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Abstract  
 
Hydraulic models are used widely to simulate the hydraulic performance of water distribution systems in 
both design and operational stages. These models have a significant role on decision making procedures. 
It should be noticed that the quality of model outputs are directly related to the quality of input data. 
However, because of several reasons such as change of pipes friction factors and diameter, nodal 
demands, etc., the output results are error prone. On the other hand the design’s criteria may be changed 
during operational period. Therefore, to improve the model performance and reduce the uncertainties 
during different consumptions procedures, it is necessary to calibrate these models. At the moment just a 
few commercial models such as WaterCAD which requires a considerable money expenditure are capable 
of calibration calculations (considering pipes friction factors or just nodal consumptions as the variable), 
besides the hydraulic analysis. In this research considering an optimization procedure using Genetic 
Algorithm, a computer code is prepared and linked to the hydraulic simulator (herein, EPANET) to 
calibrate the model. In this method some variables are considered: pipe friction factor (Hazen William 
Coefficient), nodal consumptions, combinations of both and pipe diameters. Finally to evaluate the 
advantages of the proposed methodology a test network is considered and the method is applied for 
different consumption scenarios.  
 
 
1. INTRODUCTION 
 
Today, with considering limited resources and increased necessities to water, optimized management and 
programming of available resources are inevitable. On the other hand, together with developing human 
knowledge, use of model for managing projects in different grounds has basic and determining role. In 
water distribution systems, models are used for different purposes. However, various factors always cause 
difference between reality and results of making similarity, including errors and presuppositions of design 
period, human and tool errors, false simplifying of a design, error in determining border conditions and so 
on. So, to be sure of model operation for different operating conditions, model calibration is necessary. In 
simple words, calibration process is the comparison of model results with field observations and as 
necessity adjusting data and primary information of analysis to obtain coordination between simulated 
and measured values in different conditions. 
 
About conditions, suitable time and place of collecting required data from considered system known as 
sampling design; done many investigations and recommended briefly to choose some places that at first 
decreases uncertainties in system modeling process for different conditions, secondly decreases expenses 
of getting data and studies as possible, (Kapelan et al., 2003). For adjusting parameters; although all the 
information that their quantities is together with uncertainty can effect on the results of hydraulic analysis, 
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but in most researches in order to simplify the work, tried to correct the effect of model and decrease 
errors only by adjusting the pipe friction factors, (Vassiljev et al., 2005). Till now different ways were 
applied for calibration of hydraulic analysis models that can be divided into three groups. In analytical 
methods, a try and error procedure in several repetitions is used to correct parameters, (Walski, 1983). In 
explicit methods, each considered parameter adds one equation to all equations of network, after that, 
equations are solved simultaneously, (Ormsbee and Wood, 1986). In implicit ones, the process declared 
as an objective function optimization with some constraints that their solutions cause to get indefinite 
parameters, (Walski et al., 2003). However, notice to this matter is necessary that most stated points have 
researching aspects and in a real network do not have required efficiency. Furthermore, for different 
reasons availability to models contain calibration features have expenditures such as WaterCAD model, 
(Haestad Methods, 2005). 
 
So, in this research considering an optimization procedure using Genetic Algorithm, a computer code is 
prepared and linked to the hydraulic simulator (herein, EPANET which is freely available) to calibrate the 
model. In this method some decision variables are selected: pipe friction factor (Hazen William 
Coefficient), nodal consumptions, combinations of both and pipe diameters. Finally, to evaluate the 
advantages of the proposed methodology a test network is studied and the method is applied for different 
consumption scenarios. 
 
 
2. PROBLEM DEFINITION 
 
The design of hydraulic model calibration as an optimization matter; has better development and speed in 
addition of accuracy than others, (Walski et al., 2003). In this relation, different researchers have given 
various functions and methods, (Vassiljev et al., 2005) and (Greco and Del Giudice, 1999). To compare 
kinds of functions, because of better efficiency, chosen a structure for optimization process given in 
equation (1): 
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In this equation N is the number of points which have a barometer and S is the number of pipes which 
have a flowmeter. Hcalc and Qcalc are nodal calculated heads and flow rates. Wn and Ws are weighted 
coefficients that can consider them as a function of headlosses and flow rates according to equation (2) 
and also WaterCAD model: 
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Where (Hloss)n is headlosses in a route to the place of barometer (n) and (Qobs)s is the flow rate in the pipe 
(s) divided into all measured headlosses and flow rates. The constraints of problem include: 1- Hydraulic 
limitations of system which the programming of hydraulic models principally bases on equations 
dominant on networks. 2- Implicit limitations: under each demand condition, pressure of junctions and 
flow in pipes place between minimum and maximum quantities (according to field studies and conditions 
on networks). 3- Explicit border limitations: determine the range of decision variables. 
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3. CALIBRATION TECHNIQUE 
 
In different researches, various approaches have been proposed for optimization process. But, because of  
considerable numbers of unknowns, existent uncertainty and difficulties in real water distribution 
systems, these methods have not appropriate efficiency. So, in following classic methods and together 
with increasing computer roles in solving complicated problems which have many decision variables, 
new techniques have been suggested and formulated. A statistical approach for optimization and search is 
Genetic Algorithm (GA) which is an applicable solution with high power to handle non-linear functions 
or constraints, (Haestad Methods, 2005). On this basis, GA is used to optimize above-mentioned function. 
 

Linking Process of Optimization Model and EPANET 
 
EPANET hydraulic simulator has been developed in C programming language and in some parts by the 
United States Environmental Protection Agency, (Rossman, 2000). But, account of complexities resulted 
in coordinating of different parts, model is planned as a source of orders and functions by using 
MATLAB7 programming language, then systems can be analyzed whenever required functions called. 
An input file (contains network features) and an output file was prepared in a special format and 
introduced to codes, after that it is possible to get results of analysis such as pressures at the location of 
nodes, flow rates in pipes and so on, (Jamasb, 2006). In optimization through genetic algorithm technique, 
value of decision variables will be adjusted in each generation and network analysis is done for all 
answers of populations and the objective function is calculated respectively. In this research, the 
optimization of problem is prepared by using genetic algorithm tool box in MATLAB7. After this, the 
program will be able to determine final value of variables automatically. 
 
 
4. APPLICATION 
 
To demonstrate the capability and feasibility of proposed procedure in calibration of EPANET model, one 
sample water distribution network has been investigated, applied trend on it and studied results. As 
information of networks is needed in different condition of consumptions for a complete comparison and 
study, considering these matters, many articles and researches were reviewed. The chosen pipe network 
shown in Figure 1 consists of 4 loops, 16 pipes, 12 nodes and a reservoir, (Lansey et al., 2001).  
 

 
Figure 1. Sample network schematic, (Lansey et al., 2001)  
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Input data and features related to nodes and pipes given in tables 1 and 2. Pressure head measurement at 
four nodes (2, 5, 9, 11) from four operating conditions, often occur in water distribution systems, were 
used for EPANET calibration. The maximum (or peak) and minimum (or slack) demand conditions are 
set by increasing and decreasing normal demand by 40 and 60 percent. The fire fighting condition is 
produced at node 3 and 8 at 127 lit/s with consumer withdrawal at all other nodes reduced 80% of normal. 
 

Table 1. Pipe data and measured pressures for application network 
Measured pressure (m) in different operating 

conditions of system 
Fire Flow Minimum MaximumNormal 

Node 
No. 

Normal 
Demand 

(lit/s) 

Node El. 
(m) 

Node 
No. 

0 45.7 1 
44 48.7 2 45.5 63.7 50.7 58.3 2 
41 50.3 3 
37 48.7 4 
31 45.7 5 39.8 66 47 59.4 5 
24 47.2 6 
24 44.2 7 
0 42.7 8 49.5 72 56.2 65.5 9 
27 39.6 9 
22 41.1 10 
0 44.2 11 51 68.4 56.2 63.4 11 
17 39.6 12 

A source reservoir (node number 13) with fixed grade at elevation 115.8 m. 
  

Table 2. Pipe distribution system characteristics 

8 7 6 5 4 3 2 1 Pipe No. 

762 1371 1676 1066 1676 1524 1524 3048 Length 
(m) 

152 305 356 305 356 406 457 610 Diameter 
(mm) 

90 90 120 120 100 100 110 110 CHW 

16 15 14 13 12 11 10 9 Pipe No. 

1219 1219 914 1676 1524 1981 670 1066 Length 
(m) 

406 305 356 305 356 457 381 305 Diameter 
(mm) 

90 100 100 120 100 110 90 90 CHW 
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In order to estimate the considered variables include Hazen-Williams roughness coefficient (CHW), nodal 
consumptions, combinations of both and pipe diameters; EPANET was calibrated by using measured 
pressures (in adjusting process) for four loading conditions. In applying the general calibration algorithm 
it is assumed that all the necessary field data are reliable. It is clear that the results being able to simulate 
other conditions in a system with lower error can be used effectively. Therefore, In order to evaluate the 
results, a factor named Mean Absolute Percentage Error (MAPE) will be used and described as equation 
(3). If mentioned factor closed to zero, it means that the results are more precise. 
 

 
(3) 

 
 

 
Where, n is the number of data, Actuali and Forecasti are the measured and simulated value of considered 
parameters (like pressure, flow rate and so on) at point i. After that, the results of EPANET calibration 
process for each four basic conditions is evaluated by putting them in the model to analyze (or forecast) 
other loading conditions (MAPE is calculated for nodes 2, 5, 9, 11 which have measured pressure). A 
summary of calculations is illustrated by using calibration process results in different basic condition of 
consumptions. Pipe friction factors (in Table 3), nodal consumptions (in Table4), combinations of pipe 
friction factors and nodal consumptions (in Table5) and pipe diameters (in Table 6) were assumed as 
uncertain variables. Detailed results are available in (Jamasb, 2006). It is concluded that applying the fire 
fighting condition and related observations while both of pipe friction factors and nodal consumptions 
considered as decision variables in the EPANET calibration conduce to more precise forecasts of different 
loading conditions on the system (minimum average errors in the calculated results, 1.113 percent in 
Table 5). Figure 2 and Figure 3 represent the results graphically. 
 
Moreover, estimation of calibrated model in the minimum demand condition as the base of adjusting 
process, have considerable error percentage, so it means that there is not a proper condition for 
calibration. 
 
In fact, by applying the fire flow condition that demands are altogether more than the other conditions in 
this sample, the pipe roughness and nodal consumptions which are two basic variables in determination of 
pipe network headlosses, play a special role and calibration results are much closer to reality. Indeed, 
water distribution networks should be designed to satisfy these requirements and in other conditions, the 
amount of headlosses and as a result roughness and consumption effects will lessen.  
 

Table 3. MAPE calculations whereas pipe friction factors are assumed as uncertain parameters  
Basic operating condition in calibration process 

Fire Flow Minimum Maximum Normal 

MAPE (%) MAPE (%) MAPE (%) MAPE (%) 

Condition of 
Modeling 

1.272 17.416 0.750 0 Normal 

1.128 36.637 0 1.751 Maximum 

2.842 0 2.787 2.912 Minimum 

0 58.294 2.639 2.169 Fire Flow 

1.310 28.087 1.544 1.708 Average MAPE 

1001

1
×

−
= ∑

=

n

i i

ii

Actual
ForecastActual

n
MAPE
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Table 4. MAPE calculations whereas nodal consumptions are decision variables  

 
Table 5. MAPE calculations whereas pipe friction factors and nodal consumptions are decision variables 

 

Basic operating condition in calibration process 

Fire Flow Minimum Maximum Normal 

MAPE (%) MAPE (%) MAPE (%) MAPE (%) 

Condition of 
Modeling 

1.603 17.412 0.746 0 Normal 

1.360 36.629 0.004 1.751 Maximum 

2.643 0 2.787 2.912 Minimum 

0.636 13.024 1.997 2.791 Fire Flow 

1.561 16.766 1.383 1.863 Average MAPE 

Basic operating condition in calibration process 

Fire Flow Minimum Maximum Normal 

MAPEPressure 
(m) MAPE Pressure 

(m) MAPE Pressure 
(m) MAPEPressure 

(m) 

Node 
No. 

Condition 
of 

Modeling 

57.96 48.55 58.31 58.3 2 

57.67 47.73 57.71 59.4 5 

65.71 53.28 65.47 65.5 9 
1.025 

63.22 

17.408 

54.14 

0.750 

63.34 

0 

63.4 11 

Normal 

50.06 32.5 50.7 50.69 2 

46.92 28.38 47 50.15 5 

56.64 33.46 56.2 56.25 9 
0.66 

55.96 

36.632 

39.03 

0 

56.2 

1.751 

56.31 11 

Maximum 

65.43 63.7 65.49 65.49 2 

67.82 66 67.83 68.14 5 

74.28 72 74.23 74.24 9 
2.766 

70.06 

0 

68.40 

2.787 

70.09 

2.912 

70.1 11 

Minimum 

45.5 32.81 46.84 45.45 2 

39.8 28.43 40.49 43.28 5 

49.5 34.37 48.68 50.18 9 
0 

51 

26.907 

40.49 

2.108 

52.07 

2.846 

51.59 11 

Fire Flow 

1.113 20.237 1.411 1.877 Average MAPE 
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Table 6. MAPE calculations whereas pipe diameters are assumed as decision variables  

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

  M
A

PE
  (

%
) 

Normal Peak Fire
Basic Condition in Calibration

 

Roughness Demand Roughness & Demand Diameter

 
Figure 2. Assessment of EPANET calibration process through different conditions and decision variables  

Basic operating condition in calibration process 

Fire Flow Minimum Maximum Normal 

MAPE (%) MAPE (%) MAPE (%) MAPE (%) 

Condition of 
Modeling 

1.056 17.420 0.745 0 Normal 

1.254 36.641 0 1.751 Maximum 

2.820 0 2.787 2.912 Minimum 

0 53.151 1.797 2.409 Fire Flow 

1.283 26.803 1.333 1.768 Average MAPE 

MAPE =1.113 % 
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Figure 3. EPANET calibration in minimum demand condition (base of process)  

 
Finally, as shown in Table 7, the network is simulated by true input values (presented in Tables 1 and 2) 
and the results are compared to calculations of analysis obtained from the parameter estimations when 
both of roughness and demand assumed as decision variables and applied fire fighting observations 
(require maximum demands and least errors). 
 

Table 7. The power and accuracy of developed program in EPANET calibration  

MAPE (%) 
Condition of Modeling

True values Calibration process 

Normal 0.049 1.025 

Maximum 1.753 0.660 

Minimum 2.912 2.766 

Fire Flow  2.242 0 

Average MAPE 1.73 1.113 
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5. CONCLUSIONS 
 
As a water distribution system executing requires considerable expenditures and the great importance of 
supplying water in an acceptable level for different purposes, it is necessary to simulate (and analyze) 
networks accurately. So, the computerized program developed herein (in MATLAB7 programming 
language and genetic algorithm technique) for determining pipe roughness coefficients, nodal demands or 
pipe diameters (through EPANET calibration process) offers a powerful approach to decrease the effects 
of uncertainties. Furthermore, by studying the common operating conditions in an example system 
demonstrated that, synchronized adjusting demands and roughness as decision variables and using the 
observations related to the fire fighting condition (with maximum demand) lead to more precise results in 
calibration of model and system simulations. 
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