Lecture-2: Basic Principles of Pipe Flow (Hydraulics)

Prepared By

Fiseha Behulu, AAiT
2018

Contents of the Course

1. Components of Water Supply

2. Basic Principles of Pipe Flow (Hydraulics)
3. The Concept of Modeling
4. Model Calibration
5. Optimization in WDS
6. Water Hammer Theory
7. Water Supply Project Design (Application of Tools)

Basic Principles of Pipe Flow (Hydraulics)

- Fluid Properties- Brief revision
- Fluid Statistics and Dynamics
- Energy Concept
- Friction Losses
- Minor Losses
- Network Hydraulics
- Water quality modeling

Brainstorming

Which Tank Will Fill-Up First?

 Have a close look to each pipe and tank (Inlets and Outlets)

Properties of Fluid

A fluid is any substance that deforms continuously when subjected to shear stress, no matter how small the shear stress is.

The intermolecular cohesive forces are large in a solid, smaller in a liquid and extremely small in a gas.

AAiT

Properties of Fluid

Quantity	Symbol	Dim
Density	ρ	M
Specific Weight	γ	ML
Dynamic viscosity	μ	ML
Kinematic viscosity	ν	L^{2}
Surface tension	σ	M
Bulk modules of elasticity	E	ML
These are fluid		properties!

Pipe Flow Analysis

Objectives

To understand laminar and turbulent flow in pipes and the analysis of fully developed flow

- Able to calculate the major and minor losses associated with pipe flow
\square In order calculate and design the sizes of the pipes

Introduction

Comparison of open channel flow and pipe flow

Introduction

- Water is conveyed from its source, normally in pressure pipelines, to water treatment plants where it enters the distribution system and finally arrives at the consumer. In addition oil, gas, irrigation water, sewerage can be conveyed by pipeline system.
- The effect of friction is to decrease the pressure, causing a pressure 'loss' compared to the ideal, frictionless flow case.
- The loss will be divided into major losses (due to friction in fully developed flow in constant area portions of the system) \& minor losses (due to flow through valves, elbow fittings \& frictional effects in other non-constant -area portions of the system).

AAiT

Major loss (friction) in pipes

$z_{1}+\frac{P_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}=z_{2}+\frac{P_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+h_{L}$

$p_{1} A-p_{2} A-\gamma A L \sin \alpha-\bar{\tau}_{o} P L=0$

$$
\sin \alpha=\frac{\left(z_{2}-z_{1}\right)}{L}
$$

$$
h_{L}=\bar{\tau}_{o} \frac{P L}{\gamma A}=\left(\frac{p_{1}}{\gamma}+z_{1}\right)-\left(\frac{p_{2}}{\gamma}+z_{2}\right)
$$

AAIT

Friction in Circular Conduits (Pipe) flowing full

$$
h_{L}=C_{f} 4 \frac{L}{D} \frac{V^{2}}{2 g}=f \frac{L}{D} \frac{V^{2}}{2 g}
$$

- for both smooth-walled and rough walled conduits. It is known as pipe -friction equation, and commonly referred to as the DarcyWeisbach equation
a Friction factor, f, is dimensionless and is also some function of Reynolds number

Pipe friction equations

- Darcy's Weisbach Equation

$$
h_{L}=f \frac{L}{D} \frac{V^{2}}{2 g} \quad \therefore f=\phi_{1}\left(\operatorname{Re}, \frac{\varepsilon}{D}\right)
$$

- Hazen William Equation

$$
h_{\mathrm{f}}=\frac{10.675 L}{D^{4.8704}}\left(\frac{Q}{C}\right)^{1.852} \text { SI units }
$$

- Chezy's Equation
- Manning's Equation

Reynolds Number

\square Pipe flow regimes depends on the following factors:

- geometry,
- surface roughness,
- flow velocity,
- surface temperature, and type of fluid, among other things.
\square After exhaustive experiments in the 1880s, Osborne Reynolds discovered that the flow regime depends mainly on the ratio of inertial forces to viscous forces in the fluid. This ratio is called the Reynolds number and is expressed for internal flow in a circular pipe as

Laminar and Turbulent Flow

L Laminar flow - in laminar flow the particles of fluid move in an orderly manner $\&$ the steam lines retain the same relative position in successive cross section. Laminar flow is associated with low velocity of flow and viscous fluids.

- Turbulent flow - Here the fluid particles flow in a disorder manner occupying different relative positions in successive cross section. Turbulent flow is associated with high velocity flows.

$$
\begin{aligned}
& \operatorname{Re}=\frac{\text { Inertial forces }}{\text { Viscous forces }}=\frac{V_{\text {avg }} D}{\nu}=\frac{\rho V_{\text {avg }} D}{\mu} \\
& \operatorname{Re} \lesssim 2300 \text { laminar flow } \\
& 2300 \leqq \operatorname{Re} \lesssim 4000 \text { transitional flow } \\
& \operatorname{Re} \gtrsim 4000 \text { turbulent flow }
\end{aligned}
$$

AAiT

Pipe friction equations

1. For laminar flow type $\quad f=64 \frac{v}{D V}=\frac{64}{\text { Re }}$
2. For Transition flow type $\quad f=\left\{-2 \log _{10}\left[\frac{(\varepsilon \mathcal{D})}{3.7}+\frac{2.51}{\operatorname{Re}\left(\mathbf{f}^{1 / 2}\right)}\right]\right\}^{2}$
3. For hydraulically turbulent smooth pipes $(e=0)$ such as glass, copper, $\quad f=\frac{0.3164}{\operatorname{Re}^{025}}(4,000<\operatorname{e}<100,000)$ Blasius equation

$$
\frac{1}{\sqrt{f}}=2 \log (\mathrm{Re} / \sqrt{f})-0.8 \quad \begin{aligned}
& \text { Von Karman's and Prandtl } \\
& \text { equation for Re upto } 3 * 10^{6}
\end{aligned}
$$

4. For Complete turbulence rough pipe flow type

$$
f=\left[1.14+2 \log _{10}\left(\frac{D}{\varepsilon}\right)\right]^{-2}
$$

Pipe friction equations

For all pipes, a general empirical formula by Colebrook - White is given by:

$$
\frac{1}{\sqrt{f}}=-0.86 \ln \left(\frac{e}{3.71 D}+\frac{2.51}{\operatorname{Re} \sqrt{f}}\right)
$$

The above equation is awkward to solve

- In 1944, Leewis F. Moody plotted the Darcy-Weisbach friction factor into what is now known as the Moody chart and diagrams are available to give the relation between f, Re, and e/D.

Moody Chart

Reynolds number $\mathbf{R}=\frac{V D}{v}$, consistent units

Pipe roughness

pipe material

glass, drawn brass, copper
commercial steel or wrought iron
asphalted cast iron
galvanized iron
cast iron
concrete
rivet steel
corrugated metal
PVC
pipe roughness e(mm)
0.0015
0.045
0.12
0.15
0.26
0.18-0.6
0.9-9.0

45
0.12

Questions

\square Can the Darcy-Weisbach equation and Moody Diagram be used for fluids other than water? Yes

What about the Hazen-Williams equation? No

Does a perfectly smooth pipe have head loss? Yes
\square Is it possible to decrease the head loss in a pipe by installing a smooth liner? Yes

Minor Losses in the Pipes

- Loss due to the local disturbances of the flow conduits such as changes in cross section, projecting gaskets, elbows, valves, and similar items are called minor Losses.
\square In the case of a very long pipe or channel, these losses may be insignificant in comparison with the fluid friction in the length considered.

$$
k \frac{V^{2}}{2 g}=\frac{f(N D)}{D} \frac{V^{2}}{2 g}
$$

Loss of Head at Entrance

(a) $k_{c}=0.04$
(b) $k_{c}=0.5$

$$
h_{e}^{\prime}=k_{e} \frac{V^{2}}{2 g}
$$

(c) $k_{e} \approx 0.8$

Loss of Head at Entrance

- Entrance flow condition and loss coefficients

(a)

(c)

EGL \& HGL for Losses in a Pipe

- Entrances, bends, and other flow transitions cause the EGL to drop an amount equal to the head loss produced by the transition.
- EGL is steeper at entrance than it is downstream of there where the slope is equal the frictional head loss in the pipe.
- The HGL also drops sharply downstream of an entrance

EGL \& HGL for Losses in a Pipe

EGL \& HGL for Losses in a Pipe

Loss of head at submerged discharges: (leave of pipe), $\left(h_{d}\right)$

$$
\begin{array}{r}
H_{a}=y+0+V^{2} / 2 g \\
H_{c}=0+y+0 \\
h_{d}^{\prime}=H_{a}-H_{c}=\frac{V^{2}}{2 g}
\end{array}
$$

Loss Due to Contraction

- Sudden Contraction

Losses due to gradual contraction the value of $\mathrm{Kc}=$ 0.05-0.10

$$
h_{c}^{\prime}=k_{C} \frac{V_{2}^{2}}{2 g}
$$

Losses coefficients for sudden contraction

$\mathrm{D}_{2} / \mathrm{D}_{1}$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
k_{c}	0.50	0.45	0.42	0.39	0.36	0.33	0.28	0.22	0.15	0.06	0.00

AAiT

Loss due to sudden expansion

$$
\therefore h_{e}=\frac{\left(V_{1}-V_{2}\right)^{2}}{2 g}=\left(\frac{D_{2}^{2}}{D_{1}^{2}}-1\right)^{2} \frac{V_{2}^{2}}{2 g}
$$

Gradual Expansion

K'-is a function of cone angle α.

K^{\prime}	0.4	0.6	0.95	1.1	1.18	1.09	1.0	1.0
α	20°	30^{0}	40^{0}	50°	60°	90°	120°	180°

Loss in pipe fittings

The values of " K_{f} " depends on the type of fittings

Fitting K
Globe valve, wide open 10
Angle valve, wide open 5
Close -return bend 2.2
T-through side outlet 1.8
$h_{f}=k_{f} \frac{V^{2}}{2 g}$ Short-radius elbow 0.9
Medium radius elbow 0.75
Long radius elbow 0.60
Gate valve, wide open 0.19
Half open 2.06
Pump foot value 5.60
Standard branch flow 1.80

Losses in bend \& Elbow

Solution of single - pipe flow problems

The total head losses between two points is the sum of the pipe friction loss plus the minor losses, or

$$
h_{L}=h_{L f}+\sum h^{\prime}
$$

h_{L} - total head loss
h_{Lf} - major head loss $\quad h_{L f}=f \frac{L}{D} \frac{V^{2}}{2 g}$
$\sum h^{\prime}$ - total minor loss

Pipe flow problems

- The above equation $\left(h_{L}\right)$ relates four variables. Any one of these may be unknown quantity in practical flow situation. These are:
i. $\mathrm{L}, \mathrm{Q}, \mathrm{D}$ known h_{L} unknown
ii. h_{L}, Q, D known L unknown
iii. h_{L}, Q, L, known D unknown
iv. h_{L}, L, D, known Q unknown

Example

- A 100 m length of smooth horizontal pipe is attached to a large reservoir. What depth, d, must be maintained in the reservoir to produce a volume flow rate of $0.03 \mathrm{~m}^{3} / \mathrm{sec}$ of water? The inside diameter of the smooth pipe is 75 mm . The inlet of the pipe is square edged. The water discharges to the atmosphere. Assume that density of the fluid is $1000 \mathrm{~kg} /$ cubic meter and $\mu=10^{-3} \mathrm{~kg} / \mathrm{m} . \mathrm{s}$
- Solution
$\left(\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}+Z_{1}\right)-\left(\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+Z_{2}\right)=h_{L T}$
- $h_{L T}=h_{L f}+h_{L m}$

$$
h_{L T}=f \frac{L}{D} \frac{V^{2}}{2 g}+k \frac{V^{2}}{2 g}
$$

- But $\mathrm{P}_{1}=\mathrm{P}_{2}=\mathrm{P}_{\text {atm }}, \mathrm{V}_{1} \cong 0, \mathrm{~V}_{2}=\mathrm{V}, \mathrm{Z}_{2}=0$ (measured from the center of the pipe line, then $\mathrm{Z}_{1}=\mathrm{d}$.

$$
\begin{aligned}
& h_{L T}=d-\frac{V^{2}}{2 g}=f \frac{L}{D} \frac{V^{2}}{2 g}+k \frac{V^{2}}{2 g} \\
& d=\frac{v^{2}}{2 g}\left[f \frac{L}{D}+K+1\right]
\end{aligned}
$$

$$
V_{2}=V=\frac{Q}{A_{2}}=\frac{4 Q}{\Pi D_{2}^{2}}, \text { then }
$$

$$
d=\frac{8 Q^{2}}{\pi^{2} D^{4} g}\left[f \frac{L}{D}+k+1\right]
$$

Example...

$$
\operatorname{Re}=\frac{\rho V D}{\mu}=\frac{4 \rho Q}{\pi \mu D}=\frac{4}{\pi} * \frac{1000 * 0.03}{1 \times 10^{-3} * 0.075}=5.10 \times 10^{5}
$$

- For smooth pipe from Moody diagram, $f=0.0131$, then $k=0.5$ for square-edged.

$$
\begin{aligned}
& d=\frac{8}{\pi^{2}} * \frac{(0.03)^{2}}{(0.075)^{4} * 9.81} *\left[0.0131 * \frac{100}{0.075}+0.5+1\right] \\
& d=44.6 m
\end{aligned}
$$

MOODY CHART

Example

- Water flows from the ground floor to the second level in a three-storey building through a 20 mm diameter pipe (drawn-tubing, $\varepsilon=0.0015 \mathrm{~mm}$) at a rate of 0.75 liter/s. The layout of the whole system is illustrated in Figure below. The water flows out from the system through a valve with an opening of diameter 12.5 mm . Calculate the pressure at point (1).

Solution

From the modified Bernoulli equation, we can write

$$
p_{1}+\frac{1}{2} \rho V_{1}^{2}+\rho g z_{1}=p_{2}+\frac{1}{2} \rho V_{2}^{2}+\rho g z_{2}+\rho g h_{L}
$$

In this problem, $p_{2}=0, z_{1}=0$. Thus,

$$
p_{1}=\frac{1}{2}\left(V_{2}^{2}-V_{1}^{2}\right)+\rho g z_{2}+\rho g\left(h_{1}+h_{m}\right)
$$

The velocities in the pipe and out from the faucet are respectively

$$
\begin{aligned}
& V_{1}=\frac{Q}{A_{1}}=\frac{4 Q}{\pi D_{1}^{2}}=\frac{4\left(0.75 \times 10^{-3}\right)}{\pi(0.020)^{2}}=2.387 \mathrm{~m} / \mathrm{s} \\
& V_{2}=\frac{Q}{A_{2}}=\frac{4 Q}{\pi D_{2}^{2}}=\frac{4\left(0.75 \times 10^{-3}\right)}{\pi(0.012)^{2}}=6.631 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The Reynolds number of the flow is

$$
\operatorname{Re}=\frac{\rho V d}{\mu}=\frac{(998)(2.387)(0.020)}{1.12 \times 10^{-3}}=42,546
$$

Solution

The roughness $\varepsilon / d=0.0015 / 20=0.000075$. From the Moody chart, $f \approx 0.022$ (or, 0.02191 via the Colebrook formula). The total length of the pipe is

Hence, the friction head loss is $\quad \ell=5.25+4(3.5)+1.75=21 \mathrm{~m}$

$$
\text { The total minor loss is } \quad \begin{aligned}
h_{f} & =f \frac{\ell}{d} \frac{V_{1}^{2}}{2 g}=(0.022) \frac{21}{0.02} \frac{2.387^{2}}{2(9.81)}=6.71 \mathrm{~m} \\
h_{m} & =\sum K \frac{V_{1}^{2}}{2 g}=[4(1.5)+10+2] \frac{2.387^{2}}{2(9.81)}=5.23 \mathrm{~m} \\
\Delta h_{\omega r} & =h_{f}+h_{m}=6.71+5.23=11.94 \mathrm{~m}
\end{aligned}
$$

Therefore, the pressure at (1) is $p_{1}=\frac{1}{2} \rho\left(V_{2}^{2}-V_{1}^{2}\right)+\rho g z_{2}+\rho g\left(h_{1}+h_{m}\right)$

$$
\begin{aligned}
& =\frac{1}{2}(998)\left(6.631^{2}-2.387^{2}\right)+(998)(9.81)(3.5+3.5) \\
& +998(9.81)(6.71+5.23) \\
& =205 \mathrm{kPa}
\end{aligned}
$$

Example

Consider a water flow in a pipe having a diameter of $D=20 \mathrm{~mm}$ which is intended to fill a 0.35 liter container. Calculate:
(a) the minimum time required if the flow is laminar,
(b) the maximum time required if the flow is turbulent.

Use density $\rho=998 \mathrm{~kg} / \mathrm{m} 3$ and dynamic viscosity $\mu=1.12 \times 10-3 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$

Solution:
(a) For laminar flow, use $\operatorname{Re}=\rho V D / \mu=2300: \quad V=\frac{2300 \mu}{\rho D}=\frac{2300\left(1.12 \times 10^{-3}\right)}{(998)(0.020)}=0.118 \mathrm{~m} / \mathrm{s}$

$$
t=\frac{V}{Q}=\frac{4 V}{\pi D^{2} V}
$$

Hence, the minimum time t is

$$
=\frac{4\left(0.35 \times 10^{-3}\right)}{\pi(0.02)^{2}(0.118)}=\underline{9.45 \mathrm{~s}}
$$

b) For turbulent flow, use $\operatorname{Re}=\rho V D / \mu=4000: \quad V=\frac{4000 \mu}{\rho D}=\frac{4000\left(1.12 \times 10^{-3}\right)}{(998)(0.020)}=0.224 \mathrm{~m} / \mathrm{s}$

$$
t=\frac{\forall}{Q}=\frac{4 V}{\pi D^{2} V}
$$

Hence, the minimum time t is $=\frac{4\left(0.35 \times 10^{-3}\right)}{\pi(0.02)^{2}(0.224)}=\underline{4.96 \mathrm{~s}}$

Pipe line with Pump or Turbine

- The pump lifts the fluid a height
- the power delivered to the liquid by the pump is $\left(\Delta Z+\sum h_{l}\right)$
- The power required to run the pump is greater than this, depending on the efficiency of the pump. The total pumping head, hp, for this case is:

$$
\gamma Q\left(\Delta Z+\sum h_{L}\right)
$$

- If the pump discharges a stream through a nozzle, kinetic energy head of $V_{2}^{2} / 2 g$ is required. Total pumping head is:-

$$
\begin{gathered}
h_{p}=\Delta Z+\sum h_{L} . \\
h_{p}=\Delta Z+\frac{V_{2}^{2}}{2 g}+\sum h_{L}
\end{gathered}
$$

Pipeline with a pump

Relation between $\mathbf{Q} \& \mathbf{h}_{\mathbf{L}}$ in pipe

- Using Hazen William equation, it is possible to develop a relationship between head loss, hL, that occur in a pressurized pipe, and the flow rate, Q , flowing through this pipe.

$$
\begin{aligned}
& Q=A v=\left(\frac{\pi d^{2}}{4}\right) \times 0.849 C_{H W}\left(\frac{d}{4}\right)^{0.63} s^{0.54} \\
& h_{L}=K Q^{1.852}=K Q^{m} \\
& K=\frac{10.697 L}{d^{4.871} C_{H W}^{1.852}}
\end{aligned}
$$

Pipeline system

2. Pipes in Series

$$
\begin{aligned}
& Q_{1}=Q_{2}=Q_{3} \\
& h_{L_{A-B}}=h_{L_{1}}+h_{L_{2}}+h_{L_{3}}
\end{aligned}
$$

$$
\frac{p_{A}}{\gamma}+Z_{A}+\frac{V_{A}^{2}}{2 g}=\frac{p_{B}}{\gamma}+\frac{V_{B}^{2}}{2 g}+Z_{B}+h_{i}+h_{f 1}+h_{e}{ }^{\prime}+h_{f 2}+h_{d^{\prime}}+h_{f 3}
$$

$$
h+0+0=0+0+0+k_{i} \frac{V_{1}^{2}}{2 g}+f_{1} \frac{L_{1}}{D_{1}} \frac{V_{1}^{2}}{2 g}+k_{c} \frac{V_{2}^{2}}{2 g}+f_{2} \frac{L_{2}}{D_{2}} \frac{V_{2}^{2}}{2 g}+\frac{\left(V_{2}-V_{3}\right)^{2}}{2 g}+f_{3} \frac{L_{3}}{D_{3}} \frac{V_{3}^{2}}{2 g}+k_{\text {exit }} \frac{V_{1}^{2}}{2 g}
$$

From quantity eqn:: $\quad V_{1} D_{1}^{2}=V_{2} D_{2}{ }^{2}=V_{3} D_{3}^{2}$
$h=\frac{V_{1}^{2}}{2 g}\left\{k_{i}+f_{1} \frac{L_{1}}{D_{1}}+\left[1-\left(D_{1} / D_{2}\right)^{2}\right]^{2}+f_{2} \frac{L_{2}}{D_{2}}\left(\frac{D_{1}}{D_{2}}\right)^{4}+\left(\frac{D_{1}}{D_{2}}\right)^{4}\right\}$

AAiT

Pipeline system

2. Pipes in Parallel
$h_{f 1}=h_{f 2}=h_{f 3}=\frac{P_{A}}{\gamma}+Z_{A}-\left(\frac{P_{B}}{\gamma}+Z_{B}\right)$

$$
Q=Q_{1}+Q_{2}+Q_{3}
$$

- Two types of problems occur:

1. If the head loss between A and B is given, Q is determined.
2. If the total flow Q is given, then the head loss and distribution of flow are determined.

Equivalent pipes

\square to replace the length of all the pipes in terms of equivalent lengths of any one given size, one which figures predominantly in the system
$\square \mathbf{L}_{\mathbf{e}}$ of pipe of certain diameter $\mathbf{D}_{\mathbf{e}}$ which carry the same discharge and dissipate same energy or head $\mathbf{h}_{\mathbf{f}}$ as the one with length L and diameter D .
$\therefore h_{f 1}=f_{1} \frac{L_{1}}{D_{1}{ }^{5}} \frac{8 Q_{1}{ }^{2}}{\pi^{2} g}$

$$
h_{f 2}=f_{2} \frac{L_{2}}{D_{2}{ }^{5}} \frac{8 Q_{2}{ }^{2}}{\overline{\pi^{2} g}}
$$

$h_{f 1}=h_{f 2} \quad Q_{1}=Q_{2}$

$$
\therefore \frac{f_{1} L_{1}}{D_{1}{ }^{5}}=\frac{f_{2} L_{2}}{D_{2}{ }^{5}} \Rightarrow L_{2}=L_{1} \frac{f_{1}}{f_{2}}\left(\frac{D_{2}}{D_{1}}\right)^{5}
$$

Problem 1 in parallel connection

- The pressure and datum heads at A and B are known, to compute the discharge

$$
h_{f}=\frac{P_{A}}{\gamma}+Z_{A}-\left(\frac{P_{B}}{\gamma}+Z_{B}\right)
$$

Q Q_{1}, Q_{2}, and Q_{3} will be computed and then summed up in order to get the Q value

Problem 1 in parallel connection

$\square Q$ is given, then h_{f}, and Q_{1}, Q_{2}, and Q_{3} required

1. assume a discharge Q_{1} ' through pipe 1
2. solve for $\mathrm{h}_{\mathrm{f}}{ }^{\prime}$ using assumed discharge $\mathrm{Q}_{1}{ }^{\prime}$ using equation

$$
h_{f}=\left(f_{1} \frac{L_{1}}{D_{1}}+\sum K\right) \frac{V_{1}^{2}}{2 g}
$$

3. Similarly, using h_{f} ' compute $\mathrm{Q}_{2}{ }^{\prime} \mathrm{Q}_{3}{ }^{\prime}$
4. Now it is assumed that for the same energy loss to occur in the three different loops, that the total discharge Q should be divided in the same proportion as $\mathrm{Q}_{1}{ }^{\prime} \mathrm{Q}_{2}{ }^{\prime}$ and $\mathrm{Q}_{3}{ }^{\prime}$

$$
Q_{1}=\left(\frac{Q_{1}^{\prime \prime}}{\sum Q^{\prime \prime}}\right) Q \quad Q_{2}=\left(\frac{Q_{2}^{\prime \prime}}{\sum Q^{\prime \prime}}\right) Q \quad Q_{3}=\left(\frac{Q_{3}^{\prime \prime}}{\sum Q^{\prime \prime}}\right) Q
$$

5. Check the correctness of the procedure by computing $h_{f} 1, h_{f} 2$, and $h_{f} 3$ for the three different loops which should be the same. (1% tolerable)

Pipe Connection

Series connection
$Q_{1}=Q_{2}=Q_{3}$
$h_{L_{A-B}}=h_{L_{1}}+h_{L_{2}}+h_{L_{\beta}}$

Parallel Connection

$$
\begin{aligned}
& Q=Q_{1}+Q_{2}+Q_{3} \\
& h_{L_{1}}=h_{L_{2}}=h_{L_{3}}
\end{aligned}
$$

(a)

(b)

Exercise

- Three pipes were connected between two points A and B to carry $0.3 \mathrm{~m}^{3} / \mathrm{sec}$. The point A and B lie 30 m and 25 m above a given datum, respectively. The pressure at A is maintained at 600 Kpa . The pipe 1 is 100 m long and 0.3 m is diameter, the pipe 2 is 750 m long and 0.2 m is diameter and pipe 3 is 200 m long and 0.4 m is diameter. Assume all the pipes to be smooth. Determine the flow in each pipe and the pressure at B. Take kinematice viscosity of water $=10^{-6} \mathrm{~m}^{2} / \mathrm{sec}$.

Branching pipes

AAIT

Branching pipes

- Case I - Given all L, D, Elev A \& Elev B, Q 1
- Required - Elev C and Q_{2}, Q_{3}
- Case II - Given all L, D, Elev A \& Elev C, Q 2
- Required-Elev B, and $\mathrm{Q}_{1}, \mathrm{Q}_{3}$
- Case III - Given all L, D, and Elevations
- Required $-Q_{1}, Q_{2}$, and Q_{3}

Case I-Given all L, D, Elev A \& Elev B, \mathbf{Q}_{1} Required - Elev \mathbf{C} and $\mathrm{Q}_{2}, \mathrm{Q}_{3}$

1. Assume a proper value of \boldsymbol{f} and calculate $\mathrm{h}_{\mathrm{f} 1}$ for a given $\mathrm{L}_{1}, \mathrm{D}_{1}$, and Q_{1}
2. Determine the elevation of \mathbf{J} and hence the head difference between J and second reservoir $\mathrm{H}_{\mathrm{J} 2}$ which is also equal to the head loss in pipe 2 i.e. $\mathrm{h}_{\mathrm{f} 2}$
3. Calculate the discharge for the third reservoir and the corresponding head loss using Darcy's equation, the surface elevation can then be determined

Case II - Given all L, D, Elev A \& Elev C, \mathbf{Q}_{2} Required-Elev B, and Q_{1}, Q_{3}

\square Since Q_{2} is given, the difference $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ is known. Similarly, it is seen from the previous figure that $h_{f 1}+h_{f 3}$ is also given. These relations are solved simultaneously for their component parts in one of the two ways.
a) Assume successive $h_{f 3}$ using trial values of Q_{1} and Q_{3}. The computed values of $h_{f 1}$ and $h_{f 3}$ should satisfy elevation at junction J is common for all.
b) Assume successive elevation of J satisfy the second relation, determine Q_{1}, and Q_{2} (using Darcy's equation until the first relations is also satisfied.

Case III - Given all L, D, and Elevations Required $-\mathbf{Q}_{1}, \mathbf{Q}_{2}$, and \mathbf{Q}_{3}

\square No flow in pipe 2 (Elevation of J and B are same)
\square Find $h_{f 1}$ and $h_{f 3}$, if $Q_{1}>Q_{3}$, the flow is going into reservoir B and if $Q_{1}<Q_{3}$ the flow is going out of reservoir B.
\square Once the direction of Q_{2} is determined, another trial elevation of piezometric head at J is assumed and $h_{f 1}, h_{f 2}$ and $h_{f 3}$ are computed;
\square then Q_{1}, Q_{2}, and Q_{3} are determined and the equation of continuity is satisfied. If the flow into the junction is too great, a higher piezometric head at J is assumed, which will reduce the inflow and increase the outflow

Exercise

- A reservoir A with its surface 60 m above datum supplies water to a junction J through 30 cm diameter pipe 1500 m long. From the junction, a 225 cm diameter pipe 800 m long feeds reservoir B , in which the surface is 30 m above datum, while another pipe 400 m long and 20 cm diameter feeds another reservoir C. The water level in the reservoir C stands at 15 m above datum. Calculate the discharge to each reservoir. Assume f for each pipe as 0.03.

Example

- A constant head tank delivers water through a uniform pipeline to a tank, at a lower level, for which the water discharges over a rectangular weir. Pipeline length 20.0 m , diameter 100 mm , roughness size 0.2 mm . Length of weir crest 0.25 m , discharge coefficient 0.6 , crest level 2.5 m below water level in header tank. Calculate the steady discharge and the head of water over the weir crest. Use minor head coefficient k of 1.5

Solution

For pipeline, $\mathrm{H}=\frac{1.5 \mathrm{~V}^{2}}{2 \mathrm{~g}}+\frac{\lambda \mathrm{LV}^{2}}{2 \mathrm{~g} \mathrm{D}}=(2.5-\mathrm{h})$
or $\mathrm{H}=\frac{\mathrm{Q}^{2}}{2 \mathrm{~g} \mathrm{~A}^{2}}\left(1.5+\frac{\lambda \mathrm{L}}{\mathrm{D}}\right)=(2 \cdot 5-\mathrm{h})$
Discharge over weir: $Q=\frac{2}{3} C_{D} \sqrt{2 g} B h^{3 / 2}$

$$
\text { i.e. } \begin{align*}
\mathrm{Q} & =\frac{2}{3} \times 0.6 \times \sqrt{19.62} \times 0.25 \times \mathrm{h}^{3 / 2} \tag{iii}\\
& =0.443 \mathrm{~h}^{3 / 2} \\
\text { i.e. } \mathrm{h} & =\left(\frac{\mathrm{Q}}{0.443}\right)^{2 / 3} \tag{iv}
\end{align*}
$$

Solution

$$
\begin{array}{r}
\text { Then in (ii) } \frac{\mathrm{Q}^{2}}{2 \mathrm{~g} \mathrm{~A}^{2}}\left(1.5+\frac{\lambda \mathrm{L}}{\mathrm{D}}\right)=2.5-\left(\frac{\mathrm{Q}}{0.443}\right)^{2 / 3} \\
\text { or } \frac{\mathrm{Q}^{2}}{2 \mathrm{~g} \mathrm{~A}^{2}}\left(1.5+\frac{\lambda \mathrm{L}}{\mathrm{D}}\right)+\left(\frac{\mathrm{Q}}{0.443}\right)^{2 / 3}=2.5 \tag{v}
\end{array}
$$

Since λ is unknown this equation can be solved by trial or interpolation i.e. inputting a number of trial Q values and evaluating the left-hand side of equation (v):

$$
\mathrm{H}_{1}=\frac{\mathrm{Q}^{2}}{2 \mathrm{~g} \mathrm{~A}^{2}}\left(1.5+\frac{\lambda \mathrm{L}}{\mathrm{D}}\right)+\left(\frac{\mathrm{Q}}{0.443}\right)^{2 / 3}
$$

For the same values of Q, the corresponding values of h are evaluated from equation (iv).

For each trial value of \mathbf{Q}, the Reynolds number is calculated and the

AAiT

Solution

friction factor obtained from the Moody diagram, for $\frac{k}{D}=0.0002$. See table below.

$$
\begin{aligned}
\text { whence } Q & =0.0213 \mathrm{~m}^{3} / \mathrm{s}(21.3 \mathrm{l} / \mathrm{s}) \text { when } H_{1}=2.5 \mathrm{~m} \\
\text { and } \mathrm{h} & =0.132 \mathrm{~m} .
\end{aligned}
$$

$\mathrm{Q} \mathrm{m}^{3} / \mathrm{s}$	Re	λ	$\mathrm{H}_{1}(\mathrm{~m})$	$\mathrm{h}(\mathrm{m})$
0.010	1.13×10^{5}	0.0250	0.617	0.08
0.015	1.69×10^{5}	0.0243	1.287	0.105
0.018	$2.03 \times 10{ }^{5}$	0.0241	1.810	0.118
0.020	2.25×10^{5}	0.0241	2.215	0.126
0.022	2.48×10^{5}	0.0240	2.655	0.135

AAiT

Reading Assignment

- Pipeline systems and network analysis
- Check valve and pressure reducing valve

