
ENVIRONMENTAL SYSTEMS

ANALYSIS

CENG 6652

Chapter 3

Soft computing techniques

Contents

1. Soft computing introduction

2. Data driven modelling

1. Artificial neural networks

2. Evolutionary algorithms: Genetic Algorithm

3. Qualitative modelling

1. Fuzzy Optimization

79

Computing approaches

◼ White – Box Models: where the interactions and processes

that take place among the various components of the system

can scientifically/mathematically be proven/explained.

◼ Note these mechanistically or process-based models usually

contain parameters whose values are determined from

observed data during model calibration.

◼ Black – box models, or statistical models: Such models do

not describe physical processes. They attempt to convert

observed inputs to observed outputs. They do not really care

about the scientific reasoning behind the input-output system.

◼ Grey – box or hybrid models: models that combine the above

two models (in parallel or in series).

80

1. Soft-computing approaches

◼ The use of inexact solutions to computationally hard tasks,

for which there is no known algorithm that can compute an

exact solution in polynomial time is soft computing.

◼ This chapter introduces some alternative modeling

approaches that depend on observed data. These approaches

include artificial neural networks and evolutionary model.

The chapter ends with some qualitative modeling.

◼ The data-driven models can serve as substitutes for more

process-based models in applications where:

◼Computational speed is critical and/or

◼Where the underlying relationships are poorly understood

or too complex to be easily incorporated into calculus-

based, linear, nonlinear, or dynamic programming models.

81

Soft-computing approaches

◼ Evolutionary algorithms involve random searches based on

evolutionary processes for finding the values of parameters

and decision variables that best satisfy system performance

criteria.

◼ Evolutionary algorithms are popular methods for analyzing

systems that require complex simulation models to determine

values of performance measures.

◼ Qualitative modeling approaches are useful when

performance measures are expressed qualitatively, such as “I

want a reliable supply of clean water at a reasonable cost,”

where there can be disagreements among different

stakeholders and decision makers with respect to specifying

just how reliable, how clean, and how affordable.

82

2. Data driven Models (DDM)

◼ They depend on observed inputs and observed outputs for the

estimation of the values of their parameters and for further

refinement of their mathematical structure.

◼ They lack an explicit, well-defined representation of the

processes involved in the transformation of inputs to outputs

◼ Examples of Black-box models DDMs are: regression

analysis, Artificial Neural network, ANFIS etc.

◼ Other examples of data-driven models are based on

Darwinian evolutionary concepts. These are a class of

probabilistic search procedures known as evolutionary

algorithms (EAs). Such algorithms include genetic

algorithms (GAs), genetic or evolutionary programming (GP

or EP), and evolutionary strategy (ES).

83

2.1 Artificial Neural Network (ANN)

◼ Some computer scientists have been working on creating

information processing devices that mimic the human brain.

This has been termed neurocomputing.

◼ ANNs represent simplified models of the brain. In reality, it

is just a more complex type of regression or statistical (black-

box) model.

84

◼ The “building blocks” of neural networks are the neurons. In

ANN, these are referred as units or nodes.

◼ Basically, each neuron

◼Receives input from many other neurons (through

dendrites),

◼Changes its internal state (activation) based on the current

input,

◼Sends one output signal to many other neurons, possibly

including its input neurons (recurrent network)
◼ Information is transmitted as a series of electric impulses, so-

called spikes.
◼ The frequency and phase of these spikes encodes the

information.
◼ In biological systems, one neuron can be connected to as

many as 10,000 other neurons.

Terminology

85

◼Usually, we draw neural networks in such a way that the input
enters at the bottom/left and the output is generated at the
top/right.

◼Arrows indicate the direction of data flow.

◼The first layer, termed input layer, just contains the input
vector and does not perform any computations.

◼The second layer, termed hidden layer, receives input from the
input layer and sends its output to the next hidden layer or the
output layer.

◼After applying their activation function, the neurons in the
output layer contain the output vector.

Terminology

86

◼Example: Network function

Output layer

Hidden layer

Input layer

Input vector

Output vector

Terminology

87

Basic structure of an ANN

◼ The number of hidden layers and the number of nodes in each

layer are two of the design parameters of any ANN.

◼ Most applications require networks that contain at least these

three types of layers:

Input layer Output layerHidden layer

88

Basic structure of ANN

◼ The input layer consists of nodes that receive an input from the

external environment. These nodes do not perform transformations

upon the inputs but just send their weighted values to the nodes in

the immediately adjacent, usually “hidden,” layer.

◼ The hidden layer(s) consist(s) of node(s) that typically receive the

transferred weighted inputs from the input layer or previous

hidden layer, perform their transformations on it, and pass the

output to the next adjacent layer, which can be another hidden

layer or the output layer.

◼ The output layer consists of nodes that receive the hidden layer

output and send it to the user.

◼ The ANN shown has links only between nodes in immediately

adjacent layers or columns often referred to as a multilayer

perceptron (MLP) network, or a feedforward (FF) network.

89

Basic Structure of ANN

◼ The number of nodes in the input and output layers are

usually predetermined from the problem to be solved.

◼Input nodes = No. of input variables + 1 (Bias Node)

◼Output layer node = No. of output required

◼ The number of nodes in each hidden layer and the number of

hidden layers are calibration parameters.

◼ The values of the weights and thresholds of each connection,

are “learned” during the “training” of the ANN using

predefined (or measured) sets of input and output data.

◼ Determining the best values of all the weights is called

training the ANN.

◼ In supervised learning: the actual output of a neural network

is compared to the desired output.

90

ANN Topologies

◼ There are two major connection topologies that define how

data flows between the input, hidden, and output nodes.

◼ Feedforward networks: in which the data flow in one direction

from the input layer to the output layer through the hidden

layer(s).

◼ Here the nodes of one layer are fully connected to the nodes in

the next layer; however, this is not a requirement.

◼ Recurrent or feedback networks: in which, as their name

suggests, the data flow not only in one direction but in the

opposite direction as well for either a limited or a complete part

of the network.

◼ The recurrent types of artificial neural networks are used when

the answer is based on current data as well as on prior inputs.

91

◼ Neurons of similar functionality are usually organized in
layers.

◼ Often, there is a hierarchy of interconnected layers with the
lowest layer receiving sensory input and neurons in higher
layers computing more complex functions.

◼ NNs are able to learn by adapting their connectivity patterns

so that the organism improves its behavior in terms of

reaching certain (evolutionary) goals.

◼ The strength of a connection, or whether it is excitatory or

inhibitory, depends on the state of a receiving neuron’s

synapses.

◼ The NN achieves learning by appropriately adapting the

states of its synapses.

How do NNs and ANNs work?

92

Artificial Neuron

◼ Essentially, the strength (or weight) of the connection

between adjacent nodes is a design parameter of the ANN.

◼ The output values Oj that leave a node j on each of its

outgoing links are multiplied by a weight, wj.

◼ The input Ik to each node k in each middle and output layer is

the sum of each of its weighted inputs, wjOj, from all nodes j

providing inputs (linked) to node k.

◼Input value to node k: 𝐼𝑘 = σ𝑤𝑗𝑂𝑗
1

2

3

4

f(Ik, θk)

O1

w3

w1

w2

w4

O2

O3

O4

Node K

93

Artificial neuron

◼ At each node K of hidden and output layers, the input Ik is an

argument to a linear or nonlinear function fk(Ik + θk), which

converts the input Ik to output Ok.

◼ The variable θk represents a bias or threshold term that

influences the horizontal offset of the function.

◼ This transformation can take on a variety of forms. A

commonly used transformation is a sigmoid or logistic

function as defined:

◼𝑂𝑘 =
1

1+𝑒𝑥𝑝 − 𝐼𝑘+𝜃𝑘

◼ The same process also happens at each output layer node.

94

◼The net input signal is the sum of all n-inputs after passing

the synapses: net𝑘 𝑡 = 𝐼𝑘 = σ𝑗=1
𝑛 𝑤𝑘𝑗𝑂𝑗 𝑡

◼In most ANNs, the activation of a neuron is simply defined

to equal its net input signal: 𝑎𝑘 𝑡 = net𝑘 𝑖

◼Then, the neuron’s activation function (or output function) fi

is applied directly to 𝑛𝑒𝑡𝑘 𝑡 : 𝑂𝑘 𝑡 = f𝑘 𝑛𝑒𝑡𝑘 𝑡

◼What do such functions fi look like?

◼One possible choice is a threshold function:

◼f𝑘 𝑛𝑒𝑡𝑘 𝑡 = 1, if 𝑛𝑒𝑡𝑘 𝑡 ≥ 𝜃

◼f𝑘 𝑛𝑒𝑡𝑘 𝑡 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

◼Obviously, the fact that threshold units can only output the

values 0 and 1 restricts their applicability to certain problems.

The net input signal

θ

f k

netk(t)

1

0

95

◼We can overcome this limitation by eliminating the threshold

and simply turning fk into the identity function so that we get:

◼𝑂𝑘 𝑡 = 𝑓𝑘 𝑡 = 𝑎 × 𝑛𝑒𝑡𝑘 𝑡 + 𝜃

◼With this neuron, we can build networks with m input and n

output neurons that compute a function f: Rm→ Rn.

◼Limitation: Each neuron computes a linear function, and

therefore the overall network function f: Rm → Rn is also linear.

◼This means that if an input vector x results in an output vector y,

then for any factor  the input x will result in the output y.

◼Obviously, many interesting functions cannot be realized by

networks of linear neurons.

Linear Neurons

96

θ

f k
netk(t)0

◼Sigmoidal neurons accept any vectors of real numbers as

input, and they output a real number between 0 and 1.

◼Sigmoidal neurons are the most common type of artificial

neuron, especially in learning networks.

◼A network of sigmoidal units with m input and n output

neurons realizes a network function f: Rm → (0,1)n

◼𝑓𝑘 net𝑘 𝑡 =
1

1+𝑒
ൗ− net𝑘 𝑡 +θ
𝜏

Sigmoidal (Logistic) Neurons

▪ The parameter  controls the slope
of the sigmoid function, while the
parameter  controls the horizontal
offset of the function in a way
similar to the threshold neurons.

1

0 1

fk(netk(t))

netk(t)
-1

τ = 1

τ = 0.1

97

◼Log-Sigmoidal neurons accept any vectors of real numbers as

input, and they output a real number between -1 and 1.

◼A network of Log-sigmoidal units with m input and n output

neurons realizes a network function f: Rm → (-1,1)n

◼𝑓𝑘 net𝑘 𝑡 = 𝑇𝑎𝑛ℎ net𝑘 𝑡 =
2

1+𝑒
ൗ−2 net𝑘 𝑡 +𝜃
𝜏

− 1

Tanh (hyperbolic tangent) Neurons

▪ The parameter  controls the
slope of the tan hyperbolic
function, while the parameter 
controls the horizontal offset of
the function in a way similar to
the threshold neurons.

1

-1

1

fk(netk(t))

netk(t)

-1

τ = 1

τ = 0.1

98

◼In supervised learning, we train an ANN with a set of vector
pairs, so-called exemplars. Each pair (x, y) consists of an input
vector x and a corresponding output vector y.

◼Whenever the network receives input x, we would like it to
provide output y. The exemplars thus describe the function that
we want to “teach” our network.

◼Besides learning the exemplars, we would like our network to
generalize, that is, give plausible output for inputs that the
network had not been trained with.

◼There is a tradeoff between a network’s ability to precisely

learn the given exemplars and its ability to generalize (i.e.,

interpolate and extrapolate).

◼This problem is similar to fitting a function to a given set of

data points.

Learning in ANNs

99

◼Let us assume that you want to find a fitting function f:R→R

for a set of three data points.

◼You try to do this with polynomials of degree one (a straight

line), two, and nine. Which one is best?

Learning in ANNs

f(x)

x

Deg. 1

Deg. 2

Deg. 9

Obviously, the polynomial of degree 2

provides the most plausible fit.

100

◼The same principle applies to ANNs:

◼If an ANN has too few neurons, it may not have enough
degrees of freedom to precisely approximate the desired
function.

◼If an ANN has too many neurons, it will learn the
exemplars perfectly, but its additional degrees of freedom
may cause it to show implausible behavior for untrained
inputs; it then presents poor ability of generalization.

◼Unfortunately, there are no known equations that could tell
you the optimal size of your network for a given application;
you always have to experiment.

Learning in ANNs

101

Training ANN

◼ Weights, which are usually randomly set to begin with, are

then adjusted so that the next iteration will produce a closer

match between the desired and the actual output.

◼ Various learning methods for weight adjustments try to

minimize the differences or errors between observed and

computed output data.

◼ It is considered complete when the ANN reaches a user-

defined performance level. After which the resulting weights

are typically fixed for the application.

◼ Once a supervised network performs well on the training

data, it is important to test it (what it can do with data it has

not seen before).

◼ If the ANN did not give a reasonable output for this test set,

the training period should continue.

102

Backpropagation Preparation

◼ Training Set: A collection of input-output patterns that are
used to train the network

◼ Testing Set: A collection of input-output patterns that are
used to assess network performance

◼ Learning Rate-η: A scalar parameter, analogous to step size
in numerical integration, used to set the rate of adjustments

◼ Network Error

◼Total-Sum-Squared-Error (TSSE)

◼ 𝑇𝑆𝑆𝐸 =
1

2
σ𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠σ𝑜𝑢𝑡𝑝𝑢𝑡𝑠(𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙)2

◼Root-Mean-Squared-Error (RMSE)

◼ 𝑅𝑀𝑆𝐸 =
2∗𝑇𝑆𝑆𝐸

#𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠∗#𝑜𝑢𝑡𝑝𝑢𝑡𝑠

Training ANN: the backpropagation Algorithm

◼ Error is the mean square of differences in output layer

◼ 𝐸 𝑥 =
1

2
σ𝑘=1
𝐾 (𝑇𝑘 𝑥 − 𝑂𝑘 𝑥)2, where O – computed

output and T – target output, K number of training data pairs.

◼ Error of training epoch is the average of all errors.

◼ Update weights and thresholds using

◼Weights: 𝑤𝑗𝑘 = 𝑤𝑗𝑘 + (−𝜂)
𝜕𝐸 𝑥

𝜕𝑤𝑗𝑘

◼Bias: 𝜃𝑘 = 𝜃𝑘 + (−𝜂)
𝜕𝐸 𝑥

𝜕𝜃𝑘

◼ is a possibly time-dependent factor that should prevent

overcorrection called learning rate

104

A Pseudo-Code BP Algorithm

◼ Randomly choose the initial weights

◼ While error is too large

◼For each training pattern (presented in random order)

◼ Apply the inputs to the network

◼ Calculate the output for every neuron from the input
layer, through the hidden layer(s), to the output layer

◼ Calculate the error at the outputs

◼ Use the output error to compute error signals for pre-
output layers

◼ Use the error signals to compute weight adjustments

◼ Apply the weight adjustments

◼Periodically evaluate the network performance

Steps in ANN development

1. Design a network.

2. Divide the data set into training, validation and testing subsets.

3. Train the network on the training data set.

4. Periodically stop the training and measure the error on the

validation data set.

5. Save the weights of the network.

6. Repeat Steps 2, 3, and 4 until the error on the validation data set

starts increasing. This is the moment where the overfitting has

started.

7. Go back to the weights that produced the lowest error on the

validation data set, and use these weights for the trained ANN.

8. Test the trained ANN using the testing data set. If it shows good

performance, use it. If not, redesign the network and repeat entire

procedure from Step 3.

106

Example

◼ Consider predicting a downstream pollutant concentration

based on an upstream concentration and the streamflow.

◼ Twelve measurements of the streamflow quantity, velocity,

and pollutant concentrations at two sites are available. The

travel times between the two measurement sites (an upstream

and a downstream site) have been computed and these, plus

the pollutant concentrations, are shown in Table below.

107

Travel Time (Days) 2 2 1.5 1.5 0.5 1 0.5 1.5 1.5 2 1 0.5

Concentration U/S 20 15 30 20 20 15 30 25 15 30 30 25

Concentration D/S 6 4.5 12.2 11 14.8 8.2 22.2 10.2 6.1 9 16.5 18.5

Plotting the data

108

[2.0 20.0 6.0;
2.0 15.0 4.5;
1.5 30.0 12.2;
1.5 20.0 11.0;
0.5 20.0 14.8;
1.0 15.0 8.2;
0.5 30.0 22.2;
1.5 25.0 10.2;
1.5 15.0 6.1;
2.0 30.0 9.0;
1.0 30.0 16.5;
0.5 25.0 18.5]

[ndata, nc]=size(inputdata); % ndata is the number of data and nc is the

number of column provided in the data

ni=2; %ni is the number of input variables

no=nc-ni; %no is the number of output expected from the model

inputs1=inputdata(:,1)'; inputs2=inputdata(:,2)'; inputs=[inputs1;inputs2];

outputs=inputdata(:,nc)';

%load the input data

inputdata=load('input1.dat'); %data available arranged with inputs in the

prior columns and the last column will represent the output

plot(inputdata(:,1),inputdata(:,2),'o',inputdata(:,1),inputdata(:,3),'*');

title('Given data for example 1');xlabel('Travel time in days');

ylabel('Concentration’); legend('U/S concentration','D/s concentration');

Design of the network

◼ The two inputs and the output do have different units which

results in different magnitude. Besides the activation function to

be used in the hidden layer node (here Logistic sigmoid will

result in values between zero and one. Thus ANN requires us to

bring every input and output with equivalent input magnitude

and outputs within the activation range of output values.

109

U/S

Concentration

Travel Time

Hidden Layer/s

Node/s

D/S

Concentration

w1

w2

w3

Normalization

◼ Two types of normalization methods, min.-max. method and

normal distribution method

◼ The min.-max. method linearly maps the original values to

the new interval determined by the assigned min.-max. values

(see Figure below).

◼ The original minimum and maximum value (xmin and xmax)

can be achieved from the statistical information of the raw

data, and the new minimum and maximum value (ymin and

ymax) are assigned on the basis of the activation function the

new value y from the original value x is estimated by

◼𝑦 =
𝑥−𝑥𝑚𝑖𝑛 × 𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
+ 𝑦𝑚𝑖𝑛

110

Normalization

◼ The normal distribution method maps the original values to

the new interval according to the new mean and standard

deviation (see Figure below).

◼ Similarly, the new value could be calculated by

◼𝑦 =
𝑥−𝑥𝑚𝑖𝑛 ×𝑦𝑠𝑡𝑑

𝑥𝑠𝑡𝑑
+ 𝑦𝑚𝑒𝑎𝑛

◼ NOTE the mean and deviation in place of the min.-max.

values in the min max method

111

Data normalization : if needed

112

inmax=max(inputdata); % the maximum values among the entire data

inmin=min(inputdata); % the minimum values among the entire data

lfmax=0.9; % the maximum value to be assigned for the logistic activation

function

lfmin=0.1; % the minimum value to be assigned for the logistic activation

function

% the following code will create the normalized values

indnorm=zeros(ndata,nc);

for i=1:ndata

for j=1:nc

indnorm(i,j)=lfmin+(lfmax-lfmin)*(inputdata(i,j)-inmin(j))/…

(inmax(j)-inmin(j));

end

end

0.9000 0.3667 0.1678
0.9000 0.1000 0.1000
0.6333 0.9000 0.4480
0.6333 0.3667 0.3938
0.1000 0.3667 0.5655
0.3667 0.1000 0.2672
0.1000 0.9000 0.9000
0.6333 0.6333 0.3576
0.6333 0.1000 0.1723
0.9000 0.9000 0.3034
0.3667 0.9000 0.6424
0.1000 0.6333 0.7328

inputs1=indnorm(:,1)'; inputs2=indnorm(:,2)'; inputs={inputs1;inputs2};

outputs=indnorm(:,nc)';

Normalization results for the example

113

0
0.2
0.4
0.6
0.8

1
1.2

0 5 10 15

Normalized

Travel Time (Days) Concentration u/s

Concentration d/s

0

20

40

1 3 5 7 9 11

Real Value

Travel Time (Days) Concentration u/s

Concentration d/s

Travel Time (Days) 2 2 1.5 1.5 0.5 1 0.5 1.5 1.5 2 1 0.5

Concentration u/s 20 15 30 20 20 15 30 25 15 30 30 25

Concentration d/s 6 4.5 12.2 11 14.8 8.2 22.2 10.2 6.1 9 16.518.5

Travel Time (Days) N 1.00 1.00 0.67 0.67 0.00 0.33 0.00 0.67 0.67 1.00 0.330.00

Concentration u/s N 0.33 0.00 1.00 0.33 0.33 0.00 1.00 0.67 0.00 1.00 1.000.67

Concentration d/s N 0.08 0.00 0.44 0.37 0.58 0.21 1.00 0.32 0.09 0.25 0.680.79

Network design

114

% Two-layer (i.e. one-hidden-layer) feed forward neural networks can fit

% any input-output relationship given enough neurons in the hidden layer.

%Layers which are not output layers are called hidden layers.

% We will try a single hidden layer of 10 neurons for this example.

% In general, more difficult problems require more neurons, and perhaps

%more layers. Simpler problems require fewer neurons.

inputs=inputdata(:,1:2); inputs = inputs’; outputs=inputdata(:,3);

outputs = outputs';

numNodesLayers=10;

net = fitnet(numNodesLayers);

view(net)

% Define topology and transfer function

net.layers{1}.transferFcn = 'logsig';% hidden layer 1 transfer function

net.layers{2}.transferFcn = 'purelin';% hidden layer 2 transfer function

view(net);

Activation

functions in

mat lab

'purelin'

'hardlim’

‘tansig'

Network configuration and training

115

% Configure network

net = configure(net, inputs, outputs);

view(net);

% network training

net.trainFcn = 'trainlm';

net.performFcn = 'mse';

[net,tr] = train(net,inputs,outputs);

nntraintool

Network performance evaluation functions
mse - Mean squared normalized error performance function
sse - Sum squared error performance function
sae - Sum absolute error performance function
mae - Mean absolute error performance function

Network training functions
trainscg - Scaled conjugate gradient backpropagation
traingdx - Gradient descent with momentum and adaptive
learning rate backpropagation
traingdm - Gradient descent with momentum
backpropagation
trainlm - Levenberg-Marquardt backpropagation

116

Weight values visualization

117

IW1 =
7.9764 -3.3507
8.0493 -3.6607
8.7922 -1.0225
0.7938 8.7609

-5.1062 -7.1132
-2.8551 8.3126
-8.5812 0.9957
-6.9597 5.3381
8.4508 -2.8375

-8.3113 -1.9682

LW1 =
-0.2579 0.2427 -0.3880 0.3428 -0.1397 0.0299 0.4041 0.0824 -0.7280 -0.2644

b1 =
-9.0363
-6.8680
-4.8964
-3.1232
1.3503

-1.0320
-3.3931
-5.0446
6.8096

-9.0913
0.2162

%weights values visualization

IW1=cell2mat(net.IW); %this is the weights connecting input layer to the

first hiddel layer. numLayers-by-numInputs cell array of input weight

values

LW1=cell2mat(net.LW); %this is the weights connecting first hidden layer

to the next hiddel layer. numLayers-by-numlayers cell array of input

weight values

b1=cell2mat(net.b); % numLayers-by-1 cell array of bias values

◼ The same can be done by:

◼nnstart

Exercise

◼ Develop an artificial neural network for flow routing given

the following two sets of upstream and downstream flows..

◼ Develop the simplest artificial neural network you can that

does an adequate job of prediction.

118

Period U/S flow D/S flow Period U/S flow D/S flow

1 450 366 1 550 439

2 685 593 2 255 304

3 830 755 3 830 678

4 580 636 4 680 679

5 200 325 5 470 534

