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Computing approaches

◼ White – Box Models: where the interactions and processes 

that take place among the various components of the system 

can scientifically/mathematically be proven/explained. 

◼ Note these mechanistically or process-based models usually 

contain parameters whose values are determined from 

observed data during model calibration. 

◼ Black – box models, or statistical models: Such models do 

not describe physical processes. They attempt to convert 

observed inputs to observed outputs. They do not really care 

about the scientific reasoning behind the input-output system.

◼ Grey – box or hybrid models: models that combine the above 

two models (in parallel or in series).
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1. Soft-computing approaches

◼ The use of inexact solutions to computationally hard tasks, 

for which there is no known algorithm that can compute an 

exact solution in polynomial time is soft computing.

◼ This chapter introduces some alternative modeling 

approaches that depend on observed data. These approaches 

include artificial neural networks and evolutionary model. 

The chapter ends with some qualitative modeling. 

◼ The data-driven models can serve as substitutes for more 

process-based models in applications where:

◼Computational speed is critical and/or 

◼Where the underlying relationships are poorly understood 

or too complex to be easily incorporated into calculus-

based, linear, nonlinear, or dynamic programming models. 
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Soft-computing approaches

◼ Evolutionary algorithms involve random searches based on 

evolutionary processes for finding the values of parameters 

and decision variables that best satisfy system performance 

criteria. 

◼ Evolutionary algorithms are popular methods for analyzing 

systems that require complex simulation models to determine 

values of performance measures. 

◼ Qualitative modeling approaches are useful when 

performance measures are expressed qualitatively, such as “I 

want a reliable supply of clean water at a reasonable cost,” 

where there can be disagreements among different 

stakeholders and decision makers with respect to specifying 

just how reliable, how clean, and how affordable.
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2. Data driven Models (DDM)

◼ They depend on observed inputs and observed outputs for the 

estimation of the values of their parameters and for further 

refinement of their mathematical structure. 

◼ They lack an explicit, well-defined representation of the 

processes involved in the transformation of inputs to outputs

◼ Examples of Black-box models DDMs are: regression 

analysis, Artificial Neural network, ANFIS etc.

◼ Other examples of data-driven models are based on 

Darwinian evolutionary concepts. These are a class of 

probabilistic search procedures known as evolutionary 

algorithms (EAs). Such algorithms include genetic 

algorithms (GAs), genetic or evolutionary programming (GP 

or EP), and evolutionary strategy (ES).
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2.1 Artificial Neural Network (ANN)

◼ Some computer scientists have been working on creating 

information processing devices that mimic the human brain. 

This has been termed neurocomputing. 

◼ ANNs represent simplified models of the brain. In reality, it 

is just a more complex type of regression or statistical (black-

box) model.
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◼ The “building blocks” of neural networks are the neurons. In 

ANN, these are referred as units or nodes.

◼ Basically, each neuron

◼Receives input from many other neurons (through 

dendrites),

◼Changes its internal state (activation) based on the current 

input,

◼Sends one output signal to many other neurons, possibly 

including its input neurons (recurrent network)
◼ Information is transmitted as a series of electric impulses, so-

called spikes.
◼ The frequency and phase of these spikes encodes the 

information.
◼ In biological systems, one neuron can be connected to as 

many as 10,000 other neurons.

Terminology 
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◼Usually, we draw neural networks in such a way that the input 
enters at the bottom/left and the output is generated at the 
top/right.

◼Arrows indicate the direction of data flow.

◼The first layer, termed input layer, just contains the input 
vector and does not perform any computations.

◼The second layer, termed hidden layer, receives input from the 
input layer and sends its output to the next hidden layer or the 
output layer.

◼After applying their activation function, the neurons in the 
output layer contain the output vector.

Terminology
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◼Example: Network function

Output layer

Hidden layer

Input layer

Input vector

Output vector

Terminology
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Basic structure of an ANN 

◼ The number of hidden layers and the number of nodes in each 

layer are two of the design parameters of any ANN. 

◼ Most applications require networks that contain at least these 

three types of layers:

Input layer Output layerHidden layer
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Basic structure of ANN

◼ The input layer consists of nodes that receive an input from the 

external environment. These nodes do not perform transformations 

upon the inputs but just send their weighted values to the nodes in 

the immediately adjacent, usually “hidden,” layer.

◼ The hidden layer(s) consist(s) of node(s) that typically receive the 

transferred weighted inputs from the input layer or previous 

hidden layer, perform their transformations on it, and pass the 

output to the next adjacent layer, which can be another hidden 

layer or the output layer.

◼ The output layer consists of nodes that receive the hidden layer 

output and send it to the user.

◼ The ANN shown has links only between nodes in immediately 

adjacent layers or columns often referred to as a multilayer 

perceptron (MLP) network, or a feedforward (FF) network.
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Basic Structure of ANN

◼ The number of nodes in the input and output layers are 

usually predetermined from the problem to be solved. 

◼Input nodes = No. of input variables + 1 (Bias Node)

◼Output layer node = No. of output required

◼ The number of nodes in each hidden layer and the number of 

hidden layers are calibration parameters. 

◼ The values of the weights and thresholds of each connection, 

are “learned” during the “training” of the ANN using 

predefined (or measured) sets of input and output data.

◼ Determining the best values of all the weights is called 

training the ANN.

◼ In supervised learning: the actual output of a neural network 

is compared to the desired output.
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ANN Topologies

◼ There are two major connection topologies that define how 

data flows between the input, hidden, and output nodes. 

◼ Feedforward networks: in which the data flow in one direction 

from the input layer to the output layer through the hidden 

layer(s). 

◼ Here the nodes of one layer are fully connected to the nodes in 

the next layer; however, this is not a requirement.

◼ Recurrent or feedback networks: in which, as their name 

suggests, the data flow not only in one direction but in the 

opposite direction as well for either a limited or a complete part 

of the network. 

◼ The recurrent types of artificial neural networks are used when 

the answer is based on current data as well as on prior inputs.
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◼ Neurons of similar functionality are usually organized in 
layers.

◼ Often, there is a hierarchy of interconnected layers with the 
lowest layer receiving sensory input and neurons in higher 
layers computing more complex functions.

◼ NNs are able to learn by adapting their connectivity patterns 

so that the organism improves its behavior in terms of 

reaching certain (evolutionary) goals.

◼ The strength of a connection, or whether it is excitatory or 

inhibitory, depends on the state of a receiving neuron’s 

synapses.

◼ The NN achieves learning by appropriately adapting the 

states of its synapses.

How do NNs and ANNs work?
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Artificial Neuron

◼ Essentially, the strength (or weight) of the connection 

between adjacent nodes is a design parameter of the ANN. 

◼ The output values Oj that leave a node j on each of its 

outgoing links are multiplied by a weight, wj. 

◼ The input Ik to each node k in each middle and output layer is 

the sum of each of its weighted inputs, wjOj, from all nodes j 

providing inputs (linked) to node k.

◼Input value to node k: 𝐼𝑘 = σ𝑤𝑗𝑂𝑗
1

2

3

4

f(Ik, θk)

O1

w3

w1

w2

w4

O2

O3

O4

Node K
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Artificial neuron

◼ At each node K of hidden and output layers, the input Ik is an 

argument to a linear or nonlinear function fk(Ik + θk), which 

converts the input Ik to output Ok. 

◼ The variable θk represents a bias or threshold term that 

influences the horizontal offset of the function. 

◼ This transformation can take on a variety of forms. A 

commonly used transformation is a sigmoid or logistic 

function as defined:

◼𝑂𝑘 =
1

1+𝑒𝑥𝑝 − 𝐼𝑘+𝜃𝑘

◼ The same process also happens at each output layer node.
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◼The net input signal is the sum of all n-inputs after passing 

the synapses: net𝑘 𝑡 = 𝐼𝑘 = σ𝑗=1
𝑛 𝑤𝑘𝑗𝑂𝑗 𝑡

◼In most ANNs, the activation of a neuron is simply defined 

to equal its net input signal: 𝑎𝑘 𝑡 = net𝑘 𝑖

◼Then, the neuron’s activation function (or output function) fi

is applied directly to 𝑛𝑒𝑡𝑘 𝑡 : 𝑂𝑘 𝑡 = f𝑘 𝑛𝑒𝑡𝑘 𝑡

◼What do such functions fi look like?

◼One possible choice is a threshold function:

◼f𝑘 𝑛𝑒𝑡𝑘 𝑡 = 1, if 𝑛𝑒𝑡𝑘 𝑡 ≥ 𝜃

◼f𝑘 𝑛𝑒𝑡𝑘 𝑡 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

◼Obviously, the fact that threshold units can only output the 

values 0 and 1 restricts their applicability to certain problems. 

The net input signal

θ

f k

netk(t)

1

0
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◼We can overcome this limitation by eliminating the threshold 

and simply turning fk into the identity function so that we get: 

◼𝑂𝑘 𝑡 = 𝑓𝑘 𝑡 = 𝑎 × 𝑛𝑒𝑡𝑘 𝑡 + 𝜃

◼With this neuron, we can build networks with m input and n 

output neurons that compute a function f: Rm→ Rn.

◼Limitation: Each neuron computes a linear function, and 

therefore the overall network function f: Rm → Rn is also linear.

◼This means that if an input vector x results in an output vector y, 

then for any factor  the input x will result in the output y.

◼Obviously, many interesting functions cannot be realized by 

networks of linear neurons.

Linear Neurons
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◼Sigmoidal neurons accept any vectors of real numbers as 

input, and they output a real number between 0 and 1.

◼Sigmoidal neurons are the most common type of artificial 

neuron, especially in learning networks.

◼A network of sigmoidal units with m input and n output 

neurons realizes a network function f: Rm → (0,1)n

◼𝑓𝑘 net𝑘 𝑡 =
1

1+𝑒
ൗ− net𝑘 𝑡 +θ
𝜏

Sigmoidal (Logistic) Neurons

▪ The parameter  controls the slope 
of the sigmoid function, while the 
parameter  controls the horizontal 
offset of the function in a way 
similar to the threshold neurons.

1

0 1

fk(netk(t))

netk(t)
-1

τ = 1

τ = 0.1
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◼Log-Sigmoidal neurons accept any vectors of real numbers as 

input, and they output a real number between -1 and 1.

◼A network of Log-sigmoidal units with m input and n output 

neurons realizes a network function f: Rm → (-1,1)n

◼𝑓𝑘 net𝑘 𝑡 = 𝑇𝑎𝑛ℎ net𝑘 𝑡 =
2

1+𝑒
ൗ−2 net𝑘 𝑡 +𝜃
𝜏

− 1

Tanh (hyperbolic tangent) Neurons

▪ The parameter  controls the 
slope of the tan hyperbolic 
function, while the parameter 
controls the horizontal offset of 
the function in a way similar to 
the threshold neurons.

1

-1

1

fk(netk(t))

netk(t)

-1

τ = 1

τ = 0.1
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◼In supervised learning, we train an ANN with a set of vector 
pairs, so-called exemplars. Each pair (x, y) consists of an input 
vector x and a corresponding output vector y. 

◼Whenever the network receives input x, we would like it to 
provide output y. The exemplars thus describe the function that 
we want to “teach” our network.

◼Besides learning the exemplars, we would like our network to 
generalize, that is, give plausible output for inputs that the 
network had not been trained with.

◼There is a tradeoff between a network’s ability to precisely 

learn the given exemplars and its ability to generalize (i.e., 

interpolate and extrapolate).

◼This problem is similar to fitting a function to a given set of 

data points.

Learning in ANNs
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◼Let us assume that you want to find a fitting function f:R→R 

for a set of three data points.

◼You try to do this with polynomials of degree one (a straight 

line), two, and nine. Which one is best?

Learning in ANNs

f(x)

x

Deg. 1

Deg. 2

Deg. 9

Obviously, the polynomial of degree 2 

provides the most plausible fit.
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◼The same principle applies to ANNs:

◼If an ANN has too few neurons, it may not have enough 
degrees of freedom to precisely approximate the desired 
function.

◼If an ANN has too many neurons, it will learn the 
exemplars perfectly, but its additional degrees of freedom 
may cause it to show implausible behavior for untrained 
inputs; it then presents poor ability of generalization.

◼Unfortunately, there are no known equations that could tell 
you the optimal size of your network for a given application; 
you always have to experiment.

Learning in ANNs
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Training ANN

◼ Weights, which are usually randomly set to begin with, are 

then adjusted so that the next iteration will produce a closer 

match between the desired and the actual output. 

◼ Various learning methods for weight adjustments try to 

minimize the differences or errors between observed and 

computed output data. 

◼ It is considered complete when the ANN reaches a user-

defined performance level. After which the resulting weights 

are typically fixed for the application.

◼ Once a supervised network performs well on the training 

data, it is important to test it (what it can do with data it has 

not seen before).

◼ If the ANN did not give a reasonable output for this test set, 

the training period should continue.
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Backpropagation Preparation

◼ Training Set: A collection of input-output patterns that are 
used to train the network

◼ Testing Set: A collection of input-output patterns that are 
used to assess network performance

◼ Learning Rate-η: A scalar parameter, analogous to step size 
in numerical integration, used to set the rate of adjustments 

◼ Network Error

◼Total-Sum-Squared-Error (TSSE)

◼ 𝑇𝑆𝑆𝐸 =
1

2
σ𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠σ𝑜𝑢𝑡𝑝𝑢𝑡𝑠(𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙)2

◼Root-Mean-Squared-Error (RMSE)

◼ 𝑅𝑀𝑆𝐸 =
2∗𝑇𝑆𝑆𝐸

#𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠∗#𝑜𝑢𝑡𝑝𝑢𝑡𝑠



Training ANN: the backpropagation Algorithm

◼ Error is the mean square of differences in output layer

◼ 𝐸 𝑥 =
1

2
σ𝑘=1
𝐾 (𝑇𝑘 𝑥 − 𝑂𝑘 𝑥 )2, where O – computed 

output and T – target output, K number of training data pairs.

◼ Error of training epoch is the average of all errors.

◼ Update weights and thresholds using

◼Weights: 𝑤𝑗𝑘 = 𝑤𝑗𝑘 + (−𝜂)
𝜕𝐸 𝑥

𝜕𝑤𝑗𝑘

◼Bias: 𝜃𝑘 = 𝜃𝑘 + (−𝜂)
𝜕𝐸 𝑥

𝜕𝜃𝑘

◼ is a possibly time-dependent factor that should prevent 

overcorrection called learning rate
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A Pseudo-Code BP Algorithm

◼ Randomly choose the initial weights

◼ While error is too large

◼For each training pattern (presented in random order)

◼ Apply the inputs to the network

◼ Calculate the output for every neuron from the input 
layer, through the hidden layer(s), to the output layer

◼ Calculate the error at the outputs

◼ Use the output error to compute error signals for pre-
output layers

◼ Use the error signals to compute weight adjustments

◼ Apply the weight adjustments

◼Periodically evaluate the network performance 



Steps in ANN development

1. Design a network.

2. Divide the data set into training, validation and testing subsets.

3. Train the network on the training data set.

4. Periodically stop the training and measure the error on the 

validation data set.

5. Save the weights of the network.

6. Repeat Steps 2, 3, and 4 until the error on the validation data set 

starts increasing. This is the moment where the overfitting has 

started.

7. Go back to the weights that produced the lowest error on the 

validation data set, and use these weights for the trained ANN.

8. Test the trained ANN using the testing data set. If it shows good 

performance, use it. If not, redesign the network and repeat entire 

procedure from Step 3.
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Example

◼ Consider predicting a downstream pollutant concentration 

based on an upstream concentration and the streamflow.

◼ Twelve measurements of the streamflow quantity, velocity, 

and pollutant concentrations at two sites are available. The 

travel times between the two measurement sites (an upstream 

and a downstream site) have been computed and these, plus 

the pollutant concentrations, are shown in Table below.
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Travel Time (Days) 2 2 1.5 1.5 0.5 1 0.5 1.5 1.5 2 1 0.5

Concentration U/S 20 15 30 20 20 15 30 25 15 30 30 25

Concentration D/S 6 4.5 12.2 11 14.8 8.2 22.2 10.2 6.1 9 16.5 18.5



Plotting the data
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[2.0   20.0    6.0;
2.0   15.0    4.5;
1.5   30.0   12.2;
1.5   20.0   11.0;
0.5   20.0   14.8;
1.0   15.0    8.2;
0.5   30.0   22.2;
1.5   25.0   10.2;
1.5   15.0    6.1;
2.0   30.0    9.0;
1.0   30.0   16.5;
0.5   25.0   18.5]

[ndata, nc]=size(inputdata); % ndata is the number of data and nc is the 

number of column provided in the data

ni=2; %ni is the number of input variables

no=nc-ni;   %no is the number of output expected from the model

inputs1=inputdata(:,1)';  inputs2=inputdata(:,2)';   inputs=[inputs1;inputs2];

outputs=inputdata(:,nc)';

%load the input data

inputdata=load('input1.dat');    %data available arranged with inputs in the 

prior columns and the last column will represent the output

plot(inputdata(:,1),inputdata(:,2),'o',inputdata(:,1),inputdata(:,3),'*');

title('Given data for example 1');xlabel('Travel time in days'); 

ylabel('Concentration’); legend('U/S concentration','D/s concentration');



Design of the network

◼ The two inputs and the output do have different units which 

results in different magnitude. Besides the activation function to 

be used in the hidden layer node (here Logistic sigmoid will 

result in values between zero and one. Thus ANN requires us to 

bring every input and output with equivalent input magnitude 

and outputs within the activation range of output values.
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U/S 

Concentration

Travel Time

Hidden Layer/s 

Node/s

D/S 

Concentration

w1

w2

w3



Normalization 

◼ Two types of normalization methods, min.-max. method and 

normal distribution method

◼ The min.-max. method linearly maps the original values to 

the new interval determined by the assigned min.-max. values 

(see Figure below). 

◼ The original minimum and maximum value (xmin and xmax) 

can be achieved from the statistical information of the raw 

data, and the new minimum and maximum value (ymin and 

ymax) are assigned on the basis of the activation function the 

new value y from the original value x is estimated by 

◼𝑦 =
𝑥−𝑥𝑚𝑖𝑛 × 𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
+ 𝑦𝑚𝑖𝑛
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Normalization 

◼ The normal distribution method maps the original values to 

the new interval according to the new mean and standard 

deviation (see Figure below).

◼ Similarly, the new value could be calculated by 

◼𝑦 =
𝑥−𝑥𝑚𝑖𝑛 ×𝑦𝑠𝑡𝑑

𝑥𝑠𝑡𝑑
+ 𝑦𝑚𝑒𝑎𝑛

◼ NOTE the mean and deviation in place of the min.-max. 

values in the min max method
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Data normalization : if needed
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inmax=max(inputdata);   % the maximum values among the entire data

inmin=min(inputdata);   % the minimum values among the entire data

lfmax=0.9;  % the maximum value to be assigned for the logistic activation 

function

lfmin=0.1;  % the minimum value to be assigned for the logistic activation 

function

% the following code will create the normalized values

indnorm=zeros(ndata,nc);

for i=1:ndata

for j=1:nc

indnorm(i,j)=lfmin+(lfmax-lfmin)*(inputdata(i,j)-inmin(j))/…

(inmax(j)-inmin(j));

end

end

0.9000    0.3667    0.1678
0.9000    0.1000    0.1000
0.6333    0.9000    0.4480
0.6333    0.3667    0.3938
0.1000    0.3667    0.5655
0.3667    0.1000    0.2672
0.1000    0.9000    0.9000
0.6333    0.6333    0.3576
0.6333    0.1000    0.1723
0.9000    0.9000    0.3034
0.3667    0.9000    0.6424
0.1000    0.6333    0.7328

inputs1=indnorm(:,1)'; inputs2=indnorm(:,2)';    inputs={inputs1;inputs2};

outputs=indnorm(:,nc)';



Normalization results for the example
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0
0.2
0.4
0.6
0.8

1
1.2

0 5 10 15

Normalized

Travel Time (Days) Concentration u/s

Concentration d/s

0

20

40

1 3 5 7 9 11

Real Value

Travel Time (Days) Concentration u/s

Concentration d/s

Travel Time (Days) 2 2 1.5 1.5 0.5 1 0.5 1.5 1.5 2 1 0.5

Concentration u/s 20 15 30 20 20 15 30 25 15 30 30 25

Concentration d/s 6 4.5 12.2 11 14.8 8.2 22.2 10.2 6.1 9 16.518.5

Travel Time (Days) N 1.00 1.00 0.67 0.67 0.00 0.33 0.00 0.67 0.67 1.00 0.330.00

Concentration u/s N 0.33 0.00 1.00 0.33 0.33 0.00 1.00 0.67 0.00 1.00 1.000.67

Concentration d/s N 0.08 0.00 0.44 0.37 0.58 0.21 1.00 0.32 0.09 0.25 0.680.79



Network design
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% Two-layer (i.e. one-hidden-layer) feed forward neural networks can fit

% any input-output relationship given enough neurons in the hidden layer. 

%Layers which are not output layers are called hidden layers.

% We will try a single hidden layer of 10 neurons for this example. 

% In general, more difficult problems require more neurons, and perhaps 

%more layers. Simpler problems require fewer neurons.

inputs=inputdata(:,1:2); inputs = inputs’; outputs=inputdata(:,3); 

outputs = outputs';

numNodesLayers=10;

net = fitnet(numNodesLayers);

view(net)

% Define topology and transfer function

net.layers{1}.transferFcn = 'logsig';% hidden layer 1 transfer function

net.layers{2}.transferFcn = 'purelin';% hidden layer 2 transfer function

view(net);

Activation 

functions in 

mat lab

'purelin'

'hardlim’

‘tansig'



Network configuration and training
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% Configure network

net = configure(net, inputs, outputs); 

view(net);

% network training

net.trainFcn = 'trainlm';

net.performFcn = 'mse';

[net,tr] = train(net,inputs,outputs);

nntraintool

Network performance evaluation functions
mse - Mean squared normalized error performance function
sse - Sum squared error performance function
sae - Sum absolute error performance function
mae - Mean absolute error performance function

Network training functions
trainscg - Scaled conjugate gradient backpropagation
traingdx - Gradient descent with momentum and adaptive 
learning rate backpropagation
traingdm - Gradient descent with momentum 
backpropagation
trainlm - Levenberg-Marquardt backpropagation
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Weight values visualization
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IW1 =
7.9764   -3.3507
8.0493   -3.6607
8.7922   -1.0225
0.7938    8.7609

-5.1062   -7.1132
-2.8551    8.3126
-8.5812    0.9957
-6.9597    5.3381
8.4508   -2.8375

-8.3113   -1.9682

LW1 =
-0.2579    0.2427   -0.3880    0.3428   -0.1397    0.0299    0.4041    0.0824   -0.7280   -0.2644

b1 =
-9.0363
-6.8680
-4.8964
-3.1232
1.3503

-1.0320
-3.3931
-5.0446
6.8096

-9.0913
0.2162

%weights values visualization

IW1=cell2mat(net.IW); %this is the weights connecting input layer to the 

first hiddel layer. numLayers-by-numInputs cell array of input weight 

values

LW1=cell2mat(net.LW); %this is the weights connecting first hidden layer 

to the next hiddel layer. numLayers-by-numlayers cell array of input 

weight values

b1=cell2mat(net.b); % numLayers-by-1 cell array of bias values

◼ The same can be done by: 

◼nnstart



Exercise 

◼ Develop an artificial neural network for flow routing given 

the following two sets of upstream and downstream flows.. 

◼ Develop the simplest artificial neural network you can that 

does an adequate job of prediction.
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Period U/S flow D/S flow Period U/S flow D/S flow

1 450 366 1 550 439

2 685 593 2 255 304

3 830 755 3 830 678

4 580 636 4 680 679

5 200 325 5 470 534


