Chapter 2 Earthquake Response of Linear SDOF Systems

Addis Ababa University Adil Zekaria (Dr.-Ing.)

Presentation outline

- Earthquake analysis of linear systems
- Review of basic concepts of structural dynamics in SDOF systems
- Earthquake response of linear systems
- Response Spectra: definition, construction, behavior, etc.
- Construction of elastic design spectra
- Relative versus Pseudo velocity and acceleration spectra
 Addis Ababa University (Adil Z)

2

1

- 1. Numerically define ground acceleration $\ddot{u}_g(t)$
- 2. Select natural vibration period T_n and ζ of SDOF
- 3. Compute deformation response u(t)
- 4. Determine u_0 peak value of u(t)
- 5. The spectral ordinates are $D=u_0$, $V=\omega D$ and $A=\omega^2 D$
- 6. Repeat step 2 to 5 for a range of T_n and ζ
- 7. present steps 2 to 6 graphically

Construction of a design spectrum

To ensure that a structure will resist a future earthquake, the elastic design spectrum is obtained from all ground motions data recorded during past earthquakes at the site or in regions with near-similar conditions

Construction of a design spectrum (contd.)

Damping, ζ (%)	Median (50 th percentile)			One Sigma (84.1th percentile)		
	α _A	α_V	α _D	α _Α	α_V	α _D
1	3.21	2.3 <mark>1</mark>	1.82	4.38	3.38	2.73
2	2.74	2.03	1.63	3.66	2.92	2.42
5	2.12	1.65	1.39	2.71	2.30	2.01
10	1.64	1.37	1.20	1.99	1.84	1.69
20	1.17	1.08	1.01	1.26	1.37	1.38

in neumain and with thai, cardidate special and besign, cere, beneccy, all 1502, pp. 55, an

Addis Ababa University (Adil Z)

Comparison of Design & Response Spectra

- **RS** is jagged while DS is smooth curve
- **RS** is the plot of the peak response of a particular EQ while DS represents average/envelope characteristics of many RS
- For some sites envelope DS can drawn from 2 different DSs, (see next slide.)

Belative versus Pseudo values
$$u(t) = -\frac{1}{\omega_D} \int_0^t \ddot{u}_g(\tau) e^{-\omega_n(t-\tau)} \sin[\omega_D(t-\tau)] dt$$
 $u(t) = -\omega_D u(t) = \int_0^t \ddot{u}_g(\tau) e^{-\omega_n(t-\tau)} \cos[\omega_D(t-\tau)] dt$ $u(t) = -\omega_n^2 u(t) = 2\zeta\omega_n \dot{u}(t)$ **Derevent**Park Deformation $D = \max[u(t)]$ Deak Pseudo - velocity $U = \omega_D D$ Deak Pseudo - acceleration $A = \omega_n^2 D$

