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1. Issues, Concerns, and Terminology 

◼ The usefulness of any model is in part dependent on the 

accuracy and reliability of its output data.

◼ Output values are subject to imprecision because:

◼All models are abstractions of reality, 

◼Precise input data are rarely available. 

◼We simply cannot forecast the future with precision.

◼ The input data and modeling uncertainties can interact in 

various ways. 

◼ This chapter focuses on ways of identifying, quantifying, and 

communicating the uncertainties in model outputs.
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Issues, …

◼ Some input data uncertainties can be reduced by additional 

research and further data collection and analysis. 

◼ Before spending money and time to gather and analyze 

additional data, it is reasonable to ask:

◼What improvement in estimates of system performance or 

what reduction in the uncertainty associated with those 

estimates would result, if all data and model uncertainties 

could be reduced (if not eliminated). 

◼ Such information helps to determine how much one would be 

willing to “pay” to reduce model output uncertainty.

◼ Obtaining additional information, however measured, 

should exceed the cost of obtaining it.
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Issues, …

◼ Risk vs. Uncertainty

◼The term risk is often reserved to describe situations for 

which probabilities are available to describe the likelihood 

of various possible events or outcomes. Often risk refers 

to these probabilities times the magnitude of the 

consequences of these events or outcomes. 

◼If probabilities of various events or outcomes cannot be 

quantified, or if the events themselves are unpredictable, 

some would say the problem is then one of uncertainty.

◼ Uncertainty stems from:

◼Inadequate information

◼Incorrect assumptions, and

◼The variability of natural processes.
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Simple approach to uncertainty

◼ Among ways to deal with uncertainty, the simplest approach 

is to replace each uncertain quantity either by its expected or 

average value or by some critical (e.g., “safest-case”) value 

and then proceed with a deterministic approach. 

◼ Replacement of uncertain quantities by either expected or 

safest-case values can adversely affect the evaluation of 

project performance especially when important parameters 

are highly variable.

◼ When important quantities are uncertain, one should evaluate 

both the expected performance of a system and possible 

magnitude of system failures and their consequences.
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Issues, …

◼ Errors and approximations in input data measurement, 

parameter values, model structure and model solution 

algorithms, are all sources of uncertainty.

◼ Uncertainty analyses employing probabilistic descriptions of 

model inputs can be used to derive probability distributions of 

model outputs and system performance indices. 
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Issues, …

◼ There is also uncertainty with respect to human behavior 

and reaction related to particular outcomes and their 

likelihoods, i.e., to their risks and uncertainties. These are not 

usually part of the models themselves. 

◼ Social uncertainty may often be the most significant 

component of the total uncertainty associated with just how a 

water environment system will perform. 

◼ Sensitivity analysis procedures explore and quantify the 

impact of possible changes (errors) in input data on predicted 

model outputs. 

◼ Simple sensitivity analysis procedures can be used to 

illustrate the consequences of alternative assumptions about 

the future.
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Issues, …

◼ An uncertainty analysis attempts to describe the entire set of 

possible outcomes, together with their associated 

probabilities of occurrence. 

◼ A sensitivity analysis attempts to determine the relative 

change in model output values given modest changes in 

model input values. A sensitivity analysis thus measures the 

change in the model output in a localized region of the space 

of inputs. 

◼ However, one can often use the same set of model runs for 

both uncertainty analyses and sensitivity analyses.

◼ It is possible to carry out a sensitivity analysis of the model 

around a current solution and then use it as part of a first-

order uncertainty analysis.
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2. Uncertainty Analyses (UA)

◼ Uncertainty involves the notion of randomness. 

◼ If a value of a performance indicator or performance measure, 

or in fact any variable (like the chemical concentration or the 

depth of water at a particular location) varies and this variation 

over space and time cannot be predicted with certainty, it is 

called a random variable. 

◼ One cannot say with certainty what the value of a random 

variable will be but only the likelihood or probability that it 

will be within some specified range of values. 

◼ The probabilities of observing particular ranges of values of a 

random variable are described or defined by a probability 

distribution. 

◼ Here we are assuming each student know, or can compute, or 

can estimate, this distribution.
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Probability distribution

▪A random variable x takes on a defined set of values with 
different probabilities.
▪For example, if you roll a die, the outcome is random (not 
fixed) and there are 6 possible outcomes, each of which 
occur with probability one-sixth.  

▪Roughly, probability is how frequently we expect different 
outcomes to occur if we repeat the experiment over and over 
(“frequentist” view) 

◼ A probability function maps the possible values of x against 

their respective probabilities of occurrence, p(x) 

◼ p(x) is a number from 0 to 1.0.

◼ The area under a probability function is always 1.
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UA

◼ Suppose the random variable is X. For discrete values, the 

probability distribution of X can be expressed as a histogram, 

as shown below (see next slide). 

◼ If the random variable is a continuous variable, the 

probability distribution of X can be expressed as a continuous 

distribution as shown as smooth line (see next slide).

◼ The shaded area under the density function for the continuous 

distribution is 1 as the sum of the probabilities for all possible 

outcomes must equal 1. 

◼ The area between two values (u and v) of the random 

variable represents the probability that the observed value x 

of the random variable value X will be within that range of 

values.
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UA

◼ The probability distribution, PX(x) shown in left is called a 

probability mass function.

◼ The probability distributions shown in the right, is called 

probability density functions (pdf) and are denoted by fX(x). 

◼ The subscript X of PX and fX represents the random variable, 

and the variable x (on the horizontal axes) is some value of 

that random variable X.
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UA

◼ UA involve a comprehensive 

identification of all sources of 

uncertainty that contribute to 

the joint Probability 

Distribution of each input or 

output variable. 

◼ PDF for two alternative project 

plans, A and B, for a specified 

performance measure with the 

corresponding costs are 

shown. 
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◼ The introduction of two performance criteria, cost and probability 

of exceeding a performance measure target (e.g., a polluant 

concentration standard) introduces a conflict where a tradeoff 

must be made. In this illustration, we want the lowest cost (B is best) 

and the lowest probability of exceedance (A is best)



Model and Model Parameter Uncertainties

◼ Consider a situation, in which for a specific set of model inputs 

parameters (here 4), the model outputs differ from the observed 

values, and for those model inputs, the observed values are 

always the same. Here nothing randomly occurs. 

◼The 4 input values or model structure needs to be changed. 

◼ This is typically done in a model calibration process.

◼ The gap between the two (predicted and observed) values could 

result from imprecision in the measurement of observed data, 

imprecision in the model parameter values, the model structure, or 

the algorithm used to solve the model.
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Model and Model Parameter Uncertainties

◼ If some of the inputs are random, i.e., not predictable, (e.g. 

when random outputs of one model are used as inputs into 

another model) they will yield random outputs. Here the 

model input and output values shall be described by PDFs.

◼ If the uncertainty in the output is due only to the uncertainty in 

the input, the situation is similar to that shown above slide.

◼ If the PDF of performance measure output values does not fit 

or is not identical to the PDF of observed performance 

measure values, then calibration of model parameter values or 

modification of model structure may be needed.

◼ If a model calibration or “identification” exercise finds the 

“best” values of the parameters to be outside reasonable 

ranges of values based on scientific knowledge, then the 

model structure or algorithm might be in error.
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Model and Model Parameter Uncertainties

◼ Assuming the algorithms used to solve the models are correct 

and observed measurements of system performance vary for the 

same model inputs, as shown in Fig. below, it can be assumed 

that the model structure does not capture all the processes that 

are taking place and that impact the value of the performance 

measures. 

◼ This is often the case when relatively simple and low-resolution 

models are used. However, even large and complex models can 

fail to include or adequately describe important phenomena.
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Example

◼ Consider the prediction of a pollutant concentration at some site 

downstream of a pollutant discharge site. 

◼ Given a streamflow Q (1000 m3/day), the distance between the 

discharge site and the monitoring site, x (m), the pollutant decay 

rate constant k (day−1), and the pollutant discharge w (kg/day), 

◼ Use the following simplified model to predict the concentration 

of the pollutant C (g/m3 = mg/l) at the downstream monitoring 

site 𝐶 =
𝑤

𝑄
𝑒−𝑘

𝑥

𝑢

◼ The velocity u (m/day) is a known function of the streamflow Q.

◼ Observed C may differ from the computed C even for the same 

inputs of w, Q, k, x, and u. This difference varies in different time 

periods. This apparent variability, is as illustrated in Figure upper 

slide.
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Example 

◼ This apparent variability, can be simulated using the same 

model but by assuming a distribution of values for the decay 

rate constant k. 

◼ Alternatively the model structure can be modified to include 

the impact of streamflow temperature T on the prediction of C 

as 𝐶 =
𝑤

𝑄
𝑒−𝑘

𝑥

𝑢
𝜃𝑇−20

◼ Now there are two model parameters, k and the dimensionless 

temperature correction factor θ, and an additional model input, 

the streamflow temperature, T. 

◼ It could be that the variation in streamflow temperature was 

the sole cause of the first equation’s “uncertainty” and that the 

assumed parameter distribution of k was simply the result of 

the distribution of streamflow temperatures on the term kθT-20.
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Example 

◼ If the output were still random given constant values of all 

the inputs, then another source of uncertainty exists. 

◼ This uncertainty might be due to additional random loadings 

of the pollutant, possibly from nonpoint sources. 

◼ Once again the model could be modified to include these 

additional loadings if they are knowable. 

◼ If these additional loadings are not known, a new random 

parameter could be added to the input variable w or to the 

right hand side of the equations above that would attempt to 

capture the impact on C of these additional loadings. 

◼ A potential problem, however, might be the likely correlation 

between those additional loadings and the streamflow Q.
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Example 

◼ NOTE

◼While adding model detail removed some “uncertainty” in 

the above example, increasing model complexity will not 

always eliminate or reduce uncertainty in model output. 

◼Adding complexity is generally not a good idea when the 

increased complexity is based on processes whose 

parameters are difficult to measure, the right equations are 

not known at the scale of application, or the amount of 

data for calibration is small compared to the number of 

parameters.
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What Uncertainty Analysis Can Provide

◼ An uncertainty analysis takes a set of randomly chosen input 

values (that can include parameter values), passes them through 

a model (or transfer function) to obtain the distributions (or 

statistical measures of the distributions) of the resulting outputs. 

The output distributions can be used to

◼Describe the range of potential outputs of the system at some 

probability level.

◼Estimate the probability that the output will exceed a specific 

threshold or performance measure target value.
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What Uncertainty Analysis Can Provide

◼ Common uses for uncertainty analyses are to make general 

inferences, like:

◼Estimating the mean and standard deviation of the outputs.

◼Estimating the probability the performance measure will 

exceed a specific threshold.

◼Putting a reliability level on a function of the outputs, e.g., the 

range of function values that is likely to occur with some 

probability.

◼Describing the likelihood of different potential system outputs.

◼ Implicit in any uncertainty analysis are the assumptions that 

statistical distributions for the input values are correct and that the 

model is a sufficiently realistic description of the processes taking 

place in the system. Neither of these assumptions is likely to be 

entirely correct.
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3. Sensitivity Analyses (SA)

◼ “Sensitivity analysis” is aimed at describing how much 

output values are affected by changes in model input values. 

◼ It is the investigation of the importance of imprecision or 

uncertainty in inputs in a decision-making or modeling 

process. 

◼ The exact character of sensitivity analysis depends upon the 

particular context and the questions of concern. 

◼ Sensitivity studies can provide a general assessment of model 

precision when used to assess system performance for 

alternative scenarios, as well as detailed information 

addressing the relative significance of errors in various 

parameters. 
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SA

◼ Initial sensitivity analysis studies focus on two products:

◼Detailed results to guide research and assist model 

development efforts, and

◼Calculation of general descriptions of uncertainty 

associated with model predictions so that policy decisions 

can reflect both the predicted system performance and the 

precision of such predictions.

◼ Most sensitivity analysis approaches examine the effects of 

changes in a single parameter value or input variable 

assuming no changes in all the other inputs. 

◼ Sensitivity analyses can be extended to examine the 

combined effects of multiple sources of error as well.
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Sensitivity Coefficients

◼ These are one measure of sensitivity, defined as the derivative 

of a model output variable w.r.t an input variable or parameter. 

◼ A sensitivity coefficient can be used to measure the magnitude 

of change in an output variable Q per unit change in the 

magnitude of an input parameter value P from its base value Po. 

◼ Let SIPQ be the sensitivity index for an output variable Q with 

respect to a change ΔP in the value of the input variable P from 

its base value Po. Noting that the value of the output Q(P) is a 

function of P, a sensitivity index could be defined as

◼𝑆𝐼𝑃𝑄 = Τ𝑄 𝑃𝑜 + ∆𝑃 − 𝑄 𝑃𝑜 − ∆𝑃 2∆𝑃

◼ A dimensionless expression of sensitivity is the elasticity index, 

EIPQ that measures the relative change in output Q for a relative 

change in input P. 𝐸𝐼𝑃𝑄 = Τ𝑃𝑜 𝑄 𝑃𝑜 𝑆𝐼𝑃𝑄
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Example 

◼ The simple water quality model provided by Vollenweider’s

(1976) empirical relationship for the average phosphorus 

concentration in lakes is given by: 𝑃 = ൘
ൗ𝐿 𝑞

1+ Τ𝑧 𝑞

◼ Where P is the phosphorus concentration, (mg/m3), 

◼ L is the annual phosphorus loading rate, (milligrams per square 

meter per year, mg/m2 a), 

◼ q is the annual hydraulic loading, (m/a or more exactly m3/m2a), 

◼ z is the mean water depth, z (m).
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Example 

◼ For Lake having L = 680 mg/m2a; q = 10.6 m/a; and z = 84 

m, yields P = 16.8 mg/m3. 

◼ Values of phosphorus concentrations less than 10 mg/m3 are 

considered oligotrophic, whereas values greater than 20 

mg/m3 generally correspond to eutrophic conditions. 

◼ Reasonable ranges reflecting possible errors in the three 

parameters yield the values in Table below.
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Parameter Parameter Value Phosphorous Concentration

Low High Low High Range

L (mg/m2a) 500 900 12.36 22.26 9.89

q (m/a) 8 13.5 14.51 20.05 5.54

Z (m) 81 87 16.61 17.04 0.43



Tornado Diagram

◼ One may want to display these results so they can be readily 

visualized and understood. A tornado diagram (Eschenback

1992) would show the lower and upper values of P obtained 

from variation of each parameter, with the parameter with the 

widest limits displayed on top, and the parameter having 

smallest limits on the bottom.

◼ These error bars shown indicate there is substantial 

uncertainty associated with the phosphorus concentration P, 

primarily due to uncertainty in the loading rate L.
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Pareto chart

◼ An alternative to tornado diagrams is a Pareto chart showing 

the width of the uncertainty range associated with each 

variable, ordered from largest to smallest.
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Spider plot

◼ Another visual presentation is a spider plot showing the 

impact of uncertainty in each parameter on the variable in 

question, all on the same graph.

◼ It shows the particular functional response of the output to 

each parameter on a common scale, so one needs a common 

metric to represent changes in all of the parameters. Here we 

use percentage change from the nominal or best values.
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