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A Review of Water Hammer
Theory and Practice
Hydraulic transients in closed conduits have been a subject of both theoretical stud
intense practical interest for more than one hundred years. While straightforward in te
of the one-dimensional nature of pipe networks, the full description of transient fluid fl
pose interesting problems in fluid dynamics. For example, the response of the turbu
structure and strength to transient waves in pipes and the loss of flow axisymme
pipes due to hydrodynamic instabilities are currently not understood. Yet, such u
standing is important for modeling energy dissipation and water quality in transient
flows. This paper presents an overview of both historic developments and presen
research and practice in the field of hydraulic transients. In particular, the paper
cusses mass and momentum equations for one-dimensional Flows, wavespeed, nu
solutions for one-dimensional problems, wall shear stress models; two-dimensional
and momentum equations, turbulence models, numerical solutions for two-dimen
problems, boundary conditions, transient analysis software, and future practical an
search needs in water hammer. The presentation emphasizes the assumptions and
tions involved in various governing equations so as to illuminate the range of applic
ity as well as the limitations of these equations. Understanding the limitations of cu
models is essential for (i) interpreting their results, (ii) judging the reliability of the da
obtained from them, (iii) minimizing misuse of water-hammer models in both research
practice, and (iv) delineating the contribution of physical processes from the contribu
of numerical artifacts to the results of waterhammer models. There are 134 refrences
in this review article.@DOI: 10.1115/1.1828050#
l
e

v
a

e
l

v

a

i

h

o

to
ni-
n-
de-

ve
gy.
ards
ised.

cha-

ula-
ch-
he-
na.

ical
ing,

ous

his-
om-
ll as
t to

e.

nts
tal
m-
f the
s-

uc-
tric
gy
uch
so-
1 Introduction
Thus the growth of knowledge of the physical aspect of rea
cannot be regarded as a cumulative process. The basic G
of this knowledge changes from time to time . . . During the
cumulative periods scientists behave as if reality is exactly
they know it except for missing details and improvements
accuracy. They speak of the laws of nature, for example, wh
are simply models that explain their experience of reality a
certain time. Later generations of scientists typically disco
that these conceptions of reality embodied certain implicit
sumptions and hypotheses that later on turned out to be in
rect. Vanderburg,@1#

Unsteady fluid flows have been studied since man first b
water to his will. The ancient Chinese, the Mayan Indians of C
tral America, the Mesopotamian civilizations bordering the Ni
Tigris, and Euphrates river systems, and many other socie
throughout history have developed extensive systems for con
ing water, primarily for purposes of irrigation, but also for dome
tic water supplies. The ancients understood and applied fluid fl
principles within the context of ‘‘traditional,’’ culture-based tech
nologies. With the arrival of the scientific age and the mathem
cal developments embodied in Newton’sPrincipia, our under-
standing of fluid flow took a quantum leap in terms of
theoretical abstraction. That leap has propelled the entire deve
ment of hydraulic engineering right through to the mid-twentie
century. The advent of high-speed digital computers constitu
another discrete transformation in the study and application
fluids engineering principles. Today, in hydraulics and other are
engineers find that their mandate has taken on greater breadt
depth as technology rapidly enters an unprecedented stag
knowledge and information accumulation.

As cited in The Structure of Scientific Revolutions, Thomas
Kuhn @2# calls such periods of radical and rapid change in o
view of physical reality a ‘‘revolutionary, noncumulative trans
tion period’’ and, while he was referring to scientific views
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reality, his remarks apply equally to our technological ability
deal with a revised or more complex view of the physical u
verse. It is in this condition that the field of closed conduit tra
sient flow, and even more generally, the hydraulic analysis,
sign, and operation of pipeline systems, currently finds itself.

The computer age is still dawning, bringing with it a massi
development and application of new knowledge and technolo
Formerly accepted design methodologies, criteria, and stand
are being challenged and, in some instances, outdated and rev
Computer aided analysis and design is one of the principal me
nisms bringing about these changes.

Computer analysis, computer modeling, and computer sim
tion are somewhat interchangeable terms, all describing te
niques intended to improve our understanding of physical p
nomena and our ability to predict and control these phenome
By combining physical laws, mathematical abstraction, numer
procedures, logical constructs, and electronic data process
these methods now permit the solution of problems of enorm
complexity and scope.

This paper attempts to provide the reader with a general
tory and introduction to waterhammer phenomena, a general c
pendium of key developments and literature references as we
an updated view of the current state of the art, both with respec
theoretical advances of the last decade and modeling practic

2 Mass and Momentum Equations for
One-Dimensional Water Hammer Flows

Before delving into an account of mathematical developme
related to waterhammer, it is instructive to briefly note the socie
context that inspired the initial interest in waterhammer pheno
ena. In the late nineteenth century, Europe was on the cusp o
industrial revolution with growing urban populations and indu
tries requiring electrical power for the new machines of prod
tion. As the fossil fuel era had not begun in earnest, hydroelec
generation was still the principal supply of this important ener
source. Although hydroelectric generation accounts for a m
smaller proportion of energy production today, the problems as
05 by ASME JANUARY 2005, Vol. 58 Õ 49
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ciated with controlling the flow of water through penstocks a
turbines remains an important application of transient analy
Hydrogeneration companies contributed heavily to the deve
ment of fluids and turbomachinery laboratories that studi
among other things, the phenomenon of waterhammer and its
trol. Some of Allievi’s early experiments were undertaken as
direct result of incidents and failures caused by overpressure
to rapid valve closure in northern Italian power plants. Frictionle
approaches to transient phenomena were appropriate in these
developments because~i! transients were most influenced by th
rapid closure and opening of valves, which generated the majo
of the energy loss in these systems, and~ii ! the pipes involved
tended to have large diameters and the flow velocities tended t
small.

By the early 1900s, fuel oils were overtaking hydrogenerat
as the principal energy source to meet society’s burgeoning
mand for power. However, the fascination with, and need to
derstand, transient phenomena has continued unabated to thi
Greater availability of energy led to rapid industrialization a
urban development. Hydraulic transients are critical design fac
in a large number of fluid systems from automotive fuel injecti
to water supply, transmission, and distribution systems. Tod
long pipelines transporting fluids over great distances have
come commonplace, and the almost universal developmen
sprawling systems of small pipe diameter, high-velocity water d
tribution systems has increased the importance of wall friction
energy losses, leading to the inclusion of friction in the govern
equations. Mechanically sophisticated fluid control devices,
cluding many types of pumps and valves, coupled with incre
ingly sophisticated electronic sensors and controls, provide
potential for complex system behavior. In addition, the rec
knowledge that negative pressure phases of transients can res
contamination of potable water systems, mean that the nee
understand and deal effectively with transient phenomena
more acute than ever.

2.1 Historical Development: A Brief Summary. The prob-
lem of water hammer was first studied by Menabrea@3# ~although
Michaud is generally accorded that distinction!. Michaud@4# ex-
amined the use of air chambers and safety valves for contro
water hammer. Near the turn of the nineteenth century, researc
like Weston@5#, Carpenter@6# and Frizell@7# attempted to develop
expressions relating pressure and velocity changes in a pipe.
zell @7# was successful in this endeavor and he also discussed
effects of branch lines, and reflected and successive wave
turbine speed regulation. Similar work by his contemporar
Joukowsky@8# and Allievi @9,10#, however, attracted greater a
tention. Joukowsky@8# produced the best known equation in tra
sient flow theory, so well known that it is often called the ‘‘fun
damental equation of water hammer.’’ He also studied wa
reflections from an open branch, the use of air chambers and s
tanks, and spring type safety valves.

Joukowsky’s fundamental equation of water hammer is as
lows:

DP56raDV or DH56
aDV

g
(1)

where a5acoustic ~waterhammer! wavespeed,P5rg(H2Z)
5piezometric pressure,Z5elevation of the pipe centerline from
given datum,H5piezometric head,r5fluid density,V5*AudA
5cross-sectional average velocity,u5 local longitudinal velocity,
A5cross-sectional area of the pipe, andg5gravitational accelera-
tion. The positive sign in Eq.~1! is applicable for a water-hamme
wave moving downstream while the negative sign is applica
for a water-hammer wave moving upstream. Readers familiar w
the gas dynamics literature will note thatDP56raDV is obtain-
able from the momentum jump condition under the special c
where the flow velocity is negligible in comparison to th
wavespeed. The jump conditions are a statement of the cons
50 Õ Vol. 58, JANUARY 2005
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tion laws across a jump~shock! @11#. These conditions are ob
tained either by directly applying the conservation laws for a c
trol volume across the jump or by using the weak formulation
the conservation laws in differential form at the jump.

Allievi @9,10# developed a general theory of water hamm
from first principles and showed that the convective term in
momentum equation was negligible. He introduced two import
dimensionless parameters that are widely used to charact
pipelines and valve behavior. Allievi@9,10# also produced charts
for pressure rise at a valve due to uniform valve closure. Furt
refinements to the governing equations of water hammer appe
in Jaeger@12,13#, Wood @14#, Rich @15,16#, Parmakian@17#,
Streeter and Lai@18#, and Streeter and Wylie@19#. Their combined
efforts have resulted in the following classical mass and mom
tum equations for one-dimensional~1D! water-hammer flows

a2

g

]V

]x
1

]H

]t
50 (2)

]V

]t
1g

]H

]x
1

4

rD
tw50 (3)

in which tw5shear stress at the pipe wall,D5pipe diameter,x
5the spatial coordinate along the pipeline, andt5temporal coor-
dinate. Although Eqs.~2! and ~3! were fully established by the
1960s, these equations have since been analyzed, discussed
erived and elucidated in numerous classical texts~e.g.,@20–23#!.
Equations~2! and~3! constitute the fundamental equations for 1
water hammer problems and contain all the physics necessa
model wave propagation in complex pipe systems.

2.2 Discussion of the 1D Water Hammer Mass and Mo-
mentum Equations. In this section, the fundamental equation
for 1D water hammer are derived. Special attention is given to
assumptions and restrictions involved in various governing eq
tions so as to illuminate the range of applicability as well as
limitations of these equations.

Rapid flow disturbances, planned or accidental, induce spa
and temporal changes in the velocity~flow rate! and pressure~pi-
ezometric head! fields in pipe systems. Such transient flows a
essentially unidirectional~i.e., axial! since the axial fluxes of
mass, momentum, and energy are far greater than their ra
counterparts. The research of Mitra and Rouleau@23# for the lami-
nar water hammer case and of Vardy and Hwang@25# for turbulent
water-hammer supports the validity of the unidirectional appro
when studying water-hammer problems in pipe systems.

With the unidirectional assumption, the 1D classical water ha
mer equations governing the axial and temporal variations of
cross-sectional average of the field variables in transient p
flows are derived by applying the principles of mass and mom
tum to a control volume. Note that only the key steps of t
derivation are given here. A more detailed derivation can be fo
in Chaudhry@20#, Wylie et al. @23#, and Ghidaoui@26#.

Using the Reynolds transport theorem, the mass conserva
~‘‘continuity equation’’! for a control volume is as follows~e.g.,
@20–23#!

]

]t Ecv
rd;1E

cs
r~v"n!dA50 (4)

wherecv5control volume,cs5control surface,n5unit outward
normal vector to control surface,v5velocity vector.

Referring to Fig. 1, Eq.~4! yields

]

]t Ex

x1dx

rAdx1E
cs

r~v"n!dA50 (5)

The local form of Eq.~5!, obtained by taking the limit as the
length of the control volume shrinks to zero~i.e., dx tends to
zero!, is
Transactions of the ASME



d
e

t

t

g
n
-

d

q.
-

a
of
e
ible
sion
his

ve
of

-
r
. To

de

rms

s.
]~rA!

]t
1

]~rAV!

]x
50 (6)

Equation~6! provides the conservative form of the area-averag
mass balance equation for 1D unsteady and compressible flui
a flexible pipe. The first and second terms on the left-hand sid
Eq. ~6! represent the local change of mass with time due to
combined effects of fluid compressibility and pipe elasticity a
the instantaneous mass flux, respectively. Equation~6! can be re-
written as follows:

1

r

Dr

Dt
1

1

A

DA

Dt
1

]V

]x
50 or

1

rA

DrA

Dt
1

]V

]x
50 (7)

where D/Dt5]/]t1V]/]x5substantial~material! derivative in
one spatial dimension. Realizing that the density and pipe a
vary with pressure and using the chain rule reduces Eq.~7! to the
following:

1

r

dr

dP

DP

Dt
1

1

A

dA

dP

DP

Dt
1

]V

]x
50 or

1

ra2

DP

Dt
1

]V

]x
50

(8)

where a225dr/dP1(r/A)dA/dP. The historical developmen
and formulation of the acoustic wave speed in terms of fluid a
pipe properties and the assumptions involved in the formula
are discussed in Sec. 3.

The momentum equation for a control volume is~e.g., @20–
23#!:

( Fext5
]

]t Ecv
rv;1E

cs
rv~v"n!dA (9)

Applying Eq. ~9! to the control volume of Fig. 2; considerin
gravitational, wall shear and pressure gradient forces as exter
applied; and taking the limit asdx tends to zero gives the follow
ing local form of the axial momentum equation:

]rAV

]t
1

]brAV2

]x
52A

]P

]x
2pDtw2gA sina (10)

Fig. 1 Control volume diagram used for continuity equation
derivation

Fig. 2 Control volume diagram used for momentum equation
derivation
Applied Mechanics Reviews
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whereg5rg5unit gravity force,a5angle between the pipe an
the horizontal direction,b5*Au2dA/V25momentum correction
coefficient. Using the product rule of differentiation, invoking E
~7!, and dividing through byrA gives the following nonconser
vative form of the momentum equation:

]V

]t
1V

]V

]x
1

1

rA

]~b21!rAV2

]x
1

1

r

]P

]x
1g sina1

twpD

rA

50 (11)

Equations~8! and ~11! govern unidirectional unsteady flow of
compressible fluid in a flexible tube. Alternative derivations
Eqs. ~8! and ~11! could have been performed by applying th
unidirectional and axisymmetric assumptions to the compress
Navier-Stokes equations and integrating the resulting expres
with respect to pipe cross-sectional area while allowing for t
area to change with pressure.

In practice, the order of magnitude of water hammer wa
speed ranges from 100 to 1400 m/s and the flow velocity is
order 1 to 10 m/s. Therefore, the Mach number,M5U1 /a, in
water-hammer applications is often in the range 1022–1023,
whereU15 longitudinal velocity scale. The fact thatM!1 in wa-
ter hammer was recognized and used by Allievi@9,10# to further
simplify Eqs. ~8! and ~11!. The small Mach number approxima
tion to Eqs.~8! and~11! can be illustrated by performing an orde
of magnitude analysis of the various terms in these equations
this end, letr0aU15water hammer pressure scale,r05density of
the fluid at the undisturbed state, andT5zL/a5time scale, where
L5pipe length, X5aT5zL5 longitudinal length scale,z5a
positive real parameter,r f U1

2/85wall shear scale, andf
5Darcy-Weisbach friction factorTd5radial diffusion time scale.
The parameterz allows one to investigate the relative magnitu
of the various terms in Eqs.~8! and ~11! under different time
scales. For example, if the order of magnitude of the various te
in the mass momentum over a full wave cycle~i.e., T54L/a) is
desired,z is set to 4. Applying the above scaling to Eqs.~8! and
~11! gives

r0

r

DP*

Dt*
1

]V*

]x*
50 or

r0

r S ]P*

]t*
1MV*

]P*

]x* D1
]V*

]x*
50 (12)

]V*

]t*
1MV*

]V*

]x*
1M

1

rA

]~b21!rAV* 2

]x*
1

r0

r

]P*

]x*

1
gzL

Ua
sina1

zL

D
M

f

2
tw* 50 (13)

where the superscript* is used to denote dimensionless quantitie
Since M!1 in water hammer applications, Eqs.~12! and ~13!
become

r0

r

]P*

]t*
1

]V*

]x*
50 (14)

]V*

]t*
1

r0

r

]P*

]x*
1

gzL

Ua
sina1z

L

D
M

f

2
1zS Td

L/aD tw* 50.

(15)

Rewriting Eqs.~14! and ~15! in dimensional form gives

1

ra2

]P

]t
1

]V

]x
50 (16)

]V

]t
1

1

r

]P

]x
1g sina1

twpD

rA
50 (17)

Using the Piezometric head definition~i.e., P/gr05H2Z), Eqs.
~16! and ~17! become
JANUARY 2005, Vol. 58 Õ 51
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gr0

ra2

]H

]t
1

]V

]x
50 (18)

]V

]t
1g

r0

r

]H

]x
1

twpD

rA
50 (19)

The change in density in unsteady compressible flows is of
order of the Mach number@11,27,28#. Therefore, in water hamme
problems, whereM!1, r'r0 , Eqs.~18! and ~19! become

g

a2

]H

]t
1

]V

]x
50 (20)

]V

]t
1g

]H

]x
1

twpD

rA
50 (21)

which are identical to the classical 1D water hammer equati
given by Eqs.~2! and~3!. Thus, the classical water hammer equ
tions are valid for unidirectional and axisymmetric flow of a com
pressible fluid in a flexible pipe~tube!, where the Mach number is
very small.

According to Eq.~15!, the importance of wall shear,tw , de-
pends on the magnitude of the dimensionless parameteG
5zLM f /2D1zTd/(L/a). Therefore, the wall shear is importan
when the parameterG is order 1 or larger. This often occurs i
applications where the simulation time far exceeds the first w
cycle ~i.e., largez!, the pipe is very long, the friction factor i
significant, or the pipe diameter is very small. In addition, w
shear is important when the time scale of radial diffusion is lar
than the wave travel time since the transient-induced large ra
gradient of the velocity does not have sufficient time to relax. I
noted thatTd becomes smaller as the Reynolds number increa
The practical applications in which the wall shear is important a
the varioustw models that are in existence in the literature a
discussed in Sec. 4.

If G is significantly smaller than 1, friction becomes negligib
and tw can be safely set to zero. For example, for the casL
510,000 m,D50.2 m, f 50.01, andM50.001, andTd/(L/a)
50.01 theconditionG!1 is valid whenz!4. That is, for the case
considered, wall friction is irrelevant as long as the simulat
time is significantly smaller than 4L/a. In general, the condition
G!1 is satisfied during the early stages of the transient~i.e., z is
small! provided that the relaxation~diffusion! time scale is smaller
than the wave travel timeL/a. In fact, it is well known that
waterhammer models provide results that are in reasonable a
ment with experimental data during the first wave cycle irresp
tive of the wall shear stress formula being used~e.g., @29–32#!.
WhenG!1, the classical waterhammer model, given by Eqs.~20!
and ~21!, becomes

g

a2

]H

]t
1

]V

]x
50 (22)

]V

]t
1g

]H

]x
50 (23)

which is identical to the model that first appeared in Allievi@9,10#.
The Joukowsky relation can be recovered from Eqs.~22! and

~23!. Consider a water hammer moving upstream in a pipe
length L. Let x5L2at define the position of a water hamme
front at time t and consider the interval@L2at2e,L2at1e#,
wheree5distance from the water hammer front. Integrating E
~22! and~23! from x5L2at2e to x5L2at1e, invoking Leib-
nitz’s rule, and taking the limit ase approaches zero gives

DH52
aDV

g
(24)

Similarly, the relation for a water hammer wave moving dow
stream isDH51aDV/g.
52 Õ Vol. 58, JANUARY 2005
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3 Water Hammer „Acoustic… Wave Speed
The water hammer wave speed is~e.g.,@8,20,23,33,34#!,

1

a2 5
dr

dP
1

r

A

dA

dP
(25)

The first term on the right-hand side of Eq.~25! represents the
effect of fluid compressibility on the wave speed and the sec
term represents the effect of pipe flexibility on the wave speed
fact, the wave speed in a compressible fluid within a rigid pipe
obtained by settingdA/dP50 in Eq. ~25!, which leads toa2

5dP/dr. On the other hand, the wave speed in an incompress
fluid within a flexible pipe is obtained by settingdr/dP50 in
~25!, which leads toa25AdP/rdA.

Korteweg @33# related the right-hand side of Eq.~25! to the
material properties of the fluid and to the material and geometr
properties of the pipe. In particular, Korteweg@33# introduced the
fluid properties through the state equationdP/dr5K f /r, which
was already well established in the literature, whereK f5bulk
modulus of elasticity of the fluid. He used the elastic theory
continuum mechanics to evaluatedA/dP in terms of the pipe
radius, thicknesse, and Young’s modulus of elasticityE. In his
derivation, he~i! ignored the axial~longitudinal! stresses in the
pipe~i.e., neglected Poisson’s effect! and~ii ! ignored the inertia of
the pipe. These assumptions are valid for fluid transmission li
that are anchored but with expansion joints throughout. With
sumptions~i! and ~ii !, a quasi-equilibrium relation between th
pressure force per unit length of pipeDdP and the circumferential
~hoop! stress force per unit pipe length 2edsu is achieved, where
su5hoop stress. That is,DdP52edsu or dp52edsu /D. Using
the elastic stress-strain relation,dA5pdjD2/2, where dj
5dsu /E5radial ~lateral! strain. As a result,AdP/rdA5eE/Dr
and

1

a2 5
r

K f
1

r

E
e

D

or a25

K f

r

11
K fD

eE

(26)

The above Korteweg formula for wave speed can be exten
to problems where the axial stress cannot be neglected. Th
accomplished through the inclusion of Poisson’s effect in
stress-strain relations. In particular, the total strain becomesdj
5dsu /E2npdsx /E, where np5Poisson’s ratio andsx5axial
stress. The resulting wave speed formula is~e.g.,@17,23#!

a25

K f

r

11c
K fD

eE

(27)

wherec512np/2 for a pipe anchored at its upstream end on
c512np

2 for a pipe anchored throughout from axial moveme
and c51 for a pipe anchored with expansion joints througho
which is the case considered by Korteweg~i.e., sx50).

Multiphase and multicomponent water hammer flows are co
mon in practice. During a water hammer event, the pressure
cycle between large positive values and negative values, the m
nitudes of which are constrained at vapor pressure. Vapor cav
can form when the pressure drops to vapor pressure. In addi
gas cavities form when the pressure drops below the satura
pressure of dissolved gases. Transient flows in pressurized or
charged pipes carrying sediment are examples of multicompo
water hammer flows. Unsteady flows in pressurized or surcha
sewers are typical examples of multiphase and multicompon
transient flows in closed conduits. Clearly, the bulk modulus a
density of the mixture and, thus, the wave speed are influence
the presence of phases and components. The wave speed for
tiphase and multicomponent water hammer flows can be obta
Transactions of the ASME



Fig. 3 Velocity profiles for steady-state and af-
ter wave passages
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by substituting an effective bulk modulus of elasticityKe and an
effective densityre in place ofK f andr in Eq. ~27!. The effective
quantities,Ke andre , are obtained by the weighted average of t
bulk modulus and density of each component, where the pa
volumes are the weights~see,@23#!. While the resulting math-
ematical expression is simple, the explicit evaluation of the w
speed of the mixture is hampered by the fact that the partial
umes are difficult to estimate in practice.

Equation~27! includes Poisson’s effect but neglects the moti
and inertia of the pipe. This is acceptable for rigidly anchored p
systems such as buried pipes or pipes with high density and s
ness, to name only a few. Examples include major transmis
pipelines like water distribution systems, natural gas lines,
pressurized and surcharged sewerage force mains. Howeve
motion and inertia of pipes can become important when pipes
inadequately restrained~e.g., unsupported, free-hanging pipes! or
when the density and stiffness of the pipe is small. Some
amples in which a pipe’s motion and inertia may be signific
include fuel injection systems in aircraft, cooling-water system
unrestrained pipes with numerous elbows, and blood vessels
these systems, a fully coupled fluid-structure interaction mo
needs to be considered. Such models are not discussed in
paper. The reader is instead directed to the recent excellent re
of the subject by Tijsseling@35#.

4 Wall Shear Stress Models
It was shown earlier in this paper that the wall shear stress t

is important when the parameterG is large. It follows that the
modeling of wall friction is essential for practical applications th
warrant transient simulation well beyond the first wave cycle~i.e.,
largez!. Examples include~i! the design and analysis of pipelin
systems,~ii ! the design and analysis of transient control devic
~iii ! the modeling of transient-induced water quality problem
~iv! the design of safe and reliable field data programs for di
nostic and parameter identification purposes,~v! the application of
transient models to invert field data for calibration and leaka
detection,~vi! the modeling of column separation and vaporo
cavitation and~vii ! systems in whichL/a!Td. Careful modeling
of wall shear is also important for long pipes and for pipes w
high friction.

4.1 Quasi-Steady Wall Shear Models. In conventional
transient analysis, it is assumed that phenomenological exp
sions relating wall shear to cross-sectionally averaged velocit
steady-state flows remain valid under unsteady conditions. Tha
wall shear expressions, such as the Darcy-Weisbach and Ha
Williams formulas, are assumed to hold at every instant durin
transient. For example, the form of the Darcy-Weisbach equa
used in water hammer models is~Streeter and Wylie@36#!
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tw~ t !5tws5
r f ~ t !uV~ t !uV~ t !

8
(28)

wheretws(t)5quasi-steady wall shear as a function oft.
The use of steady-state wall shear relations in unsteady p

lems is satisfactory for very slow transients—so slow, in fact, t
they do not properly belong to the water hammer regime. To h
clarify the problems with this approach for fast transients, co
sider the case of a transient induced by an instantaneous and
closure of a valve at the downstream end of a pipe. As the w
travels upstream, the flow rate and the cross-sectionally avera
velocity behind the wave front are zero. Typical transient veloc
profiles are given in Fig. 3. Therefore, using Eq.~28!, the wall
shear is zero. This is incorrect. The wave passage creates a
reversal near the pipe wall. The combination of flow reversal w
the no-slip condition at the pipe wall results in large wall she
stresses. Indeed, discrepancies between numerical results an
perimental and field data are found whenever a steady-state b
shear stress equation is used to model wall shear in water ham
problems~e.g.,@25,30,32,37,38#!.

Let twu(t) be the discrepancy between the instantaneous w
shear stresstw(t) and the quasi-steady contribution of wall she
stresstws(t). Mathematically

tw~ t !5tws~ t !1twu~ t ! (29)

twu(t) is zero for steady flow, small for slow transients, and s
nificant for fast transients. The unsteady friction component
tempts to represent the transient-induced changes in the vel
profile, which often involve flow reversal and large gradients n
the pipe wall. A summary of the various models for estimati
twu(t) in water hammer problems is given below.

4.2 Empirical-Based Corrections to Quasi-Steady Wall
Shear Models. Daily et al. @39# conducted laboratory experi
ments and foundtwu(t) to be positive for accelerating flows an
negative for decelerating flows. They argued that during accel
tion the central portion of the stream moved somewhat so that
velocity profile steepened, giving higher shear. For consta
diameter conduit, the relation given by Daily et al.@39# can be
rewritten as

Ku5Ks12c2

L

V2

]V

]t
(30)

whereKu5unsteady flow coefficient of boundary resistance a
momentum flux of absolute local velocity andKs5 f L/D5 steady
state resistance coefficient. Daily et al.@39# noted that the longi-
tudinal velocity and turbulence nonuniformities are negligible a
Ku'K5F/rAV2/25unsteady flow coefficient of boundary resi
tance, whereF52pDLtw5wall resistance force. Therefore, Eq
~30! becomes
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Fig. 4 Pressure head traces obtained from
models and experiment
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Denoting c2 by k and r f V2/8 by tws reduces Eq.~31! to the
following:

tw5tws1
krD

4

]V

]t
(32)

The formulations of Daily et al.@39# shows that coefficient
c25k is a measure of the deviations, due to unsteadiness, o
wall shear and momentum flux. Therefore,k generally depends on
x and t. This remark is supported by the extended thermodyna
ics approach used by Axworthy et al.@30#. Figure 4 clearly illus-
trates the poor agreement between model and data when usin
~32! with a constant value ofk.

The experimental data of Daily et al.@39# show thatk50.01
for accelerating flows andk50.62 for decelerating flows. On th
other hand, the research of Shuy@40# led to k520.0825 for ac-
celerating flows andk520.13 for decelerating flows. In fact
Shuy’s data led him to conclude that unsteady wall friction
creases in decelerating flows and decreases in accelerating fl
This result contradicts the previously accepted hypothe
namely, that unsteady wall friction decreases in decelerating fl
and increases in accelerating flows. Shuy@40# attributed the de-
crease in wall shear stress for acceleration to flow relaminar
tion. Given its controversial conclusion, this paper generate
flurry of discussion in the literature with the most notable rema
being those of Vardy and Brown@41#.

Vardy and Brown@41# argued that Shuy’s results should not
interpreted as contradicting previous measurements. Instead
results indicated that the flow behavior observed in Shuy’s exp
ments may have been different from the flow behavior in previ
experiments. Vardy and Brown@41# put forward the time scale
hypothesis as a possible explanation for the different flow beh
ior between Shuy’s@40# experiments and previous ones. They a
observed that, while Shuy’s experiments dealt with long ti
scales, previous measurements dealt with much shorter
scales. Vardy and Brown@41# provided insightful and convincing
arguments about the importance of time scale to the flow beha
in unsteady pipe flows. In fact, the stability analysis of Ghida
and Kolyshkin @42# concurs with the time scale hypothesis
Vardy and Brown@41#. Moreover, the stability analysis show
that, while other experiments belong to the stable domain,
experiments of Shuy belong to the unstable domain.
54 Õ Vol. 58, JANUARY 2005
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Theoretical investigations aimed at identifying the domain
applicability of Eq.~32! have appeared in the literature. For e
ample, Carstens and Roller@43# showed that Eq.~32! can be de-
rived by assuming that the unsteady velocity profiles obey
power law as follows:

u~x,r ,t !

V~x,t !
5

~2n11!~n11!

2n2 S 12
r

RD 1/n

(33)

where n57 for Reynolds number Re5105 and increases with
Reynolds number,r 5distance from the axis in a radial direction
R5radius of the pipe. An unsteady flow given by Eq.~33! de-
scribes flows that exhibit slow acceleration and does not allow
flow reversal~i.e., does not contain inflection points!. In fact, Eq.
~33! cannot represent typical water hammer velocity profiles s
as those found in Vardy and Hwang@25#, Silva-Araya and
Chaudhry@37#, Pezzinga@38,44#, Eichinger and Lein@45# and
Ghidaoui et al.@46#. The theoretical work of Carstens and Roll
@43# shows only that Eq.~32! applies to very slow transients in
which the unsteady velocity profile has the same shape as
steady velocity profile. Unfortunately, the Carstens and Ro
@43# study neither supports nor refutes the possibility of using E
~32! in water hammer problems.

The theoretical work of Vardy and Brown@47# shows that Eq.
~32! can be derived for the case of an unsteady pipe flow w
constant acceleration. In addition, they show that this mode
approximately valid for problems with time dependent accele
tion as long as the time scale of the transient event greatly exc
the rising time, which is a measure of time required for the v
ticity diffusion through the shear layer. Their work also war
against using Eq.~32! for problems with time dependent acceler
tion induced by transient events with time scales smaller than
rising time (i.e., L/a!Td).

Axworthy et al.@30# found that Eq.~32! is consistent with the
theory of Extended Irreversible Thermodynamics~EIT! and sat-
isfy the second law of thermodynamics. In addition, the EIT de
vation shows that unsteady friction formulas based on insta
neous acceleration such as Eq.~32! are applicable to transien
flow problems in which the time scale of interest~e.g., simulation
time! is significantly shorter than the radial diffusion time scale
vorticity. Using the vorticity equation, Axworthy et al.@30#
showed that for such short time scales, the turbulence strength
structure is unchanged~i.e., ‘‘frozen’’!, and the energy dissipation
Transactions of the ASME
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behind a wave front is well represented by the degree of shif
the cross-sectional mean value of the velocity~i.e., dV/dt) and
the cross-sectional mean value ofV, itself.

The time scale arguments by Vardy and Brown@47# and Ax-
worthy et al.@30# represent two limit cases: very slow transien
and very fast transients, respectively. In the former case, the
enough mixing such that the acceleration history pattern is
stroyed, only the instantaneous acceleration is significant to
wall shear stress. In the latter case, the pre-existing flow struc
is frozen, there is no additional acceleration history develo
except that of instantaneous acceleration. The Axworthy e
@30# argument represents a water hammer flow situation where
acceleration behaves like a pulse, say, the flow drops from a fi
value to zero in a short period.

An important modification of instantaneous acceleration-ba
unsteady friction models was proposed by Brunone and G
@48#, Greco @49#, and Brunone et al.@50,51#. The well known
Brunone et al.@50# model has become the most widely us
modification in water hammer application due to its simplicity a
its ability to produce reasonable agreement with experime
pressure head traces.

Brunone et al.@50# incorporated the Coriolis correction coe
ficient and the unsteady wall shear stress in the energy equ
for water hammer as follows:

]H

]x
1

1

g

]V

]t
1

h1f

g

]V

]t
1Js50 (34)

whereh5difference from unity of the Coriolis correction coeffi
cient, Js5( f uVuV)/2gD 5steady-state friction term
(f/g) (]V/]t)5difference between unsteady friction and its co
responding steady friction. In Eq.~34!, the convective term is
dropped as the Mach number of the flow is small in water ham
problems.

A constitutive equation is needed forh1f. Brunone et al.
@50# proposed

h1f5kS 12a
]V

]xY ]V

]t D (35)

or in terms of wall shear stress

tw5tws1
krD

4 S ]V

]t
2a

]V

]x D (36)

Equation~36! provides additional dissipation for a reservoir-pip
valve system when the transient is caused by a downstream
den valve closure. The pressure head traces obtained from
models and experiment are plotted in Fig. 4. It is shown t
although both the Darcy-Weisbach formula and Eq.~32! with con-
stantk cannot produce enough energy dissipation in the pres
head traces, the model by Brunone et al.@50# is quite successful in
producing the necessary damping features of pressure peaks,
fied by other researchers@29,52–55#.

Slight modifications to the model of Brunone et al.@50#, which
renders this model applicable to both upstream and downstr
transients, were proposed in@44# and in @52#. In particular, Pezz-
inga @44# proposed

h1f5kF11signS V
]V

]x Da
]V

]xY ]V

]t G (37)

and Bergant et al.@53# proposed

h1f5kF11sign~V!aU]V

]xUY ]V

]t G (38)

The dependence ofh1f on x andt as well as the flow accel
eration is consistent with the theoretical formulations in@30# and
@39#. In addition, the form ofh1f gives significant correction for
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the unsteady friction when the flow is accelerated (V]V/]t.0)
and small correction when the flow is decelerated (V]V/]t,0)
@50#.

Utilization of the models presented in this section require
reliable estimate of the parameterk. The data of Brunone et al
@31#, Daily et al. @39#, and others show thatk is not a universal
constant. An empirical method for estimating this parameter w
proposed by Brunone et al.@52# by fitting the decay of measure
pressure head history. Moody diagram-like charts fork were de-
veloped by Pezzinga@44# using a quasi-two-dimensional turbu
lence model. Vardy and Brown@47# provided a theoretically-base
expression for determining the coefficientk. This expression was
successfully applied by Bergant et al.@52# and Vitkovsky et al.
@55#. Although the charts of Pezzinga@44# and the formula of
Vardy and Brown@47# are theory-based, their reliability is limited
by the fact that they rely on steady-state-based turbulence mo
to adequately represent unsteady turbulence. It should, howe
be stressed that modeling turbulent pipe transients is currently
well understood~see Sec. 9!.

The mechanism that accounts for the dissipation of the p
sure head is addressed in the discussion by Ghidaoui et al.@46#.
They found that the additional dissipation associated with the
stantaneous acceleration based unsteady friction model oc
only at the boundary due to the wave reflection. It was shown
after nc complete wave cycles, the pressure head is damped
factor equivalent to@1/(11k)#2nc.

4.3 Physically Based Wall Shear Models. This class of un-
steady wall shear stress models is based on the analytical sol
of the unidirectional flow equations and was pioneered by Zie
@56#. Applying the Laplace transform to the axial component
the Navier-Stokes equations, he derived the following wall sh
expression for unsteady laminar flow in a pipe:

tw~ t !5
4nr

R
V~ t !1

2nr

R E
0

t ]V

]t8
~ t8!W~ t2t8!dt8 (39)

where t85a dummy variable, physically represents the instan
neous time in the time history;n5kinematic viscosity of the fluid;
W5weighting function

W~ t !5e226.3744~nt/R2!1e270.8493~nt/R2!1e2135.0198~nt/R2!

1e2218.9216~nt/R2!1e2322.5544~nt/R2!

for
nt

R2.0.02

W~ t !50.282095S nt

R2D 21/2

21.2500011.057855S nt

R2D 1/2

for
nt

R2,0.0210.937500
nt

R2 10.396696S nt

R2D 3/2

20.351563S nt

R2D 2

(40)

The first term on the right-hand side of Eq.~39! represents the
steady-state wall shear stresstws and the second term represen
the correction part due to the unsteadiness of the flowtwu . The
numerical integration of the convolution integral in Eq.~39! re-
quires a large amount of memory space to store all previou
calculated velocities and large central processing unit~CPU! time
to carry out the numerical integration, especially when the ti
step is small and the simulation time large. Trikha@57# used three
exponential terms to approximate the weighting function. The
vantage of using exponential forms is that a recursive formula
easily be obtained, so that the flow history can be lumped into
quantities at the previous time step. In this way, only the cal
lated quantities at the previous time step needs to be stored in
computer memory, and there is no need to calculate the conv
JANUARY 2005, Vol. 58 Õ 55
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tion integral from the beginning at every time step. This redu
the memory storage and the computational time greatly. In Su
et al. @58#, for t,0.02, the summation is calculated in a norm
way; for t.0.02, the recursive formula similar to that of Trikh
@57# is used, since each of the five terms included in the weigh
function is exponential. Although Zielke’s formula is derived f
laminar flow, Trikha@57# and others@29,52# found that this for-
mula leads to acceptable results for low Reynolds number tu
lent flows. However, Vardy and Brown@47# warned against the
application of Zielke’s formula outside the laminar flow regim
but did note that the error in applying Zielke’s formula to turb
lent flows diminishes as the duration of the wave pulse reduc

Vardy et al.@59# extended Zielke’s approach to low Reynold
number turbulent water hammer flows in smooth pipes. In a la
paper, Vardy and Brown@60# developed an extension of the mod
of Vardy et al.@59# that was applicable to high Reynolds numb
transient flows in smooth pipes. In addition, Vardy and Bro
@60# showed that this model gives results equivalent to those
Vardy et al.@59# for low Reynolds number flows and to those
Zielke @56# for laminar flows. That is, the Vardy and Brown@60#
model promises to provide accurate results for Reynolds num
ranging from the laminar regime to the highly turbulent regim
This model has the following form:

tw~ t !5r f
V~ t !uV~ t !u

8
1

4nr

D E
0

t

W~ t2t8!
]V

]t8
dt8 (41)

where

W~ t !5a exp~2bt !/Apt; a5D/4An;

b50.54n Rek/D2; k5 log~14.3/Re0.05!

and Re5Reynolds number. Similar to Zielke’s model, the conv
lution nature of Eq.~41! is computationally undesirable. An accu
rate, simple, and efficient approximation to the Vardy-Brown u
steady friction equation is derived and shown to be ea
implemented within a 1D characteristics solution for unstea
pipe flow @32#. For comparison, the exact Vardy-Brown unstea
friction equation is used to model shear stresses in transient
bulent pipe flows and the resulting water hammer equations
solved by the method of characteristics. The approximate Va
Brown model is more computationally efficient~i.e., requires1

6-th
the execution time and much less memory storage! than the exact
Vardy-Brown model. Both models are compared with measu
data from different research groups and with numerical data
duced by a two-dimensional~2D! turbulence water hamme
model. The results show that the exact Vardy-Brown model
the approximate Vardy-Brown model are in good agreement w
both laboratory and numerical experiments over a wide rang
Reynolds numbers and wave frequencies. The proposed app
mate model only requires the storage of flow variables from
single time step while the exact Vardy-Brown model requires
storage of flow variables at all previous time steps and the
model requires the storage of flow variables at all radial node

A summary of the assumptions involved in deriving Eqs.~39!
and ~41! is in order. The analytical approach of Zielke@56# in-
volves the following assumptions:~i! the flow is fully developed,
~ii ! the convective terms are negligible,~iii ! the incompressible
version of the continuity equation is used~i.e., the influence of
mass storage on velocity profile is negligible!, and~iv! the veloc-
ity profile remains axisymmetric~i.e., stable! during the transient.
In order to extend Zielke’s approach to turbulent flows, Vardy a
Brown @60# made two fundamental assumptions in relation to
turbulent eddy viscosity in addition to assumptions~i! through
~iv!. First, the turbulent kinematic viscosity is assumed to v
linearly within the wall shear layer and becomes infinite~i.e., a
uniform velocity distribution! in the core region. Second, the tu
bulent eddy viscosity is assumed to be time invariant~i.e., frozen
to its steady-state value!. Assumptions~i!, ~ii !, and~iii ! are accu-
rate for practical water hammer flows, where the Mach numbe
56 Õ Vol. 58, JANUARY 2005
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often negligibly small and pipe length far exceeds flow develo
ment length. The validity of assumptions such as that the fl
remains axisymmetric~stable!, that the eddy viscosity is indepen
dent of time, and that its shape is similar to that in steady flow
discussed later in the paper~see Secs. 6 and 7!.

Understanding the connection between Eq.~32! and the physi-
cally based unsteady wall friction models proposed by Zielke@56#
and Vardy and Brown@60# further illuminates the limitations of
instantaneous acceleration, unsteady wall friction models as
scribed in the previous section. In particular, it is evident fro
Eqs.~39! and~41! that Eq.~32! is recovered when the acceleratio
is constant. In addition, plots ofW in Fig. 5 show that for flows
with large Reynolds number, this function is very small eve
where except whennt/R2 approaches 0, that is, whent8 ap-
proachest in Eq. ~41!. The region whereW(t2t8) in Eq. ~41!
becomes significant and provides a measure of the time sca
the radial diffusion of vorticityTd . If the acceleration varies
slowly in the region whereW(t2t8) is significant, it is clear that
Eqs. ~39! and ~41! can be accurately approximated by Eq.~32!.
This is simply an alternative way to state that Eq.~32! is accept-
able when the acceleration is not constant as long as the time
of the flow disturbance far exceeds the time scale of radial di
sion of vorticity across the shear layer. Moreover, it is obvio
that Eq.~32! is a good approximation to Eqs.~39! and~41! when
t is small, as the integral interval is so small that the integrand
be considered as a constant. Furthermore, the time interval w
W(t2t8) is significant reduces with Reynolds number, whi
shows that Eq.~32! becomes more accurate for highly turbule
flows.

5 Numerical Solutions for 1D Water Hammer Equa-
tions

The equations governing 1D water hammer~i.e., Eqs.~20! and
~21!! can seldom be solved analytically. Therefore, numeri
techniques are used to approximate the solution. The metho
characteristics~MOC!, which has the desirable attributes of acc
racy, simplicity, numerical efficiency, and programming simplici
~e.g.,@20,23,61#!, is most popular. Other techniques that have a
been applied to Eqs.~20! and ~21! include the wave plan, finite
difference~FD!, and finite volume~FV! methods. Of the 11 com-
mercially available water hammer software packages reviewe
Sec. 12, eight use MOC, two are based on implicit FD metho
and only one employs the wave-plan method.

5.1 MOC-Based Schemes. A significant development in
the numerical solution of hyperbolic equations was published
Lister @62#. She compared the fixed-grid MOC scheme—a
called the method of fixed time interval—with the MOC gr
scheme and found that the fixed-grid MOC was much easie
compute, giving the analyst full control over the grid selection a
enabling the computation of both the pressure and velocity fie

Fig. 5 Weighting function for different Reynolds numbers
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in space at constant time. Fixed-grid MOC has since been u
with great success to calculate transient conditions in pipe sys
and networks.

The fixed-grid MOC requires that a common time step (Dt) be
used for the solution of the governing equations in all pipes. Ho
ever, pipes in the system tend to have different lengths and so
times wave speeds, making it impossible to satisfy the Cou
condition ~Courant numberCr5aDt/Dx<1) exactly if a com-
mon time stepDt is to be used. This discretization problem can
addressed by interpolation techniques, or artificial adjustmen
the wave speed or a hybrid of both.

To deal with this discretization problem, Lister@62# used linear
space-line interpolation to approximate heads and flows at the
of each characteristic line. Trikha@57# suggested using differen
time steps for each pipe. This strategy makes it possible to
large time steps, resulting in shorter execution time and the av
ance of spatial interpolation error. This increased flexibility com
at the cost of having to interpolate at the boundaries, which ca
a major source of error when complex, rapidly changing con
actions are considered.

Wiggert and Sundquist@63# derived a single scheme that com
bines the classical space-line interpolation with reachout in sp
interpolation. Using Fourier analysis, they studied the effects
interpolation, spacing, and grid size on numerical dispersion,
tenuation, and stability. These researchers found that the degr
interpolationj decreases as the ratio of the wavelength of thekth
harmonicLk to the reach lengthDx increases. As a result, bot
numerical dissipation and dispersion are improved. These con
sions are not surprising for several reasons. First, every interp
tion technique can be expected to produce better results for w
components with larger wavelengths. Second, for a fixed time
Dt, larger values ofn imply smaller values ofDx and vice versa,
sincenDx represents the total length of the reachout on one s
Consequently, this scheme generates more grid points and, t
fore, requires longer computational times and computer stor
Furthermore, an alternative scheme must be used to carry ou
boundary computations.

The reachback time-line interpolation scheme, developed
Goldberg and Wylie@64#, uses the solution fromm previously
calculated time levels. The authors observed that reachback t
line interpolation is more accurate than space-line interpola
for the same discretization. This is a subjective comparison
cause, as the degree of temporal interpolationj varies from 0 to 1,
the degree of spatial interpolationa is only allowed to vary from
1/(m11) to 1/m. A fairer comparison would have been to als
divide the distance step bym so that bothj anda vary equally. In
addition, Goldberg and Wylie@64# assert that numerical errors a
reduced by increasingm. This is somewhat misleading becaus
for a fixed Dx, increasingm means increasing the number
computational steps~i.e., reducing the effective time stepDt)
which in turn generates finer interpolation intervals. Moreover
cases where the friction term is large and/or when the wave sp
is not constant, reaching back in time increases the approxima
error of these terms.

Lai @65# combined the implicit, temporal reachback, spat
reachback, spatial reachout, and the classical time and space
interpolations into one technique called the multimode sche
Depending on the choice of grid size (Dt,Dx) and the limit on the
maximum allowable reachbacks in timem, this scheme may func
tion as either of the methods or a combination of any two me
ods. Numerical errors were studied using a mass balance
proach. Stability conditions were derived from Von Neuma
analysis. The multimode scheme gives the user the flexibility
select the interpolation scheme that provides the best perform
for a particular problem.

Yang and Hsu@66,67# published two papers dealing with th
numerical solution of the dispersion equation in 1D and 2D,
spectively. The authors propose reaching back in time more
one time step and then using the Holly-Preissmann metho
Applied Mechanics Reviews
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interpolate either in space or in time. It is claimed that the rea
back Holly-Preissmann scheme is superior to the classical Ho
Preissmann method. An interesting discussion of this work, p
lished in Bentley@68#, showed that the solution obtained by th
classical Holly-Preissmann method when the time step eq
mDt is identical to that obtained by the reachback in space Ho
Preissmann~i.e., the foot of the characteristic line is extende
back more than one time step until it intersects the space-l!
with m reachbacks and a time step value ofDt. The only differ-
ence is that the reachback approach producesm21 extra interme-
diate solutions at the cost of more computational time.

Sibetheros et al.@69# showed that the spline technique is we
suited to predicting transient conditions in simple pipelines s
ject to simple disturbances when the nature of the transient be
ior of the system is known in advance. The most serious prob
with the spline interpolation is the specification of the spli
boundary conditions.

The authors point out that the selection procedure was a ‘‘t
and error’’ one involving many possibilities. This ‘‘flexibility’’
suffers from the curse of ‘‘permutability,’’ i.e., in a complex sy
tem the number of permutations and combinations of sp
boundary conditions can become enormous. Moreover, in m
multipipe applications it is not accuracy that directly governs
selection of the time step, but the hydraulically shortest pipe in
system. Since the most successful spline boundary conditions
essarily involve several reaches, application of the method
comes problematic in short pipes. It would appear to require m
smaller time steps simply to apply the method at all. Other n
essary conditions for the success of spline schemes are:~i! the
dependent variable~s! must be sufficiently smooth,~ii ! the compu-
tation of the derivatives at internal nodes must be accurate,
~iii ! the formulation of the numerical and/or physical derivati
boundary conditions must be simple and accurate. Condition~i!
and ~iii ! are a problem in water hammer analysis because
boundary conditions are frequently nonlinear and complex,
the dependent variables may be discontinuous.

Karney and Ghidaoui@70# developed ‘‘hybrid’’ interpolation
approaches that include interpolation along a secondary chara
istic line, ‘‘minimum-point’’ interpolation~which reduces the dis-
tance from the interpolated point to the primary characterist!,
and a method of ‘‘wave path adjustment’’ that distorts the path
propagation but does not directly change the wave speed.
resulting composite algorithm can be implemented as a prepro
sor step and thus uses memory efficiently, executes quickly,
provides a flexible tool for investigating the importance of d
cretization errors in pipeline systems. The properties of the a
rithm are analyzed theoretically and illustrated by example in
paper.

5.2 Other Schemes. The wave plan method@71# is similar
to the MOC in the sense that both techniques explicitly incor
rate wave paths in the solution procedure. However, the wave
method requires that flow disturbance functions such as va
curves be approximated by piecewise constant functions. Tha
flow disturbances are approximated by a series of instantan
changes in flow conditions. The time interval between any t
consecutive instantaneous changes in flow conditions is fixed.
piecewise constant approximation to disturbance functions imp
that the accuracy of the scheme is first order in both space
time. Therefore, fine discretization is required for achieving ac
rate solutions to water hammer problems.

The wave plan method ‘‘lumps’’ friction at the center of eac
pipe. In particular, friction is modeled using a disturbance fun
tion, where the form of this function is determined using the ‘‘o
fice analogy.’’ This disturbance function is friction approximate
by piecewise constant functions. The modeling of friction as
series of discrete disturbances in space and time generates
spurious waves. In general, with small values of friction, the
would be observed only as low-amplitude noise on the main tr
JANUARY 2005, Vol. 58 Õ 57
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sient signal. It is also unclear as to how additional physics, suc
convolution-integral unsteady friction models, can be incorp
rated with the wave plan methodology.

Wylie and Streeter@72# propose solving the water hamme
equations in a network system using the implicit central differe
method in order to permit large time steps. The resulting nonlin
difference equations are organized in a sparse matrix form and
solved using the Newton-Raphson procedure. Only pipe junc
boundary conditions were considered in the case study. It is
ognized that the limitation on the maximum time step is set by
frequency of the dependent variables at the boundaries. Two c
mercially available water hammer software packages use the
point implicit scheme~see Sec. 12 Water Hammer Software!. The
major advantage of implicit methods is that they are stable
large time steps~i.e., Cr.1 @65,72#!. Computationally, however
implicit schemes increase both the execution time and the sto
requirement and need a dedicated matrix inversion solver sin
large system of equations has to be solved. Moreover, for m
problems, iterative schemes must also be invoked. From a m
ematical perspective, implicit methods are not suitable for w
propagation problems because they entirely distort the path
propagation of information, thereby misrepresenting the ma
ematical model. In addition, a small time step is required for
curacy in water hammer problems in any case@23#. For these
reasons, most of the work done on numerical modeling of hyp
bolic equations in the last three decades concentrated on dev
ing, testing, and comparing explicit schemes~e.g.,@63,64,73#!.

Chaudhry and Hussaini@74# apply the MacCormack, Lambda
and Gabutti schemes to the water hammer equations. These
methods are explicit, second-order~in time and space! finite dif-
ference schemes. Two types of boundary conditions are used~i!
one characteristic equation and one boundary equation, or~ii ! ex-
trapolation procedure boundary condition. The second boun
condition solution method adds one fictitious node upstream
the upstream boundary and another downstream of the do
stream boundary. Using theL1 andL2 norms as indicators of the
numerical errors, it was shown that these second-order fin
difference schemes produce better results than first-order me
of characteristics solutions forCr50.8 and 0.5. Spurious numer
cal oscillations are observed, however, in the wave profile.

Although FV methods are widely used in the solution of hyp
bolic systems, for example, in gas dynamics and shallow w
waves~see recent books by Toro@75,76#!, this approach is seldom
applied to water hammer flows. To the authors’ knowledge,
first attempt to apply FV-based schemes was by Guinot@77#. He
ignored the advective terms, developed a Riemann-type solu
for the water hammer problem, and used this solution to deve
a first-order-based FV Godunov scheme. This first-order sch
is very similar to the MOC with linear space-line interpolation.
the time of writing, a second paper by Hwang and Chung@78# that
also uses the FV method for water hammer, has appeared. U
in Guinot @77#, the advective terms are not neglected in the wo
of Hwang and Chung@78#. Instead, they use the conservative for
of the compressible flow equations, in which density, and
head, is treated as an unknown. The application of such a sch
in practice would require a state equation relating density to h
so that~i! all existing boundary conditions would have to be r
formulated in terms of density and flow rather than head and fl
and~ii ! the initial steady-state hydraulic grade line would need
be converted to a density curve as a function of longitudinal d
tance. At present, no such equation of state exists for water.
plication of this method would be further complicated at boun
aries where incompressible conditions are generally assume
apply.

5.3 Methods for Evaluating Numerical Schemes. Several
approaches have been developed to deal with the quantificatio
numerical dissipation and dispersion. The wide range of meth
in the literature is indicative of the dissatisfaction and distr
among researchers of more conventional, existing techniq
58 Õ Vol. 58, JANUARY 2005
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This section discusses a number of methods employed by t
sient modelers to quantify numerical dissipation and dispersio

5.3.1 Von Neumann Method.Traditionally, fluid transient re-
searchers have studied the dispersion and dissipation charac
tics of the fixed-grid method of characteristics using the Von N
mann~or Fourier! method of analysis@63,64#. The Von Neumann
analysis was used by O’Brian et al.@79# to study the stability of
the numerical solution of partial differential equations. The ana
sis tracks a single Fourier mode with time and dissipation
determining how the mode decays with time. Dispersion is eva
ated by investigating whether or not different Fourier modes tra
with different speeds.

There are a number of serious drawbacks to the Von Neum
method of analysis. For example, it lacks essential boundary
formation, it ignores the influence of the wave profile on the n
merical errors, it assumes constant coefficients and that the in
conditions are periodic, and it can only be applied to linear n
merical models@69,79–81#. To illustrate, the work by Wiggert
and Sundquist@63#, Goldberg and Wylie@64#, and others clearly
shows that the attenuation and dispersion coefficients obta
from the Fourier analysis depend on the Courant number, the r
of the wavelength of thekth harmonicLk to the reach lengthDx,
and the number of reachbacks and/or reachouts, but does no
pend on the boundary conditions. Yet, the simulation of bound
conditions and knowledge of how these boundary conditions
troduce and reflect errors to the internal pipe sections is crucia
the study of numerical solutions of hydraulic problems. In sho
the Von Neumann method cannot be used as the only benchm
for selecting the most appropriate numerical scheme for nonlin
boundary-value hyperbolic problems.

5.3.2 L1 and L2 Norms Method. Chaudhry and Hussain
@74# developedL1 andL2 norms to evaluate the numerical erro
associated with the numerical solution of the water hammer eq
tions by the MacCormack, Lambda, and Gabutti schemes. H
ever, theL1 andL2 method as they apply it can only be used f
problems that have a known, exact solution. In addition, these
norms do not measure a physical property such as mass or en
thereby making the interpretation of the numerical values of th
norms difficult. Hence, theL1 andL2 norms can be used to com
pare different schemes, but do not give a clear indication of h
well a particular scheme performs.

5.3.3 Three Parameters Approach.Sibetheros et al.@69#
used three dimensionless parameters to study various nume
errors. A discussion followed by Karney and Ghidaoui@82# and a
closure was provided by the authors. Salient points from the
cussion and closure are summarized below.

The attenuation parameter is intended to measure the nume
dissipation by different interpolation schemes by looking at
maximum head value at the valve. This parameter, however,
derestimates the numerical attenuation because the computati
head and flow at the downstream end of the pipe uses one c
acteristic equation and one boundary equation. The dispersion
rameter is intended to measure the numerical dispersion by di
ent interpolation schemes. This parameter is determined
asserting that the change in the wave shape is governed by
constant diffusion equation with initial conditions described
the Heaviside function. Although this method allows a rudime
tary comparison of simple system responses, general conclus
cannot be drawn for a hyperbolic equation based on a diffus
equation. The longitudinal displacement parameter is intende
measure the extent by which different numerical schemes a
cially displace the wave front. However, this parameter only s
gests to what degree the interpolation method used is symm
cally dispersive and says little about the magnitude of artific
displacement of the wave by the numerical scheme.

5.3.4 Mass Balance Approach.The mass balance metho
@83,84# is a more general technique than the other existing me
Transactions of the ASME



s

t

d

a
s

v

r

n
a
r
i
o
w

e
t
r

s

t

t
t

r
w

w

t

t

e

n

ces
rti-
ith

s.
the
ve

both
rsal
pipe.
rak-
n-

ll
tress

the

-
ved
x-
oui
f
to
-

keri
ions.
nd
tion
the

ve
tions
ters
ipe

the
w
be
ted.

-

ce
-

ty
ase
n-
t the
flec-
ity
he
ent
The
-
tted
und
the

the
ub-
ility

e
of

he
ong
ods since this approach can be applied to a nonlinear tran
problem with realistic boundary conditions. The basic idea is
check how closely a particular numerical method conserves m
Note that the mass balance approach can become ineffectiv
cases where a numerical scheme conserves mass but not e
and momentum.

5.3.5 EHDE Approach. Ghidaoui and Karney@85# devel-
oped the concept of an equivalent hyperbolic differential equa
~EHDE! to study how discretization errors arise in pipeline app
cations for the most common interpolation techniques used to
with the discretization problem in fixed-grid MOC. In particular,
is shown that space-line interpolation and the Holly-Preissm
scheme are equivalent to a wave-diffusion model with an adju
wave speed, but that the latter method has additional source
sink terms. Further, time-line interpolation is shown to be equi
lent to a superposition of two waves with different wave spee
The EHDE concept evaluates the consistency of the nume
scheme, provides a mathematical description of the numerical
sipation and dispersion, gives an independent way of determi
the Courant condition, allows the comparison of alternative
proaches, finds the wave path, and explains why higher-o
methods should usually be avoided. This framework clearly po
out that numerical approximation of the water hammer equati
fundamentally changes the physical problem and must be vie
as a nontrivial transformation of the governing equations. For
ample, implicit methods, while noted for their stability charact
istics, transform the water hammer problem into a superposi
of wave problems, each of which has a wave speed different f
the physical wave speed and at least one of which has an infi
wave speed. The infinite numerical wave speed associated
implicit schemes ensures that the numerical domain of dep
dence is larger than the physical domain of dependence, and
plains why these are highly stable. While good for stability, t
large discrepancy between the numerical and physical domain
dependence hinders the accuracy of these schemes. Another
lem with implicit schemes is that they are often computationa
inefficient because they require the inversion of large matrice

5.3.6 Energy Approach.Ghidaoui et al.@86# developed an
integrated energy approach for the fixed-grid MOC to study h
the discretization errors associated with common interpola
schemes in pipeline applications arise and how these errors ca
controlled. Specifically, energy expressions developed in
work demonstrate that both time-line and space-line interpola
attenuate the total energy in the system. Wave speed adjustm
on the other hand, preserves the total energy while distorting
partitioning of the energy between kinetic and internal form
These analytic results are confirmed with numerical studies
several series pipe systems. Both the numerical experiments
the analytical energy expression show that the discretization e
are small and can be ignored as long as there is continuous
in the system. When the work is zero, however, aCr value close
to one is required if numerical dissipation is to be minimized. T
energy approach is general and can be used to analyze other
hammer numerical schemes.

6 Flow Stability and the Axisymmetric Assumption
Existing transient pipe flow models are derived under

premise that no helical type vortices emerge~i.e., the flow remains
stable and axisymmetric during a transient event!. Recent experi-
mental and theoretical works indicate that flow instabilities, in
form of helical vortices, can develop in transient flows. The
instabilities lead to the breakdown of flow symmetry with resp
to the pipe axis. For example, Das and Arakeri@87# performed
unsteady pipe flow experiments where the initial flow was lami
and the transient event was generated by a piston. They found
when the Reynolds number and the transient time scale exce
threshold value, the flow becomes unstable. In addition, they
served that the flow instability results in the formation of nons
Applied Mechanics Reviews
ient
to

ass.
e in
nergy

ion
li-
eal

it
nn
ted
and
a-

ds.
ical
dis-
ing
p-
der
nts
ns
ed

ex-
r-
ion
om
nite
with
en-
ex-

he
s of
prob-
lly
.

ow
ion
n be
his
ion
ent,
the
s.
of
and

rors
ork

he
ater

he

he
se
ct

ar
that
ed a
ob-
ta-

tionary helical vortices and that the breakdown of these vorti
into turbulence is very rapid. The breakdown of the helical vo
ces into turbulence resulted in strong asymmetry in the flow w
respect to the pipe axis. Brunone et al.@31,88# carried out mea-
surements of water hammer velocity profiles in turbulent flow
They also observed strong flow asymmetry with respect to
pipe axis. In particular, they found that a short time after the wa
passage, flow reversal no longer appears simultaneously in
the top and the bottom sides of the pipe. Instead, flow reve
appears to alternate between the bottom and top sides of the
This is consistent with the asymmetry observed by Das and A
eri @87#. The impact of instabilities on wall shear stress in u
steady pipe flows was measured by Lodahl et al.@89#. They found
that inflectional flow instabilities induce fluctuations in the wa
shear stress, where the root mean square of the wall shear s
fluctuation in the pipe was found to be as high as 45% of
maximum wall shear stress.

Das and Arakeri@87# applied linear stability analysis to un
steady plane channel flow to explain the experimentally obser
instability in unsteady pipe flow. The linear stability and the e
perimental results are in good qualitative agreement. Ghida
and Kolyshkin @90# investigated the linear stability analysis o
unsteady velocity profiles with reverse flow in a pipe subject
three-dimensional~3D! perturbation. They used the stability re
sults to reinterpret the experimental results of Das and Ara
@87# and assess their planar flow and quasi-steady assumpt
Comparison of the neutral stability curves computed with a
without the planar channel assumption shows that this assump
is accurate when the ratio of the boundary layer thickness to
pipe radius is below 20%. Any point in the neutral stability cur
represents the parameters combination such that the perturba
neither grow nor decay. Critical values for any of these parame
can be obtained from the neutral stability curve. For unsteady p
flows, the parameters related are Re andt. Therefore, critical Re
can be obtained.

The removal of the planar assumption not only improves
accuracy of stability calculations, but also allows for the flo
stability of both axisymmetric and nonaxisymmetric modes to
investigated, and for the experimental results to be reinterpre
For example, both the work of Ghidaoui and Kolyshkin@90# and
the experiments of Das and Arakeri@87# show that the nonaxisym
metric mode is the least stable~i.e., the helical type!.

With the aim of providing a theoretical basis for the emergen
of helical instability in transient pipe flows, Ghidaoui and Koly
shkin@42# performed linear stability analysis of base flow veloci
profiles for laminar and turbulent water hammer flows. These b
flow velocity profiles are determined analytically, where the tra
sient is generated by an instantaneous reduction in flow rate a
downstream end of a simple pipe system. The presence of in
tion points in the base flow velocity profile and the large veloc
gradient near the pipe wall are the sources of flow instability. T
main parameters governing the stability behavior of transi
flows are Reynolds number and dimensionless time scale.
stability of the base flow velocity profiles with respect to axisym
metric and asymmetric modes is studied and the results are plo
in the Reynolds number/time scale parameter space. It is fo
that the asymmetric mode with azimuthal wave number one is
least stable. In addition, it is found that the stability results of
laminar and the turbulent velocity profiles are consistent with p
lished experimental data. The consistency between the stab
analysis and the experiments provide further confirmation~i! that
water hammer flows can become unstable,~ii ! that the instability
is asymmetric,~iii ! that instabilities develop in a short~water
hammer! time scale and,~iv! that Reynolds number and the wav
time scale are important in the characterization of the stability
water hammer flows. Physically, flow instabilities change t
structure and strength of the turbulence in a pipe, result in str
JANUARY 2005, Vol. 58 Õ 59
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flow asymmetry, and induce significant fluctuations in wall sh
stress. These effects of flow instability are not represented in
isting water hammer models.

In an attempt to gain an appreciation of the importance of
cluding the effects of helical vortices in transient mode
Ghidaoui et al.@46# applied current transient models to flow cas
with and without helical vortices. In the case where stability
sults indicate that there are no helical vortices, Ghidaoui e
@46# found that the difference between water hammer models
the data of Pezzinga and Scandura@91# increases with time at a
mild rate. However, for the case where stability results and
periments indicate the presence of helical vortices, it is found
the difference between water hammer models and the dat
Brunone et al.@31# exhibits an exponential-like growth. In fac
the difference between models and the data of Brunone et al.@31#
reaches 100% after only six wave cycles. This marked differe
between models and data suggests that the influence of he
vortices on the flow field is significant and cannot be neglecte

7 Quasi-Steady and Frozen Turbulence Assumptions
The convolution integral analytical models for wall shear

unsteady turbulent flows derived in Vardy et al.@59# and Vardy
and Brown@60# assume that eddy viscosity remains ‘‘frozen’’~i.e.,
time independent! during the transient. Turbulence closure equ
tions used by Vardy and Hwang@25#, Silva-Araya and Chaudhry
@37#, and Pezzinga@38# assume that the turbulence changes in
quasi-steady manner and that the eddy viscosity expression
rived for steady-state pipe flows remain applicable for water ha
mer flows. An understanding of the response of the turbule
field to water hammer waves is central to judging the accurac
using either the frozen or the quasi-steady turbulence assu
tions.

There is a time lag between the passage of a wave front
particular location along the pipe and the resulting change in
bulent conditions at this location~e.g.,@46,92,93#!. In particular, at
the instant when a water hammer wave passes a positionx along
the pipe, the velocity field atx undergoes a uniform shift~i.e., the
fluid exhibits a slug flowlike motion!. The uniform shift in veloc-
ity field implies that the velocity gradient and turbulent conditio
are unaltered at the instant of the wave passage. However
combination of the uniform shift in velocity with the no-slip con
dition generates a vortex sheet at the pipe wall. The subseq
diffusion of this vortex ring from the pipe wall to the pipe core
the mechanism responsible for changing the turbulence condit
in the pipe.

A short time after the wave passage, the extent of vortic
diffusion is limited to a narrow wall region and the turbulen
field is essentially frozen. In this case, both the quasi-steady
bulence and ‘‘frozen’’ turbulence assumptions are equally ap
cable. A similar conclusion was reached by Greenblatt and M
@92# for a temporally accelerating flow; by Tu and Rampari
@94#, Brereton et al.@95#, and Akhavan et al.@96,97# for oscilla-
tory flow; He and Jackson@93# for ramp-type transients; an
Ghidaoui et al.@46# for water hammer flows. As the time after th
wave passage increases, the extent of the radial diffusion of
ticity becomes more significant and begins to influence the ve
ity gradient and turbulence strength and structure in the bu
zone. The experiments of He and Jackson@93# show that the axial
turbulent fluctuations are the first to respond to the changes in
radial gradient of the velocity profile and that there is a time de
between the changes in the axial turbulent fluctuations and
redistribution among the radial and azimuthal turbulent com
nents. The production of axial turbulent kinetic energy and
time lag between production and redistribution of axial turbul
kinetic energy within the buffer zone are not incorporated
steady-state-based turbulence models. The characteristics o
flow in the core region will start to change only when the wav
induced shear pulse emerges from the buffer zone into the
region. On the basis of their unsteady flow experiments, He
60 Õ Vol. 58, JANUARY 2005
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Jackson@93# provided an estimate for the time delay from th
moment the wall vortex ring was generated at the pipe wall to
moment when significant changes in the structure and strengt
turbulence appeared near the pipe axis.

Ghidaoui et al.@46# proposed a dimensionless parameterP for
assessing the accuracy of quasi-steady turbulence modeling in
ter hammer problems. This parameter is defined as the ratio o
time scale of radial diffusion of vorticity to the pipe core to th
time scale of wave propagation from one end of the pipe to
other. This parameter provides a measure for the number of ti
a wave front travels from one end of the pipe to the other bef
the preexisting turbulence conditions start to respond to the t
sient event. It follows that the frozen and quasi-steady assu
tions are~i! acceptable whenP@1, ~ii ! questionable whenP is of
order 1, and~iii ! applicable whenP!1. However, the last case
does not belong to the water hammer regime. These conclus
are supported by the work of Ghidaoui et al.@46#, where they
compared the results of quasi-steady turbulence models
available data and by the work of Ghidaoui and Mansour@32#
where they compared the results of frozen eddy viscosity mo
with experimental data.

8 Two-Dimensional Mass and Momentum Equations
Quasi-two-dimensional water hammer simulation using tur

lence models can~i! enhance the current state of understanding
energy dissipation in transient pipe flow,~ii ! provide detailed in-
formation about transport and turbulent mixing~important for
conducting transient-related water quality modeling!, and~iii ! pro-
vide data needed to assess the validity of 1D water hammer m
els. Examples of turbulence models for water hammer proble
their applicability, and their limitations can be found in Vardy an
Hwang @25#, Silva-Araya and Chaudhry@37,98#, Pezzinga
@38,44#, Eichinger and Lein@45#, Ghidaoui et al.@46#, and Ohmi
et al. @99#. The governing equations for quasi-two-dimension
modeling are discussed in this section. Turbulence models
numerical solutions are presented in subsequent sections.

The most widely used quasi-two-dimensional governing eq
tions were developed by Vardy and Hwang@25#, Ohmi et al.@99#,
Wood and Funk@100#, and Bratland@101#. Although these equa-
tions were developed using different approaches and are writte
different forms, they can be expressed as the following pair
continuity and momentum equations:

g

a2 S ]H

]t
1u

]H

]x D1
]u

]x
1

1

r

]rv
]r

50 (42)

]u

]t
1u

]u

]x
1v

]u

]r
52g

]H
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(43)

wherex,t,u,H,r are defined as before,v(x,r ,t)5 local radial ve-
locity, andt5shear stress. In this set of equations, compressib
is only considered in the continuity equation. Radial momentum
neglected by assuming that]H/]r 50, and these equations ar
therefore, only quasi-two-dimensional. The shear stresst can be
expressed as

t5rn
]u

]r
2ru8v8 (44)

whereu8 andv85turbulence perturbations corresponding to lo
gitudinal velocity u and radial velocityv, respectively. Turbu-
lence models are needed to describe the perturbation
2ru8v8 since most practical water hammer flows are turbulen

The governing equations can be further simplified by negle
ing nonlinear convective terms, as is done in the 1D case since
wave speeda is usually much larger than the flow velocityu or v.
Then the equations become the following:
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These governing equations are usually solved by numer
means.

For an adequately anchored or restrained pipe, i.e., the pip
rigid and the radial velocity at the pipe wall is zero. From flo
symmetry, the radial velocity at the centerline is also zero. In
grating Eq.~45! across the pipe section, the radial velocity va
ishes, leaving the following:

]H

]t
1

a2

gA

]Q

]x
50 (47)

]u

]t
1g

]H

]x
5

1

rr

]r t

]r
(48)

Q~x,t !5E
A
udA (49)

whereQ5discharge. These equations are the same as those
sented by Pezzinga@38#.

In cases where the radial velocity component~mass flux! is
negligible, Eqs.~47!–~49! can be usefully applied. However, th
inclusion of radial fluxes in Eqs.~45! and~46! remove the incon-
sistency that occurs near boundary elements due to the sim
neous imposition of the no-slip condition and the plane wave
sumption@24#. Since numerical integration of Eq.~49! is needed
to relate velocity distribution to discharge, even very small err
from neglecting radial fluxes can produce spurious oscillation
pressure head calculations.

Ghidaoui @26# derived quasi-two-dimensional equations fro
the complete 3D continuity equation and Navier-Stokes equat
using an ensemble averaging process in which the assump
inherent in the quasi-two-dimensional equations~such as flow axi-
symmetry and the plane wave assumption! are made explicit. The
scaling analysis@26# shows that the viscous terms associated w
the compressibility of the fluid are significantly smaller than t
viscous term associated with angular deformation. Therefore,
compressibility is neglected in the momentum equations of b
1D and 2D models.

In Silva-Araya and Chaudhry@37,98# and Eichinger and Lein
@45#, an integration of the momentum equation is also carried
In each case, the system reduces to a 1D formulation. The q
two-dimensional momentum Eq.~46! is only used to provide an
unsteady friction correction for 1D governing equations. The
corrections include:~i! an energy dissipation factor, which is th
ratio of the energy dissipation calculated from the cross-sectio
velocity distribution to that calculated from the Darcy-Weisba
formula @37,98# or ~ii ! direct calculation of wall shear stress, e
ther by velocity gradient at the pipe wall or through energy dis
pation @45#.

9 Turbulence Models
Turbulence models are needed to estimate the turbulent pe

bation term for2ru8v8. In the water hammer literature, th
widely used turbulence models are algebraic mod
@25,37,38,98,99# in which eddy viscosity is expressed as som
algebraic function of the mean flow field. Other sophistica
models~such as thek2e model, which require additional differ
ential equations for eddy viscosity! have also been tried@45#.
Similar results for the pressure head traces have been obtain

The algebraic turbulence models used by Vardy and Hw
@25# and Pezzinga@38# are discussed further to illustrate som
features of algebraic turbulence models. These models were
paratively studied by Ghidaoui et al.@46#. The comparison shows
that very similar dissipation is produced by the two models. Ot
different variations of algebraic turbulence models are availabl
Rodi @102#.
Applied Mechanics Reviews
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9.1 Five-Region Turbulence Model. The model used by
Vardy and Hwang@25# is a direct extension of the model deve
oped by Kita et al.@103# for steady flow

t5r~n1e!
]u

]r
5rnT

]u

]r
(50)

wheree5eddy viscosity,nT5total viscosity, and the other term
were previously defined. The total viscosity distribution is co
partmentalized into five regions as follows:

1. viscous layer
nT

n
51 0<y* <

1

a
(51)

2. buffer I layer
nT

n
5ay*

1

a
<y* <

a

CB
(52)

3. buffer II layer
nT

n
5CBy

*
2

a

CB
<y* <

k

CB1k2/4CmR*
(53)

4. logarithmic region
nT

n
5ky* @12~k/4Cm!~y* /R* !#

3
k

CB1k2/4CmR*

<y* <
1

k
2Cm~11A12Cc /Cm!R*

(54)

5. core region
nT

n
5CcR*

1

k
2Cm~11A12Cc /Cm!R* <y*

<R* (55)

wherey5R2r , y* 5u* y/n, R* 5u* R/n, u* 5Atw /r, and the
coefficients area50.19, CB50.011, k50.41, Cm50.077, and
Cc5a function of Reynolds number~usually a value of 0.06 is
used!. The total viscosity distribution depends on friction veloci
u* and positiony only. This is true for steady flow since a
information at interior points will ultimately propagate to the wa
boundary. Given sufficient time, the velocity profile adjusts a
finally depends on wall shear stress only. However, this mo
may be problematic for unsteady flow since the interior conditio
cannot solely be represented by wall shear stress.

9.2 Two-Layer Turbulence Model. In the two-layer turbu-
lence model, flow is divided into two layers:~i! a smooth pipe,
viscous sublayer is assumed to exist near the wall; and~ii ! outside
the viscous sublayer, the Prandtl mixing length hypothesis is u

1. viscous sublayer e50 y* <11.63 (56)

2. turbulent region e5 l 2U ]u

]r U y* >11.63 (57)

where

l

R
5k

y

R
e2(y/R) (58)

k50.37410.0132 lnS 11
83100

Re D (59)

and in whichl 5mixing length and Re5Reynolds number for ini-
tial flow. The thickness of the viscous sublayer is determined
the wall shear stress. The eddy viscosity in the turbulent reg
includes some information about the velocity profile. The tw
layer model appears to be more suitable for unsteady flow si
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lation, but one should note that the expression for mixing len
and the empirical coefficientk are based on steady flow equiv
lents.

Ghidaoui et al.@46# compared both models~i.e., the five-
region and the two-layer model! and obtained very similar result
for pressure head estimates. The comparative study suggest
the pressure head is not sensitive to eddy viscosity distributio
the pipe core region. As these models are based on steady
principles, the application of these models to unsteady flow pr
lems implicitly includes the quasi-steady assumptions discusse
Section 7.

These algebraic turbulence models are widely used, ma
because of their simplicity and robustness. As more powe
computers become available and improvements are made to
merical solution techniques, detailed turbulence structures ma
obtained using more sophisticated turbulence models, such a
two-equationk2e models, or perhaps even Reynolds stress m
els, for which no eddy viscosity hypothesis is needed.

All of the models mentioned above are based on the Reyno
averaged Navier-Stokes~RANS! equation. The averaging proces
is clearly a time average and valid for steady flows. For unste
flows, the use of the time average is highly questionable unless
unsteadiness has a much larger time scale than the time sca
turbulence. Obviously, this is not the case for fast transients.

As an alternative, large eddy simulation~LES! has been devel-
oped recently. In LES, the Navier-Stokes equation is filter
large-scale motion is resolved while the small-scale motion
modeled. If results from LES were available, then some of
assumptions mentioned previously could, in principle, be m
rigorously evaluated. Unfortunately, in carrying out LES, a f
3D system of equations must be solved using very fine g
@104#. For steady flow simulations, when the turbulence statis
reach steady, the ensemble average can be obtained over a
interval from a single run@104#. However, the ensemble averag
cannot be obtained from a single run for transient flow. The
quirement of many runs makes the resulting computational p
cess prohibitively time consuming. As yet, such analyses have
been performed in pipe transients.

10 Numerical Solution for 2D Problems
The 2D governing equations are a system of hyperbo

parabolic partial differential equations. The numerical solution
62 Õ Vol. 58, JANUARY 2005
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Vardy and Hwang@25# solves the hyperbolic part of governin
equations by MOC and the parabolic part using finite differen
This hybrid solution approach has several merits. First, the s
tion method is consistent with the physics of the flow since it u
MOC for the wave part and central differencing for the diffusio
part. Second, the use of MOC allows modelers to take advan
of the wealth of strategies, methods, and analysis develope
conjunction with 1D MOC water hammer models. For examp
schemes for handling complex boundary elements and strate
developed for dealing with the 1D MOC discretization proble
~e.g., wave speed adjustment and interpolation techniques! can be
adapted to quasi-two-dimensional MOC models. Third, althou
the radial mass flux is often small, its inclusion in the continu
equation by Vardy and Hwang@25# is more physically correct and
accurate. A major drawback of the numerical model of Vardy a
Hwang@25#, however, is that it is computationally demanding.
fact, the CPU time required by the scheme is of the orderNr

3

whereNr5number of computational reaches in the radial dire
tion. Vardy and Hwang’s scheme was modified by Zhao a
Ghidaoui @105# to a much more efficient form. The CPU tim
required is reduced to orderNr , making the scheme more ame
nable to application to the quasi-two-dimensional modeling
pipe networks and for coupling with sophisticated turbulen
models. Several numerical schemes for quasi-two-dimensio
modeling are summarized in the following material.

10.1 Vardy-Hwang Scheme. The characteristic form of
Eqs.~45! and ~46! is as follows@25#:

dH

dt
6

a

g

du

dt
52

a2

g

1

r

]q

]r
6

a

g

1

rr

]~r t!

]r

along
dx

dt
56a (60)

whereq5rv.
The pipe is divided intoNr cylinders of varying thickness. At

a given timet and locationx along the pipe, two equations appl
to each cylinder. Since there areNr cylinders in total, the total
number of equations is 2Nr . Therefore, the governing equation
for all cylinders can be written in matrix form as follows:Az
5b, whereA is a 2Nr32Nr matrix whose form is as follows:
¨

1
a

g
1eCu2~1! uCq2~1!2eCu3~1!

1 2Fa

g
1eCu2~1!G uCq2~1! eCu3~1!

A A A

1 ¯ 2eCu1~ j ! 2uCq1~ j !
a

g
1eCu2~ j ! uCq2~ j ! 2eCu3~ j !¯

1 ¯ eCu1~ j ! 2uCq1~ j ! 2Fa

g
1eCu2~ j !G uCq2~ j ! eCu3~ j !¯

A A A

1 ¯ 2eCu1~Nr ! 2uCq1~Nr !
a

g
1eCu2~Nr !

1 ¯ eCu1~Nr ! 2uCq1~Nr ! 2Fa

g
1eCu2~Nr !G

©

where j 5 index along radial direction;Cu1 ,Cu2 ,Cu35coefficients associated with axial velocityu; Cq1 ,Cq25coefficients
associated with radial flux q; and e and u are weighting coefficients. The unknown vectorz
5Hi

n11 ,ui ,1
n11 ,qi ,1

n11 , ¯ ,ui , j
n11 ,qi , j

n11 , ¯ ,ui ,Nr21
n11 ,qi ,Nr21

n11 ,ui ,Nr
n11%T in which i 5 index along axial direction and the superscriptT de-
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ts
notes the transpose operator andb5a known vector that depends on head and velocity at time leveln. Therefore, the solution for head
and longitudinal and radial velocities, involves the inversion of a 2Nr32Nr matrix. The sparse nature ofA is the reason the scheme
inefficient.

Improving the efficiency of the Vardy-Hwang scheme is essential if quasi-two-dimensional models are to become widely a
as tools for analyzing practical pipe systems or for conducting numerical experiments. Algebraic manipulation of the coefficien
leads to a highly efficient scheme in which the original system becomes two subsystems with tridiagonal coefficient matrices e
as the following:Bu5bu andCv5bv , whereB is a tridiagonalNr3Nr matrix given by

1
a

g
1eCu2~1! 2eCu3~1!

A

¯ 2eCu1~ j !
a

g
1eCu2~ j ! 2eCu3~ j ! ¯

A

2eCu1~Nr !
a

g
1eCu2~Nr !

2
The unknown vectoru5$ui ,1

n11 , ¯ ,ui , j
n11 , ¯ ,ui ,Nr

n11%T represents longitudinal flow velocity;bu is a known vector whose elemen
depend onH, u, andq at time leveln; andC is a tridiagonalNr3Nr matrix given by

S 1 uCq2~1!

0 2@uCq1~2!1uCq2~1!# uCq2~2!

A

¯ uCq1~ j 21! 2@uCq1~ j !1uCq2~ j 21!# uCq2~ j !¯

A

¯ uCq1~Nr21! 2@uCq1~Nr !1uCq1~Nr21!#

D
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Lastly, v5$Hi
n11 ,qi ,1

n11 , ¯qi ,Nr21
n11 %T is an unknown vector of

head and radial velocities andbv5a known vector whose ele
ments depend onH,u,q at time leveln. Inversion of tridiagonal
systems can be performed efficiently by using the Thomas a
rithm.

10.2 Pezzinga Scheme.The numerical solution by Pezz
inga @38# solves for pressure head using explicit FD from t
continuity Eq.~47!. Once the pressure head has been obtained
momentum Eq.~48! is solved by implicit FD for velocity profiles.
This velocity distribution is then integrated across the pipe sec
to calculate the total discharge. The scheme is fast due to de
pling of the continuity and momentum equations and the adop
of the tridiagonal coefficient matrix for the momentum equatio
It has been applied to network simulations.

While the scheme is efficient, the authors have found that th
is a difficulty in the numerical integration step. Since the integ
tion can only be approximated, some error is introduced in
step that leads to spurious oscillations in the solution for press
To get rid of these oscillations, a large number of reaches in
radial direction may be required or an iterative procedure m
need to be used@37#.

10.3 Other Schemes. In Ohmi et al.@99#, the averaged 1D
equations are solved to produce pressure and mean velocity
pressure gradient is then used to calculate a velocity profile u
the quasi-two-dimensional momentum equation, from which w
shear stress is determined.

A similar procedure is used in Eichinger and Lein@45#. One-
dimensional equations are first solved to obtain the pressure
dient. This pressure gradient is used to solve Eq.~46! using a
finite difference method. The eddy viscosity is obtained from
k2e model. Once the velocity profile is known, the friction ter
can be calculated from the velocity gradient at the wall, which
then used in the 1D equations. An iterative procedure is emplo
in this calculation to obtain eddy viscosity. Although there mig
be some difference between the discharge calculated from
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equations and that obtained from the velocity profile integration
is neglected, since the calculation of the velocity profile is on
used to estimate the friction term. This latter difference has on
minor influence on the calculation of the unsteady friction term,
argued by Eichinger and Lein@45#.

Silva-Araya and Chaudhry’s@37,98# procedure is similar to the
foregoing methods. Once the velocity is obtained, energy diss
tion and discharge can be calculated. The dissipation is use
estimate an energy dissipation ratio, which provides a correc
factor for the friction term in the 1D equations. The adjusted
equations are then solved to give a new discharge, which is c
pared to that calculated from velocity profile integration. If th
difference is small~say, less than 5%!, the calculation proceeds to
the next time step. Otherwise, the pressure gradient is adjus
and the procedure is repeated. A mixing length algebraic tur
lence model~smooth pipe,@37#, rough pipe@98#! is used in the
calculation of the velocity profile.

11 Boundary Conditions
The notion of boundary conditions as applied to the analysis

fluid transient problems is analogous to, but slightly differe
from, the conventional use of the terminology in solving differe
tial equations. Just as a ‘‘boundary value’’ problem in the ma
ematical sense implies conditions that must be satisfied at
edges of the physical domain of the problem, boundary conditi
in fluid transients implies the need for additional head-discha
relations to describe physical system components such as pu
reservoirs and valves. Thus, one or more simplified auxiliary
lations can be specified to solve for piezometric head, flow vel
ity, or other variables associated with the physical devices th
selves. Examples of boundary conditions include, but are
limited to, valves, nozzles, pumps, turbines, surge tanks,
valves, tanks and reservoirs, heat exchangers, condensers
many other application-specific devices.

This section of the paper discusses a generalized approac
incorporating boundary conditions within the method of char
JANUARY 2005, Vol. 58 Õ 63
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teristics framework that preserves the complex physical and to
logical character of the compressible fluid system. The appro
utilizes unambiguous definitions of the nodes, links, and bound
conditions that represent the components of a physical pipe
tem or network. Attention is restricted to the method of charac
istics solution because it is the most powerful and physically c
sistent method for dealing with physically and behaviora
complex devices without imposing unrealistic or difficult modi
cations to the numerical scheme. The discussion begins by
viewing the governing equations and the form of the method
characteristics solution that has been developed for this purp

11.1 Governing Equations and Their Solution. Two
equations—a relation of mass conservation and a momen
equation—are generally used to model transient flow in clo
conduits ~e.g., @20–23#!, which can be written from Eqs.~20!,
~21!, and~28! as

]V

]t
1g

]H

]x
1

f VuVu
2D

50 (61)

]H

]t
1

a2

g

]V

]x
50 (62)

To be compatible,x andV must be positive in the same directio
Equations~61! and ~62! are valid as long as the flow is 1D, th
conduit properties~diameter, wave speed, temperature, etc! are
constant, the ‘‘convective’’ and slope terms are small, and
friction force can be approximated by the Darcy-Weisbach f
mula for steady flow. In addition, it is usually assumed that
friction factor f is either constant or weakly dependent on t
Reynolds number. Note that, for simplicity, the shear model in
momentum Eq.~61! above is equivalent to Eq.~41! without the
convolution term. Other shear models can be readily adapted
use in the boundary condition framework described herein.

Because the equations governing transient fluid flow can
dom be solved analytically, numerical solutions are used to
proximate the solution. The most widely used procedure is
fixed grid method of characteristics, which has the desirable
tributes of accuracy, simplicity and numerical efficiency. T
method is described in many standard references includ
Chaudhry@20# and Wylie et al.@23#. Again, the procedures de
scribed here can be easily adapted for use with any of the in
polation, reach-back, reach-out, and wave speed or pipe le
adjustment schemes mentioned previously.

In essence, the method of characteristics combines the mom
tum and continuity equations to form a compatibility express
in terms of dischargeQ and headH, that is

dH6BdQ6
R

Dx
QuQudx50 (63)

whereB5a/gA and

R5
f Dx

2gDA2 (64)

This equation is valid only along the so-calledC1 andC2 char-
acteristic curves defined by

dx

dt
56a (65)

For this reason, thex-t grid in Fig. 6 is chosen to ensureDx
56aDt. Then, if the dependent variables are known atA andB,
Eq. ~63! can be integrated along bothAP andBP. Integration of
the first two terms is straightforward, while the third requires t
variation of Q with x to be known. Although this function is
generally unknown, the term can usually be approximated@23#. A
convenient linearization of theA to P integration is given by
Karney and McInnis@106# as follows:
64 Õ Vol. 58, JANUARY 2005
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QuQudx5@QA1e~QP2QA!#uQAuDx (66)

in which ueu<1.
This linearization of the friction term includes the ‘‘classica

QAuQAuDx approximation (e50.0) and the ‘‘modified’’
QPuQAuDx linearization (e51.0) as special cases. The approx
mation associated withe50.0 has been traditionally employed
but is troublesome for high friction cases; the modified lineari
tion is often more accurate and has improved stability proper
@107#, but has not yet been universally adopted. Not only does
~66! allow a single program to be used for both approximatio
but intermediate values ofe can be used to optimize accuracy fo
a givenDt. Preliminary results indicate values near 0.81 are w
suited to most applications. Higher-order approximations of
energy loss term can also be incorporated, but generally req
iterative solution procedures. The linearized first-order approac
result in explicit formulations and provide acceptable results o
the initial wave cycle for systems of low to moderate friction.

If Eq. ~63! is integrated as illustrated above, two equations c
be written for the unknowns atP

HP5CP2BPQP (67)

and

HP5CM1BMQP (68)

in which

CP5HA1QA@B2RuQAu~12e!# (69)

BP5B1eRuQAu (70)

CM5HB2QB@B2RuQBu~12e!# (71)

BM5B1eRuQBu (72)

In more complex systems, a subscript to indicate the pipe num
is often added to these equations. At pointsP internal to a pipe-
line, HP can be eliminated from Eqs.~67! and ~68! to obtain

QP5
CP2CM

BP1BM
(73)

At the ends of a conduit, however, the solution of the charac
istic equations is algebraically complicated by one or mo
‘‘boundary conditions.’’

11.2 Boundary Conditions. The subject of what constitute
a boundary condition can be treated generally. Karney@108# pre-
sents concise terminology for describing pipe networks a
boundary conditions. His nomenclature is followed througho
this paper and is briefly reviewed here. Once the time domai

Fig. 6 Method of characteristics grid
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discretized intoDt segments, most conduits in the network a
divided into one or morereachesof length Dx. For clarity, the
term ‘‘pipe’’ is henceforth restricted to conduits containing at le
one characteristic reach. The end of each reach, where head
flow values must be determined, is called asection. At sections
internal to a pipe, the discharge can be obtained from Eq.~73!.
However, at each end of the pipe, an auxiliary relation betw
head and discharge must be specified. Such a head-discharg
lation is called aboundary condition.

The term ‘‘node’’ is used herein to indicate a location whe
boundary sections meet. Thedegreeof a node is the number o
pipes~i.e., characteristic sections! connected to it. However, in a
general network, not only pipes may be connected to a node
various other elements as well. For example, a node may repre
a suction or discharge flange of a pump, the location of a va
discharging from the network, or a connection for a pressure re
valve. All such nonpipe junctions are labeledexternal and the
number of such connections is called thecomplexityof the node.
A node of complexity zero is calledsimple, a node of complexity
oneordinary, and a node of complexity greater than onecomplex.
In this paper, boundary conditions associated with complex no
are referred to asboundary systems.Generally, the difficulty of
solving a network increases as the complexity of the nodes in
network increases but, as the following section shows, is indep
dent of the degree of any node in the network. The terminolo
related to nodes can be extended in a natural way to network
well and has been used by Karney@109# to develop a genera
approach for analyzing complex networks.

11.2.1 Simple and Ordinary One-Node Boundary Conditio
Junctions of several pipes are usually modeled as frictionles
transient flow applications~e.g.,@109,110#!. Complications arising
by attempting to calculate junction losses at a general node
considerable and are not discussed in this paper. Generally, en
losses at junctions are relatively small and neglecting them d
not appear to significantly impair the accuracy of the method
characteristics solution for a simple pipe junction.

The assumption that local losses are negligible is equivalen
representing the hydraulic grade line elevation at the node b
single number, designatedHP .

Consider now Fig. 7, which depicts a junction of any number
pipes at a node. LetN1 be the set of all pipes whose assumed flo
direction is toward the node in question andN2 be the set of pipes
whose assumed flow direction is away from the node. Let
flow be identified as external and governed by an auxiliary re
tion. Positive flows are assumed to befrom the junction. The
following derivation is similar to that appearing in Chapter 11
Fluid Transientsby Wylie and Streeter@22#, but uses the notation

Fig. 7 Generalized node with one external flow
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proposed by Karney@108#. It differs from the latter only by the
inclusion of the variable friction term linearization.

For all pipes belonging to the setN1 , Eq. ~67! holds while Eq.
~68! applies for members ofN2 . These equations can be rea
ranged to obtain

QPi
52

HP

BPi

1
CPi

BPi

, i PN1 (74)

and

2QPj
52

HP

BM j

1
CM j

BM j

, j PN2 (75)

in which the second subscript represents the variable at the bo
ary section of a particular pipe in the set.

The continuity equation for the junction requires the sum
the flows entering the node to equal the sum of the flows leav
the node

(
i PN1

QPi
2 (

j PN2

QPj
2Qext50 (76)

Equations~74! and~75! can be substituted directly into Eq.~76! to
produce the following expression forHP :

HP5CC2BCQext (77)

in which

BC5S (
i PN1

1

BPi

1 (
j PN2

1

BM j
D 21

(78)

and

CC5BCS (
i PN1

CPi

BPi

1 (
j PN2

CM j

BM j

D (79)

Equation ~77! represents a single relationship between junct
headHP and external flowQext in a multipipe frictionless junc-
tion. The form of this equation is equivalent to the singleC1

compatibility Eq. ~67! and shows that any one-node bounda
condition located in a network can be evaluated in exactly
same manner as if the boundary condition occurred at the do
stream end of a single pipe.

Once a functional relationship representing a particular
draulic device is substituted into Eq.~77!, a single equation and
unknown results. If this relationship is either linear or quadra
an explicit formula for the unknown can be obtained.

For example, the simplest boundary condition occurs wh
Qext is either constant or a known function of time~e.g., constant
displacement pumps or fixed demands!. In this case, the value o
Qext can be substituted into Eq.~77! to obtain the junction head. In
particular, this equation becomesHP5CC whenQext is zero. This
solution for a simple node is algebraically equivalent to Eq.~73! if
the node has only two pipes.

Comprehensive treatment of various boundary conditions s
as valves, pumps, turbines, accumulators, air valves and m
others can be found in Wylie et al.@23#, Karney@108#, Chaudhry
@20#, McInnis @111#, Karney and McInnis@82#, and McInnis et al.
@112#. Formulations for many system-specific devices abound
the literature.

12 Water Hammer Software
With the advent of the Windows operating system, compu

languages such as Visual Basic and Visual C, geographic infor
tion systems~GIS!, and the World Wide Web, many water ham
mer models, previously only suited to academics and expert e
neering practitioners, are now accessible to even the most no
analyst.
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In this section, we describe several commercially available
ter hammer software packages. The information presented he
intended to aid readers in locating software appropriate to t
water hammer analysis needs.

It is important to note that two of the authors of this paper
also authors of a commercially available water hammer softw
package. To avoid any conflicts of interest and to be fair to
water hammer software developers, a critique of each water h
mer software package is not presented here.

Instead, the intention of this section is to summarize the pe
nent features of each computer model. These features include
are not limited to, the available hydraulic devices, selectable su
protection measures, input facilities, and output graphical vis
ization options. Also listed for each software package is the
merical method used by the water hammer model to solve
unsteady flow problem. The reader is directed to Sec. 5 for ba
ground on these numerical methods.

Each computer model has special features that distinguis
from the other reviewed models. These differences are most o
the result of a desire to serve a specific commercial market.
example, some packages are best suited to fire protection spri
systems, fueling systems, or oil pipelines, while others are cle
tailored to large municipal water distribution systems. Still oth
models specialize in the analysis of hydroelectric systems, sew
force mains, or industrial applications such as cooling water s
tems. However, despite their obvious market focus, it is of
possible to analyze just about any piping system with each
these models.

The software packages described herein are in no partic
order and more information on a product~e.g., up-to-date pricing
new features, computer system requirements, etc! can be obtained
upon browsing the appropriate Internet homepage, which is lis
at the end of each review. Unless otherwise noted, the softw
packages reviewed below operate within a Windows-based e
ronment. Please also note that the information summarized be
is largely derived from each water hammer modeler’s Inter
homepage and is current at the writing of this paper~2003!.

Due to space limitations, all of the water hammer softwa
packages now readily available could not be included in this s
mary. The reader is encouraged to search out alternatives o
Internet prior to selecting one of the models described herein

12.1 Pipenet. This fluid flow program predicts pressur
surges, calculates hydraulic transient forces, models control
tems, and has been commercially available for over 20 years

The interface drag-and-drop facilities are used to build a sc
matic of the pipeline or network and the associated boundary
vices. Pipe schedules as well as fitting, lining, pump and va
data are provided on-line for the user’s convenience. The user
specify the units of both the input and output data. Fluid prop
ties such as viscosity and specific gravity can also be input by
user. Boundary devices include pumps, air chambers, reserv
tanks, caissons, vacuum relief valves, check valves, flow con
valves, surge relief valves, and air release valves.

PIPENET performs a surge analysis using the method of cha
teristics and calculates pressures and flow rates at nodes, p
and boundary devices, as well as transient pressure force
pipes and bends. As an option, the program calculates the fo
tion, growth, and collapse of a vapor cavity if the pressure in
pipe system drops to vapor pressure. PIPENETalso has facilities for
incorporating control theory~e.g., proportional, integral, deriva
tive loops! in the operation of pumps and valves. Note tha
special module is available for analyzing sprinkler systems.

Output data can be plotted as time history plots, each with u
defined titles. Examples include pressure and flow rate time
tory plots at nodes, pipe sections, or boundary devices. In a
tion, graphs of fluid level in an air chamber versus simulation ti
may be plotted~Contact: www.sunrise-sys.com!.
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12.2 HAMMER . With HAMMER, a schematic of the piping
layout for both pipelines and networks can be drawn on-scr
and groups of hydraulic elements duplicated to save time du
the input process. As an initial condition, steady-state data ca
imported from EPANET and WATERCAD. Some of the available
boundary devices include pumps, air vessels, open surge ta
reservoirs, surge control valves, vacuum relief and air rele
valves, and bypass lines with check valves.

Commercially available for over 15 years, this method
characteristics-based model can be used to simulate pump p
failure, valve closure, pipe breaks, and pump startup. Time his
animations and plots of transient pressure, flow rate, and ai
vapor volume at nodes and along pipes are available for b
pipelines and networks. The model also produces profile view
network pipeline paths, showing the initial steady-state press
as well as the maximum and minimum pressure envelopes~Con-
tact: www.ehg.dns2go.com!.

12.3 HYTRAN . Drag-and-drop facilities enable on-scree
construction or deletion of a pipeline or network in either plan
profile views. Alternatively, node, pipe, and boundary device d
can be directly imported from EPANET. Some of the selectable
boundary devices include pumps, turbines, air chambers, vac
relief valves, check valves, tanks, reservoirs, pressure re
valves, pressure regulating valves, and demands. On-line h
including a database of valve coefficients and pipe material pr
erties, is available to the user.

A method of characteristics-based solver generates pressure
flow rate history traces at nodes and along the pipeline follow
pump power failure or startup. In addition, the computed trans
hydraulic grade line at any instant in simulation time can be p
ted in combination with the pipeline profile. Pressure traces,
draulic grade line plots, and pipe flow direction can be anima
for real-time viewing. A column separation indicator warns t
user when cavitation is detected~contact: www.hytran.net!.

12.4 HYPRESS. This model has an object-oriented interfa
that allows for flexible input of pipe, node, and boundary dev
data for pipelines and networks. Some of the boundary dev
that can be represented by the model include pumps, turbi
valves, reservoirs, surge chambers, and air vessels.

Using a fourth-order implicit finite difference based numeric
solver, HYPRESScalculates the maximum, minimum, and insta
taneous transient hydraulic grade line for a pipeline followi
pump power failure. The hydraulic grade lines are plotted in co
bination with the pipeline elevation profile and the instantane
transient hydraulic grade line, which can be animated in real t
~Contact: www.hif.cz!.

12.5 IMPULSE. Liquids such as water, petroleum, chemic
products, cryogens, and refrigerants can all be modeled using
IMPULSE water hammer model. A piping schematic is created
the workspace using drag-and-drop facilities and data can be i
directly by the user or obtained from a built-in database conta
ing properties for nine fluids and eight pipe materials. Some of
hydraulic devices that can be incorporated into the pipe netw
include pumps, reservoirs, liquid accumulators, gas accumula
vacuum breaker valves, demands, relief valves, and pressure
trol valves.

IMPULSE will calculate a system steady state and transfer it
the method of characteristics solver. Pipe length adjustment
opposed to wave speed adjustment, is used in combination
the time step to spatially discretize the piping network. In so
cases, this means that the modeled pipe length can approxi
the true length of the pipe. Transient events~e.g., pump power
failures, pump starts, valve closures, etc! can be initiated based on
time or a device setpoint. Liquid column separation, vapor ca
tation, and cavity collapse can be modeled. This model will id
tify when and where maximum pressures occur and plot flow r
pressure, and velocity time histories, which can be formatted
Transactions of the ASME
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the user. At each time interval, output, such as maximum
minimum pressures, are tabulated for each node, pipe, and bo
ary device~Contact: www.aft.com!.

12.6 WANDA. Both pressurized and nonpressuriz
branched and looped pipe systems can be simulated with this
ter hammer model. Free-surface flow~i.e., a partly filled pipe! is
modeled using a conjugate gradient method with an upwind
vection approximation. The effects of draining and filling a pip
line can be simulated with this component.

A schematic of the piping system can be created on-screen
ing a palette of boundary devices. A user defined image~e.g., a
street map! can be imported as a background to the schematic
properties of nodes, pipes, and boundary devices are input u
dialog boxes. Some of the available boundary devices incl
pumps, control valves, check valves, taps, air vessels, air
valves, surge towers, pressure relief valves, weirs, and conden

The method of characteristics-based solver can be interru
and resumed during a simulation. Cavitation and control the
~e.g., proportional integral derivative loops, sensors, etc! modules
are optional. Pressure versus time histories can be plotted at
defined locations within the pipe system. In addition, it is possi
to view an animation of pressure wave propagation and reflec
along pipeline routes of a network~Contact: www.wldelft.nl/soft/
wanda/!.

12.7 FLOWMASTER . This model calculates transient pre
sures and flow rates in piping networks. In addition, calculation
heat transfer and simulation of partly empty pipe segments~e.g.,
sprinkler systems! is possible.

Pipe networks can be drawn on-screen using a list of pip
components and some of the boundary devices that can be r
sented include pumps, reservoirs, weirs, orifices, valves, accu
lators, diaphragms, diffusers, heat-exchangers and pipe fitti
User-defined boundary devices can be programmed in eitherOR-

TRAN or C. Operational issues can be studied using predefi
controllers or user-defined controllers programmed in Visual
sic or Java.

The method of characteristics solver generates results tha
be viewed graphically or in tabular formats. Note that in additi
to liquids, gas flow dynamics can be simulated~Contact: www-
.flowmaster.com!.

12.8 SURGE2000. With this model, a schematic of the pip
ing layout can be drawn on-screen and over it can be place
imported background image, such as a street or elevation con
map. Boundary devices include pumps, valves, reservoirs, ta
air vessels, air and vacuum valves, pressure relief valves, s
anticipating valves, and heat exchangers.

This model uses the wave-plan method as opposed to
method of characteristics or finite difference methods emplo
by the other models reviewed in this paper. Pump power failu
pump startup, and valve operations~e.g., closure! are just some of
the unsteady fluid flow events that can be simulated w
SURGE2000. Output, such as pressures, can be tabulated, pl
as contours over the system map, and displayed in time his
plots at nodes. In addition, for each pipeline path, the maxim
minimum, and instantaneous transient hydraulic grade lines
be plotted on an elevation versus distance graphic~Contact: ww-
w.kypipe. com!.

12.9 LIQT . First introduced in 1972, LIQT can model fluid
transients in pipelines and networks subject to pump power fai
and startup, turbine load loss, and valve closure. Some of
boundary devices that can be selected by the user include pu
turbines, check valves, air and vacuum valves, surge tanks, s
pipes, accumulators, and pressure relief valves. LIQT operates
within a DOS environment window and uses the method of ch
acteristics to compute pressures and flow rates that can be
ported to spreadsheets, databases, and graphic software fo
sentation~Contact: www.advanticastoner.com!.
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12.10 WHAMO . This model uses a four-point implicit finite
difference method to calculate time-varying flow and head
pipelines and networks. The user can select boundary dev
such as pumps, turbines, valves, tanks, reservoirs, vented o
vented air chambers, pressure control valves, electric govern
and constant or time varying demands. A schematic of the pip
system can be drawn on-screen with the help of a palette
boundary device symbols.

Both steady-state and transient conditions are generated
simulations of pump power failure, valve closure, turbine lo
rejection, turbine startup, and governor controlled turbine ope
tion are possible~Contact: www.cecer.army.mil/usmt/whamo
whamo.htm!.

12.11 TRANSAM. Using this model, real-time, 3D~i.e., dis-
tance, time, and pressure! animations of the transient pressu
surface can be viewed along user-defined network and pipe
paths. A piping layout map can be created in a designated w
space using point-and-click options and a combination of p
down menus and dialog boxes are available for node, pipe,
boundary device data input. An EPANET to TRANSAM conversion
utility is supplied. Some of the boundary devices that can be r
resented by this model include pumps, turbines, air chamb
reservoirs, tanks, flow control valves, air and vacuum re
valves, check valves, pressure relief valves, surge anticipa
valves, pressure reducing/sustaining valves, constant and
varying demands, and bypass lines with check valves.

Pump power failure and startup, variable speed pump and v
operations~e.g., full and partial openings or closures!, turbine
load rejection, and pipe breaks are just some of the event or
initiated unsteady flow conditions that can be simulated using
method of characteristics-based model. Simulation of the form
tion, growth, and collapse of vapor cavities is optional. Time h
tory plots of pressure~and flow rate at nodes! can be produced a
nodes and along pipes. Real-time animations of the instantan
transient, maximum, and minimum hydraulic grade lines can
viewed for pipe paths~Contact: www.hydratek.com!.

13 Emerging Applications in Water Hammer
By now, the reader is likely aware that the principal use

transient analysis, both historically and present day, is the pre
tion of peak positive and negative pressures in pipe systems to
in the selection of appropriate strength pipe materials and ap
tenances and to design effective transient pressure control
tems.

Two important areas in which transient modeling is now taki
a key role are parameter estimation for leakage detection and
ter quality predictions in potable water systems. Brief discussi
of these two important areas of application are provided in t
section.

13.1 Parameter Estimation for Leakage Detection and In-
verse Models. In many pipeline related industries, such as
potable water supply or in oil or gas transmission, owners kn
that information is the key to successful management of th
pipeline operation. For example, in the case of a water sup
physical system characteristics, customer data, production r
maintenance records, quality assays, and so on, each provide
agement, engineering, operations, and maintenance staff with
formation they need to keep the system running efficiently a
safely, and at a reasonable cost to the consumer. A large bod
literature on the subject of information requirements and d
management already exists, and all private and public pipe
utilities are aware of the importance of collecting, archiving, a
analyzing data. Perhaps the most costly and time consuming
pect of information management, however, is the collection
data. This section outlines how inverse transient analysis ca
applied to gather some types of physical system data. The t
nology has the potential to be both cost efficient and accurate
JANUARY 2005, Vol. 58 Õ 67



l
u
f

p

v

g
t
c
,
p

/
r
e

i
t
c
i

o

d

p

f

n
o

-
a

i
t
i
a

m pa-
ction
and

he
tput.
the
tion
that
and
rch
the

ize
pre-

ent
n

is-
per-

,
-

ity
tegral
nd
to

oca-

to
he

e
he
Using high-frequency pressure transducers, it is now possib
safely measure induced, or naturally occurring, pressure s
events. Coupling water hammer models to inverse models o
the possibility of inexpensive data collection with a wide covera
of the system. System demands, leakage, pipe condition~rough-
ness!, closed or partially closed valves, even pockets of trap
gas or air can~in theory at least! all be detected using recorde
high-frequency pressure data. In addition to pressure meas
ments, transient flow data can also be used in the inverse ana
procedures. However, flow meters capable of accurately resol
the variation in flow rates that occurs during water hammer eve
are quite expensive and more troublesome to install. Hi
frequency pressure transducers, on the other hand, are rela
inexpensive and easy to mount at common access points, su
valve and meter chambers, or even at fire hydrants. To date
draulic model parameters such as pipe roughness and wave s
have been successfully calibrated using these techniques.

13.1.1 Inverse Analysis of Transient Data.Whether a tran-
sient is small or large, accidental or planned, pressure wa
propagate from their respective points of origin to other parts
the system. They travel at speeds ranging from about 250 m
nearly 1500 m/s, depending on pipe material, soil and ancho
conditions. The shock fronts interact with any part of the syst
that either dissipates energy or does work in a thermodyna
sense. Thus, the energy content of the wave is diminished
virtue of its interaction with the physical system, and its frequen
components, amplitude, phasing, and attenuation character
become modified through successive interaction with the sys
In effect, a pressure signal at a given location constitutes a re
of conditions in the system during the course of a given trans
event.

Deciphering this record of interaction and extracting its info
mation content is precisely what an inverse transient model d
The inverse model evaluates the recorded pressure~or flow! signal
and determines which set~or sets! of system parameters, i.e., pip
roughness, water consumption~leakage!, wave speed, etc, bes
matches the measured data. In this way, information~data! of
several types can be gathered from those areas of the pipe sy
that the transient waves have traversed. For example, pres
traces from two pump trip tests can be sufficient to estimate p
roughness values for every major pipe and consumption value
each node in a small city. Of course, the accuracy of the estim
can be improved by increasing the number of tests performe
by monitoring pressures~flows! at more than one location.

There is extensive literature about inverse analysis in both
entific and engineering journals. The techniques have been ap
for many years to structural engineering applications e.g., sys
identification and damage detection@113#. Sykes@114#, Sun and
Yeh @115#, and Sun@116# have used inverse methods to identi
parameters in 2D groundwater flow. Jarny et al.@117# applied the
adjoint technique to heat conduction problems. Cacuci et al.@118#
and Hall @119# applied the adjoint method to meteorology a
climate modeling. Marchuk@120# applied the adjoint technique t
air pollution problems.

Most, though not all, inverse models utilize real measureme
in a ‘‘data-fitting’’ exercise that typically provides ‘‘best-fit’’ pa
rameters for the mathematical model postulated to fit the d
Least-squares data-fitting is a simple example of an inve
method that tries to fit the best mathematical model~i.e., linear,
exponential, polynomial, etc! to some observed data set. Th
‘‘goodness of fit,’’ i.e., how well the particular assumed mat
ematical model represents the data, can be measured statist
by an analysis of the errors between the observed data and
predicted by the model. In fact, these errors are explicitly m
mized using Lagrangian optimization such that the optimal par
eter set is directly solved for.

The same concept can be applied to more complex phys
systems using sophisticated models. In an inverse problem, ou
from a ‘‘forward’’ model is used to generate an estimate of one
68 Õ Vol. 58, JANUARY 2005
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more measured data sets using some assumed set of syste
rameters. System parameters could be pipe wave speed, fri
factor, water consumption rates and locations, leakage rates
locations, and so on. A ‘‘merit’’ function is used to compare t
goodness of fit between the observed data and the model ou
Common merit functions are the error sum of squares, sum of
absolute values of errors, etc. Some sort of search or optimiza
procedure is employed to find the set of parameter values
minimizes the discrepancy between observed data values
those predicted by the forward model. It is the nature of the sea
technique employed in the optimization step that characterizes
inverse modeling approach.

13.1.1.1 Adjoint models.Adjoint models use a form of La-
grangian optimization coupled with a gradient search to minim
the errors between the observed data and the forward model
diction. In transient flow applications, the problem statem
would take the following general form~see also Liggett and Che
@121#!:

Minimize E5( @~hm2hc!21~qm2qc!2# (80)

subject to the following physical constraints:

]h

]t
1

a2

gA

]q

]x
50 (81)

]q

]t
1gA

]h

]x
1 f

ququ
2AD

50 (82)

whereE is the error sum of squares and Eqs.~81! and~82! are the
continuity and momentum equations rewritten in terms of d
charge and assuming steady Darcy-Weisbach friction. The su
script m denotes measured data values and the superscriptc de-
notes the values computed by the forward model,h is piezometric
pressure head,q is the flow rate,a is the pipeline celerity,f is the
Darcy-Weisbach friction factor,t is time,x is a spatial coordinate
g is gravitational acceleration, andA andD are the pipeline cross
sectional area and diameter, respectively.

Equation ~80! can be combined with Eqs.~81! and ~82! by
using Lagrangian multipliersl1 andl2 as follows:

E* 5E
x
E

t
F ~hm2hc!2d~xm2xc!d~ tm2tc!1~qm2qc!2d~xm

2xc!d~ tm2tc!1l1S ]h

]t
1

a2

gA

]q

]xD1l2S ]q

]t
1gA

]h

]x

1 f
ququ
2ADD Gdxdt (83)

The merit ~error! function has now been designatedE* to
indicate that it includes the Lagrangian terms for the continu
and momentum equations, and has been expressed as an in
to be consistent with the continuum form of the momentum a
continuity equations. The Dirac delta functions are included
ensure that merit function terms are evaluated only at those l
tions and times for which observed data exist, i.e.,

d~xm2xc!5H 1 for xm5xc

0 for xmÞxc

and d~ tm2tc!5H 1 for tm5tc

0 for tmÞtc (84)

The conventional approach to Lagrangian optimization is
take partial derivatives of the merit function with respect to t
unknown system parameters (a or f in this simple formulation!
and the Lagrangian multipliersl1 andl2, and equate these slop
functions to zero. This provides four equations from which t
four unknown variablesa, f , l1 , and l2 could be determined.
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However, as these equations are quasi-linear hyperbolic pa
differential equations, a more elaborate procedure must be u
Partial derivatives of the merit function are taken with respec
l1 andl2 and at critical points of the merit function must have
slope of zero. The two derivative functions given in Eq.~85!
below are known as the adjoint equations.

]E*

]l1
5

]h

]t
1

a2

gA

]q

]x
50

and
]E*

]l2
5

]q

]t
1gA

]h

]x
1 f

ququ
2AD

50 (85)

It suffices to say that the adjoint model is solved iterative
Values for physical system parametersa and f are assumed, and
the forward model is run to determine the transient head and fl
The adjoint equations are solved using the known heads and fl
in a backward pass to calculate the Lagrangian parametersl1 and
l2 . These values are used in a gradient search step~the conjugate
gradient technique is often used! to select new estimates of th
optimal parameters. The search procedure terminates when
value ofE* cannot be reduced any further.

The advantage of the adjoint method is that it can be extrem
efficient for a well-conditioned problem. The model can be f
mulated to solve for other parameters of interest beside w
speed and friction.

13.1.1.2 Genetic algorithms.Genetic algorithms~GAs! have
gained widespread popularity in recent years. There are many
sons for this success:~i! GAs can be applied to a wide variety o
problems;~ii ! GAs do not require the development of addition
code needed to solve the adjoint of the forward problem;~iii ! a
single GA can be used with various models that solve the s
forward problem;~iv! any model parameters can be specified
the unknown system parameters in a GA;~v! GAs are quite suc-
cessful in problems containing local extrema; and~vi! GAs can
find not only the global optimum, but can also describe ot
suboptimal solutions of interest, particularly for flat merit fun
tions. Genetic algorithms do not work for every problem, ho
ever, and one must be aware of their limitations. GAs work b
for problems in which genotypes consist of a small number
genes that can be expressed in short length strings, i.e., prob
having few decision variables~parameters! that can be identified
by a small number of binary digits. Problems with large numb
of real-valued parameters over an extensive and continuous
main are demanding of computer resources when solved by
netic algorithms. Despite these limitations, the method seem
work well with pipeline problems, albeit solution procedures a
slower than those of the adjoint method.

In the simplest sense, genetic algorithms are an efficient f
of enumeration. A candidate set of parameters is assumed or
domly generated to form individuals in a population. Subsequ
iterations use evolutionary~mutation! and reproductive~cross-
over! functions to generate further generations of solutions. T
mathematical principle upon which genetic algorithms are ba
is intended for use with problems in which the decision variab
are discrete, and in these situations the method can be extre
efficient. Modifications to the method have been developed
extend its application to continuous real-valued problems,
though the procedures are less efficient in these cases.

Karney and Tang@122# have successfully applied the gene
algorithm method to parameter estimation problems in water
tribution systems using transient pressure readings. Using
from only two pump trip tests~one for model validation and the
other for the parameter estimation!, Karney and Tang have suc
cessfully estimated pipe roughness factors and wave speed
several large water distribution systems.

13.1.1.3 Pressure wave method.Brunone@123# and Brunone
and Ferrante@124# conducted numerical and physical experime
to investigate the possibility of using transient data for leaka
Applied Mechanics Reviews
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detection. The transient response of a pipeline system to a g
flow disturbance with and without leakage points was measure
well as computed. The influence of the size and shape of sm
leaks, along with discharge conditions and initial flow regime,
the transient response of a pipeline system were analyzed.
found that the influence of the leak on the shape and amplitud
the pressure signal is quite noticeable, even when the leak flo
only a few percent of the total flow in the pipe. Therefor
Brunone @123# and Brunone and Ferrante@124# formulated a
scheme for leakage detection on the basis of studying the di
ence in transient response of a pipeline system with and witho
leak. It is observed that the measured pressure head traces fo
pipeline with a leak is different from that for an intact pipe. Whe
the transient wave encounters a leak, part of the wave is refle
back. The leak location is determined from the time when
reflected wave arrives at the measurement station. The leak
duces additional drop in the pressure head traces, the amou
drop depending on the size of the leak. The size of the lea
using a formal inverse approach. The agreement between the
tual and the computed location and size of leak points is goo

13.1.1.4 Frequency response method.The frequency re-
sponse method is used by Mpesha et al.@125,126#. A hydraulic
system is made up of several components. Each component c
represented by a transfer matrix. Transient flow is caused by
periodic opening and closing of a valve@125# or by the sudden
opening or closing of a valve@126#. A frequency response dia
gram at the valve is developed based on the transform matrix.
a system with leaks, this diagram has additional resonant pres
amplitude peaks that are lower than the resonant pressure a
tude peaks for the system with no leaks. From the frequency
the peaks, the location of the leak can be detected. Very g
agreement have been obtained between the computed and th
leak condition.

In Ferrante and Brunone@127#, the governing equations fo
transient flow in pipes are solved directly in the frequency dom
by means of the impulse response method. Therefore, the solu
of the response of the system to more attractive transient even
available. Harmonic analysis of the transient pressure is use
identify the location and the size of a leak.

13.1.1.5 Mode damping method.Wang et al.@128# investi-
gated the damping characteristics of a transient pressure wav
wall friction and by system leakage. It is found that wall frictio
damps all modes similarly, but leakage damps different Fou
modes differently. In addition, mode damping by leakage is fou
to depend on leak location. The marked difference in mode da
ing between wall friction and system leakage was successf
used to identify the location and size of leaks@128#. In particular,
Wang et al.@128# were able to accurately identify system leaks
investigating mode damping characteristics of transient pres
data obtained from numerical as well as laboratory studies.
damping characteristic technique was successfully applied
single and multiple leaks.

13.1.1.6 Wavelet transform method.Frequency analysis can
only deal with a stationary signal~i.e., the signal has to be eithe
periodic or decomposable into a set of periodic signals!. Wavelet
transform can be used to detect local singularities in a meas
signal. Whenever there is a singularity in a measured signa
local maximum of the transform coefficient for the measured s
nal appears. The application of the transient wavelet transform
leakage detection in a pipeline was pioneered by Ferrante
Brunone@129#. The wavelet transform of pressure head history
performed. According to the transform of the signal, the disco
nuities in pressure head traces are detected. These discontin
correspond to wave reflections at boundary elements and at
points. Using the time at which a discontinuity is observed,
JANUARY 2005, Vol. 58 Õ 69
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distance between the leak and the measurement station ca
calculated. The location found by wavelet transform agrees w
the real location very well.

13.1.1.7 Identifiability and uniqueness requirements.In or-
der for any inverse method to be successfully applied, two
mathematical properties of the problem must be satisfied: ide
fiability and uniqueness. Identifiability refers to the notion tha
single set~or a finite number of distinct sets! of parameter values
must reproduce, within an established level of error, the sa
response exhibited by the actual system. Uniqueness means
the merit function exhibits a single, global minimum. For compl
problems, there is no rigorous mathematical procedure that
assure us that identifiability and uniqueness requirements are
isfied in general. However, a simple example is described in
following section that provides insight into the suitability of di
ferent inverse modeling techniques for pipeline transient pr
lems.

13.1.1.8 Identifiability. Let Hm5$H0 ,H1 ,H2 , . . . ,Hn% de-
note a set of measured values, e.g., piezometric head, at time
0 to n corresponding to some sampling rate (tn2t0)/(n21). Let
hc5$h0 ,h1 ,h2 , . . . ,hn% similarly denote the set of compute
heads at the same time steps but for a particular pair of unkno
but desired, parameter valuess1 and s2 . Then, the following
criterion for identifiability can be stated:

Identifiability criterion: A set of parameter valuess1 ands2 are
identifiable if and only ifHm[hc6e, wheree represents the ab
solute value of data, measurement, and model error. The ide
ability criterion can be visualized by plotting the difference b
tweenHm andhc for each pair of feasible values of parameterss1
ands2 in the domain and selecting the zero contour of the diff
ences. Identifiable parameter pairs for whichHm[hc would ap-
pear as intersections~loci of intersecting lines! of all such con-
tours.

Uniqueness: The second condition that needs to be met if
joint methods are to be used with a reasonable expectatio
success is uniqueness, i.e., there should ideally be only a s
critical point of the merit function within the feasible search d
main.

The adjoint technique can still be useful if the feasible sea
domain can be restricted to a smaller region containing the glo
minimum. To this end, a more robust optimization scheme is o
employed to locate the probable region of the global minimu
Following this initial screening, the adjoint scheme can then
applied to refine the solution. This two-phase optimization
proach is only worthwhile if the time required to find a glob
minimum by other methods is too costly. Compared to the adjo
technique, genetic algorithms are better suited to solving probl
with multiple critical points and those that appear to give go
results for inverse modeling in pipeline transient applications.

13.2 Pathogen Intrusion in Water Supply Systems. In the
first sentence of its proposed Ground Water Rule: Public He
Concerns document, the U.S. EPA Office of Water states t
‘‘Assurance that the drinking water is not contaminated by hum
or animal fecal waste is the key issue for any drinking wa
system.’’ The proposed Ground Water Rule is designed to pro
against pathogenic bacteria and viruses in source water, ag
growth of opportunistic pathogenic bacteria in ground water d
tribution systems, and to mitigate against any failure in the en
neered systems, such as cross-connections or sewage infiltr
into distribution systems.

There is considerable evidence in the literature that the num
of disease outbreaks~including a large number that are unreport
@www.epa.gov/orgwdw000/standard/phs.html#! due to fecal con-
tamination of distribution systems is already large and might
growing. From 1971–1994, 50 of 356 reported waterborne
ease outbreaks occurred as a result of pathogen entry into d
bution systems. More recent statistics from the U.S. Center
Disease Control put the ratio of distribution system intrusions
70 Õ Vol. 58, JANUARY 2005
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other sources of drinking water contamination as high as 1
Studies by Payment@130# suggest that one third of the 99 millio
gastroenteritis cases in the U.S. each year might involve expo
to waterborne pathogens in the distribution system. Conse
tively estimating that 20% of these cases result from patho
intrusion into water pipes, then, in America alone, as many as
million cases of gastroenteritis annually might be directly cau
by contamination of drinking water distribution systems.

Recent research into the problem is now attempting to add
four critical questions that naturally arise in response to th
alarming statistics.~i! What is the nature of the pathogen intrusio
mechanism~s!? ~ii ! Why don’t routine water sampling and labora
tory testing detect intrusion events?~iii ! Is the health of water
consumers in a particular system at risk?~iv! Can the risk of
distribution system intrusions be reduced~and by how much! or
eliminated altogether? Answers to these four questions dep
entirely on developing a clear understanding of the complex
teractions with hydraulic transients in pipe systems.

13.2.1 Distribution System Intrusion Pathways.There are
several potential intrusion pathways whereby bacterial, protozo
and viral pathogens can enter a water supply, transmission
distribution pipeline:~i! at the source;~ii ! during loss of pressure
and subsequent exposure of the pipe interior to the external
soil or groundwater~such as may happen during a main bre
repair!; ~iii ! via cross-connections on a consumer’s property; a
~iv! via cross-connections in the distribution system.

The first two intrusion mechanisms are ‘‘controlled’’ situation
insofar as the quality of finished water is carefully monitored a
treated to ensure compliance with drinking water standards, w
the latter two pathways are largely ‘‘uncontrolled.’’ Cros
connections can arise whenever a possible source of contamin
water or other liquid can be introduced into the potable wa
system by virtue of backpressure~an excess of pressure causin
flow to occur in a direction opposite to its normal intended flo
direction! or siphonage~suction or ‘‘negative’’ pressure inducing
flow from a contamination source into the distribution system!.
While backpressure and negative pressures are usually elimin
through proper hydraulic design, there is one major source
negative pressures that is not normally accounted for in distr
tion system design—hydraulic transients.

Water hammer occurs regularly in some systems and peri
cally in others whenever flow conditions are changed rapid
Whether these changes in flow are the result of planned opera
like pump starts and stops, or are unplanned events initiated
power outages, accidental valve closures, or rupturing of a p
the ensuing episodes of negative pressure can introduce con
nated fluids into the pipeline. Contamination can occur on a c
tomer’s property or on the utility side of a service connectio
Contaminated fluids introduced at a cross-connection would
largely transported in the prevailing direction of flow in the pip
after entering the system.

Pressure dependent leakage is commonly known to occur f
the potable system to the surrounding~soil! environment through
pipe joints, cracks, pinholes, and larger orifice-like openin
Funk et al.@131# developed analytic hydraulic parameters to a
sess the potential for transient intrusion in a water distribut
system. Their intrusion model was based on the percentag
water lost through leakage lumped at system nodes and
‘‘equivalent orifice’’ needed to pass the discrete leakage flow
the prevailing system pressure.

A paper by McInnis~in progress! extends the work of Funk
et al. to incorporate alternative intrusion flow models based
laminar flow, turbulent orifice flow, or a mixture of the two flow
types. Work done by Germanopoulos and Jowitt@132# on pressure
dependent leakage suggests that most distributed leakage is
ably laminar in nature, occurring through larger numbers of sm
openings. The 2D water hammer equations with turbulence m
els developed by Vardy and Hwang@25#, Pezzinga@38#, and
Silva-Araya and Chaudhry@37,98# will be useful in generating
Transactions of the ASME
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models for predicting intrusion volumes, initial distribution o
contaminant concentrations in the pipes, and the ultimate fat
contaminants within the distribution system.

McInnis @133# expands the consideration of transient intrusi
events from purely fluid mechanics aspects by developing a r
based framework for comparing the actual human health risks
relative risk reduction achieved by alternative transient-intrus
mitigation strategies. McInnis@133# applies transient modeling
with some assumed reference groundwater contamination l
and computes hypothetical intrusion volumes for a given trans
event to predict the transitory impact of the event on system w
quality. He has also proposed meaningful risk-based measur
provide quantitative comparisons of the relative reduction in
risk of receptor infection achieved by alternative mitigation str
egies.

14 Practical and Research Needs in Water Hammer
Both theory and experiments confirm the existence of hel

type vortices in transient pipe flows. The conditions under wh
helical vortices emerge in transient flows and the influence
these vortices on the velocity, pressure, and shear stress field
currently not well understood and, thus, are not incorporated
transient flow models. Future research is required to accomp
the following:
1! understand the physical mechanisms responsible for the e

gence of helical type vortices in transient pipe flows
2! determine the range in the parameter space, defined by

nolds number and dimensionless transient time scale o
which helical vortices develop

3! investigate flow structure together with pressure, velocity, a
shear stress fields at subcritical, critical, and supercritical
ues of Reynolds number and dimensionless time scale

The accomplishment of the stated objectives would be sou
through the use of linear and nonlinear analysis. Understan
the causes, emergent conditions, and behavior of helical vor
in transient pipe flows as well as their influence on the veloc
pressure, and shear stress field are fundamental problems in
mechanics and hydraulics. Understanding these phenomena w
constitute an essential step toward incorporating this new p
nomena in practical unsteady flow models and reducing sig
cant discrepancies in the observed and predicted behavior o
ergy dissipation beyond the first wave cycle.

Current physically based 1D and 2D water hammer mod
assume that~i! turbulence in a pipe is either quasi-steady, froz
or quasi-laminar; and~ii ! the turbulent relations that have bee
derived and tested in steady flows remain valid in unsteady p
flows. These assumptions have not received much attention in
water hammer literature. Understanding the limitations and ac
racy of assumptions~i! and ~ii ! is essential for establishing th
domain of applicability of models that utilize these assumptio
and for seeking appropriate models to be used in problems w
existing models fail. Preliminary studies by Ghidaoui et al.@46#
show that agreement between physically based 1D and 2D w
hammer models and experiments is highly dependent on the
nolds number and on the ratio of the wave to turbulent diffus
time scales. However, the lack of in-depth understanding of
changes in turbulence during transient flow conditions is a sign
cant obstacle to achieving conclusive results regarding the lim
tion of existing models and the derivation of more appropri
models. Therefore, a research program whose main objective
develop an understanding of the turbulence behavior and en
dissipation in unsteady pipe flows is needed. This research
gram needs to accomplish the following:

1! improve understanding of and the ability to quantify chang
in turbulent strength and structure in transient events at dif
ent Reynolds numbers and time scales

2! use the understanding gained in item 1 to determine the ra
Applied Mechanics Reviews
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of applicability of existing models and to seek more approp
ate models for problems where current models are known
fail

The development of inverse water hammer techniques is
other important future research area. A number of very promis
inverse water hammer techniques have been developed in the
decade. Future work in this area needs to accomplish the foll
ing:
1! further investigate the issues of efficiency, reliability, and ide

tifiability of inverse water hammer techniques
2! develop more realistic laboratory and field programs in or

to further test existing inverse techniques as well as deve
new ones

3! develop systematic approaches~e.g., using stochastic methods!
that can incorporate the influence of modeling and meas
ment errors on the reliability of inverse methods

4! develop identifiability-based methods to determine the quan
and quality of data necessary to carry out a successful inv
program

The practical significance of the research goals stated abo
considerable. An improved understanding of transient flow beh
ior gained from such research would permit development of tr
sient models able to accurately predict flows and pressures be
the first wave cycle. One important consequence of this is that
behavioral aspects of control devices activated~or reactivated! by
local flow or pressure is correctly modeled. Most important
however, reducing the modeling errors beyond the first wa
cycle, along with better inverse techniques, will greatly impro
the accuracy and reliability of inverse transient models. This
important because inverse models have the potential to ut
field measurements of transient events to accurately and inex
sively calibrate a wide range of hydraulic parameters, includ
pipe friction factors, system demands, and leakage. At this ti
such information can only be obtained through costly field m
surements of flows and pressures conducted on a few individu
sampled pipes in the system. Transients, on the other h
traverse the entire system, interacting with each pipe or devic
the system. Thus, they contain large amounts of information
garding the physical characteristics of the system. Inverse t
sient analysis techniques are now being developed to decode
information for hydraulic model calibration as well as to identi
and locate system leakage, closed or partially closed valves,
damaged pipes. The potential annual savings in routine data
lection costs for water supply utilities world wide is significan
Equally important, an improved understanding of the true nat
of turbulence in transient flows will be a groundbreaking st
toward modeling transient-induced water quality problems. Ne
tive pressure waves can cause intrusion of contaminants from
pipe surroundings through cracks, pinholes, joints, and rupture
the pipes. In addition, water hammer events cause biofilm slou
ing and resuspension of particulates within the pipe, potenti
leading to unsafe or unpleasant drinking water. Without a be
understanding of transient flow behavior, the risk and degree
contamination of water supply systems during transient eve
cannot be quantitatively assessed.

15 Summary
The scientific study of transient fluid flow has been undertak

since the middle of the nineteenth century. As is true of ev
other area of engineering research, a great many advances
been made in the accuracy of analysis and the range of app
tions since then. Although only a few simple problems were
proachable by earlier analytical methods and numerical te
niques, a much broader spectrum of transient problems coul
solved once graphical methods were developed. More rece
the application of digital computing techniques has resulted i
rapid increase in the range and complexity of problems be
JANUARY 2005, Vol. 58 Õ 71
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studied. This paper provides both a historical perspective and
view of water hammer theory and an overview of recent devel
ments in this field of fluid mechanics.

Specifically, advances in the last one or two decades dea
with some of the more complex and fundamental fluid mechan
issues have been discussed:
1! The relation between state equations and wave speeds in s

as well as multiphase and multicomponent transient flows
illustrated and discussed.

2! Various forms of 1D and 2D water hammer equations, such
the Joukowsky model, classical 1D waterhammer equatio
the 2D plane wave equations, and the quasi-two-dimensio
plane wave equations are derived.

3! Governing equations of turbulent water hammer flows are
tained by ensemble averaging of the quasi-two-dimensio
plane wave equations.

4! Order of magnitude analysis is used throughout the pape
evaluate the accuracy of the assumptions in the various fo
of water hammer governing equations.

Water hammer models are becoming more widely used~i! for
the design, analysis, and safe operation of complex pipeline
tems and their protective devices;~ii ! for the assessment and mit
gation of transient-induced water quality problems; and~iii ! for
the identification of system leakage, closed or partially clos
valves, and hydraulic parameters such as friction factors and w
speeds. In addition, turbulence models have been developed
used to perform numerical experiments in turbulent water ham
flows for a multitude of research purposes such as the comp
tion of instantaneous velocity profiles and shear stress fields
calibration and verification of 1D water hammer models, t
evaluation of the parameters of 1D unsteady friction models,
the comparison of various 1D unsteady friction models. Und
standing the governing equations that are in use in water ham
research and practice and their limitations is essential for in
preting the results of the numerical models that are based on t
equations, for judging the reliability of the data obtained fro
these models, and for minimizing misuse of water hammer m
els.
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Nomenclature

A - system matrix
A - cross-sectional area of pipe
a - water hammer wavespeed
a - coefficient for five-region turbulence model
B - matrix for subsystem of longitudinal velocity

component
B - coefficient for MOC formulation

BC - lumped quantity for characteristics solution fo
pipe network

BM - quantity for negative characteristics used for
1D MOC solution

BP - quantity for positive characteristics used for
1D MOC solution

b - known vector for system
bu - known vector for subsystem of longitudinal

velocity component
bv - known vector for subsystem of head and rad

component
C - matrix for subsystem of head and radial velo

ity component
CB - coefficient for five-region turbulence model
CC - lumped quantity for characteristics solution fo

pipe network
Cc - coefficient for five-region turbulence model
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CM - quantity for negative characteristics used for
1D MOC solution

Cm - coefficient for five-region turbulence model
CP - quantity for positive characteristics used for

1D MOC solution
Cq1 , Cq2 - coefficients beforeq

Cr - courant number
Cu1 , Cu2 , Cu3 - coefficients beforeu

c - parameter associated with pipe anchor condi
tion

c - superscript denoting values predicted by for-
ward model

c2 - coefficient used in Daily et al.@39#
cs - control surface
cv - control volume
D - diameter of pipe
E - Young’s modulus of elasticity of pipe materia
E - errors

E* - merit ~error! function
e - thickness of pipe wall
F - wall resistance force

Fext - external forces
f - Darcy-Weisbach friction factor
g - gravitational acceleration

Hm - set of measured piezometric head
H - piezometric head

HA - piezometric head at pointA
HB - piezometric head at pointB
HP - piezometric head at pointP
hc - set of computed piezometric head
i - index for pipes

Js - steady friction term
j - index for pipes

K - unsteady resistance coefficient
Ke - effective bulk modulus of elasticity
K f - bulk modulus of elasticity of the fluid
Ks - steady-state resistance coefficient
Ku - unsteady resistance coefficient and momentu

flux of absolute local velocity
k - unsteady friction factor
L - pipe length
l - mixing length

M - Mach number
m - superscript denoting measured data values
m - time level index

N1 - set of all pipes with flow toward conjuction
node

N2 - set of all pipes with flow away from conjuc-
tion node

Nr - number of computational reaches in radial di
rection

n - unit outward normal vector to control surface
n - index of measured series
n - exponential for power law of velocity profile

nc - number of complete water hammer wave
cycles

P - parameter for quasi-steady assumption
P - piezometric pressure
Q - discharge

QA - discharge at pointA
QB - discharge at pointB

Qext - discharge of external flow
QP - discharge at pointP

q - radial flux
q - flow rate

R, R* - radius of pipe, dimensionless distance from
pipe wall

R - coefficient for MOC formulation
Re - Reynolds number
Transactions of the ASME
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r - radial coordinate
T - time scale

Td - time scale for radial diffusion of vorticity
t - time

t8 - time used for convolution integral
U1 - longitudinal velocity scale

u - unknown vector for subsystem of longitudina
velocity component

u - local longitudinal velocity
u* - frictional velocity
u8 - turbulence perturbation corresponding tou
V - cross-sectional average velocity
v - velocity vector
v - unknown vector for subsystem of head and

radial velocity component
v - local radial velocity

v8 - turbulence perturbation corresponding tov
W - weighting function
X - longitudinal length scale
x - distance along the pipe

y, y* - distance from pipe wall, dimensionless dis-
tance from pipe wall

Z - elevation of pipe centerline from a given da-
tum

z - unknown vector for system
a - angle between pipe and horizontal direction
a - coefficient in weighting function
b - momentum correction coefficient
b - coefficient in weighting function
g - unit gravity force
e - distance from the water hammer front
e - eddy viscosity
e - implicit parameter for shear stress
e - implicit parameter for friction
e - measured and modeled data error
z - a positive real parameter
h - difference from unity of Coriolis correction
h - constant for weighting function
u - implicit parameter for radial flux
k - coefficient for weighting function
k - coefficient for five-region turbulence model
k - coefficient for two-layer turbulence model

l1 - Lagrangian multiplier
l2 - Lagrangian multiplier
n - kinematic viscosity

np - Poisson ratio
nT - total viscosity

j - strain
r - fluid density

r0 - fluid density at undisturbed state
re - effective density

s1 , s2 - unknown but desired parameters
sx - axial stress
su - hoop stress

t - shear stress
tw - wall shear stress

tws - quasi-steady contribution of wall shear stress
twu - discrepancy between unsteady and quasi-

steady wall shear stress
f - coefficient in unsteady friction formula.
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