
Optim Eng (2012) 13:219–246
DOI 10.1007/s11081-011-9141-7

On the optimal design of water distribution networks:
a practical MINLP approach

Cristiana Bragalli · Claudia D’Ambrosio ·
Jon Lee · Andrea Lodi · Paolo Toth

Received: 18 September 2009 / Accepted: 3 March 2011 / Published online: 23 March 2011
© Springer Science+Business Media, LLC 2011

Abstract We propose a practical solution method for real-world instances of a water-
network optimization problem with fixed topology using a nonconvex continuous
NLP (NonLinear Programming) relaxation and a MINLP (Mixed Integer NonLinear
Programming) search. Our approach employs a relatively simple and accurate model
that pays some attention to the requirements of the solvers that we employ. Our view
is that in doing so, with the goal of calculating only good feasible solutions, com-
plicated algorithmics can be confined to the MINLP solver. We report successful
computational experience using available open-source MINLP software on problems
from the literature and on difficult real-world instances. An important contribution of
this paper is that the solutions obtained, besides being low cost, are immediately us-
able in practice because they are characterized by an allocation of diameters to pipes
that leads to a correct hydraulic operation of the network. This is not the case for most
of the other methods presented in the literature.

Keywords Water network design · Mixed-integer nonlinear programming ·
Modeling · Computation

C. Bragalli
DISTART, University of Bologna, viale Risorgimento 2, 40136 Bologna, Italy
e-mail: cristiana.bragalli@mail.ing.unibo.it

C. D’Ambrosio · A. Lodi (�) · P. Toth
DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna, Italy
e-mail: andrea.lodi@unibo.it

C. D’Ambrosio
e-mail: c.dambrosio@unibo.it

P. Toth
e-mail: paolo.toth@unibo.it

J. Lee
IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA
e-mail: jonlee@us.ibm.com

mailto:cristiana.bragalli@mail.ing.unibo.it
mailto:andrea.lodi@unibo.it
mailto:c.dambrosio@unibo.it
mailto:paolo.toth@unibo.it
mailto:jonlee@us.ibm.com

220 C. Bragalli et al.

1 Introduction

The optimal design of a WDN (Water Distribution Network) consists, in its classical
formulation, of the choice of a diameter for each pipe, while other design properties
are considered to be fixed (e.g., the topology and pipe lengths). From a mathematical
viewpoint, we can cast the optimal design problem of a WDN as an MINLP (Mixed
Integer NonLinear Programming) problem in which the discrete variables select from
a set of commercially-available diameters, water flows and pressures must respect the
hydraulic constraints, and we seek to minimize the cost function which only depends
on the selected diameters. Note that no pumping operation to raise the head of the
reservoirs is considered in this paper.

Recently there has been renewed interest in optimal WDN design, due to emerging
issues related to water distribution systems; in particular, the gradual deterioration of
network pipes and the need for a more rational use of water resources has led to very
costly renovation activities.

Approaches in the literature use various combinations of linearization and relax-
ation, which lead to MILP (Mixed Integer Linear Programming), NLP (NonLinear
Programming) and meta-heuristic algorithms. We survey these approaches in Sect. 4.
In this paper we are interested in approaches exploiting mathematical-programming
formulations, and we consider two cases.

The MILP approach to our problem relies on using piecewise-linear approxima-
tions. If tractable, a solution of such a model would provide a global optimum of an
approximation to the real system. If accurate models are desired for a large network,
we are led to using a large number of binary variables (to manage the linear pieces).
This tends to lead to a very poor relaxation and ultimately an intractable model.

With an MINLP approach, we are led to a more natural model. Our view is that
by accurately modeling the nonlinear phenomena, we will have a model that will
provide an MINLP search with a good NLP relaxation. While foregoing any hope of
practically verifying MINLP global optimality of the best solution obtained, we are
able to find very good solutions to large real-world instances.

Our experiments were carried out using AMPL (Fourer et al. 2003) as an interface
to MINLP codes. In a preliminary version of this work Bragalli et al. (2006), we used
Leyffer’s code MINLP BB (Leyffer 1998, available from the University of Dundee)
as well as the—at that time new—CMU/IBM open-source MINLP code Bonmin
(Bonami et al. 2008; Bonami and Lee 2006; Bonmin v. 0.1), available from COIN-
OR. In fact, it was in the context of our investigations that Bonmin was adapted,
with the introduction of new features, for use on nonconvex MINLP problems.

Our modeling and solution methods were worked out with the target software in
mind (in particular, the branch-and-bound implementation in Bonmin (v. 0.1)), our
results were all obtained by implementing our special features within the develop-
ment (trunk) version of Bonmin. We note that the open-source nature of Bonmin
enabled us to rapidly test our ideas and then make them available to the develop-
ers and the users of Bonmin under the same open-source license used by Bonmin
(Common Public License Version 1.0 (CPL)).

Main contributions. The use of MINLP techniques and software for the practical
solution of optimal design of water distribution networks is the main contribution of
the present paper.

Optimal design of water distribution networks by MINLP 221

On the one side, mathematical programming techniques such as MILP and NLP
have been already used in this context, but previous such efforts considered relax-
ations of the problem or dealt with small-scale instances (see, Sect. 2 and Sect. 4.1
for details). On the other hand, meta-heuristic approaches considered medium- to
large-scale real-world instances of WDN, but of course without the flexibility and
accuracy of the mathematical modeling.

Due to very recent advances in MINLP software, we address WDN with MINLP
techniques which simultaneously allow us to handle the nonlinear and discrete parts
of the model accurately and provide an effective and reliable framework to perform
extensive, practical computation.

A second methodological contribution of the paper is on the development of tech-
niques to handle the nonconvexity of the model. The effectiveness of these tech-
niques is shown by the fact that, starting from the development version, they have
now been incorporated in the latest release of the successful open-source MINLP
software Bonmin (Bonmin v. 1.0).

Finally, an important characteristic of the solutions obtained is that, besides being
low cost, they are immediately usable in practice. The reason for that is twofold.
On the one hand, we explicitly take into account the operational constraints on the
speed of the water through the pipes. On the other hand, our solutions are naturally
characterized by an allocation of diameters to pipes that leads to a correct hydraulic
operation of the network. This last issue is discussed in details in Sect. 6.4, and it
is yet another important difference compared to meta-heuristic approaches whose
solutions require non-trivial postprocessing before they can be used in practice.

In Sect. 2, we formally set notation for specifying instances of the problem. In
Sect. 3, we describe the problem more fully, through a preliminary continuous model
and we discuss the two main modeling contributions of the paper, namely a continu-
ous objective function (see, Sect. 3.1) and a smooth (approximate) relaxation of the
pressure loss in water pipes (see, Sect. 3.2). In Sect. 4.1, we survey earlier approaches,
while in Sect. 4.2 we describe how we incorporate binary variables for the purposes of
then applying MINLP codes. In Sect. 4.3, so as to decrease the nonlinearity and non-
convexity, we describe a reparameterization of pipes dimension by (cross-sectional)
area, rather than diameter. In Sect. 5, we describe the results of computational exper-
iments and in Sect. 6 we evaluate these results with respect to different metrics and
characteristics. Finally, in Sect. 7 we draw some conclusions.

2 Notation

The network is oriented for the sake of making a careful formulation, but flow on
each pipe is not constrained in sign (i.e., it can be in either direction). The network
consists of pipes (arcs) and junctions (nodes). In the optimization, the pipes are to
have their diameters sized at minimum cost.

Sets:

E = set of pipes.
N = set of junctions.

222 C. Bragalli et al.

S = set of source junctions (also called reservoirs, S ⊂ N).
δ+(i) = set of pipes with tail at junction i (i ∈ N).
δ−(i) = set of pipes with head at junction i (i ∈ N).

Parameters:

len(e) = length of pipe e (e ∈ E).
k(e) = physical constant depending on the roughness of pipe e (e ∈ E).
dmin(e) = minimum diameter of pipe e (e ∈ E).
dmax(e) = maximum diameter of pipe e (e ∈ E).
vmax(e) = maximum speed of water in pipe e (e ∈ E).
dem(i) = demand at junction i (i ∈ N \ S).
elev(i) = physical elevation of junction i (i ∈ N \ S).
phmin(i) = minimum pressure head at junction i (i ∈ N \ S).
phmax(i) = maximum pressure head at junction i (i ∈ N \ S).
hs(i) = fixed hydraulic head of source junction i (i ∈ S).

For each pipe e, the available diameters belong to a discrete set of re elements. For
e ∈ E:

dmin(e) := D(e,1) < D(e,2) < · · · < D(e, re) =: dmax(e).

For each pipe e ∈ E, there is a cost function Ce() having a discrete specification as
a (typically rapidly) increasing function of diameter. That is, C(e, r) := Ce(D(e, r)),
r = 1, . . . , re , where:

C(e,1) < C(e,2) < · · · < C(e, re).

As mentioned in Sect. 1, different techniques to attack this problem have been
proposed in the literature. In particular, an interesting approach employs a so-called
“split-pipe model”: each pipe e is split into re stretches of unknown length, where re
is the number of possible choices of the diameter of pipe e, and variables model the
lengths of the stretches. It is not difficult to see that models of this type have the dis-
advantage of allowing solutions with several changes in the diameter along the length
of a pipe, i.e., the considered problem is a relaxation of the original one. Optimality
considerations lead to the conclusion that the diameters selected for each pipe can be
at most two (see, e.g., Fujiwara and Khang 1990). However, for very large instances
even splitting pipes in (only) two pieces can deteriorate the performance of the net-
work because of sometimes significant pressure loss at the junction of the stretches
(so-called “minor head losses”). Such losses are ignored by all of the optimization
models we are aware of.

3 A preliminary continuous model

In this section, we describe the problem, and at the same time we develop a prelim-
inary NLP relaxation. Our goal is to develop a smooth NLP formulation that accu-
rately models the problem.

Optimal design of water distribution networks by MINLP 223

Variables:

Q(e) = flow in pipe e (∀e ∈ E).
D(e) = diameter of pipe e (∀e ∈ E).
H(i) = hydraulic head of junction i (∀i ∈ N).

Simple bounds [Linear]:

dmin(e) ≤ D(e) ≤ dmax(e) (∀e ∈ E).
phmin(i) + elev(i) ≤ H(i) ≤ phmax(i) + elev(i) (∀i ∈ N \ S).
H(i) = hs(i) (∀i ∈ S).

The hydraulic head is the total energy per unit of weight of the water, and it is
expressed in terms of a height. Furthermore, the hydraulic head is the sum of pressure

head (ph), elevation head (elev) and velocity head (v2

2g
), all of which are measured in

units of length. Velocity head (kinetic energy) is usually ignored because is much
smaller than the elevation and pressure head (see Walski et al. 2001).

Flow bounds (dependent on cross-sectional area of pipe) [Smooth but nonconvex]:

−π

4
vmax(e)D

2(e) ≤ Q(e) ≤ π

4
vmax(e)D

2(e) (∀e ∈ E).

The formulation also considers the important design criteria relating to the maximum
velocity (vmax) of the water in the pipes that must not exceed an appropriate value.
Because the velocity is not an explicit variable of the model, this bound is expressed
as a function of the flow by using the relationship between flow, velocity and diame-
ter.

Flow conservation [Linear]:
∑

e∈δ−(i)

Q(e) −
∑

e∈δ+(i)

Q(e) = dem(i) (∀i ∈ N \ S).

For each node, the flow conservation constraints insure that the difference between
the sum of the pipe flows entering the node and the sum of the pipe flows exiting it is
equal to the water demand at the node (assumed positive when water is consumed).

Head loss across links [Nonsmooth and nonconvex]:

H(i) − H(j) = sgn(Q(e))|Q(e)|1.852 · 10.7 · len(e) · k(e)−1.852/D(e)4.87

(∀e = (i, j) ∈ E).

This last constraint models pressure loss in water pipes due to friction using the
empirical Hazen-Williams equation. For each pipe e, the equation uses a single con-
stant k(e) to characterize the roughness of the pipes inner surface which only depends
on the material the pipe is made. Introduced in 1902, the Hazen-Williams equation is

224 C. Bragalli et al.

an accepted model for fully turbulent flow in water networks (see Walski 1984) that,
because of its simplicity, has had large diffusion in hydraulic computations.

Diameter is bounded away from 0, so the only nondifferentiability is when the
flow is 0. Such a nondifferentiability is discussed in details in Sect. 3.2.

Objective to be minimized [Discrete]:

∑

e∈E

Ce(D(e)) len(e).

Because we only have discretized cost data, within AMPL we are fitting a poly-
nomial to the input discrete cost data to make a smooth working continuous cost
function Ce().

Our motivation for that is to use a smooth function to closely fit the discrete cost
data and the details of such a choice together with the relationship between con-
tinuous and discrete objective functions are discussed in the following section. In
addition, computational experiments comparing the two options are reported at the
end of Sect. 5.2.2.

3.1 Objective function

We have experimented with different fits: l1, l2 and l∞; with and without requiring
that the fit under or over approximates the discrete points. Requiring an under ap-
proximation makes our formulation a true relaxation—in the sense that the global
minimum of our relaxation is a lower bound on the discrete optimum. We use and
advocate weighted fits to minimize relative error. For example, our least-squares fit
for pipe e minimizes

re∑

r=1

1

C(e, r)2

[
C(e, r) −

(
te∑

j=0

β(j, e)

(
π

4
D(e, r)2

)j
)]2

=
re∑

r=1

[
1 −

(∑te
j=0 β(j, e)(π

4 D(e, r)2)j

C(e, r)

)]2

,

where te is the desired degree and β(j, e) are the coefficients of the polynomial1

approximating Ce .
We have experimented with several low-degree polynomials in order to find a sat-

isfactory approximation. Note that for each pipe of this instance, the set of diameters
is the same, thus we used the same continuous cost function for each pipe. The poly-
nomial that best fits our purposes especially for these important diameters is the one
of degree 7. Note that, we do not insure that the polynomial is increasing nor convex,

1Note that the least-square minimization is itself a nonconvex NLP that we solve to local optimality using
the open-source NLP solver Ipopt (Ipopt v. 3.5) which we use as an NLP solver throughout our work
(see Sect. 5.2).

Optimal design of water distribution networks by MINLP 225

and actually we do not even assume this for the data, though for the data sets that we
experimented with the discrete data are increasing.

We will come back to the choice of discrete vs continuous objective function in
Sect. 4.2 and we will report some computational experiments in Sect. 5.2.2.

Before ending the section we note that one drawback to using a low-degree poly-
nomial (for each pipe) to fit the discrete costs is that this would attain the correct
value of the objective function for each integer solution only if there is a low-degree
polynomial that has a relative error equal to 0. As this is unlikely, we may have to
make a compromise, in modeling the objective function, between modeling accuracy
and numerical behavior.

This difficulty can be overcome in an alternative manner. We can instead define
a continuous objective function so as to fit the discrete values C(e, r) using a cubic
spline for each pipe e. Each piece of a cubic spline is a degree-three polynomial that
passes between a pair of consecutive discrete points (D(e, r − 1), C(e, r − 1)) and
(D(e, r), C(e, r)) (e ∈ E, r = 2, . . . , re). The use of cubic splines guarantees that,
once an integer solution is found, its objective value is correct.

This piecewise definition of the function can be easily accommodated using a
modeling language like AMPL (which has a natural syntax for defining piecewise
functions). However, the NLP solvers, and in particular Ipopt (see Sect. 5.2), seem
to more easily manage a polynomial with high degree, as compared to re − 1 dif-
ferent polynomials pieces of degree 3, thus the experiments in Sect. 5 use the single
polynomial objective function with an algorithmic correction for taking into account
the original discrete one (see Sect. 5.2). We do note, however, that we believe that the
spline approach has considerable potential, but more work would be needed on the
side of NLP solvers to realize a computational benefit.

3.2 Smoothing the nondifferentiability

The main remaining modeling difficulty is to deal algorithmically with the absolute
value term in the head loss constraints. This term is nondifferentiable (at 0) but not
badly so. One possibility is to ignore the nondifferentiability issue, and just use a
solver that will handle it in its own way. This has the advantage of straightforward
implementation from AMPL and access to many NLP solvers (e.g., via NEOS NEOS
v. 5.0). Because our ultimate goal is, however, to employ available MINLP solvers,
we tested such a straightforward approach by using the MINLP solver Bonmin and
its default NLP solver Ipopt (see Sect. 5.2). As expected, Ipopt is unable to handle
such a nondifferentiable function, and it aborts the run immediately.

Thus, to accommodate the NLP solver, we had to smooth the nondifferentiability,
and in order to do that effectively, our main goal is not to provide a fully accurate ap-
proximation near 0 because it is well known that Hazen-Williams equation is in itself
a poor approximation of the real pressure loss for small values of the flow. Instead,
we smooth away the mild nondifferentiability by defining the head loss equation in a
piecewise manner, in such a manner as to have accurate evaluations of the function.
We insure the smoothness by matching function values as well as first and second
derivative at the breakpoints.

More precisely, let f (x) = xp (p = 1.852) when x is nonnegative, and f (x) =
−f (−x) when x is negative (x is standing in for Q(e)). This function misbehaves at

226 C. Bragalli et al.

0 (the second derivative does not exist there). Choose a small positive δ, and replace
f with a function g on [−δ,+δ]. Outside of the interval, we leave f alone. We
will choose g to be of the following form: g(x) = ax + bx3 + cx5. In this way, we
can choose a, b, c (uniquely) so that f and g agree in value, derivative and second
derivative, at x = |δ|. So we end up with a smooth-enough anti-symmetric function.
It agrees in value with f at 0 and outside [−δ,+δ]. It agrees with f in the first two
derivatives outside of [−δ,+δ].

Formally, it is easy to prove that:

Proposition 1 The unique polynomial g(x) = ax + bx3 + cx5 having f (x) = g(x),
f ′(x) = g′(x) and f ′′(x) = g′′(x) at x = |δ| is:

g(x) =
(

3δp−5

8
+ 1

8
(p − 1)pδp−5 − 3

8
pδp−5

)
x5

+
(

−5δp−3

4
− 1

4
(p − 1)pδp−3 + 5

4
pδp−3

)
x3

+
(

15δp−1

8
+ 1

8
(p − 1)pδp−1 − 7

8
pδp−1

)
x.

Proof Via simple calculation one simply has to equate: (i) g(δ) = aδ + bδ3 + cδ5 =
δp = f (δ), (ii) g′(δ) = a + 3bδ2 + 5cδ4 = pδp−1 = f ′(δ), and (iii) g′′(δ) = 6bδ +
20cδ3 = p(p − 1)δp−2 = f ′′(δ). This is now a square linear system in the a, b, c

variables. We solve it (symbolically), using Mathematica (see Mathematica v. 7.0).
Finally, we just observe that f and g are anti-symmetric, so we have the same

a, b, c for x = −δ. �

Figure 1, drawn for δ = 0.1, shows that g provides a good approximation of f .
Indeed the quintic curve fits very well on (−δ,+δ), and of course it matches up
to second order with the true function f at ±δ. This is all no surprise because we
are operating in a small interval of 0, and the function that we approximate is not
pathological. The NLP solvers that we have tested appear to respond well to this
technique, as does our MINLP solver itself, Bonmin.

Fig. 1 Smoothing f near x = 0

Optimal design of water distribution networks by MINLP 227

Piecewise constraints can be modeled in AMPL (see §18.3 of Fourer et al. 2003),
so we have the advantage of being able to use a variety of NLP solvers, as well as
a path to using Bonmin and MINLP BB, both of which are interfaced with AMPL.
Our experience is that the inaccuracy in using this smoothed function is minimal
compared to the other inaccuracies (e.g., numerical and modeling inaccuracies).

4 Models and algorithms

In this section we discuss how to turn our preliminary continuous NLP model into a
MINLP that behaves well computationally. For this purpose, we analyze some rele-
vant literature and we then discuss the discrete component of the problem.

4.1 Literature review

Optimal design of a WDN has already received considerable attention. Artina and
Walker (1983) linearize and use an MILP approach. Savic and Walters (1997) and
Cunha and Sousa (1999) work within an accurate mathematical model, but they use
meta-heuristic approaches for the optimization, and they work with the constraints
by numerical simulation. Fujiwara and Khang (1990), using the split-pipe model,
employ a meta-heuristic approach for the optimization, working with the constraints
by numerical simulation. Eiger et al. (1994) also work with a split-pipe model, but
they use NLP methods for calculating a solution. Sherali et al. (2001) also work with
a split-pipe model, and they successfully employ global optimization methods. Of
course, global optimization methods may become impractical for very large scale
instances. Lansey and Mays (1989) and Xu and Goulter (1999) also employ an NLP
approach, but they use an approximation of the split-pipe methodology (using just
two pipe sections). Because the split-pipe model is a relaxation of ours (we only
allow a single choice of diameter along the length of a pipe), results using such a
model are not directly comparable to ours.

In the rest of the paper, we develop an MINLP approach and compare it to the
MILP approach of Artina and Walker (1983). The MILP approach has the advantage
of correctly modeling the choices of discrete diameters with binary indicator vari-
ables X(e, r) representing the assignment of diameter D(e, r) to arc e. In this way
we can also easily incorporate costs for the chosen diameters. There is still the nonlin-
earity of the flow terms in the head loss constraints. Piecewise-linear approximation
of these nonlinear constraints is the standard MILP approach here. Unfortunately, the
resulting MILPs are typically very difficult to solve. The difficulty of the MILP mod-
els is related to the fact that once the diameters have been fixed, the objective function
is set, and a feasibility problem associated with the piecewise-linear approximation
must be solved, without any guidance from the objective function. It turns out that
linear-programming tools in such a context are not effective at all. Good feasible so-
lutions to the models are not always obtainable for even networks of moderate size.
Often one is lead to using very coarse piecewise-linear approximations to get some
sort of solution, but these tend to not be accurate enough to be considered truly feasi-
ble. Indeed, especially with few linearization points, the MILP may (i) generate flows

228 C. Bragalli et al.

that are not compatible with the selected diameters because the relation between these
variables is only approximated (so the flows computed with the real functions may
well be infeasible), and (ii) cut off some feasible (and potentially optimal) solutions.
Section 5 includes some of these rather negative computational results obtained with
the MILP approach.

4.2 Discretizing the diameters

We need an effective method for imposing the restriction that the diameter of each
pipe e ∈ E belongs to the discrete set of elements:

dmin(e) := D(e,1) < D(e,2) < · · · < D(e, re) =: dmax(e).

It would be natural and simple to handle this mostly at the level of the MINLP solver,
just pass these discrete values to the MINLP solver Bonmin via the modeling lan-
guage (AMPL), and let the MINLP solver construct a two-way branch for a continu-
ous diameter that is strictly between an adjacent pair of discrete choices. Though we
could make the necessary changes to the solver Bonmin, there does not appear to be
a clean way for AMPL to pass such information to the solver. Of course this could
be handled in an ad hoc manner, via an auxiliary file, but we prefer to do things in a
manner that can be easily and naturally applied to other MINLP solver.

So, for the present, we simply define additional binary variables X(e, r), where
X(e, r) = 1 indicates that diameter D(e, r) is selected for pipe e (r = 1, . . . , re,
e ∈ E). Then, we use the “SOS type-1” branching (see, Beale and Tomlin 1970)
that is available in Bonmin (Bonmin v. 1.0). As is standard, we use AMPL suffixes
to pass along the SOS information needed by the solver: .sosno (“SOS number”) is
used to group variables into separate SOS constraints and .ref (“reference value”) is
used to indicate the value symbolized by a variable. In this way, for e ∈ E, in AMPL
we naturally set:

X(e, r).sosno := e, for r = 1, . . . , re,

and

X(e, r).ref := D(e, r), for r = 1, . . . , re.

We note that with the introduction of these binary variables, we could use them
in the objective function and eliminate the need for the fitted objective function in-
troduced in Sect. 3. However, to do so would implicitly define a piecewise-linear
cost function for each pipe, and because of our reliance on NLP solvers that prefer
smooth functions, we stay with our method of handling the objective. Also, eventu-
ally we hope to eliminate the need to introduce these binary variables, in which case
our approach for the objective function would still be required. In any case, a detailed
computational comparison between the fitted objective function and the discrete one
is given at the end of Sect. 5.2.2.

Finally, we remark that in the preliminary report on our work (Bragalli et al. 2006),
we described a different method for handling the discrete nature of the diameters. At
that time, Bonmin was not yet able to handle SOS constraints, so we attempted
to approximate the behavior of SOS branching via a different definition of binary
variables and a judicious setting of branching priorities.

Optimal design of water distribution networks by MINLP 229

4.3 Parameterizing by area rather than diameter

We can use variables:

A(e) = cross-sectional area of pipe e (∀ e ∈ E),

rather than the diameter variables D(e) (e ∈ E). This allows us to eliminate the non-
linearities and nonconvexities of the flow bounds which then become:

−vmax(e)A(e) ≤ Q(e) ≤ vmax(e)A(e) (∀e ∈ E).

The other constraints remain substantially similar. The simple bounds become:

π

4
d2

min(e) ≤ A(e) ≤ π

4
d2

max(e) (∀e ∈ E),

and the head loss across links constraints are:

H(i) − H(j) = sgn(Q(e))|Q(e)|1.852 · 10.7 · len(e) · k(e)−1.852
(

π

4

)2.435

/A(e)2.435

(∀ e = (i, j) ∈ E).

Although the head loss equations remain nonlinear, note that the effect of the use
of areas instead of diameters is a perceptible reduction of the exponent of the design
variables. Namely, we have A(e)2.435 versus D(e)4.87. Ultimately, however, the deci-
sion between the area and the diameter parameterization is, as usual, computational.
We compared the two approaches with computational experiments and the diameter
approach returned the same solution as the area one for 3 instances over 9, a better
solution in other 3 instances, a worse one in one instance and numerical difficulties
in the remaining 2 instances. Overall, the average of the percentage deviation2 of
the best MINLP solutions computed for the diameter approach with respect to those
obtained with using the area is −0.16, i.e., the diameter parameterization is slightly
better but less stable because we are not considering the 2 problematic instances. In
addition, the average computing time to find the best solution for the 3 instances re-
porting the same solution (namely shamir, hanoi and blacksburg, described
in Sect. 5.1) is 737 seconds for the area formulation, and 1,802 seconds for the diam-
eter one. Although these results do not show a strict domination, we do prefer the area
parameterization that appears ultimately more stable and better from a mathematical
point of view. Thus, in Sect. 5.2.2 we report the results using the area parameteriza-
tion.

5 Computational experience

In this section we give detailed computational results on instances from both the liter-
ature and real-world applications. In particular, we concentrate on the MINLP com-
putation by discussing in detail the use of an open-source MINLP software, namely

2The percentage deviation of Algorithm A with respect to Algorithm B is computed as 100 × (value[A]−
value[B])/value[B].

230 C. Bragalli et al.

Bonmin and the way in which we improved its performance on our nonconvex ap-
plication.

Comparisons with results from the literature and a general evaluation of the quality
of the MINLP solutions is reported in Sect. 6.

5.1 Instances

Our data comprises 9 instances that capture different aspects of real-world networks.
In particular, these instances vary in size, type, number and diameter of the pipes
that can be installed. Moreover, some special requirements to be discussed below are
sometimes present.

The main characteristics of the instances are reported in Table 1.
For each instance, Table 1 reports the name and the numbers of junctions (in-

cluding the reservoirs), reservoirs, pipes and diameter choices. Moreover, the column
labeled “duplicates” indicates the number of pipes whose diameter is fixed but which
can possibly be duplicated by installing a new pipe (whose diameter must be deter-
mined) in parallel. Finally, the last column indicates which currency is used to express
the unit cost of the pipes, namely, US Dollar ($), Italian Lira (₤) and Euro (€).

The instances shamir, hanoi, blacksburg and New York are taken from
the literature, while the others are real-world instances of Italian water networks.3

For the instances from the literature, the only one that requires some preprocess-
ing of the data in order to fit into our definitions is New York which will be sep-
arately discussed below. However, the data for the instance blacksburg avail-
able from Sherali et al. (2001) was incomplete, and the final version of the instance
that we used and make available is certainly (slightly) different from the original
one. In particular, the missing data are the diameter sizes and their costs. To com-
plete the data of blacksburg, we then used diameters and costs from the instance
shamir.

Table 1 Water networks

name number of . . . unit

junctions reservoirs pipes duplicates diameters cost

shamir 7 1 8 – 14 $
hanoi 32 1 34 – 6 $
blacksburg 31 1 35 – 11 $
New York 20 1 21 21 12 $

foss_poly_0 37 1 58 – 7 ₤
foss_iron 37 1 58 – 13 €

foss_poly_1 37 1 58 – 22 €

pescara 71 3 99 – 13 €

modena 272 4 317 – 13 €

3All instances are available at www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm.

http://www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm

Optimal design of water distribution networks by MINLP 231

For the real-world instances, the three instances “foss_X” refer to a single neigh-
borhood of Bologna, called Fossolo. The instance foss_poly_0 consists of the
original data provided to us and the pipe material for that instance is polyethylene.
The instance foss_iron is for the same network, but with almost twice as many
choices of pipe diameters and with the material being cast iron. For the instance
foss_poly_1 the material for the pipes is again polyethylene but there are more
choices than foss_poly_0 for the pipe diameters.

The cost data for foss_poly_0 is out of date, and so the solution values can-
not be directly compared to those of foss_poly_1 and foss_iron, which, in
turn, can be reasonably compared. The value of the solution reported in Sect. 5.2 for
foss_poly_1 is much lower than for foss_iron. At first this seems surprising,
but it is because polyethylene is much cheaper than cast-iron.

Finally, pescara and modena are reduced versions of the water distribution
networks of two medium-size Italian cities. The pipe material is cast iron and both
costs and diameters are up-to-date values in the Italian market.

5.1.1 The famous New York instance

The New York instance was first introduced by Schaake and Lai (1969). The prob-
lem we need to solve for this instance is quite different from the original one. Given
an existing network, the objective is to “renovate” it by considering the increase of
the water demand due to the population growth. The existing network is no longer ad-
equate for the increased demand, resulting in pressure violations at several junctions.
Thus, the network must be modified by duplicating some of the pipes, i.e., putting
new pipes in parallel with the existing ones, at a minimum cost.

The decisions one has to take are:

1. Select the pipes that need to be duplicated;
2. For each of these pipes, choose a diameter within the available diameter set.

In other words, with respect to our model, one has to add the null value to the diameter
set: if such a null value is selected, it corresponds to the reverse of the decision 1
above, i.e., the pipe is not duplicated. However, such an explicit addition of the null
diameter requires relevant modifications (consider the head loss equations), and an
overall deterioration of our model. Thus, we decided to handle such a case by an
alternative method, along a line proposed by Schaake and Lai (1969). Note that this
approach was not presented and formally stated in Schaake and Lai (1969), but it can
be read from the code reported in that paper. For the sake of clarity and completeness,
we report it explicitly here.

The idea is to transform the problem, that includes the two decisions above, into
our original problem, thus avoiding the first decision. We can easily do it introducing
the equivalent pipe concept: We treat implicitly the two parallel pipes by means of
a unique equivalent pipe that reproduces the same behavior at the extreme junctions
of the pipe within the network. For each diameter of the duplicated pipe (including
the null one) there is a discrete equivalent diameter associated with the pair exist-
ing/duplicated pipes.

We can prove the following simple result:

232 C. Bragalli et al.

Theorem 2 For each pipe e ∈ E the new diameters and costs are, respectively:

Dnew(e, r) = (
Dfix(e)

4.87
1.852 + D(e, r)

4.87
1.852

) 1.852
4.87

Cnew(e, r) = C(e, r),

with r = 0,1, . . . , re and where Dfix(e) is the diameter of the existing pipe and
D(e,0) = C(e,0) = 0.

Proof Formally, for each existing pipe e ∈ E, we add two pipes e′ and e′′ corre-
sponding to the duplicated and equivalent pipes, respectively. First, note that the flow
through the existing and duplicated pipes must follow the same direction because
they have the same start and end junctions and, consequently, the same hydraulic
head which determines the flow direction. Thus, Q(e), Q(e′) and Q(e′′) agree in
sign and denote the flows over the corresponding pipes. In order to impose the above
described equivalence we must solve the following system of equations:

Q(e) + Q(e′) = Q(e′′),

H(i) − 10.7 · Q(e)1.852 · k(e)−1.852 · D(e)−4.87 · len(e) − H(j) = 0,

H(i) − 10.7 · Q(e′)1.852 · k(e′)−1.852 · D(e′)−4.87 · len(e′) − H(j) = 0,

H(i) − 10.7 · Q(e′′)1.852 · k(e′′)−1.852 · D(e′′)−4.87 · len(e′′) − H(j) = 0.

As required, these equations guarantee that, substituting the two parallel pipes with
the equivalent one, we obtain the same flow and the same head loss at the start and
end junctions.

The system above can be easily simplified by substituting out the flows:

(
H(i) − H(j)

10.7 · len(e)

) 1
1.852 · k(e) · D(e)

4.87
1.852 +

(
H(i) − H(j)

10.7 · len(e′)

) 1
1.852 · k(e′) · D(e′)

4.87
1.852

=
(

H(i) − H(j)

10.7 · len(e′′)

) 1
1.852 · k(e′′) · D(e′′)

4.87
1.852 .

Because len(e) = len(e′) = len(e′′) and, in this instance, k(e) = k(e′) = k(e′′), it
is easy to see that:

D(e′′) = (
D(e)

4.87
1.852 + D(e′)

4.87
1.852

) 1.852
4.87 ,

which proves the result. �

5.2 MINLP results

We have tested our approach by using (and modifying) the stable version the open-
source MINLP solver Bonmin (see Bonami et al. 2008; Bonami and Lee 2006)

Optimal design of water distribution networks by MINLP 233

which is distributed on COIN-OR (Bonmin v. 1.0). In the following we describe the
basic features of the solver and we report the computational results on the instances
described in Sect. 5.1.

5.2.1 Bonmin B&B algorithm description

Bonmin (Basic Open-source Nonlinear Mixed INteger programming) is an open-
source code for solving MINLP problems of the form:

min f (x)

gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU

x ∈ R
n

xi ∈ Z, ∀i ∈ I,

where the functions f : {x ∈ R
n : xL ≤ x ≤ xU } → R and g : {x ∈ R

n : xL ≤ x ≤
xU } → R

m are assumed to be twice continuously differentiable, and I ⊆ {1, . . . , n}.
There are several algorithms implemented within Bonmin:

B-BB, a simple branch-and-bound algorithm based on solving a continuous non-
linear program at each node of the search tree and branching on integer variables;
B-OA, an outer-approximation based decomposition algorithm;
B-QG, an outer-approximation based branch-and-bound algorithm;
B-Hyb, a hybrid outer-approximation/nonlinear programming based branch-and-
cut algorithm.

The different methods that Bonmin implements are exact algorithms when the
functions f and g are convex but are only heuristics when this is not the case. For
an MINLP having a nonconvex relaxation (like the WDN problem), the B-BB al-
gorithm should be used because the outer-approximation constraints are not nec-
essarily valid inequalities for the problem. Although even B-BB is only a heuris-
tic for such a nonconvex problem (the NLP problems at each node are not solved
to global optimality), Bonmin includes several options tailored to improve the
quality of the solutions it provides. First, in the context of nonconvex problems,
Ipopt (the Bonmin default NLP solver) may end up in different local optima when
started from different starting points. The two options num_resolve_at_root
and num_resolve_at_node allow for solving the root node or each node of the
tree, respectively, with a user-specified number of different randomly-chosen starting
points, saving the best solution found. Note that the function to generate a random
starting point is very naïve: it chooses a random point (uniformly) between the bounds
provided for the variable.

Secondly, because the solution given by Ipopt does not truly give a lower bound,
the user can adjust the fathoming rule to continue branching even if the solution
value to the current node is worse than the best-known solution. This is achieved by
setting allowable_gap, allowable_fraction_gap and cutoff_decr to
negative values.

234 C. Bragalli et al.

In the next section, we will describe how we used the options of Bonmin de-
signed for nonconvex problems and some modifications we implemented in Bonmin
specifically tailored for our WDN problem.

5.2.2 Improving Bonmin for WDN problems

As discussed in the previous section, Bonmin was originally developed for finding
globally-optimal solutions to MINLPs having convex relaxations. However, some
accommodations were made to handle nonconvex instances as well, already in the
first released version, namely Bonmin (v. 0.1). In fact, these accommodations were
developed and tested in the context of early stages of the present study. Additionally,
we made and tested two further modifications, to better handle nonconvexities. We
implemented these modifications by using the development version of Bonmin (the
so called “trunk” version). As anticipated, the first of these two additional features
(described in the following) has been already added to the current stable version of
the software, namely Bonmin (v. 1.0). Eventually, the second modification may be
adopted in a future release.

In particular, the following two main issues came up:

I.1 Properly evaluating the objective value of integer feasible solutions. In Sect. 3
we have introduced a new objective function so as to approximate the correct
(discrete) one. During preliminary computational experiments, we noted that such
an approximation sometimes has the effect of rejecting integer feasible solutions
having the approximated objective value worse than the incumbent but with a bet-
ter value with respect to the correct objective function. Such a behavior has been
corrected by allowing Bonmin to work with two objective functions: the first
one vfit (i.e., the smooth continuous approximation) is used to guide the search,
i.e., to fathom the nodes, while the second one vdisc (i.e., the correct discrete ob-
jective) is used to evaluate integer feasible solutions, so as to avoid disregard-
ing improving leaves. So, each time a new integer feasible solution, say xnew,
is found, the value of the discrete objective function is computed. In this way,
we work with two incumbent solutions, say xinc and x̄inc for vfit and vdisc, re-
spectively. For every feasible solution, we do update separately each of the in-
cumbents, if needed. More precisely, if vfit(x

new) ≥ vfit(x
inc) using a single ob-

jective function would have led us to discard the solution xnew. In fact, we do
test vdisc(x

new) with respect to vdisc(x̄
inc) and in case vdisc(x

new) < vdisc(x̄
inc)

we do update the discrete incumbent. In any case, vfit is used as primary objec-
tive function for fathoming fractional solutions at the nodes (see point I.2 be-
low).

I.2 Heuristically reducing the size of the search space. The released versions of
Bonmin statically define two parameters: The parameter cutoff is the value
of a known feasible solution (i.e., the incumbent), while cutoff_decr is the
value by which every new feasible solution should be improved with respect to
the current incumbent (i.e., the cutoff above). On nonconvex problems, cut-
off_decr is selected to be negative so as to act in a conservative manner with
nodes whose continuous solution is not-too-much-worse than the current incum-

Optimal design of water distribution networks by MINLP 235

Table 2 Characteristics of the 50 continuous solutions at the root node

% dev. % dev. % dev.

mean first min max std. dev. coeff. var. # fail # inf.

shamir 401,889.00 −4.880 −4.880 59.707 37,854.70 0.0941920 0 0

hanoi 6,134,520.00 −0.335 −1.989 2.516 91,833.70 0.0149700 0 0

blacksburg 114,163.00 1.205 −0.653 2.377 861.92 0.0075499 0 0

New York 82,646,700.00 0.605 −47.928 31.301 16,682,600.00 0.2018540 0 0

foss_poly_0 68,601,200.00 −1.607 −1.748 15.794 2,973,570.00 0.0433457 0 0

foss_iron 182,695.00 −2.686 −2.686 61.359 16,933.80 0.0926891 0 0

foss_poly_1 32,195.40 26.186 −17.193 42.108 4,592.63 0.1426490 0 0

pescara 1,937,180.00 −6.311 −6.596 54.368 274,956.00 0.1419370 0 0

modena 2,559,350.00 −0.254 −0.396 9.191 38,505.80 0.0150452 0 0

bent. However, we found out that such a static definition of cutoff_decr does
not fit our purposes because it is hard to define a unique value for all instances.
After preliminary computational testing, we implemented the following policy:
the root node continuous value is computed for 50 different starting points and
cutoff_decr is set as:

cutoff_decr := −V · f (σ), (1)

where V is the average of the 50 root node continuous values, σ ∈ [0,1] is the
coefficient of variation (standard deviation divided by the mean) of those values,
and

f (σ) :=
{

0.02, if σ < 0.1;
0.05, if σ ≥ 0.1.

In other words, the parameter is set taking into account how much different the
solutions at the root node are, so as to be more careful in fathoming a node when
such a difference is large. The characteristics of the instances with respect to the
50 continuous solutions computed at the root node using different random start-
ing points are given in Table 2. More precisely, Table 2 reports for each instance
the mean (mean), percentage deviation of the first solution found (% dev first),
percentage deviation of the minimum (% dev min) and the percentage deviation
of the maximum (% dev max) value of the continuous solution at the root note
over the 50 samples. The table then reports the standard deviation (std dev), the
coefficient of variation (coeff var) and finally the number of failures of Ipopt
(# fail) and the number of times the continuous problems turned out to be infeasi-
ble (# inf). Table 2 demonstrates that the way we have modeled the problem has
a stable behavior, in the sense that the continuous solutions never have numerical
difficulties nor turn out to be infeasible. On the other hand, the solution value de-
pends a lot on the starting point, and the most unstable instances are New York,
foss_poly_1 and pescara.

236 C. Bragalli et al.

Table 3 Computational results for the MINLP model (part 1). Time limit 7200 seconds

% dev.

vfit(x
best) vdisc(x̄

best) vfit(x̄
best)

shamir 400,749.77 419,000.00 0.000

hanoi 6,109,840.00 6,109,620.90 0.000

blacksburg 118,251.06 118,251.09 0.000

New York 39,569,920.48 39,307,799.72 0.550
√

foss_poly_0 69,161,700.00 70,680,507.90 0.000

foss_iron 179,134.00 178,494.14 0.015
√

foss_poly_1 29,016.60 29,117.04 0.000

pescara 1,850,720.00 1,820,263.72 0.193
√

modena 2,609,550.00 2,576,589.00 0.341
√

5.2.3 MINLP solutions

The results obtained using Bonmin (v. 1.0) are reported in Tables 3 and 4, running
the code with a time limit of 7,200 CPU seconds on a single processor of an Intel
Core2 CPU 6600, 2.40 GHz, 1.94 GB of RAM under Linux. In particular, Table 3
reports the best solution values computed for the instances in the testbed. The value of
the best solution with the fitted objective function (denoted as vfit(x

best)) is compared
with the value of the best solution found with respect to the true objective function
(denoted as vdisc(x̄

best)). In addition, we report the percentage deviation of the value
of the solution x̄best once mapped on the fitted objective function (denoted as % dev
vfit(x̄

best)). In particular, we marked (with a “
√

”) in the last column the four instances
for which values vfit(x

best) and vfit(x̄
best) are different, i.e., the instances in which the

use of both objective functions simultaneously had a very positive effect. Note that
a positive value for the percentage deviation indicates an improvement: the (true)
best solution would not have been found without modification I.1 because its fitted
value was in fact worse than the fitted value of the incumbent used by the algorithm.
Table 4 reports additional results on the same instances and with the same tuning of
the code. In particular, besides the best MINLP solution value with respect to the
true objective function (vdisc(x̄

best)) (same column of Table 3), we report the CPU
time in seconds to find such a solution (time) and percentage deviation of the best
MINLP solution value after 1,200 CPU seconds (denoted as % dev vdisc(x̄

first), recall
that the overall time limit is 7,200 CPU seconds). Finally, the last two columns report
the number of updates of the incumbent solution value for the fitted (# fit) and true
(# true) objective function, respectively. When such numbers are different for the
same instance, it means that using simultaneously two objective functions had an
effect, i.e., it changed the explored tree. Such instances are a superset of the four
marked in Table 3 with a “

√
” in the last column. Precisely, the effect of modification

I.1 above is crucial for the four instances New York, foss_iron, pescara and
modena, in which the final solution of the fitted objective function is not the best one
with respect to the discrete objective function. Moreover, Table 4 demonstrates that
besides the four above instances, the use of the two objective functions also has an

Optimal design of water distribution networks by MINLP 237

Table 4 Computational results for the MINLP model (part 2). Time limit 7200 seconds

% dev.

vdisc(x̄
best) time vdisc(x̄

first) # fit # true

shamir 419,000.00 1 0.000 2 2

hanoi 6,109,620.90 191 0.000 6 5

blacksburg 118,251.09 2,018 0.178 6 6

New York 39,307,799.72 5 0.000 5 6

foss_poly_0 70,680,507.90 41 0.000 3 3

foss_iron 178,494.14 464 0.000 11 11

foss_poly_1 29,117.04 2,589 0.119 5 5

pescara 1,820,263.72 2,084 0.724 7 8

modena 2,576,589.00 3,935 0.055 4 3

impact on the hanoi instance where, during the search, some solutions with good
value of the discrete objective function are kept. These solutions are not the best ones
at the end of the 2 hours time limit, but clearly they could have been with a different
time limit.

The effect of modification I.2 is, instead, an improvement for the instance
foss_poly_1: specifically, the solution significantly improves from 29,151.70 to
29,117.04.

Note that the solutions obtained within 20 minutes of CPU time (see Table 4) are
also very good and show how the MINLP search is effective also for short computing
times.

The overall behavior of the code is dependent on the search options that can be se-
lected among the Bonmin arsenal. In particular, the reported results are all obtained
with tree_search_strategy = dive and node_comparison = best-
bound which turned out to give the most stable and effective version. On the other
hand, slightly better results on single instances can be obtained with different para-
meters and in particular using node_comparison = dynamic.

A natural computational question is the impact of using the fitted objective func-
tion as compared to using only the discrete one. We performed an additional set of
experiments with the original discrete function and the results are reported in Table 5.
For the discrete case, we report in Table 5 the percentage deviation of the best solution
(denoted as % dev “discrete”) with respect to our best results vdisc(x̄

best) and the cor-
responding computing time to achieve the best solution. The table shows that on five
of the nine instances, the final solution using the discrete diameters is the same, but
the average computing time to find those solutions is 2,135.5 seconds as compared
to 535.8, i.e., it requires more time on average. For the four remaining instances,
the fitted objective approach provides a better solution than the one obtained using
the original discrete function. In summary, the algorithm using the discrete objective
function performs somewhat worse than the one with the fitted one, and in particular
this happens for the largest instances. This behavior is no surprise: in the discrete case
the continuous solution obtained by relaxing integrality is always much smaller than
the one for the fitted objective function because the piecewise-linear function can use

238 C. Bragalli et al.

Table 5 Computational results for the MINLP model comparing the fitted and the discrete objective
functions. Time limit 7200 seconds

% dev.

vdisc(x̄
best) time “discrete” time

shamir 419,000.00 1 0.00 4

hanoi 6,109,620.90 191 0.00 1,378

blacksburg 118,251.09 2,018 0.00 1,936

New York 39,307,799.72 5 0.00 198

foss_poly_0 70,680,507.90 41 0.57 5,514

foss_iron 178,494.14 464 0.00 7,161

foss_poly_1 29,117.04 2,589 0.18 2,811

pescara 1,820,263.72 2,084 2.12 690

modena 2,576,589.00 3,935 1.94 167

non-consecutive discrete values in the convex combination. This results in a much
larger search space to be explored because bad nodes might not be fathomed.

Finally, concerning the time limit of 7,200 CPU seconds, we note that it is reached
in all reported tests with different settings and options, the only exception being in-
stance shamir.

6 Evaluating the quality of the MINLP solutions

As explained in the previous sections, our aim has always been to be able to model in
a mathematically accurate way the real-world application at hand and simultaneously
finding “good” solutions in short computing times. Of course, there are several ways
of defining what “good” means and in the following we will consider four of them.
More precisely, in Sect. 6.1 we will discuss the computation of valid lower bounds
by using the Global Optimization software Baron (see, Tawarmalani and Sahinidis
2004). In Sect. 6.2 we will compare our MINLP solutions with others in the literature
obtained mainly by meta-heuristic methods. In Sect. 6.3 we will discuss a standard
linearization method to handle the nonlinear part of the problem, i.e., the Hazen-
Williams equations. Finally, in Sect. 6.4 we will show some interesting properties of
our solutions that make them immediately usable by practitioners.

6.1 Computing valid lower bounds with Baron

Currently Baron (see, Tawarmalani and Sahinidis 2004; Sahinidis and Tawarmalani
2005) is best software for global optimization. It uses: (i) under and over estima-
tors on low-dimensional functions to compute valid lower bounds for nonconvex
NLPs obtained by dropping the integrality requirements of nonconvex MINLPs, and
(ii) spatial branch-and-bound to iteratively improve the estimation quality and enforce
integrality.

Optimal design of water distribution networks by MINLP 239

Table 6 Computational results for the MINLP model comparing Baron and Bonmin (from Table 3)

Baron Bonmin

time limit 2 CPU hours time limit 12 CPU hours

UB LB UB LB vdisc(x̄
best) % gap

shamir 419,000.00 419,000.00 419,000.00 419,000.00 419,000.00 0.00

hanoi 6,309,727.80 5,643,490.00 6,219,567.80 5,783,950.00 6,109,620.90 5.63

blacksburg n.a. 55,791.90 n.a. 105,464.00 118,251.09 12.12

New York 43,821,000.00 29,174,000.00 43,821,000.00 29,174,000.00 39,307,799.72 34.74

foss_poly_0 n.a. 64,787,300.00 n.a. 64,787,300.00 70,680,507.90 9.10

foss_iron n.a. 170,580.00 n.a. 170,580.00 178,494.14 4.64

foss_poly_1 n.a. 25,308.20 n.a. 25,308.20 29,117.04 15.05

pescara n.a. 1,512,640.00 n.a. 1,512,640.00 1,820,263.72 20.34

modena n.a. 2,073,050.00 n.a. 2,073,050.00 2,576,589.00 24.29

Although global optimization is not in the scope of our work, we tested both
our instances from the literature and real-world instances with Baron v.8.5.1
to evaluate the difficulty of these instances and the quality of our solutions.

The results are reported in Table 6 where we used two different time limits of 2
and 12 CPU hours on an Intel Pentium IV with 3.00 GHz, 1 GB RAM under Linux.
The reason for using two different time limits was to understand the progresses of the
code, especially on the real-world instances (the lower part of the table). For each of
the instances Table 6 reports for Baron the best upper (UB) and lower (LB) bounds
for each time limit, and for Bonmin the best solution (as reported in Table 3), i.e., an
upper bound, within 2 CPU hours. The last column indicates the % gap of the feasible
solution obtained by Bonmin relative to the best lower bound computed by Baron.
Entries marked with “n.a.” indicate “not available”.

The results show that, except for three of the (smaller) literature instances, Baron
is unable to find any feasible solution, and for all (larger) real-world instances, the
lower bound after 12 hours has not improved compared to the one obtained after only
2 hours. Baron is able to solve the instance shamir to optimality, while the upper
bounds for the instances hanoi and New York are worse than the ones computed
by Bonmin.

The above results are not surprising: (i) we applied Baron as a black-box without
parameter tuning, and (ii) to compute valid bounds and prove optimality Baron has
to explore a much larger solution space—too large at the moment—for real-world
instances. Nevertheless, the % gaps of Bonmin upper bounds are very reasonable
with a maximum for the instance New York that has, as we already discussed, a very
special structure.

To give the reader an idea of how good the solutions we propose are, we report in
Table 7 the global optimum of the split-pipe relaxation for instances hanoi and New
York as computed by Sherali et al. (2001). We excluded shamir because we know
the global optimum. We excluded blacksburg because the data on the diameters
are different, thus the solution of the split-pipe approach is not comparable with our
solution. The lower bound given by the optimal solution of the split-pipe relaxation

240 C. Bragalli et al.

Table 7 Global optimum of the
split-pipe relaxation Baron Bonmin

LB vdisc(x̄
best) % gap

hanoi 6,055,536.31 6,109,620.90 0.89

New York 37,878,580.89 39,307,799.72 3.77

is stronger than the one provided by Baron, and it is clear that for both instances the
solutions we compute within the time limit are of very good quality.

6.2 Literature comparison

The comparison with “existing numbers”, i.e., with previous known solutions for the
benchmark instances, is in general very difficult because of different parameter sets
and coefficients used for the Hazen-Williams formula (see, e.g., the discussion in
Savic and Walters 1997). Despite such a difficulty, we report the following results.

1. For the small instance shamir, we find the optimal (as shown by the results of
Baron discussed in the previous section) solution.

2. On instance blacksburg we are not able to compare our results because: (i) the
only results are those reported in Sherali et al. (2001) which are obtained with
the split-pipe approach and (ii) part of the data was missing and, as mentioned in
Sect. 5.1, the instance we use is different from the one used in that paper.

3. As stated in Sect. 3, the set of coefficients we decided to use for the Hazen-
Williams equation is the one of Walski (1984). In order to provide an informa-
tive comparison with other authors on the remaining instances, namely hanoi
and New York, we ran our code by using each time the coefficient set proposed
in the paper to be compared. In particular, in Table 8 we compare our MINLP
approach with the approaches in the following papers:

• Savic and Walters (1997). In such a paper the authors analyze the results previ-
ously reported in the literature for the problem and define two different sets of
coefficients corresponding essentially to the most “relaxed” version of the em-
pirical formula for the Hazen-Williams equation and to the most “restrictive”
one. We consider in Table 8 both versions, denoted as “SW99 rel.” and “SW99
res.”, respectively.

• Dandy et al. (1996), denoted as “DSM96”.
• Cunha and Sousa (1999), denoted as “CS99”.

The MINLP solution obtained by our model using the above sets of coefficients is
as usual denoted as vdisc(x̄

best) in Table 8. An entry “–” in the table denotes that a
particular instance has not been considered in a specific paper.

Table 8 shows that our MINLP approach is able to find a solution at least as
good as the other approaches in all but one of the cases. More precisely, it im-
proves three times, it matches the same result twice and it is slightly worse com-
pared to “SW99 res.” on instance New York. This is a very satisfactory behavior
which proves that the approach is not affected by the coefficient sets used for the
Hazen-Williams equation.

Optimal design of water distribution networks by MINLP 241

Table 8 MINLP results compared with literature results

Savic and Walters (1997) Savic and Walters (1997) Cunha and Sousa (1999)

SW99 rel. vdisc(x̄
best) SW99 res. vdisc(x̄

best) CS99 vdisc(x̄
best)

hanoi 6.073 e+06 6.066 e+06 6.195 e+06 6.183 e+06 6.056 e+06 6.056 e+06

Savic and Walters (1997) Savic and Walters (1997) Dandy et al. (1996)

SW99 rel. vdisc(x̄
best) SW99 res. vdisc(x̄

best) DSM96 vdisc(x̄
best)

New York 37.13 e+06 36.38 e+06 40.42 e+06 40.47 e+06 38.8 e+06 38.8 e+06

Concerning the running times, in Savic and Walters (1997), the reported results
are obtained by several runs of 3 hours for each instance on a PC 486/DX2 50
computer. In Dandy et al. (1996), each run is of 50 minutes on a Sun Sparc 1 +
Station with the operating system SunOS 4.1. Finally, in Cunha and Sousa (1999),
the runs are of 2 hours on a Pentium PC at 166 MHz.

It is hard to compare these results because of the different computing platforms
but our algorithm is able to find the solutions for all sets of coefficients of hanoi
and New York within 1 minute of CPU time, thus showing a very competitive
behavior.

6.3 MILP results

The only details that are needed to implement the Artina and Walker (1983) MILP
approach for our problem concern the piecewise-linear approximation of the Hazen-
Williams equations. First, note that for every e = (i, j) ∈ E, we have to separately
consider the case in which the flow goes from i to j or vice versa. In other words, for
approximating the two parts of the curve described by the Hazen-Williams equation,
we need two separate sets of weights which are then combined by writing a unique
SOS constraint of type 2.

Second, for each of the two parts above, say from i to j , we have to decide how to
sample the curve so as to approximate it. In particular, for a fixed diameter value, we
plot the flow on the y-axis as a function of the head loss H(i) − H(j), on the x-axis.
Then, we compute an upper bound on the head loss value as:

�Hij (e) = min

{
max

{
(phmax(i) + elev(i)) − (phmin(j) + elev(j)),0

}
,

max
r=1,...,re

{
10.7 · len(e)

k(e)1.852 · D(e, r)4.87

(
π

4
D(e, r)2vmax(e)

)1.852}}
.

The second term of the above equation can be simplified by recalling that D(e,1) <

D(e,2) < · · · < D(e, re), and the bound can be rewritten as:

�Hij (e) = min

{
max

{
(Hmax(i) − Hmin(j)),0

}
,

10.7 · len(e)

k(e)1.852 · dmin(e)4.87

(
π

4
dmin(e)

2vmax(e)

)1.852}
,

where Hmax(i) := phmax(i) + elev(i) and Hmin(j) := phmin(j) + elev(j).

242 C. Bragalli et al.

The obtained interval [0,�Hij (e)] is then split in two parts [0, 1
3�Hij (e)] and

[1
3�Hij (e),�Hij (e)]. Within such intervals we perform uniform sampling by using

the same number of linearization points. This means, of course, that we have a better
approximation in the first part of the interval which is sensible because in the second
part the curve is more flat, thus easy to approximate well with few points.

Note that, the analogous upper bound computed in the reverse direction from j to
i, �Hji(e), only differs in the first term above. Moreover, both bounds �Hij (e) and
�Hji(e) are constant with respect to the diameter, i.e., the maximum value of the
head loss on the x-axis is the same for every curve obtained by fixing the diameter
value. In other words, the x-axis values of the linearization points are common to
each diameter, while the corresponding y-axis value changes.

The computational results, obtained by using such an MILP model and Ilog-Cplex
(v. 10.1) as MILP solver, are disappointing—in fact, this was our motivation for try-
ing an MINLP approach. The MILP problems are difficult to solve mainly because
once the diameters have been settled, the objective function is constant, and the model
reduces to a feasibility problem which approximates a pure NLP. It is not surprising,
then, that finding a feasible solution of a system of nonlinear equalities with a stan-
dard MILP technique is not a good idea. Note that, when the diameters/areas are fixed,
the feasibility problem reduces to a system of |E| + |N\S| equations in |E| + |N\S|
variables, plus, in our model, there are inequalities corresponding to the bounds on
the variables which have to be satisfied.

Moreover, the MILP approach is heavily dependent on the quality of the approxi-
mation of the nonlinear component. If such an approximation is of high quality (i.e.,
the number of linearization points is large), no MILP feasible solution (i.e., a solution
which satisfies with the default tolerance of 10−6 the constraints of the MILP model)
can be found by Ilog-Cplex (v. 10.1) within reasonable CPU times: from a few hours
for the small networks up to days for the larger ones. In other words, the models are
not useful because they cannot find even feasible solutions in reasonable computing
time.

Otherwise, with a rough approximation, the situation becomes even more com-
plicated. Let us consider for example instance hanoi. The MILP model obtained
with 14 linearization points (7 for each direction i to j and j to i) is solved to opti-
mality by Ilog-Cplex (v. 10.1) in around 40 CPU minutes, and the solution has value
6,170,269. Such a solution is worse than the one obtained with the MINLP approach
(6,109,620.90), and it is slightly NLP infeasible once the corresponding set of diam-
eters is given to the NLP solver Ipopt. In addition, we fixed the diameters corre-
sponding to the MINLP solution into the MILP model and realized that the solution
is indeed infeasible for such a rough approximation. In fact, this set of diameters
becomes feasible only using at least 170 (!!) linearization points. However, as men-
tioned above, solving the complete MILP model obtained using 170 points is out of
the question even for a small-/medium-size instance as hanoi.

The trend outlined above is confirmed on the other 8 instances in our data
set. Going from the smallest to the biggest, the only instance for which the
MILP approach is effective is shamir which is small and easy enough to be
solved with good accuracy and quality by using 14 linearization points; the
value of 419,000 is proven to be optimal in a few seconds. For blacksburg,

Optimal design of water distribution networks by MINLP 243

which is still pretty small, we used 30 linearization points, and the first feasi-
ble solution (with the discussed approximation) is obtained after 2 hours of CPU
time. The best solution found within a time limit of 48 CPU hours has value
129,280.60, which is larger than the best MINLP solution of value 118,251.09.
Approximating this instance seems to be rather hard; the MINLP diameter set
is not feasible for the MILP model even allowing 4,000 linearization points.
For New York, we used 30 linearization points, and the first feasible solu-
tion is obtained after 3 minutes, but its value is quite bad (61,382,605.6). After
2 CPU hours, the best solution value is 43,317,003.3 which becomes 40,474,098.3
after 2 days. Anyway the best solution found by the MINLP approach is not feasible
for the MILP approximation considering less than 90 linearization points. If we run
the MILP model with 90 linearization points, we are able to find the first feasible
solution after more than 20 minutes (1,479 seconds, value 65,819,089.9), but after
3 hours we have still a quite bad solution (value 46,045,781.3). Even worse results
are obtained for the real-world instances in the fossolo set and for pescara and
modena.

It is reasonable to ask if these disappointing MILP results depend on the toler-
ance/accuracy required by the MILP solver, which might be too high compared to
those of the MINLP solvers. We extensively experimented with different tolerance
values by also using as a guidance the “FeasOpt” feature of Ilog-Cplex (v. 10.1). In-
deed, “FeasOpt” heuristically gives a measure of the amount of relaxation of the con-
straints (in terms of sum of the artificial variables introduced to make the constraints
slack) that is needed to make a model feasible. Essentially, one either increases the
quality of the approximation with more linearization points or decreases the integer
and feasibility tolerance of the solver. However, the results in the latter case might
not be very meaningful. For example, for the New York instance, to make the best
MINLP solution feasible for MILP using only 14 linearization points, one needs to
set the integer tolerance to 10−1; with, instead, 50 linearization points, an integer tol-
erance of 10−2 suffices. Such very large tolerances admit not only our (truly feasible)
MINLP solutions as feasible solution, but they also allow many truly infeasible con-
figurations which have to be discarded a posteriori, thus making the overall approach
not practical.

6.4 Practical use of the MINLP solutions

The analysis of the best MINLP solutions for the considered instances shows con-
figurations in which the size of the selected diameters decreases from the reservoir
toward the parts of the network farther away from the inlet point. This characteristic
of the allocation of diameters to pipes plays in favor of a correct hydraulic operation
of the network and has a beneficial effect on water quality, see, e.g., the discussion
in Van Den Boomen et al. (2004). This is depicted in Fig. 2 where the size of each
diameter is proportional to the thickness of the arc4. It is easy to see that there are no

4In Fig. 2 diameters are expressed in meters, and the diameter is equal to 0.06 for the pipes without explicit
number, i.e., the minimum diameter permissible for this data set.

244 C. Bragalli et al.

Fig. 2 Solution for Fossolo network, version foss_iron

pipes having large diameters isolated in the network. Such a characteristic, very ap-
preciated by practitioners, does not normally occur when the design is done by a sort
of “generate and test” approach in which configurations are produced within a naïve
genetic-algorithms framework and then simulated for feasibility by using EPANET
(EPANET v. 2.0).5 However, that is the approach commonly used in practice, and it
requires considerable postprocessing for correcting configurations that are trivially
non-optimal with pipes having diameter significantly different from the surrounding
ones. In such a postprocessing, the arcs might be analyzed one-by-one in the attempt
of reducing the size of their assigned diameters. We denote as 1-optimal a solution
in which the size of the diameter D(e, i) of a single pipe e cannot be reduced to the
value D(e, i − 1). Instead, the structure of the solutions obtained by our algorithm
reflects such a general design criterion widely used by practitioners and represents
an interesting indicator of the strength of the proposed approach. The solution de-
picted in Fig. 2 is ready to be used in practice without any postprocessing, i.e., it
is 1-optimal. In practice, it never happened in our large set of experiments that the
algorithm returned as a best incumbent a non 1-optimal solution.6

5EPANET is free software distributed by the US Environmental Protection Agency.
6The solutions of the entire testbed can be found in the same repository of the instances.

Optimal design of water distribution networks by MINLP 245

7 Conclusions

In this paper we have been able to get effective solutions, both in terms of quality and
accuracy, to practical instances of water-network optimization problems. Although
Mixed Integer Linear Programming models were known since the 80s for the prob-
lem, those models are very difficult to solve by sophisticated MILP solvers because
they are somehow unnatural. A much more natural Mixed Integer Non Linear Pro-
gramming formulation allowed us to find the above mentioned good solutions in very
reasonable computing times. In addition, these solutions are immediately usable in
practice (as discussed in Sect. 6.4) because they are characterized by an allocation of
diameters to pipes that leads to a correct hydraulic operation of the network. This is
not the case for most of the other methods presented in the literature.

These successful results were achieved in two stages:

1. In a first phase, we could obtain from reasonable to good results with very low
development time mainly because of the availability of software for finding good
solutions to MINLP problems and the easy interface to such software via the mod-
eling language AMPL.

2. In a second phase, we moved to a more sophisticated analysis of both the model
and the algorithm, and we have been able to improve over the initial results signif-
icantly by using special-purpose modeling tricks and by contributing to the open-
source platform provided by the software Bonmin with effective adaptations to
deal with nonconvex MINLPs and multiple objective functions. These algorith-
mic ideas developed in the context of this work are now mostly part of the current
version of Bonmin and this is a significant methodological contribution of our
paper.

The code developed in this project is part of the current release of Bonmin
(v. 1.0) for further use in different applications. Our belief is that such a success
can be obtained within the same framework for other instances of optimization prob-
lems having significant discrete and nonlinear aspects.

Acknowledgements We thank Pierre Bonami and Andreas Wächter for helping us to use Bonmin
in the best possible way. The last two authors are partially supported by “Ministero dell’Università e
della Ricerca” (MIUR), Italy. We thank Stefan Vigerske for interesting discussions on the subject and for
helping us to compute the lower bounds with Baron. We finally thank two anonymous referees for useful
comments that helped improve the paper presentation.

References

Artina S, Walker J (1983) Sull’uso della programmazione a valori misti nel dimensionamento di costo
minimo di reti in pressione. Atti Accad Sci Ist Bologna, Serie III, vol 271(X) (in Italian)

Beale E, Tomlin J (1970) Special facilities in a general mathematical programming system for non-convex
problems using ordered sets of variables. In: Lawrence J (ed) Proc of the 5th int conf on operations
research, pp 447–454

Bonami P, Lee J (2006) Bonmin users’ manual. Tech rep
Bonami P, Biegler L, Conn A, Cornuéjols G, Grossmann C, Laird I, Lee J, Lodi A, Margot F, Sawaya N,

Wächter A (2008) An algorithmic framework for convex mixed integer nonlinear programs. Discrete
Optim 5:186–204

246 C. Bragalli et al.

Bonmin (v. 0.1) https://projects.coin-or.org/Bonmin
Bonmin (v. 1.0) https://projects.coin-or.org/Bonmin
Bragalli C, D’Ambrosio C, Lee J, Lodi A, Toth P (2006) An MINLP solution method for a water network

problem. In: Azar Y, Erlebach T (eds) Algorithms—ESA 2006. Lecture Notes in Computer Science,
vol 4168. Springer, Berlin, pp 696–707

Cunha M, Sousa J (1999) Water distribution network design optimization: simulated annealing approach.
J Water Resour Plan Manag, Div Soc Civ Eng 125:215–221

Dandy G, Simpson A, Murphy L (1996) An improved genetic algorithm for pipe network optimization.
Water Resour Res 32:449–458

Eiger G, Shamir U, Ben-Tal A (1994) Optimal design of water distribution networks. Water Resour Res
30:2637–2646

EPANET (v. 2.0) www.epa.gov/ORD/NRMRL/wswrd/epanet.html
Fourer R, Gay D, Kernighan B (2003) AMPL: a modeling language for mathematical programming, 2nd

edn. Duxbury Press/Brooks/Cole Publishing Co., N. Scituate
Fujiwara O, Khang D (1990) A two-phase decomposition method for optimal design of looped water

distribution networks. Water Resour Res 26:539–549
Ilog-Cplex (v. 10.1) www.ilog.com/products/cplex
Ipopt (v. 3.5) https://projects.coin-or.org/Ipopt
Lansey K, Mays L (1989) Optimization model for water distribution system design. J Hydraul Eng

115:1401–1418
Leyffer S (April 1998; revised March 1999) User manual for MINLP_BB. Tech rep, University of Dundee
Mathematica (v. 7.0) www.wolfram.com/products/mathematica/index.html
NEOS (v. 5.0) www-neos.mcs.anl.gov/neos
Sahinidis NV, Tawarmalani M (2005) BARON 7.2.5: global optimization of mixed-integer nonlinear pro-

grams, User’s Manual
Savic DA, Walters GA (1997) Genetic algorithms for the least-cost design of water distribution networks.

J Water Resour Plan Manag 123:67–77
Schaake JCJ, Lai D (1969) Liner programming and dynamic programming application to water distribution

network design. Report 116, Hydrodynamics Laboratory, Department of Civil Engineering, School
of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Sherali HD, Subramanian S, Loganathan GV (2001) Effective relaxation and partitioning schemes for
solving water distribution network design problems to global optimality. J Glob Optim 19:1–26

Tawarmalani M, Sahinidis NV (2004) Global optimization of mixed-integer nonlinear programs: a theo-
retical and computational study. Math Program 99:563–591

Van Den Boomen M, Mazijk AV, Beuken R (2004) First evaluation of new design concepts for self-
cleaning distribution networks. J Water Supply, Res Technol, AQUA 53(1):43–50

Walski T (1984) Analysis of water distribution systems. Van Nostrand Reinhold Company, New York
Walski T, Chase D, Savic D (2001) Water distribution modeling. Haestad Methods, Waterbury
Xu C, Goulter I (1999) Reliability-based optimal design of water distribution networks. J Water Resour

Plan Manag 125:352–362

https://projects.coin-or.org/Bonmin
https://projects.coin-or.org/Bonmin
http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html
http://www.ilog.com/products/cplex
https://projects.coin-or.org/Ipopt
http://www.wolfram.com/products/mathematica/index.html
http://www-neos.mcs.anl.gov/neos

	On the optimal design of water distribution networks: a practical MINLP approach
	Abstract
	Introduction
	Notation
	A preliminary continuous model
	Objective function
	Smoothing the nondifferentiability

	Models and algorithms
	Literature review
	Discretizing the diameters
	Parameterizing by area rather than diameter

	Computational experience
	Instances
	The famous New York instance

	MINLP results
	Bonmin B&B algorithm description
	Improving Bonmin for WDN problems
	MINLP solutions

	Evaluating the quality of the MINLP solutions
	Computing valid lower bounds with Baron
	Literature comparison
	MILP results
	Practical use of the MINLP solutions

	Conclusions
	Acknowledgements
	References

