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Pipe hydraulic resistance correction in WDN analysis
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Taranto, Italy; bDepartment of Earth and Geo-Environmental Sciences, University of Bologna, Via Zamboni, 67, Bologna, Italy

(Received 4 April 2008; final version received 6 August 2008)

The analysis of a looped water distribution network, operating under pressure and in steady flow conditions, can be
accomplished once the topology of the network, the geometry of the pipes, the water demands at the nodes and the
head value of at least one node are known. In a water distribution network (WDN), water demands are assigned to
the nodes, although in reality they are distributed along the pipes converging at such nodes. This classic assumption
represents the total demand along a pipe as two lumped withdrawals at its terminal nodes. This paper demonstrates
that the above approximation is wrong because it generates head loss errors which may be significant when network
analysis is performed for calibration, system design, real-time operations, rehabilitation strategies, optimal operation
studies, reliability analyses, etc. Therefore, an extension of the global gradient algorithm (GGA) for network
analysis is proposed which entails a modified GGA permitting the effective introduction of the lumped nodal
demands, and without forfeiting a correct physical representation of head losses, by means of a pipe hydraulic
resistance correction.

Keywords: hydraulics; network analysis; water distribution modelling

Introduction

The search for the most efficient network simulation
algorithm in terms of rapid convergence and robust-
ness (reduced number of cases in which the search for
the solution fails) spans a period extending from the
application of local linearisation methods in the 1930s
(Cross 1936) right down to the end of the 1980s with
the development of global linearisation techniques.
Global linearisation techniques are characterised by
the simultaneous solution of all the equations of the
network analysis problem, and the most comprehen-
sive approach to this was set out by Collins et al.
(1978), who defined the ‘content’ and ‘co-content’
models. The ‘content’ and ‘co-content’ models are
functional in terms of discharge through pipes and
nodal head values, respectively, with the ‘co-content’
model being the dual of the ‘content’. Thus, the
network analysis problem is reduced to a search for the
minimum of the functional (either in terms of pipe
discharge or nodal head), which is performed by means
of numerical gradient techniques such as those
proposed by Collins et al. (1978) and Contro and
Franzetti (1983).

Alternatively, Todini (1979) and Todini and Pilati
(1988) solved the system of equations in terms of the

discharge and head values. This second way of
addressing the problem is in effect much more
traditional since, historically, the study of water supply
networks proceeded directly from the setting of the
equations for mass conservation at the nodes and
energy conservation along the pipes of the network.
The Todini and Pilati (1988) solution is thus linear and
partly non-linear, producing unknown pipe discharges
and nodal head values, respectively. Nonetheless, given
the convexity of the content functional, which guar-
antees the existence and the uniqueness of the solution
(Collins et al. 1978), linearisation of the non-linear
equations can be performed efficiently by means of
Newton-Raphson gradient techniques. Then, the
mathematical problem is reduced to the iterative
solution of a linear system. Accordingly, various
algorithms differing from each other in terms of the
unknowns used in the differentiation of the original
system have been developed. Four different categories
of such algorithms are treated in the literature. They
can be characterised according to the selected un-
knowns (Todini 1999):

. All the pipe discharges and all the head values at
the nodes giving rise to the algorithm, which is
referred to as the Newton-Raphson global
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gradient algorithm (Todini 1979, Todini and
Pilati 1988). Similar approaches have been
described by Hamam and Brameller (1971) and
by Carpentier et al. (1985) (the ‘Hybrid Method’)
or by Osiadacz (1987) (the ‘Newton Loop-Node
Method’). The only difference between these
approaches and the global gradient lies in the
updating of the pipe flows after a new trial
solution for nodal heads has been found.

. The pipe discharges causing the head values at
the nodes to disappear by means of appropriate
linear transformation, giving rise to what is
known in the literature as the linear theory
algorithm (Wood and Charles 1972, Isaacs and
Mills 1980, Wood and Rayes 1981).

. The loop discharge quantities after appropriate
linear transformation to re-project the original
problem on the closed loops, establishing the
algorithm referred to as the Newton-Raphson
loop algorithm. This procedure can be seen as an
extension of the Cross method, which is local
(loop by loop and iterative), to one that is
simultaneous (all the loops at the same
time) (Epp and Fowler 1970, Kesavan and
Chandrashekar 1972).

. The head values at the nodes causing the pipe
discharges to disappear by means of appropriate
non-linear transformation, producing the
Newton-Raphson head algorithm (Martin and
Peters 1963, Shamir and Howard 1968, Mignosa
1987).

These algorithms share the common characteristic
of requiring the solution of a system of linear equations
several times in order to iteratively reach (i.e., by means
of successive approximations) the solution of the
original system of partly linear and partly non-linear
equations. However, the size of the linear system to be
solved and the information that has to be provided to
formulate it or to identify a first-attempt solution
required to initiate the iterative process vary according
to the method chosen. Among previous alternatives,
the global gradient algorithm (Todini 1979, Todini and
Pilati 1988) was found to be the simplest and possibly
the most efficient formulation and was used to develop
EPANET2 (Rossman 2000), which has probably
become the de facto most widely used network
simulation model in the world and which is also
embedded in several commercial software packages.

Nevertheless, in all the previously discussed and
available methods, water demands are uniquely
represented as nodal withdrawals, although they are
inevitably distributed along the pipes. Therefore, after
demonstrating that the above approximation leads to
mistaken estimates of the head losses, this article

proposes an extension of the global gradient algorithm
to allow for a more realistic approximation.

It is worth noting that, although essentially applied
to GGA, the standard hydraulic commercial software
that relies on other algorithms can also benefit from
these improvements. For example, the specific numer-
ical minimisations of the content energy function as
proposed by Carpentier et al. (1985) and by Piller
(1995). In fact, these two algorithms solve the linear
system for head and then update the flow rate in a very
similar way to that in GGA. The main differences are
the Newton direction and step size corrections.

Total head loss of uniformly distributed water demand at

pipe level

The assumption of uniformly distributed demands
along the pipes is an expedient used when there is poor
knowledge about the actual connections and demands.
This work will demonstrate how this simple assump-
tion can generate large errors in energy balance
conservation when uniform demand is lumped into
the two end nodes of a pipe in order to exclusively
conserve mass balance. It is worth noting that the
results obtained in this classic ‘average’ assumption are
conceptually valid also for different shapes of dis-
tributed demands along a pipe (Hamberg and Shamir
1988), considering that in more general cases the error
could be higher than that related to the uniform
distribution assumption. Furthermore, even when the
actual pipe connections and demands are known,
coarse simplifications focusing solely on mass balance
conservation can produce significant errors in the
energy balance, which cannot be corrected without
considering the actual network status (i.e., topological
and mass balance considerations).

Thus, when uniformly distributed and pressure-
independent demands along the pipes are here
assumed, the two cases reported in Figure 1a and 1b
may occur. The first case (Figure 1a) occurs when
QI 4 P, where P ¼ qL is the total demand along the
pipe. The curve representing the pressure along the
pipe is monotonically decreasing and QO exits from
the pipe, therefore QO � 0 with reference to the
assumed positive direction of the longitudinal abscissa
x. The second case (Figure 1b) occurs when P/2 �
QI 5 P. Here, the curve representing the pressure has
a minimum between the nodes A and B while the
direction of QO is changed, now being directed towards
the pipe, which implies that QO � 0 with reference to
the assumed positive direction of the longitudinal
abscissa x. It is worth noting that the condition
P/2 � QI 5 P refers to the assumption, without loss
of generality, that QI � jQOj and, for this reason, flow
inversion into the pipe occurs at a point x1 in its second
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half. Clearly, for QI ¼ jQOj ¼ P/2 the minimum of the
pipe head curve is at the midpoint of the pipe and
HA7HB ¼ 0.

Note that these cases are general and independent
of the assumption regarding the shape of the demand
distribution along the pipe. In fact, the second case
corresponds to all situations involving flow inversion.

The total pipe head loss for the case of Figure 1a
can be computed as:

HA �HB ¼
Z xL

0

KW QI � qxð Þ QI � qxj jn�1dx

¼
Z xL

0

KW QI � qxð Þndx ð1Þ

where KW is the unitary hydraulic resistance (inverse of
the unitary hydraulic conveyance), which is dependent
on pipe diameter and material; q is the demand rate
uniformly distributed along the pipe; L is the pipe
length and x is the longitudinal abscissa. Elimination
of the absolute value in Equation (1) is possible
because (QI7qx) � 0 for 0 � x � xL. Similarly, for
the case of Figure 1b, and bearing in mind that
7q(x17x) 4 0 and qx7QI ¼ qx þ jQOj7P ¼

jQOj7q(xL7x) 4 0, the total pipe head loss can be
computed as:

HA �HB ¼
Z x1

0

KW QI � qxð Þ QI � qxj jn�1dx

þ
Z xL

x1

KWq x1 � xð Þ q x1 � xð Þj jn�1dx

¼
Z x1

0

KW QI � qxð Þndx

�
Z xL

x1

KW QOj j � q xL � xð Þð Þndx

¼
Z L1

0

KW QI � qxð Þndx

�
Z L2

0

KW QOj j � qyð Þndy ð2Þ

where y ¼ (xL7x) and dy ¼7dx. The absolute value has
been omitted from the first integer because (QI7qx) � 0
for 0 � x � x1. About the second integer q(x17x) � 0
for x1 � x � xL (that is, the right side of Equation (2)),
the minus sign has been introduced. Note that flow
inversion occurs when (QI7qx1) ¼ jQOj7q(xL7x1).
Therefore, two lengths, L1 (corresponding to abscissa
x1) and L2 ¼ L7L1, can be defined as a function of QI,
QO and q or as a function of a dimensionless quantity d,

L1 ¼
QI

q
¼ QI

P
L ¼ dL

and

L2 ¼ L� L1 ¼ 1� dð Þ

L ¼ QOj j
P

L ð3Þ

where d ¼ QI /P ¼17jQOj/P.
Integration of Equations (1) and (2) can be easily

performed considering the general exponent n. Despite
this, and without loss of generality, the assumptions of
constant R and n ¼ 2 are made here (a particular case
of the Darcy-Weisbach head loss formulation), con-
sidering that fully turbulent flow is the dominant
condition in networks. Nonetheless, extension of the
results to alternative equations, such as for instance the
widely used Hazen-Williams equation for non-fully
turbulent (i.e. n 6¼ 2), is only a mathematical issue.

Thus, integration of Equations (1) and (2),
considering that R ¼ KW L, leads to:

HA �HB

¼
KW

Q3
I
� QOj j3

3P

� �
L ¼ R d3� 1�dð Þ3

3

� �
P2 1

2 � d < 1

KW Q2
I �QIPþ P2

3

� �
L ¼ R d2 � dþ 1

3

� �
P2 d � 1

8<
:

ð4Þ
The important issue is now to find a scheme that can be
used in the context of a network simulation model

Figure 1. (a) Schematic representation of pipe head without
flow inversion. (b) Schematic representation of pipe head
with flow inversion.
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allowing nodal demands and that abides by mass and
energy conservation. Mass conservation constrains the
sum of the nodal demands to be equal to P ¼ qL and
energy conservation implies that the total pipe head
loss must equal HA7HB in both cases of Equations (1)
and (2) or of Equation (4).

A novel scheme for uniformly distributed demand along

the pipe

The classic scheme is to lump aP and (17a)P in the
nodes A and B, respectively. In this way, the total head
loss of the pipe is

HA�HB ¼KW QI� aPð Þ2L¼R d� að Þ2P2

) a¼
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d3�3d2þ3d�1

3

q
1
2� d< 1

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2� dþ 1

3

q
d� 1

8>><
>>:

ð5Þ

and a should be computed as function of d as reported
in Equations (5) and Figure 2.

The drawback of the classic scheme is the absence
of the symmetric property with respect to nodal loads
and, for this reason, variation of the flow direction into
some pipes may decrease convergence of the GGA
during iterative search of the solution. Thus, a different
scheme is here proposed (Giustolisi and Todini 2008).
It is characterised by the symmetric property with
respect to nodal loads and the pipe hydraulic resistance
(R) is corrected inside the network simulation model in
order to account for energy balance conservation.
Thus, the first assumption of the scheme is a constant a
equal to 0.5, which ensures mass balance conservation
and symmetry of the nodal loads with respect to flow
direction. Then, the energy balance is obtained by

correcting R by means of a term (1 þ e) in Equation
(5). Hence,

R
d3� 1�dð Þ3

3

� �
P2 ¼ 1þ eð ÞR d� 1

2

� �2
P2

) e¼ 2
3d

3� 2d2þ 2d� 7
12

� �
d� 1

2

� ��2 1
2� d< 1

R d2� dþ 1
3

� �
P2 ¼ 1þ eð ÞR d� 1

2

� �2
P2

) e¼ 1
12 d� 1

2

� ��2 d� 1

8>>>><
>>>>:

ð6Þ

The shape of the function e(d) is given in Figure 3
for d bounded in the range [0.6; 2]. Figure 3 clearly
shows that the correction e varies from 0 when d � 1,
while it rapidly increases and tends to þ? when d
approaches 1/2. Thus, the assumption of using a ¼ 1/2
without the correction e may correspond to a vast
reduction of the actual pipe head loss due to
incorrectness of the energy balance conservation.
During calibration, this underestimation of pipe head
loss is obviously compensated by using a modified
hydraulic resistance Rmodel ¼ Ractual(1 þ e) in the
classic approximation scheme, thus inevitably leading
to unrealistic hydraulic resistance estimated values.
Therefore, hydraulic resistances are generally over-
estimated and this fact is particularly significant for
pipes whose discharges are low with respect to the
distributed demand outflow. The overestimation
quickly increases for d 5 1. For example, when
d ¼ 0.6, the correction e is about 4 (see Figure 3).
Thus, the calibration of the k-th pipe characterised by
a low discharge [jQkj ¼ QI7Pk/2 ¼ (d71/2)Pk] be-
comes unrealistic without considering the correct
scheme in the network simulation model.

Clearly then, the two important properties of the
proposed scheme are symmetry with respect to nodal
demands and the automatic accounting for flow
direction, which is embedded into the definition of

Figure 2. Graphical representation of a as a function of d.
Figure 3. Correction e on hydraulic resistance as a function
of d.
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pipe head losses [HA7HB ¼ RkjQkjQk]. Furthermore,
given that the correction is applied to pipe hydraulic
resistance, it is easy to implement it into the GGA
considering the use of a ¼ 1/2 while adding the
information on the distributed demand through Pk,
as subsequently reported. Finally, it is essential to
point out that, although the correction e tends to þ?
for d approaching 1/2, this does not affect the terms
to be introduced into the GGA, which are always
finite.

Error on head losses due to the nodal representation of

pipe demand

In order to study the error (EDH) on total pipe head
loss HA7HB, it is necessary to write e of Equation (6)
in terms of jQkj and Pk relevant to the k-th pipe and to
consider the sign of Qk. The assumption of a ¼ 1/2
allows the following expressions,

Qkj j ¼ QI �
Pk

2
� 0 ) Qkj j

Pk
¼ QI

Pk
� 1

2
� 0

) dk ¼ d� 1

2
� 0 k ¼ 1; 2; . . . ; np

ð7Þ

where dk has the same meaning of d, but is computed
using the state variable Qk of the network simulation
model. Thus, by substituting the results of Equation
(7) into Equation (6), it is possible to obtain the pipe
hydraulic resistance correction, namely ek, as function
of the k-th pipe flow rate and uniformly distributed
demand:

ek ¼
2
3 d

3
k � d2k þ 1

2 dk
� �

d�2k 0 � dk < 1
2

1
12 d
�2
k dk � 1

2

(
ð8Þ

Using ek it is now possible to derive the expression for
EDH,

EDH¼ ekRkQk Qkj j

¼
RkP

2
k

2
3d

3
k�d2kþ 1

2dk
� �

sign Qkð Þ 0� dk< 1
2

Rk
P2
k

12 sign Qkð Þ dk� 1
2

(
ð9Þ

Equation (9) can also be rewritten as function of Rk, Pk

and the dimensionless parameter zk, in order to be used
in WDN simulation models:

EDH ¼ zkRkP
2
ksign Qkð Þ

where zk ¼
2
3 d

3
k � d2k þ 1

2 dk
� �

0 � dk < 1
2

1
12 dk � 1

2

(

ð10Þ

It is important to note that the correction of pipe
head losses defined in Equation (10) always tends to
increase the absolute value ofDH. Furthermore, the flow
direction is now incorporated into the expression of EDH

through the function sign(Qk), which means that there is
no need to change the nodal demand as a function of the
flow direction, as expected using a ¼ 1/2.

Furthermore, assuming Pk ¼ 1 m3s71 and Rk ¼ 1
s2 m75, and considering that zk � 0, EDH can be
represented as function of the dimensionless Qk/Pk ¼
dk sign(Qk) value as graphically shown in Figure 4. As
one can see from the figure, the derivative of EDH with
respect to Qk is always positive, as it is for RkjQkjQk,
the basic term expressing the head losses. This can be
shown from Equation (11):

HA �HB ¼ Rk Q2
k þ zkP

2
k

� �
sign Qkð Þ ð11Þ

which better explains the fact that the derivative of the
corrected total head loss is always positive given that
both terms in the round brackets are non negative.
This is an important issue when computing the
derivatives in the GGA algorithm.

Enhanced GGA network simulation model

The demand-driven simulation of a network of np pipes
with unknown discharges, nn nodes with unknown
heads (internal nodes) and n0 nodes with known heads
(tank levels, for example) can be described in matrix
form as in Todini and Pilati (1988). Therefore,
assuming the elements of the diagonal matrix App of
order np equal to RkjQkjn71, the demand-driven
simulation of a network is formulated in the following
non-linear system of equations based on energy and
mass balance conservations

App Apn

Anp 0

� �
Q

H

� �
¼ �Ap0H0

d

� �
ð12Þ

Figure 4. Graphical representation of EDH given by
Equation (10) as a function of Qk.

Urban Water Journal 43

D
ow

nl
oa

de
d 

by
 [

M
cM

as
te

r 
U

ni
ve

rs
ity

] 
at

 0
9:

01
 1

5 
O

ct
ob

er
 2

01
4 



where Q is the [np,1] column vector of unknown pipe
flow rates, H is the [nn,1] column vector of unknown
nodal heads, H0 is the [n0,1] column vector of known
nodal heads, Apn ¼ A

T
np and Ap0 are topological

incidence sub-matrices of size [np, nn] and [np, n0],
respectively, derived from the general topological
matrix �Apn ¼ [Apn

j
j Ap0] of size [np, nn þ n0], as defined

in Todini and Pilati (1988). The solution of the non-
linear system in Equation (12) using the GGA was
originally proposed by Todini (1979). Successively, the
demand-driven case was expanded, for example, by
Todini (2003) and Giustolisi et al. (2008a,b), to
account for pressure-driven demands and leakage. In
this paper, Equation (13) summarises the demand-
driven case at the i-th iteration:

A
i ¼ Anp Di

pp

� ��1
Apn

Fi ¼ AnpQ
i � d

� �
� Anp Di

pp

� ��1
Ai

ppQ
i þ Ap0H0

� �
Hiþ1 ¼ A

i
� ��1

Fi

Qiþ1 ¼ Qi � Di
pp

� ��1
Ai

ppQ
i þ Ap0H0 þ ApnH

iþ1
� �

ð13Þ

Starting from Equation (11), it is possible to derive a
corrected expression for the diagonal matrix Dpp to be
used in Equation (13). Hence,

Dpp k; kð Þ ¼
d Q2

k þ zkP
2
k

� �
sign Qkð ÞRk

	 

dQk

¼ 2 Qkj j þ zDPkð ÞRk ð14Þ

where

zD ¼
Pk

sign Qkð Þ
dzk
dQk
¼ dzk

ddk
¼ 2d2k � 2dk þ 1

2 0 � dk < 1
2

0 dk � 1
2

�
ð15Þ

From Equation (14), one appreciates that Dpp is a
positive function. Its classic dependency on Rk and
jQkj is now completed by Pk and the dimensionless
parameter zD. Figure 5 shows that zD decreases from
the value 1/2 when dk ¼ 0 to 0 when dk ¼ 1/2.

As with the correction for Dpp, and starting from
Equation (11), it is possible to derive a corrected
expression for the diagonal matrix App to be used in
Equation (13). Hence,

App k; kð Þ ¼
Q2

k þ zkP
2
k

� �
sign Qkð ÞRk

	 

Qk

¼ Qkj j þ zk
P2
k

Qkj j

� 

Rk ¼ Qkj j þ zAPkð ÞRk

ð16Þ

where

zA ¼
zk
dk
¼

2
3 d

2
k � dk þ 1

2 0 � dk < 1
2

1
12dk

dk � 1
2

�
ð17Þ

Note that from Equation (16) it is possible to discern
that App is a positive function. Its classic dependency
on Rk and jQkj is also now completed by Pk and the
dimensionless parameter zA. Figure 6 reveals that zA
decreases from the value 1/2 when dk ¼ 0 to 0 when dk
tends to ?.

Finally, considering the GGA in Equation (13), it
may be useful to compute the diagonal element of the
product App(Dpp)

71. Again, starting from Equations
(14) and (16), it is possible to obtain:

App k; kð Þ
Dpp k; kð Þ ¼

Qkj j þ zAPk

2 Qkj j þ zDPk
¼ dk þ zA

2dk þ zD
¼ zAD ð18Þ

Figure 5. Graphical representation of zD given by Equation
(15) as a function of dk.

Figure 6. Graphical representation of zA given by Equation
(17) as a function of dk.
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where

zAD ¼
dk þ zA
2dk þ zD

¼
4d2kþ3
12d2kþ3

0 � dk < 1
2

1
2 1þ 1

12d2k

� �
dk � 1

2

8<
: ð19Þ

From Equation (18), the product App(Dpp)
71 can be

observed as a positive function of jQkj and Pk or of the
dimensionless parameter zAD. Figure 7 shows that zAD
decreases from the value 1 when dk ¼ 0 to 1/2 when dk
tends to ?.

Finally, it is worth noting that the classic formula-
tion can be achieved when dk tends to ? correspond-
ing to zD ¼ 0, zA ¼ 0 and zAD ¼ 1/2 or when Pk ¼ 0.

Case study: a simple hydraulic system

The implications for calibration results of the modified
GGA, accounting in a more realistic way for uniformly
distributed water demands along pipes, are here
discussed analysing the simple hydraulic system
depicted in Figure 8. The system is composed of two
tanks, T1 and T2, whose levels are 30 m and 20 m,

respectively. The tanks are connected by means of
three 500 m long pipes characterised by the same
hydraulic resistance value of Kw ¼ Rk¼1,2,3/L ¼
265.147 s2 m76. Pipe no. 2 is the only one subject to
uniformly distributed water demand. It is assumed to
be at most Pmax ¼ 0.02 m3 s71 during peak hours.
Figure 9 depicts the assumed pattern of hourly demand
for the 24-hour extended period simulation (EPS).

Using this basic system, comparison between the
classical solution (replacing the distributed demand
with nodal demand, half of which is distributed at each
terminal node without correcting the pipe hydraulic
resistance) and the proposed solution (replacing the
distributed demand with nodal which is apportioned
equally to each node but now correcting the pipe
hydraulic resistance) was undertaken.

Discussion of results

In order to cover the loading conditions of Equations
(1) and (2), the example of Figure 8 is characterised by
two different operating conditions: (i) the tank T1
delivers the water demand requested by pipe no. 2 and
fills tank T2 and; (ii) both the tanks T1 and T2 cover
the water demand requested by pipe no. 2. Clearly, the
first condition occurs during the night hours when the
lower demand of pipe no. 2 can be completely
delivered by tank T1 considering the 10 m head
difference between tank levels.

Figure 10 shows the hydraulic grade lines of the
system at different hours (t ¼ 3 h, 8 h, 15 h) computed
using both the original and the modified GGA. The
grade line at time t ¼ 3 h is relevant to working
condition (i) in which the slopes H(B)–T2 are negative,
while the grade lines for t ¼ 8 h and t ¼ 15 h relate to
working condition (ii) in which the slopes H(B)–T2 are
positive. In the cases of t ¼ 3 h, the night condition,
the difference between the grade lines computed with
and without GGA modification is much lower than in

Figure 7. Graphical representation of zAD given by
Equation (19) as a function of dk.

Figure 8. Case study: calibration of pipe hydraulic resistance in EPS mode.
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the cases t ¼ 8 h and t ¼ 15 h. This can also be noted
from Figure 11 where the daily pattern of the total
head loss of pipe no. 2 is displayed. It is worth noting
that the difference between head losses, EDH previously
defined as a function of Rk¼2, dk¼2 and Pk¼2, is at its
maximum and remains essentially constant during the
middle hours of the day. This is caused by a lower dk¼2
originating from a greater water demand to be
supplied by both tanks T1 and T2. This is clear from
Figure 12 which shows the daily variation of the dk¼2
value. dk¼2 is larger than 1/2 for t ¼ 1 h, 2 h, 3 h, 23 h
and 24 h7hydraulic condition (i)7while it is lower
during the other hours7hydraulic condition (ii).

It is worthwhile noticing that the hydraulic
resistance correction is not constant in time. Using
the available data and results it is easy to compute the
corrected hydraulic resistance:

Rmodified GGA
k¼2 tð Þ ¼ HA tð Þ �HB tð Þ

Q2
k¼2 tð Þ

¼ Roriginal GGA
k¼2 ð1þ ek¼2 tð ÞÞ ð20Þ

Equation (20) provides a non unique value of Rk¼2,
varying t because of the incorrectness of the model.
In fact, Figure 13 exhibits a wide variation of ek¼2(t)
during the day due to fluctuation of dk¼2(t)
(i.e. hydraulic conditions). Considering that the mean
value of ek¼2 is roughly equal to 3, Equation (20) will
yield an average Rk¼2 which is more or less ‘four times
greater’ (1 þ emean) than the real value.

An additional experiment was carried out to show
the consequences of the reported error on the
calibration, namely when one tries to estimate the
unknown hydraulic resistance from the assumed
demand and observed head patterns. This was done
by estimating Rk by means of a multi-objective genetic
algorithm (MOGA) (Goldberg 1989) to calibrate the
system. Now, the assumption is that HA(t) and HB(t)
of the system in Figure 8 are known together with the
hourly demands of Figure 9, which are concentrated in
the nodes A and B (unmodified GGA).

The decision variables used in MOGA are the
coefficients xGA(k ¼ 1:3) which are multipliers of the
hydraulic resistance Rk¼1:3 used for the simulation of
the calibrated system. The objective functions to
minimise are:

err Hð Þ ¼
X24
t¼1

HA tð Þ �H�A tð Þ
�� ��þ HB tð Þ �H�B tð Þ

�� ��
48

ð21Þ

and the standard deviation (StD) of xGA. In Equation
(21), H* are the nodal heads computed using the
calibrated model. The minimisation err(H) is a classic
objective and the minimisation of StD(xGA) is useful in
order to analyse the effect of pipe grouping. The results
of MOGA optimisation are reported in Figure 14. It
reveals that xGA related to pipes no. 2 and no. 3
decreases to 1.01, slightly increasing err(H). Thus, the

Figure 9. Daily-demand variation P(t).

Figure 10. Nodal heads at different hours (t ¼ 3 h, 8 h,
15 h). Network analysis using modified or classic GGA.
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Figure 11. Total head loss of pipe no. 2 at different hours (t). Network analysis using modified or classic GGA.

Figure 12. Ratio between pipe discharge and total uniformly distributed demand dk for pipe no. 2 at different hours.

Figure 13. Hydraulic resistance correction ek for pipe no. 2 at different hours (t).
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solution providing the minimum err(H) (¼ 0.4424 m)
has the maximum StD(xGA) corresponding to xGA(k ¼
1:3) ¼ [1.01, 2.21, 1.07]. This solution corresponds to a
system calibration without grouping the pipes. In this
circumstance, the correction of pipe no. 2 is high and
corrupts the calibration of the whole system even if the
pipes no. 1 and 3 do not distribute any demand and,
for this reason, do not require the correction e in the
modified GGA being Pk ¼ 0.

The solution providing the maximum err(H)
(¼ 0.5636 m) has the minimum StD(xGA) (¼ 0) corre-
sponding to xGA(k ¼ 1:3) ¼ [1.01, 1.01, 1.01]. Thus,
the extra information regarding correlation among

hydraulic resistances in the system (grouping) renders
the calibration error err(H) greater but it simulta-
neously provides calibrated hydraulic resistance closer
to the actual value. Finally, the experiment on the
simple system of Figure 8 demonstrates that the
modified GGA is mandatory for system calibration
and that use of the unmodified GGA causes hydraulic
resistance prediction error for all system pipes.

Case study: a looped network fed by one source of water

The aim of the previous case study was to demonstrate
by means of a simple hydraulic system (hence easily

Figure 14. Results of MOGA used for system calibration.

Figure 15. Apulian network layout. The pipes without arrows (flow direction) are characterized by flow inversion.
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analysed) the need for a large correction e to pipe no.
2’s hydraulic resistance in order to account for energy
balance conservation. In this section, we will address

two further questions. Is the approximation of nodal
demands without using the pipe hydraulic resistance
correction valid in a looped system fed by one source?
Is the approximation dependent on demand values or
on pipe flow distribution across the network?

In order to answer these questions, the Apulian
network depicted in Figure 15, whose main data are
reported in Table 1 (for further details see Giustolisi
et al. 2008a), was considered. In particular, Table 1
reports Pdesign, which is the total pipe level demand
used for network design (Giustolisi et al. 2008b) and is
partitioned according to the classical approximation
that represents it as two lumped demands at the
terminal nodes assuming a ¼ 1/2.

The use of a more complicated system fed by one
source of water is helpful because the pipe flow rate
distribution across the network is driven by the spatial
distribution of the pipe demands. Furthermore, the
system is not characterised by night and day different
working conditions due to the presence of more than
one source of water at different head levels as in the
previous simple hydraulic system.

Thus, the network in Figure 15 was analysed using
modified (pipe hydraulic resistance correction) and
unmodified GGA. A pipe level demand vector
proportional to Pdesign was employed and, in particu-
lar, Figure 16 reports the nodal pressures of the cases
P ¼ Pdesign and P ¼ 0.75Pdesign. Figure 16 confirms
that the correction to pipe hydraulic resistance
introduces an error to the energy balance also in a
looped system, although the two cases (P ¼ Pdesign and
P ¼ 0.75Pdesign) demonstrate a rapidly decreasing
value of the nodal pressure error (generated by
summation along the flow paths of the head loss
errors). Clearly, this is a further proof of Equation
(10), revealing the dependency on P

2 of the pipe head

Table 1. Apulian network pipe data and node data.

Pipe
ID

Length
(m)

Diameter
(m)

Demand
Pdesign

(m3/s)
Node
ID

Elevation
(m)

1 348.5 0.327 0.0057 1 6.4
2 955.7 0.290 0.0155 2 7
3 483 0.100 0.0078 3 6
4 400.7 0.290 0.0065 4 8.4
5 791.9 0.100 0.0129 5 7.4
6 404.4 0.368 0.0066 6 9
7 390.6 0.327 0.0063 7 9.1
8 482.3 0.100 0.0078 8 9.5
9 934.4 0.100 0.0152 9 8.4
10 431.3 0.184 0.0070 10 10.5
11 513.1 0.100 0.0083 11 9.6
12 428.4 0.184 0.0070 12 11.7
13 419 0.100 0.0068 13 12.3
14 1023.1 0.100 0.0166 14 10.6
15 455.1 0.164 0.0074 15 10.1
16 182.6 0.290 0.0030 16 9.5
17 221.3 0.290 0.0036 17 10.2
18 583.9 0.164 0.0095 18 9.6
19 452 0.229 0.0073 19 9.1
20 794.7 0.100 0.0129 20 13.9
21 717.7 0.100 0.0117 21 11.1
22 655.6 0.258 0.0107 22 11.4
23 165.5 0.100 0.0027 23 10
24 252.1 0.100 0.0041 24 H0 ¼ 36.4
25 331.5 0.100 0.0054
26 500 0.204 0.0081
27 579.9 0.164 0.0094
28 842.8 0.100 0.0137
29 792.6 0.100 0.0129
30 846.3 0.184 0.0138
31 164 0.258 0.0027
32 427.9 0.100 0.0070
33 379.2 0.100 0.0062
34 158.2 0.368 0

Figure 16. Pressure status of the Apulian network using two demand levels (P ¼ Pdesign and P ¼ 0.75Pdesign).
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loss error. Considering now that the hydraulic
resistances of the pipes were constant during analysis
of the Apulian network, it is useful to scrutinise ek of
the k-th pipe varying P. Figure 17 reports these values
for each pipe ID. Surprisingly, they remain constant
with varying P, although this result was predictable
considering that e is dependent on dk; see Equation (8),
which is a dimensionless parameter dependent on the
ratio between jQkj and Pk. Therefore, the spatial
disposition of demands giving rise to the distribution
of Qk drives the values of ek across the network. In
fact, it was unchanged by the proportional reduction
of P as for example with the nodes ID (5, 9, 13, 14, 20,
21, 28, 29, 33) characterised by incidents of flow
inversion; see Figure 15. This is valid in systems fed by
only one water source, as clear from the different
behaviour of the simple hydraulic network previously
studied. In fact, the presence of more than one source
with different head levels generates a different distribu-
tion of pipe flows across the network varying P. At this
point, it is possible to answer the two above questions,
affirming that correction of pipe hydraulic resistance is
important in all of the systems (looped or not) even if
head loss errors are proportional to the second power
of P (i.e. pipe level qL) and, finally, the pipe hydraulic
resistance corrections are driven by pipe flow distribu-
tion across the network.

Conclusions

This paper demonstrated that the classical assignation
of nodal demands to approximate distributed demands
along pipes of a WDN introduces errors in head loss
representation that cannot be disregarded since they
inevitably lead to poor model calibrations and more
generally significant effects on network analysis results.

A simple hydraulic system was useful to prove the
need for a large correction to pipe hydraulic resistance
in order to account for energy balance conservation. A
looped network was helpful to show that the approx-
imation of nodal demands without using the pipe
hydraulic resistance correction is not valid in a looped
system fed by one source and that the approximation
depends on pipe flow distribution across the network
and not on demand values.

Therefore, an enhancement of Todini’s global
gradient algorithm was introduced in order to over-
come the problem. The new formulation of the
network simulation model can be easily implemented
in all simulation packages based on GGA, such as for
instance EPANET 2, and it can serve as a guide for
other network simulation model strategies. It is
envisaged that the new simulation model is essential
for network model calibration purposes and also for
other network analyses. Finally, it is worthwhile
mentioning that the formulation here presented can
be easily extended to the general case of non-quadratic
head losses.

Figure 17. Pipe hydraulic resistance corrections for Apulian network.

Notation

The following symbols are used in the paper:

A ¼ temporary matrix used in
simulation model algorithm;

�Apn ¼ general topological matrix;
Apn, Anp, Ap0 ¼ topological incidence sub-

matrices;
App ¼ diagonal matrix whose elements

are (jQkj þ zAPk)Rk;
d ¼ vector of nodal demands;
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Dpp ¼ diagonal matrix whose elements
are (2 jQkj þ zDPk)Rk;

F ¼ temporary matrix used in Todini’s
algorithm;

H*(t) ¼ nodal head of the calibrated
simulation model at the day-hour
t;

HA(t), HB(t) ¼ nodal heads (in A and B) of the
system in Figure 8 at the
day-hour t;

H ¼ vector of total network heads;
H0 ¼ vector of total fixed (i.e. known)

network heads;
i ¼ counter of the GGA;
k ¼ matrix index for pipes;
Kw ¼ unitary pipe hydraulic resistance,

inverse of the unitary hydraulic
conveyance;

L ¼ length of pipe;
n ¼ head loss equation exponent and

sub-matrix index;
n0 ¼ total number of known heads;
np ¼ total number of network pipes;
nn ¼ total number of network nodes;
P ¼ total uniformly distributed

demand at pipe level;
Pk ¼ total uniformly distributed

demand of the k-th pipe;
Pdesign ¼ pipe level demand used for design

purpose in Apulian network;
Pmax, P(t) ¼ maximum and hourly total

uniformly distributed demand
in the case study;

q ¼ unitary uniformly distributed
demand at pipe level;

QI ¼ discharge entering into the pipe;
QO ¼ discharge exiting from (no flow

inversion) or entering into (flow
inversion) the pipe;

Q ¼ vector of pipe flows;
Rk ¼ pipe hydraulic resistance, inverse

of the hydraulic conveyance of
the k-th pipe;

z, zA, zD, zAD ¼ dimensionless parameters of
modified GGA;

a ¼ coefficients used for concentrating
the pipe demand into its two
ending nodes;

d ¼ ratio between QI and total
uniformly distributed demand
at pipe level

dk ¼ ratio between pipe discharge
and total uniformly distributed
demand at pipe level;

e ¼ pipe hydraulic resistance
correction;

ek ¼ pipe hydraulic resistance correc-
tion of k-th pipe in GGA;

x ¼ abscissa used in Figure 1a and 1b;
x1 ¼ abscissa of flow inversion;
xL ¼ abscissa of the node B;
xGA ¼ decision variables of MOGA used

for simulation model calibration.

Operators and acronyms

EPS ¼ extended period simulation;
GGA ¼ global gradient algorithm;
MOGA ¼ multi-objective genetic algorithm;
sign() ¼ variable sign operator;
WDN ¼ water distribution network;
()T ¼ vector/matrix transpose operator;
()71 ¼ matrix inverse operator.
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