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2.1 Overview of optimization models 

◼ Optimization: Science of choosing the best amongst a number of 

possible alternatives. It Identifies the best through evaluation from 

a number of possible solutions. 

◼ Driving force in the optimization is the objective function/s

◼ Optimal solution is the one which gives the best (either maximum 

or minimum) solution under all assumptions and constraints

◼ An optimization model can be stated as:

Objective function: “Maximize (or Minimize)    f(X)”, Subject to 

the constraints, gj(X)  ≥  0, j = 1,2,..,m

hj(X)  =  0, j = m+1, m+2,.., p

◼ Where X is the vector of decision variables; g(X) are the inequality 

constraints; h(X) are the equality constraints.
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Classification of optimization problems

Optimization problems can be classified based on the 

◼ Type of constraints

◼ Nature of design variables

◼ Physical structure of the problem 

◼ Nature of the equations involved 

◼ Permissible value of the design variables 

◼ Deterministic/Stochastic nature of the variables 

◼ Separability of the functions and number of objective 

functions
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Classification based on the nature of the equations

◼ Linear programming: Objective function and all the 

constraints are ‘linear’ functions of the design variables

◼ Nonlinear programming : Any of the functions among the 

objectives and constraint functions is nonlinear

◼Geometric programming : Objective function and 

constraints are expressed as polynomials

◼Quadratic programming: Best behaved nonlinear 

programming problem with a quadratic objective function 

and linear constraints and is concave (for maximization 

problems)
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Separability of the functions and no. of objective functions

◼ Objective functions can be classified as single-objective and 

multi-objective programming problems. 

i. Single-objective programming: There is only one 

objective function. 

ii. Multi-objective programming: A multi-objective 

programming problem can be stated as follows: 

◼Find X which maximizes/minimizes 𝑓1 𝑋 , 𝑓2 𝑋 , . . . 𝑓𝑘 𝑋

Subject to: gj(X) ≤ 0 , j = 1, 2, . . . , m

◼where f1, f2, . . . fk denote the objective functions to be 

maximized/ minimized simultaneously
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Example to think

◼ Consider a reservoir from which diversions are made to three 

irrigation farms at downstream. The water allocations to 

these farms is xj; where j = 1, 2, and 3. The problem is to 

determine xj of water to each farms that maximize the total 

net benefits, σ𝑗𝑁𝐵𝑗 𝑥𝑗 , obtained. 

◼ The total amount of water available is constrained to a 

quantity of 10 million m3 (MCM), of which at least 2 MCM 

shall be released to downstream.

◼ The net benefits, NBj(xj), derived from water xj allocated to 

each farm j, are for example can be defined by:

◼𝑁𝐵1 𝑥1 = 6𝑥1 − 𝑥1
2, 

◼𝑁𝐵2 𝑥2 = 7𝑥2 − 1.5𝑥2
2 and 

◼𝑁𝐵3 𝑥3 = 8𝑥3 − 0.5𝑥3
2
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Example to think

◼ The function pj(xj) represent 

the maximum amount of 

product that can be produced 

by farm j from an allocation 

of water xj. 

◼𝑝1 𝑥1 = 0.4 𝑥1
0.9

◼𝑝2 𝑥2 = 0.5 𝑥2
0.8

◼𝑝3 𝑥3 = 0.6 𝑥3
0.7

◼ The associated cost of 

production is expressed by:

◼𝑐1 𝑥1 = 3 𝑝1 𝑥1
1.3

◼𝑐2 𝑥2 = 5 𝑝2 𝑥2
1.2

◼𝑐3 𝑥3 = 6 𝑝3 𝑥3
1.15

◼ The relationship between the 

unit price and the amount that 

will be demanded and sold.

◼up1 = 12 – p1

◼up2 = 20 – 1.5p2

◼up3 = 28 – 2.5p3

◼ Where the pj’s are the 

amounts of each product 

produced.
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Example to think

◼ The optimization problem is to find the water allocations, the 

production levels, and the unit prices that together maximize the 

total net benefit obtained from all three farms. The water 

allocations plus the amount that must remain in the river, R, 

cannot exceed the total amount of water Q available.

◼ The model: Maximize Net benefit Subject to constraints:

◼Net benefit = Total return - Total cost

◼Total return = p1(12 – p1) + p2(20 – 1.5p2) + p3(28 – 2.5p3)

◼Total cost = 3 𝑝1
1.3 + 5 𝑝2

1.2 + 6 𝑝3
1.15

◼Where 𝑝1 ≤ 0.4 𝑥1
0.9, 𝑝2 ≤ 0.5 𝑥2

0.8 𝑎𝑛𝑑 𝑝3 ≤ 0.6 𝑥3
0.7

◼Water-allocation restriction: R + x1 + x2 + x3 = Q
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2.2 Dynamic programming

◼ Dynamic programming (DP) is an approach that divides the 

original optimization problem, with all of its variables, into a set 

of smaller optimization problems, each of which are solved 

before the overall optimum solution. 

◼ The water allocation problem, for example, needs to be solved 

for a range of water available to each irrigation farm. After 

which the particular allocations that maximize the total net 

benefit can be determined.

◼ A network of nodes and links can represent each discrete 

dynamic programming problem.

◼ The nodes represent possible discrete states of the system that 

can exist

◼ The links represent the decisions one could make to get from 

one state (node) to another.
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The network

A network representing some of the possible allocations of water to 

three irrigation farms j assuming 10 units of water are available. 

The circles or nodes represent the discrete quantities of water 

available to users not yet allocated, and the links represent feasible 

allocation decisions xj to the next farm j
29
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Note on The network

◼ Each link connects two nodes, the left node value indicating 

the state of a system before a decision is made, and the right 

node value indicating the state of a system after a decision is 

made. In this case, the state of the system is the amount of 

water available to allocate to the remaining farms.

◼ Note that the link allocations, the numbers on the links, 

cannot exceed the amount of water available, that is, the 

number in the left node of the link.

◼ The value in the right node, state Sj+1, at the beginning of 

stage j + 1, is equal to the value in the left node, Sj, less the 

amount of water, xj, allocated to farm j.

◼ Hence, 

◼S1 - x1 = S2, S2 - x2 = S3 and S3 - x3 = S4

30



27.9

10

8

9

10

7

6

5

4 0

1

2

3

0

15.7

21.1

18.6

15.7

6.3

31.1

27.9

18.6

15.7

21.1

18.6
33.7

31.1

33.7

3.7

27.9

31.1

27.9

x1 x3
x2

The network

◼ This figure shows the same network as in above slide; 

however the numbers on the links represent the net benefits 

obtained from the associated water allocations (see next slide).
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The network

◼ The net benefits, NBj(xj), associated with allocations xj are

◼𝑁𝐵1 𝑥1 = 𝑝1 12 − 𝑝1 − 3 𝑝1
1.3, 𝑤ℎ𝑒𝑟𝑒 𝑝1 ≤ 0.4 𝑥1

0.9

◼𝑁𝐵2 𝑥2 = 𝑝2 20 − 1.5𝑝2 − 5 𝑝2
1.2, 𝑤ℎ𝑒𝑟𝑒 𝑝2 ≤ 0.5 𝑥2

0.8

◼𝑁𝐵3 𝑥3 = 𝑝3 28 − 2.5𝑝3 − 6 𝑝3
1.15, 𝑤ℎ𝑒𝑟𝑒 𝑝3 ≤ 0.6 𝑥3

0.7

◼ The discrete dynamic programming algorithm or procedure is a 

systematic way to find the best path through this network, or any 

other suitable network.

◼ What makes a network suitable for dynamic programming is the fact 

that all the nodes can be lined up in a sequence of vertical columns 

and each link connects a node in one column to another node in the 

next column of nodes. No link passes over or through any other 

column(s) of nodes. Links also do not connect nodes in the same 

column.
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The network

◼ NOTE: 

◼The main challenge in using discrete dynamic 

programming to solve an optimization problem is to 

structure the problem so that it fits this dynamic 

programming network format. 

◼Perhaps surprisingly, many water environment planning 

and management problems do. 

◼But it takes practice to become good at converting 

optimization problems to networks of states, stages, and 

decisions suitable for solution by discrete dynamic 

programming algorithms.
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Solution approaches to DP

◼ DP can be solved in two ways—

◼Backward-moving (but forward-looking) algorithm: 

Beginning at the most right column of nodes or states and 

moving from right to left,, 

◼Forward-moving (but backward-looking) algorithm: 

beginning at the leftmost node and moving from left to 

right.

◼ Both methods will find the best path through the network. 

◼ In some problems, however, only the backward-moving 

algorithm produces a useful solution.

34



Backward-Moving Solution Procedure

35

10

8

9

10

7

6

5

4 0

1

2

3

0
15.7

21.1

18.6

15.7

6.3

31.1

27.9

18.6

15.7

21.1

18.6

33.7

31.1

27.9

33.7

3.7

27.9

31.1

27.9

x1 x3x2
F3(7)=max(27.9, 

31.1, 33.7) =33.7 

F3(6)=max (27.9, 

31.1, 33.7) =33.7

F3(5)=max (27.9, 

31.1) = 31.1

F3(4)=max(27.9) 

= 27.9 

F2(10)=max(15.7 + 

33.7, 18.6 + 33.7, 

21.1 + 31.1) = 52.3 F2(9)=max (15.7 + 

33.7, 18.6 + 31.1, 21.1 

+ 27.9) = 49.7 

F2(8)=max (15.7 + 31.1, 

18.6 + 27.9) = 46.8 

F1(10)=max (0 + 

52.3, 3.7 + 49.7, 

6.3 + 46.8) = 

53.4 



Forward-Moving Solution Procedure
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f3(3)=max (15.7 

+ 27.9) = 43.6 

f3(2)=max (15.7 

+ 31.1, 19.4 + 

27.9) = 47.3 

f3(1)=max (15.7 + 

33.7, 19.4 + 31.1, 

22.3 + 27.9) = 50.5 

f3(0)=max (19.4 + 

33.7, 22.3 + 31.1, 
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Note: on the two methods

◼ The backward-moving solution algorithm is based on the 

principal that no matter what the state and stage (i.e., the 

particular node you are at), an optimal policy is one that 

proceeds forward from that node or state and stage optimally. 

◼ The forward-moving solution algorithm is based on the 

principal that no matter what the state and stage (i.e., the 

particular node you are at), an optimal policy is one that has 

arrived at that node or state and stage in an optimal manner.
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DP Limitations

◼ The application of discrete DP to most practical problems 

will usually require writing some program code. 

◼ There are no general DP computer programs available that 

will solve all DP problems. 

◼ Thus, any user of DP will need to write a computer 

program/code to solve a particular problem unless they do it 

by hand/excel spreadsheet.

◼ DP has limitation in handling multiple state variables. In our 

water-allocation example, we had only one state variable: the 

total amount of water available. 

◼ What if this problem include other types of resources the 

farms require (Labor, Energy, etc.) to make their products? 

Each of these state variables would need to be discretized. 
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DP Limitations

◼ If, for example, only m discrete values of each state variable 

are considered, for n different state variables there are mn

different combinations of state variable values to consider at 

each stage.

◼ As the number of state variables increases, the number of 

discrete combinations of state variable values increases 

exponentially. This is called dynamic programming’s “curse 

of dimensionality”.
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Example 2: Capacity extension

◼ Consider a municipality that must plan for the future 

expansion of its water supply system or some component of 

that system, such as a reservoir or treatment plant. 

◼ The capacity needed at the end of each future period t has 

been estimated to be Dt. 

◼ The cost, Ct(st, xt) of adding capacity xt in each period t is a 

function of that added capacity as well as of the existing 

capacity st at the beginning of the period. 

◼ The planning problem is to find that time sequence of 

capacity expansions that minimizes the present value of total 

future costs while meeting the predicted capacity demand 

requirements. This is the usual capacity expansion problem.
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Example 2 …

◼ This problem can be written as an optimization model: The 

objective is to minimize the present value of the total cost of 

capacity expansion.

◼𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 σ𝑡 𝐶𝑡 𝑠𝑡 , 𝑥𝑡

◼where Ct(st, xt) is the present value of the cost of capacity 

expansion xt in period t given an initial capacity of st.

◼ Constrained by 𝑠𝑡+1 = 𝑠𝑡 + 𝑥𝑡 , 𝑓𝑜𝑟 𝑡 = 1, 2, 3,… , 𝑇

◼ The actual capacity st+1at the end of each future period t is no 

less than the capacity required Dtat the end of that period: 

𝑠𝑡+1 ≥ 𝐷𝑡 , 𝑓𝑜𝑟 𝑡 = 1, 2, 3,… , 𝑇

◼ The possible expansions in each period defined by a set Ωt of 

feasible capacity additions in each period t: 𝑥𝑡 ∈ Ω𝑡
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The network for five time 

◼ The circles represent possible discrete states, St, of the system, 

the amounts of additional capacity existing at the end of each 

period t − 1 or equivalently at the beginning of period t.
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Forward-moving DP

◼ To implement this, define ft(st+1) as the minimum cost of 

achieving a capacity st+1, at the end of period t. Since at the 

beginning of the first period t = 1, the accumulated least cost is 

0, f0(s1) = 0.

◼ Hence, for each final discrete state s2 in stage t = 1 ranging 

from D1 to the maximum demand DT, define 

◼𝑓1 𝑠2 = 𝑚𝑖𝑛 𝐶1 𝑠1, 𝑥1 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑥1 = 𝑠2 𝑎𝑛𝑑 𝑠1 = 0

◼ Moving to stage t = 2, for the final discrete states s3 ranging 

from D2 to DT,

◼𝑓2 𝑠3 = 𝑚𝑖𝑛 𝐶2 𝑠2, 𝑥2 + 𝑓1 𝑠2

◼𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 0 ≤ 𝑥2 ≤ 𝑠3 − 𝐷1 𝑎𝑛𝑑 𝑠2 = 𝑠3 − 𝑥2
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Forward-moving DP

◼ Moving to stage t = 3, for the final discrete states s4 ranging 

from D3 to DT,

◼𝑓3 𝑠4 = 𝑚𝑖𝑛 𝐶3 𝑠3, 𝑥3 + 𝑓2 𝑠3

◼𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 0 ≤ 𝑥3 ≤ 𝑠4 − 𝐷2 𝑎𝑛𝑑 𝑠3 = 𝑠4 − 𝑥3

◼ In general for all stages t between the first and last:

◼𝑓𝑡 𝑠𝑡+1 = 𝑚𝑖𝑛 𝐶𝑡 𝑠𝑡 , 𝑥𝑡 + 𝑓𝑡−1 𝑠𝑡

◼𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 0 ≤ 𝑥𝑡 ≤ 𝑠𝑡+1 − 𝐷𝑡−1 𝑎𝑛𝑑 𝑠𝑡 = 𝑠𝑡+1 − 𝑥𝑡

◼ For the last stage t = T and for the final discrete state sT+1 = DT

◼𝑓𝑇 𝑠𝑇+1 = 𝑚𝑖𝑛 𝐶𝑇 𝑠𝑇 , 𝑥𝑇 + 𝑓𝑇−1 𝑠𝑇

◼𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 0 ≤ 𝑥𝑇 ≤ 𝑠𝑇+1 − 𝐷𝑇−1 𝑎𝑛𝑑 𝑠𝑇 = 𝑠𝑇+1 − 𝑥𝑇
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Forward-moving DP

◼ The value of fT(sT+1) is the minimum present value of the 

total cost of meeting the demand for T time periods. To 

identify the sequence of capacity expansion decisions that 

results in this minimum present value of the total cost 

requires backtracking to collect the set of best decisions xt for 

all stages t.

◼ Figure in the next slide is the same network with the present 

value of the expansion costs on each link. The values of the 

states, the existing capacities, represented by the nodes, are 

shown on the left vertical axis. 

◼ The capacity expansion problem is solved on Fig. below 

using the forward-moving algorithm.
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The network
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Forward-moving solution
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Backward-moving solution
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2.3 Linear Programming

◼ If the objective function F(X) is linear and 

◼ If all the constraints gi(X) are linear

◼ Then the model becomes a linear programming model

◼ The general structure of a linear programming model is:

Maximize (or minimize) σ𝑗
𝑛𝑃𝑗𝑥𝑗

Subject to: 

σ𝑗
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 for i = 1, 2, 3, … , m

𝑥𝑗 ≥ 0 for all j = 1, 2, 3, … , n
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Reservoir Production Problem – A Prototype Example

◼ Reservoir is used for two purposes: Irrigation and Hydropower. 

◼ Resources are limited to

◼1000 million cubic meters (MMC) of water.

◼40 hours of operation time per week (2080 hrs./year).

◼ Marketing requirement

◼Total irrigation and HP benefit cannot exceed 700 million 

birr per year.

◼Yearly Benefit from irrigation shall not exceed the HP by 

more than 30 million birr.

◼ Technological input

◼Irrigation requires 2 MCM water and 3 hours of labor and  

Hydropower requires 1 MCM of water and 1 hour of labor 

per million-birr worth of total benefit.
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◼ The current production plan calls for: 

◼Producing as much irrigation as possible (80,000 profit 

per million birr of total benefit).

◼Use the water for HP (50,000 profit per million birr of 

total benefit).

◼ The current production plan consists of:

◼Irrigation = 450-million-birr total benefit

◼Hydropower = 100-million-birr total benefit

◼Profit = 41 million birr (80000 × 450 + 50000 × 100)

◼ Management is seeking a production schedule that will 

increase the profit.

◼ A linear programming model can provide an insight and an 

intelligent solution to this problem.
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◼ Decisions variables:

◼X1 = yearly benefit level of Irrigation (in million birrs) 

◼X2 = yearly benefit level of hydropower (in millions birr).

◼ Objective Function:

◼ Yearly profit, to be maximized

◼Max  80000X1 + 50000X2 (Yearly profit)

◼ Subject to

◼2X1 + 1X2  1000     (Reservoir capacity)

◼3X1 + 1X2  2080     (Operation Time)

◼X1 + X2  700     (Total Benefit)

◼X1 - X2  30     (Difference in Benefit)

◼Xj ≥ 0,  j = 1,2       (Nonnegativity)
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The Graphical Analysis of Linear Programming

◼ The set of all points that satisfy all the constraints of the model 

is called a Feasible region

53

0

500

1000

1500

2000

2500

0 200 400 600 800

X
2

X1

Reservoir Capacity Total Benefit

Difference in benefit Operation time
Using a graphical 

presentation we 

can represent all 

the constraints, the 

objective function, 

and the three types 

of feasible points.

Interior points.

Boundary points.

Extreme points.

Feasible 
region



0

500

1000

1500

2000

2500

0 200 400 600 800

X
2

X1

Reservoir Capacity Total Benefit

Difference in benefit Operation time

The Graphical Analysis of Linear Programming

◼ Total production is only 700.

◼ The reservoir operation time will only be 1300 hours.
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Extreme points and optimal solutions

◼ If a linear programming problem has an optimal solution, an 

extreme point is optimal.

◼ For multiple optimal solutions to exist, the objective function 

must be parallel to one of the constraints

◼ Any weighted average of optimal solutions is also an optimal 

solution. 
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Note on graphical method

◼ Any point within or on the boundary of the feasible region is 

a feasible solution

◼ An optimal solution is a feasible solution that has the most 

favorable value of the objective function. (largest value for 

maximization and the smallest value for minimization 

problems).

◼ Plot the objective function, Z, on the same graph.

◼ Determine the direction for moving Z within the feasible 

range

◼ Shift the objective function line in the direction of 

improvement until it last intersected the feasible region
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Note on graphical method

◼ Whenever a linear 

programming model is 

formulated and solved, the 

result will be one of four 

characteristic solution types:

1. Unique optimal solution,

2. Alternate optimal 

solutions,

3. No-feasible solution, 

4. Unbounded solutions.
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The Simplex Method

◼ The graphical method is easier to use only for problems

involving two decision variables and relatively few problem

constraints.

◼ What happens when we need more decision variables and

more problem constraints?

◼ We use an algebraic method called the simplex method,

which was developed by George B. DANTZIG (1914-2005).

◼ “A mathematical representation of surplus resources.” In real 

life problems, it’s unlikely that all resources will be used 

completely, so there usually are unused resources.

◼ Slack variables represent the unused resources between the 

left-hand side and right-hand side of each inequality.
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Basic and Nonbasic Variables

◼ Basic variables are selected arbitrarily with the restriction
that there be as many basic variables as there are equations.
The remaining variables are non-basic variables.

◼2𝑥1 + 𝑥2 + 𝑠1 = 1000

◼3𝑥1 + 𝑥2 + 𝑠2 = 2080

◼𝑥1 + 𝑥2 + 𝑠3 = 700

◼𝑥1 − 𝑥2 + 𝑠4 = 30

◼ This system has four equations, we can select any four of the 
six variables as basic variables. The remaining two variables 
are then non-basic variables. 

◼ A solution found by setting the two non-basic variables equal 
to 0 and solving for the two basic variables is a basic 
solution. If a basic solution has no negative values, it is a 
basic feasible solution.
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Sımplex method

Step-1

Write the

standard

maximization

problem in 

standard form, 

introduce slack

variables to form 

the initial system, 

and write the

initial tableau.

Step-3

Select

the

pivot 

column

Step-5

Select the

pivot 

element 

and

perform

the pivot 

operation

STOP

The optimal solution has been found.

STOP

The linear programming problem has 

no optimal solution

Step 2

Are there

any

negative

indicators

in the

bottom

row?

Step 4

Are there

any positive

elements in 

the pivot 

column

above the

dashed line?

Simplex algorithm for standard maximization problems
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Simplex Method

1. Convert each inequality in the set of constraints to an equation by

adding slack variables.

2. Create the initial simplex tableau.

3. Select the pivot column. (The column with the “most negative value”

element in the last row.)

4. Select the pivot row. (The row with the smallest non-negative result

when the last element in the row is divided by the corresponding in

the pivot column.)

5. Use elementary row operations calculate new values for the pivot row

so that the pivot is 1 (Divide every number in the row by the pivot

number.)

6. Use elementary row operations to make all numbers in the pivot

column equal to 0 except for the pivot number. If all entries in the

bottom row are zero or positive, this the final tableau. If not, go back to

step 3.

7. If you obtain a final tableau, then the linear programming problem has

a maximum solution, which is given by the entry in the lower-right

corner of the tableau. 61



Simplex Tableau and Pivot

◼ A simplex tableau is a way to systematically evaluate 
variable mixes in order to find the best one. 

◼ Pivot Column: The column of the tableau  representing the 
variable to be entered into the solution mix.

◼ Pivot Row: The row of the tableau  representing the variable 
to be replaced in the solution mix.

◼ Pivot Number: The element in both the pivot column and 
the pivot row.

All variables Solution

Basic variables coefficients

0
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Our previous example

◼ Decisions variables:

◼X1 = yearly benefit level of Irrigation (in million birrs) 

◼X2 = yearly benefit level of hydropower (in millions birr).

◼ Objective Function:

◼ Yearly profit, to be maximized

◼Max  80000X1 + 50000X2 (Yearly profit)

◼ Subject to

◼2X1 + 1X2  1000     (Reservoir capacity)

◼3X1 + 1X2  2080     (Operation Time)

◼X1 + X2  700     (Total Benefit)

◼X1 - X2  30     (Difference in Benefit)

◼Xj ≥ 0,  j = 1,2       (Nonnegativity)
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◼ The first step of the simplex method requires that each

inequality be converted into an equation. “≤” inequalities are

converted to equations by including slack variables.

◼2𝑥1 + 𝑥2 + 𝑠1 = 2𝑥1 + 𝑥2 + 𝑠1 + 0𝑠2 + 0𝑠3 + 0𝑠4 = 1000

◼3𝑥1 + 𝑥2 + 𝑠2 = 3𝑥1 + 𝑥2 + 0𝑠1 + 𝑠2 + 0𝑠3 + 0𝑠4 = 2080

◼𝑥1 + 𝑥2 + 𝑠3 = 𝑥1 + 𝑥2 + 0𝑠1 + 0𝑠2 + 𝑠3 + 0𝑠4 = 700

◼𝑥1 − 𝑥2 + 𝑠4 = 𝑥1 − 𝑥2 + 0𝑠1 + 0𝑠2 + 0𝑠3 + 𝑠4 = 30

◼ The slack variables can be included in the objective function

with zero coefficients:

◼𝑃 = 80000𝑥1 + 50000𝑥2 + 0𝑠1 + 0𝑠2 + 0𝑠3 + 0𝑠4

◼𝑃 − 80000𝑥1 + 50000𝑥2 + 0𝑠1 + 0𝑠2 + 0𝑠3 + 0𝑠4=0
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Step 1

◼ The problem can now be considered as solving a system of 5

linear equations involving the 7 variables x1, x2, s1, s2, s3, s4

and P in such a way that P has the maximum value;

◼2𝑥1 + 𝑥2 + 𝑠1 + 0𝑠2 + 0𝑠3 + 0𝑠4 = 1000

◼3𝑥1 + 𝑥2 + 0𝑠1 + 𝑠2 + 0𝑠3 + 0𝑠4 = 2080

◼𝑥1 + 𝑥2 + 0𝑠1 + 0𝑠2 + 𝑠3 + 0𝑠4 = 700

◼𝑥1 − 𝑥2 + 0𝑠1 + 0𝑠2 + 0𝑠3 + 𝑠4 = 30

◼𝑃 − 80000𝑥1 − 50000𝑥2 + 0𝑠1 + 0𝑠2 + 0𝑠3 + 0𝑠4=0

◼ Now, the system of linear equations can be written in matrix

form or as a 5x8 augmented matrix. The initial tableau is;
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Step 2

◼ The tableau represents the initial basic solution (by keeping 

the two non basic variables (x1 and x2 equal to zero);

◼ x1=0, x2=0, s1=1000, s2=2080, s3,=700 s4 = 30 and P = 0

◼ The slack variables form the initial solution mix. The initial 

solution assumes the slack variables take the largest possible 

values
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Basic 

Variables
x1 x2 s1 s2 s3 s4

P RHS

s1 2 1 1 0 0 0 0 1000

s2 3 1 0 1 0 0 0 2080

s3 1 1 0 0 1 0 0 700

s4 1 -1 0 0 0 1 0 30

P -80000 -50000 0 0 0 0 1 0



Step 3

◼ Select the pivot column (determine which variable to enter 

into the solution mix). Choose the column with the “most 

negative” element in the objective function row.

◼ x1 should enter into the solution mix because each unit of x1

(a table) contributes a profit of 80,000 compared with only 

50,000 for each unit of x2 (a chair)
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Basic 

Variables
x1 x2 s1 s2 s3 s4

P RHS

s1 2 1 1 0 0 0 0 1000

s2 3 1 0 1 0 0 0 2080

s3 1 1 0 0 1 0 0 700

s4 1 -1 0 0 0 1 0 30

P -80000 -50000 0 0 0 0 1 0



Step 4

No, There aren’t any positive elements in the pivot column.

We can go on step 5
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Basic 

Variables
x1 x2 s1 s2 s3 s4

P RHS

s1 2 1 1 0 0 0 0 1000/2 =500

s2 3 1 0 1 0 0 0 2080/3=693.33

s3 1 1 0 0 1 0 0 700/1=700

s4 1 -1 0 0 0 1 0 30/1=30

P -80000 -50000 0 0 0 0 1 0/-80000=0

Step 5

◼ Select the pivot row (determine which variable to replace in the

solution mix). Divide the last element in each row by the

corresponding element in the pivot column. The pivot row is the

row with the smallest non-negative result.

Pivot number
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Basic 

Variables
x1 x2 s1 s2 s3 s4

P RHS

s1 2 1 1 0 0 0 0 1000/2 =500

s2 3 1 0 1 0 0 0 2080/3=693.33

s3 1 1 0 0 1 0 0 700/1=700

x1 1 -1/1 0 0 0 1/1 0 30/1=30

P -80000 -50000 0 0 0 0 1 0

Step 5

◼ s4 Should be replaced by x1 in the solution mix.

◼ Now calculate new values for the pivot row. Divide every

number in the row by the pivot number.

Pivot number
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Step 5

◼ Use row operations to make all numbers in the pivot column 

equal to 0 except for the pivot number which remains as 1.

◼ In this case, x1=30, x2=0, s1=940, s2=1990, s3=670, s4 = 0 and P 

= 2,400,000

◼ Now repeat the steps until there are no negative numbers in the 

last row. Select the new pivot column. x2 should enter into the 

solution mix.

Basic 

Variables
x1 x2 s1 s2 s3 s4

P RHS

s1 0 3 1 0 0 -2 0 1000-2*30=940

s2 0 4 0 1 0 -3 0 2080-3*30=1990

s3 0 2 0 0 1 -1 0 700-1*30=670

x1 1 -1 0 0 0 1 0 30

P 0 -130000 0 0 0 80000 1 0+80000*30=2400000
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Step 5

◼ Select the new pivot column. Select the new pivot row. s3

should be replaced by x2 in the solution mix.

Basic 

Variables
x1 x2 s1 s2 s3 s4

P RHS

s1 0 3 1 0 0 -2 0 940/3=313.33

s2 0 4 0 1 0 -3 0 1990/4=497.5

s3 0 2 0 0 1 -1 0 670/2=335

x1 1 -1 0 0 0 1 0 30/-1=-30

P 0 -130000 0 0 0 80000 1 2400000/-130000=-18.5
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Step 5

◼ In this case, x1=343.3, x2=313.3, s1=0, s2=1990, s3=670, s4 =

0 and P = 43,133,333.33

◼ Now repeat the steps until there are no negative numbers in

the last row. Select the new pivot column. s4 should enter into

the solution mix.

Basic 

Variables
x1 x2 s1 s2 s3 s4

P RHS

x2 0 1 1/3 0 0 -2/3 0 313.33

s2 0 0 -4/3 1 0 -1/3 0 1990-4*313.33=736.67

s3 0 0 -2/3 0 1 1/3 0 670-2*313.33=43.33

x1 1 0 1/3 0 0 1/3 0 30+313.33=343.33

P 0 0 0 0 0 -

6666.7

1 2400000+130000*313.33=431

33333.33
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Step 5

◼ Select the new pivot column. Select the new pivot row. s3

should be replaced by s4 in the solution mix.

Basic 

Variables
x1 x2 s1 s2 s3 s4

P RHS

x2 0 1 1/3 0 0 -2/3 0 313.33/(-2/3) = -470

s2 0 0 -4/3 1 0 -1/3 0 736.67/(-1/3) = -2210

s3 0 0 -2/3 0 1 1/3 0 43.33/(1/3)=130

x1 1 0 1/3 0 0 1/3 0 343.33/(1/3)=1030

P 0 0 0 0 0 -6666.7 1 43132900/(-6666.7)=-6470
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Step 5

◼ Select the new pivot column. Select the new pivot row. s3

should be replaced by s4 in the solution mix.

◼ Now calculate new values for the pivot row. Divide every 

number in the row by the pivot number.
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Basic 

Variables
x1 x2 s1 s2 s3 s4

P RHS

x2 0 1 1/3 0 0 -2/3 0 313.33/(-2/3) = -470

s2 0 0 -4/3 1 0 -1/3 0 736.67/(-1/3) = -2210

s4 0 0 -2/3 0 1 1/3 0 43.33/(1/3)=130

x1 1 0 1/3 0 0 1/3 0 343.33/(1/3)=1030

P 0 0 0 0 0 -6666.7 1 43133333.33/(-6666.7)=-

6470



Step 5: Final Result

◼ Use row operations to make all numbers in the pivot column 

equal to 0 except for the pivot number which remains as 1.
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x1 x2 s1 s2 s3 s4

P RHS

x2 0 1 -1 0 2 0 0 313.33+2*43.33 = 400

s2 0 0 -2 1 1 0 0 736.667+1*43.33 = 780

s4 0 0 -2 0 3 1 0 43.33/(1/3) = 130

x1 1 0 1 0 -1 0 0 343.33 – 1*43.33 = 300

P 130000 0 30000 0 20000 0 1 43133333.33+6666.7*43.33

*3 = 44000000

◼ As the last row contains no negative numbers, this solution

gives the maximum value of P. This simplex tableau represents

the optimal solution to the LP problem and is interpreted as:

◼ x1=300, x2=400, s1=0, s2=780, s3=43.33, s4 = 0 and P =

44,000,000



Simplex method: the MATLAB code

◼ MATLAB works for minimization, thus any maximization 

problem to solve shall be converted into minimization

◼ Objective Function: Min  -80000X1 - 50000X2

◼ Subject to

◼2X1 + 1X2  1000     

◼3X1 + 1X2  2080

◼X1 + X2  700 

◼X1 - X2  30

◼Xj ≥ 0,  j = 1,2
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clc, clear   

%objective function: input coefficients 

f=[-80000;-50000];   %note the negative 

coefficients for minimization of OF

%Inequality constraints. They should be in the 

form [A]{x}={b} 

A=[2 1; 3 1; 1 1;1 -1;-1 0; 0 -1]; 

b=[1000;2080;700;30; 0; 0];   

%Lower and upper bounds of variables 

lb=zeros(2,1); ub=[1e4;1e4];   

%Add empty matrices for coefficients of equality 

constraints and initial guess 

Aeq=[]; beq=[];   x0=[]; 

%Specify search options: 

%Use the dual-simplex algorithm since simplex will 

be removed after this version 

%Display the results of all iterations 

options=optimoptions('linprog','Algorithm','Simple

x','Display','iter');

[x,fval,exitflag,output] = 

linprog(f,A,b,Aeq,beq,lb,ub,x0,options); 



Example –Water Quality Management 

◼ Waste load allocation for water quality management in a 

river system can be defined as

◼Determination of optimal treatment level of waste, which 

is discharged to a river

◼By maintaining the water quality standards set by 

Pollution Control Agency (PCA), through out the river

◼ Conventional waste load allocation involves minimization of 

treatment cost subject to the constraint that the water quality 

standards are not violated 

◼ Consider a simple problem of M dischargers, who discharge 

waste into the river, and I checkpoints, where the water 

quality is measured by PCA
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Example –

◼ Let xj be the treatment level and aj be the unit treatment cost 

for jth discharger (j = 1, 2,…, M)

◼ ci be the dissolved oxygen (DO) concentration at check point 

i (i = 1, 2,…, I), which is to be controlled

◼ Decision variables for the waste load allocation model are xj

(j = 1, 2,…, M). 

◼ Objective function can be expressed as: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 =
σ1
𝑀 𝑎𝑗𝑥𝑗

◼ Relationship between the water quality indicator, ci (DO) and 

the treatment level upstream to that checkpoint is linear. Let 

g(x) denotes the linear relationship between ci and xj. 

◼ Then, 𝑐𝑖 = 𝑔 𝑥𝑗
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Example –

◼ Let cp be the permissible DO level set by PCA, which is to be 

maintained through out the river; Therefore, 𝑐𝑖 ≥ 𝑐𝑝

◼ Model can be solved using simplex algorithm which will give 

the optimal fractional removal levels required to maintain the 

water quality of the river

◼ Let there be two dischargers of wastes and two monitoring 

points along the river.

◼ The treatment cost by the first discharger is 2000 birr while 

the second be 3000 birr per unit (mg/lit) waste discharged.

◼ The DO level required at the monitoring 1 be 1.2 mg/lit. 

◼ 𝐷𝑂1 = 0.886𝑥1
◼ The DO level required at the monitoring 2 be 1.6 mg/lit. 

◼ 𝐷𝑂2 = 0.586𝑥1 + 0.716𝑥2
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Example –

◼ Decide on the waste allocated to be discharged by each 

discharger 

◼ Decision variables for the waste load allocation model are xj

(j = 1, 2). 

◼Objective function can be expressed as: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 =

𝑎1𝑥1 + 𝑎2𝑥2 = 2000𝑥1 + 3000𝑥2

◼ Subject to

◼0.886𝑥1 ≥ 1.2

◼0.586𝑥1 + 0.716𝑥2 ≥ 1.2
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Discharger 1

Discharger 2

Monitoring 2
Monitoring 1
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Example: Regulation and Storage

◼ Yield - amount of water that can be supplied during some 
time interval

◼ Firm yield - amount of water that can be supplied in a critical 
period

◼Without storage: firm yield is lowest streamflow on 
record,

◼With storage: firm yield can be increased to 
approximately the mean annual flow of stream 

◼ Critical period - period of lowest flow on record 

◼ Storage must be provided to deliver additional water over 

total streamflow record

◼ Given target yield, required capacity depends on risk that 

yield will not be delivered, i.e., the reliability of the system 
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Storage Capacity – Yield Function

◼ Maximum constant 

‘dependable’ reservoir 

release or yield available 

during each period of 

operation, as a function of 

the active storage volume 

capacity

◼ The yield from any reservoir 

depends on the active 

storage capacity and the 

inflow

Two storage – yield functions for a 

single reservoir defining the 

maximum and minimum 

dependable release. These 

functions can be defined for 

varying levels of yield reliability.
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Increasing Yield – Add Storage

◼ Consider a sequence of 5 annual flows, say 2, 4, 1, 5 and 3, at 

a site in an ungauged stream. 

◼ The minimum ‘dependable’ annual flow yield of the stream 

at this site is 1, the minimum observed flow. A discharge of 1 

can be ‘guaranteed’ in each of the five periods of record. 

◼ If a reservoir with an active storage capacity of 1 is built, it 

could store 1 unit of flow when the flow ≥ 2, and then release 

it when the flow is 1, increasing the minimum dependable 

flow to 2 units

◼ Similarly, a yield of 3 could be attained in each time period 

with 2 units of active capacity

◼ The maximum annual yield cannot exceed the mean annual 

flow, which in this example is 3.
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LP for Deriving Storage – Yield Functions

◼ Consider a single reservoir that must provide a minimum 

release or yield Y in each period t. 

◼ Assume a record of known stream flows Qt at the reservoir 

site is available. 

◼ The problem here is to find the maximum uniform yield Y

obtainable from a given active storage capacity, K

◼ Maximize Y,Subject to

◼St + Qt - Y - Rt = St+1 t = 1, 2, 3, …, T;  T+1 = 1

◼St ≤ K t = 1, 2, 3, …, T

◼ The model must be solved for various a given value of 

capacity K. 

◼ The upper bound on the yield, regardless of reservoir 

capacity, will be the mean inflow
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Excel solver: solution 
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t Qt St Rt Y

1 10 10 0 12.5

2 5 7.5 0 12.5

3 30 0 7.5 12.5

4 20 10 10 12.5

5 15 7.5 0 12.5

mean 16

0

10

20

30

40

1 1.5 2 2.5 3 3.5 4 4.5 5

F
lo

w
 u

n
it

time unit

Y=12.5 and K = 10

Qt St

Rt Y

• The following linear 

programming solves an 

optimization problem of 

maximizing the uniform 

yield (Y) given an active 

storage capacity of K (=10). 
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Exercise:

◼ Alternatively, one can solve a number of linear programming 

models that minimize an unknown storage capacity K needed 

to achieve various specified yields Y. 

◼ The problem is to find the minimum storage capacity K 

obtainable from a specified yield, Y

◼ Minimize K, Subject to

◼St + Qt - Y - Rt = St+1 t = 1, 2, 3, …, T;  T+1 = 1

◼St ≤ K t = 1, 2, 3, …, T

◼ Exercise: find the storage needed to achieve a uniform 

specific yield of 12.5
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Excel Solver solution

t Qt St Rt Yt

1 10 10 0 12.5

2 5 7.5 0 12.5

3 30 0 17.5 12.5

4 20 0 0 12.5

5 15 7.5 0 12.5

90
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35
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F
lo

w
 u

n
it

Time unit

Y=12.5, K=10 Qt St Rt Yt

• The following linear 

programming solves an 

optimization problem of 

minimizing the Storage (Y) 

given an average uniform 

Yield of Y (=12.5). 


