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Abstract 
 

Drought damages are more prominent in areas where there is a direct threat to livelihood. 

This research attempts to address water scarcity that is exacerbated by reoccurring drought 

by providing a mechanism in which small scale water resource can be identified to relieve the 

stress from the existing water resources. The study develops a method for identifying 

potential water harvesting locations in Ethiopia that can be accessed to address drought 

induced water scarcity. The potential locations are selected in such a way that they satisfy 

both environmental sustainability and low land flow stagnation requirements. These 

locations are identified using remotely sensed landsat imagery and GIS and include 

consideration of a combination of soil characteristics, topography, vegetation and weather. 

Drought analysis and source identification were interlinked by first investigating the spatial 

and temporal characteristics of metrological drought in Ethiopia using a linear scaled bias 

corrected CFSR dataset. The Standardized Precipitation Index, programmed in R, was 

selected to represent prominent drought periods that resulted in a supportive premise that the 

seasonality of rainfall is pronounced rather than the lack of it. On basis of this finding, a 

method for a syndicate use of topography, land use and vegetation was performed and the 

performance was evaluated and mapped. The steady-state topographic wetness index (TWI) 

was used to represent the spatial distribution of water flow and water stagnating across the 

study area and the Normalized Difference Vegetation Index (NDVI) was used to detect 

surface water through multispectral analysis. Results showed that these two indices 

complimented each-other well and resulted in a joined spatial map of over 118,000 potential 

water harvesting sites, more or less uniformly distributed in the study area. Preliminary 

computations with regards to the volume of available water harvesting locations yielded over 

4.5 BCM of potential sites by targeting small areas. 

  

KEY WORDS: Ethiopia, Metrological drought, Normalized Difference Vegetation Index, 

Water Harvesting, Remote sensing, Standardized Precipitation Index, Topographic Wetness 

Index  
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1. Introduction 

1.1. Background 
 

Water scarcity is a factor affecting a vast majority of people, and is highly 

pronounced in dry or moderately dry areas resulting in economic, social and 

environmental problems. It occurs where there are insufficient water resources 

available to satisfy short/long -term average requirements. Population growth, more 

intensive agriculture, energy and manufacturing needs and tourism all contribute to 

increasing water use. Consecutively, the cause of scarcity itself can be chucked up to 

insufficiency of available water in catchments for supply, lacking basic water 

resource management with the available water, or wastage of such resources in 

general due a multitude of factors. As a consequence, in the most part of the world, 

lack of provision of safe supplies, and inadequate distribution systems are immense.  

 

Water storage is like an insurance mechanism that tackles these consequences. 

Because of the intermittent nature of runoff events, storage is an integral part of the 

water harvesting system. It serves as a buffer against variability of rainfall in distinct 

regimes and increases resilience against dry spells. Storage opens the possibilities for 

new economic activities where water is a production factor. Reliable access to 

irrigation water from storage opens a great potential for crop diversification. In 

addition, more reliable water supply is improved from storage (Payen et al., 2012). 

Countries in sub-Saharan Africa store only about 4% of their annual renewable flow, 

compared with 70%-90% in many developed countries. (UNESCO, 2009) Water 

storage is essential to ensure reliable sources of water for irrigation, water supply 

and hydropower and to provide a buffer for flood management.  

 

An unswerving cause for water scarcity is often associated with the shortfall of 

precipitation that eventually leads to the occurrence of drought.  Drought can be 

characterized by using drought indexing that integrates hydro-climatic input 

variables. Drought indices simplify the complex inter-relationships between many 

climate parameters and address detailed drought issues such as frequency, intensity 
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and duration of drought, thereby tackling the social and economic value that is 

associated with this effect.  

Drought is a natural hazard characterized by a significant decrease in water 

availability during a prolonged period of time over a large area. (Bayissa et al., 2015). 

The main types of physical droughts are metrological, hydrological, and agricultural 

droughts. These drought types occur in the particular order listed. Precipitation 

deficiency instigates metrological drought, which subsequently impacts soil 

moisture content (Zagar et al., 2011) thereby resulting in hydrological and 

agricultural droughts. Associated indicators then comprehensively characterize 

drought. Some indicators such as precipitation, potential evapotranspiration, and 

soil- and vegetation-cover have had wider applications and influence more than 

others. (Zagar et al., 2011) 

 

The associated drought damages are more pronounced or prominent in areas where 

there is a direct threat to livelihoods (Palchaudhuri & Biswas, 2013). As such, 

Ethiopia is continuously being battered by extremes of weather, by cycles of drought 

and floods, with drought being one of the least documented naturally occurring 

anomalies (Sintayehu, 2007). The vastness of this issue has a direct effect towards 

regaining a nationwide balance between supply and demand of water resources 

considering climate change as an external resource.  

 

Rain water harvesting has been used for several thousand years as a way of taking 

advantage of seasonal precipitation that would otherwise be lost as runoff (Kinkade-

Levario et al., 2007). Rain water harvesting can be a valuable technique to 

supplement the other sources by reducing dependence on rivers and groundwater 

sources. However, selection of appropriate sites and determination of water 

harvesting on a large scale is difficult. (Pereira and Gowing, 2005).   

 

Field surveys are the most common method for selecting suitable sites and Rain 

Water Harvesting (RWH) techniques for small areas. The selection of appropriate 
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sites for different RWH technologies in larger areas is a great challenge (Prinz et al. 

1998). GIS and remote sensing in hydrology and water resources have relieved some 

of the stress from the large time and effort that has been invested in realizing spatial 

and temporal patterns and characteristics of individual hydrologic processes by 

providing access to spatial and temporal information on watershed, regional, 

continental and global scales (Bakir and Xingnan, 2008).  

 

With the advent of these tools that may be used for providing an efficient water 

exploration means, one can suggest the best sites for extraction, storage and 

distribution of water to the users.  

A connection between dry spells induced by drought anomalies and the need for 

storage system that is driven by biophysical criteria, such as rainfall, slope, soil type, 

drainage network, and land use, is obvious because of the country’s continued 

dependence on effective water resource management. The correlation of spatial 

information technology and specified indices can analyze vulnerability of regions 

and help with the collection, storage, analysis, and visualization of key information 

and thereby help with the development of effective water resource programs and 

practices.  

 

The need to address water scarcity that is exacerbated by reoccurring drought is 

high, now more than ever. Provision of a mechanism by which small scale water 

resource can be identified to relieve the stress from the existing water resources is 

thus essential.  

 

 

  

http://www.sciencedirect.com/science/article/pii/S2095633915301118#bib51
http://www.sciencedirect.com/science/article/pii/S2095633915301118#bib51
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1.2. Statement of the Problem  

 

Balancing water-scarcity and population (human demand) is the major challenge in 

many arid and semi-arid regions of the world (Mays, 2009). Many urban areas of the 

world have been experiencing water shortages, which are expected to explode this 

century unless serious measures are taken to reduce the scale of this problem 

(Mortada, 2005). While these problems are not new, having been in existence for 

quite some time in a country with a recurring drought, never have they reached such 

wide spread and serious proportions. This begs the question, what is being done 

wrong and why isn’t there an easy fix? 

 

Ethiopia is endowed with water than many drought-prone countries (Mayes, 2009). 

The problem of water shortage emanates from the seasonality of rainfall and the lack 

of infrastructure for storage to capture excess runoff during flood seasons. 

Contemplating this situation, amongst drought management strategies, there needs 

to be a way for assessing potential water sources that possess the ability to be a 

solution if properly addressed.  

The mean annual precipitation falling on the country amounts to 936 billion cubic 

meter (FAO-AQUASTAT database 2014). However owing to very few stored water 

resources, the current capacity only goes up to almost 32 billion cubic meters by 

volume (FAO-AQUASTAT database 2014). The country has only exploited 10% of its 

precipitation heritage: There is a rechargeable source, what is needed is a delivery 

system; thus water needs to be captured and stored. In such cases, rainwater 

harvested by local communities based on historical practices is the best option for 

mitigating drought.  

The effect of drought is a context-dependent matter. Drought is especially a problem 

in areas where droughts are frequent and intense and where water resources are 

under massive use. In 2015 and 2016, Ethiopia was enormously affected by El Nino 

triggered droughts (Bachewe et al., 2016). The failure of two consecutive rainy 

seasons which normally feed 80-85% of Ethiopia between the months June and 
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September of 2015 has affected the livelihoods of many, and increased malnutrition 

across the country. As a consequence, it has resulted in the worst drought that has 

ever hit the country.  This is a clear implication that proper drought preparedness 

means is not practiced in the country and a critical need for supplemental water 

supply now exists in many areas.  

The country needs a source identification means that addresses or bases drought 

issues. A way by which water scarcity that is aggravated by recurring drought can 

be addressed; and a way by which small scale water resource can be identified, and 

put to use thereby relieving the stress from the existing water resources needs to be 

developed. 

Previous attempts to develop water harvesting and sustainable land management 

have failed due to issues pertaining to unclear impact assessments, the policy 

environment and the history of governance. The existence of and potential for wider 

adoption of water harvesting practices has been largely reflected with agricultural 

water management being viewed as with irrigation (Abebe et al., 2012). Thus, this 

high demand for coordination and management has made water harvesting in 

Ethiopia a problem as easier means have not been considered nor found and 

practiced. 

1.3. Objectives  

The general objective of this research is to develop an applied technique for 

identifying potential water harvesting sites using GIS-based methods and 

atmospheric reanalysis datasets to address drought induced water scarcity.   

The study is expected to achieve the following specific objectives: 

 assess the spatial and temporal variability of metrological drought at several time 

scales in Ethiopia. 

 develop and evaluate a methodology using remotely sensed landsat imagery and 

physical terrain attributes to locate potential sites for surface water harvesting.  

 develop a RWH site map for Ethiopia.  
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1.4. Organization of the thesis 

 

The thesis has been divided into five chapters, each with its own significance: 

Chapter I Introduction: this chapter mainly deals with the rationale, need and 

primer of involved matter in the work. It provides an introduction to water scarcity 

and drought and the significance of storage by reviewing water harvesting.  The 

drive for the thesis which is what the thesis aims to solve is depicted in the problem 

statement, and the general as well as specific aims that the study wishes to address 

are covered. 

Chapter II Literature Review: is dedicated to illustrate the relevant literatures, key 

concept reviews and works related to drought indexing, land-use analysis and 

secondary terrain attributes. All adopted classifications for the indices and important 

associated assumptions are mentioned.  

Chapter III Data Acquisition and Processing: holds the lion share of the work 

regarding the means practiced to achieve the objectives. This section involves the 

range of gathered data inputted, manipulations for fine tuning the data and use in 

analyzing for drought characterization and source identification. 

Chapter IV Results and Interpretation: presents the analysis along with the results 

and discussions. The report findings are presented in a systematic manner 

corresponding to each methodology. 

Chapter V Conclusions and Recommendations: the conclusions based on the 

interpretation of the study and corresponding recommendations are given in this 

section. 
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2. Literature review 

When considering the sustainable use of fresh water, the amount of renewable water 

available is of most concern. This is of most concern when climatic variabilities and 

anomalies come into the equation. 

A few drought management strategies were proposed by Dziegielewski et al. (1996) 

in response to anticipated shortages of water. These are: demand reduction options, 

improvements in efficiency in water supply and distribution system, and emergency 

water supplies. But, the problem of water shortage emanates from the seasonality of 

rainfall and the lack of infrastructure for storage to capture excess runoff during 

flood seasons (Mays, 2009). 

Ethiopia ranks 57th in the world in terms of the total amount of water resources. The 

mean annual precipitation falling on the country amounts to 936 billion cubic meter 

(FAO-AQUASTAT 2014). The annual internal renewable water resources, composed 

of river runoff and non-repeated groundwater is about 122 billion cubic meter (FAO-

AQUASTAT 2014).  

 

Internal Renewable Water Resources (IRWR) is the long-term average annual flow of 

rivers and recharge of aquifers generated from endogenous precipitation. Double 

counting of surface water and groundwater resources is avoided by deducting the 

overlap from the sum of the surface water and groundwater resources. (FAO-

AQUASTAT 2014). However owning to very few available resources, the current 

capacity only goes up 31.24 billion cubic meters by volume. Moreover, these limited 

water resources are unevenly distributed that most locations are not addressed.   

 

The surface water resource potential is considerable, but little developed. Most of the 

rivers in Ethiopia are seasonal and about 70 per cent of the total runoff is obtained 

during the period June to August (Abebe et al., 2012) 

 

Precipitation is the source of all renewable fresh water on earth. All water on the 

planet originates from precipitation. Part of it forms surface runoff and groundwater 
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flow and another part evaporates, returning to the sky. The first part comprises the 

water resources as commonly understood. However, water is a natural resource. In 

addition to the water resource development, rainwater utilization is another way to 

use water.  

Zhu et al. (2015) describe in detail the adaptation of rainwater harvesting technology 

for where water resource to precipitation ratio is minimal. The approach was 

considered innovative and created a relief for agriculture and water supply.    

 

Water harvesting is the process of concentrating rainfall as runoff from a catchment 

to be used in a target area (Narain, 2005). Rainwater harvesting technologies have 

become important options to supply drinking water, develop irrigated agriculture 

and improve the ecosystem in dry areas. Seventeen provinces in china have adopted 

rain-water utilization technique, building 5.6 million tanks with a total capacity of 

1.8 billion cubic meters, supplying drinking water for approximately 15 million 

people and supplemental irrigation for 1.2 million ha of land (Zhu et al., 2015). 

 

A study reviewed by (Abebe et al., 2012) on water harvesting practices was seen 

through ground water recharge by water harvesting, the case of Abreha Weatsbeha 

found 55Km north of Mekele in Tigray Region. The article presents an image of the 

location where interventions regarding soil water conservations were being done. Of 

these, stone check-dams, percolation ponds, deep trenches, stone/soil bunds, area 

closures (total protection from grazing), as well as afforestation in the higher reaches 

of the watershed were employed. As a result, percolation ponds harvesting water 

from the hillside for ground water recharge were developed. An image with the 

location is shown in Figure 1. 
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Figure 1: Percolation ponds harvesting water from the hillside to recharge groundwater (K. 
Woldearegay) Opportunities for building on tradition – time for action (Adane Abebe et al., 2012)  

 
 
Awulachew et al. (2005) reviewed recent experiences and future opportunities for 

promoting small-scale irrigation and water harvesting in Ethiopia. They revealed 

mixed perceptions about the impacts of past initiatives.    

 

The success of RWH systems depends heavily on the identification of suitable sites 

and their technical design (Al-Adamat et al., 2012). For relatively small areas (in the 

range of several hundred hectares) a ground truth carried out by a number of 

experienced people is the best technique to identify suitable areas for water 

harvesting. For medium range sizes of areas, the use of aeroplanes equipped with 

photographic equipment and for even larger areas, the application of remote sensing 

is considered to be the most relevant means of identification of areas suitable for 

certain techniques of water harvesting. For any of the above mentioned techniques, 

the application of a suitable GIS is indispensable. Of course, the application of even 

the best GIS will not guarantee the success of any water harvesting scheme, as a 

number of external factors such as water and land rights, macro-economic 

conditions, traditional rules and believes can hardly be incorporated into such a GIS. 

Nevertheless, these might strongly influence the development of the water 

harvesting scheme. 

http://www.sciencedirect.com/science/article/pii/S2095633915301118#bib3
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2.1. Drought characterization  

Drought is a natural hazard characterized by a significant decrease in water 

availability during a prolonged period of time over a large area (Bayissa et al., 2015). 

It occurs in different parts of the world and may cause substantial impact on 

economic activities, human lives, and various elements of the environment (Dracup 

et al., 1980). Devising early warning systems, conducting drought risk analysis and 

contingency planning are only a few of the advantages of characterizing drought.  

The main types of physical droughts based on the operational definition are 

metrological, agricultural and hydrological droughts in the order positioned 

respectively. Precipitation deficiency instigates metrological drought, which 

subsequently impacts soil moisture content (i.e., agricultural drought). Low recharge 

from the soil to water features such as streams and lakes causes a delayed 

hydrological drought (Zagar et al., 2011).  

 

2.1.1. Metrological Drought  

Drought can be considered as a strictly metrological phenomenon (Palmer, 1964). It 

can be evaluated as a metrological anomaly characterized by a prolonged and 

abnormal moisture deficiency. Indicators associated with metrological drought are 

used in assessing drought conditions that are dependent on the duration and 

magnitude of the abnormal moisture deficiency.  

Drought indices are quantitative measures that characterize drought levels by 

assimilating data from one or several variables (indicators) such as precipitation and 

evapotranspiration into a single numerical value.  

Complied by Zagar et al. (2011), using an index for drought characterization serves 

the following purposes, operationally: 

- drought detection and real-time monitoring,  

- declaring the beginning or end of a drought period,  

- allowing drought managers to declare drought levels and instigate drought 

responses measures, 

- drought evaluation representing the concept of drought in a region,  
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- correlating with quantitative drought impacts over variable scales of 

geography and time; and 

- facilitating the communication of drought conditions among various 

interested entities. 

2.1.2. Choice of Drought Index 

Zagar et al. (2011) discussed six major drought indices that are frequently used in 

forecasting, monitoring, and planning operations. Of these, comparisons suggest 

that the SPI is widely adopted for research and operational modes for characterizing 

metrological drought. The SPI was chosen as “the one to use” by participants in the 

Inter-Regional Workshop on indices and early warning systems for drought in 

December 2009. The workshop was held to help determine the best metrological 

index and to recommend it for use by all national metrological services. 

 

2.1.3. The Standardized Precipitation Index 

The Standardized Precipitation Index (SPI) was developed by McKee et al., (1993) to 

give a better representation of abnormal wetness and dryness in comparison the 

Palmer indices. The SPI is probability based and was designed to be a spatially 

invariant indicator of drought that recognizes the importance of time scales in the 

analysis of water availability and water use. It is essentially a standardizing 

transform of the probability of the observed precipitation. Its fundamental strength 

is that it can be computed for a precipitation total observed over any duration 

desired by a user.  

 

Short-term durations on the order of months (or even weeks) may be important to 

agricultural interests while very long term durations spanning years may be 

important to water supply management interests (Guttman et al., 1999). This 

application was seen in a study by Hayes et al. in the 1995-96 drought in the south 

western United States. A 5 month SPI map clearly showed dryness whereas PDSI 

maps did not accurately represent the true severity. SPI again provided a one month 

lead in recognizing drought which gave more time for policy and decision makers 

when devising drought mitigation and response actions.  
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2.1.3.1. Computational procedure 

Several discussions (Thom 1996, Bayissa et al., 2016) found that the gamma 

distribution fit climatological precipitation series well. The gamma distribution is 

defined by its frequency and probability density function:  
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Where α > 0 is the shape parameter, β > 0 is a scale parameter and x > 0 is the 

amount of precipitation. Г(α) defines the gamma functions. 

The alpha and beta parameters of the gamma probability density function are 

estimated for each station, for each time scale of interest and for each month of the 

year. The maximum likelihood solutions are used to optimally estimate these 

parameters: 
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The resulting parameters are then used to find the cumulative probability of an 

observed precipitation event for the given month and time scale for the station in 

question; the cumulative probability is given by: 
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H(x) is the cumulative probability including probability of zero precipitation: 

 ( ) (1 ) ( )H x q q G x    (4) 

And q is the probability of zero precipitation where the gamma distribution becomes 

undefined, for X = 0 and q = p(x = 0) (probability of zero precipitation is simply the 

number of observations of zero precipitation divided by the total number of 

observations).  
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An equiprobability transformation from fitted gamma distribution to the standard 

normal distribution is mentioned by Mckee (1993).  But since it would be 

cumbersome to produce these types of figures for all stations at all times scales and 

for each month of the year, the Z or SPI value is more easily obtained 

computationally using an approximation provided by Abramowitz and Stegun 

(1965) that converts cumulative probability to the standard normal random variable 

Z: 
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c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, d3 = 0.001308. 

 

Conceptually, the SPI represents a z-score, or the number of standard deviations 

above or below that and event is from the mean. However, this is not exactly true for 

short time scales since the original precipitation distribution is skewed.  

Mathematical programs are usually used to compute SPI values for a larger times 

series data as well as for multiple time scales.   

 

2.1.3.2. SPI Advantages over other indices  

The SPI calculation for any location is based on the long-term precipitation record 

for a desired period. This long-term record is fitted to a probability distribution, 

which is then transformed into a normal distribution so that the mean SPI for the 

location and desired period is zero (Edwards and McKee, 1997). Positive SPI values 

indicate a greater than median precipitation and negative values indicate a less than 
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median precipitation. Because the SPI is normalized, wetter and drier climates can be 

represented in the same way; thus, wet periods can also be monitored using SPI.  

After the analysis on two separate droughts characterized by SPI, (Hayes, 2000) 

concluded that SPI accomplishes the objectives of a drought index in its ability to 

identify the intensity, duration, and spatial extent of droughts as they occur, 

providing monitoring at a near real-time level and serves quite well as a tool for an 

early warning system.   

 

This standardization allows SPI to determine the rarity of a current drought event, as 

well as the probability of the precipitation necessary to end the current drought 

McKee et al., 1993). It also allows the SPI to be computed at any location and at any 

number of time scales, depending upon the impacts of interest to the user. This and 

its availability for computation using any of the many probability distribution 

models studied for the index by Guttman (1999)  are what makes the index desirable. 

The fact that the index is tractable for machine data processing for identified 

probability distribution makes it more desirable as it clearly recognizes that many 

users of the SPI would want a black box software package for which the input is 

precipitation time series and the output is the SPI. 

 

Standardization of the procedure for computing the SPI is necessary so that all users 

are able to calculate index values which are comparable both spatially and 

temporally. If the same observed precipitation time series leads to different SPIs that 

depend on the computational procedures, then comparisons will not be of like 

quantities, and the comparisons will be confusing or misleading. 

 

2.1.3.3. Choice of dataset 

The sole input for metrological drought analysis is precipitation.  For a study 

domain as large as Ethiopia, acquiring a uniformly distributed, long term historical 

rainfall data can be achieved easily by taking advantage of advances in remote 

sensing technology; viz. satellite-based rainfall estimates. (Bhatti et al., 2016).  
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The Climate Forecast System Reanalysis, completed over the 31-year period of 1979 

to 2009 in January 2010, as stated by Saha et al., (2010) is more comprehensive 

because it includes analyses of both the ocean and sea ice, and it has higher 

resolution in space and time. The accuracy increases over time, especially in the 

Southern Hemisphere, where the use of satellite radiance data becomes very 

important. Many known errors in the observational data and execution of previous 

reanalysis were corrected in the CFSR. Many of the input datasets have been 

improved by years of quality control and by exposure to successive reanalysis at 

various centers.  

 

For inter-annual variability, the CFSR shows improved precipitation correlation with 

observations over the Indian Ocean, Maritime Continent, and western Pacific (Wang 

et al., 2010). All aspects of the CFSR is open to the public (available online at 

(http://cfs.ncep.noaa.gov/cfsr). Saha et al., (2010) describes features and data 

assimilation, forecast models and so on and with the accuracy measured using the 5-

day forecast scores and concluded that CFSR is considerably more accurate than the 

previous global reanalysis made at NCEP in the 1990s. The efficiency of the recently 

released climate forecast system re-analysis (CFSR) dataset in capturing the daily 

rainfall patterns of Ethiopia is good (Berhanu et al., 2016). due to the global-level 

correction performed at the time of release, it induces some local-level bias. 

 

2.1.3.4. Correcting Bias 

Accuracy of CFSR data has to be evaluated and compared with ground truth rainfall 

measurement before use. Fang et al., (2015) mentioned five bias correction methods 

used for precipitation. These include Linear Scaling (LS), Local Intensity Scaling 

(LOCI), Power Transformation (PT), Distribution Mapping for precipitation using 

gamma distribution (DM) and Quintile Mapping (QM). Of which Linear scaling bias 

correction aims to match the monthly mean of corrected values perfectly with that of 

the observed ones (Lenderink et al., 2007).  

 

http://cfs.ncep.noaa.gov/cfsr


 
 
 

16 | P a g e  
 

This method is a mean based method which considerably reduces the deviation in 

the mean of observed and simulated data. The observed precipitation is corrected by 

a factor which is the ratio of long term monthly mean of observed and raw simulated 

precipitations (Beineke and B.S. Panda., 2016) and is given by: 
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Here ( , )cor m dP and ( , )raw m dP , are the corrected and raw simulated precipitation for dth 

day of mth month respectively and  (), represents the mean operator.  

To test the accuracy of the bias corrected data set, frequency-based indices and time 

series performances against observed precipitation data need to be conducted 

(Berhanu et al., 2016). The frequency-based indices include mean, median, standard 

deviation, 90th percentile, probability of wet days and intensity of wet days. The time 

series-based metrics include the Nash–Sutcliffe measure of efficiency (NSE), the root-

mean-square error (RMSE) and the percent bias (PBIAS). NSE indicates how well the 

simulation matches the observation, and it ranges between –∞ and 1.0, with NSE=1 

indicating a perfect fit. Readers are referred to the details of the performance 

evaluations done and adopted to the prior research by Berhanu et al. (2016). 

2.1.3.5. Time scales in SPI 

The SPI was designed to quantify the precipitation deficit for multiple timescales. 

These timescales reflect the impact of drought on the availability of the different 

water resources. Soil moisture conditions respond to precipitation anomalies on a 

relatively short scale. Groundwater, stream flow and reservoir storage reflect the 

longer-term precipitation anomalies. For these reasons, McKee et al., (1993) 

originally calculated the SPI for 3-, 6-,12-, 24- and 48-month timescales. 

Andreau et al. (2007) computed SPI results in both short term (1 month – 9 months) 

as well as long term (12 months – 36 months) presenting a distributed SPI index for 

the whole extension of a basin study. The paper was able to characterize extreme low 

rainfall events using a 12 month SPI and was also able to identify that the short term 

values (1, 3, 6 months) displayed drought persistency well. 
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Drought categorization is often related to contextual-use. The phenomenon reflected 

and the type of impacts associated to the specific duration give SPI another added 

advantage. Table 1 shows how the SPI reflects different type of impact or 

application. Apart from addressing metrological anomalies, SPI can be deployed for 

longer time scales to reflect agricultural and hydrological droughts/impacts (Zagar 

et al., 2011).   

Table 1: Application of the SPI in different time scales 

SPI duration Phenomena reflected Application 

 

1 month SPI Short-term conditions Short-term soil moisture and crop stress 

(especially during the growing season) 

3 month SPI Short- and medium-term 

moisture conditions 

A seasonal estimation of precipitation 

6 month SPI Medium-term trends in 

precipitation 

Potential for effectively showing the precipitation 

over distinct seasons.  

9 month SPI Precipitation patterns over 

a medium time scale 

If SPI9 < –1.5 then it is a good indication that 

substantial impacts can occur in agriculture (and 

possibly other sectors) 

 

12 month SPI Long-term precipitation 

patterns 

Possibly tied to stream flows, reservoir levels, 

and also groundwater levels 

 

Nearly all metrological drought analysis that used SPI have comprehended a similar 

threshold definition.  SPI values higher (lower) than 2.00 (-2.00) can be considered to 

represent extreme wet (dry) events (Guttman, 1999). Mckee et al. (1993) used the 

most applied classification system shown in Table 2 to define drought intensities 

resulting from SPI. The classification was also used to define the three dimensions by 

which it is fundamentally characterized: severity, duration and spatial distribution. 

Additional characteristics include: frequency, magnitude (cumulated deficit), 

predictability, rate of onset and timing (Zagar et al., 2011). 
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A drought event occurs any time the SPI is continuously negative and reaches an 

intensity of -1.0 or less. The event ends when the SPI becomes positive. Each drought 

event, therefore, has a duration defined by its beginning and end, and an intensity 

for each month that the event continues. Because of drought’s dynamic nature, a 

region can experience wet and dry spells simultaneously when considering various 

timescales. The positive sum of the SPI (in other words the accumulated deficit of 

water below a threshold) for all the months within a drought event can be termed 

the drought’s “magnitude” (McKee et al,. 1993). This is given by  

 
1

DM
x

ij

j

SPI


 
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 
       (8) 

for any timescale.  

Frequency is described by Zagar et al. (2011) as the average time between drought 

events that have a severity that is equal to or greater than a threshold. Yared et al. 

(2015) described frequency of drought occurrence by developing a trend in the graph 

of SPI values for the period under study. Strong trends of increasing frequency were 

easily identified as events with high return periods.  

Wu et al. (2006) constructed a frequency distribution plot showing dry and wet 

categories resulting from 1, 4, 8, and 12 week SPI values for different periods 

showing the uneven behavior of frequency with event category for varying time 

scales at varying months. 

Table 2: SPI classification (McKee 1993) 

SPI Classification Probability 

2.00 > Extremely wet 2.3 

1.50 to 1.99 Very wet 4.4 

1.00 to 1.49 Moderately wet 9.2 

0 to 0.99 Mildly wet 34.1 

0 to -0.99 Mild drought 34.1 

-1 to -1.49 Moderate drought 9.2 

-1.50 to -1.99 Severe drought 4.4 

-2.00 < Extreme drought 2.3 
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Apart from signifying the basics involved in drought characterization, major 

abnormalities can also be checked according to the classification in Table 2. On the 

basis of an analysis of stations across Colorado, McKee et al. (1993) determined that 

the SPI is in mild drought 24% of the time, in moderate drought 9.2% of the time, in 

severe drought 4.4% of the time, and in extreme drought 2.3% of the time. These 

percentages are expected from a normal distribution of the SPI (Wu et al., 2006). 

 

A study conducted in Greece resulted in an effective information and early warning 

system based on SPI to produce an overall adaptation plan. The study also showed 

that it depicted the drought conditions all over Greece with results showing when 

the drought began, when it peaked and when it dissipated. As a means of checking 

the accuracy of these results, water supply areas where the impact of the drought 

were intense were used to compare with the results from the SPI which is quite 

commendable. A shortcoming of this study is that all topologically different zones 

weren’t all considered due to fragmented metrological information which would 

have contributed to the SPI approach. But in this study, a bias corrected CFSR data 

covering the entire region (high and low lands considered) on grid level is available 

to avoid this shortcoming. 

Another flaw in SPI is that it lacks the ability to identify regions with greater 

tendency to droughts, equally represents both wet and dry, requires knowledge of 

the local climatology (Zagar et al., 2011) which shows that the best quality of SPI is in 

its ability to identify temporal characteristics rather than the spatial ones.  

 

Another drawback is shown in a study by Hu and Willson (2000), highlighting that 

potential evapotranspiration is a valuable additional indicator since the index is 

loosely connected to ground conditions. The concept of contextual-use is key in 

tricking the index to work in ones favor.    

Monitoring of changes using remote sensing technology is widely used in different 

applications, such as land use/cover change, disaster monitoring, forest and 

vegetation change, urban sprawl, and hydrology. Surface water is one of the 
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irreplaceable strategic resources for human survival and social development. 

Reliable information about the spatial distribution of open surface water is critically 

important in various scientific disciplines, such as the assessment of present and 

future water resources, climate models, agriculture suitability, river dynamics, 

wetland inventory, watershed analysis, surface water survey and management, 

flood mapping, and environment monitoring (Rokni et al., 2014).  

2.2. The Normalized Difference Vegetation Index 

NDVI, commonly depicted as a satellite based remote sensing for drought 

monitoring began in the 1980s. It is a simple mathematical transformation of two 

commonly available spectral bands (visible red and near infrared). This index is 

most commonly used because it has a very strong relationship with several 

biophysical parameters of vegetation (Wardlow et al., 2012). 

The Normalized Difference Vegetation Index (NDVI) was agreed that it was the 

most efficient and simple metric to identify vegetated areas and their condition 

(Tucker, 1979). Normalization has many advantages, including minimizing 

directional reflectance and off-nadir viewing effects; reducing sun-angle, shadow, 

and topographic variation effects; and minimizing aerosol and water-vapor effects 

(Holben, 1986). This normalization enabled large-scale vegetation monitoring 

allowing comparison of different regions through time. 

 

Theoretically, NDVI values can range between −1.0 and +1.0. However, the typical 

range of NDVI measured from vegetation and other earth surface materials is 

between about −0.1 (NIR less than RED) for non-vegetated surfaces and as high as 

0.9 for dense green vegetation canopies (Tucker, 1979). 

Over the past years, the NDVI has been widely used in many terrestrial applications. 

A study conducted by (Gadiso, 2007) on drought assessment for the Nile basin using 

meteosat second generation for the upper Blue Nile region denotes the clear 

limitation of using remote sensing for drought monitoring. For this reason, this 

research attempts to use NDVI as a tool for its strength in terrestrial applications:  

land cover classification.  
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In the process of evaluation, a water body is commonly regarded as an individual 

land object to be distinguished from others (Wei Ji, 2007). According to the 

characteristics of spectral reflectance of water body and vegetation, the near-infrared 

band is the most useful in distinguishing the land-and-water boundary and ground 

vegetation (Zhen and Chen 1995). Wavelengths that range from 0.62 to 67 um and 

0.84 to 0.87 um, respectively, match bands 3 and 4 of the landsat Thematic Mapper 

(TM) images. These two bands were used to identify vegetation and water body.    

The most common NDVI classification given by USGS, 1998 category under Albedo 

values for different cover types followed the following ranges.  

Table 3: The NDVI classification (https://landcover.usgs.gov/landcoverdata.php) 

Cover Type NDVI – low range value 

Dense green leaf vegetation 0.5 – 1.0 

Medium green leaf vegetation 0.14 – 0.5  

Light green leaf vegetation 0.09 – 0.14 

Bare soil 0.025 – 0.09 

Clouds 0.002 – 0.025 

Snow and Ice -0.046 – -0.002 

Water -0.257 – -0.046  

Deep water -0.257 – -1 

 

Thenkabail (2016) provided under the section ‘Automated Methods of wetland 

Delineation and Mapping’ where it was confirmed that values in the range -0.25 to 

0.10 was regarded the appropriate threshold values that best delineated wetlands. 

This classification happens to generalize the scale denoted in Table 3.  

Rokni et al. (2014) compared different feature extraction techniques for surface water 

extraction from landsat data. These included the Normalized Difference Water Index 

(NDWI), Normalized Difference Moisture Index (NDMI), Modified Normalized 

Difference Water Index (MNDWI), Water Ratio Index (WRI), Normalized Difference 

Vegetation Index (NDVI), and Automated Water Extraction Index (AWEI). After 
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analysis, the results showed that the NDMI was incapable of extracting the water 

surface of the Lake under analysis, while the NDWI and NDVI provided the highest 

accuracy results. The NDVI was developed mainly for separating green vegetation 

from other surfaces. However, it did perform well for surface water detection. 

Hence, this research favored the use of this index keeping the environmental gain in 

mind.   

2.3. Identifying moisture characteristic areas – TWI 

In digital terrain analysis, there exist two major types of attributes: Primary and 

Secondary attributes. The primary attributes include slope, aspect, plan and profiles, 

flow path length and upslope contributing area.  The secondary attributes on the 

other hand are computed from two or more primary attributes and are important 

because they offer an opportunity to describe pattern as a function of process. 

(Wilson and Gallant, 2000) 

These attributes contribute towards redistributing water in the landscape and affect 

soil characteristics, distribution and abundance of soil water, susceptibility of 

landscapes to erosion by water, distribution and abundance of flora and fauna.  

These compound attributes may be derived empirically, or by simplifying equations 

describing the underlying physics of the processes. Topographic indices provide a 

knowledge-based approach to soil specific management and analysis and can be 

imbedded within the data analysis subsystems of a GIS. Because many GIS are based 

on a pixel or raster structure (i.e., grid cell), grid based methods of terrain analysis 

can provide the primary geographic data for GIS applications (Moore et al., 1993). 

One of the topographic indices that incorporates these primary attributes which is 

extensively used to describe effects of topography on the location and size of 

saturated sources areas of runoff generation is known as Topographic Wetness Index 

and is given by  

 ln
tan

sA
TWI



 
  

 
 (9) 

Where sA  is the specific catchment area (m2m-1 and   is the slope angle (degrees).  



 
 
 

23 | P a g e  
 

Some terrain indices account for factors other than topography that may influence 

soil moisture patterns, notably soil characteristics (Beven, 1986) or available energy 

from solar radiation (Moore et al., 1991). However, a more complex index does not 

necessarily ensure better predictions of soil moisture status. 

Wilson and Gallant (2000) defined the attributes involved in this computation and 

their significance. The slope is a measure of gradient and is significant in defining 

overland and subsurface flow velocity and runoff rate, precipitation, vegetation, 

geomorphology, soil water content and land capability class. It is a means by which 

gravity induces flow of water by measure of change in elevation in the direction of 

steepest descent.  

The upslope contributing area, often referred to as drainage/catchment area, is the 

area draining to catchment outlet and is significant in obtaining the runoff volume. 

The upslope contributing area was found to be the most important single factor 

explaining the spatial pattern of saturated areas in a study (Guntner, 2004).  

 

When calculating these areas from gridded DEMs, the contour length is 

approximately the size of a single grid cell, and in the simplest case, the contributing 

area is determined by the number of cells contributing flow to that single cell. 

 

Contributing areas are computed using different approaches as stated by Wilson and 

Gallant (2000). Among these, a short review on the single flow direction (D8) method 

and multiple flow direction method (FD8) is shown below. 

 

The single flow direction algorithm is frequently used for determining contributing 

areas, primarily because of its simplicity. The D8 algorithm developed by 

O’Callaghan and Mark (1984) allows flow from a cell to only one of eight nearest 

neighbors based on the primary flow direction. Because flow can accumulate into a 

cell from several upslope cells but only flow out into a single cell.  
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A study conducted in Cottonwood Creek (Wilson and Gallant, 2000) showed a 

successful use of the D8 method for computing the upslope contributing area. It was 

shown that the valley bottoms were clearly defined as a line of high contributing 

area cells, and the ridges were identified as areas of low contribution.  A flaw 

mentioned in various works regarding the single flow algorithm and also mentioned 

in this study is that this method tends to produce flow in parallel lines due to the fact 

that convergence of valleys is insufficient to force lines together. This significantly 

distorts the spatial pattern of the contributing area and results in values that are 

relativity unrealistic. 

 

The multiple flow algorithm on the other hand allows flow to be distributed to 

multiple nearest-neighbor nodes in upland areas above defined channels and uses 

the D8 algorithm below points of presumed channel initiation. The FD8 algorithm 

gives a more realistic distribution of the contributing area in upslope areas, while 

also eliminating D8’s parallel flow paths. (Wilson and Gallant 2000) 

 

TWI, as a combination of the two, defines areas of saturated soil typically found in 

geomorphologically convergent segments. The estimation of both upslope 

contributing area and specific catchment area are dependent on the estimation of 

flow direction(s) from a given node. As such, the index depends on the method by 

which the parameters are computed.  

The TWI equation incorporates the following seven key assumptions and 

limitations. (Beven and Kirkby 1979, Moore and Hutchinson, 1991) 

 

1. The approach assumes that the steady-state downslope subsurface discharge is 

the product of average recharge and specific catchment area. 

2. It assumes that the local hydraulic gradient can be approximated by local slope. 

3. It assumes that the saturated hydraulic conductivity of the soil is an exponential 

function of depth. 

4. It assumes steady-state conditions. 
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5. It assumes spatially uniform soil properties (in particular, soil transmissivity). As 

justified by Wood et al. (1990): the topographic component of the index 

dominates over the soil transmissivity at sub catchment scale. The spatial 

distribution of topographic attributes may capture the spatial variability of soil 

properties at the mesoscale because pedogenesis of the soil catena often occurs in 

response to the way water moves through the landscape in areas with uniform 

parent material.  

This assumption is one of the most important assumptions that most have 

debated on and even attempted to find a work-around for, but, a general 

limitation of the type of deterministic index approach is the difficulty of 

quantitatively including categorical attributes such as geological features (like 

fractures or strata boundaries). Lack of the capacity to easily obtain and signify 

these factors allows for the assumption of a uniform soil property. 

6. This approach implies that the locations in a catchment with the same value of 

the topographic wetness index will also have the same relationship between the 

local depth to the water table and the mean depth. 

7. This approach also implies that those points with the same value of the 

topographic wetness index will respond in a similar way to the same inputs. 

 

Index values may vary depending on the algorithm used for the calculations and by 

the manner in which topographic information is explored. For instance, the 

upstream contributing area can vary depending on whether or not topographic sinks 

were filled in the model. Wilson and Gallant (2000) in mapping Cottonwood Creek 

showed that a steady-state topographic wetness index depicts values over 8.5 to be 

areas of high contribution and areas below 5.5 to be low saturation areas. Commonly 

computed values fall within the range of 3-33, where smaller values indicate low 

saturation and high values indicate high water saturation levels.  

 

This research combines the best features of land use analysis described above 

through remote sensing and features of topographic attributes that define saturated 

soil to be an indicator of potential water harvesting points. 
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3. Data acquisition and processing 

The chart in figure 2 provides a preliminary outlook towards how the entire research is done. The 

summarized methodology defines the input required, the methodology behind each input and the 

corresponding output. Where the objects in the middle show the input, the objects on the left show the 

process required to bring about the objectives and the items on the right give the output at different 

levels of the work. The main objective of this research, i.e. developing a RWH map of Ethiopia that 

addresses drought was achieved by combining the best features of remotely sensed landsat analysis and 

secondary topographic attributes which were initially supported by drought indicators. 
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Figure 2: Methodological flow chart   
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Figure 3: The location map of the study area 

3.1. Description of study area  

Ethiopia is located in the northeastern corner of Africa between latitudes 3° and 15° 

North and longitudes 33° and 48° East. The country, which is the second most 

populous and the 9th largest in Africa, has an area of about 1.13 million km2 of which 

1.12 million km2 is land area and the remaining 7,444 km2 is water area (rivers, lakes, 

ponds etc.) (Berhanu et al., 2013).   

 

 

 

 

 

 

 

 

 

 

 

The sources of moisture that accounts for almost all rains in the country are the 

Indian and Atlantic Oceans. Southeasterly winds during the months February to 

May carry moisture from the Indian Ocean into the most parts of the country, while 

southwesterly as well as southeasterly winds bring moisture during June to 

September, the main rainy season (Degefu, 1988) As a general rule, rainfall should 

decrease as one moves from south to the north but this situation is modified by the 

topography of the country. 

 

Although Ethiopia’s complex relief defies easy classification, five topographic 

features are discernible. These are the Western Highlands, the Western Lowlands, 

the Eastern Highlands, the Eastern Lowlands, and the Rift Valley. The Western 

Highlands are the most extensive and rugged topographic component of Ethiopia. 

While the highlands are the main sources of water, the lowlands have expanses of 

flat lands through which the accumulated flows travel from the highlands to the 

https://www.britannica.com/place/Western-Highlands
https://www.britannica.com/place/Western-Lowlands
https://www.britannica.com/place/Eastern-Highlands
https://www.britannica.com/place/Eastern-Lowlands
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lower riparian countries (Bayissa et al., 2017). The transition between lowlands and 

highlands is commonly very sharp, resulting in a variety of climates, from very arid 

to very humid typical of equatorial mountains, with further differentiation at local 

scale. Moreover, precipitation varies with latitude, decreasing from south to north 

(Fazinni et al., 2015) with droughts occurring more frequently in all parts of the 

country for over 15 years (Viste et al., 2012). 

 

Drought was recorded as long as 250 BC, but the rate of reoccurrence and the 

destructive aftermath of droughts affecting different regions of the country are 

totally unprecedented (Milkiyas, 2011). For some parts of the country, “Kiremt” is 

the main rainy season in which about 85-95% of the food crop of the country is 

produced (Degefu, 1987). The “Kiremt” rain, which begins around the end of May, 

overtaking the “Belg” rain, in the southwestern part of the country, gradually moves 

in the northern and northeasterly direction until by mid-July it approaches the 

northern tip of the country. The “Kiremt” rain ceases in the north around the end of 

August, with the retreat of the Inter Tropical Convergence Zone (ITCZ), which 

gradually moves southward until by early October, most of the country comes under 

the influence of the northeasterly trade winds.  

 

Such a complex metrological framework is reflected by the distribution of annual 

precipitation. In the Danakil depression, it is constantly less than 250 mm but can be 

as low as 50 mm. By contrast, on the highlands, 2,000 mm can be locally exceeded. 

Similar values of annual precipitation, however, are recorded also in the 

southwestern lowlands, likely due to a larger contribution of the spring rains 

(Fazinni et al., 2015, Viste et al., 2012). Mean annual potential evapotranspiration 

varies between 1700 and 2600 mm in arid and semi-arid areas and 1600 and 2100 

mm in dry sub-humid areas (Adane Abebe et al., 2013). 
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Three sets of data of the entire domain are required for analysis of the separate 

indices used for this study; precipitation, land use and topographical data. The 

following section presents the specific datasets and associated fine tuning 

mechanism employed for each. 

3.2. Dataset 

3.2.1. Satellite data 

Daily gridded bias corrected CFSR precipitation dataset with 38Km spatial 

resolution starting from 1 January 1979 to 31 December 2010 that was corrected for 

bias was made available from a previous study (Berhanu et al., 2016) from which the 

raw data was obtained from http://rda.ucar.edu/pub/cfsr.html. From the available 

Remote Sensing (RS) rainfall products, the CFSR dataset was selected for this study 

for a few reasons.  

 

The CFSR differed from the earlier reanalysis in that the first guess fields were from 

a 6-h coupled forecast, and not from an integration of an atmosphere-only model 

forced by the SST (Wanget al., 2010). And on a study conducted on Lake Tana River 

basin, CFSR satellite rainfall estimate for both point-to-grid and areal comparisons 

had better captured the rainfall pattern than that of TRMM satellite rainfall accounts 

(Worqlul et al., 2014). 

Daily gridded raw precipitation data set with 22Km spatial resolution starting from 

January 1, 2011 to December 31, 2016 was directly accessed from the Global 

Precipitation and Climate Center (GPCC) under the framework of the Variability 

Analyses of Surface Climate Observations project. The data set was accessed via 

Netcdf format which has a complex multidimensional nature constituting of time 

bands, precipitation data as well as location in terms of longitude and latitude. This 

was manipulated in R to compile to 2232 grid point files as time series excel files 

using the following syntax. 

 

 

http://rda.ucar.edu/pub/cfsr.html
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# Script to convert netcdf to csv  
# install.packages("ncdf4") 
# load the library 
library(ncdf4) 
library(xlsx) 
#Set your working directory here where you saved the netcdf files 
setwd("C:/Users/etiopia/Desktop/files_needed/") 
# for multiple fies 
file = list.files("C:/Users/etiopia/Desktop/files_needed/",full.names=TRUE,pattern=".nc") 
print(file) 
# loop through the files in file 
 
v<-c(1:3790) 
for (i in v){ 
filename = file[i] 
data <- nc_open(filename) 
print(data) 
 
# getting the varaibles and data 
lon <- data.frame(ncvar_get(data,"lon")) 
lat <- data.frame(ncvar_get(data,"lat")) 
time <- data.frame(ncvar_get(data,"time"))  
pcp <- ncvar_get(data,"PRATE_L1_Avg_1") 
# transposing lat and converting it to data frame 
lat = t(data.frame((rbind(0,lat)))) 
# loop through the time intervals  
for (t in 1:4) 
{ 
  pcp_flux = data.frame(pcp[,,t]) 
  pcp_flux= cbind(lon,pcp_flux) 
 
  colnames(lat)<- colnames(pcp_flux) 
  pcp_flux= rbind(lat,pcp_flux) 
 
 # writing the file 
  write.table(pcp_flux, paste(filename,t,"pcp.csv",sep = ""), sep=",", col.names=F, row.names=F) 
} 
} 

 

A reconditioned digital elevation model of Ethiopia at 30-m for topographic 

classification as well as for use as a co-variable in interpolating rainfall was obtained 

from hydro-sheds USGS which can be accessed via 

(https://hydrosheds.cr.usgs.gov). 

Landsat imagery to be used for land use analysis for each month for specific years 

was downloaded from earthexplorer (https://earthexplorer.usgs.gov) and obtained 

via The Bulk Download Application (BDA): a tool for downloading large quantities 

of satellite imagery and geospatial data. According to accuracy and availability, all 

bands corresponding to the years was downloaded. Land sat imagery for all months 

in the year 2002 was obtained in the form Landsat 4/5 TM C1 – Level 1 and that of 

https://earthexplorer.usgs.gov/


 
 
 

31 | P a g e  
 

2015, in the form of landsat 8 OLI/TIRS C1 Level-1 with varying number of images 

covering the available spatial range.  

3.2.2. Weather station data  

Observed precipitation data was acquired from the NMA of Ethiopia for the period 

of 1979-2010.  This dataset is the long term mean monthly rainfall from 221 rain 

gauge stations irregularly distributed throughout the country. Additional monthly 

rainfall data for performance evaluation was also obtained for the years 2011-2015 

that was used for comparison at specific locations corresponding to the distinct 

rainfall regimes of the country.  

3.3. Data Processing and Analysis 

This research, as one objective, takes up the operational definition of drought which 

objectively defines criteria for drought start, end and severity for all preceding 

analysis. Thus, the research goes about the data processing in consecutive stages 

where one is input to the other. The first stage of the data manipulation is conducted 

with regards to input required for drought analysis. This involves making the 

satellite data usable for drought analysis.   

 

Even though the CFSR rainfall data was selected, it cannot be used directly as it is 

bound to have some bias. For this reason, the accuracy has to be evaluated and 

compared with ground truth rainfall measurement before using it for further 

analysis in this study.  

 

In order to maintain uniformity, a prior devised methodology used in bias correcting 

CFSR dataset called Linear scaling bias correction method was selected for this 

research. The linear Scaling (LS) bias correction technique, which is often preferred 

for magnitude bias correction, was previously selected to adjust the 32 year (1979–

2010) daily dataset (Berhanu et al., 2016). This method also aims to match the 

monthly mean of corrected values perfectly with that of the observed ones 

(Lenderink et al., 2007). 
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The Linear scaling bias correction operates with monthly correction values based on 

the difference between observed and raw data. The change factor for precipitation is 

a multiplier that is computed from the ratio of the monthly mean of the observed to 

the raw dataset (Berhanu et al., 2016) 
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   (10) 

Where Pd,cor is the corrected daily precipitation and Pd,raw is the daily raw 

precipitation data from CFSR. In this case, (Pm, obs) is the long-term mean monthly 

rainfall of observed data, and (Pm, raw) is the long-term mean value of the monthly 

raw CFSR rainfall data. 

 

For observed data, information on precipitation is available and was collected 

from ground based metrological gauging stations. Since ground-based rainfall 

observation station networks are unevenly and sparsely distributed, for area 

coverage, estimates were spatially interpolated using the co-kriging approach with 

elevation as a covariant to arrive at representation of spatially distributed rainfall 

fields. Co-kriging was selected because it offers a good representation of the spatial 

coverage of precipitation over the domain.  

 

For each month, elevation was used as a covariant to obtain a uniformly distributed 

mean monthly rainfall data corresponding to the available grid points.  

Mean monthly rainfall values from the observed dataset ranged from a minimum of 

zero to a maximum 385.78mm and the corresponding gridded raw rainfall amount 

ranged from zero to 83mm rainfall per month.  

 

All manipulations to compute the Linear Scaling factor for all 2232 grid points 

spatially covering Ethiopia as well as for correcting the raw precipitation 

corresponding to the grids was programmed using Visual Basic Application in 

Microsoft excel following the provided procedure. A number of VBA codes have 

been written to reach the results and a sample is shown. 
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Private Sub command() 
 
Dim sheet As Worksheet 
Dim wb As Workbook 
Dim wb2 As Workbook 
Dim jname As String 
Dim i As Integer 
 
Set sheet = Workbooks("Separated_o.xlsm").Worksheets("parameters") 
 
For i = 1 To 949 
 
'destination file name 
jname = sheet.Cells(i, 1).Value 
'activate sheet 
'Find the current path for this file to use in opening workbooks in the same directory 
    Dim rootPath As String 
    rootPath = ThisWorkbook.Path 
    On Error Resume Next 
     
'open the destination workbook 
Set wb2 = Workbooks.Open(rootPath & "\wbks\" & jname & ".xlsx") 
 
Workbooks("Separated_o.xlsm").Sheets(i).Activate 
'get file from list on the sheet 
 
   Dim fname As String 
   Dim j As Integer 
   For j = 2 To 5 
   'Workbooks("Separated_o.xlsm").Sheets(i).Activate 
fname = Sheets(i).Cells(j, 5).Value 
 
 
'file name is located on the 3rd column 
'process the data arrangement 
    Set wb = Workbooks.Open(rootPath & "\finished\" & fname & ".xlsx") 
  
'activate the sheet 
 
Sheets("Sheet3").Select 
Sheets("Sheet3").Copy Before:=Workbooks(jname & ".xlsx").Sheets(1) 
wb.Save 
wb.Close 
 
Workbooks("Separated_o.xlsm").Sheets(i).Activate 
Next j 
wb2.Save 
wb2.Close 
 
Next i 
End Sub 

 

After the correction, in order to maintain compatibility and to finalize the time series 

data, a theissen polygon was constructed to match the previous 949 grid points with 

38Km resolution with the current 2232 grid points with 22Km resolution. Simple 

averaging techniques were used for this conversion and a complete and continuous 
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38 years daily bias corrected CFSR precipitation dataset for 949 grid points with 

38Km resolution was obtained. 

 

A performance evaluation was carried out to prepare the precipitation data for 

drought characterization. Two sets of evaluations were carried out in this section. 

The first evaluation is simple but a necessary one that was conducted to check the 

accuracy of the program written to manipulate multiple data for multiple grid 

points. This evaluation, as mentioned in the literature section, focused on both 

frequency and time-series matrices. The comparison targeted the interpolated, mean 

monthly observed rainfall on one side, and the bias corrected daily data, converted 

to averaged monthly values on the other. If the results from the evaluation are 

acceptable, then the program coded for the purpose of bias correcting the data is 

accurate enough, which means monthly grid based comparisons can be conducted. 

 

The second comparison (i.e. Grid-based comparison) was done by preselecting 12 

representative grid points from the 12 rainfall regimes that apportion the study area. 

Following this, computation of the corresponding frequency and time series 

matrices, namely the mean, median, standard deviation, 90th percentile, NSE, RMSE 

and PBIAS was done.  

 

Data correction for Landsat imagery and DEM was not necessary as both are 

delivered with the necessary corrections, i.e. radiometric and geometric corrections 

and reconditioning respectively. 
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3.4. Spatio-Temporal assessment of Metrological drought  

Long-term record (1979-2016) daily CFSR precipitation dataset was accumulated to 

generate a monthly time series that was used to study the spatial and temporal 

extent of metrological drought in the country.  

 

The Standardized Precipitation Index approach was used for the analysis. Guttman, 

(1997) recommended that the SPI be used as a primary drought index over Palmers 

index, another contender in use as a drought characterizing tool, because it is simple, 

spatially invariant in its interpretation, and probabilistic so that it can be used in risk 

and decision analysis. It can also be tailored to time periods of concern to the user. 

On the contrary, it was noted that the other most commonly used tool, the PDSI, is 

very complex, spatially variant, difficult to interpret, and has an inherent fixed time 

scale of about 9-12 months. This implies that the spatial and temporal comparisons 

of PDSI values may be misleading and erroneous. For these reasons, SPI was the 

most appropriate and suited tool to use.  

 

It is apparent that there are indeed some limitations to using this index. Two key 

limitations i.e. consideration of evapotranspiration and lacking the ability to analyze 

multi-year drought conditions have been flagged in this study, which may have 

been necessary for drought analysis. This research did not quantify the 

Evapotranspiration when computing the drought index due to the fact that the main 

drought driving factor considered for water harvesting in this study is precipitation 

and for this level of analysis reliable ET estimates for the entire study period and 

study area are not available and/or are very hard to test and verify. 

Multi-year drought analysis was also not considered as small scale drought driven 

water harvesting structures are intended for a relatively short period of time. Hence 

individual-year based analyses were considered to be sufficient for this study.    

The SPI is computed in three stages making use of the index’s versatility of variable 

time scale computation. Yearly, seasonal and monthly SPI for all 949 grid point 
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values were computed using R programing. A sample syntax making use of the SPI 

package in R is shown.  

# install.packages("spi") 
# install.packages("xlsx") 
# load the library 
library(spi) 
library(xlsx) 
setwd("C:\\Users\\etiopia\\Desktop\\New Folder") 
v<-c(1:100) 
for(i in v){ 
filename = paste("sheet", format(i), ".txt", sep="") 
sheetname= paste("sheet", format(i), ".txt", sep="") 
data<-spi(3,filename,1979,2016) 
if(i==1)  
write.xlsx(data,"C:\\Users\\etiopia\\Documents\\ResultstoExcel\\Sheet(i).xlsx",sheetName=sheetname) 
else 
write.xlsx(data,"C:\\Users\\etiopia\\Documents\\ResultstoExcel\\Sheet(i).xlsx",sheetName=sheetname,
append=TRUE) 
i=i+1 
} 

 

Defining SPI for each grid point representing the spatial extent of the domain is 

highly tedious, hence a less demanding computerized program in R programming 

was used for all SPI computations following the procedure mentioned in the 

literature section where input is a precipitation time series and for which the output 

is the SPI converted back to excel format. The method follows the standard 

procedure which mimics computing z-score where the latter uses normal 

distribution and the prior uses Gamma distribution. The SPI-based drought classes 

proposed by McKee et al. (1993), were adopted in this study, because of their wider 

applicability to different regions of climatology (Kumar et al. 2009). 

  

3.4.1. Spatial drought assessment 

The spatial patterns of metrological drought were studied over the country within 

the study period. Since drought is a regional phenomenon, the point-based SPI time 

series values of each metrological station were interpolated using the co-kriging 

technique to assess the spatial extent of drought in the study area.  

Three SPI based analysis: yearly, seasonal and monthly analysis were done 

pertaining to the spatial drought assessment.   
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3.4.2. Yearly analysis  

Monthly precipitation data were summed to twelve month values in order to use as 

input in R. Emphasizing the relative context of drought, the program compares the 

consecutive twelve month sums with that of the preceding and following twelve 

months. This yearly SPI, based on McKee’s (1993) classification, was used to identify 

specific drought years from the long term record that will be used for further 

analysis. The identification was done on a spatial scale by converting the SPI values 

computed at each grid point to spatial products that show the percentage shares of 

the drought categories over the country.  

The performance of this Index was evaluated on how well it characterized the 

known historic drought years (i.e. 1980, 1984, 1995, 2002, 2009, and 2015) by cross 

referencing from previous studies and EM-DAT, the international disaster database 

which is compiled from different sources and can be accessed through 

(http://www.emdat.be/database) (Bayissa et al. 2015). For purposes of cross referencing, 

Table 4 has been summarized from the database. 

Table 4: EM-DAT The Emergency Events Database – Universite Catholique de Louvain (UCL) – 
CRED, D. Guha-Sapir – www.emdat.be, Brussels, Belgium - Summarized drought condition in 

Ethiopia 

Start date End date Location Disaster type 

/05/1983 //1984 Wollo, Gondar, Goe, Eritrea, Tigrai, Shoa, Harerge, Sidamo Drought 

/06/1987 //1987 Ogaden, Eritrea, Tigray, Wello,  Shewa, Gama, Gofa, Sidamo, 

Gondar, Bale 

Drought 

/10/1989 //1994 Northern Ethiopia, Eritrea, Tigray, Wollo, Gondar, Harerge Drought 

/02/1997 //1997 Borena, Bale (Oromiya state) South Ome zone, Somali state    Drought 

/09/1999 /12/2000 North Wollo, South Wollo, Oromia, Wag Himra districts (Amhara 

province), Southern district (Tigray province), Beneshangul 

Gumu, Gambela, Oromia, SNNPR, Somali provinces 

Drought 

//2003 //2004 Tigray, Oromia, Amhara, Somali, Afar provinces Drought 

/11/2005 //2006 Afder, Liben districts (Somali province), Gode zones (Shabelle 

district, Somali province), Borena district (Oromiya province) 

Drought 

/05/2008 /10/2009 Oromia, Somali, Amhara, Afar, Tigray, SNNPR provinces Drought 

http://www.emdat.be/database
http://www.emdat.be/
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/01/2009 /08/2010 Somali, Oromia, Afar, Tigray, Amhara, SNNP, Gambela provinces Drought 

/01/2011 /01/2012 Somali, Oromia, Afar, Tigray, Amhara provinces Drought 

//2012 //2012 Dire Dawa, Gambela, Hareri, Oromia, SNNPR, Somali, Addis 

Ababa provinces (Southern Ethiopia) 

Drought 

/09/2015 /04/2017 Somali, Afar, Oromia, Amhara, Nations du Sud provinces Drought 

  

The severity of the identified drought years were also analyzed according to the 

areal extent of the classification to choose those which were gravely affected based 

on McKee’s probability criteria shown in table 2.  

 

Even though SPI may be used to directly compare different locations, the practical 

implication of an SPI-defined drought which is the deviation from normal amount of 

precipitation, will vary from one place to another (Viste et al., 2012). In order to 

address this, and at the same time to confirm the accuracy of the SPI results, a plot of 

precipitation deviation from the normal value for identified drought years was 

conducted and plotted for spatial analysis. 

 

3.4.3. Spatio-temporal analysis to assess the spatial variability of drought 

frequency  

In order to identify the areas most frequently struck by drought, the frequency of 

occurrence of drought was analyzed using a trend. A trend line for the tendency of 

the frequency of occurrence of drought in the region was constructed that is 

represented by the grid points. The outcome of this analysis is either one of two 

things. Positive or negative trend, indicating less and more drought recurrence, 

respectively. Before reaching a conclusion regarding this, the trend was checked for 

statistical significance using the Mann-Kendall method. The Standardize MK 

statistic, Zmk was compared with the standardized normal distribution for a 95% 

significance level. 

 

Computational procedure follows the calculation of the Test statistics, S, Variance 

Var(S) and standardized MK statistic Zmk, given by:  
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Where the xj are the sequential data values  

n is the length of the dataset 

tp is the number ties for the pth value(number of data in the pth group) 

q is the number of tied values (number of groups with equal values/ties) 

 

The frequency of occurrence of each drought category was also computed for each 

grid at each time-scale by taking the ratio of the number of occurrences of drought of 

a particular category and time-scale to the total number of data years (Bayissa et al., 

2015, Edossa et al., 2009). This analysis was used to identify the areas that are most 

frequently struck by a specific type of drought. The classification was made 

according to Mckee’s range of values for each drought category (Mild, Moderate, 

Severe and Extreme) and for all 949 grid points spatially covering the study area. 

Values were interpolated using the kriging technique and the results were mapped 

for ease of understanding. 

 

3.4.4. Seasonal analysis 

The failure of the main seasonal rainfall in the respective regimes most often causes 

devastation since most agricultural practices are fully dependent on the seasonal 

rainfall (Bayissa et al., 2017). Based upon the findings of the initial analysis, the 

seasonal analysis of the selected drought years was done according to the three gross 

rainfall shape regimes of Ethiopia with peaking rainfall times of March/April and 

July/August for rainfall regime covering north, north east, central and eastern 
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Ethiopia; peaking rainfall at July/August for areas north, north west and central 

Ethiopia and peak rainfall time of March/April and October/November for the 

remaining spatial portion.  

 

Yearly analysis alone is not sufficient for characterizing the drought and hence the 

aim of this part of the analysis is to further assess the causes that led the year to be 

categorized under a major drought event.  

The hypothesis on which locating a plausible working source is based upon is that 

there is enough amount of rainfall available every year but the “when” and 

“amount” has not been properly monitored for devising a system that would be able 

to harvest rain water. Whether or not lack of precipitation was the cause of the 

recorded drought for the selected drought years was assessed in the seasonal 

comparison.  

 

In order to compute seasonal SPI, the monthly precipitation data for the distinct 

rainfall seasons were added to estimate the seasonal total precipitation for each grid 

point representing the domain. These seasonal sums were used to compute the SPI-3 

value in R using the same algorithm used for the computation of SPI-12. Expected 

results from this part of the analysis are addressed according to the expected 

peaking periods as mentioned at the beginning. 

 

3.4.5. Monthly analysis 

The drought months for the selected years and for representative grids for each 

rainfall regime was conducted to view the accuracy of the monthly SPIs. As was 

done for the prior two analysis, the monthly precipitation values were used as direct 

input for the program in R to obtain an SPI-1. As an additional interpretation key, 

graphical analysis was done for selected representative grid points corresponding to 

the distinct rainfall regimes to comprehend the similarity of the drought patterns 

with that of the recorded precipitation. The anticipated result from this analysis is to 

observe a close relationship between the SPI and actual rainfall. This was achieved 
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by cross referencing the constructed SPI-1 maps for the representative locations with 

that of the observed rainfall for that particular location.   

Drought events were also identified from the SPI-1 results where, by definition, it 

occurs anytime the SPI is continuously negative and reaches an intensity of -1 or less. 

Drought magnitudes for all stations were also computed by summing the 

corresponding negative one month SPIs. For this, the SPI-1 results were closely 

analyzed and tabulated. In doing so, due attention was given to the misperception 

created by the strong seasonality of precipitation. Meaning, dry climatology and 

drought in the sense of abnormally little precipitation may be confusing. For this 

reason, parallel to recording the drought event and computing the drought 

magnitude as well as duration, seasonality was addressed. 

 

3.5. Temporal Drought Assessment  

In the temporal drought analysis, duration of drought was assessed by making use 

of the monthly SPI results i.e. a third continuation of the analysis. Consecutively, the 

duration of the drought event was assessed using this same monthly SPI values.  

Duration of drought: the beginning of drought closely follows the onset of an 

extended period of unusually dry weather. It follows, therefore that the end of 

metrological drought should coincide with the time when some rather major and 

fairly abrupt readjustment in the large scale circulation pattern begins to produce 

weather which is normal or wetter and continues so for a significant length of time 

(Palmer, 1965). This analysis is required subsequent to seasonal assessment for 

purposes of identifying the actual dry period for which this thesis aims at providing 

a source for.  

 

At this point, the methodological framework meets the mid-stage where results from 

the analysis up-to now become necessary input for what comes next. If the initial 

hypothesis proves to be correct and that sufficient amount of rainfall is met for 

purposes of rainwater harvesting, then the continuation has value. Otherwise, 

another alternative would need to be sought.  According to the results obtained from 
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the initial analysis, rainwater harvesting is an applicable option. Hence, remotely 

sensed input is assessed by this research.  

 

3.6. Water harvesting points identification  

Water harvesting and conservation at basin, area, field or micro level can play a 

significant role in bringing sustainability to the water sector and, consequently, 

increase water availability in drought years.  

 

The following analysis is based on the theory that the location of variable source 

areas of runoff generation and the distribution of water are influenced by soil 

characteristics, topography, vegetation and weather. As such, Topographic Wetness 

Index was used to address the topographical aspect of the analysis and the 

Normalized Difference Vegetation index was used to analyze the soil and vegetation 

characteristics. Both, in combination were expected to address locations for water 

harvesting throughout the study area. Input datasets were integrated and analyzed 

using ArcGIS 10.2.2 as part of the process for locating suitable sites for surface water 

harvesting. 

3.6.1. Terrain Analysis - TWI 

Beven and Kirkby (1979) developed an algorithm for predicting pattern of soil water 

deficit from topography and soil hydraulic characteristics. As such, in this paper, the 

steady-state topographic wetness index was used to represent the spatial 

distribution of water flow and water stagnating across the study area. 

 

Locating saturated areas is highly impractical due to data limitations and lack of 

understanding or proper surveying of the governing processes at scales from plots to 

catchments. These data involve devising a highly parameterized approach that 

models governing processes defining the spatial and temporal distribution of soil 

moisture (Gunter et al., 2004). The second best thing to use for locating saturated 

areas is the use of terrain indices.  

 



 
 
 

43 | P a g e  
 

Topographic Wetness Index, to analyze the saturation capacity/lowest point/water 

holding capacity of the land that is purely based on topography is a function of the 

upstream contributing area and slope. It is based on a widely available DEM and 

was calculated using spatial analyst tools in ArcGIS.  

The TWI was manipulated in ArcGIS hydrology tool making use of functional 

inputs: flow accumulation and slope. These two attributes were computed 

separately in ArcGIS.  

 

Flow accumulation was used as a method of identifying the upstream contributing 

area and estimating the overland flow. Before watershed delineation, the DEM was 

pre-processed to fill any sinks and allocate flow direction. Flow directions between 

cells were established using arcHydro, an extension in ArcGIS. The raster from this 

output was used to compute the flow accumulation.  

 

From the different approaches for calculating the contributing area, D8 

(deterministic-eight node) was used implicitly defined in ArcGIS flow accumulation 

tool. With the use of this method, it follows that flow can accumulate into a cell from 

several upslope cells but only flow out into a single cell. Even with the defects in this 

method, the D8 algorithm is still frequently used for determining contributing area, 

due to its simplicity and its adequacy to delineate specific catchment boundaries. As 

such, this method was applied to this research as well.  

 

The popular formula for computing TWI is  

 ln
tan

TWI




 
  

 
 (14) 

Where   is the upslope contributing area per unit contour length or Specific 

catchment area. This is a measure of the potential area that can deliver water via 

lateral flow pathways and thus influence the soil moisture status. It is assumed that 

the larger the contributing area, the larger the incoming accumulated flow volumes 

and β is the local slope gradient for reflecting the local drainage potential.  
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This particular equation assumes steady-state conditions and uniform soil properties 

(i.e transmissivity is constant throughout the catchment and equal to unity – this is 

due to the fact that spatially varying transmissivity is rarely available except for 

small experimental catchments). Normally only topographic attributes are used to 

characterize soil water distribution.  

 

Due to sensitivity of TWI, significant changes than the actual case in the result of α 

may occur with varying upslope contributing area methods. To cater for this 

drawback, the computation for flow direction was repeated using the multiple flow 

algorithm to get a smoother result with less streaking effect and less flow 

partitioning. 

 

TauDEM (Terrain Analysis Using Digital Elevation Models) was the tool which 

fitted the task best. This tool was developed at Utah State University (USU) for 

hydrologic digital elevation model analysis and watershed delineation and may be 

obtained from http://hydrology.usu.edu/taudem/taudem5.0/. This method 

assumes that flow from the current position could drain into more than one 

downslope neighboring pixel (Cheng-Zhi Qin et al., 2009).  

 

The 30m DEM was initially projected and was manipulated in ArcGIS’ spatial 

analyst tool and was filled under hydrology. Using this as input, the flow direction 

was computed and consequently the flow accumulation denoted by α.   

Computation of β on the other hand was done by computing the slope with the 

surface tool in spatial analyst of ArcGIS from the same projected DEM which results 

in an output raster with slope in degrees. This was then converted to radians for 

manipulation in raster calculator in ArcGIS using this relationship:  

 
180

Slope
SlopeRad


   (15) 

Slope is depicted here as an index of the hydraulic gradient and the rate at which 

water is shed from a location.  From the mathematical form of the TWI, it can be seen 

that it’s value increases with specific catchment area and decreases with slope. 

http://hydrology.usu.edu/taudem/taudem5.0/
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Hence, the index is high in valley (high specific catchment area and low slope) where 

water concentrates, and low on steep hill slopes (high slope) where water is free to 

drain (Mackey, 2002). 

The flow accumulation raster was used in place of α and the slope raster was used in 

place of β to modify the equation for use in raster calculator into the following: 

 
2( _ )

ln
tan( ( ))

Flow accumulation Pixlesize
TWI

Slope rad

 
  

 
 (16) 

Another modification to this equation was made to account for undefined values for 

flow accumulation as well as for slope. Border pixel values have zero flow 

accumulation when used in ArcGIS, hence undefined output raster results are 

avoided by adding a unit magnitude during TWI computation. In a similar manner, 

slopes that reach a value of zero will also result, again, in an undefined pixel. A 

correction recommended for this was to add a tan function of an almost flat land to 

avoid division by zero. Having this in mind, the adjusted TWI computation follows 

the following formula: 

 
2( _ 1)

ln
tan( ( ))

Flow accumulation Pixlesize
TWI

Slope rad

  
  

 
 (17) 

For slope values approaching zero, the following formula was used:  

 
2( _ 1)

ln
"0.00565" tan( ( ))

Flow accumulation Pixlesize
TWI

Slope rad

  
  

 
 (18) 

Accordingly, the results were expected to be in the form of a raster as a combination 

of the upstream contributing area and slope, clearly signifying the soil water holding 

capacity. Once these results were obtained, re-categorization was required to group 

the values according to their representation. 

 

Regarding ranges of TWI, a relative classification was selected for this study based 

on previous works. Most works involved depend on the resolution of the available 

DEM and in computing topographic attributes, classify TWI on unit ranges with 

values of over 10 being labeled as large values. The TWI results of over 10 have 

shown to have higher flows upon review with reference to known lakes and water 

bodies. These locations, as mentioned before, are with lower slopes and are found 
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usually downstream of the watershed. Owing to this, they have characteristics such 

as higher potential for higher soil moisture hence are areas of recharge with green 

land cover due to the presence of soil moisture.   

Considering the factors that influence runoff generation and distribution as well as 

stagnation, it is safe to say that the Topographic Wetness Index covers a major 

portion. Nevertheless, consideration of vegetation in terms of land use can make the 

hypothesis on which locating water resources is based on more solid. Some 

parameters not considered in TWI will also get a chance to be influential. 

 

Primarily, wetlands are topographical lowlands and hence the DEM data offer a 

significant opportunity to delineate lowlands from uplands as discussed previously 

for manipulation through terrain analysis using Topographic Wetness Index.  

Considering the second input: remote sensing satellites at different spatial, spectral, 

and temporal resolutions provide an enormous amount of data that have become 

primary sources, being extensively used for detecting and extracting surface water 

and its changes in recent decades (Rokni et al., 2014). To make use of these methods 

is to keep up with the current norms and exploit these desirable features as 

additional input for locating water harvesting points. 

 

3.6.2. Land-use Analysis 

More than 40 multispectral remote sensing based indices have been developed and 

used to monitor water and vegetation properties. Among these, NDVI (Rouse et al., 

1974) is the most widely used source of satellite data (Rulinda et al., 2010), which is 

commonly calculated by using image data from polar orbiting satellites that carry 

sensors that detect radiation in red and infrared wavelengths (Fensholt et al., 2006). 

The NDVI was developed mainly for separating green vegetation from other 

surfaces. However, it also performed well for surface water detection (Rokni et al., 

2014).  
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GIS techniques were used to extract satellite data as well as for use in the mosaicking 

and analysis of the remotely sensed imagery. These near real-time products 

generated were obtained for NDVI computation and are available at 30m spatial 

resolution and were obtained via Geo-TIFF format. Depending on the type of landsat 

imagery, the bands required for NDVI computation were filtered and used.  

 

For landsat 4/5 Thematic Mapper, bands 3 and 4 corresponding to Red and Near 

Infra-Red respectively, were filtered for the year 2002, and for landsat 8 OTI, bands 4 

and 5, again, corresponding to Red and Near Infra-Red were filtered for the year 

2015.  

To prepare the input satellite images for further processing, and considering that 

necessary corrections were included in the data, the images of each year were 

mosaicked to generate new images covering the entire country. 

Raster calculator in ArcGIS was used to transform the raw satellite data into NDVI 

values, to create a raster image that gives a measure of vegetation type, amount, and 

condition on land surfaces.  

 

After completing the pre-processing of the satellite images, the NDVI values of the 

images were calculated in raster calculator using the following formula 

 
NIR R

NDVI
NIR R

 
  

 
 (19) 

Where R (0.4–0.7 mm) and NIR (0.75–1.1 mm) are reflectance in red and near 

infrared bands of the satellite imageries, respectively. 

 

For visual interpretation of water bodies, the near-infrared (NIR) band is usually 

preferred, because NIR is strongly absorbed by water and is strongly reflected by the 

terrestrial vegetation and dry soil (Sun et al., 2012). Thus, band 5 of Landsat data was 

selected in this study due to its higher ability to discriminate water and dry/land 

areas. 
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According to the initial drought analysis, the worst case drought scenario that 

surpassed the dry threshold in magnitude as well as extent was frequently seen in 

months January and February. Hence, the two months were selected for NDVI 

computation. Needless to say, all months were computed and checked against the 

SPI values to reach this conclusion. NDVI computation for landsat 8 imagery in 

ArcGIS’ raster calculator follows:  

 
5 4

5 4

Band Band
NDVI

Band Band

 
  

 
 (20) 

This was classified according to (USGS 1998) classification table.  

Calculations of NDVI for a given pixel always result in a number that ranges from 

minus one (-1) to plus one (+1). Values greater than 0.5 indicate dense vegetation, 

whereas values lower than 0.1 indicate near zero vegetation such as barren area, 

rock, sand, or snow (Tucker, 1979). The classification was done according to the 

ranges shown in Table 3.  

 

Table 5: Wider NDVI classification range 

Cover Type NDVI – range value 

Dense green leaf vegetation 0.85 – 1.0 

0.7 – 0.85 

0.5 – 0.7 

Medium green leaf 

vegetation 

0.25 – 0.5 

0.09 – 0.25 

Light green leaf vegetation 0.09 – 0.14 

Bare soil 0.025 – 0.09 

Clouds 0.002 – 0.025 

Light water bodies -0.046 – -0.002 

Water bodies -0.257 – -0.046 

Deep water bodies -0.257 – -1 
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Keeping this in mind, the NDVI was reclassified to eleven sub values to see how 

much area was covered by each, and to perfectly observe the contrasting difference. 

Following this, a land-water threshold was manually applied to classify the images 

into distinct classes shown in Table 5. From which “light green leaf vegetation”, 

“clouds” and the most obvious category, “water bodies” were selected as the most 

favorable options for the required water availability.  

Light green vegetation was selected as favorable since density of forest is less and at 

the same time it would be an area with sufficient amount of soil water. Clouds in 

this paper were selected because these specific areas exhibited behaviors of a 

swampy area and were cross referenced to real time global images to confirm this. 

Alongside this confirmation, studies in wetland mapping have recommended the 

use of the range -0.25 to 0.1. These were regarded as areas that would be ideal for 

locating potential water sources next to actual identified lakes. Upon this deduction, 

the classification was further reduced to amplify the specific classes for this study 

and the results are depicted in the following chapter. 

Table 6: Finer NDVI classification 

Cover Type NDVI – range value 

Dense green leaf vegetation 0.5 – 1.0 

Medium green leaf vegetation 0.14 – 0.5  

Light green leaf vegetation 0.09 – 0.14 

Bare soil 0.025 – 0.09 

Swampy areas/wet lands 0.002 – 0.025 

Water Bodies -0.046 – -1 

 

At this stage, separate, yet desirable features of both land use and terrain analysis 

have been completed. What follows next is joining the desirable features from the 

two separate analysis using an overlay mechanism that is fit to be manipulated in 

ArcGIS.  
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3.6.3. Water Harvesting Categories 

The final step was to combine the various factors in order to identify the most 

suitable sites for water harvesting. Multiple overlay mechanisms were considered 

for locating those areas that fell under the same desirable category. TWI values of 

over 15 (for the sake of selecting a narrowed yet most desirable range) and NDVI 

values of “light green vegetation”, “swampy areas” and “water bodies”. Weighted 

overlay was the initial consideration but it resulted in lesser flexibility in the output 

raster. Hence, it was replaced with the normal overlay in raster calculator tool that 

was used to select values that corresponded to both features. 

Results from this overlay were also reviewed to see the suitability of the method and 

appropriate alternatives for mapping were devised.  

Recalling the aim of this study, locating potential water harvesting positions is the 

final objective with the intention of targeting small areas. To reiterate, smaller 

locations have the advantage of being operationally efficient. They are flexible, close 

to the point of use, and require relatively few parties for management. Because of 

these attributes, they can be responsive to demands and the supply to demand 

mismatch has been shown to be minimized (Keller et al., 2000). The great operational 

benefit of small storages is their rapid response time: i.e. they can respond rapidly to 

precipitation runoff, often refilling several times a year. For these reasons, several 

categories of rainfall harvesting targets that satisfied small reservoir requirements 

were identified and quantified.  

 

Needless to say, all possible locations from the chosen overlay mechanism were 

identified using ArcGIS select features by location tool. It is from this, that 

manageable small-sized potential water harvesting locations were again filtered out. 

This target was identified using the select by attributes tool in ArcGIS to spatially 

locate them, obtaining the last and main objective of this study. 

 

In order to make this study more descriptive, a last portion of computing volume of 

identified locations was carried out. This capacity determination was manipulated 
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through ArcGIS surface volume computation tool by extracting the area from the 

identified locations. 

 

At this point, the most suitable sites for water harvesting have been identified in 

three categories; namely Primary, Secondary and Tertiary sources. From the 

identified zones, area ranges as well as number of locations were listed. As an 

illustration, an assessment of the capacity of small and manageable water harvesting 

zones was undertaken to determine the number and volume of water it would be 

able to hold. 

 

Computation of reservoir volume is considered vital in order to give the output 

meaning. This was made possible by using ArcGIS surface volume computation tool 

on the identified locations. This paper will not pass without mentioning a key 

concept that may compromise volume computation in ArcGIS. This is, Lidar and 

Micro wave signals that are the source of any Digital Elevation Model available do 

not penetrate water. Hence capacity determination for locations with deep waters 

usually requires information from bathymetry. With this in mind, volumes for 

locations that correspond to Primary water harvesting sources (mentioned in results 

and discussion) were directly accessed from a capacity analysis report. 

 

On the contrary, volume computation through the use of DEM will work on shallow 

locations but it is also unreliable, to some scale. Most DEMs have  2 meter vertical 

accuracy and unless the DEM is corrected with sonar data, the accuracy might be 

questionable. Considering this declaimer and the practicality of water harvesting 

ponding structures, an average depth of 4m was taken for all small scale water 

harvesting locations to compute the volume in ArcGIS. 
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4. Results and Discussion 

4.1. Performance evaluation of precipitation Dataset 

Performance evaluation was conducted based on the method’s ability to reproduce 

the observed precipitation. To check the accuracy of the obtained result, a grid based 

comparison of observed and corrected CFSR for all grid points in Ethiopia was 

plotted using the co-kriging technique to describe the spatial resolution of the 

precipitation.  

Similar to (Berhanu et al., 2016), statistical measures for the comparison of observed 

and corrected rainfall was conducted for annual scale as well as for selected grids. 

Figure 4 shows the annual spatial comparison.  

 

 

 

 

 

 

 

 

 

Frequency based comparison for selected representative grid points between the 

observed mean monthly rainfall used as input for bias correction and its bias 

corrected counterpart was also done as shown in Table 8.  

Table 7: Country wide comparison of mean monthly rainfall for selected representative grid points 

  Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. Mean 

Mon. 

1510.3 157.0 846.2 1319.0 330.4 811.3 432.3 0.5       

CFSR Mon 1551.0 199.7 845.1 1336.8 297.9 822.3 446.8 0.5 15.73 1.00  0.13 

Figure 4: Spatial comparison of mean Observed and Corrected Rainfall 
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Figure 5: Statical evaluation of corrected rainfall data 

Table 7 and Figure 5 show perfect correlation (R2 = 0.99) of the long term observed 

and bias corrected mean monthly values guaranteeing the accuracy of the written 

programs, hence the use in conducting further analysis. 

 

Monthly statistical comparison for selected representative grid points was conducted 

and shown using frequency and time series matrices in Table 8. The statical 

measures indicated in the table contain three comparisons: ground observed 

precipitation, raw CFSR precipitation and corrected precipitation data through 

monthly linear scaling.  

The performance evaluation showed satisfactory results where most focus was given 

to the NSE value, which at almost all grid points was 0.99, indicating an almost 

perfect fit. Graphical representations of these comparisons showing how the raw 

data was corrected to mimic the observed data is shown under Appendix A. 
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Table 8: Statistical measures of mean monthly raw and corrected CFSR and observed datasets 

Adama (obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 218.5 7.3 70.6 200.9 9.1 51.3 72.5 1.0       

CFSR raw 17.1 0.5 4.4 12.6 0.6 1.9 5.4 1.2 92.5 -0.72 93.7 

CFSR Mon 215.8 8.9 71.4 202.7 9.9 54.6 71.8 1.0 8.50 0.99 -1.09 

Assaita (obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 37.5 1.8 12.8 28.5 3.4 9.1 11.3 0.9       

CFSR raw 53.4 1.3 16.0 48.5 2.3 8.3 18.2 1.1 8.5 0.98 -24.9 

CFSR Mon 52.8 3.5 16.6 40.8 4.7 10.0 15.9 1.0 4.52 1.00 -29.86 

Bahir Dar (obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 424.8 1.9 116.3 350.2 2.7 52.5 147.4 1.3       

CFSR raw 222.9 0.1 45.8 189.0 0.5 8.7 80.1 1.7 18.2 0.52 60.6 

CFSR Mon 394.6 3.0 111.9 334.4 3.3 56.2 137.5 1.2 1.88 0.99 3.80 

Degahbure (obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 86.4 2.8 27.7 81.4 3.6 11.6 31.5 1.1       

CFSR raw 71.0 2.4 23.4 58.4 2.6 16.7 22.4 1.0 2.6 0.95 15.6 

CFSR Mon 86.0 3.1 29.5 82.4 4.4 13.5 30.7 1.0 1.02 0.99 -6.71 

DireDawa (obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 117.8 12.1 51.7 97.6 16.7 38.9 36.5 0.7       

CFSR raw 47.3 4.9 22.7 44.2 6.2 19.3 15.9 0.7 6.9 0.35 56.2 

CFSR Mon 124.0 11.4 55.0 100.6 16.5 46.8 38.3 0.7 1.38 0.97 -6.36 

Kebri Dehar (obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 87.0 0.3 22.8 68.3 0.5 6.9 30.2 1.3       

CFSR raw 53.2 0.7 17.9 50.9 1.2 6.4 20.1 1.1 2.6 0.95 21.5 

CFSR Mon 85.7 1.1 23.2 69.1 1.9 6.9 29.9 1.3 0.88 0.99 -1.87 

HagereSelam (obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 161.0 43.3 106.6 156.5 47.4 120.5 47.5 0.4       

CFSR raw 316.8 18.1 148.7 281.7 18.7 157.1 112.9 0.8 16.1 -2.00 -39.4 

CFSR Mon 176.3 36.6 107.3 170.2 39.5 117.2 52.3 0.5 1.88 0.96 -0.62 

Jimma (obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 212.6 35.4 126.6 209.9 38.3 122.1 72.3 0.6       

CFSR raw 305.3 37.2 167.4 301.9 41.0 171.3 108.3 0.6 10.2 0.53 -32.3 

CFSR Mon 234.1 35.3 129.2 231.1 36.0 119.7 79.0 0.6 2.08 0.98 -2.10 

Jinka (obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 177.0 46.5 105.7 161.5 53.4 102.2 41.5 0.4       

CFSR raw 386.3 35.9 158.3 360.5 41.5 116.8 119.0 0.8 17.2 -3.33 -49.8 

CFSR Mon 178.4 47.2 106.9 161.0 52.3 105.2 41.1 0.4 1.88 0.95 -1.12 

Mekele (obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 226.8 0.7 50.2 180.4 3.6 26.8 76.7 1.5       

CFSR raw 401.9 1.4 78.2 337.3 1.9 13.4 144.6 1.9 13.1 0.20 -55.6 

CFSR Mon 209.6 3.4 50.6 174.2 4.0 29.0 70.9 1.4 1.30 0.99 -0.79 
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Negele (obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 212.0 5.0 58.2 138.7 5.4 24.1 68.5 1.2       

CFSR raw 416.2 16.3 150.3 401.2 20.4 91.1 151.5 1.0 22.8 -2.22 -158.1 

CFSR Mon 209.2 12.3 65.6 148.4 15.9 34.7 66.6 1.0 1.55 0.99 -12.75 

Sinana(obs.) Max Min mean 90th Q. 10th Q. Median SD CV RMSE NSE PBAIS 

Obs. 154.4 20.5 74.7 141.1 21.8 61.9 49.4 0.7       

CFSR raw 194.6 13.7 69.6 143.5 19.6 55.5 54.7 0.8 5.6 0.59 6.7 

CFSR Mon 164.8 20.2 76.7 131.9 22.6 67.6 48.0 0.6 1.61 0.97 -2.68 

 

The derivation of these monthly precipitation values is highly critical as the main 

and only input for drought analysis is monthly precipitation for all time scales. 

4.2. Spatio-temporal evaluation of metrological drought 

4.2.1. Spatial drought evaluation 

After computation of the SPI, the resulting areal extent was expressed as a 

percentage of the country in drought conditions. The spatial analysis was done for 

the three time periods mentioned in the methods section and are presented in detail.   

Table 9: Sample SPI-12 Values for the study period at representative grid points 

 

SPI-12 Jinka Jimma Bahir Dar Hagereselam Mekelle Adama Negele Sinana Assaita Dire Dawa Deghabure Kebri Dahar

1980 -1.59 -0.76 -0.21 -0.67 -0.67 0.07 -1.59 -1.59 -0.28 -1.38 -0.76 -0.59

1981 0.43 0.28 0.67 -0.14 0.67 2.20 1.91 1.38 0.97 0.86 0.43 1.59

1982 0.00 -1.09 -0.43 -0.14 -0.51 1.22 1.22 2.20 1.59 2.20 2.20 2.20

1983 1.91 2.20 0.67 0.76 2.20 1.22 -0.51 2.20 2.20 2.20 -0.36 -2.20

1984 -2.20 -2.20 0.36 -0.28 -2.20 -0.43 -1.59 -0.86 -2.20 -0.07 -1.38 -1.22

1985 -0.21 0.14 -0.43 -0.28 1.38 -1.91 -0.07 0.59 -1.09 2.20 2.20 -0.14

1986 0.28 0.67 0.67 0.76 2.20 1.09 0.36 2.20 0.59 2.20 1.38 -1.59

1987 0.00 -0.43 0.14 0.00 0.21 0.59 -0.51 -0.21 -1.09 1.59 2.20 0.28

1988 2.20 -0.97 0.36 0.76 2.20 1.09 0.36 2.20 2.20 2.20 1.38 0.14

1989 2.20 1.22 -0.36 1.91 -1.59 1.22 1.91 1.59 2.20 2.20 0.28 1.59

1990 1.91 1.91 -1.38 1.91 -1.09 -0.97 2.20 1.22 0.59 0.59 -0.07 0.00

1991 0.76 -0.28 -0.86 1.38 2.20 -0.14 -0.36 0.00 -0.97 2.20 0.86 -0.07

1992 0.07 1.09 -0.36 0.36 0.07 1.09 -0.51 -0.86 2.20 -0.59 -1.09 -0.36

1993 -0.36 1.59 0.00 0.76 -0.51 1.09 -0.51 1.38 1.22 0.14 -0.28 0.14

1994 1.91 -0.97 -0.14 0.76 2.20 1.09 0.43 0.51 1.22 0.21 0.67 2.20

1995 0.51 -0.28 -1.22 0.36 2.20 -0.97 0.14 -0.59 1.22 -0.67 -0.28 1.59

1996 1.91 2.20 0.43 0.76 2.20 2.20 -0.43 -0.28 1.22 1.59 -0.21 0.28

1997 2.20 1.59 0.00 2.20 1.91 1.09 2.20 2.20 0.86 2.20 2.20 2.20

1998 2.20 1.91 2.20 2.20 2.20 1.22 1.22 1.59 2.20 1.09 2.20 -0.14

1999 1.59 0.97 0.36 2.20 -0.28 -1.09 1.59 0.51 -2.20 -0.59 -1.22 -0.21

2000 1.38 1.38 0.36 2.20 -1.22 -1.59 -0.14 0.51 -0.21 -2.20 -0.59 0.21

2001 0.07 2.20 -0.43 0.76 -1.22 -0.14 0.28 -0.67 -0.43 -1.09 -1.38 -0.14

2002 0.51 0.43 -2.20 -0.07 -2.20 -2.20 1.22 -0.76 -2.20 -2.20 2.20 2.20

2003 0.59 -1.22 -0.59 -0.21 -1.22 1.09 0.36 -0.86 -0.36 -0.28 -1.22 2.20

2004 1.59 1.22 -2.20 -0.07 -2.20 -0.97 0.21 0.14 -2.20 -0.59 -0.59 1.91

2005 0.59 0.67 -0.43 0.07 -2.20 -0.97 0.43 0.59 -2.20 -0.28 2.20 2.20

2006 2.20 0.67 0.36 -0.14 -0.86 -1.91 1.91 1.59 0.86 -0.21 -0.28 2.20

2007 1.91 0.00 -0.43 -0.14 0.86 1.09 0.28 -0.28 -2.20 0.21 -0.14 0.67

2008 0.59 0.59 -2.20 -0.97 -2.20 -0.86 -0.14 -0.59 -2.20 -0.76 -1.22 1.59

2009 0.28 0.00 -2.20 -0.14 -2.20 0.51 0.28 -0.59 -2.20 -0.67 -2.20 -0.14

2010 2.20 2.20 -0.36 2.20 2.20 2.20 2.20 2.20 0.59 2.20 2.20 0.76

2011 0.76 0.67 -0.36 0.00 2.20 1.09 -0.14 -0.59 -1.59 -0.07 -0.43 0.67

2012 0.59 -0.28 -0.59 0.21 -0.07 1.09 -0.51 -0.07 -0.36 -0.21 0.43 2.20

2013 1.91 0.59 0.36 0.76 -0.97 1.09 2.20 2.20 0.86 2.20 2.20 2.20

2014 2.20 2.20 0.36 0.76 1.09 1.09 0.97 2.20 2.20 1.09 0.97 1.91

2015 0.51 -0.51 -1.22 -0.21 0.07 1.09 2.20 1.59 0.14 -0.59 2.20 -0.51

2016 2.20 0.97 -1.91 0.00 1.59 1.09 -0.51 1.59 2.20 -0.28 -2.20 2.20
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Table 9 depicts the calculated numerical values of the 12 month SPI for twelve 

selected grids within distinct rainfall regimes in the domain for the study period. 

Correspondingly, for temporal analysis, the output from this numerical computation 

in R resulted in a highly descriptive graphical representation of these selected grid 

points without breaking continuity and in a moving SPI fashion as shown in 

Appendix B.   

The fact that the plot is of a 12 month cumulative result is seen in its smooth 

partitioning from one threshold value to the next. No sudden or major variation in 

SPI values is seen in the plot and is mostly desired for long term drought analysis 

and in this case, for identifying major drought periods. Parallel to temporal 

identification, the spatial mapping was particularly appealing due to the fact that it 

showed the drought phenomenon every year vividly.   

Figure 6 shows the spatial extent of the drought during the years in the study period. 

The major drought years are also depicted for ease of identification and 

corresponding figures showing SPI-12 results for representative locations are also 

indicated. The maps are presented so as to show that 1 corresponds to extreme 

drought and 8 corresponds to extreme wet periods. 
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Figure 6: The spatial patterns of the annual SPI (SPI-12) for the periods of 1980-2016. The red rectangular boxes in the figure shows the historic drought events 
in the country 
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4.2.1.1. Evaluation of drought severity 

The drought severity of the 12-month SPI was analyzed via multiple criteria which are 

stated here.  

Criteria 1: The first interpretation of supposed drought years was to, on a general scale, 

look at the drought condition according to McKee’s (1993) classification. This stage of 

evaluation is purely based on visual analysis of the spatial drought map of the years in 

the study period. Table 10 summarizes the pre-selected ‘potential’ drought years and 

their percentage shares of study area. From this, years with percentages of drought of 

over 50 were identified as potential drought years. According to the table, years 1980, 

1984, 1995, 2002, 2009 and 2015 have been identified as drought years. 

Table 10: Percentage shares of dry and wet events for study area for pre-identified years 

Year 1980 1984 1995 1999 2000 2002 2009 2011 2012 2015 

Drought 91.11% 93.15% 53.26% 49.33% 44.31% 58.09% 66.49% 49.63% 51.00% 58.20% 

Wet 8.89% 18.57% 46.43% 50.67% 55.69% 41.91% 33.51% 50.37% 49.00% 41.80% 

 

Criteria 2: The follow-up interpretation was made based on comparison of the severity 

conditions. According to McKee’s (1993) classification, the probability of falling under 

Mild, Moderate, Severe and Extreme drought conditions are 34.1%, 9.2%, 4.4% and 2.3% 

respectively. Values surpassing these probabilities show an extreme event for the 

drought condition in question. Accordingly, 1984, 1995, 1999, 2002 and 2009 have large 

extreme value coverage compared to the mentioned classification. When compared to 

the other extremity, wetness, years 1984, 2002 and 2009 showed great difference.  

 

Similarly, all except the year 2012 have resulted in large severe values. When compared 

to severe wetness, years 1980, 1984, 1995 and 2009 show large difference. Moderate 

drought conditions were also analyzed in years 1980, 1984, 2009 and 2015 showing 

moderate drought cases that have passed the indicated threshold. Upon self-

comparison, large deviation was seen in the years 1980 and 1984. 
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Moving to the mild category, 1980, 1984, 2012 and 2015 have equaled and surpassed the 

threshold set.  

Table 11: Percentage shares of Drought anomalies by drought category 

Category 1980 1984 1995 1999 2000 2002 2009 2012 2015 

Extreme Drought 0% 11.72% 3.05% 6.47% 1.78% 33.04% 16.34% 0% 1.82% 

Severe Drought 18.82% 16.63% 8.99% 6.86% 6.67% 4.89% 17.73% 1.42% 8.56% 

Moderate 

Drought 

35.11% 18.65% 8.99% 7.94% 6.81% 3.57% 9.81% 5.37% 12.64% 

Mild Drought 37.18% 46.15% 32.58% 28.06% 29.04% 16.60% 22.61% 44.21% 35.18% 

Mildly Wet 8.47% 14.01% 36.78% 26.70% 25.68% 18.49% 22.75% 38.05% 27.76% 

Moderately Wet 0.42% 2.29% 6.40% 10.44% 11.13% 7.10% 4.38% 6.88% 7.33% 

Very Wet 0% 1.38% 2.87% 7.94% 9.78% 6.02% 2.01% 3.42% 4.90% 

Extremely Wet 0% 0.89% 0.39% 5.60% 9.10% 10.29% 4.36% 0.65% 1.80% 

 

Even though SPI measures wet events equally effectively as dry events, realistically, the 

effect a specified distribution has on the number, length and intensity of dry events is 

perhaps more important to users of the SPI (Guttman et al., 1999). Hence, Figure 7 

shows only the severity of the drought condition summarized for selected drought 

years. 
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Figure 7: The percentage areal extents of the annual drought for the selected historic drought years 

As a way of realizing the practical implication of an SPI-defined drought which is the 

deviation from normal amount of precipitation, a spatial plot of precipitation deviation 

from the normal value for identified drought years was conducted and plotted for 

spatial analysis in Figure 8. 
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Figure 8: Precipitation deviation from normal for selected drought years in Ethiopia 
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All six subsections in Figure 8 show the comparison of yearly rainfall of uniformly 

distributed girds covering Ethiopia with the normal rainfall computed for the 38 study 

years at each grid. These results are plotted in blue with “+” sign denoting positive 

deviation, and in red with “-“ sign denoting negative deviation. The deviation of actual 

precipitation from the expected normal precipitation gives a fairly direct measure of the 

departure of the moisture aspect of the weather from normal.  

 

Upon these comparisons, the major historical drought events within the study period 

(1979-2016) as mentioned earlier were identified. These were cross referenced with EM-

DAT (shown in Table 4) whilst considering that the reports consisted of prolonged 

droughts. This means that it addresses the long term drought conditions such socio-

economic and hydrological droughts. Years 1980, 1984, 1995, 2002, 2009 and 2015 were 

selected as major drought years in Ethiopia. The consistency of the SPI indicated goes 

well with the identified historic drought periods and is in-line with previous studies 

(Viste et al., 2015, Bayissa et al., 2017). The index clearly indicated the drought and wet 

years in the country.  

 

4.2.2. Temporal drought assessment 

The results from the yearly analysis show that there is an occurrence of mild to extreme 

drought in all identified historic drought years.  Severity levels are highly variable and 

all representative grids recorded a minimum SPI of -2.2 during the historic drought 

years except 1980 where the minimum recorded value was -1.914. (Shown in Table 9) 

 

The years 1980 and 1984 for all regions have values that fall under mild to extreme 

drought conditions, whereas all regions in 2002 and 2009 with the exception central and 

south central parts of the study domain, experienced moderate to extreme drought 

conditions. Years 1995 and 2015 had mild drought magnitudes in half of the regions, 

whereas the remaining half was characterized by wet conditions.  
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4.2.2.1. Drought Frequency  

A plot of SPI values against the study periods was drawn for frequency analysis. 

According to figure 9, regions central and southern parts of the domain exhibit less 

drought frequency as the years progress whereas the remaining regions have an 

increasing drought occurrence trend. The Man-Kendall trend test was checked for 

statical significance for all representative grid points and the trend was only statistically 

significant at the 95% confidence level for grid points represented by the cities Kebri 

Dahar, BahirDar and Jinka.  

To complement this evaluation, spatio-temporal procedures were also carried out. 

Shown in Figure 9, tabulated (in Appendix D) and graphically represented, are 

parameters: the test statistics S, the variance Var(S), and the Standardized MK statistic 

Zmk computed for the mann-kendal trend test for 95% confidence along with the trend-

line drawn for each representative station. 
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According to the spatio-temporal analysis for spatial variability of drought frequency, 

in Figure 10 (a) the annual frequency shows that the relative frequency of mild drought 

at a 12-month time step was high in the northwest and south-central parts of the study 

area. Relatively moderate drought conditions shown in Figure 10 (b) were also observed 

in the south-east, north-west and a small coverage in north-eastern location. The 

frequency of occurrence of extreme droughts (Figure 10(d)) further shows that the north 

eastern and north central parts of the study area are struck more frequently by extreme 

droughts at an annual scale. 

 

Figure 9: Time series plots of 12-month SPI for representative grids with trend analysis  
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Figure 10: The frequency of occurrence of mild, moderate, severe, and extreme droughts 
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4.2.3. Seasonal drought evaluation 

The 3-month numerical SPI results were computed in R for all 949 grid points covering 

the study area and are spatially mapped in Figure 11. Ranges depicted are again based 

on McKee’s classification criteria, where a value of 1 symbolizes extreme drought and 

that of 8 symbolizes extreme wet conditions. 

 

 

  

Figure 11: Spatial patterns of 3-month SPI (SPI-3) for identified drought years in the country 
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Indicated in the methods, this was used as a means to analyze the seasonality of 

drought in the study area, to assess the availability of precipitation and assess the 

condition over the three major rainfall regimes. 

 

This analysis only revealed patterns in all selected drought years that correlate with the 

distinct rainfall regimes A, B and C. One keen observation seen in this analysis basing 

the yearly SPI maps is that reducing the time scale allows one to see into the specific 

months for signs of year round drought events. This was observed more specifically 

during the years 2000-2009 which showed continuous drought characteristics on a 

yearly scale. The necessity of the 3-month SPI surfaces here, i.e. when reviewed on a 

seasonal scale, showed that there was sufficient amount of rainfall available and that 

the source to be found needs to sustain the area for not more than one season.  To 

further support this conclusion, the monthly analysis results are depicted next.  

 

 

4.2.4. Monthly drought evaluation 

 

Based on the indicated methodology, the monthly SPI results were interpolated and 

mapped. The classification, based on Mckee’s (1993) classification criteria shown in 

Table 2 was used for this analysis as well with 1 indicating extreme drought and 8 

indicating extreme wet characteristic. It was seen that similar situations were common 

in practically all the identified drought years and one key discovery was made. Shown 

in Figure 12 , is a sample display map for year 1984. The remaining maps are under the 

appendix section. 
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Coupled with Figure 11, seasonal SPI of the year 1984, it is seen in this analysis that the 

expected rain during the “Kiremt” season (i.e. July and mainly August) was 

inconsistent as compared to what is anticipated. On the contrary, much of the rainfall 

induced SPI is of high wetness severity and extremity and is indicated in months May 

(inscribed in blue) and partially in June. Considering 85-95% of crop production takes 

place in the “Kiremt” season (Degefu, 1987) and that 70% of the total runoff is expected 

Figure 12: Spatial patterns of monthly SPI for drought year - 1984 
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in that same season, the means of capturing this rain could potentially be by the use of 

water harvesting.  

It is obvious that previous forecasting have not been reliable enough to indicate specific 

drought affected months as a preparedness means and the seasonality has randomness 

as seen in Figure 12. Expected peaking periods in the expected rainfall regimes appear 

to either lead or lag. If it were, however, possible to harvest this water in months June 

and May, it will be able to fill the gap seen in lacking months (August).  

 

 Figure 13: Spatial patterns of monthly SPI for drought year - 2010 
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A typical representation of expected rainfall denoted by the SPI-1 value is shown in 

Figure 13 for the sake of comparison. As can be seen, compared to May, August is 

considered the wettest month, where under normal expected circumstances, water 

would be available in that season. The high deviation in this characteristic leads us to 

lean towards rainwater harvesting when situations like those observed in 1984 and the 

other drought years transpire. 

The following analysis reviews each drought year and corresponding 1-month SPIs. 

From the results of monthly SPI values, the drought magnitudes for drought year - 1980 

of the representative grids is shown in Table 12. Year 1980, for fifteen representative 

grid point values, resulted in noticeable maximum drought magnitudes of 4.81 and 4.37 

with a corresponding drought duration of four months in months January to April. 

Whereas the summer season in all locations did not show any abnormality to be 

dubbed a drought event.  

Table 12: Monthly SPI values and drought magnitude for drought year 1980 

January February March April May June July August Sept Oct Nov Dec 
Drought 

Magnitude 

Rainfall 

Regimes 

-1.59 -1.22 -0.76 -0.21 1.09 0.51 0.43 0.86 0.36 -0.36 -0.86 -1.91 3.79, 3.13 R5-B3 

-0.59 -0.97 -0.21 0.28 0.21 0.59 0.97 0.76 0.36 0.07 -0.97 -0.97   R4-B4 

-1.38 -1.59 -0.97 -0.86 1.59 0.21 -0.28 -0.76 -0.43 0.07 -1.09 -1.91 4.81, 3.00 R4-C2 

-1.38 0.36 -0.21 0.28 -0.14 0.97 1.91 1.59 0.43 0.07 -0.51 -0.97 1.38 R3-B5 

-0.28 0.14 -0.14 0.00 0.07 1.09 1.91 1.59 0.43 -0.07 -0.28 -0.28   R2-B6 

0.14 0.14 0.14 1.38 0.14 0.36 1.59 2.20 0.28 0.14 0.14 0.14   R3-A5 

-1.22 -1.59 -0.97 -0.59 1.09 0.97 -0.14 0.00 1.59 1.38 -1.38 -1.91 4.37, 3.30 R4-A3 

0.21 -0.51 0.43 -0.51 -0.51 1.09 1.91 1.59 -0.51 -0.51 -0.51 -0.51   R3-A4 

-1.09 -1.09 -0.97 -0.76 1.38 -0.14 0.14 0.59 0.43 -0.21 -1.09 -1.09 3.90, 2.38 R3-C4 

-0.86 -0.86 -0.86 -0.86 -0.51 1.22 0.86 0.21 0.67 0.36 -0.86 -0.86   R3-A3 

0.00 0.67 0.28 -0.07 -0.07 1.09 0.97 2.20 -0.07 -0.07 -0.07 -0.07   R2-A6 

-0.86 -0.21 -0.97 -0.14 0.14 0.43 1.59 1.38 1.09 -0.28 -1.91 -1.22  3.42 R2-C5 

0.07 -0.51 -0.07 -0.51 -0.51 0.86 1.91 0.67 -0.14 -0.51 -0.51 -0.51   R1-A5 

-1.59 -0.51 -1.22 -0.76 1.22 -0.21 0.14 0.28 1.38 -0.36 -1.38 -1.59 4.09, 3.33 R2-A5 

-1.38 -0.97 -1.59 -0.36 1.59 -0.86 -0.59 -0.51 0.67 1.22 0.97 -1.59 4.30 R1-C6 
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From the conditions on the ground, it may be difficult to distinguish between a dry 

climatology and drought in the sense of abnormally little precipitation. The strong 

seasonality of precipitation adds to the misconception. A dry summer season has more 

severe effects in the north than in the south, where not much rain can be expected to fall 

at that time of the year (Viste et al., 2015). Accordingly, Figure 14 better clarifies the 

effect of expected precipitation with reference to the corresponding locations. 

To understand the patterns in the figures, the reader is advised to refer to the analysis 

conducted by (Berhanu et al., 2016) for assimilating the regional rainfall classifications 

used in this research. 

R4-C2 and R3-C4 experienced a two month drought event in months November and 

December which is a result of rainfall deficiency in the preceding months. Similarly in 

locations R2-A5 and R1-C6, where peaking rainfall was expected to be on months 

March and April, a drought with a magnitude of 4.09 and 4.3 respectively occurred in a 

drought event that that lasted for four months.  

 

 

Figure 14: Spatial pattern of 1-month SPI with grid based temporal distribution for drought year 1980 
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The background maps used for representing cases in the distinct rainfall regimes was 

taken from the 12-month SPI analysis shown in Figure 6. 

Year 1984 was characterized for recording the largest drought event that lasted from 

January to August at station R4-C2 that summed to 7.66 in magnitude, which normally 

expects a peaking rainfall in months March/April. A similar situation was seen in R4-

A3 and R1-A5, where months March/April and July/August were expected to result in 

the peak rainfall.  

Table 13: Monthly SPI values and drought magnitude for drought year 1984 

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 
Drought 

magnitude 

Rainfall 

Regimes 

-1.22 -1.91 -0.86 -0.51 0.43 0.21 1.22 0.28 0.21 -1.09 -0.51 -1.09 4.51, 2.68 R5-B3 

-0.28 -0.97 0.14 0.00 2.20 1.91 1.59 0.59 0.51 -0.97 -0.28 -0.97   R4-B4 

-1.91 -1.59 -1.59 -0.67 -0.43 -0.43 -0.43 -0.59 0.86 -0.43 -0.43 -0.43 7.66 R4-C2 

-0.43 -1.09 0.07 0.07 2.20 2.20 2.20 0.59 0.86 -1.09 -0.67 -1.09 1.52 R3-B5 

-1.38 -1.38 0.28 -0.43 0.43 0.86 1.38 0.97 0.86 -0.51 -0.43 -0.07 2.91, 1.01 R2-B6 

0.14 0.14 0.14 0.14 0.86 0.76 0.86 0.76 0.28 0.14 0.14 0.76   R3-A5 

-1.91 -1.91 -1.38 -0.59 1.59 -0.07 -0.14 1.91 1.38 -0.28 -1.09 -1.09 5.80, 2.45 R4-A3 

0.21 0.21 -0.51 -0.51 1.59 0.97 0.59 0.51 1.22 -0.51 -0.51 0.43 1.02 R3-A4 

-1.09 -1.09 -0.86 -0.36 1.91 0.28 0.07 -0.28 1.38 0.43 -0.76 0.21 3.39 R3-C4 

-0.86 -0.86 -0.86 -0.86 1.91 1.91 -0.21 0.00 0.97 -0.36 -0.51 -0.59   R3-A3 

0.00 -0.07 -0.07 -0.07 2.20 -0.07 0.86 0.76 0.36 -0.07 -0.07 -0.07   R2-A6 

-0.51 -0.59 -1.22 -0.28 1.38 -0.28 0.43 0.07 0.67 -1.91 -0.59 0.51 2.60, 2.50 R1-A5 

-0.07 -0.43 -0.51 0.28 2.20 -0.51 1.22 0.59 1.91 -0.51 -0.51 -0.51   R2-A5 

-1.59 -0.76 -0.97 -0.97 0.97 -0.51 0.86 0.07 1.59 -0.51 -0.51 -0.97 4.29 R2-C5 

-1.38 -1.22 -1.38 0.14 0.97 -0.67 -0.36 -0.51 1.22 1.22 0.36 -0.59 3.99 R1-C6 

 

Table 13 shows the values of the 1-month SPI computed in R and arranged to 

conceptually cover the entire study area through representative grid points. According 

to the definition of drought magnitude, SPI values that are below zero and that have 

reached a value of -1 qualify as a drought event. Accordingly, drought magnitudes are 

depicted in the column following the monthly SPI values.  The drought magnitude was 

computed by summing the negative SPI values in an identified drought event. 
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For ease of interpretation, the one-year time series comprising of the monthly SPI values 

are plotted according to the respective rainfall regimes. The SPI patters are in line with 

the expected rainfall patters for the respective regimes in terms of modality and peaking 

season. The map shows a mono-modal graph for the north-west, central-west and 

western parts of the study domain and a bi-modal pattern with differing peaking 

months for the remaining regimes. 

 

Figure 15: Spatial pattern of 1-month SPI with grid based temporal distribution for drought year 1984 

 

With a similar tabularization technique, year 1995 was also represented by the 

representative rainfall regimes and the drought magnitudes were computed accordingly. 

Table 14 summarizes the 1-month SPI for drought year 1995. The largest drought magnitude 

observed in this analysis is 3.143 at one station but did not qualify as an anomalous event 

owing to what was previously mentioned regarding the distinction between a dry 

climatology and drought and what qualifies as a dry period with respect to the seasonality 

of rainfall in the study area. 
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Table 14: Monthly SPI values and drought magnitude – Year 1995 

January February March April May June July August Sept Oct Nov Dec 
Drought 

Magnitude 

Rainfall 

Regimes 

-1.38 -1.09 -0.67 0.28 0.43 0.43 1.59 1.59 1.22 0.14 -0.43 -0.51 3.143 R5-B3 

-0.97 -0.97 0.51 0.00 0.36 0.28 0.97 2.20 0.59 0.28 0.28 -0.76   R4-B4 

-0.67 0.00 -0.28 0.97 0.76 -0.43 0.36 -0.43 0.67 1.22 0.36 -0.51   R4-C2 

-1.22 0.00 0.28 -0.21 0.36 0.07 1.38 0.97 0.59 -0.21 -0.43 -0.43 1.221 R3-B5 

-0.28 -0.07 0.00 -0.28 0.97 -0.07 1.59 0.36 0.97 0.00 0.07 0.14   R2-B6 

0.14 0.14 0.28 0.14 0.14 0.28 0.86 1.09 0.59 0.14 0.14 0.14   R3-A5 

-1.91 -0.14 -0.28 0.97 -0.14 -0.14 -0.07 0.43 1.59 0.51 -0.43 -0.51 2.336 R4-A3 

-0.14 0.36 -0.28 0.21 1.38 -0.51 1.38 0.67 0.36 0.36 -0.51 -0.51   R3-A4 

-1.09 -0.51 -0.51 1.38 0.67 -0.36 0.43 0.07 1.09 1.09 -0.07 -0.59 2.102 R3-C4 

-0.86 -0.67 0.21 -0.21 -0.59 -0.86 0.36 -0.21 1.59 0.51 -0.86 0.51   R3-A3 

-0.07 0.67 1.22 0.76 -0.07 1.38 1.59 0.36 0.21 -0.07 -0.07 -0.07   R2-A6 

-0.76 0.67 1.09 -0.51 0.21 -0.21 1.91 1.09 0.14 0.59 -0.14 0.00   R2-C5 

-0.51 -0.21 1.22 -0.51 0.00 -0.28 1.91 0.14 -0.43 -0.51 -0.51 0.59   R1-A5 

-1.59 -0.51 0.21 1.59 0.97 -0.36 -0.21 0.07 0.07 0.97 -0.97 -0.97 2.102 R2-A5 

-1.59 -1.38 1.22 2.20 1.22 -0.51 -0.67 -0.36 0.07 1.91 0.07 -0.67 2.970 R1-C6 

 

 

Figure 16: Spatial pattern of 1-month SPI with grid based temporal distribution for drought year 1995 
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The largest recorded drought magnitude in year 2002 was 3.83 which showed 

anomalies in months May and June, which is a result of rainfall deficiency during the 

preceding months. Representative grid R3-C4 also showed an anomalous event in the 

month November where a peaking rainfall period was expected to occur.  

Table 15: Monthly SPI values and drought magnitude – Year 2002 

January February March April May June July August Sept Oct Nov Dec 
Drought 

magnitude 

Rainfall 

Regimes 

-0.51 -1.59 -0.51 -0.51 -0.43 1.91 0.28 1.91 0.43 0.21 -0.86 -0.43 3.55 R5-B3 

-0.43 -0.97 -0.43 0.00 0.28 0.97 0.76 0.97 0.28 0.28 -0.51 0.00   R4-B4 

-0.28 -0.67 0.86 0.36 1.91 0.21 -0.67 -0.51 -0.43 0.67 0.00 1.22   R4-C2 

-0.59 -1.09 -0.14 0.28 -0.14 0.51 0.59 0.59 0.07 -0.67 -1.09 0.07 1.76 R3-B5 

-1.38 -1.38 0.14 -0.67 -0.28 0.28 0.59 0.97 0.07 -0.43 -0.67 -0.43 2.77 R2-B6 

0.14 0.14 0.14 0.86 0.14 0.21 0.51 0.59 0.14 0.14 0.14 0.14   R3-A5 

-0.67 -1.91 -0.43 -0.14 1.59 0.51 -0.14 1.91 -0.36 0.51 -0.86 -0.43 3.16 R4-A3 

-0.14 -0.51 1.09 0.00 -0.51 -0.51 -0.51 -0.14 0.07 -0.51 -0.51 0.51   R3-A4 

-0.36 -1.09 -0.86 0.43 1.91 0.07 -0.14 0.67 0.21 1.91 -1.09 0.67 2.30 R3-C4 

0.86 -0.86 0.97 1.91 -0.59 -0.76 -0.76 0.00 -0.14 -0.21 -0.86 0.21 2.29 R3-A3 

0.36 -0.07 0.28 0.00 -0.07 -0.07 0.21 0.67 1.91 -0.07 -0.07 0.36   R2-A6 

-0.43 -1.59 -0.97 1.59 0.14 0.07 -0.59 0.14 0.36 1.59 -0.97 -0.97 2.99 R2-C5 

0.67 -0.59 0.36 0.67 -1.91 -1.91 0.36 0.67 0.67 -1.91 -1.22 1.09 3.83 R1-A5 

0.28 -0.36 0.28 1.91 -0.51 -0.51 -0.51 0.28 0.28 -0.51 -0.51 0.28   R2-A5 

-1.38 -1.09 -0.59 1.91 0.67 -0.59 -0.76 -0.67 0.67 2.20 1.22 0.07 3.06 R1-C6 

 

Majority of the spatially mapped result of the year 2002, similar to the previous ones, show 

a common pattern that mimics the rainfall pattern well, especially in the southern part of the 

study domain where bi-modal patterns are common.  
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Figure 17: Spatial pattern of 1-month SPI with grid based temporal distribution for drought year 2002 

More than half the representative grids have shown anomalous events in the year 2009 

with relatively smaller drought magnitudes as compared to the other years. The results 

are summarized in table 16 with a graphical representation following it. 

Table 16: Monthly SPI values and drought magnitude – Year 2009 

January February March April May June July August Sept Oct Nov Dec 
Drought 

Magnitude 

Rainfall 

Regimes 

-0.51 -0.07 0.14 -0.07 0.07 0.21 0.14 1.22 0.43 0.67 -0.86 0.36 0.58 R5-B3 

-0.97 -0.67 -0.43 0.14 0.28 0.28 2.20 0.97 0.28 0.43 -0.86 0.00 2.07 R4-B4 

-0.21 -1.09 0.43 1.38 1.22 -0.43 -0.97 -0.43 -0.36 0.67 -0.43 1.59 1.30,2.18 R4-C2 

-1.38 0.00 -0.14 -0.21 -0.28 0.36 1.38 0.97 0.28 0.07 -0.59 0.00 1.38 R3-B5 

-0.28 -0.28 -0.28 -0.28 -0.28 -0.07 1.91 0.97 0.21 -0.21 -0.28 -0.28 0.56 R2-B6 

0.14 0.14 0.14 0.14 0.14 0.14 0.97 0.76 0.59 0.14 0.14 0.14 0.28 R3-A5 

-0.86 -1.38 -0.28 0.21 1.59 -0.43 -0.43 -0.36 -0.28 0.43 -0.97 0.21 2.53 R4-A3 

0.21 -0.51 1.38 0.36 -0.14 -0.36 1.91 -0.14 -0.07 0.97 -0.51 -0.07 0.51 R3-A4 

-0.43 -0.36 1.38 1.91 1.38 -0.07 0.21 0.43 0.67 0.97 -0.76 0.07 0.79 R3-C4 

-0.14 -0.86 2.20 0.86 -0.76 -0.86 0.00 -0.43 0.07 1.22 -0.43 0.67 1.00 R3-A3 
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January February March April May June July August Sept Oct Nov Dec 
Drought 

Magnitude 

Rainfall 

Regimes 

0.00 0.00 0.36 0.00 0.28 -0.07 0.36 1.22 -0.07 0.00 0.00 -0.07 0.00 R2-A6 

-1.22 -1.22 -0.43 0.59 0.36 -0.86 0.00 -0.59 0.28 0.97 -0.59 -1.22 2.87 R2-C5 

0.14 -0.21 0.36 0.43 0.14 -0.76 0.28 0.67 -0.21 0.59 -0.14 -0.28 0.07,0.42 R1-A5 

0.36 -0.51 1.91 -0.43 -0.51 0.00 0.59 0.00 -0.51 0.00 0.21 -0.07 0.15 R2-A5 

-1.09 -0.67 -0.76 1.38 0.86 -1.09 -0.67 -1.09 -0.59 1.59 0.21 -1.09 2.52 R1-C6 

 

 

Figure 18: Spatial pattern of 1-month SPI with grid based temporal distribution for drought Year 2009 

Year 2015 was characterized by the seasonality effect. Expected peaking times west and 

north-west of the domain had led by a month thereby resulting in relatively low SPI 

results during the peaking season. The largest drought magnitude was observed in the 

southern region with 5.74. Similar to previous deductions, this too was expected for the 

period July – September, as the regime expects a dual peak during months March/April 

and October/November. The results are summarized and tabulated in Table 17. 

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12

R5-B3

-2

-1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12

R4-B4

-2

-1

0

1

2

1 2 3 4 5 6 7 8 9 10 11 12

R4-C2

-2

-1

0

1

2

1 2 3 4 5 6 7 8 9 10 11 12

R3-B5

-1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12

R2-B6

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12

R3-A5

-2

-1

0

1

2

1 2 3 4 5 6 7 8 9 10 11 12

R4-A3

-1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12

R3-A4

-1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12

R3-C4

-2

-1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12

R3-A3

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12

R2-A6

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12

R2-C5

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12

R1-A5

-1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12

R2-A5

-2

-1

0

1

2

1 2 3 4 5 6 7 8 9 10 11 12

R1-C6



 
 
 

78 | P a g e  
 

Table 17: Monthly SPI values and drought magnitude – Year 2015 

January February March April May June July August Sept Oct Nov Dec 
Drought 

magnitude 
Rainfall 
Regimes 

-1.09 -1.22 -0.28 -2.20 0.43 2.20 -0.97 0.28 0.43 -1.59 -0.97 -0.51 4.79, 3.07 R5-B3 

-0.86 -0.97 0.14 -0.28 0.51 2.20 0.43 0.51 0.28 0.28 0.28 0.00   R4-B4 

-0.36 -1.09 1.91 -2.20 1.22 2.20 -2.20 -1.59 -1.59 -0.36 0.59 0.28 1.44, 5.74 R4-C2 

-1.38 -1.09 0.00 0.00 0.36 0.67 0.36 0.86 0.00 0.36 -0.14 -0.51 2.47 R3-B5 

-0.28 -0.28 0.21 0.14 0.21 0.97 1.09 1.38 0.00 0.28 0.00 -0.07   R2-B6 

0.14 0.14 0.86 0.86 0.86 0.86 1.38 1.22 0.59 0.76 0.59 0.59   R3-A5 

-1.59 -0.97 1.38 -0.43 0.59 0.67 -0.14 -0.28 -0.43 -0.14 -0.36 -0.36 2.56 R4-A3 

-0.51 -0.14 1.22 0.97 0.97 0.76 1.38 1.91 0.07 0.67 0.21 0.21   R3-A4 

-0.97 -0.43 1.91 1.91 1.59 0.14 1.91 2.20 -0.43 1.09 0.36 0.14   R3-C4 

-0.21 0.51 0.97 0.59 0.97 0.86 1.91 0.97 0.86 0.67 0.21 0.21   R3-A3 

0.00 0.59 1.22 1.38 1.22 0.36 0.28 0.28 0.59 1.38 1.22 1.22   R2-A6 

-0.97 -0.43 0.36 1.09 0.36 0.36 0.36 0.36 0.86 -0.43 -0.43 0.14   R2-C5 

-1.09 0.00 0.67 0.67 0.67 0.67 1.22 1.59 0.67 0.14 0.59 0.67 1.09 R1-A5 

0.59 0.14 0.86 0.36 0.28 0.14 0.97 1.22 0.76 0.28 0.51 0.36   R2-A5 

-1.09 -1.22 0.28 0.07 1.38 -0.21 -1.22 -0.97 0.14 0.86 0.67 0.07 2.31 R1-C6 

 

Figure 19: Spatial pattern of 1-month SPI with grid based temporal distribution for drought year 2015 

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

1 2 3 4 5 6 7 8 9 10 11 12

R5-B3

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

1 2 3 4 5 6 7 8 9 10 11 12

R4-B4

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

1 2 3 4 5 6 7 8 9 10 11 12

R4-C2

-1.50

-1.00

-0.50

0.00

0.50

1.00

1 2 3 4 5 6 7 8 9 10 11 12

R3-B5

-0.50

0.00

0.50

1.00

1.50

1 2 3 4 5 6 7 8 9 10 11 12

R2-B6

-1.00

0.00

1.00

2.00

1 2 3 4 5 6 7 8 9 10 11 12

R3-A5

-2.00

-1.00

0.00

1.00

2.00

1 2 3 4 5 6 7 8 9 10 11 12

R4-A3

-1.00

0.00

1.00

2.00

3.00

1 2 3 4 5 6 7 8 9 10 11 12

R3-A4

-2.00

-1.00

0.00

1.00

2.00

3.00

1 2 3 4 5 6 7 8 9 10 11 12

R3-C4

-1.00

0.00

1.00

2.00

3.00

1 2 3 4 5 6 7 8 9 10 11 12

R3-A3

0.00

0.50

1.00

1.50

1 2 3 4 5 6 7 8 9 10 11 12

R2-A6

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

1 2 3 4 5 6 7 8 9 10 11 12

R2-C5

-2.00

-1.00

0.00

1.00

2.00

1 2 3 4 5 6 7 8 9 10 11 12

R1-A5

-2.00

-1.00

0.00

1.00

2.00

1 2 3 4 5 6 7 8 9 10 11 12

R2-A5

-2.00

-1.00

0.00

1.00

2.00

1 2 3 4 5 6 7 8 9 10 11 12

R1-C6



 
 
 

79 | P a g e  
 

The monthly analysis clearly depicted specific months that were drought prone and 

those that had enough rainfall. Furthermore, this analysis was used as a basis to select 

the driest month for further continuation of the study.  

The spatial patterns of metrological drought using SPI-1 were mapped over the country 

for selected years in the study period. Spatial coverage of drought over the study 

domain was again obtained using the Kriging technique and is shown in Appendix C. 

In a similar manner, ranges of SPI values are mapped with 1 denoting extreme drought 

and 8 denoting extreme wet period. 

 

Upon review of the entire months of the selected drought years, months January and 

February surpassed the threshold indicated (i.e showing dry characteristics) and were 

selected to proceed with further analysis.  

 

1.1.1. Summary of Ethiopia’s prominent drought periods, 1979-2016 

The analysis performed in this study revealed several important facts about dry and 

wet periods in Ethiopia: 

1. For identified drought years, there was no lack of precipitation (as indicated by 

positive SPI), 

2. Lag/lead of peaking months resulted in deviations from the ordinary that 

characterized the year a “drought year”, 

3. The potential water resource need only supply for anomalous events (i.e. a 

maximum of one season) 

Table 18 confirms that the recorded drought years exhibit the six lowest total 

precipitations in the country. The remaining years in the study period are also shown 

cross referenced with the corresponding years. 

 

Table 18: Average precipitation amount - 1979-2016 

Year   Spatial Average of Year   Spatial Average of 
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Annual Rainfall (mm)  Annual Rainfall (mm)  

1979 884.38 1998 1188.39 

1980 626.94 1999 827.28 

1981 938.31 2000 840.75 

1982 1016.07 2001 775.27 

1983 1039.70 2002 661.60 

1984 657.45 2003 799.94 

1985 850.05 2004 768.63 

1986 967.69 2005 876.21 

1987 904.33 2006 949.66 

1988 1052.78 2007 880.46 

1989 1009.97 2008 833.02 

1990 845.64 2009 729.89 

1991 828.38 2010 1528.37 

1992 848.42 2011 813.65 

1993 852.03 2012 804.48 

1994 921.14 2013 1002.17 

1995 740.02 2014 969.55 

1996 1024.93 2015 763.28 

1997 1336.63 2016 900.75 

 

848 mm/yr long term average precipitation amount (936.4 Bm3 volume wise) is 

available per year according to aquastat database which can be accessed through 

http://www.fao.org/nr/water/aquastat/countries_regions/ETH/index.stm.  

 

Considering the total surface area of the country, the values shown in Table 18 confirm 

this figure and lay foundation for the hypothesis that follows identification of sources: 

There is adequate rechargeable resource, what is required is a delivery system. The total 

http://www.fao.org/nr/water/aquastat/countries_regions/ETH/index.stm
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capacity of the country goes up to a volume of 31.5Bm3 (FAO aquastat database 2014) 

which only covers 3.5% of what is available.   

 

The problem of water shortage common for all drought years stems from the 

seasonality of rainfall and the lack of infrastructure for storage to capture excess runoff 

during flood seasons. It is based on this background that the rainwater harvesting holds 

significance. The remainder of this research presents an alternative to conventional 

water supply considering the fact that any land anywhere can be used to harvest 

rainwater.  

 

A quantitatively based classification done by Berhanu et al., (2013) showed the high 

runoff generation area of the country has large coverage, indicating the availability of 

high surface water potential. If it were possible to devise a mechanism or further 

increase the storage capacity to capture, in the long run, this much available 

precipitation and surface runoff, it will be enough to sustain the country for the 

identified anomalous event (i.e. one season) and then some. 

 

The next section of this research discusses the methods used to identify these patches of 

areas that are suitable for harvesting rain water and that will aid in sustaining the 

recurring drought.   

4.3. Terrain Analysis 
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The D8 algorithm was used for computing flow accumulation and slope in ArcGIS’s 

spatial analyst to be used as input for Terrain Analysis. The results for D8 flow 

accumulation is shown in Figure 20 with higher values indicting a greater area with 

large incoming accumulated water thereby influencing soil moisture. On the contrary, 

higher values from the slope computation indicate areas that are steep allowing water 

Figure 20: Spatial map of moisture contributing area of the country Figure 21: Slope distribution of the country 
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to flow readily (Figure 21).  

 

As mentioned in the methods sections, an alternative FD-8 algorithm was applied but 

even though the effects on flow direction with the use of TauDEM seemed reliable, 

results from this were inconclusive and still did not significantly reduce the flow 

partitioning to result in a smoother flow. Therefore for overlaying, a different approach 

was improvised that involved the use of select features by location in ArcGIS which will 

be discussed later. Proceeding with the initial procedure of using the D-8 algorithm, 

results are depicted in the following section.  

The combination of these inputs (contributing area and slope) which yielded the TWI 

has results that range from 3.39 to 31.08. The higher values indicate large contributing 

area coupled with low slope and hence a greater potential for water concentration, and 

the lower values indicate high slopes where water is free to drain.  



 
 
 

84 | P a g e  
 

 

Figure 22: Spatial map of TWI of the country 

The values obtained were reclassified and the TWI values were computed in ArcGIS 

spatial analyst based on literature and likely observation is mapped with six categories 

tabulated.   
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Table 19: TWI Category and 

Adopted range 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the map shown, a greater percentage falls within TWI ranges of 0-15 

signifying suitability of water accumulation to be low. These locations were 

disregarded, as using them jointly would not necessarily result in water harvesting 

locations. On the contrary, ranges falling under 4, 5 and 6, i.e. TWIs greater than 15 

exhibit high flow concentration capacities which make them the ideal choices for 

potential water harvesting. The map showing this filtered category is depicted in Figure 

24.  

Category Range 

1 0-5 

2 5-10 

3 10-15 

4 15-20 

5 25-30 

6 >30 

Figure 23: Reclassified TWI of the country 
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Figure 24: Desirable TWI category over threshold 

Figure 24 depicts locations of TWI values that are 15 and higher to show the desirability 

levels. In this particular image, TWI ranges between 15 and 20 represent water bodies 

such as lakes found at a few locations over the study area. The other two categories, 25 

and over are shown in what appear to be minute dots due to the scale factor but are 

actually stream lines that exhibit large TWIs.   

 

4.4. Land use analysis 

NDVI value for January 2015 was initially mapped into eight categories based on the 

classification shown in Table 3. The map in Figure 25 shows the partitioned 

classification to assess the contrasting features in further detail based on the 

reclassification made in Table 5. 
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The purpose of this preliminary mapping is to develop a desirable NDVI range where 

water harvesting can be categorized into.  

 

Figure 25: Spatial distribution of NDVI of the country 

The land use analysis using NDVI showed that a greater percentage (36.3%) of the 

study area is covered by light green vegetation and 35.6% is covered by medium green 

vegetation. This result, for a month with dry characteristics, is quite large, implying that 

it is the outcome of perennial crops and their canopy effect.   

The ranges shown in the legend of Figure 25 are further clarified in Table 20 along with 

percentage area classifications for each cover type. 

 

Table 20: Summarized NDVI results and corresponding study area coverage 

No. Cover Type NDVI – range Percentage 
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value area 

1 Dense green leaf vegetation 0.85 – 1.0 0.04% 

2 0.7 – 0.85 0.00% 

3 0.5 – 0.7 0.01% 

4 Medium green leaf vegetation 0.25 – 0.5 7.63% 

5 0.09 – 0.25 35.61% 

6 Light green leaf vegetation 0.09 – 0.14 36.28% 

7 Bare soil 0.025 – 0.09 18.21% 

8 Wet lands/swampy areas 0.002 – 0.025 1.36% 

9 Light water bodies -0.046 – -0.002 0.27% 

10 Water bodies -0.257 – -0.046 0.58% 

11 Deep water bodies -0.257 – -1 0.01% 

 

Upon manual division of land-water threshold, the study was able to find that the 

NDVI had in fact the ability to discriminate water and dry land areas well. The map 

showing these desirable values, similar to that of the TWI is plotted in Figure 26 

corresponding to the classification table shown in Table 21.  

The resultant land use map is shown in Figure 26 and consists of three dominant land 

cover classes; namely light green vegetation, swampy/wetlands and water bodies. 

The classification table shows the percentage of areal coverage of the three desirable 

features. 

Table 21: Desirable NDVI Category of the study area with areal coverage 

 

 

 

 

A way of showing how indicative of water bodies this index is, is to see the mapped 

results from the NDVI values for known water bodies. The index has displayed known 

Category Value Areal coverage 

3 Light green vegetation 36.28% 

5 Swampy/wetland 1.35% 

6 Water bodies 0.85% 
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lakes accurately when cross-checked to that of available hydro-sheds data.  Although 

the percentage of areal coverage for swampy/wetlands is relatively small, the 

percentage by volume is quite large.  

 

Figure 26: Spatial distribution of desirable NDVI for RWH for the country 

 

Following Thenkabail’s (2016) wetland delineation and mapping methods, it can be 

seen that other land cover types in the same/close category would be easily mistaken as 

wetlands (-0.25 – 0.1). This confusion was limited to some scale by only using the range 

(0.002 - 0.025) that was cross referenced with global earth images. These areas 

corresponded to shallow water formed around lake boundaries.   
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4.5. Water Harvesting Categories 

Locating optimal sites for water harvesting was based on both maps (i.e. the physically 

derived TWI maps as well as land use that influenced water holding capacity of the 

zones). This connection was made a reality as both features met the requirement for 

harvesting rainwater and consist of three suitability values.  

 

Locations ideal for rainwater harvesting under TWI properly signify sites that have the 

capacity for a greater water concentration. This was supplemented with NDVI values 

that again accurately indicated water bodies over land area. The joint use of these 

indices addressed soil characteristics, topography and vegetation condition. This joining 

is an advantage in the accuracy of the final results. As an illustration, certain scenarios 

were considered before joining these indices. A desirable NDVI alone would not be self-

sufficient for identifying water harvesting sites, as it does not guarantee prolonged 

water concentration on that area which was made available with the presence of the 

TWI.  

 

In a similar token, the TWI alone was not solely considered, as targets required to be 

environmentally sustainable with land use study. The presence of a large TWI 

guarantees higher soil moisture which are greener due to the presence of soil moisture. 

The use of NDVI avoids selecting large forest bodies to avoid environmental impact 

associated with constructing water harvesting structures by deforestation.  

For this reason, the potential locations identified guarantee potential water existence, 

stagnation and are available with minimum amount of earth work and with minimal 

environmental impact. 

 

Multiple overlay options were used to make sure both TWI and NDVI were addressed 

to identify water harvesting locations. From the initial analysis using raster calculator, 

nine possible combinations were obtained and are mapped in Figure 27. A script was 

written in ArcGIS’ raster calculator where each grouping yielded the multi-class 
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combination of water harvesting zones. The script, guided by the “if-condition” 

classified the three distinct, yet separate classes into the nine classes as shown in the 

legend of the figure. 

 
  

 

 

Figure 27: Preliminary identified water harvesting zones in the country 

 

Based on this classification, both TWI and NDVI values in Category 6 have the highest 

potential for locating water bodies as both are high-flow concentration and are deep 

water bodies respectively. Guaranteeing the highest rank in the classification. A 

relatively lower concentration is seen with the combination of TWI-4 and NDVI-3 which 

has a lower rank.  

As can be seen in Figure 27, the result is highly governed by the TWI value obtained 

which suffers from high streaking effects and did not indicate the spatial extent of the 

identified locations well enough. For this reason, a better approach that uses the 
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‘identify features by location’ tool in ArcGIS was used. The tool identifies areas that the 

TWI range over 15 overlaps with. Before interpreting the obtained spatial result, further 

analysis was conducted that filters these areas. 

With these criteria and methodologies, the surface water harvesting potential areas 

were identified and classified in three categories according to their desirability levels. 

The mapped results capture the spatial area of each zone in a much better way, 

providing a wider water harvesting area. 

 

Figure 28: Water Harvesting Categories 
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These classifications indicate a greater percentage coverage area wise in the Primary 

sources, a lesser percentage coverage in the Secondary sources and an even lesser 

landmass coverage in the land based sources. 

The first category (Primary water sources) identifies the most desirable class which is 

water bodies themselves where the maximum surface water harvesting zones cover 

0.79% of the country’s landmass and is distributed in the locations shown in Figure 29. 

Up to 30,000 zones were located under this category with areas ranging 576 m2 (for the 

smallest pixel zone) to 3,059 km2. 

 

Figure 29: Primary source locations 
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Since these locations are already known lakes, the accurate identification of these areas 

guarantees that the mechanism used is reliable. For evaluation purpose, the locations 

were cross checked with an available water volume analysis report shown in Table 22. 

The Volume analysis typically identifies the locations shown in Figure 29. 

Table 22: Ethiopia’s water volume analysis - Natural Lakes and Artificial Reservoirs 

 

 

 

 

 

 

 Primary 

Sources 

Approximate Volume   

(BCM) 

1 Lake Tana 28.4 

2 Lake Abaya 9.82 

3 Lake ChewBar 4.5 

4 Lake Abe 2 

5 Lake Ziway 1.1 

6 Lake Shala 36.7 

7 Lake Chamo 3.3 

8 Lake Langano 3.8 

9 Lake Abiyata 1 

10 Lake Ashenge 0.25 

11 Lake Awassa 1.3 

12 Lake Besseka 0.28 

13 Lake Hayk 1.01 

Total 93.46 

 Primary 

Sources 

Watershed Capacity 

(BCM) 

1 Geferssa Awash 0.007 

2 Koka Awash 1.08 

3 Fincha Abay 0.65 

4 Legedadi Awash 0.042 

5 Melkawakena Wabi shebele 0.75 

6 Angereb Tekeze 0.005 

7 Alwero Baro akobo 0.075 

8 Midimar Tekeze 0.01 

9 Dire Awash 0.019 

10 Tekeze Tekeze 9.00 

11 Gilgel Gibe Omo-gibe 0.083 

12 Koga Abay 1.01 

13 Kessem Awash 0.50 

14 Tendaho Awash 1.80 

15 Gibe-3 Omo-gibe 14.70 

16 Ribb Abay 0.243 

17 Megech Abay 1.80 

18 Arjo-dedesa Abay 1.40 

19 Hidase Abay 79.00 

 Total 112.174 



 
 
 

95 | P a g e  
 

The second category (Secondary sources) identifies locations which are swampy areas 

(wet lands) found in between categories “water bodies” and “bare-land” (in terms of 

spectra identification) that are intersected by the desirable values of the TWI.  

This is the original finding of this research. These locations are expected to be moderate 

surface water harvesting potential zones, covering 0.47% of the total landmass of 

Ethiopia. The identified areas range from 576m2 to over 70 km2 and amount to over 

118,000 locations on a national scale.  

 

Figure 30: RWH map of the country 

Water harvesting locations depicted in this category are the result of the TWI desirable 

category (over 15) combined with the wetlands identified in the NDVI classification. 

This category was given more attention in this study as it consist of locations that have 

not been located or exploited thus far. It is thus, the final output taken from the overall 
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joint analysis. The map shown in Figure 2830 depicts potential water harvesting areas 

that are more or less distributed throughout the country. 

 

Highly arid regions in the country have been flagged as locations that are not suitable 

for rainwater harvesting, according to the drought analysis, even though potential 

zones were located according to the method used, the rate of evaporation around these 

areas would be high. 

Similarly, even though the drought analysis showed frequent drought pummeling of 

certain areas located in the eastern and south eastern portions of the country, the final 

output in Figure 30 for the secondary sources did not find many suitable areas for water 

harvesting corresponding to those locations implying that surface water source would 

not be feasible.   

To tend to these locations, reports from the results of simulation studies in Wabi 

Shebele Basin master-plan (2005) suggest that, at the end of the second phase (year 

2020), a total area of 94,492 ha can be covered and that 3.4 m3/s water supply demands 

can be met. This suggested amount in the master plan study is expected to maintain the 

demand of that area. 

In a similar manner, upon comparison with the reality, potential water harvesting 

locations identified in the eastern regions, specifically in the Danakil depression, are 

actually scattered saline lakes. As huge deep beds of natural salt are found in the area, 

these identified zones were filtered out and ground water resource, which is currently 

under usage, is recommended for continued use in these areas as well.  

According to the identified locations in Figure 30 and using Figure 31 as a 

supplementary image, some locations that are not frequently affected by drought and 

that get regular amount of annual precipitation have been identified with potential 

water harvesting zones. For locations with close proximity to these zones, inter-basin 

water transfer, though expensive, is also a permanent solution to the desertification of 
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water-scarce regions east and southeast of the domain. Additional requirements can be 

supplemented through ground water resources.     

The analyses up to now concluded by the suitability analysis showed that there are sites 

uniformly distributed across the country that have the potential to be water harvesting 

points. As an illustration, capacity determination was carried out for small scale zones 

identified under this category. The next section deals with quantifying these locations 

which can be converted to actual use on average demand.   

The Secondary sources were given more attention as it has not been exploited so far. 

This capacity determination targeted small locations with characteristics of small 

reservoirs or ponds for water harvesting with an embankment volume of less than 0.75 

million cubic meters (ICOLD 1998). Such locations tend to reduce the area of shallow 

water which is very conducive to reduce the evaporation loss.  

Considering a 4m average height that is common for ponding structures, the areal 

coverage of a single location can go up to 18ha. As such, the results from the capacity 

analysis were summarized in ranges in Table 23. 

 

Table 23: Number and volume of identified locations 

Areal range Number of sites 

identified 

Area (m2) Average Volume 

(BCM) 

Below 1ha 93,189 168,199,560.3 0.61 

From 1 ha to 5 ha 14,168 330,731,510.1 1.32 

From 5 ha to 10 ha 4,137 293,752,399.7 1.17 

From 10 ha to 18 

ha 

2,704 364,078,909.7 1.46 

 

Depending on the specific use and duration of supply, Table 23 has been arranged to 

clearly show the potential sites and their corresponding average volume. 



 
 
 

98 | P a g e  
 

Areas that were considered small reservoirs summed up to a total of 4.56BCM by 

volume partially distributed throughout the country. The addition of the identified 

water harvesting locations will bring the total sum to about 210 BCM by volume.  

 

Joining the drought analysis results and the water harvesting hotspots gives a wider 

and highly vivid image of what to expect when these sources are developed. A 

preliminary view is shown in Figure 31 which locates areas affected by extreme, severe 

and mild drought conditions in the year 1984. The monthly SPI results for the months 

May and August are selected to show how these identified locations would supplement 

below average precipitation areas in August by storing water in May.  

 

Figure 31: Drought year 1984 illustration with secondary rainwater harvesting sites 

Depicted in Figure 31, developing water harvesting hotspots shown in blue can be used 

to serve below average precipitation zones indicated in August of the same year. The 

need for small scale water harvesting is of most importance as the seasonality of rainfall 

is addressed and due to the fact that expected periods in the “Kiremt” season are 

lacking during all identified drought years. Tending to the scarce “Kiremt” season by 

conserving rainwater in these identified locations during abnormally wet periods in 

May and June with the average harvesting depth is expected to sustain the drought 

prone areas that are commonly under stress.  
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The third category, tertiary sources, was identified as land based water harvesting 

locations which is composed of light green vegetation that was selected considering the 

moisture collected on that location and as an outcome had resulted with a relatively 

good NDVI value. These locations were considered as minimum suitability for water 

harvesting until actual land based survey is conducted. For this reason volume was not 

computed for the third water harvesting category. 
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5. Conclusions and Recommendations 

5.1. Conclusion 

In summary, climatological variability, compounded with the effect of climate change, 

will have direct and indirect impacts on a wide range of social, economic and 

environmental aspects. Although the quantification of the impact is lacking, the water 

management of the system is likely to be more challenging in the future. Increasing 

demand for water and shortfalls in surface water resources due to drought could 

potentially lead to excessive ground water exploration making it difficult to meet 

possible future requirements.  

Drought analysis in this study identified six prominent drought years using the 

Standardized Precipitation Index. Monthly SPI of these years showed that it was not the 

lack of precipitation throughout the drought years that caused the drastic effects, but 

the seasonal effect of the observed precipitation. Months May and June showed greater 

extremes of wet events as compared to the expected peaking periods of July and August 

which made the need of water harvesting even more appropriate and essential. This 

result also confirmed the hypothesis that the rechargeable resource exists but the 

delivery system is lacking.   

Water harvesting zones using a combination of soil characteristics, topography, 

vegetation and weather were identified and presented consisting of three suitability 

values.  According to the obtained results, over the existing storage, preliminary 

capacity analysis for small scale zones showed that this method offers the possibility of 

harvesting and conserving 4.56 BCM of rainwater by developing suitable rainwater 

harvesting structures.   

This research has identified locations that would otherwise have required the need of 

separate surveys on site. These sites are also cost effective as they require very little to 

no earth work. 
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According to volume analysis of the secondary sources, the computed amount that can 

be made available can suffice to meet a considerable amount of the drinking water 

requirement of the corresponding area. This conserved water can also be used for 

irrigation. As acknowledged by most, in situ water conservation on various arable lands 

in the study domain for recharging soil profile and for runoff harvesting are vital for 

drought mitigation.  

Since assessment of water harvesting potential of an area is essential before construction 

of any RWH structures and methods are built or implemented, the findings of this 

research are believed to be significant.  

5.2. Recommendations 

Drought is a phenomenon with a range of impacts, and water is the most crucial factor 

in its mitigation. Drought relief funds can be applied towards developing rainwater 

harvesting structures that could provide supply to drought-vulnerable regions in 

Ethiopia.  

A major benefit of this research is that it can be used as a stepping stone for various 

downstream analyses. With the availability of these water harvesting locations, major 

water demands in the country can be estimated and provided a solution associated with 

precipitation falling in that area.  

Not only can the harvested rainwater be of use for surface water supplies by storing 

water in the locality itself, but in the long run can be recharged into the ground through 

simple and effective methods which accounts for rejuvenation of water bodies. Check 

dams are one of the few water harvesting structures which control the runoff and 

increase the infiltration by hindering water flow, which in turn opens new streams and 

raises the water table.  Modern technologies of rainwater harvesting and groundwater 

recharge such as anicut, percolation tank, subsurface barrier and pond with infiltration 

wells have been developed to rejuvenate the depleted freshwater aquifers (Narain, 



 
 
 

102 | P a g e  
 

2005). It is thus recommended that the country could adopt such mechanisms to fully 

and efficiently use the capacity of the identified locations.  

For basin level studies, spatial and temporal strategies for RWH development are 

advised. The findings from this research allow a strategy for RWH development both 

spatially and temporally in order to increase the runoff capturing efficiency. The spatial 

rainwater concentration involves the rainwater collection efficiency which is addressed 

by the joined use of TWI and NDVI, by enlarging the catchment when deemed 

necessary and the drought analysis portion supplements the temporal concentration by 

storing the rain fall in the rainy season for use in the dry season. Effective use of these 

attributes in RWH is advised. 

Additional studies along with site verification need to be conducted regarding the 

identified locations under water harvesting Category-2 and 3 (i.e. Secondary and 

Tertiary sources), as this research only covers capacity analysis of a smaller portion of 

the identified locations for water harvesting. It is safe to assume that with the study of 

the remaining locations, one would be able to find large volumes with the aim of 

maintaining sustainability.   

It is strongly recommended that evapotranspiration be considered when computing 

storage for analysis at basin scale. Since the impact is quite large when considering large 

scale ponding structures, and due to the fact that the drought analysis was based only 

on a precipitation driven index.  

Regarding the accuracy of the obtained volumes, detailed studies on downstream 

specific basins shall be addressed via the surface volume tool in ArcGIS since it has the 

ability to measure the amount of three-dimensional space occupied by a feature. Hence, 

volume measurements can be calculated using the 3D surface analysis software. This 

can be supplemented with onsite topographical and bathymetric surveys.  

Remote sensing technologies, including landsat images with clarified bands or other 

comparable options should be further reviewed and used to conduct a more refined 



 
 
 

103 | P a g e  
 

analysis on this same study. As wetlands are among the most difficult ecosystems to 

classify using remote sensing data due to their high spatial heterogeneity and temporal 

variability, site verification for located RWH sites should be conducted. It is also 

recommended that scientific knowledge of the current status and future trends of 

wetlands in the identified regions be grasped as it is important for formulating planning 

measures and effective management policies. 

For further resource management, land use systems should match water availability. 

Land use master plan studies should be based on the located water harvesting zones as 

great amount of rainwater can be stored and used during a potential drought event.  
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7. Appendices   
 

Appendix A: Statistical measures of mean monthly raw and corrected CFSR and 

observed datasets 
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Appendix B: 12-month SPI graphs for 12 representative grids points 

corresponding with each rainfall regime 
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Appendix C: Spatial patterns of 1-month SPI values interpolated across the study 

area for all drought years 
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Appendix D: Time series plots of 12-monthl SPI for representative grid points 

with Man-Kendall trend test. 
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