
2.2 Evolutionary algorithms: Genetic Algorithm 

◼ Evolutionary algorithms (EA) represent a broad spectrum of 

heuristic approaches for simulating biological evolution in the 

search for improved “fitness,” i.e., the best values of decision 

variables and parameters based on an objective or fitness 

function. 

◼ Evolutionary algorithms are broadly based on the repeated 

mutation and recombination and selection: in each generation 

(iteration) to define new individuals (candidate solutions).

◼ Primary examples include:

◼Genetic algorithms

◼Evolutionary strategies

◼Evolutionary programming and 

◼Genetic programming
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Genetic Algorithm (GA)

◼ GA are randomized general purpose search techniques used 

for finding the best values of the parameters or decision 

variables of existing models. 

◼ GAs and their variations are based on the mechanisms of 

natural selection. 

◼ Unlike conventional optimization search approaches based on 

gradients, GAs work on populations of possible solutions, 

attempting to find a solution set that either maximizes or 

minimizes the value of a function of those parameters and 

decision variables. This function is called an objective 

function.
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GA

◼ Some populations of solutions may improve the value of the 

objective function, others may not. 

◼ The ones that improve its value play a greater role in the 

generation of new populations of solutions.

◼ This process continues until no significant improvement in 

model output is apparent. 

◼ Just how “good” or “fit” a particular population of parameter 

and decision variable values must be evaluated using a model 

of the system that contains these parameters and decision 

variables. This system model is separated from the GA 

model. This makes GA applicable for estimating the best 

parameter and decision variable values of a wide variety of 

simulation models.
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GA

◼ Each individual solution set of a GA model contains values 

of all the parameters or variables whose best values are being 

sought. These solutions are expressed as strings of values.

◼ For example, if the values of three variables x, y, and z are to 

be obtained, these variables are arranged into a string, xyz. 

Assuming each variable is expressed using three digits, then 

the string 056004876 would represent x = 56, y = 4, and z = 

876.

◼ These strings (array of numbers) are called chromosomes. 

Chromosomes are usually represented by strings of binary 

numbers. The numbers in the chromosome are called genes. 

◼ Pairs of chromosomes (parents) join together and produce 

offspring, who in turn inherit some of genes of the parents. 
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Main Features of GA

◼ Altered genes that result in improved values of the objective 

function will tend to survive from generation to generation, 

while those that are inferior will tend to die and not reappear 

in future population sets.

◼ To illustrate the main features of genetic algorithms, consider 

the problem of finding the best allocations of water to the 

three water consuming irrigation farms seen in chapter 2. 

◼ The maximum allocation, xi, to any single user i cannot 

exceed 5, and the sum of all allocations cannot exceed the 

value of Q - R, say 10 - 2 = 8.

◼0 ≤ xi ≤ 5 for i = 1, 2 and 3

◼x1 + x2 + x3 ≤ 8
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Example 

◼ The objective is to find the values of each allocation that 

maximizes the net benefits, NB(x).

◼ Maximize Net benefit Subject to constraints:

◼Net benefit = Total return − Total cost

◼Total return = p1(12 – p1) + p2(20 – 1.5p2) + p3(28 – 2.5p3)

◼Total cost = 3 𝑝1
1.3 + 5 𝑝2

1.2 + 6 𝑝3
1.15

◼Where 𝑝1 ≤ 0.4 𝑥1
0.9, 𝑝2 ≤ 0.5 𝑥2

0.8 𝑎𝑛𝑑 𝑝3 ≤ 0.6 𝑥3
0.7

◼Water−allocation restriction: R + x1 + x2 + x3 = Q

◼ A population of possible feasible solutions is generated randomly. 

The best size of the sample solution population - the number of 

solutions being considered - is usually determined by trial and 

error.
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Cross-over and Mutation

◼ Using numbers to the base 10, a sample individual solution 

(chromosome) could be 312, representing the allocations x1 = 

3, x2 = 1, and x3 = 2. Another individual solution, picked at 

random, might be 101. 

◼ These two individuals or chromosomes, each containing three 

genes, can pair up and have two children. The genes of the 

children are determined by crossover and mutation operations. 

These pairing, crossover and mutation operations are random.

◼ Crossover involves splitting the two solution strings into two 

parts, each string at the same place. Assume the location of the 

split was randomly determined to be after the first digit,

◼ 3 12 and 1 01 the two new individuals are 301 and 

112.
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Cross-over and Mutation

◼ Another crossover approach is to determine for each 

corresponding pair of genes whether or not they will be 

exchanged.

◼ For example, suppose the probability of a crossover was set 

at 0.30. Thus, an exchange of each corresponding pair of 

genes in a string or chromosome has a 30% chance of being 

exchanged. Assume as the result of this “uniform” crossover 

procedure, only the middle gene in the pair of strings 312 and 

101 is exchanged. This would result in 302 and 111.

◼ NOTE: The probability of a mutation is usually much smaller 

than that of a crossover.
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Mutation

◼ Random mutation operations can apply to each gene in each 

string. Mutation involves changing the value of the gene being 

mutated. 

◼ If these strings contain binary numbers, a 1 would be changed to 

0, and a 0 would be changed to 1. 

◼ If numbers to the base 10 are used as they are here, any 

reasonable mutation scheme can be defined. 

◼ For example, suppose the mutation of a number reduces/increase 

it by 1, unless the resulting number is infeasible. Hence in this 

example, a mutation could be such that if the current value of the 

gene being mutated (reduced) is 0, then the new number is 5.

◼ Suppose the middle digit 1 of the second new individual, 112, is 

randomly selected for mutation. Thus, its value changes from 1 to 

0. The new string is 102.
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Mutation

◼ The mutation and cross over processes result is a new 

population of individuals (children) for which each child’s 

fitness, or objective value, can be determined. 

◼ For maximization objective function, the higher the value the 

better.

◼ Adding up all the objective values associated with each child 

in the population, and then dividing each child’s objective 

value by this total sum yields a fraction for each child. 

◼ That fraction is the probability of that child being selected for 

the new population of possible solutions. 

◼ The higher the objective value of a child, the higher the 

probability of its being selected to be a parent in a new 

population.
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Example …

◼ In this example, the objective is to maximize the total benefit 

derived from the allocation of water, 

◼ For the maximization equation the string 301 has a total net 

benefit of 21.0. The string 102 has a total benefit of 22.8. 

◼ Considering just these two children, the sum of these two 

benefits is 43.8. Thus the child (string) 301 and child (string) 

102 have a probability of 21.0/43.8 = 0.48 and 22.8/43.8 = 

0.52 of being selected for the new population, respectively. 

◼ Drawing from a uniform distribution of numbers ranging 

from 0 to 1, if a random number is in the range 0–0.48, then 

the string 301 would be selected. If the random number 

exceeds 0.48, then the string 102 would be selected. 

◼ A more realistic example the population size should involve 

hundreds of strings. 
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Example …

◼ This selection or reproduction mechanism tends to transfer to 

the next generation, the better (more fit) individuals of the 

current generation.

◼ Genetic algorithms involve numerous iterations of the 

operations just described. Each iteration (or generation) 

produces populations that tend to contain better solutions. 

◼ The best solution of all populations of solutions should be 

saved.

◼ The genetic algorithm process can end when there is no 

significant change in the values of the best solution that has 

been found. 

◼ In this search process, there is no guarantee this best solution 

will be the best that could be found, that is, a global optimum.
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The code
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function obf=objfun1(x)

p1=0.4*x(1,1)^0.9;  p2=0.5*x(1,2)^0.8;  p3=0.6*x(1,3)^0.7;

c1=3*p1^1.3;        c2=5*p2^1.2;        c3=6*p3^1.15;

r1=p1*(12-p1);      r2=p2*(20-1.5*p2);  r3=p3*(28-2.5*p3);

obf=(c1+c2+c3)-(r1+r2+r3); %Note here that ga works for minimization 

while our objective... %is to maximize the benefit which is equivalent 

to minimization of the cost… %benefit difference.

clc, clear

% this code provides genetic algorithm based optimization 

% [x,fval] = ga(fitnessfcn,nvars,A,b,Aeq,beq) 

% finds a local minimum x to fitnessfcn, subject to the linear 

equalities Aeq*x = beq as well as A*x ≤ b. 

% (Set Aeq=[] and beq=[] if no linear equalities exist.)

% x is Best point that ga located during its search.

% fval is Fitness function evaluated at x.

% ga evaluates the matrix product Aeq*x as if x is transposed (Aeq*x').

%for the water allocation problem the following describes the inequality 

constraint

A=[1 1 1;1 0 0;0 1 0; 0 0 1;-1 0 0;0 -1 0; 0 0 -1];  b=[8;5;5;5;0;0;0];

[x,fval,exitflag,output,population]=ga(@objfun1,3,A,b,[],[]);

fval=-fval; 



Example: decimal to binary and vice versa
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Exercise - 1

◼ Using a genetic algorithm program to find the allocations Xi 

that maximize the total benefits to the three water users i

along a stream, whose individual benefits are

◼User 1: 6X1 - X1
2

◼User 2: 7X2 - X2
2 

◼User 3: 8X3 – X3
2 

◼ Assume the available stream flow is some known value of 8.
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Exercise - 2

◼ Consider the stream pollution problem where the stream 

receives waste, Wi from sources located at sites i = 1 and 2. 

◼ Without some waste treatment at these sites, the pollutant 

concentrations at sites 2 and 3 will exceed the maximum 

desired concentration. 

◼ The problem is to find the fraction of wastewater removal, xi, 

at sites i = 1 and 2 required to meet the quality standards at 

sites 2 and 3 at a minimum total cost.

◼ The data used for the problem shown in next slide
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Exercise - 2

◼ t
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Para

meter Unit Value Remark

Flow

Q1 m3/s 10 Flow just u/s of site 1

Q2 m3/s 12 Flow just u/s of site 2

Q3 m3/s 13 Flow at park

Waste

W1 Kg/day 250,000 Pollutant mass produced at site 1

W2 Kg/day 80,000 Pollutant mass produced at site 2

Pollutant 

Concentr

ation

P1 mg/l 32 Concentration Just upstream  of site 1

P2 mg/l 20

Maximum Allowable concentration upstream 

of site 2

P3 mg/l 20 Maximum Allowable concentration at site 3

Decay 

Fraction

12
- 0.25 Fraction of site 1 pollutant mass at site 2

13
- 0.15 Fraction of site 1 pollutant mass at site 3

23
- 0.6 Fraction of site 2 pollutant mass at site 3


