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The structure and operation of water distribution systems is explained briefly, and the basic 
mathematical tools used to analyze their physical behaviour are outlined. Methods for optimal 
planning, design and operation are presented and discussed. They are grouped according to 
the engineering problem which they address and to the method of solution. This survey is 
given at a level of detail which should suffice to understand each method and appreciate its 
potential and deficiencies. For more detail, or for actual implementation one has to refer back 
to the original works, which are listed at the end of the paper. 
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1. Introduction 

This  p a p e r  is a su rvey  of  o p t i m i z a t i o n  m e t h o d s  a pp l i e d  to p r o b l e m s  of  w a t e r  

d i s t r ibu t ion  s y s t e m s  engineer ing .  F o r  peop l e  engaged  in this  field of  eng ineer ing  

it cons t i t u t e s  a ca ta log  of  tools  p r e s e n t l y  at  out  d i sposa l  to r each  op t ima l  

so lu t ions  fo r  p r o b l e m s  which  have  p r e v i o u s l y  been  dea l t  wi th  by  eng ineer ing  

j u d g e m e n t  and  the use  of  some  ana ly t i ca l  tools ,  F o r  t hose  in t e re s t ed  in opt i -  

miza t ion  m e t h o d s  and  thei r  a p p l i c a t i o n s  in o the r  a reas ,  the  m e t h o d s  which  have  

been  d e v e l o p e d  spec i f ica l ly  fo r  w a t e r  d i s t r ibu t ion  s y s t e m s  m a y  have  po ten t i a l  

e i ther  for  d i r ec t  app l i ca t i on  to o t h e r  a r e a s  or  as sou rces  o f  ideas  for  fo rmula t ing  

and so lv ing  o t h e r  p r o b l e m s .  

The  fo l lowing  sec t ion  is d e v o t e d  to a b r ie f  d e s c r i p t i o n  of  the  bas ic  m a t h e m a -  

t ical  tools  u sed  in the  ana lys i s  o f  w a t e r  d i s t r ibu t ion  s y s t e m s .  C o m p o n e n t s  of  

such s y s t e m s  and  the i r  phys i ca l  l aws  are  p r e s e n t e d ,  and  it is exp l a ined  how 

s t e a d y  s ta te  f low so lu t ions  are  ob t a ined .  The  nex t  sec t ion  ou t l ines  the t y p e s  of  

p r o b l e m s  f a c e d  by  the eng inee r  in p lann ing ,  des ign  and ope ra t i on .  This  sets  the 

s tage for  the  ma in  b o d y  of  the  pape r ,  in which  o p t i m i z a t i o n  m e t h o d s  are  

p r e s e n t e d  and  d i s cus sed .  T h o s e  m e t h o d s  which  are  c o n s i d e r e d  to be mos t  

r ead i ly  a p p l i c a b l e  to real  wor ld  p r o b l e m s  are  d e s c r i b e d  in g r e a t e r  deta i l ,  while  

o the r s  a re  i nc luded  main ly  for  c o m p l e t e n e s s .  The  d i s t inc t ion  o b v i o u s l y  ref lec ts  

the a u t h o r ' s  op in ions ,  which  m a y  not  be sha red  by  o thers .  
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The paper  concludes with an analysis of certain problems of water  distribution 
systems engineering for  which approaches  or operational optimization tools are 
still missing, to which future work should be directed. 

The extensive list of  references  at the end of this paper  should aid in directing 

the interested reader  to the original works,  which contain more detail about  the 
methods and their application. 

2. Mathematical models for steady-state analysis 

Water  distribution sys tems are designed to deliver water  f rom sources to 
consumers  through pipeline networks equipped with a variety of  c o m p o n e n t s - -  

pumps,  valves of various types, reservoirs ,  etc. The mathematical  model of a 
network consists of links connected at nodes. Nodes are points at which two 
elements  connect,  or at which a flow enters or leaves the network.  To maintain 
mathematical  tractabili ty it is cus tomary  to model only the major  structure 

using some appropr ia te  representat ion of the detailed structure of the actual 
system. For example,  it is cus tomary to include in the model only pipes above 

some minimum diameter ,  and also to lump withdrawals taken along the pipes and 
assign them to the nodes. 

At each node we define the head and the consumption. The head is a measure  
of the energy per unit weight of water. It is measured by the elevation to which 
the water  would rise in a stand-pipe at that point, and is the sum of the 
topographic elevation, the pressure and velocity heads (the latter is usually 

negligible). While there exists a head at any point along a pipe we shall refer  by 
"heads"  to the set of values at the nodes. At certain nodes there are inputs of 
water  into the system. At others there are consumptions, which are viewed as 

negative inputs. 
Each link is character ized by  a physical law which relates the flow through it 

to the head difference between its ends. For  pipes there are several  empirical 
flow equations; one commonly  used is the Hazen-Wil l iams equation: 

Q = aCHwDZ63(AH/L) ~ (1) 

where Q is the discharge; CHW a smoothness  coefficient (the Hazen-Wil l iams 
coefficient); D the diameter,  AH the head difference between the two end nodes, 
and L the length, t~ is a numerical coefficient, whose value depends on the units 
used. (For Q in m3/sec and D in cm a -- 5.4 • 10 3; for Q in cfs and D in inches 
a = 6.28 • 10-4). AH[L  is the hydraulic gradient,  later denoted J. 

For centrifugal pumps,  the head added by the pump, AH, is usually ap- 

proximated by a polynomial  of the fo rm 

AH = a + bQ + cQ 2. (2) 

Every  other type of e lement  has its own law. Reservoirs  are connected at nodes; 
the water  level in the reservoir  is the head at the node. 



U. Shamir/ Water distribution systems 67 

The mathematical  model of the network is a set of simultaneous non-linear 
algebraic equations,  which correspond to a steady-state flow in the network 
under fixed boundary  conditions: a set of inflows and consumptions  at the nodes 

and a set of  fixed heads at specified nodes. The solution of these equations is 
called a steady-state flow solution. There are two basic types of  equations: node 
equations and path equations. The first express material  continuity at a node. 
For node j: 

~] Q;j + I i = 0 (3) 
i 

where Qii is the flow from node i to node j, and // is the inflow into node j. 

Consumptions  (withdrawals) are denoted by C /and  appear  as negative values of 
/j. 

Path equations equate the head difference, bp, between the end nodes of  path 
(p) in the network to the sum of head gains and losses in all links belonging to 

this path: 

~] AH, i = b~ (4) 
(i,j)~p 

A path may connect  any two nodes. Usually path equations are formulated 
between pairs of nodes at which the heads are known. A special case are loop 
equations, where the two ends are at the same node, and then bp = 0. 

There are many  different ways to construct  the mathemat ical  model. In a 
network with N nodes, a set of  N node equations fully determines the flow 
solution, provided one head (a reference head) is given. When loop equations are 
used one needs as many equations as there are basic loops, i.e., loops which do 

not have pipes intersecting them. General  path equations can be formulated in 
many ways and the rule is that they should be mutually independent.  Any one of 

these formulat ions can be used to obtain the flow solution, i.e. the heads and 
flows throughout the network. The set of  simultaneous non-linear algebraic 

equations can be solved by an appropriate  iterative t echn ique - -Hardy -Cros s ,  
Newton -Raphson  or linearization ([34, 35, 36]). 

When the network is t ree-shaped and has no loops - -which  is common in 
irrigation s y s t e m s - - o n c e  the inputs and withdrawals are fixed the flows in all 
links are known and the flow solution (i.e. the heads at the nodes) is trivial. 

When there is internal storage in the system, i.e. there are operational 
reservoirs,  then the sequence of flow solutions for varying withdrawals over  

time (e.g. a day) is of importance.  Subsequent  flow solutions are linked through 
the changes in water  levels in the reservoirs.  Simulation of such a sys tem's  
operation is carried out by obtaining a flow solution for  the initial boundary 
conditions, the resulting flows are used to update reservoir  levels, then these 
levels are used as boundary conditions for the next flow solution, and so on. 

Readers interested in methods and programs for flow solutions and simulation 
over  time are referred to [9, 30, 34, 35]. 
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3. Problems of planning, design and operation 

The layout of the small-diameter pipes in a distribution network is essentially 
fixed by the land development. Water has to be delivered to every building, and 
pipes usually follow streets, so the layout of the finer grid is fixed to a large 
extent. On the other hand, the engineer has to select the pipe materials and 
diameters, consider the possibility of breaking the network into pressure zones 
(separated by special pressure regulating devices), allocate the loads to the 
various sources, determine the layout and sizing of the feeder mains, and fix the 
locations and designs of the pumps, reservoirs and other facilities. Planning is the 
phase of selecting the layout and main features of the system. Design is the phase of 
fixing the sizes and characteristics of the various components. The two are 
complementary and should be carried out simultaneously. Still, in some instances 
the layout and location of facilities has already been fixed, and the engineer is then 
faced with a design problem--that of sizing the components. 

Distribution systems have to operate under time-varying conditions. Considering 
long range changes, on the scale of years, there is the need to meet increasing 
demands, i.e. sizing and timing of new facilities needed to meet these demands. 
This capacity expansion problem is common to many areas of engineering, and 
although for water distribution systems it may have some special characteristics 
it will not be dealt with here. The scale of time-varying conditions which is of 
specific concern is associated with the operation of the system. Similar to power 
systems, water distribution systems operate under loads which change over the 
day, the week and the seasons. Sources, pumps, valves and reservoirs are 
operated to meet these varying demands. Setting the operating policy of the 
system is an integral part of the design process, since sizing the components 
depends on their operation--and vice versa. When the system already exists, the 
problem is how to operate it under normal and exceptional (breakdown, 
emergencies) conditions. 

In the design one would like to consider explicitly the detailed operation of 
the system, that is, the hour by hour position of the pumps, valves and 
reservoirs. No way has been found as yet to formulate and solve the design and 
operation optimization problem in this form. Instead, one can include in the 
formulation of the design problem specification of the operation under one or 
several loadings (sets of consumptions). These are "typical" or "critical" 
loadings - -  for example, average daily consumptions, maximum demands during 
the day, low demands (which usually occur at night, during which reservoirs can 
be filled), high demands for fire-fighting (usually concentrated in the highly 
congested business district), etc. The solution of this design and operation 
problem provides both sizing of the various components and their operation 
under these typical loadings. 

This solution does not specify how the system is to be operated over time 
(day, week, season). The resulting design may, therefore, not be feasible from 
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the operational standpoint, and if it is feasible it may not be optimal. Specifically, 
the optimal balance of pipe, pump and reservoir sizes which will ensure reliable 
supply throughout  the day and week at least cost can be arrived at only through 
a model which simulates the operation over  time. Still, if a reasonable number of 
loadings is considered within the design formulation, and if each is assigned its 
proper weight in the objective function, the resulting design can be said to reflect 
operational consideration. Temporal  operation of an existing system is dealt with 
by separate methods. 

Planning, design and operation are thus three aspects of a single problem, but 
under certain circumstances the task may be narrowed to design and operation, 
or operation alone. In the following section which deals with optimization, we 
shall treat planning and design as a single problem. The method is as follows: 
one specifies facilities (pipes, pumps, valves, reservoirs) wherever  they seem 
reasonable; the optimization procedure is allowed to set any design variable to 
zero, thereby eliminating the element from the solution. This procedure will not 
create a facility where one was not specified, and is therefore limited to those 
configurations stipulated by the designer. Still, this procedure allows for selec- 

tion among alternatives. 

4. Formulation of network optimization models 

We first discuss the general structure of optimization problems for planning, 
design and operation of water distribution systems and then go on to describe 
and discuss the methods which have been developed to solve them. 

4.1. Decision variables 

As mentioned above, planning is treated as part of the design p rob lem--by  
allowing design variables to take on zero values one may eliminate components  
from the solution, thereby selecting between alternative layouts and locations of 
facilities. 

In selecting pipes one has to decide on their material, diameter and wall 
thickness (pressure bearing capacity). In the optimization, it is usually assumed 
that material (i.e. smoothness) and wall thickness have been fixed, and the 
remaining decision is on the diameter. In selecting pumps there are various 
considerations, but for the optimization only the head vs. discharge charac- 
teristic of each pump will be considered as the decision variable. Similar 
considerations hold for valves and reservoirs. 

Decision variables of the planning-and-design problem include: 
(a) Pipe diameters,  
(b) Pump locations and characteristics, 
(c) Valve locations, and 
(d) Reservoir  locations and sizes. 
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When operation of the system under a set of typical or critical loadings is 
included in the formulation, the following decision variables are added: 

(e) Pumps to be operated (ON/OFF) under each loading, and 
(f) Valves to be operated (amount of pressure loss provided by the valve) 

under each loading. 
For optimization of the operation over  time, the decision variables are the 

times at which the controlled components  are switched on or off. Surrogates for 
these may be states of the system at which the components  are to be switched, 
for  example, reservoir  levels which are setpoints for controlling the activation 
and de-activation of pumps. 

4.2. Obiective functions 

Minimum cost is the criterion most often used in optimization of water 
distribution systems. Total cost is made of capital plus operating costs. The 
latter usually reflect only energy costs, since operation and maintenance may be 
included in the capital cost. Practical difficulties are encountered in formulating 
cost functions for distribution systems. Actual costs are often quite different 
from what was assumed in the design phase, due to price changes and unforseen 
circumstances during construction. More reliable cost models are needed. 

Performance indicators, such as minimum pressures at supply nodes, are 
usually treated as constraints in the optimization. Some work has been done in 
which certain performance criteria were used in the objective functions in a 
multiple-objective formulation, [10]. 

4.3. Constraints 

Several types of constraints appear in the optimization models. First, the 
physical laws of flow in the network have to be satisfied. These are equality 
constraints for continuity of mass and/or of hydraulic head lines-equations (3) 
and/or (4). The consumptions are usually treated as fixed externally, and so they 
appear as constraints in the node continuity equations. Limits are normally set 
for the heads and/or pressures at some nodes. Minimum pressures are to be 
guaranteed under all loadings, to meet  service standards to domestic and 
industrial consumers and to ensure sufficient operating conditions for fire 
fighting. Maximum pressures are specified when there is a danger of pipes 
bursting or equipment being damaged under excessive pressure. 

Sensivity analysis may be used to test the effect of certain changes in the 
values of the constraining parameters on the cost, since the values given by law, 
regulation or convention are generally not based on economic analysis, and are 
therefore not necessarily optimal. 

Special types of constraints may arise f rom specific formulations of the 
optimization models. These will be discussed specifically for  each model to be 
presented. 
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5. Branching network models 

5.1. Linear programming model 

Consider first a branching network, supplied from one or more sources by 
gravity, and designed for a single loading. At the supply nodes a specified 
consumption has to be satisfied, C i at node j. At some or all of the nodes the 
head, H i, is to be within a given range, HMIN i to HMAX i. The layout is given, 
and the length of the link (pipe) connecting nodes i and j is Lii. 

The linear programming design procedure [16, 17, 19, 24] is based on a special 
selection of the decision variables: for each link allow a set of "candidate 
diameters",  the decision variables being the lengths of the segments of these 
diameters within the link. Denoting by Xi#, the length of the pipe segment of the 
m-th diameter in the link between nodes i and j, then 

~,Xiim = Lii for all (i, j) (5) 
rn  

where each link may have a different set of candidate diameters. For a branching 
network in which the consumptions are known, the discharges in all links, Qii are 
fixed. The head loss in segment m of the link is: 

AHiim = JiimXijm for all (i, .L m) (6) 

where J is the hydraulic gradient (AH/L in eq. (1)) which is a function of the 
discharge and of the diameter (if the smoothness is assumed to be selected in 
advance, and therefore  fixed). 

Starting f rom any node in the system, s, at which the head is fixed (e.g. a 
reservoir), and selecting any path from it to node n, at which the head has to be 
within a given range, one may formulate the constraint 

H M I N .  <- H~ +- ~ ~=~JiimXiim ~ HMAX.  (7) 
(i ,  J )  m 

The first summation is over all links along the selected path, and the second over 
all segments of the link. The signs of the terms depend on the direction of flow 
in the link. In order to reduce the number of constraints and improve com- 
putational efficiency, head constrains may be formulated only for part of the 
nodes, provided they suffice to ensure that pressures throughout the network are 
within their acceptable ranges. If this method is used one has to examine the 
solution to ascertain that all heads are satisfactory; wherever  they are not, a new 
constraint has to be added and the problem resolved. 

The cost of a pipeline with a fixed diameter can reasonably be taken as linearly 
proportional to its length. Thus, the total cost of the pipeline network is 

cii x,i  (8) 
(i,D rn 
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Minimization of (8), subject to (5), (7) and non-negativity of the X is a linear 
program. Preselection of the candidate diameters actually constitutes a con- 
straint as well. A reasonably narrow list is to be preferred for each link, to keep 
the number of decision variables low. However ,  unless limitation of the list 
reflects actual availability of only certain pipe diameters care should be taken 
that the implicit constraint due to the limited list should not be binding in the 
optimal solution. After an LP solution has been reached with a particular set of 
candidate diameters one examines it to see which diameters have been selected 
for each link. Wherever  a link is made entirely of a single diameter which is at an 
end of its list, the list for  that link has to be expanded in the proper  direction and 
the problem solved again, until this constraint is not binding for all links. This 
procedure can be incorporated into the algorithm and performed within the 
computer  program itself. 

It can be shown that if the cost of a pipe is a convex function of the diameter 
(as it normally is) then in the optimal solution of the LP each link will contain at 
most two segments, their diameters being adjacent on the candidate list for that 
link. 

The LP formulation can be extended to include the cost of pumps, and their 
operation, using linear or linearized cost functions [2, 24]. Reservoirs can also be 
included, using the head in the reservoir  as the decision variable, and fitting it 
with a linear cost function. More than one loading can be considered. Each 
loading results in a set of constraints of type (7), possibly with different bounds 
on the heads for each loading, and the entire set is solved simultaneously in the 
LP. If energy costs are included the object ive function contains a weighted sum 
of the energy costs for  operating under the different loadings. 

5.2. Dynamic  programming model 

Optimal design of a branching network, with or without pumps and reservoirs,  
can easily be formulated as a dynamic programming (DP) problem. The solution 
requires more computer  time than the LP method, but the formulation is free of 
certain shortcomings present in the LP. 

Kally [21] used DP to optimize the diameter and wall thickness (which 
determines the pressure bearing capacity) of the segments of a pipeline, as well 
as the heads added by the pumps located along it. The objective function 
included capital plus operating costs. Similarly, Liang [28] used DP to optimize 
the diameters of segments between takeoff points to consumers along a pipeline 
fed by a pump at its upstream end. The object ive was to minimize capital cost, 
subject to minimum pressure constraints at the takeoffs. 

Probably because of its computational inferiority, the use of DP for branching 
networks has not been developed to an operational stage. Still, for  completeness 
we shall present the structure of the DP formulation. 

The network is divided into segments. A segment is defined between adjacent 
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takeoff points, so that the discharge remains the same along the segment,  or, if 
these segments  are too long, a finer division may be used, allowing pipe 
properties to change f rom one segment  to the next. Takeoffs  are given, and 
minimum pressures  are to be satisfied at each takeoff node. Decision variables 

may include the diameters,  material  (roughness and strength) and class (pressure 
bearing capaci ty)  of pipes, and the capacities of pumps.  For  clarity of the 
presentation we shall assume that material and class of the pipes have been 
fixed, so that diameters  are the only decision variables. The object ive function 

may include capital cost of pipes and pumps,  energy costs,  and any benefits, 
costs or penalties which are functions of the heads at the nodes. No assumptions,  
such as continuity or convexity,  have to be made about  these functions. The 

quantities to be supplied at the nodes are assumed fixed, and constraints may be 
imposed on the minimum and/or max imum heads at the nodes. 

The state variables are the heads at the nodes, and the nodes are the stages. 
Computat ion proceeds  upstream, starting f rom the downs t ream end of each 
branch. The recursive equation of the DP is: 

F*+I(Hi+O = Min[g(Dk) + f(Hj+~, H i) + F~'(Hi)] (9) 
Ok 

Dk is the d iameter  of segment k which connects  node (j + 1) to its downst ream 
neighbor, node j. g(Dk) is the cost  of this segment. Hj+~ is the head at node 
(j + 1); Hj is the head at node j given Hj+~ and the diameter  Dk, and can easily be 

computed  since the discharge in the segment  is known, f(Hj+~, Hi) is the cost (or 
benefit) associated with the  link, for  the given heads at its two ends. F*(Hi) is 
the optimal value for  the portion of the system downst ream of node j, given the 

head at node j. The minimization is over  all admissible values of Dk, and is 
performed for  each of a set of discretized values of Hj+~ over  its admissible 

range. Whenever  Hj = Hj(Hj+~,Dk, Ok) is outside its admissible range, the 
examined Dk is disallowed. 

For a pump located between nodes (j + 1) and j one uses: 

F*+t(Hj+0 = Min[g(Hi+b H i) + f(Hi+~, H i) + F*(Hi)] (10) 
Hj 

g(Hj+~, Hi) here is the capital plus operating cost for a pump designed to deliver 
the known discharge, Qk, f rom head Hi+, at its intake to head Hi(>Hj+I) at its 
discharge. The minimization is over  a set of  discrete values of  H r. 

At every branching node of the network one adds up the values of F*  for the 
downst ream branches  which connect  at it. At such a node j, F~(Hj) is still the 
optimal cost of  the part  of the network downst ream f rom it, except  that now it is 
a sum of the optimal costs for all the branches originating at node j. Thus,  one 

follows the single-line procedure  outlined above,  starting f rom all downst ream 
extremities of  the network. Whenever  two or more branches  join at a node their 

contributions are added up for  each value of the head at the branching node. The 
computat ional  effort  for a branching network is not much greater  than for a 
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single line with the same number of nodes, but the logic of the program is 
considerably more involved-- i f  it is to be a general purpose program rather than 
one designed to optimize a particular network. 

6. Looped network models 

6. I. Linear and separable programming models 

The basic difference between branching and looped networks is that in the 
former the flows in the pipes are fully determined by the loading, whereas in the 
latter the flow distribution also depends on the pipe properties (diameters, 
smoothness,  lengths). This is the main difficulty which has to be overcome in 
applying linear or separable programming to looped networks. 

Lai and Schaake [26] have addressed this problem by making the assumption 
that the heads at all nodes, as well as the demands, are given in advance. The 
solution thus gives the optimal diameters for  the assumed pressure pattern. 
Since the heads are fixed the flow through each link is a function of the link 
properties only, and if the length and pipe material are given, the flow is a 
function only of the diameter. For node j at which a demand Ci has to be 
satisfied, the following constraint is a s tatement of continuity at the node: 

Qo = ~ " "  ,J-- ,J C i  ( 11 ) 
�9 i 

where Ki is a coefficient whose value is determined by the given data: the heads 
at nodes i and j, and the length and smoothness of the pipe connecting them (see 
eq. (1)). The objective function Lai and Schaake used was: 

~_,aLiiDi] + b ~ ,  OiiAHi, + ~CiH, J (12) 
(i.D Lt i ,  j) " 

a and b are constants which account for  unit conversion, a present value factor, 
etc. e is a coefficient whose value is determined through analysis of pipeline cost 
data. The first sum is the capital cost of pipelines, the second is the cost of 
energy lost in the flow through the pipes, and the third is the cost of the residual 
energy at the supply nodes. There are no pumps within the network,  and the 
energy terms represent  the cost of supplying water to the network from some 

/-)2:63 the constraints external source by a pump. By making the substitution Yo = --,J 
(1 1) become linear. Using equation (1) for  the flows, the objective function (12) 
becomes: 

~,(aLoY~ 263 + bijYii) (13) 
(i,j) 

where the coefficients bij are based on the heads and flows. Minimization of (13) 
subject to constraints of type (11) for all supply nodes and to non-negativity of 
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the y~i is a separable  program (which Lai and Schaake solved by a self-developed 
iterative LP program).  The method was used in a study of New York City 's  

primary distribution system [I0] in which several per formance  criteria were also 
introduced as object ives (eg. sum of the residual pressures  at all the supply 
nodes, the residual pressure at the far thest  supply point, etc.). 

Kally [23] approached the problem by extending the LP formulation for 
branching systems.  His reasoning is as follows. In a branching system, if one 
changes the length of a pipe segment  (which has some fixed diameter) the 
resulting changes in the heads at nodes are linearly proport ional  to the mag- 

nitude of this change. In a looped network the same effect is non-linear, due to 

the re-distribution of flows once the design is changed. Still, if the change in 
length of a segment  is small enough the resulting change in heads is ap- 
proximately linearly proportional to the change in length. The ultimate decision 

variables in Kal ly 's  formulation are the lengths of the segments ,  the same as was 
for a branching network,  and the object ive function is also the same. The 
problem is solved through a sequence of linear programs;  the decision variables 
in each LP are the lengths in each link along which the diameter  is to be changed 
f rom one diameter  to another,  i.e. the length to be taken away f rom one segment and 
given to another.  Denoting by s~p, the length in link (i, j) of change f rom the present  

diameter  to d iameter  m (of a candidate list), these changes have to satisfy 

~_,si#, <~ Lii (14) 
rn 

that is, the sum of all changes cannot  exceed the total length of the link. Also, 

considering the minimum heads required at certain nodes, HMINj,  the changes in 
diameters are limited by 

,~m \ASiim ] I ~ ( H k - H M I N k )  (15) 

where IIk is the head at node k in the present  iteration, and ( H k -  HMINk) is 
therefore the extra head which can still be eliminated (if feasible f rom other 
considerations). The coefficients (dXHk/ASi#,) are the linear approximations for 
the rate of change of head with respect  to changes in segment  lengths. Kal ly 's  
approach was to obtain these values as the differences in heads at the nodes 
between two flow solu t ions- -one  with the existing segments,  and another  with 

one ASi~m = 1 and the others =0. For  each As~im = 1 one has to run a network 
solver and obtain a flow solution, then one computes  the head differences /Xhk 
between it and the "bas ic"  flow solut ion-the one with all Asiim = O. 

The object ive function for each i teration's LP is 

Min ~_,~,C, imS,im (16) 
( i , j )  m 

where Cii,, is the cost of changing one unit length of pipe in link (i, j) f rom its 

present  d iameter  to diameter  m. 
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Upon solution of the LP the changes of diameters over lengths si#, are 
introduced and a new iteration is begun: a "basic"  flow solution is computed, a 
series of flow solutions for all As;j,, = 1 are obtained and (16) is minimized, 
subject to (14), (15) and non-negativity of the s. 

Kohlhass and Mattern (25) used separable programming in optimizing a looped 
network in which the heads are fixed in advance - -a  condition similar to the one 
stipulated by Lai and Schaake [26]. 

Recently, a more general method has been developed [2] and introduced into 
practice. The method--ca l l  LPG, for Linear  Programming Grad ien t - -  is based 
on the following reasoning. If the flows throughout a looped network are known 
then its optimal design can be obtained by an LP formulation similar to that for  a 
branching network. The optimization has therefore to find the optimal flow 
distribution, and for it the optimal design. This is achieved by a hierarchiai 
approach: in the lower level of the hierarchy the optimal design for  a particular 
flow distribution is obtained by LP;  in the higher level, the flow distribution is 
modified, using certain results of the LP  solution, towards an optimal flow 
distribution. This procedure is continued iteratively until some termination 
criterion is met. 

The LP for a fixed flow distribution in a looped network operating under 
gravity for  a single loading is: minimize (8), subject to (5) and (7), to non- 
negativity of the X, and to the additional constraint: 

~ JqmXi#. = bp (17) 
(i,j)Ep ra 

where p designates a path in the network, and bp is the (known) head difference 
between its ends (all other  notation is the same as in Section 5.1). Eq. (17) has to 
hold for all loops in the network with b = 0. When pumps, valves or reservoirs 
are to be included the objective funct ion and constraints have to be augmented, 
as will be explained below. 

Having added constraints (17), the LP  can be solved, and the set of optimal 
segments will be such that the network is hydraulically balanced be virtue of the 
fact that the constraints (17) have been satisfied. Denoting by Q the vector of 
flows in all the paths, which may be any arbitrary set of flows as long as they 
satisfy continuity at all nodes, then the optimal cost of the network,  F, for  this Q 
can be written as 

F = LP (Q) (18) 

where LP denotes that F is the outcome of a linear program. Next,  Q is 
modified in a way which approaches optimality. Denoting by AQp the change of 
flow in path p, then 

O F  O F  Ob e aF Obr _ _  Ob e 
a(AQ~) = ab~'O(aQo) +~R Ob, O(AQ~) W~ a(aQo) 

- Obr 
+ ~, Wr (19) 0 (A--Qp) ~ R  



U. S h a m i r /  W a t e r  d is t r ibut ion  s y s t ems  77 

where Wp and W, are the dual variables of constraint (17) for  the paths p and r, 
respectively, where R are the paths which share a link (or more than one link) 
with path p. Using eq. (17) and the definition of J from eq. (1): 

Obe = abe ---- Z Z [  l'852a/'~~ ~ i j m  ~ i j m  ~-ijraa] 
0(AQp) 0(AQp) ti, i)ep ,,, 

= 1.852 Z 1-~-ZAH, i,,. (20) 
(i,i)Eo(~q m 

O(AQp) = 0(Qp) because both are incremental changes in the flow in the path. Qij 
and AHiim have already been used in setting up the LP,  so once it has been 
solved and the duals Wp and Wr are known the components  of the gradient 

OF [ 1 
Op - 0 (AQp)-  1.852 W,,.i)ep ~" -:-~'AH'im(20 m 

1 mm] 
+ Z Wr Z ~- -Z  A (21) 

rER (i,j)Gr~'ij m -J 

can easily be computed. The sign of the additional terms is positive when path r 
uses link (i, j) in the same direction as path p, and negative otherwise. With these 
components  once can define a vector  change in path flows, AQ such that 

LP(Q + flAQ) < LP(Q)  (22) 

/3 is a step size, which is selected by an appropriate one-dimensional search 
procedure. 

Several loadings should be considered in the design. Maximum hourly flows 
during the day and fire fighting demands are normally used, but often the low 
demands, as may occur at night, have to be considered as well. This is 
particularly important when there are reservoirs in the system, which should fill 
during low demand periods and then empty during high demands, thereby 
reducing the peak loads on the sources. For  each loading one specified in LPG 
an initial flow distribution which satisfies continuity at all nodes. A number of 
head constraints (7) are written for each loading, and the entire set is included in 
a single LP matrix. Once the LP has been solved, the gradient section modifies 
the flow distribution for each of the loadings, using the results of the LP. 

Since the initial flows for each loading are quite arbitrary, there may not exist 
a set of segment diameters such that the head line constraints (17) are satisfied 
for all loadings. Therefore,  two new variables are added in each of these 
const ra ints- -one with a positive and the other with a negative sign, and both 
required to be non-negative. These variables are assigned a large penalty 
coefficient in the objective function and can therefore be viewed as artificial 
variables. They  do, however,  have a physical meaning in our case. Each such 
variable may be viewed as a valve in the path, able to take up the excess head 
for the specified flow in the path. These dummy valves are "opera ted"  to 
satisfy head-line continuity. Because of the large penalty they invoke, the pro- 
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gram attempts to eliminate them from the solution. If this is possible, i.e. there is 
a feasible set of segment diameters without valves, then their introduction has 
merely served the purpose of reaching this solution by use of the LP  algorithm. If, 
on the other hand, a dummy valve does appear  in the final optimal solution, this 
means that a real valve will have to be installed at the location specified, and 
operated accordingly. When an actual valve does exist in the system it is 
represented in the LP by the head loss it provides under each loading. 

LPG is thus designed to reach a design which is hydraulically balanced for all 
Ioadings, and at the same time move the design towards optimality. The iterative 
LP-Gradient  procedure is terminated when any one of several criteria is met (no 
significant improvement  from one iteration to the next, specified number of 
flow-change iterations exceeded,  etc.). 

When a pump is to be designed, the head it has to add for each of the loadings 
is the decision variable. These variables are introduced into the constraints of 
types (7) and (17) with the proper sign. An iterative procedure is used in dealing 
with the non-linear cost vs. head function for pumps. For reservoirs,  the 
decision variable is the elevation at which it is to be located. This elevation 
appears in all constraints for paths ending at the reservoir. A linear cost vs. 
elevation relation is used in the objective function. 

6.2. Non-linear programming models 

An early effort [33] was made to use a gradient-like technique in optimizing 
the design of a pipe network under one loading. The original work, which was 
not published, constituted the basis for Lemieux 's  thesis [27]. Pipe diameters are 
changed, one pipe at a time, according to the derivative of the object ive function 
with respect to pipe diameters. After each change in a diameter the new network 
is solved, using a Newton-Raphson method, and the last Jacobian of this 
solution appears in the computation of the derivatives. 

Pitchai [29] formulated a non-linear integer programming problem in seeking 
the optimal diameters of a network, and solved it by combining random search 
and examination of adjacent design points. Jacoby [20] used a gradient-ap- 
proximation method to seek minimum of a merit function which combined the 
objective function and penalties for violation of head and continuity constraints 
for  a single loading. An approximation of the gradient was computed by 
perturbing the design variables around their present values, and a move is made 
in the gradient direction. The sequence of steps is guided by several heuristic 
rules, and is terminated according to several rules. Since the search is conducted 
in the region which is hydraulically infeasible (it is an exterior-point method), if 
the search terminates prematurely one may not have a feasible hydraulic design. 
A more detailed analysis of Jacoby's  paper may be found in [34]. 

Cembrowicz and Harrington [4] have dealt with minimization of the capital 
cost  of a pipe network designed to operate under one loading. Using graph 
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theory they claim to decompose the problem such that the non-convex objective 

function is broken into subsets of convex functions. Each function relates to a 

pipe or a loop and is minimized separately, using a method of feasible directions. 

The number of optimizations may be very large and they have to be scanned to 

locate the global optimim, so that computationally the method does not seem 

practical. 
Watanatada [39] has developed a method for optimal design of pipeline 

networks supplied at a number of nodes, and applied it to real networks of 

moderate size. For a network with P pipes and M nodes, of which M S  are 

supply nodes, the problem is 

Min Cr(D.  H, Q) = UoLp + , (23) 
p=l  

subject to QRk ( D , H ,  Q) =0, k = 1 ..... M, (24) 

D o />DMIN,  p =  1 ..... P, (25) 

Hk >1 HMINk, k = 1 ..... M, (26) 

--QNk ~ O ,  k =  1 . . . . .  MS ,  (27) 

where: 

D = a vector of P pipe diameters, 

H = a vector of M node heads, 

Q = a vector of M S  supply rates at supply nodes 

Up = Up(Dp), the cost per unit length of pipe as a function of its diameter. 

Sk = Sk(QNk,  Hk), the cost of supplying QNk at a head Hk. 

QRk = algebraic sum of flows leaving the node. 

This constrained optimization formulation was converted into an uncon- 

strained one by using a variable transformation due to Box [3]. Utility variables 

Zi, i = 1 . . . . .  ( P  + M + M S )  are defined by 

D p = D M I N + Z ~ ,  p =  1 ..... P, (28) 

Hk HMINk + 2 = Zp+k, k = 1 ..... M, (29) 

= --Zp+M+k, k = 1 ..... MS,  (30) QNk 2 

and the problem now becomes 

Min [CT (Z)], (31) 

subject to Q R k ( Z )  = O, k = 1 . . . . .  M. (32) 

A new function is now defined by combining constraints (32) with the 

objective function (34) according to the method suggested by Haarhoff and Buys 

[18]: 

Min F r ( z )  = Cr(Z)  + ~ E ~ Q R k ( Z )  + w~_. OR~(Z) (33) 
k=! k=! 

The superscript r is an iteration counter;  E r and W are penalty multipliers-- the 
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first is updated at each iteration and the second is a preassigned fixed constant.  
The variable metric method of Fletcher and Poweli [14] was used to minimize 

(33), and was found to be superior to the Fletcher and Reeves  method of 
conjugate directions[15], even though the fo rmer  required more  computer  
memory .  Once the optimization is terminated,  the diameters have to be rounded 

to commercial ly  available values, and this has to be done in a way which will 
maintain hydraulic feasibility. Watana tada ' s  method has the advantage that the 

flow solution is incorporated directly into the optimization, and one therefore  
does not need a network solver as a separate  program. The danger is, however ,  

that if the procedure  terminates premature ly  the solution may not be feasible 
hydraulically. 

A method based on A.badie's [1] GRG method was developed by the author 

[35], in which the design and operation under  a number  of loadings are to be 
optimized. For  a ne twork with N nodes, operat ing under L loadings the problem 
is: 

Min F ( d , u , x , s ) = f ( d ) + ~ w t c J ( d ,  ul, xl, s t) , (34) 
I=l  

subject  to d@ D (35) 

u I E U l, Vl (36) 

[Gt(d,  u, I, x t, st)] = O, Vl  (37) 

x t = { x [ [ G t ( d ,  ut, x l , s t ) ] = O } E X  t. Vl  (38) 

where:  

d = the design variables (pipe diameters ,  pump capacities), which have to 
belong to the set D. 

u t = the operat ion variables (valves and pumps  ON/OFF)  for the /-th loading, 
which have to belong to the set U t. 

x t =  the dependent  variables (heads, consumptions)  of the /-th flow solution, 
which have to be within ranges given by X ~. 

s ~ = the independent  (fixed) variable in t h e / - t h  flow solution. 
f -- cost function of the design. 

c ~ = cost of operat ion for  the l-th loading. 
w t = weights. 

[G t] = 0 = a set of  s imultaneous node continuity equations (eq.(1)) for  t h e / - t h  
loading. The individual equations are G t = O, j = 1 . . . . .  N.  

It is assumed that the sets D, U t and X t simply specify a range of values for 

the corresponding variables.  The L sets of  equations (37) are combined with the 
object ive function (34) to form the Lagrangian: 

L N 

~(d ,  u, x, s, A) = F(d ,  u, x, s)  + ~ , ~ , a J  G~(d, u', x ' ,  s ' )  
t = U = t  

= F +  [G]T'[A] (39) 
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where T stands for the transpose. At any point (d, u) the following has to hold 

OG v 
[-~X~] = 0 = [~-xF] + [-~-x ] [A ]. (40) 

Since G and x can be separated into the independent flow problems, (40) can be 
decomposed into 

[0•] 
= O = [ S x Z j  [~Tx~J t , , , ,  t =  1 ..... L. (41) 

The Lagrange multipliers, )t, are therefore solved in L groups of N values each 
from equation (41). The matrix [OGt/Ox ~] is the last Jacobian of the /-th flow 
solution by the Newton-Raphson method, and is therefore available directly as a 
by-product of the flow solution. Once the )t's have been obtained, the com- 
ponents of the (reduced) gradient are computed from 

[ V F ] =  Vu = 05r = OF 0--d' ~ [A]. (42) 

At a (local) optimum [VF] = 0. At any other point [ - V F ]  points in the 
direction of the steepest descent of F, while changes in the flow solutions due to 
a move in this direction are already taken into account. A move in this direction 
is now made, using a one-dimensional search procedure.  At the new point the L 
flow problems are solved and the reduced gradient calculation repeated. The 
constraints on d, u t, and x r are used in selecting the step size in each move. The 
search is terminated by given criteria for improvement between interations, 
value of the gradient, number of iterations, etc. 

Because flow solutions are computed at each step, and because the constraints 
on the decision variables are not violated during the moves,  the current solution 
is feasible (this is essentially an interior point method), and if it terminates 
prematurely one at least has a feasible solut ion--which is better than the one 
having started with. 

7. Other methods  

Deb and Sarkar [7] based their method on the concept of equivalent diameters, 
for least cost design of a network operating under a single loading and in which 
the heads are assumed to be known. All pipes in the network are replaced by 
pipes of a fixed length and a diameter which makes the "equivalent"  to the 
actual pipes. Combining the pipe flow equation with its cost function, then 
differentiating the cost with respect to diameter and setting equal to zero, and 
optimality condition for this special type of network is reached. The results are 
therefore quite limited in application. 
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Deb [6] again used a similar combination of the flow and cost equation, and 
developed a method for optimal design of a system consisting of a pumping 
station, an elevated reservoir and a pipe network fed from it by gravity. The 
results are further restricted by the fact that the shape of the pressure surface 
over  the network is assumed to have a specific form. A series of runs with the 
reservoir at different locations and with different parameters in the pressure 
surface equations was used to test the sensitivity of the optimal solution to 
changes in these factors.  

8. Operation over time 

Some of the methods described above can be used to reach optimal operating 
decisions for existing networks. This is done by fixing all design variables at 
their actual values and carrying out the optimization for the operational vari- 
ables. It should be borne in mind, however,  that the loadings which are 
considered in this analysis represent critical or typical conditions, and in no way 
do they reflect the time sequence of operating conditions over the day or the 
week. Special methods have therefore to be developed for optimization of the 
operation over time, in which the only decision variables are the operation of 
pumps and the setting of valves during the specified time horizon. 

Dreizin et al. [I 1] used a hydraulic simulator of a particular water system as 
the basic building block in a program which attempted to improve operating 
policies. The decision variables were those water levels (called set-points) in 
specified reservoirs at which pumps are to be switched on or off. No algorithmic 
optimization method was found for solving the problem, and a sequence of 
simulations with response surface analysis (a gradient-like search) was used. 

Some work in the City of Philadelphia [8] resulted in selection of operating 
policies over a day based on a comparison of costs for several proposed policies. 
No optimization was attempted. 

Sterling and Coulbeck [37, 38] optimized pumping costs in a water system, 
using dynamic programming and a two-level hierarchical approach.  A group at 
the University of Cambridge, England, have been engaged in development  of 
on-line control and optimization of the operation of regional water systems 
[12, 13] which are being implemented and tested in the field. 

9. Summary and conclusions 

Much has been done in developing methods for optimal design of water 
distribution systems. Some of the more recent  work has already been proven in 
practical applications, and what is needed now is the transfer of this technology 
to a broad sector of the engineering profession. Much less has been achieved in 
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optimal operation, and as energy costs are increasing more attention should be 
given to this area. But least of all has been done in the area of planning. Future 
efforts should be concentrated on screening models, which attempt to specify 
the basic layout and component  location. Such models should address questions 
such as: 

(a) The capacities of the sources, i.e. the development of the various intakes, 
supply reservoirs, wells and/or treatment plants, and how much each of them 
should supply to the system. 

(b) Balancing of source and pump station capacities vs. storage within the 
system. This phase deals with the overall amount of storage and pumping 
capacity, and not necessarily with the location and sizing of individual com- 
ponents. 

(c) The layout and capacity of the feeder main grid. This is closely linked with 
planning of storage and pumping. 

The results of such screening models will then have to be handed over for 
design optimization, during which more insight may be gained, and the need may 
arise to re-run the screening model with new data. 
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