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Deterministic versus Stochastic Design
of Water Distribution Networks
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Abstract: The paper describes a procedure for the robust design of water distribution networks which incorporates the uncertainty of
nodal water demands and pipe roughness in a multiobjective optimization scheme aimed at minimizing costs and maximizing hydraulic
reliability. The methodology begins with a deterministic system design in order to generate a set of optimal networks that serves as the
initial population for subsequent multiobjective stochastic design. This approach does not depend on the choice of multiobjective
optimizer (for example, a multiobjective genetic algorithm is used here) and can drastically reduce the number of “stochastic” runs needed
for searching robust solutions. A collection of probability density functions based on the 3 function is introduced and applied to modeling
variable uncertainty according to different physical requirements. The approach is tested in a case study involving a real network,

illustrating its computational advantages.
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Introduction

Risk-based management of water distribution systems (WDS) en-
courages utilities to perceive reliability assessment as a useful
tool for achieving effective management of new and existing net-
works. Walski (2001) stressed the need for developing new net-
work design strategies, not only for addressing the minimization
of pipe costs, but also the maximization of network reliability.
This is usually interpreted as the provision of nodal head in ex-
cess of that which is established as a minimum within the net-
work. The term “reliability” can be thought of as a system’s
ability to demonstrate adequate performance during both normal
and unusual operating conditions (Xu and Goulter 1999) and is
usually studied by considering two general classes of failures
(Farmani et al. 2005): mechanical and hydraulic. The former re-
fers to system component failure (such as pipe breaks, blockage,
valve immobilization, pumping station interruptions, etc.), whose
occurrence depends on appurtenance and device reliability and is
thus closely related to rehabilitation/maintenance plans. Hydraulic
failure refers to unforeseen alterations in nodal demands and pipe
roughness, or in the inability to cope effectively with these.
Change in nodal demands often unfolds simultaneously with
capacity deterioration due to aging and either process can result in
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pressure at one or more nodes falling below an acceptable level.
Babayan et al. (2005) defined “robustness of the network™ as the
ability to adequately supply customers despite fluctuations in
some, or all, of the design parameters (i.e., nodal demands, pipe
roughness, etc.). Network robustness is dependent on the variabil-
ity and cross correlations (Farmani et al. 2005) assumed for nodal
demands and pipe roughness (Lansey et al. 1989; Xu and Goulter
1999; Babayan et al. 2005; Kapelan et al. 2005). Thus, the design
challenge is to develop a strategy able to produce dependable
results when faced with uncertainty (that is, incorporating robust-
ness into the design approach). The stochastic least-cost WDS
design problem was first conceived and solved as a single-
objective formulation by Lansey et al. (1989). It was then inter-
preted as a constrained minimization problem and solved using
the generalized reduced gradient 2 (GRG2) technique. Xu and
Goulter (1999) developed an approach in which the first-order
reliability method (FORM) was used and the optimization was
performed by GRG2. Calculations proved too laborious and the
method was time consuming even for small networks (Savic
2004). Moreover, the GRG2 optimization procedure assumes the
decision variables (i.e., pipe diameters) as continuous, which is
unrealistic. Tolson et al. (2004) tried to improve this approach
combining a genetic algorithm (GA)-based optimization scheme
with a method for estimating WDS reliability based on FORM.
The approach necessitates repetitive calculation of the first-order
derivatives and matrix inversions in order to calculate uncertain-
ties and becomes computationally demanding even for small net-
works, sometimes inviting numerical problems. Babayan et al.
(2005) avoided recourse to a sampling-based method using single
objective GA linked to an integration-based uncertainty quantifi-
cation technique. They assumed some probability density func-
tions for nodal demand fluctuations (uncertainty) and defined a set
of critical nodes (i.e., those that did not satisfy pressure require-
ments) which were used for the evaluation of the fitness function.
However, the actual level of robustness cannot be specified ex-
plicitly in the problem formulation, but is calculated once the
optimization process has converged to the final solution. The
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above-mentioned stochastic WDS design methodologies have one
common limitation: optimization is formulated and solved as a
constrained single-objective problem, thus resulting in a single
optimal solution.

Recently, Kapelan et al. (2005) proposed a multiobjective
(MO) optimization approach for solving WDS design under un-
certainty. They modeled the uncertain variables (i.e., nodal de-
mands and pipe roughness) by means of normal and uniform
probability density functions (PDFs), respectively, which are cal-
culated using the Latin hypercube (LH) sampling technique
(McKay et al. 1979). The chosen method is the Robust NSGAII,
which is based on the nondominated Sorting Genetic Algorithm II
(NSGAI) (Deb et al. 2002). The procedure exploits a small num-
ber of samples for fitness evaluation, leading to significant com-
putational savings and producing a robust Pareto optimal front of
solutions.

This paper proposes a multiobjective approach to the WDS
design problem, considering nodal demands and pipe roughness
as uncertain variables. The optimal design procedure is conceived
and formulated for use with an optimizer based on a standard GA.
In particular, the optimized multiobjective genetic algorithm (OP-
TIMOGA), as in Giustolisi et al. (2004), is featured. The pro-
posed strategy performs a deterministic design (i.e., constrained
least-cost design procedure) as the first step and then, using the
deterministic solutions as initial population, solves the robust de-
sign problem multiobjectively, implementing the minimization of
design costs and the maximization of WDS robustness as objec-
tive functions. As explained subsequently, this approach can offer
significant computational savings. Further, network robustness is
defined based on the worst-performing (i.e., critical) node, after
the evaluation of hydraulic performances of all the network
nodes. Finally, a collection of PDFs is tested with the goal of
modeling system uncertainty in different ways. Save for the nor-
mal distribution, they are all based on the B function (Mood et al.
1974) with each applied PDF being defined on a bounded domain
and evaluated for a different range. The methodology is verified
in a case study of a real planned network for an industrial area in
an Apulian town (Southern Italy).

Network Simulation Model for Pipe Sizing

The paper assumes the demand-driven formulation given in To-
dini and Pilati (1988). However, it should be recalled that nodal
demands are usually treated as constants for each simulation even
if, in reality, they change. To reflect this, their fluctuations are
here accounted for by some representative PDF (Kapelan et al.
2005; Babayan et al. 2005; Giustolisi et al., 2005). Therefore, a
network comprising n, pipes carrying unknown flows, n, nodes
with unknown pressure heads, and n, nodes with known pressure
head (reservoirs) can be described as follows:

|:App Apn:||:Q:| _|:_APOHO:| (])
A, 0 H q
where Q=[0,.0,.....0,,]"=[n,,1] column vector of the com-

puted pipe flows; H=[H,,H,,...,H,,]"=[n,,1] column vector
of the computed nodal total heads; Hy=[H,,Hy,, ... ,Houol"
=[ng, 1] column vector of the known nodal total heads; and q
=[q1.¢93,...,q,,]"=[n,,1] column vector of the nodal demands,
which here are assumed to vary according to some PDF.

In the mathematical system (1), A, represents a [np,np] diag-
onal matrix whose elements are defined as A,,(i,i)=R,|Q]"",

whereas Apn=A,{p and A, are topological incidence submatrices,
of size [n,,n,] and [n,,n], respectively, derived from the general
topological matrix 1_&1,,,=[Ap,1|Apo] of size [n,,n,+n], defined as
in Todini and Pilati (1988). R, is the pipe hydraulic resistance that
is a function of pipe roughness, diameter, and length, whereas n is
an exponent which takes into account the actual flow regime and
adopted head loss relationship (here n=2 is used). In this work,
pipe roughness (and thus pipe hydraulic resistance R;) is assumed
to vary according to some PDF.

Single-Objective Optimization

The classical problem of network design centers on the selection
of pipe diameters, given the pressure head at nodes H, computed
from system (1) for fixed deterministic demands and roughness
(dependent on diameters), and it is constrained by a minimum
nodal pressure head for supplying demand. The problem is usu-
ally formulated with a single objective: minimum pipe cost. For
instance, system (1) is typically completed with the following
equations (Savic and Walters 1997):

n

P
f(D17D27 aan)=E C(DivLi) — min (2)
i=1

HjBP_‘/.“i“+Zj, j=1,...,n, 3)

where the former deals with financial cost minimization [depen-
dent on pipe diameter (D;) and length (L;)] and the latter pertains
to service level constraints (P}nin is the minimum nodal pressure
head and Z; its elevation above datum) that must be satisfied in
order to supply required nodal demands. Thus, pipe diameters are
the decision variables of the optimization problem and their ap-
propriate selection is the specific goal of the design task. The
formulation in Egs. (1)—(3) leads to a complex (nonlinear) com-
binatorial optimization environment as diameter choices are dis-
crete. Savic and Walters (1997) demonstrated that GA are an
efficient way to solve this kind of problem as they undertake a
wide exploration of the solution space, implying a high probabil-
ity of exposing the global optimum.

Robust WDS Design and Multiobjective Formulation

Recently, Kapelan et al. (2005) proposed a MO optimization ap-
proach for solving WDS design under uncertainty. They modeled
the uncertain variables (i.e., nodal demands and pipe roughness)
by means of Gaussian and uniform PDFs, assuming some corre-
lation among the samples used. The LH technique was applied to
calculate the PDFs in order to reduce the number of samples (at
least equal to 30 for each individual in each generation). How-
ever, the key element in this work lies in the optimization method.
They used the robust NSGAII, based on the NSGAII (Deb et al.
2002), which is able to evaluate each individual’s fitness, spread-
ing the sampling over a number of generations. The objective
functions were pipe cost minimization and network robustness
maximization, which is computed as the fraction (i.e., percentage)
of the total number of samples for which the minimum pressure
head requirement is met simultaneously at all nodes in the net-
work. The methodology produces a robust Pareto front of optimal
solutions which is then subjected to a final validation by applying
a Monte Carlo (MC) simulation to the optimal solutions and de-
leting those that turn out to be dominated after the final check.
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The procedure makes use of a small number of samples for fitness
evaluation, leading to significant computational savings if com-
pared to the full sampling approach (the procedure without the
final MC simulations takes at least 27 min to return the Pareto
front).

Proposed Approach

This paper introduces an alternative to the procedure of Kapelan

et al. (2005) which involves the development and testing of a

robust MO design strategy for WDS design employing a general

purpose MO genetic algorithm (MOGA) as optimizer (OPTI-

MOGA, Giustolisi et al. 2004). The innovative aspects of the

procedure with respect to recent contributions (Kapelan et al.

2005; Babayan et al. 2005; Tolson et al. 2004) include:

1. The use of a set of 3 PDFs (Giustolisi et al. 2005) in order to
model nodal demand and roughness uncertainties with some
variety. This permits incorporation of a bounded PDF, which,
coupled with the LH sampling technique, can allow a better
random sample stratification leading to more accurate esti-
mation of the empirical, nodal head PDF tails (Mood et al.
1974; Fishman 1996), which is important when evaluating
WDS design robustness. Moreover, the proposed tests on real
data of different PDFs (including the normal) can show the
technical consistency of (3 PDFs, allowing engineers to
choose from among them, according to their own knowledge
and experience, those best suited to represent the features of
uncertain parameters. The normal PDF is here defined on a
bounded domain in order to avoid numerical and physical
problems related to its original unbounded properties.

2. The evaluation of robustness of each optimal design solution
is made with respect to the network’s critical node (i.e., the
worst-performing node), as the probability that its stochastic
nodal head (H,) is higher than the service level (P;“i“+Zj),
assuming the conservative hypothesis that the nodal heads
could vary according to a normal PDF. Thus, robustness
maximization is an objective function integrated in the opti-
mization procedure, whereas in previous works it is usually
calculated at the end of single-objective optimization. As
subsequently clarified, the features of the analyzed network
(i.e., few nodes, similar water demands, etc.) allow for the
evaluation of network robustness with reference to the criti-
cal node without compromising the procedure’s efficiency.
Larger and more complex networks might need a third ob-
jective function looking at a number of critical nodes or criti-
cal zones (not contiguous critical nodes) which can be
affected by service failures.

3. The design procedure is twofold: first, the problem is solved
within the context of a least-cost deterministic approach
using the minimization of costs and pressure deficit on the
network’s critical node as objective functions; second, robust
design is performed as a dual-objective optimization problem
(cost versus network robustness) employing the deterministic
solutions as an initial population. This assumption, to be
clarified subsequently, is justified by evidence that the deter-
ministic solutions (i.e., network configurations) are close to,
or at least belong to, the final Pareto front of robust/
stochastic solutions. The robust design phase uses the mini-
mization of costs and the maximization of network
robustness as objective functions. Overall, the entire ap-
proach can significantly reduce computational effort.

Nodal Demand and Pipe Roughness Uncertainty

Traditionally, both nodal demands ¢; and pipe hydraulic resis-
tance R; have been treated as fixed and known parameters for
design and performance evaluation. Clearly, this is not ideal as
the values of these parameters are not usually known with accu-
racy, especially when entertaining long-term projections. To over-
come this challenge, all future nodal demands and roughness
parameters will be treated as uncertain variables whose values are
governed by a PDF and, to simplify things, no correlation be-
tween any two random variables will be modeled (Kapelan et al.
2005). However, generally speaking, correlation among nodal de-
mands can be assumed, for example, due to some extent on un-
certain factors that affect the system as a whole, such as hot, dry
weather, which can result in significant extra consumption (i.e.,
garden watering, drinking, etc.), thus increasing or decreasing de-
mand at all nodes simultaneously (Kapelan et al. 2005). Assuming
a normal PDF with unit mean and standard deviation o, i.e.,
N(1,0), the following can be written for nodal demands and pipe
roughness:

unc

q;" € Nlg;0,9;) = q;N(1,07)
)
R™ e N(R;,o0.R) =R:N(1,0))

In Eq. (4), the N(1,0) PDF plays the role of a proportionality
coefficient for the uncertain variables (i.e., o is related to the
relative uncertainty level of the corresponding variable). Uncer-
tainty quantification is performed here using the sampling ap-
proach based on MC methodology. Specifically, the LH technique
is employed as the variance reduction method for limiting the
number of samples required. To avoid consideration of unrealistic
extreme values in the case of a normal PDF, a special beta PDF is
used (Giustolisi et al. 2005)

xa—l(] _x)b—l
Bla.b) = beta(a,b) )
where ((a,b) stands for the beta PDF with parameters a and b,
and beta (a,b) is the beta function (Mood et al. 1974). In Eq. (5),
the value of the beta PDF is defined for x in the range [0, 1]. The
values of a and b can be chosen so that the probability distribu-
tion has the required mean value m and standard deviation o

a

m=
a+b

] ab
0=(a+b)” (a+b+1)

By manipulating the values of a and b, the beta PDF can be
used to generate different types of PDF bounded in a range that is
defined by the user. The idea of assuming the shape, mean, and
range (in spite of the standard deviation) of the PDF is technically
sound. PDFs of different shape can be related to information
about uncertainty and the variable’s range is an easier parameter
to select. Thus, four beta PDFs have been constructed with the
same standard deviation, deriving from a particular normal PDF.
This paper takes into consideration the distribution N(0.5,c),
where o is computed so that the normal PDF is constrained to the
range [0, 1], for example, the upper and lower limits correspond-
ing to the cumulative values of 0.001 and 0.999. In this way, the
standard deviation of the normal PDF is equal to (o
=m/3.0902)=(0.1618=0.5/3.0902), with 3.0902 being the value
associated with the cumulative PDF at 0.999. By Eq. (6), the

(6)
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Fig. 1. Diagrams of the PDFs used within the optimization problem

following different beta PDFs have been built, all constrained to

have their standard deviation equal to 0.1618 (see Fig. 1).

1. B symmetric is a beta PDF B(a=b=4.2748), having a bell
shape similar to the normal PDF, assuming an average value
equal to 0.5. In spite of the normal PDF, it has the advantage
of being bounded within a certain range, thus overcoming
troubles related to the sampling of the empirical, nodal head
PDF tails.

2. B extreme is a beta PDF B(a=4.6216,b=1.5405) having a
mean value equal to 0.75 and a shape that apportions more
probability to values above the mean. This could be useful
because, within the fixed range of variability, further peak
conditions for the uncertain variable can be assumed for de-
sign purposes with higher probability than the mean value.

3. B uniform is a beta PDF B(a=1,b=1) having the shape of a
uniform PDF and mean value equal to 0.5, defined in the
range [0.2198; 0.7802] in order to have standard deviation
equal to 0.1618. It could be useful when there is no reliable
statistical information.

4. B decreasing is a beta PDF B(a=1,b=4.0554) having an
exponential decreasing shape bounded in the range [0; 1] and
a mean value equal to 0.1977. This PDF could be useful for
simulating roughness trends related to pipe deterioration.
This structural status of pipes is related to material and age,
but there are other factors (i.e., intrusion of roots, internal
corrosion, sediments, etc.) which can alter roughness in a
manner differently than predicted using average values re-
ported in the literature. At least a maximum value for pipe
hydraulic resistance related to material and operating condi-
tions can be assigned. Actually, the scope of pipe hydraulic
resistance variation is minimally bounded by the values for
new pipes and can be estimated by assuming a decreasing
probability of larger values until the upper limit, which is
related to the assumed range, is reached.

After defining the beta PDF, a MC sampler can be used to
sample B(a,b) with a generator based on the rejection and inver-
sion method (Devroye 1986). As in other studies (Kapelan et al.
2005), the LH technique is applied here because it is a powerful
variance reduction approach that makes the MC statistically
meaningful by substantially decreasing the number of samples
due to its enhanced random sample stratification. This feature can
improve the efficiency of simulations, especially in large net-
works, saving much computational time with respect to other
sampling-based methods (Giustolisi et al. 2005). For example,
only 1,000 samples for performing the MC simulation were used
in this work. The LH methodology is also applied to the uniform
PDF required by the rejection and inversion method. After sam-

WE)

PpitZ; Robustness
R=/lafBm. 7, H7% )

}'{fﬂvg_ a? o }{jﬂvg I.{’

Fig. 2. Gaussian PDF assumed for robustness evaluation

pling B(a,b), the following transformation can be applied to en-

sure the uncertain value of flow (¢;"™) belongs to the interval

[q;=(q;-m-rg); q;+(g;-m-rg)]

9" = q;+ q)[x(B(a,b)) - m]rg € [q;~ (q;-m - rg),
q;+(q;-m-rg)] (7)

where rg=assumed variable range for the adopted beta PDF; m
its mean; and ¢;=assumed deterministic value for demand at node
Jj. For pipe hydraulic resistance, the following transformation can
be applied to ensure that the uncertain value of hydraulic resis-
tance of ith pipe (R\") belongs to the interval [R;,R;+R; rg],
treating the 3 decreasing function as the sole PDF,

R"™ =R, +R[x(B(a,b))]rg € [R,R;+ (R; - rg)] (8)

Finally, it is worth noting that rg for the beta PDF plays the
same role as ¢ for the normal PDF but is better able to deal with
ranges than statistical variables when describing the uncertainty
of hydraulic parameters.

Evaluation of Robustness

Assuming nodal demands as uncertain variables, according to a
fixed PDF, means that the computed hydraulic variables (Q,H),
see Eq. (1), become stochastic. Therefore, it is possible to take
into account the standard deviation and average value of H node
by node; thus, assuming a normal PDF as representative of the
fluctuation of total head at node j (H j-) due to demand uncertainty,
it is possible to write that

H{(H}®,0)=P"™+Z, j=1.....n, 9)

where H?'#=average value of total head calculated at node j and
o[H j(q)fits standard deviation at the node (which depends on all
the nodal demand fluctuations). The assumption of a normal PDF
to model the total nodal head uncertainty can be considered as a
working hypothesis, rendering it possible to assume different
PDFs. Taking into account Eq. (9), the design constraint in Eq. (3)
can be rewritten as follows:

HY - oa0[H{(q)]= P +2Z;, j=1,....n, (10)

In Eq. (10), the parameter o; can be used for the evaluation of
network robustness (how many times the stochastic nodal head
H{(H}**,0[H;(q)]) will be higher than or equal to the minimum
service level P}“"‘+Zj, see Fig. 2). For example, if o;=1.282 the
robustness is 90%, whereas if ajzl it is 68% and if oaj:—l.282
the robustness is 10%. Thus, the proposed approach evaluates
network robustness looking at the fulfillment of Eq. (10) at the

most critical node (i.e., that node resulting with the lowest value
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Fig. 3. Robustness evaluation procedure

of «), expressing it as the probability that its total nodal head H;
is higher than the service level (Pm"‘+Z) From Eq. (10), «; can
be calculated as

()L(Pmm Havg ) _;.(i-w (1 1)

From the perspective of WDS robustness, the aim of the pro-
posed approach is to achieve the greatest value of « for the most
critical node in a given network, thus achieving a greater prob-
ability (robustness) that the actual pressure H; will be greater than
(P"“"+Z) Eq. (11) indicates that this can be achieved by ensur-
ing the average total nodal head H}"® is as high, and its standard
deviation as low, as possible (that is, obtaining a slender normal
PDF, see Fig. 2).

The proposed MO approach seeks design cost minimization
and network robustness (R) maximization, here cast as objective
functions. The former has its formulation in Eq. (2), whereas the
latter can be constructed as follows:

R[%]= f(max{ min [a(P"“"

jell,nn]

Hj?“g,o)]}) (12)

The optimization goal is to maximize robustness of the net-
work’s most critical node, which implies maximizing the relevant
a; whose calculation is performed by Eq. (11) once the design
constraint in Eq. (10) is evaluated for all nodes (see also Fig. 3 as
further explanation). Finally, for the sake of simplicity, the above-
presented equations have been reported assuming as uncertain
only the nodal demands. As more clearly articulated in the case
study, the present work also assumes uncertain pipe roughness,
which itself influences total nodal head fluctuations.

Multiobjective Optimization Procedure

The MO procedure involves two related stages: (1) the determin-
istic phase, which consists of a least-cost network design, ad-
dressed to minimize costs and preserve service level P;-m“ in a MO
framework, without accounting for water demand and roughness
uncertainty; and (2) the stochastic phase, consisting in a MO ro-
bust network design, taking into consideration the nodal demand
and roughness uncertainty, and optimizing network design costs
versus network robustness, as defined earlier. The algorithm used
herein for multiobjective optimization is OPTIMOGA, which has
been recently developed and applied to both test problems (Gius-
tolisi et al. 2004) and applications (Giustolisi et al. 2006). The
problem in Phase (1) is expressed by means of the mathematical
system in Eq. (1), applying the constraint in Eq. (3) and assuming
P;“i“ as minimum value for the pressure head at nodes (level of
service). Therefore, employing OPTIMOGA, the procedure re-
turns a Pareto front of nondominated solutions using as objective
functions the minimization of design cost, see Eq. (2), and mini-
mization of the difference between the service level (P;?“i“+Zj)
and total head H; at the critical node. This second objective func-
tion can be defined on a certain range (PDR), thus admitting a
lower pressure head limit at the critical node.

The stochastic phase is then performed as a MO robust design
exercise which implements cost minimization, see Eq. (2), and
robustness maximization, see Eq. (12), using as initial population
the results of the deterministic phase. The aim of this choice is to
speed up the robust design procedure, bearing in mind that the
adopted MC sampler, even if improved by the LH technique, can
require substantial computation time (Kapelan et al. 2005). From
a GA optimization standpoint, the authors’ intention is to stream-
line the stochastic procedure by setting out with an initial popu-
lation that is closer to the final Pareto front, thus avoiding the
great number of network evaluations (due to the adopted MC
sampling) that are performed when the evolving population is far
from the convergence. Looking at the problem also under an en-
gineering perspective, this is achieved using the optimal results of
the deterministic phase (least-cost networks), which are basically
good solutions having low values of robustness. It is also worth
noting that the proposed approach facilitates comparison between
deterministic and robust solutions, highlighting those mains that
exert a dominant influence on network reliability. This phase of
the procedure employs OPTIMOGA as the MOGA optimizer. For
each individual in each generation, a maximum number of
samples (S,,,;) of the assumed PDF for nodal demand and rough-
ness uncertainty are performed, leading to the evaluation of
(H?"®,0;) for each node by means of network simulations [see Eq.
(1)]. Then, «; is computed by Eq. (11) at each node and, next, the
most crmcal node of the network is identified as that with the
lowest value. Finally, each individual in the evolving population
is assigned its network robustness from « pertaining to the most
critical node using the inverse of the normal cumulative density
function. The entire procedure, which is repeated every genera-
tion for each network/individual, is summarized in Fig. 3. The
solutions are evaluated within the MOGA paradigm by means of
a rank-based fitness assignment, as proposed by Fonseca and
Fleming (1993) and implemented in OPTIMOGA. As shown in
Fig. 3, the procedure applies a stopping criterion for the sampling
process by assuming that if the mean head value and standard
deviation do not vary sufficiently as the sampling process unfolds
(i.e., less than a fixed approximation), the loop is stopped. How-
ever, the sampling procedure assumes a minimum number of
samples be taken, imposing an initial threshold of S;,; for the first
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Reservoir

Fig. 4. Apulian network layout

individual to be evaluated within a generation. Fig. 3 then
changes dynamically during the computation of all the individuals
in the population, being set to the updated number of samples
necessary to stabilize the initial oscillations of H*'®(i,n) and
o(i,n), with respect to the assumed approximation. Despite this,
the number of iterations is constrained to the range [Spin; Smaxl O
ensure an adequate number of samples when avoiding an endless
loop. This contrivance leads to a marked reduction in the number
of iterations, eschewing useless sampling and enjoying significant
computational benefits.

Finally, during the MOGA run, the evolving Pareto front can
be bounded between two extreme values of network robustness
(R), implying the related limit of the parameter «. This choice is
driven by the practical benefit of the returned diagrams; actually,
networks having robustness beyond an upper limit can be consid-
ered too expensive to warrant further consideration, whereas net-
works with very low robustness should not be perceived as
appreciably more reliable because they remain closely compa-
rable to the deterministic solutions. In the following section, fur-
ther descriptions are provided on the used limits and motivations.

Case Study

The case study is conceived in order to verify and demonstrate the
methodology as applied to a real network. The featured system is
the distribution network of an Apulian town (Southern Italy)
whose layout is depicted in Fig. 4 with the corresponding data
provided in Table 1. Each pipe represented in Fig. 4 is listed
according to its identification number (Pipe number), and is ac-
companied by its start and end nodes as well as its length (Z;). All
nodes are denoted by their identification number (Node number)
and also appear in Table 1, which reports the relevant determin-
istic demands (g;) (used as mean values for the uncertainty simu-
lation) and elevations (Z;). The node without an identification
number corresponds to the sole reservoir of the network, with the
head reported in Table 1 being the water level H,,;. Table 2 lists
the available pipe diameters, each coupled with its unit cost (ex-
pressed in Euros per meter) and its deterministic unit resistance
coefficient,

2
8.57 X 10-4(1 +—l>
R; ) \VD;
R _B _

L D; D;

(13)

as evaluated by Bazin’s formula (Bazin and Darcy 1865; Manning
1891), using y=0.12. This coefficient is used as the mean value
for uncertainty evaluation.

As explained earlier, the proposed procedure is conceived as a
general one, with a certain number of parameters to be set. Re-
ferring to Phase 1 (deterministic phase) the adopted minimum
pressure head value (P;“in) is equal to 10 m, whereas the range of
definition for the used second objective function (PDR) is [0;2],
thus admitting a lower pressure head limit of 8 m at the critical
node. For Phase 2 (stochastic phase), the assumed maximum
number of samples to be taken (S,,,,) is 1,000, whereas the lower
limit for samples (S,,;,) is equal to 30. This last choice derives
from the assumption that mean values and standard deviations
evaluated on, at least, 30 samples can be reasonably considered as
sufficiently statistically reliable (Benjamin and Cornell 1970). Fi-
nally, the assumed initial threshold for the number of samples
(Sini) is equal to 100.

During Phase 2 optimization, as noted earlier, the evolving
Pareto front can be bounded between two extreme values of net-
work robustness. The assumed lower bound is 10% [the design
constraint in Eq. (10) is satisfied at the most critical node with a
confidence limit at least equal to 10%], which implies that the
relevant value for a is —1.282 (see Fig. 2). The upper bound is
imposed in order to confine robustness evaluation to what is tech-
nically suitable, so the investigation assumes a maximum value
set to R=90%, corresponding to a equal to 1.282 (see Fig. 2), as
the cost of solutions rises exponentially for robustness above
90%, as noted by other authors (Kapelan et al. 2005; Tolson et al.
2004). During the MOGA run, networks exhibiting robustness
beyond the assumed range are penalized. For example, a value of
R higher than 90% [« > 1.282] implies that the relevant network
is assumed to have a robustness of 90%, thus there is incentive to
retain the design if it is cheaper; otherwise, when network robust-
ness falls below 10% [ <<—1.282], the solution is very cheap, but
at the same time too low in robustness to be accepted (even lower
than deterministic solution).

As explained, the proposed approach consists of two phases:
the deterministic least-cost design of the network and the robust/
stochastic design that directly involves network robustness within
the optimization. Both of these harness OPTIMOGA (Giustolisi et
al. 2004) as an optimizer, using different additional objective
functions (minimization of pressure deficit at the critical node for
Phase 1, maximization of network robustness for Phase 2)
coupled with minimization of design costs. OPTIMOGA starts
with a population made up of POP;; individuals, POP;; being set
as 40 in this case. Each individual/chromosome is made up of a
number of genes that equals the number of network links in the
problem at stake, each gene being representative of the assumed
diameter for the network configuration. Genes are comprised be-
tween 0 and 9, according to what is reported in Table 2. The
genetic operators used are a multipoint crossover (with a prob-
ability of 40%), with a number of potential swapping points equal
to the number of genes contained in the chromosomes. Care is
taken in not swapping between two individuals’ genes represent-
ing the same digit. A global mutation is initially used, each gene
can be mutated with a 10% probability and assuming values rang-
ing between 0 and 9. Afterwards, when the algorithm is in an
exploitative phase of the Pareto front and it is not advisable to
scatter the solutions in the objective space, a sort of local muta-
tion is adopted, consisting in a small change of each mutating
gene (i.e., +1 or —1 with respect to its original value). The selec-
tion of the mating pool is pursued with respect to the size of the
best-found evolving Pareto front, by means of a rank-based fit-
ness assignment (Fonseca and Fleming 1993). Finally, runs can be
ended in two ways: by a stopping criterion based on the number
of generations achieved, or by a criterion based on the number of
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Table 1. Apulian Network Data

Pipe Node
Pipe Start End L; Node q; Z;
number node node (m) number (L/s) (m)
1 1 2 348.5 1 10.863 6.4
2 2 3 955.7 2 17.034 7.0
3 3 4 483.0 3 14.947 6.0
4 3 9 400.7 4 14.280 8.4
5 2 4 791.9 5 10.133 7.4
6 1 5 404.4 6 15.350 9.0
7 5 6 390.6 7 9.114 9.1
8 6 4 482.3 8 10.510 9.5
9 9 10 9344 9 12.182 8.4
10 11 10 431.3 10 14.579 10.5
11 11 12 513.1 11 9.0072 9.6
12 10 13 428.4 12 7.5745 11.7
13 12 13 419.0 13 15.200 12.3
14 22 13 1,023.1 14 13.550 10.6
15 8 22 455.1 15 9.226 10.1
16 7 8 182.6 16 11.200 9.5
17 6 7 221.3 17 11.469 10.2
18 1 19 583.9 18 10.818 9.6
19 5 18 452.0 19 14.675 9.1
20 6 16 794.7 20 13.318 13.9
21 7 15 717.7 21 14.631 11.1
22 8 14 655.6 22 12.012 11.4
23 15 14 165.5 23 10.326 10.0
24 16 15 252.1 Reservoir 0 Hy =364
25 17 16 331.5
26 18 17 500.0
27 17 21 579.9
28 19 23 842.8
29 21 20 792.6
30 20 14 846.3
31 9 11 164.0
32 23 21 427.9
33 19 18 379.2
34 24 1 158.2

solutions in the Pareto optimal set. In this case study the former
was adopted, using 1,000 generations for the deterministic phase
and 200 generations for the stochastic phase. More details about
OPTIMOGA features can be found in Giustolisi et al. (2004).

Table 2. Structural and Economic Features of Diameters into the Apulian
Network

GA Nominal Cost

coding diameter R/L; (€/m)

1 100 265.15 240.1

2 150 18.565 387.78
3 180 9.8824 435.66
4 200 5.6291 483.84
5 225 3.0681 542.34
6 250 1.6390 610.90
7 300 0.8668 690.24
8 325 0.4605 780.19
9 350 0.2466 881.55

The analyzed case study applies the above-described proce-
dure to the robust design of the network assuming three uncer-
tainty scenarios: (1) only the nodal demands are assumed to be
uncertain; (2) and (3) both the nodal demands and roughness are
considered uncertain, with different assumed pipe roughness un-
certainty. In Case (1), the B symmetric, B extreme, $ uniform,
and Gaussian PDF are used and compared. In Cases (2) and (3),
the only PDF considered for nodal demands is the 3 symmetric
PDF, whereas the (3 decreasing PDF is employed for pipe rough-
ness. The scenarios considered different values of variable range
rg (i.e., 20, 40, 60, 80, and 100% for nodal demands and 20 and
40% for pipe roughness) with respect to the average assumed
values for nodal demands and to the initial values for roughness
(i.e., values for new pipe), implying different bounded domains
for the definition of any PDF. It is worth noting that some authors
(Xu and Goulter 1999; Leonard et al. 2002; Tolson et al. 2004)
have already used this kind of approach in order to simulate un-
certainty in future demands and roughness. The ranges of the
variables employed in this paper are reasonably higher (demands)
or comparable (roughness) with those reported in literature.
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Table 3. Results of the Robust Design Optimization Assuming the Nodal Demand and the Pipe Roughness Uncertainty

Economic cost of the network layout

(increasing cost percentage with respect to the deterministic solution)

Case study PDF 20% 40% 60% 80% 100%
Gaussian € 7,035,800 € 7,120,100 € 7,193,900 € 7,309,700 € 7,402,800
(1.21%) (2.42%) (3.48%) (5.15%) (6.49%)
B extreme € 7,014,800 € 7,095,100 € 7,186,900 € 7,289,000 € 7,396,400
Case (1) (0.91%) (2.06%) (3.38%) (4.85%) (6.40%)
(nodal demand) 8 uniform € 7,049,400 € 7,125,700 € 7,188,200 € 7,308,100 € 7,409,200
(1.41%) (2.50%) (3.40%) (5.13%) (6.58%)
B symmetric € 7,003,200 € 7,069,600 € 7,161,900 € 7,233,000 € 7,323,200
(0.74%) (1.70%) (3.02%) (4.05%) (5.34%)
Case (2) B symmetric € 7,177,300 € 7,236,100 € 7,375,000 € 7,421,400 € 7,584,600
(demand and roughness 20%) B decreasing (3.25%) (4.09%) (6.09%) (6.76%) (9.10%)
Case (3) B symmetric € 7,322,900 € 7,381,200 € 7,443,100 € 7,556,000 € 7,696,900
(demand and roughness 40%) B decreasing (5.34%) (6.18%) (7.07%) (8.69%) (10.72%)

Note: The best deterministic solution (that fully satisfies the network pressure

Results and Discussion

The numerical results of the scenarios in terms of economic costs
for different variable ranges and PDFs are reported in Table 3.
However, it contains only the network costs for the solutions (i.e.,
diameter configurations) with the highest assumed value of net-
work robustness (i.e., 90%). This means that solutions reported in
Table 3 satisfy the pressure requirement at the critical node with a
probability of 90% (i.e., the confidence limit of the design con-
straint in Eq. (10), assuming that the computed nodal heads vary
according to a normal PDF). Table 3 also reports (in parentheses)
the increasing cost (expressed as a percentage) of robust solutions
with respect to the best deterministic solution, which fully satis-
fies the network pressure requirement in Eq. (3). The total design
cost of this solution is € 6,951,600 and it serves to emphasize the
difference between the above-described deterministic solution and
the most robust solution for any differently analyzed case,
whereas any intermediate comparison among deterministic and
robust network configurations can be made according to the spe-
cific economic needs of the user.

Looking at Case (1) in Table 3, one can notice that all the
analyzed PDFs used for simulation of nodal demand uncertainty
retrieve similar results in terms of final costs for each of the
considered uncertainty categories. This could be interpreted as a
general consistency of the proposed procedure even if, within the
limits of assumed small network (if compared to other real urban
networks), results obtained by different PDFs cannot be read as
an indication of suitability for any particular distribution. How-
ever, according to what was explained earlier, the 3 PDFs still
remain preferable, if looking at the procedure from a sampling-
efficiency standpoint.

For Cases (2) and (3) the writers have assumed the B decreas-
ing PDF for roughness uncertainty, using only two values for
roughness variability [i.e., 20% for Case (2) and 40% for Case
(3)] because large variability ranges can lead to physically infea-
sible pipes roughness (Giustolisi et al. 2005). For a variable range
of 20% (40%) the extreme value of pipe roughness becomes 1.2
(1.4) times the assumed value (i.e., roughness for new pipes, as
reported in the literature). Thus, the PDF shapes for Cases (2) and
(3) could be representative of the state of network deterioration
after many years. Considering the results in Table 3, what was
observed for Case (1) can be reasonably confirmed for Cases (2)
and (3).

Now, comparing the best deterministic solution (i.e., that used

requirement) has a design cost of 6,951,600 €.

as a reference for the evaluation of results in Table 3), and the
best robust solution in the most extreme case [i.e., Case (3) with
a range of 100% for water demands and a range of 40% for pipe
roughness], it is interesting to observe what difference exists in
terms of diameter changes due to the robust design procedure.
Looking at Table 4 and bearing in mind the list of the diameters in
Table 2, one notices that 11 pipes (33% of all network pipes) have
increased in diameter. By analyzing both the network layout in
Fig. 5 and Table 4, the solution returned by the automatic proce-
dure reveals the presence of three essential pathways along which
the pipe diameters must be increased in order to improve the
performance of certain critical nodes, which are basically those
situated at the periphery of the network (i.e., Nodes 12, 13, 17,
and 20), with respect to the future variation of uncertain param-
eters. Moreover, the escalating cost of such robust solutions rela-
tive to the best deterministic result should be underscored. In the
case study, the increase in financial cost is about 734,400 euros
(11%), a relatively modest sum considering the appreciable in-
crease in network robustness that is experienced. This specific
result could arise from the small extent of the analyzed network
and of the assumed uncertainty, but could be more significant for
a larger and more complex system.

Taking into account the results in Table 4, especially the mod-
est increases in diameters associated with the robust solution, it
seems that the MOGA design based on a least-cost approach (de-

Table 4. Comparison between Diameters of the Best Robust Solution
and Deterministic Solution

Pipe Deterministic Robust Diameter
number solution solution increase
2 300 350 50
4 300 325 25
7 300 350 50
11 100 150 50
16 180 225 45
17 200 225 25
18 300 325 25
20 150 200 50
28 250 325 75
29 180 200 20
32 250 300 50

124 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / MARCH/APRIL 2009

J. Water Resour. Plann. Manage. 2009.135:117-127.



Downloaded from ascelibrary.org by UNIVERSITY OF VIRGINIA on 06/16/14. Copyright ASCE. For personal use only; all rights reserved.

étsorvnlr

Fig. 5. Variations in the network diameters due to the robust design
(pipes in bold have been changed)

terministic phase) is consistent and leads to quite reliable solu-
tions, justifying the use of the deterministic Pareto front as the
initial population for a subsequent robust analysis (filled circles
in Fig. 6). By evaluating the optimal deterministic solutions sub-
sumed within the robust approach that considers variable uncer-
tainty, the solutions in Fig. 6 appear to be essentially robust
network configurations, albeit with lower values of robustness
(Fig. 6 reports the final Pareto front for Case (3)—range 100%
and, for the sake of clarity, the y axis reports the values of 1-R
instead of R). Moreover, the shadowed area between the dotted
lines in Fig. 6 contains all the Pareto fronts obtained performing
the optimization run on the same case study but starting from a
completely random initial population, thus avoiding the dual-
phase methodology. Looking at the Pareto fronts in Fig. 6, it
seems clear that the proposed approach to stochastic design (by
using deterministic design solutions as starting population) leads
to a good optimal solution with respect to the optimization pro-
cess. This observation supports use of deterministic solutions as
starting populations for launching the robust design procedure
instead of commencing from a randomly generated initial popu-
lation.

Applying the optimal solution from a deterministic network
design as the initial population for MOGA robust design, together
with the improvements to the sampling process (i.e., Latin hyper-

Cheap and very weak solutions

o_g---i —_—— e e e e e ——
0.8 -
0.7
06 -

05 -

[1-R]

0.4

03 -

0.2

: Expensive and very robust solutions
0.0 1 1 1 ' '
6.7 6.8 6.9 7.0 7i 72 7.3 74 75 76 7.7

Design cost [millions of €]

Fig. 6. The robust Pareto front (squares), the deterministic Pareto
front/initial population (circles), and all the robust Pareto fronts ob-
tained by performing many optimization runs with initial random
population (shadowed area)

cube, use of bounded PDFs, etc.), leads to a more efficient design
procedure that also proves to significantly reduce computational
burden. In fact, the 1,000 generations executed during the deter-
ministic phase took about 35,000 network calculations in almost
2 min (on a 0.9 GHz Intel Centrino PC), whereas the 200 genera-
tions performed for the robust phase involved roughly 4 X 10°
network calculations, taking 15 min for the most laborious ex-
ample [i.e., Case (3) using a wider range of nodal demands]. On
the contrary, starting from a randomly generated initial population
(that is, without using the deterministic solution as the starting
point for MOGA), and performing the same number of genera-
tions, 2.3 X 107 network calculations were required. Therefore,
the computational time increases by more than 70 min. Further,
the near-optimal Pareto fronts obtained using different randomly
generated initial populations fell into a large band (see Fig. 6),
being strongly dependent on the starting point. Hence, the robust
design using the deterministic sizing solutions as a departure
point enjoys consistent results with respect to the optimization
procedure’s dependence on initial population and can reduce
computational effort by about 98% in terms of the number of
required network simulations.

A final observation is that a strict design constraint concerning
service levels can render the WDS more robust with respect to
unexpected variations in demand and even pipe roughness. There-
fore, mostly for small networks, the robust design problem could
be approached either in a deterministic scenario with an efficient
MOGA optimizer and higher minimum pressure head require-
ments or by combining the GA search with an efficient MC simu-
lation of the uncertain variables, as proposed here.

Conclusions

This paper proposes a refined approach to the robust design of
WDS which consists of a sampling-based methodology imple-
mented within a MO optimization environment. The technique
can simulate nodal demand and pipe roughness uncertainty with
any PDF function; the case study compared the traditionally
adopted normal distribution with the 8 PDF family (symmetric,
extreme, and uniform). The incorporation of LH admits a smaller
amount of sampling, improving simulation efficiency with respect
to traditional sampling-based methods. The optimization scheme
is based on a MOGA optimizer (OPTIMOGA, Giustolisi et al.
2004), but any optimization tool can be used without significant
modification to the basic approach. Unlike other similar methods
(Kapelan et al. 2005), the proposed strategy does not link its
computational savings (i.e., low number of samples and/or gen-
erations) to the particular way the optimization is performed. Its
innovative aspect stems from the implementation of a double-step
procedure: the design problem is first solved according to least-
cost network design (deterministic phase) subject to a pressure
constraint and returns a Pareto front of optimal solutions. The
chosen solution then serves as an initial population for the robust
design procedure, leading to the final Pareto front of optimal ro-
bust solutions in no more than 200 GA generations. This assump-
tion is supported by the robustness of the deterministic optimal
solutions (though with lower values of robustness), also leading
to noticeable computational savings; the whole procedure (deter-
ministic plus robust design) involves 1,200 generations, taking no
more than 42,500 iterations.

Another key point is that the entire procedure permits the si-
multaneous realization of two major objectives: overall network
robustness can be improved and the most important mains in
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terms of network reliability may be identified from the difference
in the deterministic and stochastic solutions. Results illustrate the
procedure’s effectiveness in yielding information of practical en-
gineering value. Despite this, further applications and refinements
are warranted; in particular, implementation of other PDFs for
simulating uncertain input variables and testing different nodal
head distributions. In evaluating the promising results already
yielded by using the 3 PDFs, and in wishing to exploit available
knowledge about water demand behavior at specific nodes, it
could be interesting to try different 3 PDFs for different nodes,
bearing in mind that, if no specific knowledge is available, the 3
uniform PDF can work well. Further investigations could be per-
formed for larger networks to further assess the methodology’s
computational requirements. It is also possible to expand the
problem formulation to incorporate correlation among uncertain
variables, aiming to reproduce what is widely assumed as techni-
cally reasonable. Moreover, additional/alternative objective func-
tions, such as the maximization of average nodal robustness
within the network or use of three or more objective functions,
could be used in order to cope with scenarios in which there is no
obvious single critical node but several that are easily prone to
failure, and retain the procedure’s structure. Thus, the approach
could be a potentially reliable decision support tool in the right
applications, furnishing decision makers with an optimized trade-
off (Pareto optimal) curve between system design cost and robust-
ness that exposes opportunities for realizing cost savings that only
minimally impact robustness.

Notation

The following symbols are used in this paper:

A,, = general topological matrix;
A[,n,Anp,AI,O = topological incidence submatrices;
,» = diagonal matrix whose elements are R;|Q,["™";
a,b = parameters of the beta function or beta
probability density function;
D, = diameter of the ith pipe of the network;
H = vector of total network heads;

Q; = flow in the ith pipe of the network;
q vector of nodal demands (i.e., varying
according to some PDF);
q, nodal water demand at node j;
q;" = the uncertain value of water demand at node
E
R = network robustness;
R; = hydraulic resistance of ith pipe;
R!™ = uncertain value of hydraulic resistance of ith
pipe;
rg range of the beta PDF for uncertainty
simulation;
Sini initial threshold for the number of samples
for the uncertainty simulation;
S max maximum threshold for the number of
samples for the uncertainty simulation;
Smin minimum threshold for the number of
samples for the uncertainty simulation;
X independent variable of beta probability
density function;
Z; elevation of the jth node of the network
above datum;
Q; coefficient related to the confidence limit of
Eq. (10), assuming a Gaussian PDF;
o standard deviation value of probability
density functions; and
0 Zero matrix.
Operators
()7 = vector/matrix transpose operator;
beta(a,b) beta function;
C(v) adopted cost function for network design;
N(m,o) normal function having mean m and standard
deviation o; and
B(a,b) = beta probability density function.
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H, = vector of total fixed (i.e., known) network
heads;
H; = total head at the jth node of the network;
H"® = average value of total head calculated at node
J5
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j = matrix index for nodes;
L; = length of the ith pipe of the network;
m = mean value of beta probability density
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fixed level of service);
PDR = range of definition of the second objective
function in the procedure’s Phase 1;
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population for the MOGA optimization;
Q = vector of pipe flows;
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