3. Qualitative modelling

- If values are best described by *qualitative adjectives*, membership functions indicating the particular quantitative descriptions of parameter or decision variable values can be used to quantify these qualitative descriptions.
- A particular mix of economic and environmental impacts may be more acceptable to some and less acceptable to others
- Qualitative adjectives examples: Large, small, pure, polluted, satisfactory, unsatisfactory, sufficient, insufficient, excellent, good, fair, poor, dry, hot, expensive, clean, high, low, etc.
- Qualitative, or so-called "fuzzy" statements convey information despite the imprecision of the italicized adjectives.

The quality of water is good for drinking.

 Membership functions of these uncertain or qualitative variables can be included in quantitative models.

Membership functions (MF)

- Assume a set *A* = [18, 25].
- Any number *x* is either in or not in the set A.
- The statement "*x belongs to A*" is either *true or false*. Such *set A* is called a **crisp set**.
- If one is not able to say for certain whether or not any number x is in the set, then the set A could be referred to as fuzzy.
- The degree of truth attached to that statement is defined by a membership function.
- Membership functions range from 0 (completely false) to 1 (completely true)

MFs

- Consider the statement, "The water temperature should be suitable for swimming."
- Just what temperatures are suitable will depend on the persons asked.
- Thus shall be defined on the basis of the responses of many potential swimmers.
- It would be difficult for anyone to define precisely those temperatures that are suitable, if it is understood

that temperatures outside that range are **absolutely not suitable**.

 A function defining the interval or range of water temperatures suitable for swimming can be as shown

MFs

- The form or shape of a function depends on the individual subjective feelings of the "members" or individuals who are asked their opinions.
- To define this particular function, each individual *i* could be asked to define his or her comfortable water temperature interval (T_{min}, T_{max}) .
- The degree of belonging value associated with any temperature value T equals the number of individuals who place that T within their range (T_{min}, T_{max}) , divided by the total number of individual opinions obtained.
- It is the fraction of the total number of individuals that consider the water temperature *T* suitable for swimming. For this reason such functions are often called membership functions

MF Implication for optimization

- Now suppose the water temperature applied to a swimming pool where the temperature could be regulated. The hotter the temperature the more it will cost.
- If we could quantify the economic benefits associated with various temperatures we could perform a benefit–cost analysis by maximizing the net benefits.
- Alternatively, we could maximize the fraction of people who consider the temperature good for swimming subject to a cost constraint using a membership function shown above in place of an economic benefit function.

MF Implication for optimization

- Continuing with this example, assume you are asked to provide the desired temperature at a reasonable cost.
- Just what is reasonable can also be defined by another membership function, but this time the function applies to cost, not temperature.
- In this case one could consider there are in fact two objectives,

Suitable temperature and

Acceptable/Reasonable cost.

 A model that maximizes the minimum value of both membership functions is one approach for finding an acceptable policy for controlling the water temperature at this swimming pool.

- Consider the application of qualitative modeling to the three irrigation farm water allocation problem seen in chapter 2.
- The objective is to find the values of each allocation that maximizes the net benefits, NB(x).
- Maximize Net benefit Subject to constraints:

NB=
$$p_1(12 - p_1) + p_2(20 - 1.5p_2) + p_3(28 - 2.5p_3) - 3(p_1)^{1.3} - 5(p_2)^{1.2} - 6(p_3)^{1.15}$$

•Where $p_1 \le 0.4(x_1)^{0.9}$, $p_2 \le 0.5(x_2)^{0.8}$ and $p_3 \le 0.6(x_3)^{0.7}$

•Water-allocation restriction: $x_1 + x_2 + x_3 = about 8$

• Remember that the optimal solution using GA was around $x_1 = 0.7217$, $x_2 = 2.9808$, $x_3 = 4.2985$ and NB = 47.3721

- To create a qualitative equivalent for the model, the objective can be expressed as a membership function of the set of all possible objective values. The higher the objective value the greater the membership function value.
- Since membership functions range from 0 to 1, the objective needs to be scaled so that it also ranges from 0 to 1.
- The highest value of the objective occurs when there is sufficient water to maximize each firm's benefits; i.e. at the value where the derivative of the net benefit function of each firm equal zero.

• $x_1 = 10.18$ (NB₁ = 14.552), $x_2 = 13.56$ (NB₂ = 29.611), and $x_3 = 14.54$ (NB₃ = 42.476).

 This unconstrained solution would result in a total benefit of 86.639.

- The objective membership function, m_G , can be expressed by • $m_G = \begin{bmatrix} p_1(12 - p_1) + p_2(20 - 1.5p_2) + p_3(28 - 2.5p_3) \\ -3(p_1)^{1.3} - 5(p_2)^{1.2} - 6(p_3)^{1.15} \end{bmatrix} / 86.639$
- The goal of maximizing objective function is changed to that of maximizing the degree of reaching the objective target.
- The optimization problem becomes:

•*Maximize* $m_G(x)$

•Subject to: $x_1 + x_2 + x_3 \le about 8$

- The total amount of resources available to be allocated is limited to "*about 8*" which is a qualitative constraint.
- The membership function describing the above constraint can be defined by

 $m_{\mathcal{C}}(x) = 1, if x_1 + x_2 + x_3 \le 7$ $m_{\mathcal{C}}(x) = [9 - (x_1 + x_2 + x_3)]/2,$ $if 7 \le (x_1 + x_2 + x_3) \le 9$ $m_{\mathcal{C}}(x) = 0, if x_1 + x_2 + x_3 \ge 9$

- The qualitative optimization problem becomes: maximize the minimum $(m_G(x), m_C(x))$
- subject to

$$m_{G} = \begin{bmatrix} p_{1}(12 - p_{1}) + p_{2}(20 - 1.5p_{2}) + p_{3}(28 - 2.5p_{3}) \\ -3(p_{1})^{1.3} - 5(p_{2})^{1.2} - 6(p_{3})^{1.15} \end{bmatrix} / 86.639$$

$$m_{C}(x) = \begin{bmatrix} 9 - (x_{1} + x_{2} + x_{3}) \end{bmatrix} / 2$$

This yields (using excel solver)

 $x_1 = 0.84044$, $x_2 = 2.50404$, $x_3 = 4.57079$ and Q = 7.91526

 $-m_G(x) = m_C(x) = 0.542$, and

- The total net benefit, is TB(X) = 46.990.
- Compare this with the GA solution of x₁ = 0.7217, x₂ = 2.9808, x₃= 4.2985 and NB = 47.3721.

												calcu	lator1 - Excel			
F	ile Ho	me Inse	ert Page	Layout	Formulas	Data	Review	View	Help	Power Pive	ot Q	Tell me what yo	u want to do			
	From Acces		sol	ver	NeS OI	ow Querie om Table			Connections Properties Edit Links	Z↓ ZA	ort Filt	er Clear	d Columns	E Flash F I Remov 5 S Data Va	ill e Duplicates alidation 👻	∎•□ Consolid ¤ि Relations Manage
	G	et External L	Data	I	Get & Ira	anstorm		Conne	ections		Sort 8	l Filter			Data looi:	S
B2	5	▼ ∃ 2	× v	f _x												
	А	В	с	D	E	F	G	S	olver Parame	ters						×
	the follow	ing progra	imming sol	ves an opt	timization p	problem o	of									
	maximizin	g the net l	benefit for	the three	farms give	n some q	ualitative		Set Object	ive		CRCOS				^
1	water amo	ount (abou	t 8) to allo	cate.					Je <u>r</u> Object			30323				- I
2	Objective	function	Maximize	min(mG,n	nC)				To:	● <u>M</u> ax	◯ Mi <u>n</u>	<u> </u>	Of:)		
3	Constraint	s	$x_{1+x_{2+x}}$	$3 \le abo$	nut 8 (mc)											
4			0 < = mG <	≈= <i>1;</i> 0<=,	mC<=1;				By Changi	ng Variable	Cells:					
5								-	SBS9:SDS9)						T
0									S <u>u</u> bject to	the Constra	aints:					
0		v1	v2	v2	Total				\$B\$22 <=	1					Add	
q		0.840435	2 504036	4 570789	7 91526				\$B\$22 >= \$E\$20 <=	0					<u>7</u> 00	
10		p1	p2	n3	7151520				\$E\$20 > =	ò					<u>C</u> hange	
11		0.342069	1.042035	1.738381	3.122486			x	\$E\$9 >= 7							
12		return1	return2	return3											<u>D</u> elete	
13		3.987815	19.21195	41.11975	64.31952										Decet 44	
14		Cost1	Cost2	Cost3											<u>R</u> eset All	
15		0.743822	5.253261	11.3323	17.32938									~	Load/Save	e
16								_	Make	Unconstrair	ed Variable	s Non-Negative				
17		NB1	NB2	NB3	Total Bene	efit		_		trine 🔽		-				
18		3.243994	13.95869	29.78745	46.990			-	Method:		RG Nonline	ear		~	O <u>p</u> tior	ns
20		mg1	mg2	mg3	0.542269											
20		0.222919	0.471403	0.701265	0.342505				Solving N	Method						
22		0.54237							Select th Simplex (e GRG Nonl engine for li	inear engin near Solver	e for Solver Prob Problems, and so	ems that are sr lect the Evolut	nooth nonlir ionary engin	ear. Select the	e LP
23		0.0.207							problem	s that are no	on-smooth.	, and a		in the second second		
24		Objective	function													
25		0.542											-		C 1	
26									<u>H</u> elp				2	oive	CI <u>o</u>	se
	< >	DP	LP LP2	LP3	ANN G	A MF	MFWA	WC	Q WQ2	PDF	SI	(+)				
Poi	nt	- T	I	1 1	I	1	-		146		ſ					

Point

Example: Qualitative Water Quality

- Consider the stream pollution problem where the stream receives waste, W_i from sources located at sites i = 1 and 2.
- Without some waste treatment at these sites, the pollutant concentrations at *sites 2* and *3* will exceed the maximum desired concentration. The problem is to find the fraction of wastewater removal, x_i , at *sites i* = 1 and 2 required to meet the quality standards at *sites 2* and *3* at a minimum total cost.
- The data used for the problem shown in next slide
- The crisp model for this problem is: Minimize $C_1x_1 + C_2x_2$, Subject to
- Water quality constraint at site 2:

 $[P_1Q_1 + W_1(1 - x_1)]\sigma_{12}/Q_2 \le P_2^{max}$

■ $[32 \times 20 + 250,000(1 - x_1)/86.4] 0.25/12 \le 20 \rightarrow x_1 \ge 0.78$

	Para			
	meter	Unit	Value	Remark
	Q_1	m ³ /s	10	Flow just u/s of site 1
	Q_2	m ³ /s	12	Flow just u/s of site 2
Flow	$\overline{Q_3}$	m ³ /s	13	Flow at park
	\mathbf{W}_{1}	Kg/day	250,000	Pollutant mass produced at site 1
Waste	W_2	Kg/day	80,000	Pollutant mass produced at site 2
	P_1	mg/l	32	Concentration Just upstream of site 1
Pollutant	-			Maximum Allowable concentration upstream
Concentr	P_2	mg/l	20	of site 2
ation	P_3	mg/l	20	Maximum Allowable concentration at site 3
	σ_{12}	_	0.25	Fraction of site 1 pollutant mass at site 2
Decay	σ_{13}	_	0.15	Fraction of site 1 pollutant mass at site 3
Fraction	σ_{23}	_	0.6	Fraction of site 2 pollutant mass at site 3

• Water quality constraint at site 3:

 $\left[\left[P_1 Q_1 + W_1 (1 - x_1) \right] \sigma_{13} + W_2 (1 - x_2) \sigma_{23} \right] / Q_3 \le P_3^{max}$

$$\begin{bmatrix} [32 \times 20 + 250,000 \times (1 - x_1)/86.4] \times 0.15 \\ + 80,000(1 - x_2)/86.4 \times 0.6 \end{bmatrix} / 13 \le 20$$

$$\Rightarrow x_1 + 1.28x_2 \ge 1.79$$

• Restrictions on fractions of waste removal:

• $0 \le x_i \le 1$, for sites i = 1 and 2

• Excel solver for this problem using linear programming will result in:

 $\mathbf{x}_1 = 0.779 \text{ and } \mathbf{x}_2 = 0.791$

Essentially 80% removal efficiency is expected.

• Compare this solution with that of the next qualitative model.

- The maximum allowable pollutant concentrations in the stream at *sites 2* and *3* were expressed as "*about 20 mg/l*"
- Obtaining opinions of individuals of what they consider to be "*about 20 mg/l*" a membership function (m_P) can be defined as shown below:

• Regardless of whether or not this is required to meet stream quality standards, the government environmental agency expects each polluter to install:

 Best available technology (BAT) or To carry out best management practices (BMP)

- Asking experts just what BAT or BMP means with respect to treatment efficiencies could result in a variety of answers.
- These responses were used to define membership function (m_T) for each of the two firms in this example.

Membership function for best available treatment technology

$$m_T(x) = 0, if x_i \le 0.7$$

$$m_T(x) = 20x_i - 14,$$

$$if 0.7 \le x_i \le 0.75$$

$$m_T(x) = 1, if 0.75 \le x_i \le 0.8$$

$$m_T(x) = 9 - 10x_i,$$

$$if 0.8 \le x_i \le 0.9$$

$$m_T(x) = 0, if x_i \ge 0.9$$

- There is a third concern that has to do with equity. It is expected that no polluter should be required to treat at a much higher efficiency than any other polluter.
- A membership function (m_E) defining just what differences are acceptable or equitable could quantify this concern.

- Considering each of these membership functions as objectives, a number of fuzzy optimization models can be defined.
- One is to find the treatment efficiencies that maximize the minimum value of each of these membership functions.

•*Maximize* $m = max \{min (m_P, m_T, m_E)\}$

- Considering each of these membership functions as objectives, a number of fuzzy optimization models can be defined.
- One is to find the treatment efficiencies that maximize the minimum value of each of these membership functions.

•*Maximize* $m = max \{min (m_P, m_T, m_E)\}$

Solving this model yields the results shown below.

Variable	Value	Remark	Variable	Value	Remark
m	0.93		m _{p2}	0.94	
x ₁	0.81		m _{p3}	0.93	
x ₂	0.81		m _{T1}	0.93	
P ₂	18.28		m _{T2}	0.93	
P ₃	18.36		m _E	1	

• This solution confirms the assumptions made when constructing the representations of the membership functions in the model.

I	∃ 5 - (.⇒ - ∓								calcul	lator1 - Excel				
F	ile Ho	me Inse	ert Page	Layout Fo	rmulas Data Revi	ew View	Help P	ower Pivot	Q Tell	me what you	u want to do				
	From Acces From Web From Text	EXT	eels Data		From Table Creent Scol	Connection	nnections perties Licks ons	A↓ ZAZ Z↓ Sort	Filter	K Clear Reapply Advanced	Text to Columns	Flash Fill Remove Duplic Data Validation	I+□ Consoli ates ¤: Relatior → I Manage Tools	date nships e Data Model	What-If Fo Analysis • S Forecas
E2	1	▼ : :	×	f _x											
	А	В	С	D		E			Solver Para	meters					×
1	the follow sites 1 and important	ing solver 2 so that limiting p	solves find the water arameters	ding the treat quality level a are given in t	tment level (fraction x at other two sites 2 an the table below	:1 and x2) by tw d 3 to be about	vo waste d 20 mg/lit.	esposing the	Se <u>t</u> Obj	jective:		\$E\$21			<u>↑</u>
2		Paramete	Unit	Value	Remark				To:	Max	O Min	O Value Of:	0		
3 4		Q1 Q2	m3/s m3/s	10 12	flow just u/s of site 1 flow just u/s of site 2				<u>By</u> Cha	nging Variab	le Cells:	0 1			
5	Flow	Q3	m3/s	13	flow at park				\$A\$17:	\$B\$17					Î
6 7	Wasto	W1	Kg/day	250,000	Pollutant mass produ	iced at site 1			Subject	t to the Const	traints:				
, 8	Pollutant	D1	mg/lay	30,000	Concentration Just u	ostream of site	1		\$A\$17:	\$B\$17 <= 0.9)		<u>^</u>	Ad	d
9	Concentr	P2	mg/l	20	Maximum Allowable concentration upstream of site 2				\$A\$19 <= 23						
10	ation	P3	mg/l	20	Maximum Allowable concentration at site 3										
11		σ12	-	0.25	Fraction of site 1 poll	utant mass at s	ite 2		\$8\$19 \$A\$17:	>= 18 \$B\$17 >= 0.7	7				
12	Decay	σ13	-	0.15	Fraction of site 1 poll	utant mass at s	ite 3		\$C\$17	>= 0				<u>D</u> el	ete
13	Fraction	σ23	-	0.6	Fraction of site 2 poll	utant mass at s	ite 3		30317	x- 0.14					
14														<u>R</u> ese	t All
15														Load	Save
16	x1	x2	abs(x1-x2)	constraints							In a Manakina	Ť	<u>-</u> 040/	Save
17	0.807264	0.80727	5.65E-06		0<=abs(x1-x2)<=0.14				✓ Maj	<u>k</u> e Unconstra	ained Variables N	ion-Negative			
18	p2	р3	mE		18<=p2 or p3 <= 23				S <u>e</u> lect a	Solving	GRG Nonlinear			~ Og	tions
19	18.29	18.36	1.000		0.7<=x1 or x2 <= 0.9				Method	u.					
20	mp2	mp3	mT1	mT2	objective function: m	naximize min (n	nE,mP,mT)	Solvin	g Method					
21 22 23	0.94	0.93	0.927361	0.92730441				0.927	Select Simple proble	the GRG Nor ex engine for ems that are i	nlinear engine fo r linear Solver Pro non-smooth.	or Solver Problems t oblems, and select t	that are smooth n he Evolutionary e	onlinear. Selec ngine for Solve	t the LP er
24															
25															
26									H	elp			<u>S</u> olve		Cl <u>o</u> se
	< →	DP	LP LP2	LP3 AI	NN GA MF N	AFWA WQ	WQ2	PDF S	+				•		

Exercise 3

- Consider the application of qualitative modeling to the three irrigation farm water allocation problem seen in GA section.
- The problem is to find the allocations of water to each farm that maximize the total benefits TB(X):

•*Maximize* $TB(x) = (6x_1 - x_1^2) + (7x_2 - 1.5x_2^2) + (8x_3 - 0.5x_3^2)$

- These allocations cannot exceed the amount of water available, Q, less any that must remain in the river, R.
- Assuming the available flow for allocations is about 6 units
- The maximize equation is subject to the resource constraint:

 $\mathbf{x}_1 + x_2 + x_3 \le about \ 6 \ unit$