

Addis Ababa Institute of Technology School of Civil and Environmental Engineering

Water Distribution Modelling Lecture By Fiseha Behulu (PhD)

Lecture-2: Basic Principles of Pipe Flow (Hydraulics)

Prepared By Fiseha Behulu, AAiT 2020

Modeling Water Distribution Lecture by Dr. Fiseha Behulu

Contents of the Course

- 1. Components of Water Supply
- 2. Basic Principles of Pipe Flow (Hydraulics)
- 3. The Concept of Modeling
- 4. Model Calibration
- 5. Optimization in WDS
- 6. Water Hammer Theory
- 7. Water Supply Project Design (Application of Tools)

- Fluid Properties-Brief revision
- Fluid Statistics and Dynamics
- Energy Concept
- Friction Losses
- Minor Losses
- Network Hydraulics
- Water quality modeling

Brainstorming

AAIT Water Distribution Modelling Lecture By Dr. Fiseha Behulu

Properties of Fluid

A fluid is any substance that deforms continuously when subjected to shear stress, no matter how small the shear stress is.

The intermolecular cohesive forces are large in a solid, smaller in a liquid and extremely small in a gas.

AAiT

Properties of Fluid

Quantity	Symbol	Dimensions	
Density	ρ	ML-3	
Specific Weight	γ	ML ⁻² T ⁻²	
Dynamic viscosity	μ	ML ⁻¹ T ⁻¹	
Kinematic viscosity	ν	L^2T^1	
Surface tension	σ	MT ⁻²	
Bulk modules of elastici	ty E	ML ⁻¹ T ⁻²	

These are <u>fluid</u> properties!

Please Refer your **Hydraulics** course from Undergraduate program

Pipe Flow Analysis

Objectives

□ To understand laminar and turbulent flow in pipes and the analysis of fully developed flow

□ Able to calculate the major and minor losses associated with pipe flow

□ In order calculate and design the sizes of the pipes

Comparison of open channel flow and pipe flow

Introduction

- Water is conveyed from its source, normally in pressure pipelines, to water treatment plants where it enters the distribution system and finally arrives at the consumer. In addition oil, gas, irrigation water, sewerage can be conveyed by pipeline system.
- □ The effect of friction is to decrease the pressure, causing a pressure 'loss' compared to the ideal, frictionless flow case.
- The loss will be divided into *major losses* (due to friction in fully developed flow in constant area portions of the system) & *minor losses* (due to flow through valves, elbow fittings & frictional effects in other non-constant –area portions of the system).

AAiT

Major loss (friction) in pipes

$$h_{L} = \overline{\tau}_{o} \frac{PL}{\gamma A} = \left(\frac{p_{1}}{\gamma} + z_{1}\right) - \left(\frac{p_{2}}{\gamma} + z_{2}\right)$$

$$h_L = C_f 4 \frac{L}{D} \frac{V^2}{2g} = f \frac{L}{D} \frac{V^2}{2g}$$

- for both smooth-walled and rough walled conduits. It is known as pipe –friction equation, and commonly referred to as the Darcy-Weisbach equation
- Friction factor, f, is dimensionless and is also some function of Reynolds number

Pipe friction equations

Darcy's Weisbach Equation

$$h_L = f \frac{L}{D} \frac{V^2}{2g}$$
 $\therefore f = \phi_1 \left(\operatorname{Re}, \frac{\varepsilon}{D} \right)$

□ Hazen William Equation

$$h_{\rm f} = \frac{10.675L}{D^{4.8704}} \left(\frac{Q}{C}\right)^{1.852}$$
 SI units

Chezy's EquationManning's Equation

□ Pipe flow regimes depends on the following factors:

- geometry,
- surface roughness,
- flow velocity,
- surface temperature, and type of fluid, among other things.

After exhaustive experiments in the 1880s, Osborne Reynolds discovered that the flow regime depends mainly on the ratio of *inertial forces* to *viscous forces* in the fluid. This ratio is called the **Reynolds number** and is expressed for internal flow in a circular pipe as

Laminar flow - in laminar flow the particles of fluid move in an orderly manner & the steam lines retain the same relative position in successive cross section. Laminar flow is associated with low velocity of flow and viscous fluids.

Turbulent flow - Here the fluid particles flow in a disorder manner occupying different relative positions in successive cross section. Turbulent flow is associated with high velocity flows.

$Re = \frac{Inertial \text{ forces}}{Viscous \text{ forces}} = \frac{V_{avg}D}{\nu} = \frac{\rho V_{avg}D}{\mu}$ $Re \leq 2300 \qquad Iaminar \text{ flow}$ $2300 \leq Re \leq 4000 \qquad \text{transitional flow}$

 $\text{Re} \gtrsim 4000$ turbulent flow

Pipe friction equations

1. For laminar flow type $f = 64 \frac{v}{DV} = \frac{64}{Re}$

2. For Transition flow type $f = \{-2 \log_{10} \left[\frac{(\epsilon/D)}{3.7} + \frac{2.51}{\text{Re}(f^{1/2})} \right] \}^{-2}$

3. For hydraulically turbulent smooth pipes (e= 0) such as glass, copper, $f = \frac{0.3164}{\text{Re}^{0.25}}$ (4,000 < Re < 100,000) Blasius equation

 $\frac{1}{\sqrt{f}} = 2\log\left(\frac{\text{Re}}{\sqrt{f}}\right) - 0.8$

Von Karman's and Prandtl equation for Re upto 3*10⁶

4. For Complete turbulence rough pipe flow type

$$f = [1.14 + 2 \log_{10}(\frac{D}{\epsilon})]^{-2}$$

For all pipes, a general empirical formula by Colebrook - White is given by:

$$\frac{1}{\sqrt{f}} = -0.86 \ln \left(\frac{e}{3.71D} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right)$$

The above equation is awkward to solve

• In 1944, Leewis F. Moody plotted the Darcy–Weisbach friction factor into what is now known as the Moody chart and diagrams are available to give the relation between f, Re, and e / D.

MOODY CHART

pipe material	pipe roughness (mm)
glass, drawn brass, copper	0.0015
commercial steel or wrought iron	0.045
asphalted cast iron	0.12
galvanized iron	0.15
cast iron	0.26
concrete	0.18 - 0.6
rivet steel	0.9 - 9.0
corrugated metal	45
PVC	0.12

Questions

□ Can the Darcy-Weisbach equation and Moody Diagram be used for fluids other than water? <u>Yes</u>

□ What about the Hazen-Williams equation? <u>No</u>

Does a perfectly smooth pipe have head loss? <u>Yes</u>

□ Is it possible to decrease the head loss in a pipe by installing a smooth liner? Yes

Loss due to the local disturbances of the flow conduits such as changes in cross section, projecting gaskets, elbows, valves, and similar items are called *minor Losses*.

In the case of a very long pipe or channel, these losses may be insignificant in comparison with the fluid friction in the length considered.

 $k\frac{V^2}{2g} = \frac{f(ND)}{D}\frac{V^2}{2g}$

Loss of Head at Entrance

AAiT

EGL & HGL for Losses in a Pipe

- Entrances, bends, and other flow transitions cause the EGL to drop an amount equal to the head loss produced by the transition.
- EGL is steeper at entrance than it is downstream of there where the slope is equal the frictional head loss in the pipe.
- The HGL also drops sharply downstream of an entrance

AAiT

EGL & HGL for Losses in a Pipe

Loss of head at submerged discharges: (leave of pipe), (h_d,)

$$H_a = y + 0 + V^2/2g$$
$$H_c = 0 + y + 0$$

$$\dot{h_d} = H_a - H_c = \frac{V^2}{2g}$$

AAiT

Loss Due to Contraction

 $h_c' = k_C \frac{V_2^2}{2g}$

Sudden Contraction

Losses due to gradual contraction the value of Kc = 0.05 – 0.10

Losses coefficients for sudden contraction

D_2/D_1	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
k _c	0.50	0.45	0.42	0.39	0.36	0.33	0.28	0.22	0.15	0.06	0.00

Loss due to sudden expansion

Gradual Expansion

AAiT

The values of " K_f " depends on the type of fittings

Fitting	K
Globe valve, wide open	10
Angle valve, wide open	5
Close –return bend	2.2
T-through side outlet	1.8
Short-radius elbow	0.9
Medium radius elbow	0.75
Long radius elbow	0.60
Gate valve, wide open	0.19
Half open	2.06
Pump foot value	5.60
Standard branch flow	1.80

Losses in bend & Elbow

The total head losses between two points is the sum of the pipe friction loss plus the minor losses, or

$$h_L = h_{Lf} + \sum h'$$

 h_L – total head loss h_{Lf} – major head loss

$$h_{Lf} = f \frac{L}{D} \frac{V^2}{2g}$$

 $\sum h'$ - total minor loss

- □ The above equation (h_L) relates four variables. Any one of these may be unknown quantity in practical flow situation. These are:
- i.L, Q, Dknown h_L unknownii. h_L , Q, DknownLunknowniii. h_L , Q, L,knownDunknowniv. h_L , L, D,knownQunknown

Example

A 100m length of smooth horizontal pipe is attached to a large reservoir. What depth, d, must be maintained in the reservoir to produce a volume flow rate of 0.03 m^3 /sec of water? The inside diameter of the smooth pipe is 75mm. The inlet of the pipe is square edged. The water discharges to the atmosphere. Assume that density of the fluid is 1000kg/cubic meter and $\mu = 10^{-3} \text{ kg/m.s}$

Solution

$$\left(\frac{p_{1}}{\gamma} + \frac{v_{1}^{2}}{2g} + Z_{1}\right) - \left(\frac{p_{2}}{\gamma} + \frac{v_{2}^{2}}{2g} + Z_{2}\right) = h_{LT}$$
• $h_{LT} = h_{Lf} + h_{Lm}$

$$h_{LT} = f \frac{L}{D} \frac{V^{2}}{2g} + k \frac{V^{2}}{2g}$$

■ But $P_1 = P_2 = P_{atm}$, $V_1 \cong 0$, $V_2 = V$, $Z_2 = 0$ (measured from the center of the pipe line, then $Z_1 = d$.

$$h_{LT} = d - \frac{V^2}{2g} = f \frac{L}{D} \frac{V^2}{2g} + k \frac{V^2}{2g}$$
$$d = \frac{v^2}{2g} \left[f \frac{L}{D} + K + 1 \right]$$

$$V_2 = V = \frac{Q}{A_2} = \frac{4Q}{\Pi D_2^2}, \text{ then}$$
$$d = \frac{8Q^2}{\pi^2 D^4 g} \left[f \frac{L}{D} + k + 1 \right]$$

Example...

 $\operatorname{Re} = \frac{\rho VD}{\mu} = \frac{4\rho Q}{\pi\mu D} = \frac{4}{\pi} * \frac{1000 * 0.03}{1x10^{-3} * 0.075} = 5.10x10^{5}$

For smooth pipe from Moody diagram, f = 0.0131, then k = 0.5 for square-edged.

$$d = \frac{8}{\pi^2} * \frac{(0.03)^2}{(0.075)^4 * 9.81} * \left[0.0131 * \frac{100}{0.075} + 0.5 + 1 \right]$$

$$d = 44.6m$$

MOODY CHART

 $\frac{\epsilon}{D}$

Example

□ Water flows from the ground floor to the second level in a three-storey building through a 20mm diameter pipe (drawn-tubing, $\varepsilon = 0.0015$ mm) at a rate of 0.75 liter/s. The layout of the whole system is illustrated in Figure below. The water flows out from the system through a valve with an opening of diameter 12.5 mm. Calculate the pressure at point (1).

AAiT

Solution

From the modified Bernoulli equation, we can write $p_1 + \frac{1}{2}\rho V_1^2 + \rho g z_1 = p_2 + \frac{1}{2}\rho V_2^2 + \rho g z_2 + \rho g h_L$

In this problem, $p_2 = 0$, $z_1 = 0$. Thus,

$$p_1 = \frac{1}{2} \left(V_2^2 - V_1^2 \right) + \rho g z_2 + \rho g \left(h_1 + h_m \right)$$

The velocities in the pipe and out from the faucet are respectively

$$V_{1} = \frac{Q}{A_{1}} = \frac{4Q}{\pi D_{1}^{2}} = \frac{4(0.75 \times 10^{-3})}{\pi (0.020)^{2}} = 2.387 \, m/s$$
$$V_{2} = \frac{Q}{A_{2}} = \frac{4Q}{\pi D_{2}^{2}} = \frac{4(0.75 \times 10^{-3})}{\pi (0.012)^{2}} = 6.631 \, m/s$$

The Reynolds number of the flow is $Re = \frac{\rho V d}{\mu} = \frac{(998)(2.387)(0.020)}{1.12 \times 10^{-3}} = 42,546$

AAIT Water Distribution Modelling Lecture By Dr. Fiseha Behulu Copyright© ODL Jai

27 April 2020

41►

Solution

The roughness $\varepsilon/d = 0.0015/20 = 0.000075$. From the Moody chart, $f \approx 0.022$ (or, 0.02191 via the Colebrook formula). The total length of the pipe is

Hence, the friction head loss is $\ell = 5.25 + 4(3.5) + 1.75 = 21$ m

A

The total minor loss is

$$h_f = f \frac{\ell}{d} \frac{V_1^2}{2g} = (0.022) \frac{21}{0.02} \frac{2.387^2}{2(9.81)} = 6.71 \text{m}$$

$$h_m = \sum K \frac{V_1^2}{2g} = \left[4(1.5) + 10 + 2\right] \frac{2.387^2}{2(9.81)} = 5.23 \text{m}$$
$$h_{\omega\tau} = h_f + h_m = 6.71 + 5.23 = 11.94 \text{m}$$

Therefore, the pressure at (1) is $p_1 = \frac{1}{2} \rho (V_2^2 - V_1^2) + \rho g z_2 + \rho g (h_1 + h_m)$ $= \frac{1}{2} (998) (6.631^2 - 2.387^2) + (998) (9.81) (3.5 + 3.5)$ + 998 (9.81) (6.71 + 5.23)= 205 k Pa

AIT Water Distribution Modelling Lecture By Dr. Fiseha Behulu

27 April 2020

Example

Consider a water flow in a pipe having a diameter of D = 20 mm which is intended to fill a 0.35 liter container. Calculate:

(a) the minimum time required if the flow is laminar,

(b) the maximum time required if the flow is turbulent.

Use density $\rho = 998 \text{ kg/m3}$ and dynamic viscosity $\mu = 1.12 \times 10 - 3 \text{ kg/m} \cdot \text{s}$

Solution:

Hence,

(a) For laminar flow, use Re = $\rho VD/\mu = 2300$: $V = \frac{2300\mu}{\rho D} = \frac{2300(1.12 \times 10^{-3})}{(998)(0.020)} = 0.118 \, m/s$

$$t = \frac{r}{Q} = \frac{4r}{\pi D^2 V}$$

the minimum time t is $= \frac{4(0.35 \times 10^{-3})}{\pi (0.02)^2 (0.118)} = \frac{9.452}{2000}$

b) For turbulent flow, use Re = $\rho VD/\mu = 4000$: $V = \frac{4000}{\rho m}$

$$\frac{00\,\mu}{D} = \frac{4000(1.12 \times 10^{-3})}{(998)(0.020)} = 0.224\,m/s$$

$$t = \frac{\psi}{Q} = \frac{4\psi}{\pi D^2 V}$$

Hence, the minimum time *t* is $= \frac{4(0.35 \times 10^{-3})}{\pi (0.02)^2 (0.224)} = \frac{4.96}{2}$

AIT Water Distribution Modelling Lecture By Dr. Fiseha Behulu

27 April 2020

- The pump lifts the fluid a height
- the power delivered to the liquid by the pump is

 $(\Delta Z + \sum h_l)$

The power required to run the pump is greater than this, depending on the efficiency of the pump. The total pumping head, hp, for this case is:

$$\gamma Q \Big(\Delta Z + \sum h_L \Big)$$

□ If the pump discharges a stream through a nozzle, kinetic energy head of $\frac{V_2^2}{2g}$ is required. Total pumping head is:-

$$h_p = \Delta Z + \sum h_L.$$
$$h_p = \Delta Z + \frac{V_2^2}{2g} + \sum h_L$$

Pipeline with a pump

Using Hazen William equation, it is possible to develop a relationship between head loss, hL, that occur in a pressurized pipe, and the flow rate, Q, flowing through this pipe.

$$Q = Av = \left(\frac{\pi d^2}{4}\right) \times 0.849 C_{HW} \left(\frac{d}{4}\right)^{0.63} s^{0.54}$$
$$h_L = KQ^{1.852} = KQ^m$$
$$K = \frac{10.697L}{d^{4.871} C_{HW}^{1.852}}$$

$$Q = Q_1 + Q_2 + Q_3$$

Two types of problems occur:

- 1. If the head loss between A and B is given, Q is determined.
- 2. If the total flow Q is given, then the head loss and distribution of flow are determined.

- to replace the length of all the pipes in terms of equivalent lengths of any one given size, one which figures predominantly in the system
- □ L_e of pipe of certain diameter D_e which carry the same discharge and dissipate same energy or head h_f as the one with length L and diameter D.

$$\therefore h_{f1} = f_1 \frac{L_1}{D_1^5} \frac{8Q_1^2}{\pi^2 g^2} \qquad h_{f2} = f_2 \frac{L_2}{D_2^5} \frac{8Q_2^2}{\pi^2 g^2}$$
$$h_{f1} = h_{f2} \qquad Q_1 = Q_2$$
$$\therefore \frac{f_1 L_1}{D_1^5} = \frac{f_2 L_2}{D_2^5} \Rightarrow L_2 = L_1 \frac{f_1}{f_2} \left(\frac{D_2}{D_1}\right)$$

□ The pressure and datum heads at A and B are known, to compute the discharge

$$h_f = \frac{P_A}{\gamma} + Z_A - \left(\frac{P_B}{\gamma} + Z_B\right)$$

Q₁, Q₂, and Q₃ will be computed and then summed up in order to get the Q value

- **Q** is given, then h_f , and Q_1 , Q_2 , and Q_3 required
- 1. assume a discharge Q_1 ' through pipe 1
- 2. solve for h_f ' using assumed discharge Q_1 ' using equation

$$h_f = \left(f_1 \frac{L_1}{D_1} + \sum K\right) \frac{V_1^2}{2g}$$

- 3. Similarly, using h_f ' compute Q_2 ' Q_3 '
- 4. Now it is assumed that for the same energy loss to occur in the three different loops, that the total discharge Q should be divided in the same proportion as Q_1 ' Q_2 ' and Q_3 '

$$Q_1 = \left(\frac{Q_1^{"}}{\sum Q^{"}}\right)Q \qquad Q_2 = \left(\frac{Q_2^{"}}{\sum Q^{"}}\right)Q \qquad Q_3 = \left(\frac{Q_3^{"}}{\sum Q^{"}}\right)Q$$

5. Check the correctness of the procedure by computing $h_f 1$, $h_f 2$, and $h_f 3$ for the three different loops which should be the same. (1% tolerable)

Pipe Connection

Series connection

 $Q_1 = Q_2 = Q_3$ $h_{L_{A-B}} = h_{L_1} + h_{L_2} + h_{L_3}$

Parallel Connection

 $Q = Q_1 + Q_2 + Q_3$ $h_{L_1} = h_{L_2} = h_{L_3}$

Exercise

□ Three pipes were connected between two points A and B to carry $0.3m^3$ /sec. The point A and B lie 30m and 25m above a given datum, respectively. The pressure at A is maintained at 600Kpa. The pipe 1 is 100m long and 0.3m is diameter, the pipe 2 is 750m long and 0.2m is diameter and pipe 3 is 200m long and 0.4m is diameter. Assume all the pipes to be smooth. Determine the flow in each pipe and the pressure at B. Take kinematice viscosity of water = $10^{-6}m^2$ /sec.


```
□ Case I – Given all L, D, Elev A & Elev B, Q<sub>1</sub>
```

Required - Elev C and Q₂, Q₃

```
□ Case II – Given all L, D, Elev A & Elev C, Q<sub>2</sub>
```

Required – Elev B, and Q₁, Q₃

□ Case III – Given all L, D, and Elevations

Required – Q₁, Q₂, and Q₃

Case I – Given all L, D, Elev A & Elev B, Q₁ Required - Elev C and Q₂, Q₃

- 1. Assume a proper value of f and calculate h_{f1} for a given L_1 , D_1 , and Q_1
- 2. Determine the elevation of J and hence the head difference between J and second reservoir H_{J2} which is also equal to the head loss in pipe 2 i.e. h_{f2}
- 3. Calculate the discharge for the third reservoir and the corresponding head loss using Darcy's equation, the surface elevation can then be determined

Case II – Given all L, D, Elev A & Elev C, Q₂ Required – Elev B, and Q₁, Q₃

- □ Since Q₂ is given, the difference Q₁ Q₃ is known. Similarly, it is seen from the previous figure that h_{f1} + h_{f3} is also given. These relations are solved simultaneously for their component parts in one of the two ways.
- a) Assume successive h_{f3} using trial values of Q_1 and Q_3 . The computed values of h_{f1} and h_{f3} should satisfy elevation at junction J is common for all.
- b) Assume successive elevation of J satisfy the second relation, determine Q_1 , and Q_2 (using Darcy's equation until the first relations is also satisfied.

Case III – Given all L, D, and Elevations Required – Q₁, Q₂, and Q₃

- □ No flow in pipe 2 (Elevation of J and B are same)
- □ Find h_{f1} and h_{f3} , if $Q_1 > Q_3$, the flow is going into reservoir B and if $Q_1 < Q_3$ the flow is going out of reservoir B.
- Once the direction of Q₂ is determined, another trial elevation of piezometric head at J is assumed and h_{f1}, h_{f2} and h_{f3} are computed;
- □ then Q₁, Q₂, and Q₃ are determined and the equation of continuity is satisfied. If the flow into the junction is too great, a higher piezometric head at J is assumed, which will reduce the inflow and increase the outflow

Exercise

A reservoir A with its surface 60m above datum supplies water to a junction J through 30cm diameter pipe 1500m long. From the junction, a 225cm diameter pipe 800m long feeds reservoir B, in which the surface is 30m above datum, while another pipe 400m long and 20cm diameter feeds another reservoir C. The water level in the reservoir C stands at 15m above datum. Calculate the discharge to each reservoir. Assume f for each pipe as 0.03.

Example

A constant head tank delivers water through a uniform pipeline to a tank, at a lower level, for which the water discharges over a rectangular weir. Pipeline length 20.0m, diameter 100mm, roughness size 0.2mm. Length of weir crest 0.25m, discharge coefficient 0.6, crest level 2.5m below water level in header tank. Calculate the steady discharge and the head of water over the weir crest. Use minor head coefficient k of 1.5

AAiT

Solution

For pipeline,
$$H = \frac{1 \cdot 5 V^2}{2g} + \frac{\lambda L V^2}{2g D} = (2 \cdot 5 - h)$$
 (i)
or $H = \frac{Q^2}{2g A^2} \left(1 \cdot 5 + \frac{\lambda L}{D} \right) = (2 \cdot 5 - h)$ (ii)
Discharge over weir: $Q = \frac{2}{3} C_D \sqrt{2g} B h^{3/2}$ (iii)
i.e. $Q = \frac{2}{3} \times 0.6 \times \sqrt{19 \cdot 62} \times 0.25 \times h^{3/2}$
 $= 0.443 h^{3/2}$
i.e. $h = \left(\frac{Q}{0.443}\right)^{2/3}$ (iv)

Solution

Then in (ii)
$$\frac{Q^2}{2g A^2} \left(1.5 + \frac{\lambda L}{D} \right) = 2.5 - \left(\frac{Q}{0.443} \right)^{2/3}$$

or $\frac{Q^2}{2g A^2} \left(1.5 + \frac{\lambda L}{D} \right) + \left(\frac{Q}{0.443} \right)^{2/3} = 2.5$ (v)

Since λ is unknown this equation can be solved by trial or interpolation i.e. inputting a number of trial Q values and evaluating the left-hand side of equation (v):

$$H_{1} = \frac{Q^{2}}{2g A^{2}} \left(1.5 + \frac{\lambda L}{D} \right) + \left(\frac{Q}{0.443} \right)^{2/3}$$

For the same values of Q, the corresponding values of h are evaluated from equation (iv).

For each trial value of Q, the Reynolds number is calculated and the

AAiT

AAiT

Solution

friction factor obtained from the Moody diagram, for $\frac{k}{D} = 0.0002$. See table below.

whence $Q = 0.0213 \text{ m}^3/\text{s} (21.3 \text{ l/s})$ when $H_1 = 2.5 \text{ m}$ and h = 0.132 m.

$\frac{Q m^3}{s}$	Re	λ	H ₁ (m)	h(m)
0.010 0.015 0.018 0.020 0.022	1.13×10^{5} 1.69×10^{5} 2.03×10^{5} 2.25×10^{5} 2.48×10^{5}	0.0250 0.0243 0.0241 0.0241 0.0241 0.0240	0.617 1.287 1.810 2.215 2.655	0.08 0.105 0.118 0.126 0.135

Reading Assignment

- Pipeline systems and network analysis
- Check valve and pressure reducing valve

- Hardy Cross Method
- Newton-Raphson Method
- Linear Theory Methods
- EPANET
- WaterCAD

Hardy Cross Method

- This is an iterative procedure based on initially estimated flows in pipes
- The method is based on the following basic equations of continuity of flow and head loss that should be satisfied
- The steps are as follows:

Complex (Looped) Pipe Networks ...

Hardy Cross Method

Step-1: Assume the best distribution of flow that satisfies continuity by careful examination of the network.

• The flow entering a node must be equal to the flow leaving the same node

$$\sum Q_i = q_j \qquad \text{for all nodes } j = 1, 2, 3, \dots, j_L,$$

Where Q_i the discharge in pipe i meeting at node (junction) j, and q is nodal withdrawal at node j

Hardy Cross Method...

Step-2: Calculate the head loss, h_f , in each pipe. $h_f = k_i(Q)^2$... Darcy Weisbach $h_f = k_i(Q)^{1.85}$... Hazzen- Weliam

• The algebraic sum of the heads around a closed loop must be zero. $\sum_{loop k} h_f = 0 \qquad \text{for all loops } k = 1,2,3,\dots k_i$

$$\sum_{\text{loop }k} K_i Q_i |Q_i| = 0 \qquad \qquad K_i = \frac{8f_i L_i}{\pi^2 g D_i^5} \qquad \qquad h_f = \frac{8f L Q^2}{\pi^2 g D_i^5}$$

• For a loop, take head loss in the clockwise flows as positive and in the anti-clockwise flows as negative

Hardy Cross Method...

- In general, it is not possible to satisfy the condition for head loss with initially assumed pipe discharges satisfying nodal continuity equation.
- Therefore, discharges are modified so that ${\textstyle \sum} h_L$ becomes closer to zero
- The modified pipe discharges are determined by applying a correction ΔQ to the initially assumed pipe flows

$$\sum_{\text{loop } k} K_i(Q_i + \Delta Q_k) |(Q_i + \Delta Q_k)| = 0$$

Hardy Cross Method...

Step-3: Calculate the correction factor for each loop by Expanding the equation and neglecting second power of ΔQ_k and simplifying it, the following equation is obtained:

$$\Delta Q = -\frac{\sum r Q_o |Q_o|^{n-1}}{\sum r n |Q_o|^{n-1}} = -\frac{\sum h_f}{n \sum \frac{h_f}{Q_o}}$$

$$\Delta Q_k = -\frac{\sum\limits_{\text{loop } k} K_i Q_i |Q_i|}{2\sum\limits_{\text{loop } k} K_i |Q_i|}.$$

$$=-\frac{\sum h_f}{n\sum \frac{h_f}{Q_o}}$$

Formulae for flow correction, ΔQ

$$\Delta Q = \frac{-\sum HL}{2\sum (\frac{HL}{Q})}$$
 for Darcy-weisbach

 $\Delta Q = \frac{-\Sigma HL}{1.85 \Sigma (\frac{HL}{Q})}$ for Hazen-Williams

The overall procedure for the looped network analysis can be summarized as;

- Number all the nodes pipe, links and loops
- Apply **nodal continuity equation** at all the nodes to obtain **pipe discharges** (start by assuming an arbitrary discharge in one of two pipes joining and apply continuity equation to obtain discharge in the other pipe).
- Adopt a sign convention that a pipe discharge is positive if it flows clockwise direction, otherwise negative
- Estimate diameters for the initially assumed flow rates
- Calculate head loss in the pipes as a function of the flow rate Q, the diameter, length and roughness of a pipe, .
- Work out to satisfy the **head loss requirement** (determine ΔQ for each loop and by using ΔQ value, new estimated flows are calculated).
- Iterate /repeat procedure/ until $\Delta Q \approx 0$ i.e, negligibly small corrections (ΔQ), ($\sum h_L=0$)

Example

Determine the discharge in each of the pipes using Hard-Cross Method

Determine the flow rates in all the pipes of the network using Hardy Cross Method. Take C=100

Solution:

Trial discharges from continuity

Solution:

AAIT Modeling Water Distribution Lecture by Dr. Fiseha Behulu

Solution:

□ Iteration 2

Loop	Pipe	D, <i>mm</i>	L, <i>m</i>	Q, <i>L/s</i>	S, <i>m/m</i>	h_L, m	h_L/Q	$Q + \Delta Q$
I (second try)	AB	300	1000	29	0.001	1.00	0.034	24
	BD	300	3000	17	0.0004	1.20	0.071	- 12
	AD	400	3500	-31	-0.0003	-1.05	<u>0.034</u>	-36
	1 15					1.15	0.139	
$I: \Delta Q_2 = -\frac{1}{1.8}$	$\frac{1.15}{5 \times 0.139}$	≠ −5 L/s						1
Loop	Pipe	D, mm	L, m	Q, <i>L/s</i>	S, <i>m/m</i>	h_L, m	h_L/Q	$\sqrt{Q + \Delta Q}$
II (second try)	BC	200	2500	12	0.0015	3.75	0.313	8
	CD	200	600	-8	-0.000 75	-0.45	0.056	-12
	BD	300	3000	(12)	-0.0002	-0.60	<u>0.050</u>	-16
	27					2.7	0.419	
II: $\Delta Q_2 = -\frac{1.8}{1.8}$	$\frac{2.1}{35 \times 0.419}$	≈ -4 L/s						

AAiT

Solution:

□ Iteration 3

Loop	Pipe	D, <i>mm</i>	L, <i>m</i>	Q, <i>L/s</i>	S, <i>m/m</i>	h_L, m	h _L /Q	$Q + \Delta Q$
I (third try)	AB	300	1000	24	0.0007	0.7	0.029	23
	BD	300	3000	16	$0.000\ 34$	1.02	0.064	15
	AD	400	3500	-36	-0.0004	-1.4	<u>0.039</u>	-37
	0.35					0.32	0.132	
I: $\Delta Q_3 = -\frac{1.8}{1.8}$	$\frac{0.52}{85 \times 0.132}$	$r \approx -1 \text{ L/s}$						
Loop	Pipe	D, <i>mm</i>	• L, <i>m</i>	Q, <i>L/s</i>	S, <i>m/m</i>	h_L, m	h_L/Q	$Q + \Delta Q$
II (third try)	BC	200	2500	8	0.9007	1.75	0.219	
,	CD	200	600	-12	-0.0015	-0.9	0.075	
	BD	300	3000	-15	-0.0003	-0.9	0.06	
	-0.05					-0.05	0.354	
II: $\Delta Q_3 = \frac{1.8}{1.8}$	$\frac{-0.05}{5 \times 0.354}$	≈ 0.07 (negligi	ible)	•				

Final Solution

Then residual head and velocity can be checked against design criterion

*

AAIT Modeling Water Distribution Lecture by Dr. Fiseha Behulu

Water Distribution Modeling

- *Simulation:* the process of imitating the behavior of one system through the functions of another.
- refers to the process of using a mathematical representation of the real system, called a *model*.

- Steady-State: a snapshot in time and are used to determine the operating behavior of a system under static conditions.
- Extended Period Simulation (EPS): used to evaluate system performance over time

- Long-range master planning, both new development and rehabilitation
- Fire protection studies
- Water quality investigations
- Energy management
- System design
- Daily operational uses including operator training, emergency response, and
- troubleshooting

Model Representation

AAIT Modeling Water Distribution Lecture by Dr. Fiseha Behulu

Element	Туре	Primary Modeling Purpose
Reservoir	Node	Provides water to the system
Tank	Node	Stores excess water within the system and releases that water at times of high usage
Junction	Node	Removes (demand) or adds (inflow) water from/to the system
Pipe	Link	Conveys water from one node to another
Pump	Node or link	Raises the hydraulic grade to overcome elevation differences and friction losses
Control Valve	Node or link	Controls flow or pressure in the system based on specified criteria

EPAnet steps

 Project setup View > View Project Report Window Help Summary Defaults Project > 	elp
 View > View Project Report Wint Dimensions Backdrop Pan Zoom In Zoom Out Full Extent Project > Project Report Window Help Summary Defaults Calibration Data Calibration Data	
View Project Report Window Dimensions Backdrop Pan Zoom In Zoom Out Feet Full Extent Defaults Project Report Window Help Dimension Default Value Summary Defaults Defaults Default Defaults Defaults Default	
Project > Dimensions Backdrop Pan Zoom In Zoom Out Feet Full Extent Defaults Project Report Window Help Summary Defaults Defaults Project is Hydraulics Project Report Window Plan Defaults Defaults Project Hydraulics Project Report Window Plan Defaults Defaults Project is Hydraulics Project Report Window Pop Summary Defaults Calibration Data Utubels Provinger Project Project Project Project Defaults Project Calibration Data Project	
Backdrop Pan Zoom In Zoom Out Full Extent Project Report Window Help Summary Defaults Project Report Window Help Summary Defaults Calibration Data Defaults Compute Com	
Pan Zoom In Zoom Out Full Extent Project Report Window Help Summary Defaults Calibration Data	
Zoom In Zoom Out Full Extent Project Report Window Help Summary Defaults Calibration Data It Urbalanced Defaults Defaults Defaults Defaults Defaults Defaults Defaults Defaults Calibration Data Full Extent Defaults Calibration Data It Urbalanced Continue It Urbalanced Continue	
Project > Zoom Out Full Extent Project Report Window Help Summary Defaults Defaults Calibration Data It lubels Properties Hydraulics	x
Project Report Window Help Summary Defaults Defaults ID Labels Properties Hydraulics Properties Hydraulics Project Report Window Help Summary ID Labels Properties Hydraulics Properties Hydraulics Project Report Window Help Summary ID Labels Properties Hydraulics Defaults Defaults ID Labels Properties Hydraulics ID Labels Properties Hydraulics Project Report Window Help ID ID Labels Properties Hydraulics ID Summary ID Headloss Formula H-W ID Tank Diameter 50 Relative Viscosity 1 ID Maximum Trials 40 Auto Length ID Accuracy 0.001 If Undependent Continue ID Pine Bourdmess 100	
Option Default Value Property Default Value Project Report Window Headloss Formula H-W Node Elevation 0 Summary Defaults Specific Gravity 1 1 Tank Height 20 Defaults Maximum Trials 40 Auto Length 100 Accuracy 0.001 Fipe Diameter 12 Pipe Diameter 12	1
Project Report Window Help Summary Headloss Formula H-W Tank Diameter 50 Summary Defaults 1 Pipe Length 1000 Calibration Data Kacuracy 0.001 Pipe Diameter 12 It Unbalanced Continue Pipe Bauthess 100	
Summary Summary Defaults Naximum Trials Calibration Data Keport Window Heip	
Summary Summary Relative Viscosity 1 Pipe Length 1000 Defaults Maximum Trials 40 Accuracy 0.001 Pipe Diameter 12 It Unbalanced Continue Dire Boughness 100	
P Calibration Data Maximum Trials 40 Auto Length Pipe Diameter 12 Calibration Data It Unbalanced Continue	
P Calibration Data Accuracy 0.001 Pipe Diameter 12	
If Unbalanced Continue Pine Bourdhness 100	
Analysis Options Default Pattern 1	
Run Analysis Demand Multiplier 1.0	
Save as defaults for all new projects	
OK Cancel Help OK Cancel H	:lp
AAIT Lecture by Dr. Fiseha Behulu	5

- Model building
 - First construct nodes (Reservoirs, tanks, junctions)
 - Then connect links (pumps, pipes, valves)

EPAnet steps ...

Input data

Double click element using selection tool

Modify data in the property box

Pipe 1		X
Property	Value	
*Pipe ID	1	*
*Start Node	1	
*End Node	2	
Description		
Tag		
*Length	1000	
*Diameter	12	
*Roughness	100	
Loss Cooff	0	Ŧ

Tank 4		
Property	Value	
*Tank ID	4	1
X-Coordinate	5722.22	1
Y-Coordinate	5825.40	1
Description		1
Tag		1
*Elevation	0	1
*Initial Level	10	
*Minimum Level	0	1
×Monimum Louol	20	

Reservoir 3		ß
Property	Value	
*Reservoir ID	3	*
X-Coordinate	7198.41	
Y-Coordinate	9206.35	
Description		
Tag		
*Total Head	0	
Head Pattern		
Initial Quality		
Course Ouslike		Ŧ

AAIT Modeling Water Distribution Lecture by Dr. Fiseha Behulu

EPAnet steps ...

Run the model

□ View result

AAIT Modeling Water Distribution Lecture by Dr. Fiseha Behulu

The following needs to be considered in your Project (<u>Assignment #3</u>)

- Demand Analysis (Including Population Forecasting)
- Preliminary network layout (GIS/ Google Earth)
- Distribution system design (In WaterCAD)
- Typical building sanitary system design (Optional)
- Report
 - Text
 - Drawing
 - EPANET model & result
 - WaterCAD model & result

Design procedures for Complex (Looped) Pipe Networks

Hardy Cross Method

- Newton-Raphson Method
- Linear Theory Methods
- EPANET
- WaterCAD

Hardy Cross Method (Revised)

The method is based on two basic principles:

1. Conservation of Mass (Continuity Equation) Inflow = Outflow at nodes $Q_a = Q_{b+} Q_c$

The algebraic sum of the flow rates in the pipe meeting at a junction, together with any external flows is zero

2. Conservation of Energy (Head Loss Equation) Summation of head loss in a closed loop is Zero $\sum h_l(loop) = 0$

$$\sum K(Q + \Delta Q)^n) = 0$$

The relationship between head loss and discharge must be maintained for each pipe:

Darcy-Weisbach Equation

 $h_f = \frac{fLV^2}{2aD}$

 $V^2 = \left(\frac{Q}{A}\right)^2 = \left(\frac{Q}{\underline{\pi d^2}}\right)^2$

 $h_l(pipe) = KQ^n$ $n = 2; K = \frac{8fL}{a\pi^2 D^5}$ $V^2 = \frac{16 * Q^2}{\pi^2 D^2}$

Exponential Friction Formula (Hazen-Williams Equation)

$$h_l(pipe) = KQ^n$$
 $n = 1.85; K = \frac{10.67}{C^{1.85} D^{4.87}}$

Hardy Cross Method (Revised)...

Derivation of Hardy Cross Method (For the first Principle)

Actual Discharge = Q

Assumed Discharge = Qi

Correction Discharge = Δ $Q = Q_i + \Delta$ Q_d

 $\sum K((Q_i+\Delta)^n)=0$

 $\sum KQ_{i}^{n} + \sum nK\Delta Q_{i}^{n-1} + \sum \frac{n-1}{2}nK\Delta^{2}Q_{i}^{n-2} + \dots = 0$ Expansion $\sum KQ_{i}^{n} + \sum nK\Delta Q_{i}^{n-1} = 0$ For Small values of Δ $\Delta = -\frac{\sum KQ_{i}^{n}}{\sum nKQ_{i}^{n-1}} = -\frac{\sum h_{l}}{n\sum \frac{h_{l}}{Q_{i}}}$ n = 2 for Darcy Weisbach n = 1.85 for Hazen Williams

Derivation of Hardy Cross Method (For the second Principle)

 $\sum h_l(loop) = 0$

 $h_f(1) + h_f(2) + h_f(3) + h_f(4) = 0$

- Note that the clockwise water flows are positive while the anti-clockwise ones are negative.
- Positive and negative flows give rise to positive and negative head losses respectively

Example

Example: Obtain the flow rates in the network shown below.

AAIT Water Distribution Modelling Lecture By Dr. Fiseha Behulu

AAIT Water Distribution Modelling Lecture By Dr. Fiseha Behulu

Iteration - 2	Loop	Pipe	L(m)	D(m)	Q(m3/s)	Hf (m)	hf/Q	Q+∆Q
and the second second		AB	600	0.254	0.063	3.543	55.837	0.065
	- I	BD	600	0.152	0.014	2.637	188.386	0.016
		DE	600	0.152	0.003	0.197	57.217	0.005
		EA	600	0.152	-0.027	-8.620	324.604	-0.025
						-2.242	626.044	
						0.002		
		BC	600	0.254	0.049	2.197	44.827	0.052
	Ш	CD	600	0.152	-0.011	-1.688	153.470	-0.008
		DB	600	0.152	-0.014	-2.637	188.386	-0.011
						-2.129	386.683	
						0.003		

Iteration - 3	Loop	Pipe	L(m)	D(m)	Q(m3/s)	Hf (m)	hf/Q	Q+∆Q
and the second second		AB	600	0.254	0.065	3.705	56.997	0.066
	- I	BD	600	0.152	0.013	2.300	176.885	0.014
		DE	600	0.152	0.005	0.393	78.517	0.006
		EA	600	0.152	-0.025	-7.710	308.381	-0.024
						-1.313	620.781	
						0.001		
		BC	600	0.254	0.052	2.452	47.150	0.053
	Ш	CD	600	0.152	-0.008	-0.937	117.075	-0.007
		DB	600	0.152	-0.013	-2.300	176.885	-0.012
						-0.784	341.110	
						0.001		

Design procedures for Complex (Looped) Pipe Networks

- Hardy Cross Method
- Newton-Raphson Method
- Linear Theory Methods
- EPANET
- WaterCAD

Newton-Raphson Method

- It is a powerful numerical method for solving systems of non-linear equations
- The method can be applied to both ΔH and ΔQ equations.
- The main concept of Newton-Raphson algorithm is derived from Taylor series which calculates the x₁ value according to x₀

$$\mathbf{x}_1 = \mathbf{x}_0 - \frac{f(x)}{f'(x)}$$

Newton-Raphson Method...

- Suppose that there are three nonlinear equations to be solved for Q₁, Q₂, and Q₃
 - $F_1(Q_1, Q_2, Q_3) = 0$
 - $F_2(Q_1, Q_2, Q_3) = 0$
 - $F_3(Q_1, Q_2, Q_3) = 0$
- Adopt a starting solution (Q_1, Q_2, Q_3) .
- Also consider that $(Q_1 + \Delta Q_1, Q_2 + \Delta Q_2, Q_3 + \Delta Q_3)$ is the solution for the set of equations. That is: F1 $(Q_1 + \Delta Q_1, Q_2 + \Delta Q_2, Q_3 + \Delta Q_3) = 0$ F2 $(Q_1 + \Delta Q_1, Q_2 + \Delta Q_2, Q_3 + \Delta Q_3) = 0$ F3 $(Q_1 + \Delta Q_1, Q_2 + \Delta Q_2, Q_3 + \Delta Q_3) = 0$

Newton-Raphson Method...

Expanding the above equations as Taylor's series:

 $F_{1} + \left[\frac{\partial F_{1}}{\partial Q_{1}}\right] \Delta Q_{1} + \left[\frac{\partial F_{1}}{\partial Q_{2}}\right] \Delta Q_{2} + \left[\frac{\partial F_{1}}{\partial Q_{3}}\right] \Delta Q_{3} = 0$ $F_{2} + \left[\frac{\partial F_{2}}{\partial Q_{1}}\right] \Delta Q_{1} + \left[\frac{\partial F_{2}}{\partial Q_{2}}\right] \Delta Q_{2} + \left[\frac{\partial F_{2}}{\partial Q_{3}}\right] \Delta Q_{3} = 0$ $F_{3} + \left[\frac{\partial F_{3}}{\partial Q_{1}}\right] \Delta Q_{1} + \left[\frac{\partial F_{3}}{\partial Q_{2}}\right] \Delta Q_{2} + \left[\frac{\partial F_{3}}{\partial Q_{3}}\right] \Delta Q_{3} = 0$

• Arrange the above set of equations in matrix form,

$\left[\frac{\partial F_1}{\partial Q_1}\right]$	$\frac{\partial F_1}{\partial Q_2}$	$\frac{\partial F_1}{\partial Q_3}$	$\left[\Delta Q_1 \right]$		$\begin{bmatrix} F_1 \end{bmatrix}$
$\frac{\partial F_2}{\partial Q_1}$	$\frac{\partial F_2}{\partial Q_2}$	$\frac{\partial F_2}{\partial Q_3}$	ΔQ_2	= -	<i>F</i> ₂
$\left \frac{\partial F_3}{\partial Q_1}\right $	$\frac{\partial F_3}{\partial Q_2}$	$\frac{\partial F_3}{\partial Q_3}$	$\left\lfloor \Delta Q_3 \right\rfloor$		$[F_3]$

Newton-Raphson Method...

Solving Equation (3), we get

$$\begin{bmatrix} \Delta Q_1 \\ \Delta Q_2 \\ \Delta Q_3 \end{bmatrix} = -\begin{bmatrix} \frac{\partial F_1}{\partial Q_1} & \frac{\partial F_1}{\partial Q_2} & \frac{\partial F_1}{\partial Q_3} \\ \frac{\partial F_2}{\partial Q_1} & \frac{\partial F_2}{\partial Q_2} & \frac{\partial F_2}{\partial Q_3} \\ \frac{\partial F_3}{\partial Q_1} & \frac{\partial F_3}{\partial Q_2} & \frac{\partial F_3}{\partial Q_3} \end{bmatrix}^{-1} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix}$$

Knowing the corrections, the discharges are improved as

$$\begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \end{bmatrix} + \begin{bmatrix} \Delta Q_1 \\ \Delta Q_2 \\ \Delta Q_3 \end{bmatrix}$$

Eq-4

Newton-Raphson Procedure

• The overall procedure for looped network analysis by the Newton-Raphson method can be summarized in the following steps:

Step 1: Number all the nodes, pipe links, and loops.

Step 2:Write nodal discharge equations as

$$F_j = \sum_{n=1}^{J_n} Q_{jn} - q_j = 0 \quad \text{for all nodes} - 1,$$

where Q_{jn} is the discharge in nth pipe at node j, q_j is nodal withdrawal, and jn is the total number of pipes at node j. Step 3:Write loop head-loss equations as

 $F_k = \sum_{n=1}^{k_n} K_n Q_{kn} |Q_{kn}| = 0 \quad \text{for all the loops } (n = 1, k_n).$

where k_n is total pipes in k_{th} loop.

AIT Modeling Water Distribution Lecture by Dr. Fiseha Behulu

Newton-Raphson Procedure...

Step 4: Assume initial pipe discharges Q_1, Q_2 , and Q_3, \ldots satisfying continuity equations.

Step 5: Determine friction factors, f_i , in all pipe links and compute corresponding K_i using

$$K_i = \frac{8f_i L_i}{\pi^2 g D_i^5},$$

Step 6: Find values of partial derivatives $\partial F_n / \partial Q_i$ and functions F_n , using the initial pipe discharges Q_i and K_i .

Step 7: Find ΔQi . The equations generated are of the form Ax = b, which can be solved for ΔQ_i .

Step 8: Using the obtained ΔQ_i values, the pipe discharges are modified and the process is repeated again until the calculated ΔQ_i values are very small.

Example Newton-Raphson Method

The pipe network of single loop as shown in Figure has to be analyzed by the Newton-Raphson method for pipe flows for given pipe lengths L and pipe diameters D. The nodal inflow at node 1 and nodal outflow at node 3 are shown in the figure. Assume a constant friction factor f=0.02 and determine the discharge through all pipes.

Design procedures for Complex (Looped) Pipe Networks

Solution

• The nodal discharge functions, F are:

$$Q_1 + Q_4 - 0.6 = 0$$

- $Q_1 + Q_2 = 0$
 $Q_2 + Q_3 - 0.6 = 0$

and loop head loss functions,

h=KQⁿ; n=2, K= $\frac{8fL}{g\pi^2 D^5}$ (with proper sign convention)

 $6528|Q_1|Q_1 + 4352|Q_2|Q_2 - 6528|Q_3|Q_3 - 4352|Q_4|Q_4 = 0$

Design procedures for Complex (Looped) Pipe Networks

- **Solution...**
 - The nodal discharge functions, F are:

 $F_1 = Q_1 + Q_4 - 0.6 = 0$ $F_2 = -Q_1 + Q_2 = 0$ $F_3 = Q_2 + Q_3 - 0.6 = 0$

and loop head loss functions, (Clockwise +ve)

 $F_4 = 6528 |Q_1| |Q_1 + 4352 |Q_2| |Q_2 - 6528 |Q_3| |Q_3 - 4352 |Q_4| |Q_4 = 0$

Solution...

• The derivatives are:

Solution...

• The generated equations are assembled in the following matrix form:

$$\begin{bmatrix} \Delta Q_1 \\ \Delta Q_2 \\ \Delta Q_3 \end{bmatrix} = -\begin{bmatrix} \frac{\partial F_1}{\partial Q_1} & \frac{\partial F_1}{\partial Q_2} & \frac{\partial F_1}{\partial Q_3} \\ \frac{\partial F_2}{\partial Q_1} & \frac{\partial F_2}{\partial Q_2} & \frac{\partial F_2}{\partial Q_3} \\ \frac{\partial F_3}{\partial Q_1} & \frac{\partial F_3}{\partial Q_2} & \frac{\partial F_3}{\partial Q_3} \end{bmatrix}^{-1} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix}$$

• Substituting the derivatives, the following form is obtained:

$$\begin{bmatrix} \Delta Q_1 \\ \Delta Q_2 \\ \Delta Q_3 \end{bmatrix} = - \begin{bmatrix} 1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 6528Q_1 & 4352Q_2 & -6528Q_3 & -4352Q_4 \end{bmatrix}^{-1} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix}$$

Solution...

• Assuming initial pipe discharge in pipe 1 as $Q_1 = 0.5m^3/s$, the other pipe discharges obtained by continuity equation are:

AIT Water Distribution Modelling Lecture By Dr. Fiseha Behulu

Solution...

• Substituting these values in the above equation, the following form is obtained:

$$\begin{bmatrix} \Delta Q_1 \\ \Delta Q_2 \\ \Delta Q_3 \\ \Delta Q_4 \end{bmatrix} = -\begin{bmatrix} 1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 3264 & 2176 & -652.8 & -435.2 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2611.2 \end{bmatrix}$$

• Using Gaussian elimination method, the solution is obtained as:

$$\Delta Q_1 = -0.2 \text{ m}^3/\text{s}$$

 $\Delta Q_2 = -0.2 \text{ m}^3/\text{s}$
 $\Delta Q_3 = 0.2 \text{ m}^3/\text{s}$
 $\Delta Q_4 = 0.2 \text{ m}^3/\text{s}$

Solution...

• Using these discharge corrections, the revised pipe discharges are:

$$Q_1 = Q_1 + \Delta Q_1 = 0.5 - 0.2 = 0.3 \text{ m}^3/\text{s}$$

$$Q_2 = Q_2 + \Delta Q_2 = 0.5 - 0.2 = 0.3 \text{ m}^3/\text{s}$$

$$Q_3 = Q_3 + \Delta Q_3 = 0.1 + 0.2 = 0.3 \text{ m}^3/\text{s}$$

$$Q_4 = Q_4 + \Delta Q_4 = 0.1 + 0.2 = 0.3 \text{ m}^3/\text{s}$$

■ The process is repeated with the new pipe discharges. Revised values of F and derivative ∂F= ∂Q values are obtained. Substituting the revised values, the following new solution is generated:

$$\begin{bmatrix} \Delta Q_1 \\ \Delta Q_2 \\ \Delta Q_3 \\ \Delta Q_4 \end{bmatrix} = -\begin{bmatrix} 1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1958.4 & 1305.6 & -1958.4 & -1305.6 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Solution...

• As the right-hand side is operated upon null vector, all the discharge corrections $\Delta Q=0$. Thus, the final discharges are

 $Q_1 = 0.3 \text{ m}^3/\text{s}$ $Q_2 = 0.3 \text{ m}^3/\text{s}$ $Q_3 = 0.3 \text{ m}^3/\text{s}$ $Q_4 = 0.3 \text{ m}^3/\text{s}$

AAIT Water Distribution Modelling Lecture By Dr. Fiseha Behulu

- Hardy Cross Method
- Newton-Raphson Method
- Linear Theory Methods
- EPANET
- WaterCAD

Linear Theory Method

- Linear theory method is another looped network analysis method presented by Wood and Charles (1972).
- The entire network is analyzed altogether like the Newton-Raphson method.
- The nodal flow continuity equations are obviously linear but the looped head-loss equations are nonlinear.
- The looped energy equations are modified to be linear for previously known discharges and solved iteratively.
- The process is repeated until the two solutions are close to the allowable limits.

Procedures of Linear Theory Method

Step 1: Number pipes, nodes, and loops.Step 2: Write nodal discharge equations as

$$F_j = \sum_{n=1}^{j_n} Q_{jn} - q_{jj} = 0 \quad \text{for all nodes} - 1,$$

where Q_{jn} is the discharge in the *n*th pipe at node *j*, q_j is nodal withdrawal, and j_n the total number of pipes at node *j*.

Step 3: Write loop head-loss equations as

$$F_k = \sum_{n=1}^{k_n} b_{kn} Q_{kn} = 0$$
 for all the loops.

AAIT Modeling Water Distribution Lecture by Dr. Fiseha Behulu

Procedures of Linear Theory Method...

- Step 4: Assume initial pipe discharges Q_1, Q_2, Q_3, \ldots It is not necessary to satisfy continuity equations.
- Step 5: Assume friction factors $f_i = 0.02$ in all pipe links and compute corresponding K_i
- Step 6: Generalize nodal continuity and loop equations for the entire network.
- Step 7: Calculate pipe discharges. The equation generated is of the form Ax = b, which can be solved for Q_i .
- Step 8: Recalculate coefficients b_{kw} from the obtained Q_i values.
- Step 9: Repeat the process again until the calculated Q_i values in two consecutive iterations are close to predefined limits.

Example Linear Theory Method

The pipe network of single loop as shown in Figure has to be analyzed by the Newton-Raphson method for pipe flows for given pipe lengths L and pipe diameters D. The nodal inflow at node 1 and nodal outflow at node 3 are shown in the figure. Assume a constant friction factor f=0.02 and determine the discharge through all pipes.

Solution:

• The nodal discharge functions F can be written as

 $F_1 = Q_1 + Q_4 - 0.6 = 0$ $F_2 = -Q_1 + Q_2 = 0$ $F_3 = Q_2 + Q_3 - 0.6 = 0,$

and Loop head-loss function

$$F_4 = K_1 |Q_1| Q_1 + K_2 |Q_2| Q_2 - K_3 |Q_3| Q_3 - K_4 |Q_4| Q_4 = 0,$$

Which is linearized as

$$F_4 = b_1 Q_1 + b_2 Q_2 - b_3 Q_3 - b_4 Q_2 = 0.$$

AAIT Water Distribution Modelling Lecture By Dr. Fiseha Behulu

Solution:

 Assuming initial pipe discharge as 0.1 m3/s in all the pipes, the coefficients for head-loss function are calculated as:

> $b_1 = K_1 Q_1 = 6528 \times 0.1 = 652.8$ $b_2 = K_2 Q_2 = 4352 \times 0.1 = 435.2$ $b_3 = K_3 Q_3 = 6528 \times 0.1 = 652.8$ $b_4 = K_4 Q_4 = 4352 \times 0.1 = 435.2.$

• Thus the matrix of the form Ax = B can be written as

[1	0	0	1]	$\left[\mathcal{Q}_{1} \right]$		[0.6]
-1	1	0	0	Q_2		0
0	1	1	0	Q_3	=	0.6
652.8	435.2	-6528.8	-435.2	Q_4		0

• Solving the above set of linear equations, the pipe discharges obtained are $Q_1 = Q_2 = Q_3 = Q_4 = 0.3 \text{ m}^3/\text{s}$

Solution:

Repeating the process, the revised head-loss coefficients are:

 $b_1 = K_1 Q_1 = 6528 \times 0.3 = 1958.4$ $b_2 = K_2 Q_2 = 4352 \times 0.3 = 1305.6$ $b_3 = K_3 Q_3 = 6528 \times 0.3 = 1958.4$ $b_4 = K_4 Q_4 = 4352 \times 0.3 = 1305.6$

• Thus the matrix of the form Ax = B can be written as

ſ	1	0	0	1	$\left[Q_{1} \right]$	[0.6]
	-1	1	0	0	Q_2	0
ł	0	1	1	0	Q_3	0.6
l	1958.4	1305.6	-1958.4	-1305.6	Q_4	

• Solving the above set of linear equations, the pipe discharges obtained are $Q_1 = Q_2 = Q_3 = Q_4 = 0.3 \text{ m}^3/\text{s}$

AAIT Water Distribution Modelling Lecture By Dr. Fiseha Behulu