Figure I0.27, the discharge contraction
ratio, M, is defined by

Q - Q.r"t (10 . r  l 0 )

in which Qoo.,, - obstructed floodplain discharge over a length equal to the abut-
ment length projected onto the approach cross sectiont and Q : 1661 discharge
through the bridge opening for an abutment on one side only, as in Figure 10.27, or
Q : total discharge from the outer edge of the floodplain ro the cenrerline of the
main channel for abutments on both sides of the main channel. The variable fl -rVf)
was proposed by Kindsvater and Carter ( 1954) to characterize the effect of a bridge
on flow obstruction to measure discharge, and it is used in the FHWA/USGS pro-
gram WSPRO to determine bridge backwater (see Chapter 6). Sturm and Janjua
(1994) showed that M is approximately equal to the ratio of discharges per unit of
width in the approach and conrracted floodplain areas, qrylqp, for an abutment that
termindtes on lhe floodplain.

With reference to Figure 10.27, the idealized long contraction scour is formu-
lated first, followed by equating the local abutment scour to some multiplier of the
contraction scour as originally proposed by Laursen ( 1963). In two different com-
pound channel geometries, Srurm and Sadiq (1996) and Sturm (1999a, 1999b) have

A

t_
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sho$n that this approach to the problem results in a clcar-water abutment scour

equation giYen by

* - " ' r , l #A-o+ ]  +  r (  l 0 . l  l  l )

in *,hich d, - local clear-water abutment scour; -v/0 = floodPlain depth for uncon-

tracted flow: K, : abutment shape factor; q/r - approach discharge per unit width

in the floodplain : Vr':r l, M = discharge contraction ratiol Vo. : crit ical velocity

in the floodplain at the unconsricted depth.\i0 for setback abutments and crit ical

velocity in the main channel at the unconstricted depth in the main channel for

bankline abutments. The factor of I on the right hand side of Equation l0.l I I is a

factor of safety. If the approtch floodplain velocity V71 exceeds the crit ical value

vr.. then v/l is set equal to yr. for maximum clear-water scour. The shape lactor

K, = I for venical-wall abutments, while for spil l-through abutments, it is given by

t 0.67
x, -_ t.5z 

, _ gA for 0.6? '< € < 1.2 ( 1 0 . l  r 2 )

where ( - qtt/(Mvk)rd, and K, = 1.0 for ( > 1.2 as the contraction effect

becomes morb important than the abutment shape. Equation l0.l I I is compared

with the experimental data for an asymmetric compound channel having a flood-
plain width of 3.66 m and a main channel width of 0.55 m in Figure 10.28, which

' 1 . 0  1 . 5

I = qnl(MV6sfrc)

FIGURE 10.28
Abutment scour relationship for compound channels (Sturm 1999b).

. Vertical wall
o Spil l{hrough

- Best f it

1  e .  ^  
o o
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.  

'Both
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sho*s that d,/_r;s has a nraximum value of 10. The i valr.re for the best-fit equation
withour a factor of safety is 0.86 with a standard enor of 0.74 in r/.Aru.

ExA\ rpLE 10.s .  A  br idge w i th  a  228.6  m (750 f r )  opcn ing  lengrh  spans  Burdc l l
Creek. \r hich has a drainage a-rea of 97 I kmr ( 375 mir ). The ex it and bridge cross sec-
tions are shown in Figure 10.29 with three subseclions and thcir corresponding values
of Manning's a. The slope of the stream reach at the bridge site is constant and equal
to 0.001 rdm. The bridge has a deck elevation of 6.7i m (22.0 fr) and a borrom chord
ele\arion of 5.,19 m (18.0 fr). It is a Type 3 bridge tsee Chaprer 6) wirh 2:l aburnrent
and embankment slopes. and it is perpendicular lo the flow direction (no skew). The
tops of the left and right spil l  through abutments are at X stations of 281 .9 m (925 fi)
and 510.5 m ( 1675 ft), and the abutnrents are set back from the banks of the main chan-
nel. There are six cylindrical bridge piers. each *ith a width of 1.52 m (5.00 ft). The
sediment has a median grain diarneter, d5o, of 2.0 mm (6.56 x l0 r f l). Esrimate rhe
clear-\r 'ater abutment scour and pier scour for the l0O 1 r design flood, \\ hich has a peak
discharge of 397 mr/s (1.1,000 cfs).

Solulion. The FHWL,-SGS program WSPRO. described in Chapter 6, is run ro
obtain the hydraulic variables needed in the scour prediction formulas, although HEC-
RAS could also be used. The program actually is run twice, first to obtain the water sur-
face elevations ior both the unconstricted and constricted flows at the approach cross
section and, second, with the HP 2 dala records to compute the velocity distribution in
the approach section for the unconstrict€d (undisturbed) water surface elevation of
4.038 m (13.25 ft) and the constricted water surface elevation of ,1.157 m (13.6,1 ft).

The scour parameters lhen are determined from the WSPRO results. Calculations
are made for the left abutment, which has a length. L,. of 233 m (76.1 ft). From the com-
pured velocity distribution for the constricted flow, the blocked discharge in rhe approach

Burdell Creek
D.A. = 971 km2; Q100 - 397 m3/s

200 400
Transverse Station, m

FIGURE I0.29
Bridge cross-sections for Example 10.5.

n = O . Q 3 2  | n  0 . 0 4 2  |  n = 0 0 3 2

W.S. elev.
at bridge
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section for the left abutment is 39. I m'/s ( I -180 cfs ) w ith a blocked cross'sectional area
of 106.8 mr ( I 150 ftr). The discharge from tie left edge of waler in the approach cross
section to the centerline of the nain channel is 210 mr/s (7411 cfs). Then, the value of
M = (.210 - 19.ly2l0 : 0.81. Now we can calculate V11 : Q1lA1r = 39.1/106.8 =

0 .366m, is ( l .20 f t /s )and! t t=  Ar lL ,  =  106.8 /233 :  0 . '158  m (  1 .50  f t ) .  Inas imi la rway,
the value of rro is found for the unconstricted cross section to be 0.35? m ( L l7 fl).

The crit ical velocities for coarse sediments are determined by substituting inlo
Equation 10.17 (Keulegan's equation). For rhe constricted approach section and for a
floodDlain deDth of 0.458 m. we have

: 0.69 m/s (2.3 ft ls)

in which the Shields parameter has been tdien to be 0.045 for this sedinrent size and
the equivalent sand-grain roughness,t, = 2rl*. Because V11 < Vyt,, it is apparent that
we have clear-water scour In a similar manner, the value of V;q for an unconstricted
floodplain depth of 0.357 m (1.17 ft) is 0.67 n/s (2.2 ft/s).

To cornpute the scour depth for the setback abutments, substitute into Equation
l0.l l  l  to obnin

vtu = 5 '75 x
(  r  2. t  x0.458 )

I ) (9 .81) (0 .002)  x  Io8  
2  x  0002

d.  I- : 8 . 1 4 x 0 . 6 3 x 1 - o + ]  +  r o = : +

I t 6 1 l o r
1 . 5 2 / . ' l . l s .  | : : : |  -  2 . 4 m ( 7 . q  f r )

L  r . ) r  I

(0.r66x0.157 )
(0.81 ) (0.67 x0.357)

in which the shape factor X, = 0.63 from Equation 10.I 12 and the safety facto. of 1.0
has been included. Finally, $e left abutment scour depth is 3.4 x 0.357 : 1.2 m (3.9
ft). In general, this calculation would be repeated for the right abutment, but this exam-
ple has an es.entially symmetric cross section.

Next, consider the scour around the bridge piers and use the largest flow depth in
the cross section, assuming that the thal$eg might migrate laterally. The WSPRO
results give a water surface elevation of 3.80 m (12.5 ft) in the bridge section, which
corresponds to a maxinrum depth of 2.63 m (8.63 ft). The maximum velocity in the
bridge section is 1.68 m,/s (5.51 fi/s). The resulting value of the pier approach Froude
number is V,/(8y,)o5 : 1.68(9.81 x 2.63)05 : 0.33. Substituting into the CSU pier
scour formula and recalling that the pier $ idth , = 1 .52 m (5.0 ft), we have

f  ! .  1 0  r 5

d , :  b x 2 . o K , K e K b K .  : l  F l "
t o  )

f  )  ^ 1 ' ] 0 J 5-  l s 2  2  \ ( r 0 ) (  r O x r r x l 0 ) l  ; ; ;  1 0 3 3 1 0 "  -  2 . s m

(or 8.2 ft), in which all the corection factors have the value of I except the bed cor-
rection, which is taken to be l . l for clear-* ater scour The Laursen-Toch equat ion gives
a oier scour depth of

I  r ' , l o r
d , = b x  r  3 5 L t ]

Total Scour

It is recommended in HEC-18 (Richardson and Davis 1995) that degradation, con-
traction scour, and abutment or pier scour be added to produce a conservative total

(0.0,1s )(2.65
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scour estimate. For setback abutments. contraction scour has to be calculated sepa-
rately for the setback area and the main channel in the bridge section. Another con-
servative design suggestion is to use the calculated maximum scour depth at a pier
in the main channel for a pier in the setback area as well, assuming lateral migra-
tion of the main channel into the setback area. For bankline abutments, contraction
scour and abutment scour occur simultaneously rather than independenrly, so that
adding abutment scour and contraction scour for this case may be overly conserva-
tive. If scour calculations indicate that foundation depths are excessively large, then
scour countenneasures such as rock riprap protection and guide banks can be used
(see Lagasse e t  a l .  l99 l ) .
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EXERCISES

10.1. Derive the Engelund-Hansen equation (10-10) for fall velocity of natural sands and
gravels from their proposed relationship for Cp (= 2'1lRe + l5). Then plot the
Engelund-Hansen equation for fall velocity (cn/s) vs. panicle diameter 0nm) for
sand to gravel size ranges in water at 20'C and compare with the plot of calculated
fall velc'city of quanl spheres in the same sedimentation fluid (on the same graph)

10.2. Derive Rubey's equation from his proposed relationship for CD (: 24lRe + 2) Plot
the results for fall velocity for sand to gravel size ranges and compare with the
results from the Engelund-Hansen equation on the same Sraph

10.3, A river sand has a sieve diameter of 0.3 mm. Find the fall velocity at 20"C using two
methods: (l) use Figures 10.2 and 10.3. (2) use the Engelund-Hansen equation plot-

ted in Exercise 10.1.

10,4. A river sand has a measured fall velociq in water of l0 cm/s at 20"C. Find the sed-
imentation diameter.

10.5. PIot the results ofthe sieve analysis given below on lognormal paper. Find dro,,
drr.", dro, d. and o r. Derive a formula for d65 and d$ in terms of ds and d8 using the
lheorelrcal lognormal di\tribulion:

Sieve diameler, mm Grums retained

0.,195
0.,117
0.351
0.295
0.246
0.208
0.1?5
0.147
0.124
0. 104
0.088
0.0?4
Pan

0.36
L52
4 .32
?.40
8.80
'7.M

4.56
2 .88
L52
0.80
0.44
0.20
0 .16
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10.6. For a slope of 0.002 in a wide stream. calculate the depth al which sedjment morion
begins for a fine gravel wirh d< = 3.3 mnt.

10.7. Bank-full deprh for a srream in $ell-rounded alluviufr wirh dsn = t2 mm is 1.5 m.The stream slope is 0.0005. The thannel rhape ir approxrmarelirrapezoidal wirh 2: I
side slopes and a botom widrh of l0 m. Calculate ihe bank_fuli discnarge and derer-
mine whether the bed and barl 'r are srable ar bank-full condirions.

10.8. A roadside drainage ditch has lo carry a discharge of 100 cfs. It has a bortom widrh
of 5 fr and side slopes of 2: t.-Tle dirch i5 ro be lrned * ith locally available grarel,
*hich has dro : 25 n1m. At \\ hal marimum :lope can rhe channel be constructed for
srabil iry of rhe bed and banks:r

10.9. Derermine the crit ical velocil\ of a uniform flow of water (20"C) wrrh a deprh of 3tt over a bed of very coarse sand with a median size of 2.0 nm using Keulegan,s
equarion. Repeat for a laboraron, unifonn flow deprh of 0.3 ft. Ler k, : 2.5d5;

10.10. Calculate rhe crit ical velociries in Exercise 10.9 using Manning.s equahon with the
Strickler equation for Manning's rr. For coarse .edrm-enn and iully rough turbulent
flow' de.ive a general relationship for the crit icar sedim.nt nunrbe. us a function of
d50lf0, where J0 is flow depth. and the Shields' parameter using Manning,s equarion
wirh Strickler's equarion for r_ The critical sedimenr number is defined as

^'-=---�I-
V(SC - I )sd,o

in which V" = c.i l ical veloci! ard SG = specific graviry of the sediment.

l0.l l . The RepubJican River is f lou.rno ar a deprh of 3.0 ft uirh a relociry of 7 ft ls for a
slope of0.00l?. The sedimenr sizes rre 4o = 0ll mm, do, = 0.39 mm, and d, :
0.59 mm. Derennine the bed form type uiing the Sinons-lichardson diagram and
the van Rijn d jagram.

10,12, The Missouri River at Omaha flows at a deprh of l0.l fr wirh a velocity of 4.4g h.ls
and a slope of 0.000155 in summer (f = 7l"F). At approximately the same dis_
charge of 32,000 cfs, it flows ar a depth of 9.1 ft with a velocity oi 5.49 ftls und a
slope of0.00016 in winter 1f = 4l.F). The measured bed sediment sizes are d5o =
0.199 mm and d*, : 0.286 mm in summer, while in u,inrer, dro = 0.224 mm and
d$ -- 0.306 mm. predicr the bed form rype for borh ca... usini Figure 10.14 and
explain your results. (Use the \'an Rijn method to estimare al.)

10.13. A ? mi reach of lhe Chattahoochee River downst.eam of the Buford dam ts subject
to a maxrmum discharge of 8.000 cfs due to hydropower releases and a minimum
discharge of 550 cfs. The average widrh of rhe .ive; is l g0 fi, and it can be consid-
ered very wide. The bed sediment is coarse sand with dro = 1.0 mm and d6J = L2
mm. The average stope is 0.00031 ft/fr.
(a) Calculate the velociry and deprh at low and high flow using the Karim-

Kennedy merhod and the Engelund merhod.
(b) Predict the dominanr bed form ar low and high flow using the Simons_

Richardson diagram and rhe r.an fujn diag."-. Whut u.. ih. b"d lorm dimen_
sions at low and hieh flo*.?
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10,14, Calculate the velocity and flow deprh for the Republican River using rhe measured
discharge per unit widlh of2l ftr/s as given in Exercise l0.l l . Use rhe van Rijn
melhod and the Karim,Kennedy method.

10.15. The Rio Crande fuver at Bemalil lo, New Mexico has the followins characreristics:

Deplh range: _ro = 0.6 5.0 fl
Slope: S = 0.(X1086 fr,ift
Temperaturet a: 60'F
Bed sediment: dr5 = 0.24 mm

/so = 0.29 mm
du ,  : 0 .35  mm
deo = 0.53 mm

Use a spreadsheet to prepare a depth-velocity cuwe using three methods: ( l )  Enge-
lund, (2) van Rijn, and (3) Karim-Kennedy. Plor the resulrs on log-log scales along
with the measured data from the table given below. Compare the results and discuss.

Rio Grande River near Bernalillo, New Mexico, Sec. A2

Velocity, rus Depth, ft Velocity,lus Deplh, ft

r1.06

5.96
5.09
3 . 1 1
2.84
2.65
1 .66
3 .58
3 . 1  I
3 . t 2
2.34
2.23
r .98
I .9 I
2.05
1.94
2.31
2.51
2.90
1.44
t .?0
1.40
2.01
t .97
1.85
1.76
1.89
t .76

2.46
3.63
3.79
3.49
2.'t6
2.69
2 . 1 5
| .25
2.66
2.56
2.18
2 . 1 4
t.44
t . l 8
t .23
t .29
| . 3 2
t .42
1.50
1.29
1 . 1 2
1.48
0.19
t.o'l
L70
1.03
t . 3 l
l .  t 0
l � 7 0

2.09
| .62
t . l ' l
1 .30
3.'�73
5.00
5 . l 7
.1.31
5.86
5.56
6.91
6.88'7.82
' t .7 |

6.92
6.27
6.10
5.06
6.50

3.04
2.71
2.89
3 . 1 6
3.99

6.01
2.88
2.00

1.94
0.93
0.52
0.5E

3.06

3.25
3.01
3.68
4.46
4 . 1 I
4.80
4.34
3.43
2.61
2.96
3.4{)
1 .84
2.56
3.44

2.61
3 . t 2
2.33
3.22
I.54
l .m

solEdr Nordin and Bcverasc (1965).

10.16. Calculate the bed load discharge per unit width in a wide gravel-bed stream with a
slope of 0.005 and a flow depth of 1.0 m. The median bed sediment size is 20 mm.
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Use lhe Meyer-Peter and Miil ler fonnula and the Einstein-Bto\\ 'n formula. Give the
results in mr/s and in metric tons/day. (I metric lon : L00O kg).

10.17. Calculate the bed load discharge per unit width in a canal constructed in coarse sand
(dro : 1.0 mm) at a slope of 0.00 1. which is f lowing at a depth of 1.0 m and a veloc-
ity of 1.5 rn-/s. Use the van Rijn bed load fonnula and the Einstein-Brown formula.
Discuss the results.

10.1E. The following table Sives the velocity distribulion and the suspended sand concen-
tration distribution for the size fraction between the 0.07.1 mrn and the 0.1O4 mm
sieve sizes ior venical C-3 on the Missouri River at Omaha on \ovember'1, 1952.
On this day, the slope of the stream was 0.00012, the depth was 7.8 ft, the width was
800 ft, the water tenperature was .15"F, and the flow u as approximately uniform.
(d) Plot the velocity on semi-log scales and the concentration profi le on log-log

scales. Do a regression analysis to obtain lhe best-fit straight l ines.
(r) Compute from the data and the graphs the follou'ing quanlit ies:

l,l. : shear velocity,
Y = mean velocity,
K : von Karman constant,
/ = Darcy-Weisbach friction factor,

\ : Rouse number.
g, : suspended sediment discharge per unit width in lbVft/s.

z. distance above bottom (ft) a, velocity (ftls) C, conc€ntration (mg/L)

0.1
0.9
t . 2
1 .4
1 . 1
2.2
2 . 7
2.9

3.4

4 .8
5 .8
6.8
7.8

4.10
4.50
4.64
1.17
4.E3
5 . t 2
5 .30
5.,10

5.42
5.50
5.60
5.60
5.70
5.95

4 l l
380
305
2E)
2'�71
238
2t1

ls6

;

l,t8
l l0

10.19. The Mississippi River at Arkansas City is very wide and has a bed sediment with
dro : 0.30 mm and dr = 0.60 rnm. For a flow depth of 45 ft, the water surface slope
is measurcd to be 0.0001, and the water temperature is 80"F. The mean velocity is
3.0 fus, and the sediment concentration at a location of 5 ft above the channel bot-
fom is 1,000 mg/L.
(a) What is the dominant mode of sediment transpon?
(D) Calculate the middepth suspended sediment concentration.
(c) If the water temperature were 40oF while all other factors remained the same,

would the suspended sediment discharge change? Explain.
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10.20. A reach of Peachtree Creek has a slope of 0.0005. and a sand bed wiih d\o = 0.5
mm, du, : 0.6 mm, and dro: 1.0 mm. The measured *ater discharge per unit of
w r c l t h d  =  I l . )  l f / s -

(a) Estinratc the depth and velocity using the Engelund merhod. V/hat is the
equivalent value of Manning's n and how does it compare with the Strickler
value? Explain.

(b) Determine the bcd form type. and its height and wavelength from van Rijn's
method. Use the value of 7l determined in pan (a).

(c) What is the mode of sediment transport; that is, is it primarily bed load, mixed
load, or suspended load?

(d) Calculate the suspended sediment concentration in ppm at a distance of I ft
above the bed using a reference concentration, C,, and the methodofogy of
van Rijn.

(?) Calculate the total load from Karim's method. Yang's nrethod, Engelund's
method, and Karim-Kennedy s method in flr/r and ppm by weight.

(, Calculate the b€d load lransport rale in ft:/s using the Meyer-Peter and Miiller
formula. first using r, and then rl. Which result is the correct one and why?

10.21, Calculate the total sediment discharge in the Niobrara River using the Engelund-
Hansen formula for the conditions gi\ 'en in Example 10.4.

10,22. For the given water discharge in the Niobrara River in Example 10.4, calculate the
depth and velocity using the Engelund method and the Karim-Kennedy method.
Then dctcrmine the sensitivity of the calculated sediment discharge to the depth and
velocity using one of the sediment discharge formulas in the example.

10.23. The Niobrara River in Nebraska has the followine sediment sizes:

Bed sedinlent: dro = 0.27 mm
d65 : 0.34 mm
r / * = 0 4 8 m m

For each of the measurcd data points in the table given below, apply the van Rijn
method. Yang formula, Karim-Kennedy formula, and Kaim formula to calculate the
total sediment discharge per unit of width g, in lbVsec/ft for comparison with mea-
sured sediment discharges per unit width (conven from C, in ppm). Use a spread-
sh€et or write a computer program. For each method plot a graph of measured vs.
calculated sediment discharges and discuss the results.

Niobrara River

Depth, ft lelocily, fts Slope Conc., ppm Viscosity, ftlls

| .11
1 . 5 3
l.{,1
L6{)
| . 62
t . 89
1 .5?
t . 4 l
l . 5 l

3.20

2.26
3.57
l .6  r

2.15
l . t3
2 .41

t6 r0
970

I 1.10
1890
t'770
1780
780
'7

9 1 0

0.001,139
0.0013.{-1
0.001250
0.00170r
0.00170.1
0.00r?99
0.001269
0.001288
0.001t8E

t.6l E-5
0.99E-5
t.0EE-5
r.64E-5
t . J J E - )

1.34E,5
t . t3E-5
r.00E-5
1.03E-5

lcontinued)
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Niobrara River (coltiraed)

Depth, ft velocity, f/s Slope Conc.. ppm I'iscosity, ftrA

1..1.1
r . 5 l
t . 56
L7 l
L38
L67
l . 70
1 .56
L6 l
1.,{ I
r . l 8

t.5.1
t..12
L36
L62

2.52
_r.21
3.07
3.70
I�3.r
2.95
3..{2
2 . t 5
2..{5
- J )

2 . l 9
2.05
2.20
3.33
3 . l  t
3 . 6 1

1000
1780
1.190
1900
l 7 l 0
893

1820
154
91.1
503
392
.129
?36

1520
1660
2200

l . l 6E -5
l . 2 t E - 5
t . l 9E ,5
r . 2 5 E  5
t . 82E-5
L768,5
l.76E-5
L08E,5
0.95E 5
t.05E-5
0.888-5
r . 0 t E - 5
L l9E-5
L79E-5
1.728,5
r.55E-5

0.001 r7 {
0.001420
0.0011101
0.001685
0.001553
0.001250
0.001,177
0.001250
0.00r287
0.001 136
0.00r 2s0
0.0012 t2
0.001 136
0.001609
0.00  t610
0.00t667

Solr .er  Colby and Henbree (  1955 r :  KaJim and Kenn€dy (  198 t ) .

10.24. Discuss the expected channel adjustmenrs in a sand-bed stream thar is in equil ibrium
as a result of the following changes:
(a) Sand-dredging in a localized reach upsrream of a b.idge,
(b) Rapid residential development adjacent to the stream in an urban area,
(c) Excavation of a wide. channel in a bridge cross section to reduce oacx\\.arer,
(d) Cutoff of a meander bend.
(e) Channel inproventent by removal ofbrush on thc banks and deadfalls in the

channel.

10.25. Develop the complete derir ation of the equalion for l ive-bed contraction scour given
by Equation I0.86.

10.26. Consider the case of a ven long contraction with overbank flow in the approach
channel and a constant main channel width. The bridge abutmenr exlend to the edge
of the main channel. Assume that there is no change in the channel roughness from
the approach through the contraction and that the sediment is coarse without bed
forms with bed-load transpon only in the main channel and no sediment transpon in
the floodplain. For the l i le-bed case, derive an expression for the contraction scour
using rhe Meyer-Peter and Vii l ler bed-load formula.

10.27, Calculate the l ive-bed contraction scour depths for bankline abulmenls in o\erbank
flow as a function of the percent of total f low in the main channel. which varies from
50 ro 90 percent. Assume a constant main-channel width and an apDroach flow
depth of I0 ft in the main channel. Plol rhe results.

10.28. Estimate the maximum scour depth around cylindrical piers in a riverbed if rhe bed
sediment has a median size of 1.0 mm. and the bridge piers are 1.2 m in diameter.
The approach flow just upsrream of the piers has a depth of 3.0 m and a velocily of
L0 nts. Use rhe followinS formulas: ( l) CSU, (2) Laursen and Tcrh, (3) Jajn. (J) Mel-
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vil le and Surherland, and (5) Froehlich. What value of scour deprh \{.ould you reporr
to the geolechnical engineer designing the pier foundationsJ

10.29. Find the abu,ment scour depth and pier scour depth for Example 10.5 using
Melvil le's formula and Froehlich's forntula.

10.30. The following field dara are giver for pier dianrerer, b: approach velocity, V,:
approach depth, -r ',; and median sedimenl diameter, d5o. Calculate the maximurn pier
scour deprh for a cylindrical pier having no skew using rhe equalions of Froehlich;
Melvil le and Surherland; Jain, Laursen and Toch; and CSU. Conrpare with the nrea-
sured scour depths,4.

River ,, ft Jr',, ft Vl, ftls d56, mm Nleasured 4, ft

Red 26.9
Oahu 4.9
Knit 5.0

I , l . I
t0.2
1.9

I . t . l

t . 0

2.0 0.060
7.8 20.0
1 .6  0 .5

10.31. Write a computer program with inte.active input that compures the depth and veloc_
ity in an alluvial river for a given discharge per unit width. Implement all methods
given in rhis chapter.
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Numerical Methods

A. l
INTRODUCTION

Nume.ical techniques are me&ods and algorithms for obtaining approximate solu_
tions of algebraic and differential equarions that can be programmed in computer
lan! 'uage. Such algorirhms musr br ef l lc ienr and accurare. fhe ef l ic iency of an
algorirhm refer l  ro i t  having a5 5matt  a number of logicat steps and e\ecuri ;n r ime
as possible. Eff ic ienc, atco can enrar l  minimi/ ing computer memory requiremrnr\ .
The efficiency of the program lhar aclualizes rhe algorithm also is important and
ha\ resuled in , t . rcrured programming conceprs. program. dcveloped rn *rucrured
modLle,.  whi.h dvoid indiscr iminatr bjrnching. are ea. ier for rhe u\er lo re3d.
understand, and modify, if necessary-

Tbe accuracy of a numerical algorithm is essential. Roundoff enor or trunca
tron enor can become so large as to "swamp" the numerical solution and male it
numerically unstable- Error analysis can provide some help in idenrifying instabil-
ity problems, but improving accuracy sometimes is a matter of experiencJ obtained
from numerical experiments with a panicular algorithm.

Numerical melhods that are irerative in nature must sarisfy some expectation of
con!ergence to$ ad lhe rue solurion. Somerime5 a llade-off muy be made between
efficiency and accuracy. The mosrefficient algorithm may div€rge in some kinds of
problems. There is no hope of accuracy in fiis situation, which is described more
aptly in terms of lhe reliability of the algorithm.

This appendix provides only a few numerical techniques that are used
throughout lbs text. For a more complete discussion ofnumerical techniques. refer
to the list of references following this appendix. The numerical techniques Dre-
.ented here are given a, procedures {'ubprogramsr for use rn standard noduler of
Visual BASIC. The procedures are easily translaled to orher languages.

457
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4.2
NONLINEAR ALGEBRAIC EQUATIONS

Nonlinear algebraic equations are encounrered ofren in open channel hydraulics.
Forexample, the problems ofcritical and normal depth determination rcquireeitber
a Lrial-and-enor or graphical solulion wirhour a numerical ,olver. Nonlinear atse-
b|aic equalions can be placed in rhe forrn FLtl = O. rhe roor of which is rhe soju-
tion of the equation. Consider the following algebraic equation in the unknown t,,
for example, in which a and . ar€ f,osirive consrants:

( A . I )

This equation can be rearranged in fie form

r ( ) )  = - r r +  c : 0
)

which can be solved graphically by finding the point ar which the function F(].)
crosses tbe) axis or. in other words, by finding the zero of the funclion. This equa-
lion actually has t\ro roo(s. which can complicare lhe rool search. ll represents $e
equation for ahemate deptbs associated with a known specific energy in a rectan,
gular channel. In this case, knowledge of de critical depth, which separates the two
rools. aids the solution process. cene.aily, such knowledge of rhe physical basis of
an equation, or at least of its graph. can be ol great assistance in choosing an appro-
priate algorithm.

Three methods for solving such equations in rhe form F(1,) - 0, in which I, is
the root, are given in this section. There are several additional methods, but rhe
methods chosen illusrrate th€ trade,off berween efficiencv and reliabilitv_

Interval Halving Method

The first method is not very sophisricared but very reliable. Calledthe intenal hal'r-
ing ot bisection method, it easily is illustrated by the high-low number guessing
game. For example, a professor rhinls ofa number berween I and l0O, asks a stu-
dent 1o guess the number, and then provides feedback to the studenr as to wherher
the guess was high or low. This information provided !o the srudent brackers the
range within which the unknown numb€r lies. The srraighlA student then halves
the interval after receiving the "highlow" feedback for each guess and converges
rapidly toward the final number in thjs way.

The general strategy of inrerval halving then is to divide an interval, in which
a root of the equarion is known to occ4 into equal pans. which halfof the inrer-
val tbe root actually is in can be derermined by comparing the sign ofthe funcrion,
4 at the midpoint with the sign at the left boundary of the interval. The interval is

(,{.2)
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Flv)

(a) Interval Halving Melhod (b) Secanr Merhod

fly)

(c) NeMon-Baphson Method

FIGUREA.I
Graphical depiction of merhods for sohrtion ofnonlinear a-lgebraic equarions.

halved again, and this process is continued until rhe root is app.oached as shown in
Figure A.la. The general procedure is summarized as follows:

l. Form a function. F, from the equation to be solved such that the root of FCy) =
0 is the solution.

2. Find rhe value of the function at the left boundary of the inierval from yr to )2
and store it in FYl.

3. Halve the interval tretween )r and )2 by compuring y - Ot + hy2.

Ya Y3
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4- Evaluate lhe function F(l) and store it in FY.

5. Compare the signs of FYI and FY by multiplving. [f fiey bave the same sign, ]
is the new left bor.tndary. lf they are opposile in sign ) is $e new right boundary'

6. Repqt steps 3-5 until some e.ror critenon rs met

The absoluie enor ERABS in the inlerval halving medrod is r€ducedby halfin each

iteration so that it is given bY

- -  - ^  Y r - ) l
tRAt ts  = 

- -
(A.3)

in which n = number of iterations and (y2 )r) = the original interval size The

error can b€ controlled by choosing the number of itemlions. but an approxmate

rclative error criterion may be more useful for stopPing $e computations- The dif_

ference betw€en $e current eslimate of lhe root and the mosl recent estlmaie ls

divided by the latrcrto esiablish an approximale r€lative errot When this value falls

below a specil'ied value, the comPutations are stopp€d.
The advantage of the interval halving method is t}lat ii always brackets the root

(provided a single root exists in the original interval)- This avoids divergence and

makes it very reliable.Its efficiency, however, is not as good as the other two meth-

ods presented here, because it usuatly requires more iterat;ons to achieve the same

Th; interval halving method is presented in Figu.eA.2a in Visual BASIC code

as a procedure lhat can be placed 1n a standard code module. This procedure can be

invoied from a form module, which also handles the chores ofdata input, printing

output, and graphing the function, if desired. The Procedure requires input values

forihe ends of $e original intewal Yt and Y2. An addilional procedure that eval_

uares rh€ function F()) must also bc supplied. Note that only one functional evalu'

ation is required in each iteraiion and that its sign is compared with lh€ sign ofthe

functional value at the lefl boundary through the computalion of FZ. Firsi the value

of FZ is checked to see if it is zero. A value of zero for FZ obviously means that

the root has been found "exactly," which may seem unlikely. but this can happen if

the error criterion is so restrictive that the significant figure limit of the computet

has been reached in two successive computations. If FZ is negative, then the func_

tion has crossed the y axis and the midpoint becomes lhe new righl hand endpoint
(Y2 = Y3). A positive value of FZ, on the other hand' signifies that the midpoint

should become the new left hand endpoint (Yl : Y3). The algorithm works

equal l )  wel l  i f  the funcl ion i1 increa\ ing or decteal ing with t  Some care mu\l  be

exerciied. however, in defining the function, so tha! it do€s nol have a singulanly

at either endpoint.
An error messagecan be written in case the error crilerion is not met in the spec-

ified number ofiterations (I : 50). In this event, all thal is necessary is to increase

th€ maximom number ofilerations. In fact. lhe ma\imum number ofiterations can

be made targe enough that this will never happen for a specilic problem ofinterest

so that exit from th€ FOR-NEXT loop always occurs ihmugh the relative enor

check qith the specified value of ER. If no root exists on the chosen intewal' the

algorirhm converges toward the right hand endpoint and may even satisfy the erlor
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ION METHOD*****

Sub  B ISECTION {Y1 .  Y2 ,  ER ,  Y ] )
Din FY1 As single, FY2 As singl-e, FY3 As single, Fz As Single
Din I As Integer

F V ' ]  =  F { V ]  )

FY2  =  F {Y2 )
rf FY1 i  FY2 > 0 Then Exir sub

F o r I = 1 t o 5 0
y3  =  { y1  +y2  )  / 2
FY3  :  F  (Y3 )
FZ = PY1 * FY3
If Fz = 0 Then Exit Sub
If FZ < 0 Then Y2 = Y3 Else Y1 = Y3
I f  Abs  ( l v2  -  v I )  /  Y3 )  <  ER  Then  Ex i t  sub

Next I
End Sub

(b) air**sEcA].IT !. tETHoD****i

Sub SECANT (Y1, Y2, ER, Y3)
Dim FYL As Sinq1e, FV2 As Single, FY3 As Single
Dim I As Integer

FY1  =  P  (Y1 )
F Y 2  =  F ( Y 2 )

l o r 1 = 1 c o i ( ,
Y 3 = Y 2 + F , Y 2 *  l \ 2  -  Y 1 ) , / ( F Y 1  -  F Y 2 )
F Y 3  =  F ( Y 3 )
If  Abs ( lY3 - v2)/v3) < ER Then Exit.  Sub

FY1 = PY2
Y 2 = Y 3
FY2 = FY3

NexE I
End sub

(c) * *a a *NEWroN-RAPHSON

Sub NET^II (Y1, ER, Y2)
Ditn FY1 As Sinqle, g'Y2 As Sing1e, FPR1 As Single, FPR2 As Single
Ditn f As Ineeger

FY1  =  F  (Y1 )
FPR1 = FPR (YL )

F o r I = 1 t o 5 0
Y2 = Y1 -FY1/FPR1

FY2  =  F (Y2 )
FPR2 = FPR (Y2 )
If  Abs ( lY2 - Yl l / l '2l  < ER Then ExiE Sub

FY1 = FY2
FPR1 = FPR2

Next I

FIGURE 4.2
Visual BASIC procedures for nonlinear algebr.ic equation solve$.
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criterion. This eventuality is avoided by checking prior to entering rhe loop to deter-
mine if a root exists on the intenal and sending an enor message if it does not.

Secant Method

The second algorithm to be discussed is called the secant method. As shown io Fig-
ure A.lb, two starting values of the root, y, and yr, are guessed. Then a straight line
is drawn through the points Lyr, fg,,)l and [f2, F(rz)]. Its intersection with the y axis
is the next guess for the root, )'1. Algebraically, y, is evaluated from the equation of
the straisht line:

F(v)(v, - vt)
(A.4)! 3  -  ) 2 r'(vr) - r(v,)

Then, y, and y, become the next two guesses for the root. This is continued until an
error criterion is met.

The Visual BASIC code for the secant method is given as a procedure in Fig-
ure A.zb. It is similar in several respects to the interval halving program, but note
that the two initial estimates for the root do not have to bracket the true value of the
root. The evaluation of the next estimate of the root uses Equation A.4, and only
one functional evaluation occurs for each iteration. Both the roots and theL fitnc-
tional values are updated after the enor check to prepare for the next iteration.

The secant method converges much more rapidly than the interval halving
method. Its disadvantage is that it may diverge for sgme functions because it is
open-ended in the sense that the root does not have to be bracketed. An example of
the divergence of the secant method is shown in Figure A.3a.

(a) Secant Method

FIGURE A3
Divergence of numerical methods.

(b) Newton-Raphson Method
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Newton-Raphson Method

The final method to be considered is the Newton-Raphson method, which really
is a refinement of the secant method as shown in Figure A.lc. In this method, the

tangent to the curve given by F(v) is extended to the :}, axis to give the next guess
for the root. This requires that the derivative of F(y) be determined. From the Tay-
lor series expansion for F(y), we can see that, if higher-order tems are neglected,
we can express the value of the function at y2 in terms of the value and its deriva-
tive at v,:

dF( v, )
F ( y , )  - F ( . y , )  +  

d ; ( ) ,  
- y r ) (4.5)

(A.6)

in which terms beyond the first derivative term have been dropped. Now, we are
seeking the intersection with the y axis at which F(v2) : 0, so, for the next estimate
of the root, we have

1t(v ' )
I : : ) r -  r̂  U r l

in which f'(v,) is the first derivative evaluated at )1. The Newton-Raphson tech-
nique is very powerful because of its fast convergence and capacity for extension
to multiple-variable problems, but it requires a function for which the derivative can
be evaluated. The procedure for the Newton-Raphson method is shown in Figure
A.2c. It is nearly identical to that for the secant method except for the estimate of
the next root by Equation A.6. Note that the SUB procedure refers not only to a
functional evaluation F(Y) but also to an evaluation of the derivative of the function
FPR(Y). The main disadvantage of the Newton-Raphson method is that it can be
divergent under some circumstances as illustrated in Figure A.3b.

A.3
FINITE DIFFERENCE APPROXIMATIONS

In this textbook, the finite difference method is used to solve the equation of grad-
ually varied flow, which is a first-order ordinary differential equation, and the
Sainlvenant equations, which form a pair of nonlinear hyperbolic panial differen-
tial equations. In both cases, the derivatives are approximated over a small interval
by finite differences. If we seek an approximation ofthe derivative d1y'd-r, for exam-
ple, we begin by writing the Taylor's series expansion for the value ofy at grid point
i + I in terms of the value at point l, as shown in Figure A.4. The result is

t -  -  - \ 2

!i+t = li + f'(x,)(x;,1- x,) + f"(x,) =}1z * (A.7)

in which y = /(x) and the primes refer to derivatives. All terms including and
beyond the second derivative term can be referred to as higher order terms (HOT)
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Tangent
y= n4

Forward ditference

Central ditference

Backward ditference

xi_1 Xi Xi+t

FIGTJRE 4.4
Finite difference approximations of the First Derivative at -r,.

that are O(ri+ I - :i)2, wNch means that they are "on the order of' A-r2, where
A-r : (.r,*, - .r,). If we neglect all HOTs beyond the first derivative term, there will
be a truncation error that is O(A.x)z, so that halving the interval size A; quarters the
truncation enor. Writing the truncation error in this way and solving for the first
derivative results in

f'(x) = vj:-]--L + o(A'x) (A.8)

If we drop the truncation error to approximate the derivative by

v

f i+t

Yi

! i + l  ) i
l l r , l 4 -

, i +  I  ^ i

then this is refened to as a frst-order approrimation of the derivative, since the
truncation error is proportional to Ar to the first flower. This approximation of the
derivative also is called aforward diference, because it utilizes data at points j and
i + 1 in Figwe A.4 to estimate the derivative.

In the same manner as for the forward Taylor's series expansion, we can write
a backu ard expansion fory,_, in terms ofy, as

l i - r :  ! i  -  f ' ( r , ) ( r ,  -  x , - 1 )  +  f ' ( x , ) G '  
- l ' - t ) '  

-  . . .  ( A . 1 0 )

Yi-1

(A.e)
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Again, truncating the terms beyond the first derivative term and solving for the first
derivative, we have

t i  t i - lr {.r, t - -
^ i  ^ i - l

This is called the backward difference, and it too is first order.
Now ifthe backward Taylor's series (Equation A.l0) is subtracted from the for_

ward series (Equation A.7) and we solve for the first derivative, the result is

(4.r2)

(A.13)

(A.14)

(4 . r1 )

f '@ : Y'"'r 
: '- ' + o(ax)'�

in which A-r : (.ri+ r - .rJ = (J, - _ri_l). The second derivative terms cancel, and
the third-order terms when divided by Ar result in higher-order terms that are of
order (Ar)2. Then, when the higher-order terms a.re dropped, the second-order
approximation of the first derivative becomes

t i + t  t t - ,
r t,xt - _--

' t  -

Second-order approximations sometimes are used to obtain a more accurare repre_
sentation of the first derivative. Equation A.l3 is a central diference representation
of the first derivative.

Forward, backward, and central difference approximations of the first deriva_
tive are shown graphically in Figure A.4. It is obvious that the central difference
representation gives a slope or derivative closer to the true value.

Although illustrated for ordinary derivatives, the same derivative approxima_
tions can be made for the panial derivatives in the Saint-Venant equations. A first-
order approximation of the time derivative, for examDle, becomes

ay - y!* '  -  y!
at Lt

in which At is the time interval, and the superscripts refer to values evaluated at
times of (k + l)Ar and lA, ar the spatial grid point located at -r,.
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Examples of Computer Programs
in Visual BASIC

B.l
YOYC PROGRAM FOR CALCULATION OF NORMAL AND
CRITICAL DEPTH IN A TRAPEZOIDAL CHANNEL

The Visual BASIC/azn is illustrated in Figure B.l. Tlte form code extracts values
entered in the text boxes and assigns them to variable names when the CALCU_
LATE button is clicked. The channel parameters are e = discharye in cfs; S =
channel slope in ftlft; b : channel bottom width in ft; m = channel sideslone ratio
as run-to-rise; and n = Manning's roughness coefticient. The form code then calls
a subprocedure Y0YC in the module code. The module calculates normal and crit-
ical depth in a trapezoidal channel using the bisection method. The results are then
placed in the output text boxes. In the module code, the function F evaluates either
the critical depth function or the normal depth function depending on whether
NFUNC has the value I or 2, respectively. The BISECTION subprocedure is iden_
tical to that shown in Figure A.2a, except that additional variablejhave to be passed
to BISECTION in the parameter list. The program input includes rectangular and
triangular channel shapes by specifying m = 0 or b = 0, respectively.

Y0YC Form Code

q)tlon lbq)uclt
Dt! Q ,u thgl., a Ir glDgl., b ra Sl.!gla, B lr 8hg1.. ! t gln i.
DtD Y0 lr Stagl., r'c lr ghgL.

Prl$t. gub (batcrtcrht._c1l.ct ( )
Q .  Va1 ( t x tQ . Iu t )
s r val(txta.Iar.t)
b r vr1 (txtB.l!.x! )
! r ve1 ( txt!,'Itr.t )
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SALCULATE

FIGURE 8.1
Visual BASIC form for determining normal and critical deptb in a hapezoidal channel using
the program YoYC.

r r va1 ( trtaa.I.:.t )
c. l l  YoYC(Q, a, b, ! ,  n, IO, tc)
txtAo.r.6rt' . loEDat (t0, .fif.000.)

txtrc.I.xE r lollrt (IC, .ffl.000,)

ed eub

Prlvat. gub .dtExlt_Cltcto
laa
lnal Sub

YOYC Module Code

ODttoB lirl)ll.clt

Dr.D 0 Ir 5L!91., g r. gl,rg1€. b a! SbgI., r As glDgl.

Dta ! t stEgla, f0 t! Etlgla, yC l5 SlDgl.
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sl lb YOIC(Q, I ,  b, ! ,  n, Y0, aC)

Dlr Y1 l! shgl., Y2 l! ahglc, lR It gi!91'

Dh f,! tr Inl.g.r
Y l  .  0 .0001
Y ? . 1 0 0
8 R . 0 . 0 0 0 1
r l r 1
call BrsEctror(ll, 12, NF, lR, 0. 8, b, r, D' rc)

y l  .  0 ,0001
Y 2 . 1 0 0
l | 1  " 2

C.U. BIAEC"IIOI(II' 12, t{1, lR, Q' 8, b' r, a, I0)

E[it &rb

aob Brgre!ro!l(41, Y2, f,Fsxc, !r, q' 8, b' r, !, 13)

Dts r!1 As 8lngl., try2 ts atigle, !Y3 tt siaglc' lz As glttgl'

Db r Ir r!t.g.r
tll . !(Y1, trrum, 0, g, b, D, E)

Fr2 '  !(Y2, l t l lm, Q, 8, b, ! '  a)

If rT1 ' Fr2 > 0 :fb€! Er.lt grrb

t o r  t . 1 t o  5 0
r 3 .  { Y 1  + 1 2 }  /  2

rr3 . r(Y3, llrq!|C, 0, g, b, !. D)

! Z . l T l r l Y 3
rf !I . 0 ftcD lxlt sub

If !t < 0 Tb€n 12 ' Y! l1!. t1 ' Y3

rf lb3((Y2 - Yl) /  Y3) < ER:lb.!  Etl t  gub

[.:.t I
laal sub

lurctiotr !(t, rl'oNc' Q, s' b, D, n) lr siDgl€

Di! I l. sirglr, P l! alngl., R t! shgl., ! As glogl.

t . I i ( b + D r a )
P r b + 2 r f . 9 C r ( 1  + ! ^  2 )

R . l / P
t r b + 2 ' ! t l
I l x r U [ C ' 1 l t . | l

r :  O  -  9 q ! ( 3 2 . 2 1  ' a ^  1 . 5  / r '  O . s

!13a
r ' Q -  ( 1 . { 8 6  / 4 1  r 1 ' R ^  ( 2  / 3 }  ' s ^  ( 1  / 2 )

lnd rf
ttld ?urctlon

8.2
YCOMP PROGRAM FOR FINDING MULTIPLE CRITICAL DEPTHS
INA COMPOUND CHANNDL

Input data for the program Ycomp include the discharge Q and the slope S0, the lat-
tei of which is used only for the computation of normal depth for comparison with
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DATA II{PUT

INPUT DATA FILE

None

AALCULATE

RESULTS

FIGURE B.2
Visual BASIC form for determining multiPle critical depths in a comPound channel using

the program Ycomp.

critical depth(s). The input data are placed in text boxes in the Visual BASIC form

shown in Figure B.2- An input data file that gives the compound channel geometry

and roughness is required and is specified by clicking on the INPUT DATA FILE

button. The form code is given in Sub cmdlnput. A sample data file is shown at the

end of the module code. It consists of the station-elevation pairs' which define the

cross-section geometry, and the subsection locations with corresponding Man-

ning's z values. The subsection locations must correspond to ground points, and

vertical banfts are not allowed. The module code finds the locations of the right and

left banks, assuming that the main channel consists of only one subsection.
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The results arc computed by the module code, which includes a bisection sub-
procedurc to solve for the critical depths based on the compound channel function
given by the function subprocedure FC. The program determines if there are values
of critical depth in the main channel (lower Yc) and floodplain (upperyc). It also
determines the discharge range, if any, over which multiple critical depths in the
main channel and floodplain exist. For discharges greater than the upper e, only the
upper critical depth occurs, while only the lower critical depth exists for discharges
less than the lower Q. In between these two discharges, both lower and upper crit-
ical depths occur. If the compound channel has only one critical depth, then the
lower Q equals the upper Q.

Ycomp Form Code

Otrtlo[ &rDu.clt
DtD DIg?(1001, ELEV(100), xsgB(20r, Rn(20)
Db Q ls glnglo, tC1 rr 81.n916, yc2 ti glag16, t! As glaglc
Dh Qr Aa gtagl., 0g & gl!gl., a0 lr 8tagt.
Dt! EP A! IDtogar, ltSItB lt lat.g.r

Prlyat€ Sub c[ilc.lcu1.t._Cll.ct ( ]
0 . t-rtQ.T,€.rt
a0 r trt8o.?€xt
call Ycoq,(DI8!(), Er.Ev(), xSUaO, RxO, r{p, tqsnB, e, 90, irf, rc1, yC2, e&, Qq)
tr.tYE.Tsxt . lolrlat (tr, .lff.000.,

I f  ICl < 0l l t .n
txttcl.rerct . .Do€3 Not Elst.
1136
txttcl . lext - Forr lat (rc1, .11t.000.)

Enil rf
r f I C 2 < 0 t b e E

tntlc2.lart ! .Do€a llot ttL6tr
t I !a
tr3tyc2.lcrt , toraAt (tc2, .lfl.o00.)

E d I f
tr.tQlJ,t6r.t . lorD.t (0!, '|11..)

tr.tQu.aGxt . lord.t (0O, .fff.')

ldd S{b

Prlvat. suD @illagut_cl tck ( )
Dlt! f, Aa Intogar
Dlr rtrlltrla lr Strhg, strxlt Ar gtrlBg
cdbFlle . ghorot oa
BtllllarD . citbFlto . "t tef|!.
Il rtrlllcrn ' rr l:b.a Elt Sub
txtltEara.Iaxt r sttlllal!
ODc! .trtll6lD tor latrut rr 11
lanrt 11, 3tgg, rP, pgUS

l o r R . 1 ! o I D
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tBt ut 11, DIs!(x), EGv(x)
lldat f,

l o r x . l ! 9 N s o l
ragut 11, xs[B(x], Rn(x)

x€xt x
clorc ,.
txtlg.td.t r atrxS
lad glrb

Prlv.to 8u! @dlt lt-cllck ( )
lad
EDd Aub

Ycomp Module Code

ODttor holtclt
Dh Drsr(1001, Etlr f(100), xstB(20), RI(20)

Dl! O ,rr strgl., Ycl la 5l!91., Yc2 l. slsglr' Yll L alagle

Dlr Qu rr 8IBg1., Qr, A! thgt., aO r! slagl.

Dh f,P It Int€q€r' ll8ttB la llteg.l

&.rb Icoq,(DISIO. ILEyO, xltltBt), EdO. lfP, N8I'B, 0, 80, YIr tc1, YC2, Ql,' Qu)

Di! ttr(Ix As glagla, E{^X Ar glDgl., Emr.B.rl|x:rol,l. Aa slngl.

Di.n xg lr 8lngl6, n81 ls 3lug1., ltg2 It stngl., w93 l! ghgl€' ws!4t It slagl.

Dt! lRoItDa Is ahgla, rR(rvDll tr gbgl., FRot DEl'qx 13 slagl.

DLt! rrf,Rtll rr ghgl., EralrT2 lr 81DgI., E1 ts ghg1a, DlrrtAr la glDgla

Dl! aI Ir lDtag.r' EUIX As lutsg.r, f, la Int.g6l, IIIBAtrR la Iatege!

D{s ftfR rt l!t.g.r, KLf! A. Inte96-, KRT A! Iateger, IRTalllf, lE latagcr

DLD rtrc As gtrhg

c o t t . t  O . 3 2 . 2 1

tf tlrv(l) >. EIln(rP) Ttoa 'flail |!xier! .lovetlon

E|rx r !I,lv(1)

!l!c

! rI r llllt(rP)

&il rf

f,l(If . 1r Eu! ! ltlV(Xl{I{)

!o! x . I fo [P 'fha dde|,l atavatloa lB lal[ cbrt r.l

If t!EV{f) < EIIU It a

Eanf r llEv(l)

Xlltl ' X

Eid tf

lLnt x

!o! it . 1 !o fSItB rfl[d rubs.ctlo! rulb€r of braL3

It xAgD(,t) > DIST(II(II) rh6!

tR|!8ll[f, r il

U , T A t t r x . t - 1

lrit lor

lnd tf

f€xt il
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8o. X . :. !o nP 'ftnal polDt Dueb€r of l€lt blrnt
If DISI(X) . xsgB(ILTaATK) tih.n

K L ! . X

lxlt aor

Enal rf

tl€xt X

for X . 1 To llP ,flad DolDt auDbe! of light b.*
If DIsI(r) ! xSttB(lRlBr.nX) I|!d DISI(X) . DIa?(X + 1) rhoD

K R I ' K + 1

lxlt tot

Elg.If Dlgl(f,) . x.$ta(IiTarNK) Th€D
f , R f . X

l:.lt lor

lnd If

l{erct x

If EI,EV(RLI) <! ELEV(KRT) ITe!

EI,EVBITRTOI,IJ . ELEV(XIT)

!1r .

ELEVBINKESIJ! i ELW(XRA)

Ead Il

tfsl r EIII + 0.01r ra2: EUlIr rt!€ . .ttORXl calcul.tr lorral degth
Cal l  t i8€ct lon(wgl ,  rS2,  DIS!() ,  l r rEv0 r  rgnl0,  RtrO, rp,  NSsr,  e,  SO, srrc,  _

rs3 )
r r . r g 3 - E l { r r
wa ' EIIVBAI|KFIIII.: !t!c i rCRIt. 'calculat6 crltlcel d€ptb(r)
tnOoDEl . rc(ngr DIstO, 8!tv(), xsgBo, BtfO, lrp, !rs!!, q, s0, srrc)
Q g i 0 / r a o s D E l
I t Q T Q E T h € r

EICRIIl . -1r IC1 . -1 'calculat€ uDD€r lrc
w81 ! EIJEVEIITTIIIJ! WA2 r Elrtx! rt!€ t rcRIT.

C.11 Blsoct loa(wsl ,  wS2, DrsTO, Er.E. ' { ) ,  xsgl0,  Rr(} ,  Np,  nsOB, Q, _
S0, 3trc,  ws3)

ELRIIz r WS3r fC2 . llJcRIr2 - EIII
llre rcrlculatc lor!! trc

ll,CRIa2 . -1! yC2 . -1 ,Dolrlbly so lrpDor yc
r81 . Efir + 0.01: Wa2 . ltitVBNfKEt'&: str! | TCRIT.

C. l l  a lsect lo!( fa1,  rS2,  Drsr0,  t ! 'JrVO, xgl tE() ,  t r ( } ,  rp,  !SUa. e,  _
S0, r t rc,  Wg3)

EI€RIfl t Wg3: ICl : ELRITI - ltcr
rdl Il
11 r ILIVllNKn 1.!

DEII.IY r 0.01 . (ELavBNxlIrIJIr - EriII)
r{S I lLEvBrrNIFttLL . 2l . DELItt! rttc . rcRrt.

ERottDE r lC (nS, DISIO, Et,Ev(), xglrE0, Bt[(], [p, xsrrB, e. gO, strc) .calcutato !+
If IROIID! < fROgDll Tb.n

QIJ r Qg ,Caac I-odly uDto! lrc ritb !o urltlDle yc
Elt Sub 'o! Carc llr-oa1y loy€t !rc rLtb !o ErLtlDl. yc

Enit rf

FROSDE|IX - IROUDE1 ,fiEal tb€ DlxLEre lrolral€ DuDb€!
For I IER '  1To 100
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l l  t11 + DII IAI

ll 11 > EqI rb€! llxtt lor

t{g r !1! ttrc t rcRu'

n{oODE r  lc(r8,  DISTO, l l ,EVO, XSIBO, tJ |O, NP, IssB, 0,  s0,3trc)

I l  lROnDl > lRot tDE| l l ( � . l

IROIIDEI{II( r fBOoDf

tfs|}ql . El

lad rf

xext IaER

Ql.' QIt / (EROqDlutX / rROuDBl)

I! O > Og Th.r E.tt sub 'caBc I-only utx)ar yc rith Er1tj.pl. l"c
r f Q > Q t T b . a

Wa1 ' WS||lx; W82. EtlX 'Ca3. tl-both lore! ||ltd Ellp€r yc

BtrC ' rCRIlr

cet l  a ls€ct loa{wg1, t {92,  DrsTO, ElErrO, xssa0, R!O, rP,  xasB, 0,  _
a o , 3 t r c ,  w s ! )

ELR.ITI r tlE3: lC2 . BLRITZ - EIII

Ed.t sl|b

!1so 'C$c rll-only 1or€r yc rltb erltl.Dlc yc

l I ,CaI I2 !  -1:  IC2.  -1

hit rf

EDit aub

8ub als€ctlod(ltgl, r|s2, DISTO, ElvO, xSuBO, an(). lIP, EttE, Q, 80, rt!C, !qa3)

Dh rs l. alEgl., awsl lt atngl., F$s2 ,u Slnglc, ms3 t sIDg1., !2 l! gt!916

Dh I la l!t€g.!

C o a . t  ! R . 0 . 0 0 1 1

wg . wS1

lr l81 .  !c(ws,  DIaT() ,  EIJEVO. xsgB() ,  RxO, ! lP,  l lgDB, Q, 80,  ! t rc)  -  1

Wg " WS2

ma2 ! FC{WS, DISIO, ELEVO ' xsItBO, RNO, trP. xSItB, q, S0, stac) - 1

It !W81 r rlag2 > 0 jlAor f![lcoq,.Prllt 'l l[O ROO4! I l': Edt Alt.b

t o l I . 1 ! o 5 0

Y l S 3 .  ( F E l  +  n g z ,  l 2

wg . na3
ws3 . Fc(Is, DIsr(), lLlv(}, rsuBo, RnO, !lP' l lguB' Q, E0, .ttc) - 1
t Z . r f l A l r F f g 3

I l l l < 0 l t 6 a

rS2 r rS3

l l r e l ! ! Z > 0 l l h e a

fl81 : rS3

Elra

Bslt gub

Edd II

Ia lbs(ws2 - Itgll < lR rh€! t!.lt sub

Nar.t I

tllTcoqr.E lst .lRiOR CRIIERIOI IOf gaTISlIlD.

lDd gub

tir.actlon Fc(Ka, Drglo, Elavo, x8n8o, RNo, np, lsua, Q, 90, rtrc) rr ghgl.

Dt! AsuB(2o) Ar glagle, Psu8(2o) rr 8laglc, cgua(2o) rr siDsl.
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Db AI A! glBg1., !T l'! slngla, cl! f,! glstl'' R'r lt glnglc' Pr t! strgl'

Dt! tr,Pa l. slagl., s1 rs 8lIrgl', 82 tr g1ng1'' 63 a! 8lng1'

Dt! Yl t! 8lEglc, 12 at slngla, DY It abtrl'' Dx tr SlDgl'' DP lt 8bt1'

Dt! r l| slDgla, P l! ghgl., B At 8lBg1" DPD! ls glngl" It| rt thgl'

D!! R lr 8IDgh, c tt slugl., Tlinxl lr glDgl" Trntf t! ghglc' Dl!!tr Ar at!91'

Dl! il lr tDt.g.t, f, la lrt6gci, L A! :ntcg'r

Coart  O '  32.21

AT r O: Br . Ot c�! ' 0! Rt ' 0t Pr ' 0t IIPEI ' 0

8 l  .  O r  8 2  ' O r  8 3 .  O l  t '  0 !  P ' O :  a '  0 :  D P D I ' 0

lot IJ . 1 To f,sug

lr l tB( ! )  '  Ol t  PasE(L) '  Ot :  cSUa(t ' )  '  0 l

ll.rt t

J t 1 rb€gtn g€@atrlc 6vrluatloat itcruSt'ctlo! no'

Yl . wS - ll,Ev(l)

! o ! x . 2 r o N P

Y 2 ! r E - t l , E V ( K )

D x r D r g r ( x ) - D r s r ( x - 1 )
rf Y2 t 11 tt€! Dt ' Y2 Elto Dl r Y1

It DI . 12 ttsa lN ' tl EIs€ Yll ' 12

I t  ( Y 1  i 1 2 )  < 0 l t a

D A . D r . D Y / { D X - I f , l

l  ,  t  + 0.5 i  !8 r  Df

D P . s q r ( D x ' D x + D r r D I )

P . l l D P

I t E . U

D ? D t . D p D r + D P / D l

l l . c l t  ( Y 1  + Y 2 )  > 0 f b . l

a : r + o . 5 . D A r  ( f 1  +  t ? )

D p .  g c ! ( D x  r  D I  +  ( 1 1  -  1 2 )  '  ( f 1  -  ! 2 ) )

P ' P + D P

8 . 8 + D X

If fU . 0 ttdl DPDI ! DPDI + DP / lrlf

Elal rf

1 1 . 1 2
'..rrrufit ta rubs.ctlo! ttlo9€rtl€3 lf GDd ot subsoctlon i'tch6d

If DtST(f,) . xgttB(it) tb.!

It l ' 0 lb.tt

Elaa

r a ! B ( J ) . 0 1

PS!B(J)  .  0 l

c s g B ( J ) . 0 1

t . r b s ( t ) r E . J t b 3 ( B )

R ' h / P

c .  1 . a 9 .  r .  R  ^  ( 2 r  /  3 l )  /  8 f , ( , t )

lSuS(,I) . A! PEIts(.t) ' P: CSEB(it) ' c

I t . l I  + t r  8 . I  r  B I  +  B

c | ! . q f r C ! P I T P T + P

9 1  , g 1  + ( C / l ) a 3 ' ( 3 t ' B - 2 1  
'  R ' D I D Y )

8 2 . 3 2 + C ^ 3 / l ^ 2

S 3 ' A 3 + C  / r '  ( 5 1  r B - 2 t  i R ' D P D I )

Edd If
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J ' i r +  1

1 . 0 !  P '  0 : 8 . 0 !  D P D I :  . 0

!!d rf

Next x

I f  rT.0 tbe[  EtLt  t t l lc t loa

R T . I T / P I

A I P E A ' 4 2 / ( C { ' ! / A T ^ 2 )

T E s r l r A T ^  2  r  s 1  / e l ^ 3

T 8 r r : t .  8 2 .  ( 2  i  A r  r  a T  /  c T  r  3  -  A r  ^  2  r  s 3  /  C T  ^  { )

D tI ' t:Eltlll + aERt|2

l E A t | 1 ,  N , P E A .  0  ^  2  .  B !  /  ( O .

T E n r ! 2 .  Q  ^  2  i  D A T , D Y  I  l Z .  A '

rt strc . 'cRrrr :rben

!C ' 8qr(I8ru1 - TERlil)

lls.If stEC . il|oRltr !he!

.  ! c . Q /  ( c T ' s 0 ^  ( 1  /

EAd If

!t!d functlor

AT ^ ! ,

Ar ^ 2)

2 )  )

Data File

rCAlr, e.3
0 ,110
a , 1 0 6
60a ,106
510,:.00
582 ,100
588 ,106
1288 ,106
L292,rto
60 {  ,  . 08

rtrrfl of cross BoctloD, DuDb€l of gEould DotEt!, lbar ot subsactlot

'crountl Doiats ! atatlo!, 61e?ation (fro loft to rlght Iooklng dlowattr€al

,  688 , .03 , L292 , .OA 't6crtlo! of rt lsoctloaa: stltLoa,
,t6.Dnlac'. a oa tb€ left .LaL

8.3
WSP PROGRAM FOR WATER SURFACE PROFILE COMPUTATION

The program WSP computes normal and critical depth, classifies the water surface

profile, and computes the water surface profile in a trapezoidal channel using the

iirect step method. The Visual BASIC form is shown in Figure 8.3. First, the chan-

nel discharge, Q; slope, S; bottom width, b; side slope ratio, m; and Manning's n

are entered in the text boxes on the form. Then, the values ofcritical depth, YC' and

normal depth, Y0, are calculated as in the Program Y0YC. For the water surface

profile computation, the channel length, XL, and the control depth, YCONT' are

intered next. If critical depth is the control, zero can be entered in the control depth

box, and the program will assigl a depth slightly greater or less than critical
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depending on the profrle classification in order to avoid starting on the wrong pro-

fil;. The aALCULAIE PROFILE button is clicked, and the profile type is classi-

fied and shown. The profile is calculated in Sub PROFILE using the direct step

merhod by dividing the depth interval appropriate to the particular Profile type into

30 increments. The specific energy and slope ofthe energy grade line are calculated

in Sub SPENERGY. Inter?olation is applied to obtain the depth at the end of the

specified length of channel. The channel stations increase in the downstream direc-

ti,on regardless of whether the computation proceeds in the upstream direction (sub-

criticaD or downstream direction (supercritical). If normal depth or critical depth is

approached within 0.1 percent before the specified channel length is reacbed' the

cbmputation is stopped. The results for depth, YP; velocity, VP; and momentum

function, MB are printed at each step, XP, in the RESUUIS picture box The out-

put can be directed to a printer with the PRINT button. The program accommodates

horizontal, mild, and steeP slopes

WSP Form Code

ODtloa EC,ltctt

Dh O rs shgl.. s L glDgla, b as glsglc, D ls 8lng1" i A! giaglc

Di! Y0 It glDglc, Yc .trs Ehgla, xt tr alsglr, rcom la siagl'

DL! stiPa l3 3tllaqr

Dl.[ J L I!t6gGr, llP l, Illt69.l

D L !  r P ( 1 0 0 ) ,  Y P ( 1 0 0 ) ,  v " ( 1 0 0 ) ,  r c ( 1 0 0 )

Erlvlt. gob ddcalculato-cltch( I

0 - V.I (ttrtQ.I€xt )

s .  v r 1 ( t x t 8 , r . x t )

b.  val ( t : . t8. !6xt)

a ' val ( trt!.Ier.t )

! .  v l l  (  tx t88 . I€: . t  )

C.U Y0!C(Q, S,  b,  ! ,  a '  i0 ,  IC)

rt y0 . 10001 It.D

txtlo.f.rt - rdlocr lot 6tirt'

Elaa

tr.tYo.r.xt . torDrt (YO, '|ff.O00')

rld tl

t*trc.T6rt . fo.Drt (iC, 'ttf.000')

laal 8ub

Pllert. gub @d!Ro!It !-cllct ( )

ItJ . Yal (txtx!.T.rt)

Ycottl . vr1 ( tr.ttc€Fr.|Iaxt )

crlt Paolnt(o, g, b, & n, r0' t€, rrr' YclotE' .trPR' n", x"o' YP(), vPo, llPo)

b.tPaolM.ltnt ' ltrPR

t tcR..ultt.c1r

t,lcRcrult!.Pllrt 
' l, tt', ' r,!t', 'v, ftlt', 'l!cd. l, cuft'

Dlcaalult!. Prlst

l o r i t . l T o n P
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x r ( J )  "  r o r " a t ( x P ( , t ) , '  f l l * | . 0 ' )

YP(J)  !  lo t&rt (YP(. t ) ,  ' f f | .000")

w(, t )  -  Forol l  ( \ tP ( . t ) ,  ' t * | .00 ' )

l tP{ , t )  t  rot l l t (nP{J) ,  ' } t l t l .0 ' )

p lcRosul t r .arht  xP(. t ) ,  rP(J) ,  w( ' t ) ,  r lP(J)

[6r.t iI

Edit 9rr!

Prlvato gub cDdlrilrt-Cl iclr ( )

Pr lator . loat l lar la . 'Arr .a l '

Prliter.lortsize ' 12

Print6r.CulteotY . 1500

?rlDt6r.Prht gtrc(3o), 'rtAaER ggxllc8 PRoFrLa - rt strPR

Prlnt€! .?!ht

Prtator .Pr lnt  sDc(20),  'D."  ! t  labt  'Q,  cf , ,  " ,  Qt  sDc(s) t  'S loD6Ert  g

l r lnt€r .Pr l i t  SDc(20),  '  D=" Di  !eb,  rb,  f t  ' i ,  b

PilBtsl.Erirt

Y0 '  lorn t (YO, ' **1.000')

YC .  lo ' .Dat  (aC, ' t ** .000')

I t  g . 0 I h € 0

Prht . r .PElnt  sF(20),  'y0 do€s not  exl t t '

!1sc

?r lntet .Prht  spc(20),  '  Yo' f t  " r ;  Y0

anil tf

Pr lnter ,Prht  SPc(20) '  '  Ic , f t  : ' r  YC

Prlatc!.Priat

Prht€r .P: i iat  SDc(20),  'x ,  f t "  iY,  f t ' ,  rv ,  f t l ' i '  'u6.  l . r

lor 't r 1 lo llP

x ! ( , t )  -  r o n a t ( x ! ( J ) , '  f f * * 1 . 0 ' )

lP( , t )  '  lorEet(rP(t ) .  ' | | t .000')

w( ' I )  E ror&at(vP(. t ) ,  ' f l * .00 ' )

uP( i t )  '  toxrat(uP(J) ,  ' t * l * | .0 ' )

Pr lntor .Pr l l t  sDc{20),  P(J) ,  rP(J} ,  v l ( . t ) '  l@(J)

l | . �x t  t

Prht6! . lddDoc

laa 8ub

Prlv.t. Eub @dExtt-clich ( )

lEd

Enil Sub

WSP Module Code

optloa Eqtltcit

Dls O ,rs gl!g1., s lr EiDgta, b ls stDg16. ! lr Ehgla

Dti ! l! Stagt., Y0 As sin91., rC lr 9lug1.

Sub IoIC(Q, g, b, !, B, Y0' lC)

Dt! Yl As slagl., Y2 rr sldglc' ER lt ghgla
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D{4 N? l. IDteg6!

Y l  r  0 .0001
1 2 . 1 0 0
! R . 0 . 0 0 0 1
f , l r 1

CaII alslgfrdt(Y1, Y2, xF, rR. O, S, b, !, !, yC)

M . 0 f b . !

Y 0 . 1 0 0 0 1

txLt Aub
. Ead If

1 1  !  0 . 0 0 0 1

Y2 t 100

| | ! r 2

ClU BISEeuor(Yl, Y2, n!, !R, e, g, b, a, !, y0)

lull gub

gub PROllLl(Q, 8, b, !, n, r0, yC, rrJ, ycolrT, srrpR, np. p{), yp0, V?O, UpO)
Dia lgtcw Ar Si-agl.€, ILIU As shgl., ! Ar glngla, gEoL l! glDg1.

D!! Dx t, alag1., Dr ts lthglc, I la glngh, SlCIJl l! giagb, !1 L gtagl.
Dt.[ aSGtJ2 r! St!gI., Et r! Shgl., SrCr,BrR l! gtEgl., vFJ t Sln l., lr| rs gttrgl.
DI! I ta lBt.gc!, ng tr Intcg.r
rl ICOIr . 0 tL.! YCOTST . tC
lf IC < y0 lb.a 'cl.sslfy Dllil llot€ Drofll€!

lf Yc:ottl > y0 fh6a

.rrpR r rl|1.. XtrGU r -1r tI,lI| , 1.001 r yO

llr.If YCo!TT < yC ftb.!

atrPR r  rx3. .  Igr@f:  1:  Yl l rx  r  0.999 r  Yc
lk.

El !a

at lpR .  r tor .  xstet  r  -1r  yut t  r  0.999 .  y0

If YCIIII . lC tLar tCOlaI . 1.001 r yC

Elal It

fl tCOm > yC thd! ,clrsslfy .tb6D .lo9€ Diofi1€s
rtrlR . .glr, XSICtr . -1! YIlIl| r 1.001 . trc

lla.If YCON! < t0 Tt.u

. E I P R  r  r g 3 . !  X g t c f .  1 t  I L I I ! : 0 . 9 9 9 .  f 0
11. !

. r r p t  r  . 82 r r  xg tq f .  l t  I L r x .  1 .001  .  y0
rf !CO!|l . yC !t r YCONT . 0.999 r yC

lld Il

lad Il

Il a r 0 lb€! ,clarllfy borkortrl !1o9. DrofII.,
ff ICUTT >. YC taaB

.rrpR. .11. .  lgr@t.  -1,  I I . t  r  yCOltT + 3l  r  yC

If yCOlrT . tC t!b.! ICorlT . 1.001 r tC
!bc

rt rpR .  . t2 ' r  xglef  .  1:  f l l r t  r  0.999 r  yc

lad If

&rd If

nS . 30 .lDltl.llz. vrrlabt.a
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l P ! N a + 1

Dl r (YL - Ycolrl) / NS

r f  xsrc l r  .  1 !bs!  xP(1) .  0 Et66 x!(1)  = ! I ,

r . YCO$I

c.II 9PENZRG{(Y, Q, S, b, r, [, E, sEcl, vEc,, Etll

i " (1)  !  Y!  w(1) .  vEl :  l@(1) .  El l

a1 - Er sEell ' SlGl,

fot t - 2 [.o lls + 1 ,alla6ct st6D n€tbod 1o<at

t . I + D t (

c.ll srENEasr(r, Q, E, b, r, n, E, sEc!, vEl, Ex)

Y ? ( I )  . I r  w ( I )  .  v E L t  l { P ( I )  !  F l l

!2 r E: SlG'.2 i SECIr

sEGl,BrR.0.5 '  (8EGIJ1 + s lo l .2)

uI - (12 - 11) / (S - sEGLalR)

r P ( l ) ' x r ( I - 1 ) + D : (

E1 . !2: SEell . SEel.2

rf xr(r) > x! lhen 'tate4)o1atlol for igcclfiait 1€rrtb

Ir ( r )  .  r?( t l  -  Dr r  ( :e(r)  -  xL)  /  Dx

xr( I )  '  :q,

l l P ' I

l!:.it lor

tad rf

rf xr(I) < Ol rllatl 'l!t.4)olatlo! fot .Peclfi.d l.agtb

I? ( r )  .  r? ( r )  -  Dr .  x?( r )  /  D t (
,19111 . 0t
t r P . I

tn lt For

lad tf

t6rt t

Ead aub

Sub AIAECTIo!(Y1, 12, Nrltxc, lR. Q' g, b' r, !, Y3)

Db r.r1 Ir Slag1., rlt l! 8lng16. !T3 L St!91€, lZ A! thg1.

DL! I ll ht6g.r

rI1 t l(Yl, fil'llc, Q, 8. b, D' a)

tZY? . !(I2, !lro[C, Q, 8, b, i, D)

rl rI1 r rY2 > 0 l'beB Ertt gub

l o r  l . 1 l e  t 0
y 3 . ( 1 1 + y 2 l l 2

Fn .  ! (Y3,  r l lNc,  Q, g,  b,  t ,  a)

l z . l T 1  r  l t 3

rf lz ' 0 Then E.it sub

It !z < 0 ltea t2 ' Y3 lIa. Yl . f3

rf rbs( (Y2 - 11) / 13) < EA It€a tsit 8ub

llarat I

lhd a$b

FuDctlon F(Y, [!m|C, Q, I, b, !, D) A! Sllglc

DLi I Ar gl.agla, P ts thgl!, R ls slagl., T L glDgl.

r . I  .  ( b  +  n .  Y )
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P . b +  2  r r r  g q r ( 1  + r ^ 2 )
R ' r / p

! r b + 2 . ! . y

I f I F O X C r t r t c !

t '  Q  -  s q r ( 3 2 . 2 1  r  I  ^  1 , 5  I  r  ^  O . i
!1. !

r ,  0  -  ( 1 . { 9 6  /  a )  .  f ,  r  R  ^  ( 2  /  3 )  I  I  ^  l L  /  Z l
&tit If

l![al lurctloD

Erb SPEtERqr(r, 0. A, b, r. B, E, gtt J, VEIJ, nr)
DbIAr t l ! t16,  p & ahgl . ,  R L ais91.
Dl.a llt rr At!grl., O .ls Etrgla

O  .  3 2 , 2 r  X r  r  1 . t 8 5
t . r . ( b + ! r y )

P - b r 2  r y l g q ! ( 1  + r . 2 )
R . l / D

v ! ! . 0 / r
I ! | f  . b r r  ^  2  I  Z  r ! . r r  3  /  3 + Q  ̂  2  /  ( c . f , )
r  .  r  r  0  '  2  |  l 2  .  o  r  l  .  2 l
8 X l L .  !  ^  2  a  Q  ̂  2  /  ( x ! .  :  .  l  ^  2  r  R  ̂  ( a t  /  3 r ) )

&d gub
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Abutments
effects on spillways, 204
scour formulas, 437-42
wingwall, 236-38

Adverse slope, 163
Aeraiion of spillways, 210-13
Aeration ramps,212-13
Aggndation of smambeds, 423-21
Algorithms, 457
Alluvial stream classes, 423-24
American Ceophysical Union (AGU)

sediment scale, 372, 373
Angle of repose, l3l
Antidues, 390, 391
Approach section, 241, 244
Aqueducts, g
Afiificial opeo channels, I
Asphalt-lircd channels, Manning's n

for, I 16
Attenuation, 3498

Backward characteristics, 276
Backward difrerence, 465
Backwater

in bridge approaches, 233
calculating for normal flow beneath

bidges,238,239,240
WSPRO modeling, 241-53, 256-60

Backwater profile, 162
Ba.ffte blocks, 72-73, 74, 76

Bakhmeteff. B. A.. 4
Bar resistance curve, 397
Bars, in river bed sediments, 391
Beaver Cre€k (Newcastle, WY), 14?
Bed forms

effects on stagedischarg€
relationships, 39904

factors affecting formation, 389-96
BedJoad discharge, 4O4-5, 406-9
Bemoulli equation, lo
Best hydraulic section, for uniform

flows, 141-42
Bevels, at culven inlels, 219-20,22V29
Bisection method, 45&52
Bottom features. See Channel bottom features
Boundary conditions, for unsteady flows,

280-81.284.301-5
Boundary shear, ?2-73
Box culverts

design example, 231-33
entrance loss coefficients, 226
inlet control desigD equations, 221
Manning's z for, 225

Braided channels, 423, 424
Bmss conduits, Mandng's a for, I 15
Bresse function, 159
Bresse solution, I 90-92
Bricklined channels, Mandng's n for, I 16
Brickwork conduits, Manning's a for, I 15
Bridg€ piers

dimensional amlysis of drag, 16-17

483



484 Ir*DEX

Bridge piers-Cont. Characteristic form,214-'77
discharge co€fllcient adjustment Characterislics. mathematical inte.pretation,

factors.243 277-19
effects on spilhaays,204 Chezy formula, 100, 120, l2l-22
incremental backwater co€ftlcients. 240 Choke
local scour around, 431-37 in channel width contractions, 29,
momentum equation for,8l-84 30. 31, 32

Bridges relation to specific en etgy,26-28
contraction scour,427-31 in sup€rcritical contractions, 87-89
HDS-I analyses.236-38 Christodoulou curve,2l4
HEC-RAS and HEC-2 analyses.233-36 Chute blocks.74,75, ?6,7?
as hydraulic structures, 201, 233 Chutes
USGS width contraction method,238 4l in river bed sediments, 390,391
WSPRO modeling,241-53 spilh'ay.74-78

Bridge section, 241, 244 Circular channels
Broad-crested weirs, discharge over.52-55 critical depth computations, 36, 37138
Brushy floodplains. Manning's n for, I l8 momenlum function fot.64,6'148
Buckingham Pi theorem, 14-15 Circular conduits, flow resistance
Built-up channels, Manning's a for, l16 in, l l l . l12
Bulk specific weight of sediments, 374 Circular culvens, inlet control design
Bureau of Reclamation procedure for riprap equations, 221

design,389 Clay conduits, Manning's r for. I 15
Bureau of Reclamation stilling basin Clay sediments, specific gravity,373

designs,7t-77 Clear-water scour, 428, 430,431, 432
Closed conduits, Manning's n for, l l5
Coherence. 128

Calibration of unsteady flow models,327-28 Composite flow profiles, for gradually varied
Canals,3 flo*'s, 164-65
Cast iron cooduits, Manning's z for, I 15 Composite roughness, values of Manning's a
Cavitation for, 11,1-19

aeration to prcvent, 210-13 Compound channels
spillway forms to prevent,202-10 abutment scour in,438-42

Cavitation safety curves,208,209 calibrating unsteady flow models for,328
Celerity. See Wave celerity finding critical depths, 469-76
Cemenl conduits, Manning's D for, 115 Froude number for, 39, 4O47
CemenGlined chaonels, Manning's uniform flows in, 126-29

n for, 116 Computational molecules, 305, 306
Central difference,465 Computer programs
Chain rule,275 advances in,296
Cbalnel bottom features. See also for designing op€n channel systems, 2-3

Roughness;Scour;Sediments FLDWAV324-26,328
bed forms,389-96 HEC-2. 233.236,249-51
effect on open channel turbulent HEC-RAS, 183, 185-88, 189,

flows, 105-9 233-35,236
effecs on specific eneryy,2l-22,55-56 HY8, 232

Channel contractioo ratios,242 Visual BASIC, 17
Channel photographs, 142-50 WSB 180, 47G82
Chanoel shape. S€e ako Contractions; WSPRO, 241-53, 441, 442

Expansions YoYC, 38,467-69
effects on flow resistance, 110-13 Ycomp,45-47,46u6
geornetic elements for, 36 Computing th,rough, for shocks, 321
momennrm functions for,64 Coocrete conduits
specific energy and, 34-38 discharge capacity example, 125-26
as variable,2 entrance loss coemcients,225

Channel width contractions. See Con&actions Manning's , for, I15, 225



Concrete-l ined channels, I  16, 140-11
Consistency in finite differeoce

techniques,296
Constant-parameter method, 362_63, 364
Continuity equalion

applyrng to open channel flow
problems, 8, I I

derivation for unsready flows, 269_71,
274-'�15

in hydrologic routing, 333_34
reananging for diffusion routing

technique,352-53
for rectangular chanoels, gO
for supercritical contractions, g6

Contractions
at bridges (ree Bridges)
discharge diagrams for, 28_31
with head loss, 3l-34
reducing in culverts, 228
of supercrirical flow, 8G89

Control volumes
applying Reynotds transport

theorem,6-9
for derivation of unsleady continuitr

equarion,269-70
for derivation of unsteady momenfum

equation, 27l,2j2
Conveyance, divided-channel merhod. 127_29
Comer rounding, 242
Correcred Euler method, 174
Conugated metal conduits

entrance loss coefficients, 226
ManninS's|t  for, l  l5, 225

Courant condir ion, 28 1 , 305, 3 t  2
Creeping morion, 376
Crest pressures in \pi l lways,204, :05
Crit ical boundary. l8l
Crit ical deprh

in composire f low profi les, 164. 165
rn compound channels, 40-17. 469_76
In nonrectangular channels, 34_39,

46'749
relalon to normal depth in uniform

flows. I  19,21
In spatially varied flows, 193
in specif ic energy diagram. 2.1. 15. j0

Crit ical discharge. 138
Crit ical sediment number, 386
Critical shear stress. See also Shear stress

in bed-load transport formulas. 406
computations for sediment-lined

channels, 380-81
criteria for sediment,lined channels,

382_83
variabi l i ty in natural channels. 3gg g9

INDEX 485

Crit ical slope
calcutating jn lake discharge problem, 166
gradually raried f low profi le shape, I63
lor uniform f lows. 137_i8. 139

Critical sr€p heighr, 26, 27
Critical velocity

for ini t iat ion of motion in sediments,
38.1_85,386.387

for self-cleansing in sewers, 123_26
Cross-sectional shape. See Channcl shape
Cross secrions, in bridge openings.235
!ul lrvated areas, Manning s n for, l l8
Lu lverls

design example,23l_33
function ol 201
general design issues, 215-l 7
inlet conrrol f iows. 215,216,21j_22
inlet improvements, 22g-33
ouUet conrrol f lows, 2|5, Zl6,223_26

_ roaduay overropping witlt. 227_2g
Lumutari le disrr iburion function. 379
Cylinders, dimensional analysis of drag,

l5-l7.See a/so Bridge piers

Dam-break problem
as sintple wave solut ion,296_91
unsteady fl ow computations

for.324-26
Dams, early uses. 3
Darcy-Weisbach equarioo, 9g
Darcy-Weisbach/

in Chezy equatjon for transitional ano
smooth turbulent flows, l20

factors affecting in open channel flow,
t09- t4

field measurements, l0g_9
relai ionship ro Mannins's,t .  I05_7

Da Vinci.  Leonardo. 4
Degradation of streambed,s, 423_27
Degree of retardance, vegetative lining

classes. 133
Densimetric Froude number, for stratified

flows.56
Denlation, 74, 77
Depth. See a/so Critical depth

determining distance from chanses.
168-73

specific energy and, 23_26
WSPRO computarions in lab channel,

251-s3
Design head, for spil lways,202_3
Design mode, of WSpRO. 256
Developed,inflow jumps, 72
Diffusion of reservoir flows. 336
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Diffusion routing technique. 352-56
Dikes, early uses, 3
Dimensional analysis

applying to open channel flow
problems, l3-17

of uniform floq 98-99
Dimensional homogeneity, 142
Direct numerical integration merhod, t72-73
Direct step method, 16148, 168,12
Discharge coefficients

with culvert inlet control, 219-20
for elliptical crest spillways. 204-9
Kindsvater-Carter fo.mula..19-50, 5l
for normal flow beneath bridges,239-41
for ogee spillways, 202-4
for roadway overtopping, 227

Discharge diagrams, specific energy
and, 28-3 I

Discharge measurement with weirs, 48-55
Distance changes, computing depth

from, 174-80
Divided-channel method of defining toral

conyeyance, 12'7-29
Domain of dependenc e, 2'19. 28O
Downstream quadrant of spillway crest, 204
Drag. Se€ Resistance
Dunes

factors causing, 394-95
featu.es ol 390, 391
as lower regime bed forms, 389

Dynamic forerunner, 348
Dynamic routing, 325
Dynamic wave equations, 267

Early civilizations, op€n channel system use
in ,3 -5

Eanhen channels, Manning's a for, 116-17
Effective head, 224
Einstein bedload funcrion, 408
Einstein-Brown bedload transport formula,

401-8,419
Einstein's suspeoded-load t-ansport

method.4l4
Einstein velocity correction factor for alluvial

channels, 385-86
Elliptical crest spillways, 204-9
Elliptical culvens, inlet conrol design

equations, 222
Encroachment, 189-90
End sills, 74, 75, 76, 77
Energy equation

applying to open channel flow
problems, l0-l l, 2l

in stratified flows, 55-56

Energy grade line, 21, 22, 182
Energy loss expressions, 245
Ene.gy methods of bridge analysis,23gl
Engelund-Hansen formula for lotal sedtmenr

discharge, 416_17, 419
Engelund's method, for stage-discharge

ref ationships, 397 -99. 4A2-3
Entmnce foss coeffic ients, 225, 2?6
Equation of gradually varied flo\r; 159-61
ERABS,460
Estuary problem, 285-86
Etowah River (Dawsonville, GA), 146
Euler's equation, for incompressible,

frictionless fluid, l0
Euler's method, of solving for deprh, 174
Excavated eanhen channels, Manning's n

for, 116-17
Exit section, of flow b€neath

bridges, 241 , 244
Exner equation, 426
Expansions

with head loss, 3l-34
of sup€rcritical flow, 89-91

Experimental method, 4
Explicit finite difference methods

compared to implicir rnethods, 319-20
for unsready flow computations. 295,

296,305-13
Extended Bemoulli equation, l0

Fall, in culverts, 228
Fall velocity, of sediments, 37,1-78
Finite difference methods

explicit methods for unsteady flows,
295-96, 30s-13

explicit versus implicit, 319-20
general application, 463-65
implicit methods for unsteady flows,

295-96, 3r3-t9
for reservoir routing

computations, 336-39
Finite element methods, for unsteady flow

computations, 296
FirsForder approximations, 464
First-order methods, 174
FLDWAV program, 324-26. 328
Flooding

effects at main channel/floodplain
intefiace, \21-28

kinematic wave behavior, 348-52
roadway overtopping discharges, 227_28
specific energy computations, 39-47
unsteady flow computations for, 326-29

(.ree aho Unsteady flow equadons)



Floodplains. See a/so Compound channels
effects on flood wave propagation, 327
encroacbment analyses, 189-90
flow versus main channel flow, 127-29
Manning's a fo\ 1l'7-18, 126-27
mapping, 167

Flood routing problem, 303-4
Floodway boundary analysis, 189-90
Flow profiles, 16l-65. See ako B.idges
Flow resistance. .tee Resistance
Flow routing

basis for simplified methods, 333-34
defined,333
diffusion rouring technique, 352-56
kinematic wave technique, 345-52
Muskingum-Cunge method, 35G{6

FLUVIAL-12,427
Flux-splining schemes, 3l I
Fllx vector, 3l I
Form code, 467
Form resistance, l2-13. See also Resistance
Forward characteristics, 276
Forward difference, 464
Fourier stability analysis, 318
Founh-order Runge/Kutra method, 175-78
Friction factoN

based on logarithmic velocity
distriburion, 104-9

of flow beneath bridges,24546
open channel conditions

affecting, 109-14
Froelich abutment scour formula, 438
Froelich pier scour formuta, 43G37
Froude numbef

basic equation, 2
for compound channels, 39, 40-47
critical deprh and, 25
with hydraulic jumps, 68
for stratified flows, 56
use in slop€ classification, 139-41

Full-pipe flow in culvens, 223
Full valley section, 241, 244

Galerkin approach, 296
Geometric elements, for channel crcss

sections, 36
Glass conduits, Manning's n for, I 15
Graded stream, 422
Gradually varied flow

Bresse solution, 190-92
computing depth from distance

changes, 174-80
equation of, 159-61
features of, 6, 159

INDEX 48.1

floodway encroachment anaiysis, 189_90
lale discharge problem, 165-67
in natural channels, l8l-88
sparially varied flows, 192,95
water surface profile

classification, I6l-65
water sudace profile computation, 167-68

Grain size
distributions in river bed

sedimenrs, 378-80
effects on sediment motion, 383-86

Grass-lined channels, uniform flow
computations, i 32-37

Gravel-bed streams, friction factor
in, 107-9

Gravel-bottomed lined channels, Manning's a
for, I l6

Gravity, 2, 17

Hartree method, 298-300
Haw River (Benaja, NC), 149
HDS- I method of bridge analysis, 236-38
Head losses, 3l-34
HEC-2 program, 233, 236,249-51
HEC-RAS program

for bridge flow constriction
compurarions, 233, 235, 236

for gradually varied flow
problems, 183, 185-88, 189

Heun method, 174
Horseshoe-shaped conduits, flow resistance

i n ,  l l  l ,  1  1 2 ,  I  l 3
Horseshoe vortices, 431
HY8 program, 232
HYDRAIN suite, 241
Hydraulically long channels, 167
Hydraulic data, for calibrating unsteady flow

models, 329
Hydraulic exponent method, 190-92
Hydraulic head, 78
Hydraulic jumps

energy losses in, 6l-62
momentum equation for, 62-73
with sluice gares, 164, 165
in stilling basins. ?4-78

Hydraulic routing,333
Hydraulic structures

bridges (ree Bridges)
culvens (.re? Culverts)
introduction to, 201
spillway aeration, 210-13
spillway flow compuration, 202-10
stepped spillways, 213-15

Hydroelectric turbine example, 3 l3



488  INDEX

Hydroelectric turbine load acceptance
problem,30l-2

Hydrologic routing
hydraulic routing venus, 333
introduction to simplified equations,

33+36
reservoir routing, 335-36, 336-39
river routing, 335-36, 319-44

TALLWIAL,42'I
Implicit finite difference methods

compared to explicit methods, 319-20
for unsteady flow computations,

295-96,3t3-t9
lncremental backwater coefficients, 240
Initial conditions for unsteady flows, 280, 281
Initiation of motion, 380-87
Inlet control in culverts, 215, 216, 217-22
Inlet improvement, 228-33
Interval halving method, 458-62
lnterval of dependence, 280
Inviscid floq 12, 13. 14
Iteration procedures

interval halving method, 458-62
Newton-Raphson technique, 463
secant method, 462
for second-order predictor-corrector

method, 178
for unsteady flow compurations. 296

Jain and Fischer pier scolr formula, 435, 437

Karim-Kennedy method
of predicting stage-discharge

relationships, 400-402, 404
total discharge computations,

4t't-18,4t9.421
Keulegan equarion, 105, 107, 108
Kindsvater and Carter formula, 49-50, 5l
Kinematic wave technique of flow routing,

345-52,356-59
Kleitz-Seddon pinciple, 349-50
Koren condition, 312

Lake discharge problem, 165-67
Laminar separation, 12
Lateral inllows, 192-93, 2'l |, 2'13
LateBl outflows, 19,L95
Laurseo and Toch pier scour

formula, 434, 437
Law of the wall, 103

Lax diffusire scherne. 305-7, 114, 322-24
Lax-Wendroff scheme. 308-9, 322
L€apfrog scheme, 3O8. 322
Least-squares methods, 341-42
Level pool routing, 325, 336
Limit slope, 138-41
Lined channels, Manning's lt for, 116
Live-bed scour. 428-30, 43 1, 432
Load acceptance problern, 301-2
Load .ejection problem, 301
Local scour, 43l-32
Logarithmic orcrlap iayer, 103
Logarithmic velocir]'� distributions in pipes

and open channels, 102-9
Looped ratin-e curves. 328
Lower regime bed forms, 389-90
Lucite conduis. Manning's n for, I l5

Maccormack schern€, 310
Main channeUfl oodplain inte.face fl ow

computations. 127-28
Manning equation

applied to open rrap€zoidal
channels, 105-7

development of. -1, l0O-102
dimensional homogeneity and, 142
normal deprh compurations, 120
reananging for kinematic wave

technique.345
use in slope classification, 137-38

Manning's n
for channels of composite roughness,

I | ,1- l9
for compound channels, 126-27
convcned fo. dirnensional

homogeneity, l.l2
conection factors for natural channels, I 14
for culvens. 224. 225
development of, 102
effect of bed forms on, 401
factors affecring in open channel

flow. 109- l4
field measurements, 109
relationship to Darcy-Weisbachl 105-7
for vegetative channel linings. 134-36

Masonry-lined channels, Manning's a for, I l6
Mass densiry of sediments, 373
Mass tmnspon rate of sediments, 405
Meandering channels. 423-24
Mean slope of energr grade line, 182
Melville abutment scour formula, 43?-38
Melville and Surherland pier scour

formula- 435-36, 437
MESH scheme.3 lO
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Metal-lined channels, Manning's n for, I 16 divergence,462
Method of characteristics graphical depiction, 459

defined,268 visual BASIC code,461
depth hydrograph output,314 Nonlinear algebraic equations, 458-63
Muskingum-Cungeresults versus, 365-66 Nonrectangularchannels,sp€cific
for unsteady flow computations, 295, f96, energy, 34-38

29'l-3N,322-24 Nonuniform flows,6
Method of specified time intervals, 298-300 Nonuniformities, flow resistance
Meyer-Peter and Miiller formula, 408-9. 419 from, lll-12
Middle Fork Flathead River (Essex, MT). 147 Normal depth
Middle Fork Vermilion River (Danville, calculating for uniform flows, I 19-21

IL). 145 defined, 97
Mild slope use in slope classification, 137, 140

defining, 137 Nlmericaldiffusion,359-61
gradually varied flow profile shape, 162. Numerical methods,457

163, 164, 165 finite difference approximations, 463-65
Mission Creek (Cashmere, WA), 149 nonlinear algebraic equations, 458-63
Mi[ed-flow regime, 183
Modular limit for tailwater height over

weirs,55 Ogee spil lways, 202, 204, 205,210
Module code,467 One-step predictor-corrector method, 174
Momentum equation Open channel flow

applying to open channel flow basic equadons.6-ll
problems, I l, 6l characteristics of, l-2

bridge flow computations with,236 dimensional analysis, 13-17
for bridge piers, 81-84 solving problems in, 2-3
derivation for unsteady flows, suriace versus form resistance, ll-13

271-'14,2'14-75 types of,5-6
forms of,9-10 Open channel hydraulics, 1,3-5
for hydraulic jumps, 6l-73 Orifices
ignoring in hydrologic routing, 333 bridges as. 2499
rearranging for diffusion routing culvens as, 217, 219

technique, 352 Outflow hydrographs, for dam-breal
for stilling basins,74-78 problem, 325-26
sup€rcritical transitions, 84-91 Outlet control in culverts,215,
for surges, 78-81 216.223-26
for uniform flows, 99-100 Overbank flow, specific energy

Momentum fuoction,63 computations, 39-47
Monoclinal wave, 320, 348-52, 355-56 Ovenun discharge,349
Moody diagnm, 97, 98-99, 106 Oxbow lakes,424
Murder Creek (Monticello, GA), 148
Muskingum-Cunge method, 342-44, 356-46
Muskingum method,335,336, Parabolic channels, 36, 64, 67

339-44,35641 Particle Reynolds number, 381
Particle shape of sediments, 372-73
Panicle size of sediments, 372

Nappe flow,2l3 Performance curves ofculvens,2l5-I7
Natural open channels Phi index, 128

examples, I Piers. Se? Bridge piers
gradually varied flows in, 181-88 Pipe flow formulas. See ako Culverts
Manning's n for, 117 extended to open channel flow, 102-9

Negative characteristics,2l6,284 g.avity sewer design, 122-26
Newton-Raphson technique Plane bed, 390

applied to unsteady nows, 302, 316, 3l? Planform of sueams, 423-27
basic equations. 463 Pools, in river bed sediments, 390, 391
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Positive characteristics, 276
hasad method, 183-85
Predictor-conector methods, 168, 31G-l I
Preissmann method, 313, 315, 319, 392
Pressure flow in culvefts, ZlT,223
kism storage, 335
PVC pipe

discharge capacity exafiple, | 24-25
uniform flows in, l2l-22

Radialjumps, 68, 69
Ramps, aeration, 212-13
Range of influence, 279, 280
Rapid floq 25, 26
Rapidly varied flow, 6
Rectangular channels

continuity equation for, 80
c.itical depth compuiations, 36
flow resistance in, I l0-l I
hydraulic exponent method for gradually

varied flow computation, 190-92
limit slope for uniform flows, I38-41
momentum function for, &, 6'7, 68-70
turbulent flow in, 105

Rehbock relationship, 49, 202
Reservoirs

bulk sedimenr weight in, 374
hydrologic routing melhods,

335*36, 336-39
Resistance

channel shape and, I 10-13
in fall velocity computations, 3?5-?6
of rock riprap, 129-30
types of, I l-13

Resistance coeffi cient, 97-98
Reynolds number

critical boundary, 381, 382
dep€ndence of;fand n on, 109-10
fall velocity and, 375-76
in open channel flow, 2

Reynolds transport theorem. 6-9
Riemann invariants. 283
Rio Chama (Chamita, NM), 143
Ripples

factors causing, 394
features of, 390, 391
as low€r regime bed forms. 389

Riprap-lined channels
function of, 129
stable ,lesign, 388-89
uniform flow computations. 129-32

River overbank flow, specific energy
computations, 39-47

River reach control volume. 7

Rivers
bed forms, 389 96
hydrologic routing methods,

33s-36,33944
initiarion of sediment motion, 380-87
practical aspects of flow

computations, 326-29
sediment discharge (s€e sediment

discharge)
sediment propenies, 372-80
stable channel design, 388-89
stage-discharge relationships. 39G404

Roadway ovenopping, 227, 249
Rock Creek (Darby, MT), 150
Rol l  waves ,  I13 ,318-19
Roman aqueducts, 3-4
Roughness

effect on Darcy-Weisbach /, I l0
effect on hydraulic jumps, 72
effect on open channel turbulent

flows, 105-9
effect on pipe flows, 104-5
effect on uniform flows, 98-99
as open channel variable, 2, 97
of river bed forms, 39l-92
Shields parameter and. 383-84
varying within channels, I l,l-19

Roundoffenor, 457
Rouse number, 412-13
Routing,268
Routing coeffi cients, 33940, 351, 363
Routing tables, 337, 338
Rubble masonry conduits, Manning's n

for, I 15
Runge-Kutta methods, l?4-78

Saint-Venant equations, 267, 269J 4
Salt Creek (Roca, NE), 143
Sah River (AZ), l,l4
Sand-grain roughened pipes, friction

factor in, 104, 105
sanitary sewers, 115, 122-26
Scour

abutment, 437-42
from bridge contractions, 427-31
local, 43l-32
pier, 431, 432-31
total,44243

Secant method, 459, 461, 462
Second-order approximations, 465
Second-order predictor-collector

method, 178
Sedimentation diameter, 372
Sediment continuity equation, 426



Sediment dis.harge
basic approaches, 404-5
bed load- -1O1-5. 40G9
suspended load, 405, 410-16
tolrl dischatge computations. 416 22

Sediment number. 56
Sediments. see dfuo Scour

aggradadon and degradalion' 423-2 t'
basic proFenies, 372 80
bed forms in. 389-96
channel design stability and, 188-89
discharge computations (J?e Sediment

discha+e)
initiation of motion, 380-87
stage-dis.harge relationships, 396-404

Self-aeration- 210-l I
Self-cleansitg velocities in sewers' 123-26
Sequent dep$ iatios

ior hydraulic jumps in various channel
shapes. 63-70

in sti l l ing basins, 74-78, 79
Sewers, designing for PartlY full

flo\r s. 122-26
Shape facto( for sand grains' 372-13
Sharp-cresrcd weirs, discharge

measurcments, 48-52
Shear stress

in bed-load transport formulas' 406
for initiation of sediment

motion. 380-83
at main channel/floodplain

interface, 127-28
in ripraplined channels, 129-30
river bed forms and, 391-92
variability in natural channels, 388-89
of vegetal retardance classes' 132, 134-36

Shields diagram, 381, 383-84
Shields parameter. 381, 382, 383-84
Shock capturing, 322
Shock fitting. 321
Shocks, 320-24. 326
Short-crested weirs, discharge

measurements, 53, 55
Side-tap€red inlets, 229-30, 232
Sieve anall sis, 379-80
Sieve diameter, 372
Silt-clay pe.centage, 425
Simons-fu chardson diagram. 393-94
Simple ware region, 284
Simple u ares

characleristics of, 282-84
dam-break problem, 28G9 I
estuarl Foblem, 285-86

Simpson's l/3 rule, 173
Sinuosity of streams, 423-2?
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Skillet Creek e\ample, 185-88
Skimming tlo$. l l3-14
Slope classification

for graduall! {aried flows, 162-65
for uniform flo\rs, 137--'t I

Slope-tapered inlets, 230-33
Slugging, 122
sluice gates, 1fi. 165
Smooth-pipe friction factors, 104, 105. 106
South Fork Clearwatei River (Crangeville,

ID), l.{8
Spatial intenals. sel€cting. 34Ml
Spatially varied flow, 192-95
Specific energy

Bakhmeteff s explanation, 4
choke and. 2G28, 29, 30
contractions and expansions with head

loss, 3l-34
defining. 2l -23
discharge diagrams, 28-3 I
momentum function and, 70-71
for nonreclangular channels, 34-38
overbank flow, 39-47
over weirs. 48-55
in stratified flows, 55-56

Specific energy diagr ams,2l, 23-26
Specific grality of sediments, 373-74
Specific weight of sediments, 373
Spil lways

aeration,2l0-13
function of. 201
head-discharge computations, 202-10
hydraulic head, 78
s tepped,213-15
stilling basins with, 7'1-78
storage-indication method of flow

routing,337-39
unsteady flow computations for, 303, 304

Spur dikes, 24-1
Stabil ity analyses, 3l l-12
Stage-discharge rating cunes, 392-93
Stage-discharge relationships, 39G404
Stage hydrographs, 327-28
Standard fall diameter, 378
Standard step method, 182
Standing ware fronts, 84-86, 87
Steel conduits, Manning's n for, 115
Steep slope. t62, 163, 164, 165
Stilling basins. ?,1-78, 79
Stokes'law,376
Stokes' range. 376
Storage equation, in hYdrologic

routing. 333-34, 335
Storage-indication method, 337, 338
Storm sewers. 122-26
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Stratified flows, 55-56
Srreambed armoring, 426
Streanline control volume, 7, l0
Streamtube conrol volume, 7, 9, l0
Subcridcal flow

basic features, 25-26
gadually varied, 183-85
specifying unsteady flow boundary

conditions, 280-81
Eanslatory wave propagation in, 268

Subdivision of channel cross sections, 183
Submerged specific weight of sediments, 374
Submergence

effect on bridge flows, 247-49
effect on inlet control of culvert flow' 220

Subsidence, absence from kinematic wave
computations, 3498

Supercritical flow
basic features, 25, 26
choking modes for conractions in, 31, 32
designing for contractions ol 8G89
designing for expansions of, 89-91
gradually varied, 183-85
specifying unsteady flow boundary

conditions, 280-81
transition design challenges in, 84-86
translatory wave propagation in, 268

Suppressed weirs, 49, 5O-51
Surface profiles. See Water surface profiles
Surface resistaace, ll-13. See also

Resistance
Surges

from convergence of positive waves, 284
in dam-break problems, 289-91, 326
examples, 78
momentum equations for, 78-81
uith monoclinal waves, 350-51

Suspended-load discharge, 405, 410-16

Tail$ ate. height
modular limit over weiN, 55
in stilling basins, 74-78, 79

Taylor's series expansion, 308-9
Temperature effects on river bed forms, 395
Theo.etical approach, 4
Throat of culvens, 229-31
fime steps

io numerical solutions to unsteady flow
problems, 281-82, 328-29

selecting for flow routing
computations, 34Hl

Tobesofkee Creek (Macon, GA), 146
Topographic data, for calibrating unsteady

flow models, 329

Tractive force ratio, 389
Tranquil flou 25-26
Transition zones, in rivea bed

sediments, 390. 395
Translatory waves, 26?-68
Trapezoidal channels

critical depth computarions,
3r3'/, 38, 46'149

momentum function fo.. 63, ff
side slopes for riprap, l3l
turbulent flow in, 105

Trapezoidal rule, l7l
Tree-gro*'n floodplains, l'lanning's n for, I 18
Triangular channels

critical depth conrputations, 36
momentum function for. 64, 67

Triangular weirs, 5l-52
Turbulent flow

friction factor in, lM-9
Shields parameter and. 383-84

Turtrulent separation, I 2
Type I flow

around bridge piers, 81, 82-83
depth calculations for, 236
discharge coeffi cients, 242
through bridge openings, 233,234

Type II f lou 8l-82,233.236
1}pe ILA flou 233, 234
Type [B flow, 233, 234
Type m flou 233
Type II stilling basins, 74, 77
Type III srilling basins, 74, 76
Type ry stilling basins, 74, 75

Underdesigning spillway crests, 204
Uniform flows

applications, 97-98
best hydraulic section, l4l-42
channel photographs, 142-50
Chery and Manning formulas, 100-102
in compound channels, 126-29
defined,6
dimensional analysis, 98-99
factors affecting/and n, 109-14
in grass-lined channels, 132*37
momentum analysis, 99-100
normal depth computations, I 19-21
in parrly full, smooth, circulat

conduits, l2l-22
pipe flow formulas extended to open

channel, 102-9
in riprap-lined channels, 129-32
seu,er design for, 122-26
slope classifi cation, l3?-41



Unit stream F|ower, 417
Unsteadiness effects, I l3
Unsteady flow equarions

basic approaches, 26749, 295-91
boundary condil ions in, 284, 301-5
chamcteristic fonn computations, 274-77
dam-break probJem. 324-26
derivation of Saint-Venant

equations, 269-74
explicit f inite difference me$ods, 305-13
implicit finite difference merhod, 3 l 3-1 9
ini!ial and boundary conditions, 279-82
mathematical interpretation of

cnaraclensocs, z//-/y
merhod of characteristics, 297-300
numerical methods compared, 3 I 9-20
for rivers, 326-29
shocks, 320-24
simple wave, 282-91

Upstream quadrant of spillway crest. 204
USGS Type I f loq 217, 218
USCS Type 4 flow, 223, 224
USGS Type 5 flow, 217, 218
USGS Type 6 floq 223, 224
USGS Type 7 flow, 225
USGS width contraction merhod, 238-41

Vao Rijn classification sysrem, 394-95
Van Rijn's merhod

of computing suspended-load
transport.4l4 l6

of predicting stage-discharge
relationships, 399-400, 403-4

total discharge computations, 420-21
Variable-parameter merhod of Muskingum-

Cunge technique, 362-63, 3g
Vedemikov number. 318- l9
Vegetative linings, 132, 133, 134-36
Velocity defect law 104
Venruris. 33, 34
Verification of unsteady flow models, 327-28
Visual BASIC, 17, 461 -82
Visual obseryation method, of measuring

shear stress on rediments, 182-8.1
V-norch weirs, 5l-52
Volume flux, 8-9, l0
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Wake vonices, 43 |
Washed-out dunes, 390
Wash load, 404
Water surface profiles

classifying, l6l-65
computations for. 167-68,

169-73, | 82-88
Visual BASIC program, 180, 4?6-82

Wateru'ays Experimenr Station spillwar
shape,203

Wave celerity
in compound channels, 328
in kinematic wave rechnique, 346,

34'7 ,348,351
of monoclinai wave, 3.19, 350-51, 355-56

Wave fronts in sup€rcrirical flow, 8,+-86, 87
Wedge storage, 335
Weirs

culverts acting as. 2l?, 218-19
discharge measurements over. 48-55
Iareral outflows from, 194-95
roadway embankments as, 22'l -28
on spillways, 202
unsteady flow computations for, 303, 304

Wenarchee River (Plain, WA), 145
West Fork Bitterroot River (Conner, MT), l,f4
Width contracrion method of bridge

analysis,238-41
Wing*all abutmenrs, 236-38
Wood conduits, Manning's n for, I 15
Wood-lined channels. Manning's n for, I l6
Wroughl iron conduirs, Manning's n for, I l5
WSP program, | 80, 47G82
WSPRO program, 44l, ,142

features and performance, 241-53
input data, 253-56
output data, 256-60

Y0YC program, 38, 467-69
Yang method, 417, 419,421
Yamell equation,236
Ycomp program, 45-47. 469-76

Zone of quiet, in simple wave, 283

},-
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