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ABSTRACT: With the emergence of computers, literatures of water distribution network (WDN), and
application of computer-aided programs for modeling WDNs have been significantly improved. Although MATLAB
and Excel spreadsheet provide suitable facilities for both academic and practical purposes, the comprehensive
application of these programs in WDN analysis has not been addressed. In this paper, the step-by-step
implementation of three Q-based methods is presented for solving WDNs using these programs. In order to focus
more on the educational aspects of computer application, a simple pipe network is analyzed using these Q-based
methods. However, as basics of the implementation are sufficiently covered, the provided codes can be improved
to analyze more complicated pipe networks. © 2017 Wiley Periodicals, Inc. Comput Appl Eng Educ; View this article
online at wileyonlinelibrary.com/journal/cae; DOI 10.1002/cae.21796
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INTRODUCTION

Hydraulic modeling of water distribution networks (WDNs) is one
of the most practical facets of water, civil, and also mechanical
engineering curriculum. Appraisal of computer programs for this
modeling is so essential in educational programs that some
international academic references written in this field from time to
time introduced relevant written codes, mostly in FORTRAN
language [1-2]. By emerging computer improvements, not only
computer-aided programs have been recommended for modeling
WDNSs, but also more efficient and computer-based approaches
were proposed. Finally, computer application to WDN modeling
brings more efficiency and improvements in this area.

Several robust and commercial programs, such as EPA-
NET [3] and WaterGem [4], have been utilized for WDN
modeling. However, these kinds of softwares do not provide the
chance for their applicants and specially engineering students to
become familiar with the fundamental background of this
modeling. In this regard, several studies were conducted to utilize
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sufficient either codes or programs for educational purposes [5-8].
The main contribution of these efforts was to present how to model
a pipe network using different programs for educational purposes.
These contributions not only emphasize on the assessment of
computer in WDN modeling but also provide valuable oppor-
tunities for engineering pupils to achieve a better insight about the
relevant fundamental subjects.

In essence, analysis of WDN is considered as an inevitable
part of its modeling since whatever is planned for a typical WDN
cannot be done without analyzing it. The aim of analyzing a pipe
network is exclusively to determine either flow rates in pipes (Q)
or hydraulic heads in nodal points (/). Since these state variables
may vary spatially or temporally in a WDN, the equations
governing flow field in pipe network depends upon the condition
in which the flow varies with time. In this regard, analysis of WDN
under the steady-state condition is the most common one in
modeling of a typical water network.

The state of art of computer application to WDN analysis
shows that appraisal of computer programs for solving WDN has
been an active area in the literature [5-12]. In this regard,
application of MATLAB for this purpose not only is not
adequately presented but also is confined to implementation of
specific approach [9]. Additionally, Excel Spreadsheet has been
considered as powerful platform for implementing numerical
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methods for various applications for educational purposes [13].
Regarding solving pipe network, Huddleston et al. [5] and
Brkic [11] utilized Excel to implement linear theory and Hardy
Cross method, respectively. More recently, Niazkar and Afzali
implemented h-based methods in MATLAB and Excel spread-
sheet [12]. Finally, the literature review indicates that implement-
ing Q-based methods for solving WDN is not adequately
addressed using Excel and MATLAB programs while their
application may bring about a better chance to teach the basics of
modeling WDNSs in engineering curricula.

In this paper, MATLAB and Excel are used to solve a sample
pipe network under a time-independent condition by focusing
exclusively on step-by-step implementation. In the presented
codes, the input data is first inserted in Excel Spreadsheet.
Afterwards, the implementation of Q-based methods including
Hardy Cross, Linear Theory, and Q-based Newton-Raphson are
introduced step by step with the aid of coding in MATLAB
program. By using each one of the Q-based methods, the simple
example is analyzed and the output results are presented in Excel
Spreadsheet. In reference to the present state of the art of the
subject, the presented programs may bring a novel computer
application in WDN modeling for both educators and engineers.

ANALYSIS OF WATER DISTRIBUTION NETWORK

Analysis of a typical WDN is conducted to find the flow field
throughout the network. Under the steady-state condition, this
flow field varies exclusively with respect to space whereas
temporal variation is considered in extended-period simulation
and transient conditions. For a specified network layout, the state
variables depend upon nodal demands under the demand-driven
condition. In this condition, energy and continuity equations
govern the state variables of the problem. Generally, the governing
equations are mainly casted in two different ways: (1) Q-based
(Hardy Cross method, Linear Theory, and Newton-Raphson
method) and (2) h-based (Newton-Rapshon method, finite element
method, and Gradient algorithm). As it was mentioned in
parentheses, different methods can be utilized for solving WDN
for different casting. In this paper, the step-by-step implementa-
tion of the Q-based methods in MATLARB is presented. In order to
more focus on the educational aspect of these implementations, a
simple network including seven pipes, six nodal points and a
reservoir is selected from the literature [12]. The layout of this
network is shown in Figure 1. The hydraulic head of the reservoir
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Figure 1 Sample pipe network.

is equal to 200m and it is applied to the sixth node. The pipe
characteristics and nodal demands of this network are presented
in [12].

METHODS

In this section, the governing equations are casted for the three
Q-based methods considering the sample network. Since the
governing equations of WDN under the steady-state condition
comprise a nonlinear algebraic system of equations, an iteration-
based scheme using initial guesses for state variables should be
used in each method to solve WDN. The description and
formulations of these methods are presented in the following:

(1) Hardy Cross method: This method was basically proposed
to solve WDNs using handy calculations. In this non-
matrix method, continuity equations are put aside from the
list of governing equations since initial guesses for pipe
flow rates are selected in a way that they satisfy these
equations. Furthermore, Newton-Rapshon scheme is
applied to energy equations to compute loop correctors.
Consequently, loop correctors, which are particularly used
to improve pipe flow rates, are determined for all network
loops in each iteration. In case a pipe participates in two
adjacent loops, two related loop correctors are utilized to
improve its flow rate. The loop corrector is defined in
Equation (1):
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where AQ; denotes the loop corrector in the j™ loop, K; is
the pipe coefficient of the ith pipe, sgn(Q;) is the sign
function calculated for Q;, m is the number of pipes in the
j™ loop, and n is a power.

The pipe coefficient and power introduced in Equation (1)
depend upon the resistance equation which are equal to

:2/;35 and 2 for Darcy-Weisbach (D-W) equation,

respectively. In the former relation for pipe coefficient, f
is D-W friction factor, L is pipe length, m is pi number, g is
gravity acceleration, and D is pipe diameter. It should be
noted that the pipe coefficient based on D-W equation
consists of two parts: (1) a constant part which is a function
of pipe diameter and length, and (2) a variable part (f).
Unlike the variable part of the pipe coefficient, the
constant part does not vary in iterations and is constant
throughout WDN analysis.

In Hardy Cross method, all pipe flow rates (Q;) are positive
and arbitrary directions for flow in each pipe and each loop
are considered. These directions are used not only to
evaluate the sign function but also to improve the flow
rates after the loop corrector is computed in each iteration.
In this regard, the sign function for a typical pipe is
positive only if the direction of loop corrector is the same
as the direction of flow in that pipe. The denominator of
Equation (1) is always positive while the loop corrector
may be obtained either positive or negative based on the
sign function. Regardless of the sign obtained for loop
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corrector, it will be added to the pipe flow rate if the
directions of the loop corrector and flow in the pipe are the
same. Otherwise, it will be subtracted from the pipe flow
rate. Considering this notation on how to revise pipe flow
rates in each loop after the loop corrector is determined in
each iteration is quite important in implementation of this
method in computer-aided programs.

Linear Theory: In this method, the governing equations are
casted in a way that the flow rates in pipes are the unknowns
of the system of equations. Consequently, the number of
unknowns is equal to the number of pipes in the network.
The continuity and energy equations are linear and
nonlinear in respect to Q, respectively, while the former
is written for nodal points and the latter is written for loops.
The system of equations used in Linear Theory is illustrated
in Equation (2) in the matrix format for the sample network:
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friction factors in pipes are computed while the
hydraulic heads at nodal points can be computed at
the end of WDN analysis using the considered resistance
equation.

IMPLEMENTATION OF Q-BASED METHODS FOR
SOLVING WDNs

In this section, the step-by-step procedures of the introduced
methods are separately presented with the corresponding
MATLAB codes. In these codes, the hydraulic solver is coded
in MATLAB while Excel spreadsheet is the interface used to
transform input and output data with the main code written in
MATLAB. In this regard, the input data is first inserted into
specific cells of Excel which will be later called from MATLAB
codes. As each MATLAB code performs WDN analysis, the
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In contrast to the procedure in Hardy Cross method, the
pipe flow rates are directly computed in this method.
Moreover, the initial guesses for flow rates can be chosen
arbitrarily and, unlike the ones in the Hardy Cross method,
they do not have to satisfy the continuity equations.

(3) Q-based Newton-Raphson method: This method utilizes
the same equations as Linear Theory whereas the Newton-
Rapshon scheme is applied to these equations. The values
of pipe flow rates are improved in each iteration of Q-
based Newton-Raphson method after solving the system
of equations. This system is shown in Equation (3) for the
first iteration for the sample network.
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Unlike the process in the Hardy Cross method, only
flow directions in pipes are considered in casting
equations in Linear Theory and Q-based Newton-
Raphson methods. The two latter Q-based methods
build matrix equations and their left hand side matrices,
which should be calculated in each iteration, are not
symmetric. The right hand side matrix in Linear
Theory is constant throughout the WDN analysis
whereas it is a function of pipe flow rates in the Q-based
Newton-Raphson. In Q-based methods, flow rates and D-W

results will be automatically presented in Excel spreadsheet for
ease of further usage.

In the provided MATLAB codes for Q-based methods,
first the nodes with demands are enumerated and then the
nodes with specified heads. Consequently, the designated
numbers for reservoirs are the larger ones. Furthermore, the
convention for direction for loop is clockwise while flow
direction in pipes is first assumed to be from the node with
lower number to the one with larger number. The latter may be
revised in the process of analysis. Finally, it should be noted
that even though the presented codes are written for solving the
sample network for educational purposes, they can be simply
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modified to analyze larger or more complex networks.

Input and Output Data Presented in Excel Spreadsheet

The common required input data for analyzing a typical WDN like
the sample includes: (1) numbers of nodes and pipes, (2) number
of nodes with specified heads (essential boundary condition or
EBC), (3) number of nodes with specified demand (natural
boundary condition or NBC), (4) kinematic viscosity of water, (5)
water density, (6) gravitational acceleration, (7) stopping criterion
(S.0), (8) continuity table showing the relation between pipe and
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A B C D E F G H 1 J K L M N o] P Q R
1 #ofnodes #of pipes #E.B.C #N.B.C v p K g 5:C: parameter D L Q P head loss eq. np
2 6 74 1 5 1.31E-06 999.7 0.001307 9.807 0.001 units m m cms D-w 2
3
a | #pipe upstream  downstream  pl e el (/D) #node E.B.C #node N.B.C
5 1 1 2 0.097 400  0.000003 3.1E-05 6 200 1 -0.030
6 2 3 0.110 400 0.000003 2.72E-05 -0.040
7 -] 3 4 0.220 800  0.000003 1.36E-05 3 -0.035
8 4 4 5 0.247 500  0.000003 1.22E-05 4 -0.010
9 5 5 6 0.353 400  0.000003 8.51E-06 S -0.015
10 6 1 6 0.220 900  0.000003 1.36E-05
11 7 2 5 0.247 900  0.000003 1.22E-05
12
13 loop
14 -6 5 1
15 -7 4 3 2
16
17
18
19
20
21
22
23

Input data | Output data ® <

Figure 2 Inserting input data in Excel spreadsheet.

node numberings in the network under consideration, (9) pipe
lengths, (10) pipe diameters, (11) either relative roughness for D-
W equation or Hazen-Williams coefficient for each pipe, (12)
nodal demands, (13) specified hydraulic heads, and (14) the
resistance equation specified (D-W equation is used in this study).
These input data should be inserted in the specific cells of a
worksheet in an Excel spreadsheet file, which are named “Input
data” and “example.xlsx”, respectively, as shown in Figure 2.
These titles and the locations of cells, in which data are inserted,
are particularly arbitrary and they are just used in MATLAB
program for calling input data form Excel spreadsheet.

The obtained results from analyzing WDN are transformed
from MATLAB to Excel spreadsheet as the method satisfies the
specified S.C. The output results are (1) CPU time, (2) number of
iterations, (3) pipe flow rates or hydraulic heads at nodal points,
and (4) D-W friction factor in each pipe. It should be noted that the
two last output data is reported for both final iteration and all
iterations separately in the output worksheet of Excel so called,

A B C D E F G H |

1 |CPUtime No. of iteration Run # ¥ o

2 | 0.107451 28 1 35.3147 35.3147
3 Results 2 0.0000  0.0000
4 | #pipe Qe # pipe ¢ 3 0.0000  0.0000
5 i 0.0025 1 0.1009 4 0.0615 0.0532
6 Z 0.0033 2 0.0934 5 0.0003 0.0006
7 3 0.0383 3 0.0492 6 0.0000 0.0000
8 4 0.0483 4 0.0474 74 0.0129  0.0150
9 5 0.1025 5 0.0419 8 0.0012 0.0020
10 6 0.0275 6 0.0549 9 0.0005 0.0011
1 74 0.0391 7. 0.0507 10 0.0055  0.0061
12 1 0.0024 0.0036
13 12 0.0013 0.0021
14 13 0.0029  0.0036
15 14 0.0030 0.0041
16 15 0.0020 0.0029
17 16 0.0022 0.0030
18 17 0.0028 0.0037
19 18 0.0024 0.0034
20 19 0.0022 0.0031
21 20 0.0025 0.0034
22 21 0.0025 0.0035
23 22 0.0023 0.0032

Input data | Output data @

“output data”. The results in Excel spreadsheet are shown in
Figure 3 for better illustration.

MATLAB Codes

The step-by-step process of solving WDN accompanied with
MATLARB codes are presented below for the introduced Q-based
methods:

(1) Hardy Cross method: The process of this method is
illustrated as the following:

(1.1) First step: transforming input data from Excel into
MATLAB: In this step, the inserted input data first
should be transformed to MATLAB. In addition to
the variables introduced in the input data section,
one additional input data, which can be obtained
using network layout, is required to solve the sample
network using this method. This input data shows

J K L M N o P Q R S
Qﬂ) Q(ﬂ} Q{S’ lel 0(7) el 2 £ 4 5
35.3147 35.3147 35.3147 353147 35.3147 0.0098 0.0096 0.0087 0.0086 0.0083
0.0121 0.0159 0.0381 0.0098 0.0137 4.2276  13.5893  0.0736 0.0693 0.0577
0.0437 0.0557 0.1201 0.0383 0.0501  45.5598 0.8764 0.0472 0.0453 0.0400
0.0462 0.0558 0.0987 0.0267 0.0280 0.0335 0.0361 0.0463 0.0453 0.0424
0.0343 0.0448 0.1012 0.0297 0.0422 0.3412 0.2269 0.0508 0.0485 0.0421
0.0352 0.0452 0.0999 0.0300 0.0395 1.8886 1.8638 0.0506 0.0484 0.0422
0.0380 0.0480 0.1026 0.0274  0.0397 0.0537 0.0533 0.0493 0.0475  0.0419
0.0379 0.0479 0.1018 0.0282 0.0389 0.1403 0.1175 0.0494 0.0475 0.0420
0.0359 0.0459 0.1005 0.0296 0.0395 0.2133 0.1594 0.0502 0.0481 0.0422
0.0398 0.0498 0.1037 0.0263  0.0383 0.0723 0.0733  0.0486  0.0463  0.0418
0.0388 0.0488 0.1027 0.0274 0.0388 0.1020 0.0910 0.0490 0.0472 0.0419
0.0371 0.0471 0.1013 0.0287 0.0392 0.1334 0.1146 0.0497 0.0478 0.0421
0.0384 0.0434 0.1026 0.0273  0.0392 0.0341  0.0306 0.0492 0.0473  0.04139
0.0391 0.0491 0.1031 0.0269 0.0390 0.0922 0.0860 0.0489 0.0471 0.0418
0.0379 0.0479 0.1020 0.0280 0.0391 0.1102 0.0991 0.0494 0.0475 0.0420
0.0380 0.0480 0.1022 0.0278 0.0392 0.1058 0.0978 0.0493 0.0475 0.0419
0.0387 0.0487 0.1028 0.0272 0.0391 0.0948 0.0891 0.0490 0.0472 0.0419
0.0384 0.0484 0.1025 0.0276 0.0391 0.1015 0.0933 0.0492 0.0473 0.0419
0.0381 0.0481 0.1022 0.0278 0.0391 0.1058 0.0970 0.0493 0.0474 0.0419
0.0384 0.0484 0.1025 0.0275 0.0391 0.099%6 0.0928 0.0492 0.0473 0.0419
0.0385 0.0485 0.1026 0.0274 0.0391 0.0993 0.0921 0.0491 0.0473 0.0419
0.0382 0.0482 0.1023 0.0277 0.0391 0.1031 0.0949 0.0492 0.0474 0.0419

<

Figure 3  Analysis results in Excel spreadsheet.
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%% Input data & Define variables

n = xIsread('example xlIsx',' Input data''A2'); %n = number of nodes

m = xlsread('example.xIsx',' Input data','B2");: % m = number of pipes

nl = xIsread('example xlIsx',' Input data'.'C2"): %nl =number of essential boundary conditions
n2 =n-nl: %n2 = number of natural boundary conditions

E = xlsread('example.xlsx', Input data',’K5:L5'); % E = essential boundary conditions matrix

N = xlsread('example xIsx'.'Input data','N5:09"): % N = natural boundary conditions matrix

con = xlsread('example.xIsx','Input data','B5:C11"); % con = connectivity matrix

1 = xIsread('example xIsx'. Input data'.'G5:G11"); % r =relative roughness

np = xIsread('example xlIsx'.'Input data'.'R2'); % np =n (= power of flow rate in head loss equations)
% np = 2(for Darcy-Weisbach and Manning) & 1.852(for Hazen-Williams)

g= xIsread('example xlIsx'.'Input data'."H2"); %gravity acceleration (L"2/T)

nu= xlsread('example xIsx'.'Input data','E2"): %Dynamic viscosity

mu= xlsread('example xlIsx'.'Input data'.'G2'); %Kinematic viscosity

stopc= xlsread('example xlsx',' Input data','I2"); %accuracy of stopping criterion
D= xlIsread('example xlsx',' Input data','D5:D11"); % D = pipe diameters

L= xlsread('example xIsx’".'Input data'.'E5:E11'); % L = pipe lengths

lo = xIsread('example.xlsx', Input data','/A14:D15"); %introducing the closed loops

Figure 4 MATLAB code for the first step in Hardy Cross method.

the arrangement of nodal points in different loops of
network. Since a clockwise direction is assumed for
the water circulation in each loop, the agreement of
flow in pipe with the loop direction is also should be
specified by designating a sign for nodal number. If
the loop correction and flow in pipe have the same
direction, positive sign will be used before nodal
number. This agreement is exclusively utilized to
evaluate the sign function used in Equation (1) in the
MATLAB code. The MATLAB code for this step is
shown in Figure 4. In this figure, all the input data,
which their acronyms in MATLAB are introduced,
are called from Excel spreadsheet. As shown in
Figure 4, the input data can simply be accessed with
MATLAB using a built-in function so called,
“xlsread”.

Second step: defining variables in MATLAB: The
variables which are used in this program are all

%% Program Beginning for computing CPU time

tic
%% Pre-analysis compute
%program constants built-in

counter = 200; % counter = number of turbulent analysis iteration

b=0;

conv=zeros(counter-1,1); % conv = convergence vector

%Making zero required matrices

K2 = zeros(n.1): % K2 = fixed terms of stiffness matrix

Qe = zeros(m.1): % Qe = pipe flow rate vector
Re = zeros(m.1); % Re = Reynolds number

(1.3)

introduced as zero-value matrices or vectors in this
step. These variables will be used and evaluated in the
process of analyzing WDN later. The maximum
number of iteration is also defined in this step. The time
elapsed for the method is started from this step. The
utilized code for this step is illustrated in Figure 5.

Third step: computing random initial guess for
Hardy Cross method: As it was previously
mentioned, Hardy Cross method uses a set of initial
guesses which satisfies the continuity equations. In
the provided code, a simple procedure for calculat-
ing random values for pipe flow rate as a proper
initial guess is presented as depicted in Figure 6. The
mechanism of this process is to generate random
values for several pipes in each loop and determine
the rest using continuity equations. The detail of this
procedure is shown in Figure 6. It should be noted
that one of the shortcomings of Hardy Cross method

f=zeros(m.1): % f= f coefficient in Darcy-Weisbach head loss equation
V = zeros(counter.m); % V = matrix of element flow rates of all iterations of analysis
Z = zeros(counter.m); % Z = matrix of f coefficient- values of all iterations of analysis

HL = zeros(m.1):%HL = hydraulic loss

power = zeros(m.1): % power = a vector of m-columns equal to (np-1)

N1=N;

dem=zeros(n2,1).%dem= nodal demand vector

KQ2=zeros(n2,1):%K Q2= matrix of element numbers of the rest of (=n2) elements
K=zeros(n2.n2):%K = matrix of continuity equation for m-nl elements which the corresponding
%flow rate will be computed via connectivity equations and the randomly-selected flow rates
KQIl=zeros(m-n2.2);%KQ1= matrix of flow rates of m-n2 elements which are randomly selected

% at first loop data

[cc dd] = size (lo); %cc = number of closed loops
dQ = zeros(cc,1);%dQ = the loop flow correction

cce = zeros(n2.1):%cce = a vector for checking continuity equations at nodal points

Figure 5 MATLAB code for the second step in Hardy Cross method.
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9496 Initial guesses for pipe flow rates
for =1:cc

EQIG.1)=2bs(lo(t, 1))
end

EQI=somt(KQ1);%sorting the m-n2 elements mumbers
for =1:cc

KQI(i.2)=ebs(rand):
end

=L
=1;
for =lm
if I=KQI{j,1)
EQ2E.D =1
k=k+1:
end
if i=KQI(j.1)
if j<cc
I=iFL
end
end
end
%einserung the continuity equatons in K-matrix (n-al)
fori=1m2
il =KQ2(L.1);
J=confil,1);
if jn-nl+1
K(JJ) ==
end
k=con(il,2);
if k<p-nl+l
KEi=1;
end

end
%enserung nodal demands summation in the comresponding connectivity equation
for =1m2

dem(1. 1)=-N(.2):
end

%ecomrecting the demand vector based on the randomly-selected dow rates
for i=1:m-n2
11 =KQI{LI);
J=confil,1);
if j<n-nl+l
dem(j,1) = dem(j,1)*KQ1(1.2);
end
k =con(il.2);
ifk<n-nl+1
dem(k.1) = dem(k.1)-KQI(.2):
end

end
%ecalculating the rest (=n2) of element flow rates
Q2=K"-1*dem:
9egathering initial element flow rates to a single vector
for =1m-n2
7 =EKOQIG 1)
Qe(j.1)=EQIG2):
end
fori=1m2
1=KQ2(L1);
Qe(j,1) =Q2(.1);
end

Figure 6 MATLAB code for the third step in Hardy Cross method.

is determination of proper initial guess since the (1.4) Fourth step: computing D-W friction factor for the

selection of required initial guess not only is not
systematic in this method but also is commonly
done manually.

initial guess: In this step, the presumed values for
pipe flow rates are utilized to compute Reynolds
number and D-W friction factor in each pipe. The
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%calculating the friction factor
for i=1:m
Re(i.1) = (abs(Qe(i.1))*D(1.1))/(0.25*pi()*D(i.1)"2*nu): %Re=VD/nu where V=Q/A (ft/sec)
Y%computing f Darcy-Weisbach friction factor (f) depending on Reynolds number value
if Re(i.1) < 2000 %laminar condition (Re<2000)
f(i.1) = 64/Re(i.1): %Hagen-Poiseuille
end
if 2000 < Re(i.1) && Re(i.1) < 4000 %transient condition (2000<Re<4000)
R =Re(i.1)/2000:
Y2 = (1x(1.1)/3.7)+(5.74/Re(1.1)"0.9);
Y3 = -0.86859*log((rr(i.1)/3.7)+(5.74/4000"0.9)):
FA=(Y3)"-2:
FB = FA*(2-(0.00514215/(Y2*Y3))):

X1 = 7*FA-FB:
X2 =0.128-17*FA+2.5*FB:
X3 =-0.128+13*FA-2*FB;

X4 = R*(0.032-3*FA+0.5*FB);
f(1.1) = XI+RA(X2+R*(X3+X4)):

end

if Re(i.1) > 4000 %turbulent condition (Re<4000)

f(i.1) = (-2*logl 0((rr(i.1)/3.7)+(5.74/Re(1.1)"0.9)))"-2: % Swamee-Jain(1976)

end
end

%% Insert iteration results into S, V and f matrices

fori=1:m

V(1.1) = Qe(i.1):
end
fori=1mm

Z(1.1) =1(i.1):
end

Figure 7 MATLAB code for the fourth step in Hardy Cross method.

%% Analysis using Hardy Cross method

%producing fixed terms of stiffness matrix in turbulent condition

equation for calculating the D-W friction factor is
based on the value of Reynolds number. In turbulent
condition, Swamee-Jain equation, which is used in

for i=1'm EPANET for this purpose [3], is utilized in the

K2(1,1) = (8*L(1.1))/(g*p1()"2*D(1.1)*5); provided MATLAB code (Fig. 7). At the end of this
end step, the flow rate and D-W friction factor in each
:i’Pf_O"lddmg positive flow rates pipe are stored in the corresponding matrices
or 1I=1'm

if Qe(1.1)<0
Qe(i1) = - Qe(i.1):

designated for saving the corresponding values
throughout the analysis process. As it was previ-
ously mentioned, these matrices will be transformed

r=con(1.1);

con(i,1) = con(1.2): from MATLAB into Excel as output data as the

con(i,2) =1 method converges.
for il1=1:cc (1.5) Fifth step: essential computations before starting the
for 12=1:dd iteration: The pipe coefficient for each pipe consists
k= abf"(l"(ilﬂiz)): of two parts: one fixed part and one variable part,
lszz_l . . which should be computed in each iteration as pipe

lo(11.12) = - lo(11.12): X L

end flow rate changes. Since the fixed terms in pipe
p— coefficient remain constant in the whole process,
end they are computed once before starting the analysis
end procedure to enhance the performance of the code.
end Furthermore, since initial guesses are generated

%% Checking the continuity equation at each nodal point
cce = zeros(n2,1);

randomly, they may be negative. In this step, the
corresponding values are once again checked and

o izifnlz) —NG2): will be changed if they are negative. Regarding the
Emcice il probable change(s), the continuity equations are
Far e once again utilized to make sure whether the
r=con(i.1): positive initial guesses satisfy these equations. In
if r<n2+1 order to better demonstrate the procedure, the
cee(r.1) = cee(r.1)-Qe(1,1); MATLARB code of this step is depicted in Figure 8.
end _ (1.6) Sixth step: computing loop corrections in each
w =f°;1("2): loop: The assumed values for pipe flow rates
Hareniid : should be revised using loop correction (AQ) in
cce(w.1) = cce(w.1)+Qe(1.1): . . .
end each iteration. The MATLAB code for computing
end loop corrections in each loop using Equation (1) is

Figure 8 MATLAB code for the fifth step in Hardy Cross method.

depicted in Figure 9. As shown, the numerator and
denominator of Equation (1) are determined for
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%% Hardy Cross Method
for a = 2:counter
%calculating the flow rate comrection for each loop
for=l:cc
numerator = 0;
denomunator =0;
for y=1:dd
k = abs(lo(iy)):
ifk=0
ee = sign(lo(1y))*K2(k, 1)*f(k.1)*Qe(k. 1) "np;
ff=K2(k,1)*f(k,1)*Qe(k.1)"(up-1);
numerator = numerator + ee;
denominator = depommator + abs(ff);
end
end
dQ(1.1) = - (numerator/(np*denommator));

dQe = zeros(m,1);%dQe = the individual loop flow correction for each pipe
Y%correcting the flow rate of each pipe based on the obtained loop comections

for=l:cc
for j=1:dd
k= abs(lo(Ly)):
ifk=0
Qek,1) = Qelk,1) + s1gnflo(1j)*dQG.1);
end
end
end
%flow rate and loops data corrections
for=1lm
if Qe(1,1)<0
Qe(1,1)=- Qe(1.1):
r=con(i,1);
con(1,1) = con(3,2);
con(t,2)=r;
foril=l:cc
for12=1:dd
if abs(lo(1l 12)) =1
lo(11 12) = - lo(11,12);
end
end
end
end
end

%% Checking the continwity equation at each nodal pomnt

fori=1:nl
cce(1,1) = NG@.2);
end

for=1l:m
r=con(i,1);
ifr<n2+1

cee(r,1) = cee(r,1)-Qe(i,1):
end

w = con(i.2);
if wen2+1

cce(w.]) = cee(w.1)+Qe(i1);
end
end

Figure 9 MATLAB code for the sixth step in Hardy Cross method.

each loop and subsequently the loop corrections
are used to improve the pipe flow rates. At the end
of this step, wherever a negative pipe flow rate is
obtained, the negative sign will be changed into

positive and the loop data, which indicates flow
directions in pipes and loops, is corrected
accordingly. Finally, it should be noted that the
iteration calculation is started from this step.
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%% Stopping criterion

ifb==
sum = 0;
suml =0;
for i=1:m

sum = sum + abs(V(a.i) - V(a-1.1)):
suml = suml + V(a.i):

end

conv(a-1.1)=sum/suml:

if suny/suml < stopc

cpu = toc;

toc %Program end for computing CPU time

aa=a;

display(a)

b=1:

break

end

end
end

Figure 10 MATLAB code for the eighth step in Hardy Cross method.

%% Output Data

% Iteration results

xIswrite('example. xIsx".V.'Output data'.'H2:N37"):
xlswrite('example.xIsx'.Z.'Output data'.'02:U37"):

% Final Results
xlswrite('example.xIsx'.V(aa.:)".'Output data’.'B5S:B11"):
xIswrite('example.xIsx'.Z(aa,:)".'Output data’,'D5:D11"):
xIswrite('example xIsx'.cpu.'Output data'.'A2"):
xlswrite(‘'example x1Isx".aa,'Output data’.'B2'):
xlswrite('example.xIsx'.aa.'turbulent'.'F5'):

Figure 11 MATLAB code for the ninth step in Hardy Cross method.

%% Program Beginning for computing CPU time
tic

%% Pre-analysis compute
%program constants built-in
counter = 200:

b=0;

conv=zeros(counter-1.1):
%Making zero required matrices
K = zeros(n):

K1 = zeros(n.1):

K2 = zeros(n.1):

Q = zeros(n,1);

Qe = zeros(m.1):

Re =zeros(m.1):

f=zeros(m.1):

V = zeros(counter,m):

7 = zeros(counter.m):

HL = zeros(m.1);

power = zeros(m.1):

%making power matrix

fori=1:m
power(i.1) =np-1:
end

Rhs = zeros(m.1);

Figure 12 MATLAB code for the second step in Linear Theory.

Y%producing fixed terms of stiffness matrix in turbulent condition
for i=1:m
K2(i.1) = B*L(L.1))/(g*pi()"2*D(.1)"5):
end
for i=1:n-nl
Rhs(i.1) = - N(.2):
end
for i=n-nl+1:n-nl+cc
Rhs(i.1) = 0:
end

Figure 13 MATLAB code for the fifth step in Linear Theory.

for a = 2:counter
K=zeros(m):
Y%inserting the continuity equations in K-matrix (producing n-nl of K-matrix)
fori=1:m
j=con(i.l):
if j<n-nl+1
K@) =-1:
end
k=con(i.2):
if k<n-nl+1
K(k.i)=1:
end
end
%inserting the loop equations in K-matrix (producing m-(n-n1) of K-matrix)
for i=1:cc
for j=1:dd
k =abs(lo(i,j)):
if k>0
ee = sign(lo(i))*K2(k.1)*f(k.1)*Qe(k. 1) (np-1):
K(n-nl+i.k) = K(n-nl+i.k)+ ee:
end
end
end

Figure 14 MATLAB code for the sixth step in Linear Theory.

%% Solve system equations (Determining the unknown vector of flow rates)

Q=K"-1*Rhs:
fori=1:m

if Q(1.1)<0

Q@.1)=-Q@.1):

end
end
%% Computing the hydraulic head loss for each elements
for i=1:m

HL(1.1) = K231, 1)*f(1.1)*Q(.1) np:
end
%% Explicit Colebrook-White approach
for i=1:m

B =(2*g*D(i.1)*HL(i.1)*(D(i.1)/nu)"2/L(i.1))"0.5:

1(i.1) = (-2*log10((r(1.1)/3.7)+(2.51/B)))*-2:

Re(i.1) = B/f(i.1)"0.5:
% Do additional computations if required

Qe(i.1) = pi*nu*D(i.1)*Re(i.1)/4:
end
%% Insert iteration results into S. V and f matrices
fori=1:m

V(a.i) = Qe(i.1):

Qe(i.1) = 0.5%(V(a.)+V(a-1.1)):

end
fori=1m

Z(a.i) = 1f(i.1);
end

Figure 15 MATLAB code for the seventh step in Linear Theory.

(1.7) Seventh step: computing D-W friction factor: Based
on the revised flow rates, the D-W friction factor in
each pipe is calculated using the same process as the
one used in the fourth step. Furthermore, the new
values of pipe flow rates and D-W friction factors
are stored in the corresponding output matrices as
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(1.8)

(1.9)

for a= 2:counter
Rhs = zeros(m.1);
for i=2:m
jl=con(i.1);
if jl1<n-nl+1
Rhs(j1,1) =Rhs(j1.1)-Qe(i.1);
end
j2=con(i.2);
if 2<n-nl+1
Rhs(j2,1) = Rhs(j2.1)+Qe(i.1):
end
end
for =1:n-nl
Rhbs(i.1) = Rhs(i,1)+N(1.2);
end
for i=1:cc
for j=1:dd
if abs(lo(i.j))=0
11=abs(lo(1.3)):

Rhs(i+n-nl.1) = Rhs(i+n-n1.1)+ sign(lo(1,j))*K2(11.1)*f(i1.1)*(Qe(11.1))"np:

end
end
end
K=zeros(m);

%inserting the continuity equations in K-matrix (producing n-nl of K-matrix)

fori=1m
j=con(i.1);
if j<n-nl+1
K(@.)=-1;
end
k= con(i.2);
ifk<n-nl+1
K(ki)=1:
end
end

Y%inserting the loop equations in K-matrix (producing m-(n-n1) of K-matrix)

for i=1:cc
for j=1:dd
k= abs(lo(1.))):
if k=0

ee = sign(lo(i) *ap*K2(k.1)*f(k.1)*Qe(k.1)"(zp-1);

K(n-nl+1k) = K(n-nl+.k)+ ee;
end
end
end

Figure 16 MATLAB code for the sixth step in Q-based Newton-Raphson method.

the achieved solution in this iteration. At the end of
this step, the continuity equations is once again
checked to ensure that the obtained pipe flow rates
satisfy these equations.

Eighth step: checking the stopping criterion: In this
step, the values of pipe flow rates of two successive
iterations are compared and the absolute relative
error is computed. In this regard, the analysis will be
terminated if S.C. is less than the specified value,
that is 0.001 in the sample network. Otherwise, the
6" to 8" steps should be repeated until the code
converges. The MATLAB code for this step is
shown in Figure 10.

Ninth step: reporting the obtained results: As the
Hardy Cross method converges, the obtained results
are transformed from MATLAB into Excel

spreadsheet for ease of further use. The MATLAB
code for this step is illustrated in Figure 11.

(2) Linear Theory: The step-by-step process of computer
application for implementation of this Q-based method is
presented below:

2.1

(2.2)

First step: transforming input data from Excel into
MATLAB: Since the same input data as the ones in
Hardy Cross method is used in Linear Theory, the
MATLAB code illustrated for Hardy Cross method
can be utilized for this step, too.

Second step: defining variables in MATLAB: First
of all, the CPU time for this code is started from this
step. Second, the maximum number of iterations is
set. Third, the variables used in this program are all
introduced as zero-value matrices or vectors in this
step. The MATLAB code for this step is presented in
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%% Solve system equations (Determining the unknown vector of flow rates)
dQ=K " -1 *Rhs:
Qe=Qe-dQ:
for i=1:m
r=con(i.l):
w = con(i.2):
if Qe(i.1)<0
r=con(i.l):
con(i,1) = con(i.2):
con(i.2) =12
Qe(i.1) =- Qe(i.1):
foril=l:cc
fori2=1:dd
if abs(lo(il.i2)) =1
lo(i1.i2) = - lo(i1.i2);
end
end
end
end
end

Figure 17 MATLAB code for the first part of the seventh step in Q-based
Newton-Raphson method.

Figure 12. As this figure shows, the utilized
variables defined in this method are different from
the ones in Figure 5 for Hardy Cross method.
Third step: assuming initial guess for Linear
Theory: In Linear Theory, the initial guess for
flow rate in all pipes is assumed to be one cubic
meters per second [14]. By considering this initial
guess, the energy equations become linear and the
system of equations for this method will become a
linear algebraic one.

Fourth step: computing D-W friction factor for the
assumed initial guess: The fourth step of this
method is exactly like the fourth step in Hardy
Cross method except that the initial guesses
assumed in both methods are different. Therefore,
the MATLAB code provided for the fourth step in
Hardy Cross method can be utilized for this step,
too.

Fifth step: essential computations before starting the
iteration: In this step, the fixed part of pipe
coefficient for each pipe is first computed to avoid
the repentance of its calculation in each iteration.
Moreover, as the right hand side of Equation (2) is
also constant throughout WDN analysis, it is
computed before starting the iterations (Fig. 13).

(2.3)

2.4

(2.5)

Table 1 Final Results of Analyzing the Sample Network

(2.6) Sixth step: computing the left hand side matrix: The
left hand side matrix of Equation (2), which
multiplies into the unknown vector of pipe flow
rates, is computed in this step. This matrix consists of
the coefficients of continuity and energy equations
which calculation of each part is conducted in two
separate loops in the MATLAB code as shown in
Figure 14.
Seventh step: solving the system of equations casted
in Linear Theory: As the Q-based system used in
Linear Theory is provided, the unknown vector of
pipe flow rates is determined simply by multiplying
the inverse of the left hand side matrix into the right
hand side vector. The computed flow rate values are
checked and in case they are negative, their sign will
be changed. Afterwards, the hydraulic head loss is
computed using the D-W resistance equation based
on the new computed pipe flow rates. The computed
hydraulic heads are used to calculate the D-W
friction factor in each pipe. The Reynolds number in
each pipe is computed using the corresponding D-W
friction factor and the pipe flow rate is recomputed
using the obtained Reynolds number. In order to
improve the efficiency of Linear Theory, flow rate in
each pipe is replaced with arithmetic mean of flow
rate in two last successive iterations. These flow
rates and D-W friction factors are stored in matrices
specified for output results. The MATLAB code of
this step is shown in Figure 15.
Eighth step: checking the stopping criterion: The
same procedure as the one for Hardy Cross method
should be conducted here.
Ninth step: reporting the obtained results: As the
MATLAB code of Linear Theory satisfies the
stopping criterion, the obtained results are trans-
formed from MATLAB into Excel spreadsheet.
(3) Q-based Newton-Raphson method: The procedure of
WDN analysis using this method is illustrated as
following:
(3.1) to (3.4): The first to the fourth steps in this method
are the same as the first fourth ones in Linear
Theory. In these steps, input data is transformed
from Excel into MATLAB and required variables
are defined. A velocity equal to one foot per second
is assumed in all pipes of the network [3].
Afterwards, D-W friction factor in each pipe is

2.7

(2.8)

(2.9)

Hardy Cross

Linear theory

Q-based Newton-Raphson

# pipe 0 A # pipe 0 A # pipe 0 A

1 0.0026 0.0243 1 0.0027 0.0241 1 0.0028 0.0238
2 0.0045 0.0220 2 0.0036 0.0232 2 0.0037 0.0229
3 0.0305 0.0169 3 0.0386 0.0162 3 0.0387 0.0161
4 0.0405 0.0163 4 0.0486 0.0159 4 0.0487 0.0158
5 0.0974 0.0148 5 0.1027 0.0147 5 0.1028 0.0146
6 0.0326 0.0167 6 0.0273 0.0174 6 0.0272 0.0173
7 0.0419 0.0162 7 0.0391 0.0165 7 0.0391 0.0164
# of iteration 12 # of iteration 18 # of iteration 5

CPU time 0.2684 CPU time 0.1214 CPU time 0.1919
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(3.5)

(3.6)
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Figure 18

computed for the assumed initial guess. The
MATLAB codes for these steps are similar to the
ones provided for the first four steps in Linear
Theory.

Fifth step: essential computations before starting the
iterations: Before commencing the iteration procedure,
the fixed part of pipe coefficient for each pipe is
calculated which will be later used to compute the right
hand side vector of Equation (3) in each iteration.
Sixth step: computing the left and right hand side
matrices: Unlike the right hand side vector in Linear
Theory, the one in this method depends upon pipe
flow rates and subsequently is not constant in the
whole process of analysis. Therefore, this vector was
not computed in the fifth step (previous step in this
method) where constant parameters were calculated
before starting iterations. On the other hand, the left
hand side matrix is also a function of pipe flow rates.
Hence, these two matrices are computed in each
iteration in this step as depicted in Figure 16.
Seventh step: solving the system of equations casted
in Q-based Newton-Raphson method: In each
iteration, the change in flow rate in each pipe is
directly obtained by solving the system of equations.
These values are utilized to determine pipe flow
rates. The sign of each computed flow rate will be
changed unless it is positive. It should be noted that
changing the sign of negative flow rate(s) means that
the assumed direction for flow rate in the pipe is
corrected. Therefore, wherever the sign of pipe flow
rate is changed, the loop data is updated to take into
account this change (Fig. 17). This update should be
conducted to the loop data since this data is used in
each iteration for calculating left and right hand side
matrices. Then, the Reynolds number and D-W
friction factor in each pipe are computed using the
same process as the one illustrated in the fourth step
of Hardy Cross method. The arithmetic mean of
flow rate in two successive iterations is used instead
of computed flow rates to enhance the efficiency of
this method. The achieved flow rates and D-W
friction factors are transformed in specific matrices
used for output results.

Variation of convergence criterion in WDN analysis for different Q-based methods.

(3.8) to (3.9): The eighth and ninth steps are the same as
the ones in Linear Theory and finally the obtained
results are transformed from MATLAB into Excel
spreadsheet.

RESULTS

The sample network is analyzed using the three Q-based codes and
the achieved results, which are transformed from MATLAB to
Excel spreadsheet, are shown in Table 1. Since the considered
initial guesses are different for these methods, their number of

iteration and CPU time cannot be technically compared with one
m

> ool

another. However, the stopping criterion, that is <=1 is

m >
>

i=1
computed for each method and its variation is depicted in
Figure 18 to illustrate how different method converges to the final
solution. This convergence criterion is dimensionless where O
denotes the flow rate in the i™ pipe obtained in the k™ iteration.
Since the stopping criterion for the first iteration of Linear Theory
was order of magnitudes larger than other data in Figure 18, it was
removed for better illustration. Although the presented MATLAB
codes solve a relatively simple WDN in light of more focusing on
implementation of Q-based methods, the codes can be modified to
solve other and much more complex networks as well. Finally,
since different Q-based methods are successfully coded for the
sample network, similar appraisal of MATLAB and Excel
spreadsheet for both academic and practical purposes is
recommended.

CONCLUSION

In spite of MATLAB and Excel spreadsheet facilities, appraisal
of these programs has not been adequately addressed in solving
WDNSs in the literature. In this paper, the implementation of
three Q-based methods including Hardy Cross method, Linear
Theory, and Q-based Newton-Raphson is presented. In these
codes, first the input data is inserted into specific cells of Excel
spreadsheet. Afterwards, the MATLAB codes, which are written
for each of Q-based methods, read the input data from Excel and
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conduct WDN analysis. The procedure of solving WDNs is
revisited in a step-by-step manner accompanied with MATLAB
codes. As these codes solve the WDN under consideration, the
results are transformed from MATLAB to Excel for conve-
nience of future usage. Finally, not only these softwares are
successfully utilized to solve a sample pipe network, but also the
basics and codes are presented in way that the applicants can
simply improve them to solve other networks for both
educational and practical purposes.
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