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•Moment Curvature Relationships

•Deflection Calculation Aids
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 A column is a vertical structural member 

supporting axial compressive loads, with or 

w/o moments.

 The x-sectional dimensions of a column are 

generally considerably less than its height.

 Columns support vertical loads from the roof 

and transmit these loads to the foundations.

 In a typical construction cycle, the 

reinforcement and concrete for the beams 

and slabs in a floor are placed first(discussion 

with NS).
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Once this concrete has hardened, the 

reinforcement and concrete for the columns 

over that floor are placed. The process is 

illustrated in Figs 11-1, and 11-2

 Fig. 11-1 shows a completed column prior to 

construction of the formwork for the next 

floor.

 This is a tied column, so called because the 

longitudinal bars are tied together with 

smaller bars at intervals up the column.
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One set of ties is visible just above the 

concrete. The longitudinal bars protruding 

from the column will extend through the 

floor into the next-higher column and will be 

lap spliced with the bars in that column.

 The longitudinal bars are bent inward to fit 

inside the cage of bars for the next-higher 

column. (other splice details are sometimes 

used: SNS)
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 A reinforcement cage that is ready for the 

column forms is shown in Fig 11-2. the lap 

splice at the bottom of the column and the 

ties can be seen in this photograph.

 The more general terms compression members 

and members subjected to combined axial loads 

and bending are used to refer to columns, walls, 

and members in concrete trusses and frames. 

These may be vertical, inclined, or horizontal. A 

column is a special case of a compression 

member that is vertical
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 Stability effects must be considered in the 
design of compression members. If the 
moments induced by slenderness effects 
weaken a column appreciably, it is referred 
to as a slender column or long column.

 The great majority of concrete columns are 
sufficiently stocky that slenderness can be 
ignored. Such columns are referred to as 
short columns.

 Although the theory developed in this chapter applies to 
columns in seismic regions, such columns require special 
detailing to resist the shear forces and repeated cyclic 
loading from the EQ. In seismic regions the ties are heavier 
and much more closely spaced than shown in Figs above.
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Most of the columns in buildings in 

nonseismic regions are tied columns. They 

may be square, circular, rectangular, L-

shaped or any other required shape.

Occasionally, when high strength and/or 

ductility are required, the bars are placed in 

a circle, and the ties are replaced by a bar 

bent into a helix or a spiral, with a pitch 

from 35 to 85 mm.

 Such a column, called a spiral column, is 

shown in Fig. 11-3 (SNS)
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 The spiral acts to restrain the lateral 
expansion of the column core under axial 
loads causing crushing and, in doing so, 
delays the failure of the core, making the 
column more ductile.

 2.1.1 Behavior of Tied and Spiral Columns

 Fig. 11-4a shows a portion of the core of a 
spiral column enclosed by one and a half 
turns of a spiral. Under a compressive load, 
the concrete in this column shortens 
longitudinally under the stress f1 and so, to 
satisfy the Poisson’s ratio, it expands laterally.
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 This lateral expansion is especially 
pronounced at stresses in excess of 70% of 
the cylinder strength.

 In spiral column, the lateral expansion of the 
concrete inside the spiral (the core) is 
restrained by the spiral.

 This stresses the spiral in tension (see fig). 
For equilibrium the concrete is subjected to 
lateral compressive stresses f2.

 An element taken out of the core (see fig) is 
subjected to triaxial compression which 
increases the strength of concrete: f1=fc’+2.1f2.
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 In a tied column in a nonseismic region, the 

ties are spaced roughly the width of the 

column apart and, as a result, provide 

relatively little lateral restraint to the core.

Hence, normal ties have little effect on the 

strength of the core in a tied column. They 

do, however, act to reduce the unsupported 

length of the longitudinal bars, thus reducing 

the danger of buckling of those bars as the 

bar stresses approach yield.
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 Fig 11-5 presents load-deflection diagrams 
for a tied column and a spiral column 
subjected to axial loads. The initial parts of 
these diagrams are similar. As the maximum 
load is reached, vertical cracks and crushing 
develop in the concrete shell outside the ties 
or spiral, and this concrete spalls off. (SNS)

When this occurs in a tied column, the 
capacity of the core that remains is less than 
the load on the column. The concrete core is 
crushed, and the reinforcements buckles 
outward b/n ties. This occurs suddenly, w/o 
warning, in a brittle manner.
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Fig 11-5
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When the shell spalls off a spiral column, the 
column does not fail immediately because 
the strength of the cores has been enhanced 
by the triaxial stresses.

 As a result, the column can undergo large 
deformations, eventually reaching a 2nd

maximum load, when the spirals yield and 
the column finally collapses.

 Such a failure is much more ductile and gives 
warning of impending failure (spalling of the 
concrete cover), along with possible load 
redistribution to other members
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 Fig 11-6 and 11-7 show tied and spiral 
columns, respectively, after an EQ. Both 
columns are in the same building and have 
undergone the same deformations. The tied 
column has failed completely, while the 
spiral column, although badly damaged, is 
still supporting a load.

 The very minimal ties in Fig 11-6 were 
inadequate to confine the core concrete. 
Had the column been detailed according to 
ACI Section 21.4, the column would have 
performed much better.
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When a symmetrical column is subjected to a 
concentric axial load, P, longitudinal strains 
, develop uniformly across the section as 
shown in Fig 11-8a.

 Because the steel and concrete are bonded 
together, the strains in the concrete and 
steel are equal. For any given strain, it is 
possible to compute the stresses in the 
concrete and steel using the stress-strain
curves for the two materials.

 Failure occurs when Po reaches a maximum: 
Po = fcdAc + fydAs,tot (where Ac = Ag – As,tot)
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Fig 11-8
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 Almost all compression members in concrete 
structures are subjected to moments in 
addition to axial loads. These may be due to 
misalignment of the load on the column, as 
shown in Fig 11-9b, or may result from the 
column resisting a portion of the unbalanced 
moments at the ends of the beams supported 
by the columns (Fig 11-9c). (SNS)

 The distance e is referred to as the 
eccentricity of load. These 2 cases are the 
same, because the eccentric load can be 
replaced by an axial load P plus a moment 
M=Pe about the centroid.
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 Interaction Diagrams

 Interaction diagrams for columns are generally 
computed by assuming a series of strain 
distributions at the ULS (SNS), each 
corresponding to a particular point on the 
interaction diagram, and computing the 
corresponding values of P and M.

 M is determined w.r.t the centroid of the x-
section because analysis results are referred to 
the centroidal axis

 Once enough such points have been computed, 
the results are summarized in an interaction 
diagram (see Fig 11-13)discussion
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Fig 11-13 Strain 
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Draw the interaction diagram for the column 
cross section (SNS). Use class of concrete C-
30 and grade of reinforcing steel, S-460.

 Show a minimum of 6 points on the 
interaction diagram corresponding to
 1. Pure axial compression

 2. Balanced failure

 3. Zero tension (Onset of cracking)

 2. Pure flexure

 5. A point b/n balanced failure and pure flexure

 6. A point b/n pure axial compression and zero 
tension
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 Solution

 1. Pure axial compression
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 Cont’d

 Pu = Cs2 + Cs1 + Cc = s2As2 + s1As1 + fcdbh

 yd = fyd/Es = 400/200000 = 0.002 

reinforcement has yielded

 Pu = fydAs,tot/2 + fydAs,tot/2 + fcdbh = fydAs,tot + 

fcdbh 

 u = Pu / fcdbh = (fydAs,tot )/ (fcdbh)+ 

(fcdbh)/(fcdbh)  = fyd/fcd + 1 =  + 1 ; where 

is called the mechanical reinforcement ratio 

and equal to (6800/(400500))(400/13.6) = 

1.0  u = 1 + 1 = 2.0
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 2. balanced failure

 x/3.5 = d/(3.5+2)  x = (400/5.5)3.5 = 

254.5454 mm  s2/(254.54-100)=3.5/254.54 

s2 = 2.125/oo > 2 /oo  reinforcement has 

yielded

  Cs2 = Ts1 = 3400400 = 1360000 N
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 Cont’d

 cm > o and NA is within the section  c = 

kx(3cm – 2)/3cm = (254.54/400)(33.5-2)/(33.5) 

= 0.5151  Cc = cfcdbd = 0.5113.6400400 = 

1120967.7 N

 c = kx(cm(3cm-4)+2)/(2cm(3cm-2)) = 

(254.54/400)(3.5(33.5-4)+2)/(23.5(33.5-2)) = 

0.2647 cd = 0.2647400 = 105.882 mm 

 Mu = Cc(h/2- cd) + Cs2(h/2-h’) + Ts1(h/2-h’) = 

1120969.7(250-105.882) + 1360000(250-100) + 

1360000(250-100) = 569551912.2 Nmm

 Pu=Cc+Ts1+Cs2 = Cc = 1120969.7 
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 Cont’d

 u = P/(fcdbh) = 1120969.7/(13.6400500) = 

0.412

 u = Mu/(fcdbh2) = 569551912.2/(13.64005002) = 

0.419

 6. A point b/n pure axial compression and zero 

tension
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 Choose cm = 3 /oo (strain profile passes also 

thru C)

 Strain in the bottom concrete fiber cb: from 

a=((4/7)/(3/7))1 = 4/3 = 1.33  cb = 2 -1.33 = 

0.667 /oo  (entire cross section under 

compression as assumed)

 Determine strain in reinforcement: from 

b/114.286 = 1/214.286  b = 0.533 /oo  s2 = 

2 + 0.533 = 2.533 /oo > 2 /oo  reinforcement 

has yielded and from e/185.714 = 

1.33/285.714  e = 0.867 /oo  s1 = 2-0.867 

= 1.133 /oo < 2 /oo  reinforcement has not 

yielded
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 Cont’d

 cm > o and NA outside of the section c = 
(1/189)(125+64cm-16cm

2) = (1/189)(125+64(3)-
16(3)2) = 0.915344  Cc = cfcdbd = 
0.91534413.6400400 = 1991788.4 N; Cs2 = 
(As,tot/2)fyd = 3400400 = 1360000 N; Cs1 = 
(As,tot/2)s1 = 3400(1.133/1000)200000 = 
770666.67 N 

 c = 0.5-(40/7)(cm-2)2/(125+64cm-16cm
2) = 0.5-

(40/7(3-2)2/(125+643-1632) = 0.467 cd = 
0.467400 = 186.788 mm

 Pu=Cc+Cs1+Cs2 = 4122455.1 N

 Mu = 1991788.4(250-186.788)+1360000(250-100)-
770666.67(250-100) = 214304927.8 Nmm
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 Cont’d

 u = Pu/(fcdbh) = 4122455.1/(13.6400500) = 

1.5156

 u = Mu/(fcdbh2) = 214304927.8/(13.64005002) = 

0.1576

554/24/2016Dr.-Ing. Girma Zerayohannes-AAiT-AAU



56

0.2 0.4 0.6 0.8

4/24/2016Dr.-Ing. Girma Zerayohannes-AAiT-AAU



 2. Pure flexure

 Start with cm/s1 = 3.5 /oo / 5 /oo and repeat 

until u  0.00
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 After some trials

 Use cm/s1 = 3.5 /oo / 6.227 /oo

 kx= 3.5/(3.5+6.227)=0.359823 x=143.9293mm

 s2 = ((x-100)/x)3.5 = 1.06825 /oo 

Cs2=3400(1.06825/1000)200000=726410N

 c = kx(3cm – 2)/3cm = (143.9293/400)(33.5-

2)/(33.5) = 0.291285  Cc = cfcdbd = 0.291285 

13.6400400 = 633837.1 N

 Pu=Cc+Ts1+Cs2 = 633837.1-1360000+726410 = 

247.1N

  u = Pu/(fcdbh) = 247.1/(13.6400500) = 

0.00
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 c = kx(cm(3cm-4)+2)/(2cm(3cm-2)) = 

(143.9293/400)(3.5(33.5-4)+2)/(23.5(33.5-2)) 

= 0.149674 cd = 0.149674400 = 59.8696 mm 



 Mu = Cc(h/2- cd) + Cs2(h/2-h’) + Ts1(h/2-h’) = 

633837.1(250-59.8696) + 726410(250-100) + 

1360000(250-100) = 433473111 Nmm

 u = Mu/(fcdbh2) = 433473111 /(13.64005002) = 

0.319
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 Insert Uchart1 with cover ratio h’/h = 0.2 

(discussion about the systematic production 

of such uniaxial interaction diagrams)

 SNS or project from the original
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Up to this point we have dealt with columns 
subjected to axial loads accompanied by 
bending about one axis. It is not unusual for 
columns to support axial forces and bending 
about two  axes (corner columns under 
gravity loads or other columns for LC: gravity 
plus lateral loading)

 For a given cross section and reinforcing 
pattern, one can draw an interaction 
diagram for axial load and bending about 
either axis. These interaction diagram form 
the two edges of an interaction surface for 
axial load and bending about 2 axes (SNS)
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 For a given cross section and reinforcement 
arrangement as shown in the NS, there exists a 
unique associated interaction surface. The stress 
resultant of a strain distribution in the ULS 
represents one point on the interaction surface. 
However this is not useful as 3D representation is 
not suitable for design aid calculations

 biaxial interaction diagrams calculated and 
prepared as load contours or P-M diagrams drawn 
on planes of constant angles relating the 
magnitudes of the  biaxial moments are more 
suitable for design (but difficult to derive)

 More discussion in Chapter3 
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 Therefore approximate solutions are sought 

to solve biaxial bending problems.  seek 

approximate solutions

 The most common approximation common 

across different codes are:

 Approximate equations for load contours 

(EBCS EN 1992-1-1, ACI, British code, 

etc)(refer publications on evaluation of the 

different approximate methods)
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 Rigorously derived biaxial interaction 

diagrams for EBCS-2: Part 1 and DIN 1045, 

refer to EBCS-2:Part 2 and Interaction 

diagrams for biaxial bending to DIN 1045 

 They are prepared as load contours for 

biaxially loaded columns with different 

reinforcement arrangement (4-corner 

reinforcement, 8-rebar arrangement, 

uniformly distributed reinforcement on 2-

edges, uniformly distributed reinforcement 

on 4-edges and so on.
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 Finally, how is this, i.e. cross section 
capacities relevant to column strengths? Ans: 
A column (short or slender is said to have 
reached an ULS when the critical cross 
section has reached an ultimate limit state). 
So the design of a column is reduced to the 
design of the critical cross section located 
somewhere along the length of the column 
unless the column is very slender and 
reaches the ULS of instability

 Project biaxial charts from original 
document, i.e. EBCS-2:Part 2 and DIN 1045
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 In this chapter we will deal with many topics 
outlined in the course content. They include:
 ULS of buckling (discussion)/ “ EBCS EN 1992-1-1 
 Analysis of 2nd order effects with axial load”/
“ German Lit ULS Induced by Lateral 
Deflection of Columns”/ “ACI Slender 
Columns”

 P analysis

 Rigorous 2nd order analysis

 Strain compatibility principles for cross section 
analysis (see more discussion in chapter 3)

 Moment-Curvature relationship

 Assignments
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 2.6.1 Introduction

 An eccentrically loaded, pin end columns is 
shown in figure (SNS). The moments at the 
ends of the column are:
 Me = P  e

When the loads P are applied the column 
deflects laterally by an amount  as shown. 
For equilibrium, the internal moment at mid-
height must be:
 Mc = P(e + ), i.e. the deflection increases the 

moments for which the columns must be 
designed (Note: 2nd order analysis!)
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 The load-moment curves for the end 

moments at the support and the maximum 

moment at mid-height are drawn on the 

interaction diagram of the column (SNS)

 OA is the load-moment curve for the end moment

 OB is the load-moment curve for the maximum 

column moment

 Failure occurs when the load moment curve 

OB for the critical section intersects the 

interaction diagram for the cross-section.
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 Thus the load and moment at failure are 
denoted by point B in the figure.

 Because of the increase in the maximum 
moment due to deflections, the axial load 
capacity is reduced from A to B. This 
reduction in axial load capacity results from 
what are referred to as slenderness effects.

 A slender column is defined as a column that 
has a significant reduction in its axial load 
capacity, due to moments that result from 
lateral deflections of the column. In the ACI 
a “significant reduction” was taken as  5%.
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 2.6.2 Buckling of axially loaded elastic 
columns

 Figure (SNS) illustrates 3 states of 
equilibrium. If the ball in Fig a is displaced 
laterally and released, it will return to its 
original position. This is a stable 
equilibrium. If the ball in Fig c is displaced 
and released, it will roll off the hill. This is 
unstable equilibrium The transition b/n 
stable and unstable equilibrium is neutral 
equilibrium illustrated in Fig b. Here the ball 
will remain in the displaced position.
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 Similar states of equilibrium exist for the 

axially loaded column in the figure (SNS) 

provided that the following conditions are 

fulfilled
 The column is made of a linearly elastic material that 

follows Hook’s law

 The column is perfectly straight

 The column is loaded by a vertical load P  that is 

applied through the centroid of the cross-section and 

aligned with the longitudinal axis of the column

 Deflections are small so that the approximate formula 

for curvature can be used

 Such a column is called an ideal column
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 Such a column remains straight and 
undergoes only axial compression when the 
axial load P < Pcr. The straight form of the 
equilibrium is stable, which means that the 
column returns to the straight position if it is 
disturbed.

 As the load is gradually increased, we reach 
a condition of neutral equilibrium and the 
corresponding value of the load is the 
critical load Pcr. The critical load can 
maintain the column in static equilibrium 
either in the straight position or in a 
slightly bent position. 
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 This equilibrium state is called neutral state 
and the governing DE for the column in neutral 
equilibrium is:

 v’’ + k2v = 0 (v = the lateral deflection and k2 = 
P/EI

 At higher values of the load, the column is 
unstable and will collapse by bending. For the 
ideal case at hand, the column is in equilibrium 
in the straight position even when p > pcr. 
However, the equilibrium is unstable, and the 
smallest imaginable disturbance will cause the 
column to deflect sideways; the deflections 
increase immediately and the column will 
collapse
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 The buckling of the ideal column is associated 
with bifurcation of equilibrium at Pcr (column is 
in neutral equilibrium in either the straight or a 
slightly bent position) as shown in the load-
deflection diagram (SNS). These kind of analysis 
constitute stability problem with bifurcation of 
equilibrium

 Of course, actual columns do not behave in this 
idealized manner because imperfections always 
exist. Nevertheless it is instructive to study ideal 
columns because they provide insight into the 
behavior of real columns.

 That explains the statement in EC2, Section 5.8, pp 64
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Fig: Load-deflection diagram for an ideal column 

(solution of the governing DE for stability 

analysis with bifurcation of equilibrium)
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 For the simply supported ideal column, the 

general solution of the DE is:

v = C1sin kx + C2cos kx

From the boundary conditions C2 = 0 and 

C1sin kL = 0 (a)

 C1 = 0 or sin kL = 0

 If C1 = 0, the deflection v is zero and the 

column is straight. In that case Eq. (a) is 

satisfied for any value of the quantity kL. 

The axial load P may also have any value 

even greater than Pcr (Note: k2 = P/EI). 
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 This solution of the DE (often called the trivial 

solution) is represented by the vertical axis of 

the load-deflection diagram shown above. This 

solution corresponds to an ideal column that is in 

equilibrium (either stable or unstable) under the 

action of the compressive load P.

 The other possibility for satisfying Eq. (a) is to 

meet the following condition:

 sin kL = 0  kL = n  P = (n22EI/L2) and the 

smallest critical load for the column is obtained 

when n = 1

  Pcr = 2EI/L2. 
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 The critical load for an ideal elastic column is 
also known as the Euler load after the famous 
mathematician Leonhard (1707-1783) that 
determined the critical load for an ideal column

 The corresponding buckled shape (sometimes 
called a mode shape) is

v = C1 sin(x/L)

 The constant C1 represents the deflection at 
midpoint (x = L/2), of the column and may be 
positive or negative. Therefore the part of the 
load-deflection diagram corresponding to Pcr is a 
horizontal straight line as shown in the figure 
above. The deflection at this load is undefined, 
although it must remain small for our equations 
to be valid
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 The bifurcation point B is at the critical load; 
above point B the equilibrium is unstable, and 
below it stable

 Effects of large deflections, imperfections, and 
inelastic behavior
 The equation for the critical load was derived for 

an ideal column in which the deflections are 
small, the construction is perfect, and the 
material follows Hooke’s law.

 As a consequence, we found that the magnitudes 
of the deflections at buckling were undefined 
(linear eigenvalue problem). Thus at P = Pcr, the 
column may have any small deflection, a 
condition represented by the horizontal line A in 
the load-deflection diagram shown below (only 
the right hand half is shown) (SNS).
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Fig. Load-deflection diagram for columns: Lines A, ideal elastic 

column with small deflections; curve B, ideal elastic column with 

large deflections; Curve C, elastic column with imperfections; and 

curve D, inelastic column with imperfections
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 Four idealized cases are shown in Figure (SNS), 
together with the corresponding values of the 
effective length, kl.

 Effective length of a column is defined as the 
length of a pin ended column having the same 
stiffness and the same buckling load as the 
original column.

 Frames a and b are prevented against deflecting 
laterally when they buckle. They are said to be 
braced against sidesway.

 Frames c and d are free to sway laterally when 
they buckle. They are called unbraced or sway 
frames. The critical loads of the columns in Fig 
12-6 are in the ratio 1:4:1:1/4
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 Thus it is seen that the restraints against end 
rotation and lateral translation have a major 
effect on the buckling load of axially loaded 
elastic columns.

 In actual structures fully fixed ends, such as in 
Fig 12-6 b to d, rarely, if ever, exist.

 In the following are discussed, the behavior and 
design of pin ended columns, as in Fig 12-6 a; 
restrained columns in frames that are braced 
against lateral displacement (braced or nonsway 
frames), Fig 12-6 b; and restrained columns in 
frames free to translate sideways (unbraced 
frames or sway frames), Fig 12-6c and d
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 Pin-ended columns are rare in cast-in-place 

concrete construction, but do occur in 

precast construction. Occasionally, these will 

be slender, as, for example, the columns 

supporting the back of a precast grandstand.

Most concrete building structures are braced 

frames, with the bracing provided by shear 

walls, stairwells, or elevator shafts that are 

considerably stiffer than the column 

themselves.
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 2.6.3 Slender columns in structures

Occasionally, unbraced frames are 
encountered near the tops of tall buildings, 
where the stiff elevator core may be 
discontinued before the top of the building, 
or in industrial buildings where an open bay 
exists to accommodate a travelling crane.

Most building columns fall in the short 
column category. Exceptions occur in 
industrial buildings and in buildings that have 
a high main floor story for architectural or 
functional reasons. An extreme example(SNS)
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 The presentation of slender columns is 

divided into 4 progressively more complex 

parts. In the 1st 2 sections slender pin-ended 

and restrained columns are discussed. These 

sections deal with P effects. In section 3 

columns in sway frames are discussed and 

finally column designs based on rigorous 2nd

order analysis with nonlinear material 

behavior will be introduced.
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 2.6.4 Behavior and analysis of pin-ended 
columns

 Lateral deflections of a slender column cause 
an increase in the column moments (SNS). 
These increased moments cause an increase 
in the deflections, which in turn lead to an 
increase in moments. As a result, the load-
moment line O-B is non-linear. If the axial 
load is below the critical load, the process 
will converge to a stable situation. If the 
load is  the “critical load”, it will not. 
“critical load” needs qualification (SSAN)
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 Cont’d

 The “critical load”, discussed here can not 

be the elastic buckling load (stability 

problems with bifurcation of equilibrium) for 

the reasons we have seen above.

 The present situation with increased moment 

causing increased lateral deflection, causing 

in turn the moment to increase constitutes a 

stability problem, if the cycle fails to 

converge (possible scenario for vey slender 

columns).
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 This kind of instability problem w/o 
bifurcation of equilibrium can be solved by 
carrying out a 2nd order analysis, taking into 
account the non-linear behavior of the 
constituent materials.

 If the result of such analysis (or experiment) 
is presented as load versus deflection or load 
versus moment, the relationship will be a 
non-linear curve concave downwards (SNS). 
Drawing a parallel with ideal elastic 
buckling, the region with positive slope, i.e., 
to the left of the maximum pt on the curve 
represents the stable situation.  i.e.
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very slender column

Load-max moment curve  for 

moderately slender column



 Cont’d

 The simply supported column with end 
eccentricity is in a state of stable equilibrium as 
long as the axial load and moment are less than 
the values corresponding to the peak point in the 
load-max moment curve OC.

 At the peak point the state of equilibrium is 
neutral

 Beyond the peak point, the slope is negative and 
axial load must be reduced to sustain the 
deflection or the increased moment. The column 
is in a state of unstable equilibrium in this region 
(failure is catastrophic in this range)(Project 
Gondar building collapse, Staircase collapse).
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 In a 1st order analysis, the equations of equilibrium 
are derived by assuming that the deflections have a 
negligible effect on the internal forces in the 
members.

 In a 2nd order analysis, the equations of equilibrium 
consider the deformed shape of the structure. 
Instability can be investigated only via a second-
order-analysis, because it is the loss of equilibrium 
(divergence of the deflection iteration) of the 
deformed structure that causes instability.

 However because many engineering calculations and 
computer programs are based on 1st order analysis, 
methods have been derived to modify the results of a 
1st order analysis to approximate the 2nd order 
effects.
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 2.6.5 Material Failures and Stability Failures

 Load-moment curves are plotted in Figure (SNS) 
for pin ended columns of 3 different lengths, all 
loaded with the same end eccentricity, e. The 
load-moment curve O-A for a relatively short 
column is practically the same as line Pe. For a 
column of moderate length, line O-B, the 
deflections become significant, reducing the 
failure load. This column fails when the load-
moment curve intersects the interaction diagram 
at point B. This is called material failure and is 
the type of failure expected in most practical 
columns in braced frames.
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Stability failure

Fig Material and Stability failure
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 Cont’d

 If a very slender column is loaded with 
increasing axial load, P, applied at a constant 
end eccentricity, e, it may reach a defection 
 at which the value of M/P approaches 
infinity or becomes negative (refer earlier 
discussion). When this occurs, the column 
becomes unstable, since with further 
deflections, the axial load capacity will drop. 
This type of failure is known as stability 
failure and occurs only with very slender 
braced columns or with slender columns in 
sway frames
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 2.6.6 Moment Magnifier for Symmetrically 
Loaded Pin-Ended Column

 Project EBCS EN 1992-1-1 to show relevance of 
2.6.6. (S. 70-71)

 The column in Figure (SSAN) deflects an amount 
o (1st order deflection) under the action of the 
end moment, Mo. When the axial loads P are 
applied, the deflection increases by the amount 
a. The final deflection at midspan is  = o + a. 
The total deflection is called 2nd order 
deflection. Assuming that the deflected shape 
approaches half a sin wave, the P- moment 
diagram is also a sin wave.
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 Cont’d

 Observe that the P- moments, (with the 

maximum value equal to P(o +a) at the middle) 

are the causes for the additional deflections, 

such as the maximum additional deflection a in 

the middle

 Using the moment area method, the deflection 

a is the moment about the support of the M/EI 

diagram b/n the support and the midspan shown 

shaded in The figure (where M is the P-

moments) . The area of this portion is:

 Area = ((P/EI)(0 + a))(l/2)(2/)
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 The centroid of the P moment diagram is 
located at l/ from the support.  a = 
[(P/EI(0 + a))(l/2)(2/)](l/) = (Pl2/2EI)(o

+ a) = (o + a)P/PE; where PE is the ideal 
elastic buckling load, PE = 2EI/l2

 Rearranging  a = o ((P/PE)/(1- P/PE))

 Since the final deflection  is the sum of o

and a,  = o+ o((P/PE)/(1- P/PE))   = 
o/(1- P/PE) 

 This equation shows that the 2nd order 
deflection, , increases as P/PE increases 
reaching infinity when p = PE
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 The maximum 2nd order bending moment is: Mc = 
M0 + P  Mc = M0 + P 0/(1- P/PE)

 For the 1st order moment diagram corresponding 
to equal end eccentricities 0 = M0l

2/(8EI). 
Substituting this and (P/PE)

2EI/l2 into the 
expression for Mc  Mc = (M0(1 + 0.23 P/PE)/(1-
P/PE)). See NS for comparison b/n ACI and EBCS 
EN 1992-1-1 for a constant 1st order moment 
and specific value of P/PE = 0.5.

 The coefficient 0.23 is a function of the shape of 
M0 diagram. For example, it becomes -0.38, for a 
triangular moment diagram with M0 at one end 
of the column and zero moment at the other and 
-0.18 for columns with equal and opposite end 
moments
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 ACI 

 EBCS EN 1992-1-1 
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 In the ACI Code, the (1 + 0.23 P/PE) term is 

omitted because the factor 0.23 varies as a 

function of the moment diagram, for P/PE = 

0.25 to -0.18, the term (1 + C P/PE) varies 

from 1.06 to 0.96 and the magnified moment 

Mc is given essentially as:

 Mc = nsM0; where ns is called the 

nonsway-moment magnifier and is given by:

 ns = 1/(1- P/Pc) ; where Pc = PE (discussion 

on what EI to use to determine the elastic 

buckling load)
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 2.6.7 P- Moments and P- Moments

 Two different types of 2nd order moments act 

on the column in a frame:

 1. P- Moments. These result from deflections, 

, of the axis of the bent column away from the 

chord joining the ends of the column, (SPS). The 

slenderness effects in pin-ended columns and in 

nonsway frames result from P- moments.

 2. P- Moments. These result from lateral 

deflections, , of the column from their original 

undeflected locations (SCS).
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 2.6.8 Effect of  Unequal End Moments on the 
Strength of a Slender Pin-ended Columns

 Up to now, we have considered only pin-ended 
columns subjected to equal moments at the two 
ends. This is a very special case, for which the 
maximum 2nd order moment, P, occurs at a 
section where the 1st order moment, Pe, is also 
a maximum. As a result these quantities can be 
added directly as shown in previous slides.

 In the usual case, the end eccentricities, 
e1=M1/P and e2=M2/P are not equal and give 1st

order moment diagrams as shown shaded in Fig 
(SNS)

1144/24/2016Dr.-Ing. Girma Zerayohannes-AAiT-AAU



115

Max e

Max 

Max (e+)

Max (e+)

Max 

Max (e+) occurs 

b/n the ends of 

the column

Max (e+) occurs 

at one end of the 

column

Moments in columns with 

unequal end moments
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 The max value of  and max e do not occur at 
the same location. As a result emax and max

cannot be added directly.

 In the moment-magnifier design procedure, the 
column subjected to unequal end moments in Fig 
(SNS), is replaced with a similar column 
subjected to equal moments of cmM2 at both 
ends as shown in Fig (SNS).

 The moments cmM2 are chosen so that the 
maximum magnified moment is the same in both 
columns. The expression for the equivalent 
moment factor Cm was originally derived for use 
in the design of steel “beam-columns”.
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(a) Actual moments 

at failure

(b) Equivalent 

moments at failure

Max M

Max M

M2 CmM2

Fig: Equivalent 

moment factor, Cm
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 Cm = 0.6 + 0.4(M1/M2)  0.4

 In the expression, M1 and M2 are the smaller

and larger 1st order column end moments. 

The sign convention for the ratio M1/M2 is 

illustrated in Fig 12-13c and d. If the 

moments M1 and M2 cause single curvature 

bending, M1/M2 is positive. If the moments M1

and M2 bend the column in double curvature 

with a point of contraflexure b/n the two 

ends , M1/M2 is negative (SPS). GOTO S134
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 2.6.9 Column Stiffness, EI

 The calculation of the critical load Pc (SPS it is ideal 
elastic buckling load) involves the use of the flexural 
stiffness, EI, of the column.

 The value of EI chosen for a given column section, 
must approximate the EI of the column at the time of 
failure, taking into account the type of failure 
(material failure or stability failure) and the effects 
of cracking, creep, and nonlinearity of the stress-
strain curves at the time of failure

 Fig (SNS) shows moment-curvature diagrams for 3 
different load levels for a typical cross section

 Assignment # 1: Draw moment-curvature diagrams 
for 3 different load levels as shown in the next 
slide (b/h = 400/400; h’/h = 0.1; Rebar 420)
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 A radial line in such a diagram has slope M/

= EI. The value of EI depends on the 

particular radial line selected. In a material 

failure, failure occurs when the most highly 

stressed section fails (point B SNS). For such 

a case, the appropriate radial line should 

intercept the end of the moment-curvature 

diagram, as shown for the P = Pb (balanced-

failure load). On the other hand, a stability 

failure occurs before the cross section fails 

(point C). This corresponds to a steeper line 

in the M- diagrams. 
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 Cont’d

 The multitude of radial lines that can be drawn in the 
M- diagrams suggests that there is no all-
encompassing value of EI for slender concrete 
columns.

 The following two different sets of stiffness values, 
EI, are given in the ACI to calculate Pc. (Assignment 
#2: How do they compare with the result you get 
from Assignment #1 and assuming material failure. 
Compare with EI-values according to EBCS EN 1992-1-
1, Section 5.8.7.2 Eqn. 5.21)

 1. EI = (0.2EcIg + EsIse)/(1 +dns) (more accurate but 
requires knowledge of required amount of reinforcement

 2. EI = 0.40EcIg/(1 +dns) (Ise= moment of inertia of 
reinforcement about the centroidal axis)
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 2.6.10 EI for the computation of Frame 
Deflections and for Second-Order Analysis

 The above expressions for EI are only for use in 
ACI Eq. (10-10) to compute Pc when one is using 
the moment-magnifier method. These represent 
the behavior of a single, highly loaded column.

 ACI Section 10.11.1 gives a different set of 
values of the moment of inertia, I, for use

 (a) in elastic frame analysis, to compute the moments 
in beams and columns and the lateral deflections of 
frames, and

 To compute  used in computing the effective length 
factor, k. 
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 Cont’d

 The lateral deflection of a frame is affected by 

the stiffnesses of all the beams and columns in 

the frame. For this reason, the moment of 

inertias in ACI Section 10.11.1 are intended to 

represent an overall average of the moment of 

inertia values of EI for each type of member in a 

frame.

 Similarly the effective lengths of a column is 

affected by the flexural stiffnesses of the 

number of beams and columns. Use EI= 0.7ECIC
for columns and EI= 0.35ECIC for beams. 
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 2.6.11 Effect of sustained Loads on Pin-

Ended Columns

Up to now, the discussion has been limited to 

columns failing under short-time loadings. 

Columns in structures, on the other hand, 

are subjected to sustained dead loads and 

sometimes to sustained live loads. The creep 

of the concrete under sustained loads 

increases the column deflections, increasing 

the moment M = P(e + ) and thus weakening 

the column (SNS).
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 The ACI Code moment-magnifier procedure 

uses the reduced-modulus procedure. The 

value of EI is reduced by dividing by (1 + dns) 

(SPS for expressions of EI), where for hinged 

columns and columns in restrained frames,

dns is defined as the ratio of the factored 

axial load due to dead load to the total 

factored axial load.
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 2.6.12 limiting Slenderness Ratios for Slender 
Columns

 Most columns in structures are sufficiently short 
and stocky to be unaffected by slenderness 
effects.

 To avoid checking slenderness effects for all 
columns, ACI Section 10.12.2 allows slenderness 
effects to be ignored in the case of hinged 
columns and of columns in nonsway frames if:
 klu/r < 34 – 12(M1/M2) in nonsway frames

 and klu/r < 22 in sway frames (r = radius of gyration)

 Compare with EBCS EN 1992-1-1 provisions for limiting 
slenderness ratios for slender columns
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 ACI Section 10.11, “Magnified Moments-

General,” gives general requirements for the 

design of slender columns in both nonsway 

and sway columns.

 If a column is in a nonsway frame, design 

involves ACI  Sections 10.11 and 10.12, 

“Magnified moments –Nonsway Frames”.

 If a column is in a sway frame, design 

involves ACI Sections 10.11 and 10.13, 

“magnified Moments-Sway Frames”
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 2.6.13 Definition of nonsway and sway  Frames

 The preceding discussions were based on the 
assumption that frames could be separated into 
nonsway (braced) or sway (unbarced).

 In actuality, there is no such thing as 
“completely braced” frames and no clear cut 
boundary exists b/n nonsway and sway frames. 
Some frames are clearly unbraced. Other frames 
are connected to shear walls, elevator shafts, 
and so on, which clearly restrict the lateral 
movement of the frame. Because no wall is 
completely rigid, however, there will always be 
some lateral movement of a braced frame, and 
hence some P moments result from the lateral 
movements
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 For the purpose of design, a story or a 
frame may be considered “nonsway,” if 
horizontal displacements do not significantly 
reduce the load carrying capacity of the 
structure. This criterion could be restated as 
follows: a frame can be considered 
“nonsway”, if the P moments due to lateral 
deflections are small compared to the 1st

order moments due to lateral loads. ACI Code 
Section 10.10.5.1 allows designers to assume 
that a frame is nonsway if the increase in 
column end moments due to 2nd order effects 
does not exceed 5% of the 1st order moments
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 Alternatively ACI Code Section 10.10.5.2 

allows designers to assume that a story in a 

frame is nonsway if:

 Q = Puo/(Vuslc)  0.05

 Where Q is the stability index; Pu= total vertical 

load in all columns and walls in the story; Vus is 

the story shear due to factored lateral loads; o 

is the 1st order story drift (relative deflection b/n 
the top and bottom of that story)due to Vus ; lc is 

the story height measured from center to center 

of the joint  
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 2.6.14 Design of Columns in Nonsway

Frames (See restrained column in Fig SNS)

 In all modern concrete and steel design 

codes, the empirical assumption (effective 
length method) is made that li can be taken 

equal to the effective length for elastic 
buckling, kl.

 The effective length of a column, klu, is 

defined as the length of an equivalent pin-

ended column having the same buckling load 

as the real column in the frame
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 Cont’d

 The value of the effective length coefficient 

is a function of the relative stiffnesses, , of 

the beams and columns at each end of the 

column, where  is:

  = (EcIc/lc)/(EbIb/lb); where b and c refer to 

beams and columns and lb and lc are measured 

center to center of joints.

 Further reading  Refer Macgregor
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Nonsway frames Sway frames

Nomographs for effective length factors
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 Cont’d

 Summary of Moment-Magnifier Design 

Procedure for Slender Columns in Braced 

Frames

 1. Length of column lu

 2. Effective length with reduced bending 

stiffness for beams (0.35 EI) and columns (0.70EI) 

as in elastic frame analysis to compute internal 

forces and deflections

 3. Evaluation of whether the frame is braced: Q 
= Puo/(Vuslc)  0.05 (o is the story drift)
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 Cont’d
 4. Consideration of slenderness effect: No if 

klu/r<34-12M1/M2 in Non-sway frame

 5. Minimum moment: M2,min = Pu(15+0.03h); 
where 15 and h are in mm

 6. Moment-magnifier equation: Mc = nsM2; where 
ns = Cm/(1-Pu/0.75Pc)  1.0 with Cm = 0.6 + 
0.4(M1/M2)  0.4; where M1/M2 is positive for 
single curvature bending, Pc = 2EI/(klu)

2 and EI = 
(0.2EcIg+ EsIse)/(1 + d) or EI = 0.40EcIg/(1 +dns) 

 If Pu exceeds 0.75 Pc , ns will be negative. Such  
a column would be unstable. Even when ns

exceeds 2.0  consider enlarging the section
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 Exercise: Compare steps with the moment 

magnifier method for slender columns 

according to EBCS EN 1992-1-1

 Example:

 Refer to example for a slender pin-ended 

column in Macgregor.

Carry out the design using the Revised 

Ethiopian Building Code (EBCS EN 1992-1-

1:2013 /EC2:2004 (Assignment No. 2)
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 2.6.15 Behavior of Restrained Columns in 

Sway Frame

 Statics of Sway Frames

 An unbraced frame is one that depends on 

moments in the columns to resist lateral loads 

and lateral deflections. Such a frame is shown 

in Figure(SNS). The sum of the moments at the 

tops and bottoms of all the columns must 

equilibrate the applied lateral-load moment, 
Vl, plus the moment due to the vertical loads, 

P. Thus
 (Mtop + Mbtm) = Vl + P
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Mtop1

Mbot1

V1

V2

V2

V1

Mtop2

Mbot2



Mtop1+ Mbot1= V1l+P1-((Mtop+Mbot)/Lh) 

Mtop2+ Mbot2= V2l+P2+ ((Mtop+Mbot)/Lh) 

summing

Mtop+ Mbot= Vl+P

V
V1 V2

P1
P2

V1 V2

V

Mtop1

Mtop2

P1-(Mtop+Mbot)/Lh P2+(Mtop+Mbot)/Lh

Lh

Mbot1
Mbot2

P1-(Mtop+Mbot)/Lh P2+(Mtop+Mbot)/Lh

P2+(Mtop+Mbot)/LhP1-(Mtop+Mbot)/Lh

P1-(Mtop+Mbot)/Lh P1-(Mtop+Mbot)/Lh



 It should be noted that both columns have deflected 

laterally by the same amount . For this reason, it is 

not possible to consider columns independently in an 

unbraced frame.

 If a sway frame includes some pin-ended columns 

(e.g. precast concrete building), the vertical loads in 

the pin-ended columns are included in P above. Such 

columns are referred to as leaning columns, because 

they depend on the frame for their stability.

 The V-l moment diagram due to the lateral load and 

the P- moment due to story drift is shown in Figure 

(SNS). It can be seen that they are directly additive 

because the maximum for both occur at the same 

point, i.e. at the ends of the column.
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Fig: Column moments in a 

sway frame
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 Because the maximum lateral load moments 
and the P- moments both occur at the ends 
of the columns, and hence can be added 
directly, the equivalent moment factor, Cm, 
does not apply for sway frames.

 The magnified moment Mc in sway frames is 
given by: (this is used as method no 3 for 
sway moment magnification discussed later)
 Mc = M0(1-0.18P/PE)/(1-P/PE); the term in 

bracket is left out by the ACI because the 
resulting change in the magnification does not 
vary significantly. Compare with EBCS EN 1992-
1-1
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 Cont’d

 It is also important to note that if hinges were to 

form at the ends of the beams in the frame as 

shown in Figure (SPS), the frame would be 

unstable. Thus the beams must resist the full 

magnified end moment from the columns for the 

frame to remain stable (ACI Section 10.13.7).

 Loads causing sway are seldom sustained 

(exceptions are frames supporting reaction from 

an arch roof or earth loads). If a sustained load 

acts on an unbraced frame, the deflections 

increase with time, leading directly to an 

increase in the P- moment. 
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 Cont’d

 This process is very sensitive to small variations 

in material properties and loadings. As a result, 

structures subjected to sustained lateral loads 

should always be braced. According to 

Macgregor/ Wight (previous ACI President),

braced frames should be used wherever possible, 

regardless of whether the lateral loads are short 

time or sustained
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 Mns and Ms Moments

 Two different types of moments occur in frames:

 1. moments due to loads not causing appreciable sway, 
Mns

 2. moments due to loads causing appreciable sway, Ms

 The slenderness effects of these two kinds of 
moments are considered separately in the ACI Code 
design process because each is magnified differently 
as the individual columns deflect and as the entire 
frame deflects.

 Column moments that cause no appreciable sway are 
magnified when the column deflects by an amount 
relative to its original straight axis such that the 
moments at points along the length of the column 
exceed those at the ends (P- effect). 
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 Cont’d

 On the other hand, the column moments due to 

lateral loads can cause appreciable sway. They 

are magnified by the P- moments resulting from 

the sway deflections, , at joints in the frame. 

This is referred to as the P-  effect or the 

lateral drift effect.

 ACI Section 10.0, defines the nonsway moment, 

Mns, as the factored end moment on a column 

due to loads that cause no appreciable sway, as 

computed by a 1st order elastic analysis. These 

moments result from gravity loads. 
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 Cont’d

 The sway moment, Ms, is defined as the factored 

end moment on a column due to loads which 

cause appreciable sway, calculated by a 1st order 

elastic frame analysis. These moments result 

from lateral loads or in some cases from large 

unsymmetrical gravity loads or from gravity loads 

on highly unsymmetrical frames.

 Treating the P- and P- moments separately 

simplifies design. The nonsway moments 

frequently result from a series of pattern loads 

(see chapter 10). The pattern loads can lead to a 

moment envelope for the nonsway moments 
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 Cont’d

The maximum end moments from the moment 

envelope are then combined with the 

magnified sway moments from a 2nd order 

analysis or from a sway moment-magnifier 

analysis.

 NB: This approach completely excludes the P- 

contribution of the gravity loads. That is why it is 

checked whether the maximum moment occurs 

b/n the ends of the column.
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 2.6.16 Calculation of Moments in Sway 

Frames by Using Second-Order Analysis

 First-order and Second-Order Analysis: A 1st

order analysis is one in which the effect of 

lateral deflections on action effects is ignored. In 

a 2nd order analysis the effect of deflections on 

action effects is included. Because the moments 

are directly affected by the lateral deflections, it 

is important that the stiffness, EI, used in the 

analysis be representative of the stage 

immediately prior to ultimate.
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 Cont’d
 Second-Order Analysis

 In a 2nd order analysis, column moments and lateral 
frame deflections increase more rapidly than do 
loads. (Recall the load-moment curves for the critical 
section including 2nd order deflection. Two 
consecutive equal load increments  P, do not result 
in corresponding constant moment increments M. 
This would have been the case if the load 
eccentricities (eo + ) are a constant in both load 
steps. While eo is a constant,  for the second load 
step is larger. Therefore the moment increases more 
rapidly than the load.  (P- relationship is 
nonlinear)  Thus it is necessary to calculate the 2nd

order effects at the factored load level (Check EBCS 
EN 1992-1-1)
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 Cont’d
 Stiffness of the Members (supplementary to 

previously discussed)
 (1) ULS: The stiffnesses appropriate for strength 

calculations must estimate the lateral deflections 
accurately at the factored load level. ACI Section 
10.11.1 recommends that the beam stiffness be taken 
as 0.35EcIg. Two levels of behavior must be 
distinguished in selecting the EI of columns. The 
lateral deflections of the frame are influenced by the 
stiffness of all the members in the frame and by the 
variable degree of cracking of these members. Thus , 
the EI used in the frame analysis should be an average 
value, ACI recommends 0.7EcIg.

 The value of EI for shear walls is the same as for 
beams where cracked and columns where uncracked
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 Cont’d
 On the other hand, in designing an individual column 

in a non-sway frame in accordance with Equation … 

(ns=Cm/(1-Pu/0.75Pc), the EI used in calculating ns, 

must be for that column. This EI must reflect the 

greater chance that a particular column will be more 

cracked, or weaker, than the overall average; hence, 

this EI will tend to be smaller than the average EI for 

all the columns acting together. Thus EI=…(recall the 

two Equations for EI (SPS)).
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 Cont’d
 (2) SLS: The moments of inertia given in ACI Section 

10.11.1 (i.e. 0.35Ig for beams and 0.7Ig for columns) is 

for the ULS. At service loads, the members are 

cracked less. In computing deflections or vibrations, 

the values of I should be representative of the degree 

of cracking at service loads. The Commentary R10.11.1 

suggests that I at service loads be taken as 1/0.7 = 

1.43 times those for ULS. (Improved in 6th edition)

 Effects of Sustained Loads: Loads causing 

appreciable sidesway are generally short-

duration loads, such as wind and EQ, as a result 

do not cause creep. If they are sustained, divide 

stiffness by (1+ds) for frame analysis
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Methods of Second-Order Analysis

 (1) Iterative P- Analysis: When a frame is 

displaced sideways under the action of lateral 

and vertical loads as shown in Figure, (SNS), the 

column end moments must equilibrate the lateral 

loads and a moment equal to (P)

 (Mtop + Mbtm) = Vlc +P ;where  is the lateral 

deflection of the top of the story relative to the 

bottom of the story (story displacement)

 The moment P in a given story can be represented 
by statically equivalent shear forces, P/lc. These 

shears give an overturning moment of (P/lc)  (lc) = 

P. 
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 The figures in the following slides show FBDs 

of the individual columns and beams for the 

two statically equivalent Frames, the original 

with the external gravity loads and P

moments and the statically equivalent frame 

without both but with equivalent horizontal 

loads at the joints

 These horizontal external forces or their 

derivatives give rise to the sway forces that 

will be used in the iterative P analysis in 

the coming section
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Mtop1
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V2

V2

V1

Mtop2

Mbot2



Mtop1+ Mbot1= V1l+P1-((Mtop+Mbot)/Lh) 

Mtop2+ Mbot2= V2l+P2+ ((Mtop+Mbot)/Lh) 

summing

Mtop+ Mbot= Vl+P

V
V1 V2

P1
P2

V1 V2

V

Mtop1

Mtop2

P1-(Mtop+Mbot)/Lh P2+(Mtop+Mbot)/Lh

Lh

Mbot1
Mbot2

P1-(Mtop+Mbot)/Lh P2+(Mtop+Mbot)/Lh

P2+(Mtop+Mbot)/LhP1-(Mtop+Mbot)/Lh
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

Mtop1+ Mbot1= V1l+P1

Mtop2+ Mbot2= V2l+P2

summing

Mtop+ Mbot= Vl+P

V1+(P1)/l V2+(P2)/l

V2+(P2)/l

(P1)/l

(P1)/l

(P2)/l

V1+(P1)/l
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V+(P)/l
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Fig: Iterative P- analysis

4/24/2016Dr.-Ing. Girma Zerayohannes-AAiT-AAU



 Figure shows the story shears in two different 

stories.

 Story P moments in the kth and jth stories are Pkk

and Pjj respectively

 The algebraic sum of the story shears from the 

columns above and below a given floor gives rise to a 

sway force acting on that floor. At the jth floor, the 

sway force is:

 Sway force j = (Pii/li) - (Pjj/lj) (sign: positive P/l  

and positive sway force correspond to forces that 

would overturn the structure in the same direction as 

the wind load would.
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Fig: Iterative P- analysis
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 the sway forces are added to the applied lateral loads 

at each floor level, and the structure is reanalyzed, 

giving new lateral deflections and larger column 

moments. This process is continued until convergence 

is obtained (deflection iteration).

 the iterative P- analysis is used to derive the direct

P- analysis for sway frames described in next 

section.

 Ideally a correction is made to this process using the 
flexibility factor  applied to the deflection as P/l 

(refer MacGregor)
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 (2) Direct P- Analysis for Sway Frames

 The iterative calculation procedure described in the 

preceding section can be described mathematically as 

an infinite series. The sum of the terms in this series 

gives the 2nd order deflection  (refer Macgregor):

 where Vus = story shear due to lateral loads; lc = story 

height; Pu = the total axial load in all columns in the 

story; 1.15; 0= 1st order story displacement due to 

the story shear, Vus;  = 2nd order deflection
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 Cont’d
 Since the moments in the frame are directly 

proportional to the deflections, the 2nd order moments 

are:

 M=sMs=M0/(1-(Pu0)/(Vulc))

 ACI Section 10.11.2.2.defines the stability index for a 

story as:

 Q= Pu0/(Vuslc)

 Substituting this into the above equation

sMs=Ms/(1- Q)  Ms

 ACI limits the use of above equation to Q  1/3.
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 2.6.17 design of Columns in Sway Frames

 The ACI Code design procedure for slender 

columns in sway frames consists of five 

steps:

 (1) The unmagnified moments, Mns, due to loads 

not causing appreciable sway are computed (via 

regular 1st order elastic-frame analysis)

 (2) The magnified sway moments, sMs, are 

computed (e.g. direct P- analysis)

 (3) The magnified sway moments, sMs, are 

added to the unmagnified nonsway moments. 

Mns.

1684/24/2016Dr.-Ing. Girma Zerayohannes-AAiT-AAU



 Cont’d

 (4) A check is made whether the maximum 

moment occurs b/n the ends of the column

 Normally, the maximum moment in the column will be 

the P- moment at one end, and the column is 

designed for this moment. However, if the axial loads 

on the column are high and the slenderness exceeds 

the limits given in the ACI, it is necessary to check 

whether the P- moment at some section b/n the ends 

of the column exceeds the maximum end moment. 

This is done by using the braced-frame magnifier. If 

the magnified moment is greater than the P-

moment, then the column will be designed with the 

magnified moment (occurs rarely)
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 Cont’d
 (5) a check is made whether sidesway buckling can occur 

under gravity loads alone. (Again rarely a problem 
assuming the design is carried out by professionals ready 
for designing RC structures)

 Each of the steps are discussed as follows

 (1) Computation of sMs by Using Second-Order 
Analysis
 ACI Section 10.13.2.1.allows the use of 2nd order 

analysis to compute sMs. If torsional displacements of 
the frame are significant, a 3-D 2nd order analysis 
should be used.

 (2) Computation of sMs by Using Direct P-
Analysis for Sway Frames
 sMs=Ms/(1-Q); where Q = Pu0/(Vulc)): 
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 Cont’d

 (3) Computation of sMs by Using Sway-Frame 
Moment Magnifier
 sMs=Ms/(1-Pu/(0.75Pc)): In this case, the 

values of Pc are calculated by using the effective 
lengths, klu, evaluated for columns in a sway 
frame, with d defined as d = max factored 
sustained shear in a story/total factored shear in 
the story. In most sway frames, the story shear is 
due to wind or seismic loads and hence is not 
sustained, resulting in d=0.

 The use of the summation terms accounts for the 
fact that sway instability involves all the columns 
and bracing members in the story. 
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 If 1/(1-Pu/(0.75Pc) is negative, the load in a 
story or more stories in the frame, Pu, exceeds 
the buckling load of the story Pc, indicating that 
the frame is unstable. A stiffer frame is required.

 (4) Moments at the Ends of the Columns
 The unmagnified nonsway moments, Mns, are 

added to the magnified sway moments, sMs, at 
each end of the columns.

 M1=M1ns + sM1s ; M2=M2ns + sM2s

 The addition is carried out for the moments at 
the top and bottom of each column. The larger 
absolute sum is called M2, and the smaller M1. By 
definition, M2 is always +ve, and M1 is taken as –
ve if the column is bent in double curvature
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 (5) Maximum Moments b/n the Ends of the 

Column

 If lu/r exceeds the value given by lu/r 

(Pu/fc’Ag), there is a chance that the maximum 

moment on the column will exceed the larger 

end moment, M2. This would occur if Mc, 

computed for the braced column, was larger 

than the end moments M1 and M2. 

 (6) Sidesway Buckling Under Gravity Load

 Classical case of sidesway buckling under gravity 

load alone
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 Cont’d
 U = 1.4D + 1.7L. Since there are 3 methods to 

calculate sMs, 3 corresponding methods are 
given to check sidesway buckling (previous 
edition of ACI)

 2008 Edition:ACI Code Section 10.10.2.1 guards 
against this by requiring that the secondary-to-
primary moment ratio shall not exceed 1.4.

 (7) Minimum moment
 The ACI Code specifies a minimum moment M2,min

to be considered in the design of columns in 
nonsway frames, but not for columns in sway 
frames.
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 Example: Design of Columns in a Sway Frame

 Refer MacGregor

 Assignment Design the columns using EBCS 

EN 1992-1-1
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