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A heuristic linear programming-based procedure has been developed for the least cost layout and 
design of water distribution networks. The methodology is capable of analyzing a wide range of demand 
pattern and pipe failure combinations. Hydraulic consistency is ensured throughout the procedure 
through the use of the Hardy-Cross network solver technique. The procedure can also be extended for 
use in the expansion or reinforcement of existing network systems. While the techniques used to reduce 
the size of the constraint set to enable the procedure to handle a wide range of loading conditions do not 
guarantee global optimality, a pragmatic "reasonable" optimum is achieved. The method is demon- 
strated by application to the design of a new network and the expansion of an existing network. In the 
expansion of the existing network problem the solution obtained was less expensive than any previously 
published solution. 

INTRODUCTION 

The application of operations research methodology to 
water distribution network design has received considerable 
attention over the last 15 years [e.g., Karmeli et al., 1968; 
Schaake and Lai, 1969; Deb and Sakar, 1971; Watanatada, 
1973; Shamir, 1974; Alperovits and Shamir, 1977; Bhave, 1979; 
Quindry et al., 1981]. These earlier studies, and in particular 
those dealing with branched networks, assumed a given layout 
for the network and then designed the network components 
on the basis of the assumed layout. The studies by Alperovits 
and Shamir [1977], Quindry et al. [1979], and Quindry et al. 
[1981], however, analyzed looped water networks with the 
added ability to readjust flows within the assumed layout in 
an attempt to converge upon the least cost solution. 

Only recently has the joint problem of least cost layout and 
component design of looped water distribution networks been 
addressed. While some models have been developed for mu- 
nicipal water networks [e.g., Mays et al., 1976; Martin, 1980], 
they are not generally appropriate as they are mainly con- 
cerned with branched networks such as storm sewer collection 

systems. The complicating feature in the development of 
formal procedures capable of addressing the joint problem of 
layout and design is the strong interrelationship between the 
layout and component sizings. 

Two methods which are capable of considering the layout 
and design problems have been published recently by Rowell 
and Barnes [1982] and Morgan and Goulter [1982]. In their 
study, Rowell and Barnes [1982] developed a model which 
addressed the problem through a two-level hierarchical ap- 
proach. In this model a least cost branched layout is first 
determined. The looping required for reliability is then provid- 
ed by the insertion of redundant pipes interconnecting the 
branches of the tree. However, as is shown by Goulter and 
Morgan [1984], the assumptions used in this procedure sacri- 
fice hydraulic consistency in the search for the least cost solu- 
tion. 

Morgan and Goulter [1982] developed a model using two 
linked linear programs to solve the least cost layout and 
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design of these looped systems. In this model one linear pro- 
gram solves the layout, while the other determines the least 
cost component sizes. The constraint set used to ensure loop- 
ing in the layout part of the procedure requires every node to 
be connected by at least two pipes. However, while the model 
ensures hydraulic consistency at every stage, fulfillment of the 
looping constraint described above does not explicitly guaran- 
tee true redundancy. The lack of any truly successful models 
in this realm of joint layout and component design indicates a 
general need for development of new models in this area. 

An additional consideration in water network design has 
arisen with the recent publicity concerning the deterioration of 
urban infrastructures across North America. The expansion or 
upgrading of existing systems has become an important issue 
in municipal engineering. A few models which are capable of 
analyzing the least cost upgrading or expansions of existing 
networks have recently been developed I-e.g., Quindry et al., 
1981; Gessler, 1982]. Since most, if not all existing networks 
are looped systems, the approaches used in these models have 
been based on techniques which are capable of analyzing 
looped networks. The particular network on which these 
models are tested and compared is the New York Tunnels 
Expansion project which was first considered by Schaake and 
Lai [1969]. In each of the succeeding studies a lower cost 
system was found which fulfilled the expansion requirements. 

The model developed in this study represents an alternative 
approach to the least cost layout and design of looped water 
distribution networks and the least cost expansion of existing 
networks. Before proceeding with the development of the 
methodology the objectives and requirements of such a model 
are reviewed. 

OBJECTIVES OF A COMPREHENSIVE WATER 

DISTRIBUTION NETWORK MODEL 

In developing models for design of urban water distribution 
networks there is a wide range of criteria and parameters 
which should be considered. The following list enumerates 
those criteria which are considered in this study. 

1. The system must deliver a given flow at a specified 
pressure to any node in the system when one of the key pipes 
in the system is not functioning. Therefore at least two inde- 
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HARDY-CROSS NETWORK SOLVER 

Given System Layout and Demands 
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New Flow Pattern and 

Pressure Distribution 

No 

Are Optimality 
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LINEAR PROGRAMMING MODEL 

Using New Flows Adjust Pipe 
Diameters to Achieve Pressure 

Requirements at Least Cost 
, 

e:g. i. Lm}cage oetween i:near program and Hardy-Cross network solver. 

pendent and adequate paths from a source to each node must 
be provided. 

2. The system must deliver severe fire flow demands at 
adequate pressures. While these fire flow demands occur infre- 
quently at the various nodes in the system, they may, however, 
be the constraining factor in the design of systems. 

3. The method should be applicable to expansion of exist- 
ing systems as well as design of new systems. 

4. The method should incorporate a realistic cost function, 
preferably using standard unit costs as given by suppliers, e.g., 
cost per unit length of pipe. 

An implication of criteria 1 and 2 given above is that there 
is a large number of possible demand patterns which have to 
be considered. The significance of this problem was addressed 
by Templeman [1982] in his discussion of Quindry et al. 
[1981]. In this discussion Templeman asserts that the use of 
optimization techniques actually tends to remove redundancy 
conditions by optimizing out of the network any capacity 
which is not required by that particular loading. In order to 
give proper consideration to the implied criteria of network 
reliability, resilience, and flexibility, Templeman then asserts 
that the design procedure should consider the ability of the 
network to serve fire fighting demands at all nodes. Even 
though the occurrence of simultaneous fires at all or even 
some nodes is not generally considered probable, there is still 
a wide range of fire fighting demand patterns to be considered, 
i.e., one demand pattern for a fire at each node. 

Most of the studies which have been directed at analysis of 
looped systems have only considered one demand pattern. 
Alperovits and Shamir [1977] and Quindry et al. [1981] recog- 
nized this problem by considering two or three demand pat- 
terns. For a realistically sized network, however, consideration 
of only two or three patterns fall• far short of a complete 
recognition of the flexibility-reliability problem. The model 

developed in this paper is capable of considering a very wide 
range of fire flows in a network. 

MODEL DEVELOPMENT 

General Description 

The procedure is based upon a linear programing formu- 
lation linked to a network solver. The linear programing step 
of the model is used to design and/or modify pipe Sizes, while 
the network solver step is used to balance flows and pressures. 
Within the linkages between these two steps is a means for 
removing uneconomical pipe locations. The development of 
the procedure for the single loading case will first be described. 
The model will then be extended for use under multiple load- 
ings. 

The first step of the procedure is the assumption of an 
initial flow pattern or pipe layout, and component sizes for the 
given loading pattern. Note that this layout should include all 
candidate links within the network. While the complete set of 
all candidate links can theoretically be very large, the physical 
conditions, e.g., street right of ways, topography, etc., generally 
restrict the actual number of candidate links to considerably 
smaller subset. 

A / A 
qi 

A PIPE 

0 NODE 

Fig. 2. Simple looped system. 
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The actual pressures and flows within the network resulting 
from the given pipe layout and known demands are then de- 
termined. Of the many methods available [-see Holloway and 
Chaudry, 1983] to solve for these pressures, the Hardy-Cross 
technique was chosen due to the combination of its simplicity 
and generally widespread acceptance. It is, however, relatively 
simple to replace the Hardy-Cross technique with another net- 
work solver if network or other conditions warrant. 

The flow pattern and pressure distribution provided by the 
network solver are the passed to a pipe design-modification 
procedure. If the pressures at some demand or diversion 
points are below some stipulated minimum, it is necessary to 
replace sections of pipe with pipe of larger diameter. The pipe 
modification procedure determines which sections of pipe 
should be replaced in order to raise the pressure to an accept- 
able minimum in a least cost manner. 

Conversely, if the pressures are above the minimum allow- 
able, then some sections of pipe may be replaced by pipes of 
smaller diameter. The decision in this case is, Which section of 
pipe should be replaced in order to bring about the greatest 
saving while maintaining minimum pressure requirements 
elsewhere.'? Pipe diameters which have been assumed initially 
or selected as replacement pipes in previous iterations are 
referred to as "designated" diameters. In general, replacement 
of these designated diameters with both smaller and larger 
diameters is needed, since some areas may be underdesigned, 
while other areas may be overdesigned. An overall reduction 
in cost may also be obtained by increasing the diameter of one 
pipe, therefore allowing a number of other pipes to be re- 
placed by pipes of smaller diameter. The new configuration of 
the pipe sizes is passed back to the network solver to calculate 
true flows and pressures. The new pressures and flows are then 
passed back to the pipe modification step. The process is re- 
peated iteratively as shown in Figure 1 until an "optimal" 
solution is converged upon. Details of the iterative process 
and the criteria for optimality are described in more detail in a 
later section, following the mathematical development of the 
objective function and constraint set. 

[--']SOURCE 
{•NODE 

//•PIPE 

Fig. 3. Example network showing all possible pipe locations. 

TABLE 1. Cost per Meter for Different Diameter Pipes 

Layout and Design Example New York City Tunnel Problem 

Diameter, Cost, Diameter, Cost, 
meters dollars per meter inches dollars per foot 

0.125 58.00 36 93.50 
0.150 62.00 48 134.00 
0.200 71.70 60 176.00 
0.250 88.90 72 221.00 
0.300 112.30 84 267.00 
0.350 138.70 96 316.00 
0.400 169.00 108 365.00 
0.450 207.00 120 417.00 
0.500 248.00 132 469.00 
0.550 297.00 144 522.00 
0.600 347.00 156 577.00 
0.650 405.00 168 632.00 
0.700 470.00 180 689.00 

192 746.00 
204 804.00 

Imperial units are used here to facilitate direct comparison with 
previous studies. One inch equals 2.54 cm; 1 foot equals 30.48 cm. 

The linear programming step of the procedure is formulated 
as follows. 

Objective Function 
NL 

min • ( K jdr X jdr "[- K •ds X •ds) 
j=l 

where 

Kid r unit cost of changing, in link j, a pipe of the 
dth diameter to a pipe of the larger rth diam- 
eter, Kjdr > 0 (dollars per meter); 

Kjds cost (saving) of changing, in link j, a pipe of 
the dth diameter to a pipe of the smaller sth 
diameter; Kjds < 0 (dollars per meter) 

Xjdr and Xjds decision variables:length of pipe of dth diam- 
eter in link j replaced by pipe of rth or sth 
diameter, respectively (meters); 

NL number of links in network; 

Cj cost per unit length of pipe ofjth diameter 
(hence Kja r = Cr- Ca and Kja s = Cs- Ca) 
(dollars per meter). 

(1) 

Jjd hydraulic gradient for pipe of dth diameter in link j 
meters per minute; 

Constraints 

1. Pressure constraints: these constraints ensure that the 

pressures at each demand point are adequate: 

• (Gjdr Xjdr -•- GjdsXjds) --< H i -- hi ¾ i (2) 
j•Pi 

where Gjdr is the change in hydraulic gradient in link j caused 
by replacing unit length of pipe of dth diameter by unit length 
of pipe of larger rth diameter assuming constant flow (meters 
per minute): 

Gjdr = Jjr- Jjd (3) 
Gjas is the change in hydraulic gradient in link j caused by 
replacing unit length of pipe at dth diameter by unit length of 
pipe of smaller sth diameter assuming constant flow (meters 
per minute): 

Gjds = djs -- did (4) 
and where 
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TABLE 2. Data for Layout and Design Example System 

Link 

Connecting Nodes Initial Assumed 
Length, Diameter, 

From To m m 

1 1 2 760.00 0.400 
2 1 4 520.00 0.400 

3 1 6 890.00 0.400 

4 2 3 1120.00 0.400 

5 2 5 610.00 0.400 
6 2 6 680.00 0.400 
7 3 5 680.00 0.400 

8 3 7 870.00 0.400 

9 4 8 860.00 0.400 
10 4 9 980.00 0.400 
11 5 7 890.00 0.400 
12 5 10 750.00 0.400 
13 6 9 620.00 0.400 

14 6 10 800.00 0.400 

15 7 12 730.00 0.400 
16 7 13 680.00 0.400 
17 8 9 480.00 0.400 

18 8 15 860.00 0.400 
19 9 11 800.00 0.400 
20 9 14 770.00 0.400 

21 10 11 350.00 0.400 
22 10 12 620.00 0.400 

23 11 12 670.00 0.400 
24 11 16 790.00 0.400 
25 11 18 1150.00 0.400 
26 12 13 750.00 0.400 
27 12 17 550.00 0.400 

29 14 500.00 0.400 

30 14 16 450.00 0.400 
31 14 19 750.00 0.400 

32 15 19 720.00 0.400 
33 16 18 540.00 0.400 

34 16 19 700.00 0.400 
35 17 18 850.00 0.400 
36 18 20 750.00 0.400 
37 19 20 970.00 0.400 

Cost of initial assumed system equaled $4,590,040. 

Hi minimum allowable pressure head (meters); 
hi existing pressure head (meters); 
Pi set of links on the path from the source to node i. 

All other terms as defined previously. 
2. Length constraints' these constraints ensure that the 

linear program does not replace more of the existing pipe than 
is available' 

Xjd r • Lj (5) 

Xja s _• L i (6) 

where Li is the length of link j (m). If the existing pipe in the 
link is made up of lengths of two different diameters, the 
length of pipe able to be replaced is less than or equal to the 
existing length in that link: 

Xjd r • 11j (7) 

Xjd s • 12j (8) 

where l lj is the length of designated diameter of smaller diam- 
eter in link j (meters); and 12j is the length of designated diam- 
eter of larger diameter in link j (meters). 
and 

All other terms are as previously described. Branched sys- 
tems can be solved directly with the linear programming 
model as formulated. With a looped system, however, ad- 
ditional factors must be taken into account. If there are sev- 

eral paths to the demand node i from a source (or sources) 
with a fixed head (or heads), then all paths to that node must 
be considered. Change to one link on one of these several 
paths may not have the same importance to the change in 
pressure at node i as a change in another link in the same path 
or in a link in one of the other paths. 

This condition is explained with reference to Figure 2 which 
shows a simple looped system. In order to reflect the relative 
contribution of changes in pipe diameter to the changes in 
pressure at node i, a weighting approach is used. Changes in 
links 1 and 4 have a direct one to one effect on the pressure at 
node 2. Designating the weighting attributed to link j with 
respect to its effect on node i as W 0 it can be seen that W21 
and W2,, should both equal 1.0. 

The weightings given to links 2 and 3 must be less than 1.0, 
since links 2 and 3 do not handle all the flow between the 

reservoir and the outlet separately. The method used to weight 
these links is to calculate the percentage of flow drawn from 
node 1 that passes through link 2 and link 3. For example, if 
65% of the flow is passing through link 2 and 35% is through 
link 3, then the weightings would be W22 = 0.65 and W23 = 
0.35. A more complete description of the generalized weight- 
ing algorithm is given in the appendix. 

As a result ot tP, e use ol these we•ghUngs, (2) can be modi- 
fied to consider the range of paths in a looped system' 

E (WijGjarXjar + WoGiasX•as) •< Hi- hi Vi (10) 
j•P• 

where Pi is the set of paths from node i to a fixed head source 
(each link is counted only once). All other terms are as pre- 
viously described. 

With a looped system, however, the linearity assumption 
expressed by (10) holds only approximately for the effect 
caused by changes in pressure, as the flows in the pipes do not 
remain constant as pipes are changed throughout the network. 

TABLE 3. Flow Demands and Initial Pressure Assumptions at 
Each Node for Layout and Design Example 

Node 

Flow Minimum Initial 

Demand, Head, Head, 
L/s m m 

1 165 75.00 80.00 
2 220 74.00 90.00 
3 145 73.00 90.00 
4 165 72.00 70.00 
5* '" 102.00 102.00 
6 140 73.00 80.00 
7 175 67.00 90.00 
8 180 72.00 70.00 
9 140 70.00 75.00 

10 160 69.00 90.00 
11 170 71.00 93.00 
12 160 70.00 85.00 
13 190 64.00 80.00 
14 200 73.00 90.00 
15 150 73.00 80.00 
16' '" 96.00 96.00 
17 165 67.00 80.00 
18 140 70.00 90.00 
19 185 70.00 90.00 
20 165 67.00 70.00 

11j + 12j = L• ¾j (9) *Nodes 5 and 16 are source nodes rather than demands. 
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The feedback to the network solver is therefore needed to 

calculate the true pressure and flows. This iterative process is 
described as follows. 

Iterative Process and Optimality Criteria 

The new flow pattern developed by the Hardy-Cross 
method given the pipe sizes provided by the linear program is 
now used to calculate the new weights for the links and the 
network is analyzed again by the linear programming model. 
This process is repeated iteratively as shown in Figure 1 until 
an optimal solution is converged upon. 

It should be noted that the iterative nature of the procedure 
permits the progressive reduction in the sizes of pipes that are 
initially assumed to be part of the network. However, as for- 
mulated, the linear program is not capable of finally eliminat- 
ing the uneconomical pipes. The pressure constraints repre- 
sented by (10) consider the change in pressure at a given node 
caused by changes in the pipe diameters. These changes in 
pressure are based upon the assumption of fixed flow in the 
link for which the pipe is being selected. As the pipe sizes get 
progressively smaller for the same fixed flow, the hydraulic 
gradients become progressively more steep thus causing more 
severe effects on the pressure at the node for which the con- 
straint has been prepared. For example, given the same flow in 
the link, a reduction in pipe diameter from 200 to 150 mm will 
have less effect on the pressure gradient than a reduction from 
150 to 100 mm. The effect becomes more pronounced with 
each successive reduction of pipe diameter. In the limit, the 
reduction of an existing pipe to a zero diameter pipe, i.e., 
elimination of the pipe for a given flow causes an infinite 
pressure gradient in that link, thus making the whole problem 
infeasible. As formulated, the linear programming model is not 
capable of eliminating pipes for this reason. In order to pro- 
vide the capability of eliminating uneconomical pipes, an ad- 
ditional condition is introduced as follows. 

Each pipe in a network has a weighting associated with it. 
The weighting is determined, as is described in the appendix, 
during the development of the pressure constraints. The mini- 
mum pipe with the lowest weighting in any run is removed 
from the network, the flows redistributed using the Hardy- 
Cross technique, and the program run again. The minimum 
pipes in this analysis are taken to be those pipes whose diam- 
eters are equal to the smallest allowable size specified by the 
design engineer. If the network resulting from removal of this 
pipe is more economical than the previous solution then it 
becomes the new best result and the procedure continues as 
before. If the new network is more expensive that pipe is 
retained and the old best result is used. This consideration of 

minimum pipes continues at each iteration until the lowest 
weighting to be considered is greater than a specified value, 
e.g., 0.5. Once this situation is reached the regular pipe re- 
placement and flow distribution phases of the approach con- 
tinue as before. 

The use of the pipe with the smallest weighting is based 
upon hydraulic principles in network flows. Small weightings 
for a link or pipe under a particular loading pattern shows 
that the contribution of that link to the pressure and flow at 
any node is relatively small. The removal of that pipe with the 
smallest weighting is likely to have the least effect on the 
overall pressure profile and flow pattern. The application of 
this criteria permits the removal of these links which are 
deemed uneconomical in the network as a whole. 

Final "optimality" is considered to have been obtained 
when the linear program does not choose to replace any part 

TABLE 4. Pipe Breaks and Fire Flows for Each Demand Pattern 
Design in Layout and Design Example 

Fire Flows 

Demand Link At Demand, 
Pattern Broken Node L/s 

1 1 1 70.0 

2 2 4 70.0 
3 3 1 70.0 
4 4 3 70.0 
5 5 2 70.0 
6 6 6 90.0 
7 7 3 70.0 
8 8 7 70.0 

9 9 4 70.0 
10 10 4 70.0 

11 11 7 90.0 
12 12 10 90.0 
13 13 9 90.0 
14 14 6 90.0 
15 15 12 50.0 

16 16 13 70.0 
17 17 8 70.0 
18 18 8 70.0 
19 19 9 90.0 
20 20 9 90.0 
21 21 11 100.0 
22 22 12 50.0 
23 23 12 50.0 
24 24 11 100.0 
25 25 11 100.0 
26 26 13 70.0 
27 27 17 70.0 
28 28 13 70.0 

29 29 15 70.0 
30 30 14 120.0 

31 31 19 120.0 

32 32 15 70.0 
33 33 18 120.0 
34 34 19 120.0 
35 35 17 70.0 
36 36 20 120.0 
37 37 20 120.0 

of the network and the maximum weighting in any link in the 
system is greater than a previously specified value. While the 
use of such criteria does not guarantee true overall optimality, 
the review of the cost of the new solution after each pipe 
removal ensures that the cost will never increase. Fur- 

thermore, the criterion used in the choice of suitable pipes for 
removal is based on the combination of two parameters which 
recognize the interdependence of the flow patterns and the 
contribution of each link to the flow to any given node. 

It should be noted that a property of this linear program- 
ming formulation is that when the optimal solution is found, 
none of the length constraints will be binding. The reason that 
the length constraints do not bind at optimality lies in the 
choice of X•ds and X•dr as the decision variables. These vari- 
ables do not represent actual lengths of pipe chosen for the 
network links but rather the length of pipe to be replaced to 
achieve a cheaper solution. Since at optimality, no pipes will 
be selected for replacement, the variables X•a s and X•ar will be 
zero in the optimal problem and the appropriate length con- 
straints nonbinding. The length constraints are, however, 
needed initially if the first assumption is far from optimal. 
Since the number of these constraints is dependent on the 
number of links rather than the number of demand patterns 
considered, the size of this constraint set will remain constant 
when the procedure is extended for the analysis of the multiple 
demand patterns situation described in the following sections. 
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TABLE 5. Results of First Interation of Multiple Demand Pattern 
Design for Layout and Design Example 

Pipe Sizes in Link 
Maximum Link 

Diameter, Length, Weighting Over All 
Link m m Loading Patterns 

1 0.200 350.98 
1.000 

0.250 409.02 

2 0.150 250.77 
0.703 

0.200 269.23 
3 0.200 753.42 

0.894 
0.250 136.58 

4 0.200 1120.00 0.550 
5 0.300 610.00 0.892 
6 0.200 680.00 0.777 
7 0.250 680.00 0.771 
8 0.150 130.92 

0.867 
0.200 739.08 

9 0.125 89.63 
0.297 

0.150 770.37 
10 0.200 980.00 0.759 
11 0.200 890.00 0.383 
12 0.350 577.84 

1.000 
0.400 172.16 

13 0.200 620.00 0.440 
14 0.300 800.00 0.885 
15 ......... 

16 0.150 507.91 
0.611 

0.200 172.09 
17 0.150 123.33 

0.754 
0.200 356.67 

.... 

19 0.200 800.00 0.338 
20 0.200 677.52 

0.720 
0.250 92.48 

21 0.200 350.00 0.483 
22 0.200 620.00 1.000 
23 0.200 600.07 

1.000 
0.250 69.63 

24 0.250 790.00 0.653 
25 0.150 118.84 

0.612 
0.200 1031.16 

26 0.150 123.94 
0.686 

0.200 626.06 
27 0.150 150.86 

0.759 
0.200 399.14 

28 0.150 700.00 0.389 
29 0.200 500.00 0.952 
30 0.250 314.92 

0.955 
0.300 135.08 

31 0.200 647.03 
0.643 

0.250 102.97 
32 0.200 720.00 1.000 
33 0.250 540.00 0.848 
34 0.300 606.71 

1.000 
0.350 93.29 

35 0.150 466.31 
0.808 

0.200 383.69 

36 0.200 546.60 
1.000 

0.250 203.40 
37 0.200 569.24 

1.000 
0.250 400.76 

Cost = $2,074,762 

Discussion of Formulation 

A significant difference between this model and those which 
have been published previously for analysis of looped systems 
is the lack of a constraint set to ensure that the algebraic sum 
of head losses around each loop is equal to zero. In many 
models this constraint set is required to ensure hydraulic con- 
sistency within the network and to provide dual variables nec- 
essary for gradient search techniques used to change the flows 

or pressures in the network [e.g., Alperovits and Shamir, 1978; 
Quindry et al., 1981]. In this model, however, the constraint set 
is not used for either purpose. 

Hydraulic consistency is maintained through the use of the 
Hardy-Cross network solver as follows. If the linear program 
varies pipes at any iteration, the system becomes hydraulically 
inconsistent. The Hardy-Cross technique is then used to redis- 
tribute thd flows. The new flow pattern and resulting pressure 
distribution, which are always consistent, are passed back to 
the linear program, and the possibility of additional pipe re- 
placements is considered. 

When the objective function for a particular iteration is 
equal to zero, corresponding to no change in the pipe sizes the 
optimal answer has been reached. Since there is no change in 
the pipe sizes in the network the current solution is optimal. 
Furthermore, since it was checked by the Hardy-Cross 
method prior to consideration by the linear program, the solu- 
tion is also hydraulically consistent. 

While gradient search techniques were initially considered, 
the computational problems associated with their use when 
the model is extended to handle a wide range of worst case 
combinations of fire flows and pipe breaks eliminated them 
from further consideration. This point is described in greater 
detail in the following section which describes the extension of 
the model to these multiple demand and pipe break patterns. 

EXTENSION TO MULTIPLE DEMAND PATTERNS 

it a system is designed for a single loading, then the most 
economical layout will be a branched system without any re- 
dundant or inefficiently utilized pipes. This bias toward 
branched systems is due to the economies of scale in which use 
of one large pipe represents a less expensive method of trans- 
porting water than two smaller pipes. If, however, a single 
pipe fails in a branched network, then no flow can reach the 
nodes downstream of that failure. This problem is generally 
alleviated by adding redundant pipes to ensure looping. These 
redundant pipes selected by other models [e.g., Alperovits and 
Shamir, 1977; Quindry et al., 1981] often have small diameters, 
usually the minimum available diameter. Consequently, there 
is often no guarantee that in the case of a primary link failure 
the secondary path can deliver water at adequate pressure. 

One solution to the problem of undersized "redundant" 
links is to design the system while considering all the worst 
case scenarios, i.e., worst case combinations of fire flows and 
pipe breaks. A method of doing this is to add a set of pressure 
constraints for each demand pattern. Formulations for multi- 
ple demand patterns have been previously described by 
Schaake and Lai ['1969], Alperovits and Shamir [1977], and 
Quindry et al. [1981]. The major weakness with these formu- 
lations is that the additional constraints needed to consider 

multiple demand patterns rapidly make the problem compu- 
tationally impractical. For example, if 40 constraints were 
needed for 1 demand pattern then three times as many, or 120, 
would be needed for 3 demand patterns. 

Many of these constraints can, however, be eliminated be- 
cause they are nonbinding. From generalized linear program- 
ming theory [Hillier and Lieberman, 1980, pp. 68-117] it can 
be shown that the maximum number of nonzero variables in 

the solution must equal the number of binding constraints. 
Equation 1 states that there are two variables for each link in 
the system, one representing the length of pipe to be replaced 
by a larger diameter pipe, the other representing the length of 
pipe to be replaced by a smaller diameter pipe. Since in a 
given link a pipe can only be either increased or decreased in 
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size, it can be seen that there will be at most one nonzero 

decision variable (Xjds or Xjdr) associated with each link. In 
many cases both decision variables for a particular link will be 
zero. This condition results in the maximum number of non- 

zero decision variables being equal to the number of candidate 
links in the network. However, the maximum number of non- 
zero decision variables must be equal to the number of con- 
straints. The maximum number of pressure constraints needed 
is therefore equal to the total number of links, NL. 

The pressure constraints that are actually used for the 
multiple demand pattern case must be selected before the 
linear programming model is applied. The network solver step 
of the procedure first solves for the pressures and flows associ- 
ated with each demand pattern. The amount by which each 
actual pressure is below or above the minimum pressure is 
calculated 

air = hit -- H i ¾i and t (11) 

where air is the pressure head value at node i for demand 
pattern t (meters). 

Starting with the critical node, i.e., that node at which the 
pressure is the furthest from the minimum acceptable level 
(most negative air), the pressure constraints to be used in the 
linear program are constructed by 

E (WijtGjtdrXjdr + WijtGjtdsXjds) •-- Hi- hit (12) 
J•Pi 

¾i, t • NL largest (Hi- hit) 

where G•tar = J•t• - Jj•a; J•a is the hydraulic gradient for pipe 
d in link j when the flow in the pipe is Q•t for demand pattern t 
(m/m); and W0• is the weighting for link j in path i under load 
pattern t. All other terms are as previously described. 

This development of pressure constraints continues until 
NL constraints have been constructed. The linear program is 
then solved and the component sizes determined by the linear 
program are passed back to the Hardy-Cross network solver 
and the iterative process continued. 

It should be noted that since all the right-hand sides of (12) 
are determined for each demand pattern by the Hardy-Cross 
network solver, it is also possible to consider simultaneous 
pipe breakages and fire flow conditions. This joint consider- 
ation of the pipe breakage and fire flow for a particular node 
is achieved by simply removing the broken pipe as a candidate 
flow path for the Hardy-Cross analysis and from the con- 
straint set associated with achieving minimum allowable pres- 
sures for the node with the fire flow demand. 

In the multiple demand pattern situation, each pipe has a 
number of different weightings associated with it, namely, one 
for each load pattern. The removal of minimum pipes dis- 
cussed in relation to the single load pattern is now performed 
by the same approach but by using the lowest maximum 
weighting rather than the lowest weighting. The removal of 
the pipe with the smallest maximum weighting has the least 
effect on the overall pressure profiles and flow patterns. 

As was shown earlier, the use of the Hardy-Cross network 
solver in the iterative process eliminates the need for loop 
constraints to maintain hydraulic consistency. It was also sug- 
gested that the consideration of a wide range of fire flow and 
pipe break combinations made the use of gradient technique 
computationally impractical. The reasoning behind this 
suggestion is as follows. Each fire flow pattern will have a 
unique set of loop constraints and pressure head constraints. 
The inclusion of the "worst case" pipe break for each fire flow 
pattern adds additional complexity to these loop constraints. 

TABLE 6. Results of Final Iteration of Multiple Demand Pattern 
Design for Layout and Design Example 

Pipe Sizes in Link 
Maximum Link 

Diameter, Length, Weighting Over all 
Link m m Loading Patterns 

1 0.250 760.00 1.000 
2 0.150 112.99 

1.000 
0.200 407.01 

3 0.250 796.70 
1.000 

0.300 93.00 
4 ......... 

5 0.300 370.60 
1.000 

0.350 239.40 

6 0.200 680.00 0.725 
7 0.200 473.58 

1.000 
0.250 206.42 

8 0.200 314.96 
1.000 

0.250 555.04 
9 ......... 

10 0.200 519.99 
1.000 

0.250 460.01 

11 0.250 890.00 1.000 
12 0.400 750.00 1.000 
13 0.250 620.00 0.797 
14 0.350 540.84 

1.000 
0.400 259.16 

15 ......... 

16 0.150 98.14 
1.000 

0.200 581.86 
17 0.150 41.82 

1.000 
0.200 438.18 

18 0.200 173.27 
1.000 

0.250 686.73 

19 ......... 

20 0.200 770.00 0.889 
21 ......... 

22 0.200 35.54 
1.000 

0.250 584.46 
23 0.150 345.08 

0.663 
0.200 324.92 

24 0.200 336.57 
0.443 

0.250 453.43 
25 0.200 1150.00 0.588 
26 0.200 750.00 1.000 
27 0.150 98.81 

1.000 
0.200 451.19 

28 ......... 

29 0.200 500.00 1.000 
30 0.250 6.36 

0.973 
0.300 443.64 

31 0.150 81.59 
0.562 

0.200 668.41 

32 0.200 713.83 
1.000 

0.250 6.17 

33 0.250 540.00 1.000 
34 0.300 700.00 1.000 
35 0.150 39.23 

1.000 
0.200 810.77 

36 0.200 538.20 
1.000 

0.250 211.80 
37 0.200 625.46 

1.000 
0.250 344.54 

Cost = $1,950,698 

The use of the gradient search techniques would require the 
availability of all dual variables, both from the loop and pres- 
sure head constraints. The computational effort required to set 
up all the constraints for all load patterns, solve the linear 
program, and analyze the gradient term rapidly becomes com- 
putationally impractical even for a moderately sized system. 

An important feature of this technique is the interaction 
between the two methods required to achieve optimality. Both 
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Fig. 4. Final layout for multiple demand patterns. 

the network solver and the linear programming formulation 

involving linear programming have been used in previous 
studies by Kally [1972], Alperovits and Sharnir [1978], and 
Quindry et al. [1981]. In the two latter studies the simplex 
tableau from the previous iteration must be saved in some 
form to maintain efficiency. The technique used in this paper 
is similar to that of Kally in that the previous solution is 
described by the "zero" simplex tableau. 

Since the combination of the criteria for removal of pipe 
and the stepwise determination of the NL pressure constraints 
does not permit a claim for absolute optimality, the procedure 
must be classified as heuristic. However, the iterative nature of 
the problem permits crucial links to reveal themselves at any 
stage of the iterative procedure. The use of this simplified 
constraint set also permits the model to consider explicitly a 
wide range of flow demands without being overwhelmed by 
the impractically large numbers of constraints required for 
complete and total enumeration of all load patterns. In this 
fashion the model approaches the consideration of fire fighting 
demands at all nodes, as was suggested by Templeman [1982]. 
Furthermore, unlike the model of Rowell and Barnes [1982], 
this model ensures hydraulic consistency for all loading pat- 
terns and pipe combinations through the continued use of the 
network solver to distribute the flows and check the pressures 
for each loading pattern. 

Extension of Model to Consider 
Network Expansion 

One of the criteria used as a basis for the development of 
this model is that it should also be capable of analyzing ex- 
pansion or upgrading of existing networks. The formulation 
described in the previous section can be used in the least cost 
design of network components necessary to upgrade an exist- 
ing network. This extension to network expansion is achieved 
with minimal additional effort. 

In an upgrading mode the existing pipe network becomes 
the initial assumed pipe network. This network is analyzed 

under the new flow or loading conditions, and the nodes with 
inadequate pressures are identified. The set of constraints as- 
sociated with (12) is then formulated as before, with the fol- 
lowing provision. The original formulation permits the re- 
placement of "existing" or "chosen" pipe by either a smaller or 
a larger pipe. The rationale for this choice is that during the 
design phase the existing pipe is not actually in place. Hence a 
replacement of the existing pipe by a smaller pipe results in 
true savings during the construction phase. 

In an upgrading situation replacement of an actual existing 
pipe by a smaller pipe results in increased capital cost. Conse- 
quently, if the initial or existing pipe is the true existing pipe, 
the X•ds variable representing reduction in pipe size can be 
dropped from the constraint sets and from the objective func- 
tion. The existing pipe is then given a cost of zero, which 
reflects the cost of leaving it in the existing network. 

If, however, in a subsequent iteration the model wishes to 
reduce the capacity of a particular link for which the capacity 
has been increased previously, allowance must be made for 
such a reduction. This allowance can be achieved by permit- 
ting all links which, at a particular iteration, have capacities 
above the initial capacity to have X•ds variables which allow 
pipe size reduction to the initial existing capacity. Other than 
these rather simple precautions, the upgrading mode of the 
model can be run in exactly the same manner as the design 
mode. 

Mc•i3Fi A PP! IC a Tl13h• 

In order to demonstrate the power and flexibility of the 
procedure, the model was applied to two different flow net- 

source 

0 NODE 

A PIPE 

Fig. 5. Layout for New York water supply tunnels systems. 
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work problems. The first of these problems is a network 
layout and design situation, while the second is a network 
expansion problem. 

Network Layout and Design 

The example network layout and design chosen to demon- 
strate the model is shown in Figure 3. This network has 2 
sources, 20 nodes, and 37 possible pipe locations. The pipe 
costs, link connections and lengths, and initial pipe size as- 
sumptions are shown in Table s 1 and 2 respectively. The mini- 
mum allowable and initial pressure distribution assumptions 
at each node are shown in Table 3. 

This system is to be designed for a wide range of fire flow 
and pipe break combinations. The criterion of flexibility se- 
lected was that the system must give adequate pressure for 
each loading combination of a single pipe being out of order 
and a fire flow is present at the worst possible location. Each 
loading combination will represent a different location for the 
pipe break. This worst location for a fire flow will vary with 
the pipe that is assumed broken and should be picked by the 
design engineer. For this example the location and magnitude 
of each of these fire flows is given in Table 4. Using Tables 3 
and 4, 37 different demand patterns, one for each node, are 
generated and the corresponding pressure constraints formu- 
lated. 

The results of the first iteration through the linear program 
and network solver are shown in Table 5. The final column 

gives the maximum weighting assigned to each pipe during the 
construction of the constraints. The criterion used for remov- 

ing a pipe is that the pipe must be the minimum size and have 
a maximum weighting less than 0.5. The minimum pipe (in 
this case taken to be pipe of 125 mm diameter) with the lowest 
maximum weighting is removed first. The program is then 
rerun. If the solution is cheaper this result is the new best 
result. The iterative process for pipe replacement is continued 
until all the lowest maximum weightings are greater than 0.5. 
The final results are shown in Figure 4 and Table 6. To obtain 

TABLE 7. New York City Network Layout Data 

Connecting Nodes Existing 
Length, Diameter, 

Link From To feet inches 

1 1 2 116,600. 180 
2 2 3 19,800. 180 
3 3 4 7,300. 180 
4 4 5 8,300. 180 
5 5 6 8,600. 180 
6 6 7 19,100. 180 
7 7 8 9,600. 132 
8 8 9 12,500. 132 
9 9 10 9,600. 180 

10 11 9 11,200. 204 
11 12 11 14,500. 204 
12 12 13 12,200. 204 
13 13 14 24,100. 204 
14 14 15 21,100. 204 
15 1 15 15,500. 204 
16 10 17 26,400. 72 
17 12 18 31,200. 72 
18 18 19 24,000. 60 
19 11 20 14,400. 60 
20 16 20 38,400. 60 
21 9 16 26,400. 72 

Imperial units are used to facilitate comparison with previous stud- 
ies. One foot equals 30.48 cm' 1 inch equals 2.54 cm. 

TABLE 8. Solutions for New York City Expansion Problem 

Split Pipe Solution Discrete Pipe Solution 

Diameter of Diameter of 

Link Added Pipe, Length, Added Pipe, Length, 
Location inches feet inches feet 

7 144 9,600.00 
16 96 23,432.08 

108 2,967.92 
17 96 31,200.00 
18 72 57.99 

84 23,942.01 
19 48 4,527.76 

60 9,872.24 
21 72 3,492.89 

84 22,907.11 
Cost = $38.9 million 

144 9,600.00 
96 26,400.00 

96 31,200.00 
84 24,000.00 

60 14,400.00 

84 26,400.00 

Cost = $39.2 million 

Imperial units are used to facilitate comparison with previous stud- 
ies. One foot equals 30.48 cm' 1 inch equals 2.54 cm. 

these results six iterations requiring a total of 6 min and 4.6 s 
of CPU time on the AMDAHL 5850 at •he University of 
Manitoba were needed. 

Review of the results shows that even with the multiplicity 
of demand patterns (37 in all), the model was capable of ascer- 
taining that six links (links 4, 9, 15 and 19, 21, 28) could be 
eliminated. The elimination of these links does not destroy the 
capability of the system to handle the predetermined fire flow 
and pipe break conditions, as these are checked at each iter- 
ation by the Hardy-Cross network solver. 

Network Expansion Problem 

This example demonstrates how the technique can be ap- 
plied to expansion of an existing system, the New York City 
expansion problems [Schaake and Lai, 1969], and compares 
the results to previous studies. It should be noted that in 
keeping with previous studies this system will be analyzed 
with .only one loading pattern and no pipe breaks. The full 
capability of this approach will not therefore be demonstrated 
in this example. The example merely serves as a means of 
comparing one capability of the model with previous ap- 
proaches. 

The cost and layout data of the New York City problem are 
described in Figure 5 and Tables 1 and 7, respectively. The 
imperial system of measurements was used to facilitate com- 
parison with previous studies. The proposed method of ex- 
pansion is the same as in the previous studies [Schaake and 
Lai, 1969], Quindry et al. [1981], and Gessler [1982], i.e., to 
reinforce the system by constructing tunnels parallel to the 
existing tunnels. For the initial conditions all reinforcing tun- 
nels were assumed to be 84 inches in diameter. 

The final results, shown in Table 8, indicate that in order to 
arrive at a least cost solution of $38.9 million, new pipes are 
added to only six links. A comparison between the cost of this 
solution and the cost of previously published solutions is given 
in Table 9. Two computer runs and 14.37 s CPU time were 
heeded to obtain these results. It can be seen that the solution 

provided by this procedure is significantly cheaper than the 
solutions of Schaake and Lai [1969] and Quindry et al. [1981]. 
It is also cheaper than the solution provided by Gessler 
[1982]. This model, however, had a number of other signifi- 
cant advantages over Gessler's approach. The advantages are 
discussed below. 

The solution developed by the procedure described in this 
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TABLE 9. Comparison of Solution of New York City Expansion 
Problem With Previous Studies 

Study Cost 

Schaake and Lai [1969] $78.1 million 
Quindry et al. [1979] $63.6 million 
Gessler [1982] $41.8 million 
Split pipe solution $38.9 million 
Discrete pipe solution $39.2 million 

paper has discrete pipe diameters which span an entire link 
length in some cases and "split" pipes, i.e., two pipes of differ- 
ent diameter, spanning the link, in other cases. To compare 
this solution to that of Gessler [1982], who used only discrete 
pipes across the entire length of the links, the split pipes were 
replaced by a single diameter equal to the major portion of 
the present solution (see Table 8). The split configuration was 
tested using the Hardy-Cross technique, and the pressures 
were found to be adequate. The costs of these two solutions, 
i.e., the split pipe solution and the discrete pipe solution, are 
compared with the previous studies in Table 9. It can be seen 
that even the discrete pipe solution used for comparison with 
Gessler's solution is less expensive than the previous solutions. 

While the cost of the solution provided by Gessler [1982] is 
of the same order as the cost of the solution generated by this 
model, it should be noted that Gessler's solution technique 
wa• oaseu on a iota: enumerauon approach ana required sig- 
nificantly more computational effect than that required by the 
procedure introduced in this paper. The procedure therefore 
has two distinct advantages in that it provides a better solu- 
tion With less computational effort. 

The New York City tunnels problem has a number of local 
optima. Experience with the use of the model has shown that 
by starting the reinforcing at the smaller diameters, e.g., the 
smallest three or four "pipes," the procedure converges upon 
the given solutions. When starting with the larger diameter 
reinforcing sizes the model tends to converge upon more ex- 
pensive local optima. The reasons for this situation are not 
fully understood. It is believed, however, that use of the 
smaller diameter forces the procedure to utilize reinforcing 
pipes at more than one location in the initial iterations. The 
procedure therefore has a greater flexibility in how it handles 
pipe diameter increases and decreases in these links in later 
iterations. It is suggested, however, that when using this ap- 
proach the initial reinforcing alternatives are based upon the 
smaller diameters. 

SUMMARY AND CONCLUSIONS 

An iterative procedure capable of analyzing both layout 
and design of new systems and expansion of existing systems 
has been developed. One of the major advantages of the tech- 
nique is that it ensures hydraulic consistency in each of the 
networks considered during the iterative procedure. 

In the design of new systems a wide range of loading pat- 
terns and pipe failure combinations can be considered. The 
manner in which the large number of constraints associated 
with all possible load combinations is reduced to a manage- 
able size does not permit a claim for global optimality. The 
procedure must therefore be classified as heuristic. The results 
obtained by the procedure, however, show that it is capable of 
efficiently producing economical solutions. 

The method has been demonstrated as being applicable to 
the layout and design of a network of 2 sources, 20 nodes, and 

37 links, and the expansion of an existing network. Compari- 
son of the results produced by this procedure for a network 
expansion problem with the results of previous studies for the 
same problem shows that this procedure produces an inexpen- 
sive solution in an efficient manner. 

The procedure is relatively simple, being based on two 
widely available and accepted techniques, namely, the Hardy- 
Cross Network solver and linear programming operations re- 
search technique. The ability of the model to use the very 
efficient simplex algorithm of the linear programming makes 
the procedure applicable to large systems. The method also 
utilizes realistic and easily accessible pipe cost functions using 
standard cost data, i.e., cost per unit length. 

APPENDIX' 

WEIGHTING ALGORITHM 

The weight assigned to each link j for each node i and 
demand pattern t in the pressure constraint equations, given 
by (12), is denoted by Wor Since i and t remain constant for 
each equation throughout the weighting procedure, they are 
omitted for clarity in this example. The equation used to de- 
termine Wot is given below' 

Wij , -- Wj--(Qj/lm) x W m (A1) 
where 

Q• the flow in link j; 
ß ,_1_ ........ •- ,•1 ß cI , ß 

W m the weight of the node immediately downstream of link j. 

The weight of the node m is calculated by 

Wm : E Wj (A2) 
j•B 

where B is the set of all outflow links from the node m. 

The procedure begins at the node i being constrained by 
(12) with m = i and Wm = 1.0. The algorithm used to calculate 
these weights is demonstrated by application to the simple 
network shown in Figure A1. The flows in each link, which 

Fig. A 1. 
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A 
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NODE 
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Network for demonstration of weighting algorithm. 
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are obtained from the Hardy-Cross results, are shown in 
Figure A2. In this example, the constraint equation for the 
pressure at node 5 will be developed. The procedure begins 
immediately upstream of node 5. The total flow entering node 
5 is calculated from the summation of all inflows, i.e., links 5 
and 7 (160 + 190 = 350). The weights of links 5 and 7 are 
calculated from this total. 

W 5 = (160/350) x 1 = 0.46 (A3) 

W7 = (190/350) x 1 = 0.54 (A4) 

These weights are then assigned to the nodes upstream of 
the links, i.e., nodes 4 and 6. Node 4, for example, is assigned 
the weight 0.46 from the single outflow link from that node. 
Similarly, node 6 is assigned a weight of 0.54. The process then 
continues upstream. Under this formulation link 8 contributes 
100% of the flow to node 6 via node 7. Link 8 has its weight 
calculated as follows: 

W8 = 1 x (0.54) = 0.54 (A5) 

Link 3 contributes 50% of the flow to node 4 and is there- 

fore assigned a weight calculated thus 

W3 = •(0.5) x (0.46) = 0.23 (A6) 

Likewise, 

W6 = (0.5) x (0.46) - 0.23 (A7) 

It should be noted that the flow to node 5 from node 7 

follows two distinct paths. The weighting at node 7 is there- 
fore 

W7 = (0.23) + (0.54) = 0.77 (A8) 

The weights for each link and node are shown in Figure A2. 

5O 

160 

370 

•] LINK WEIGHTING 

O NODE WEIGHTING 
570 DISCHARGE 

Fig. A2. Final flows and weights for network. 

Links 2 and 4 have weights of zero, since none of the flow 
going to node 5 passes through these links. 

This process is repeated for each possible load pattern. 
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