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Course Outline

1. Introduction 
2. Preliminaries
3. 1D (2-Node) Line Elements

Bar, Truss, Beam-elements, Shape functions

4. 2D Elements
Plane Stress and Plane Strain Problems

5. 3D Elements
Tetrahedral, Hexahedral Elements

6. Plate Bending & Shells
7. Further Issues

Modeling, Errors, Non-linearity
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I  Introduction

What is FEM? 
Finite element method is a numerical method 
that generates approximate solutions to 
engineering problems which are usually expressed 
in terms of differential equations.

Used for stress analysis, heat transfer, fluid flow, 
electromagnetic etc.
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• Use of several materials within the same structure, 
• complicated or discontinuous geometry, 
• complicated loading, etc, 

makes the closed form (analytical) solution of 
structural problems very difficult.

One resorts to a numerical solution, the best of 
which is the FEM.

What is FEM?
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Structure is partitioned into FINITE 
ELEMENTS – that are joined to each other at 
limited number of NODES

Behavior of an individual element can be 
described with a simple set of equations 

Assembling the element equations, to a large 
set, is supposed to describe the behavior of the 
whole structure. 

What is FEM?
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Discretization Example

Find the circumference of a circle with a unit 
diameter – find the value of π.

Approximation with that of regular polygons:
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Solution:
Let n be the number of sides of the 
inscribed or circumscribing polygon.

i)  Inscribed polygon
Perimeter p = n sin (180/n) 

ii) Circumscribing polygon
Perimeter p = n tan (180/n) 

Discretization Example
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Estimated vs. exact value of π = 3.1415926536

No. of sides Inscribed polygon Error

3 2.5980762114 0.5435164422

4 2.8284271247 0.3131655288

8 3.0614674589 0.0801251947

16 3.1214451523 0.0201475013

32 3.1365484905 0.0050441630

64 3.1403311570 0.0012614966

128 3.1412772509 0.0003154027

1000 3.1415874859 0.0000051677

10000 3.1415926019 0.0000000517

100000 3.1415926531 0.0000000005

1000000 3.1415926536 0.0000000000

Discretization Example
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A formal mathematical theory for the FEM 
started some 60 years ago 
The steps in FEA are very similar to the 
method of the direct stiffness method in matrix 
structural analysis 

 The term finite element was first used by Clough in 
1960. 

 The first book on the FEM by Zienkiewicz and Cheung 
was published in 1967.

 In the late 1960s and early 1970s, the FEM was applied 
to a wide variety of engineering problems.

Brief History
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 The Pioneers – 1950 to 1962; Clough, 
Turner, Argyris, etc.; thought structural 
elements as a device to transmit forces 
(“force transducer”).

 The Golden Age – 1962–1972; 
Zienkiewicz, Cheung, Martin, Carey etc.; 
thought discrete elements approximate 
continuum models (displacement 
formulation).

Brief History
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 Consolidation – 1972 to mid 1980s; 
Hughes, Bathe Argyris, etc.; variational 
method, mixed formulation, error 
estimation.

 Back to Basics – early 1980s to the 
present; Elements are kept simple but 
should provide answers of engineering 
accuracy with relatively coarse meshes.

Brief History
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 The 1970s  advances in 
mathematical treatments, including the 
development of new elements, and 
convergence studies.

 Most commercial FEM software 
packages originated in the 1970s and 
1980s.

 The FEM is one of the most important 
developments in computational 
methods to occur in the 20th century.

Brief History
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Brief History
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 ANSYS

 MSC/NASTRAN

 ABAQUS

 ADINA

 ALGOR

 NISA

 COSMOS/M

 STARDYNE

 IMAGES-3D

Proprietary Software
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1. Discretize and Select Element Type

2. Select a Displacement Function

3. Define Strain/Displacement and 
Stress/Strain Relationships

4. Derive Element Stiffness Matrix & Eqs.

5. Assemble Equations and Introduce B.C.’s

6. Solve for the Unknown Degrees of 
Freedom

7. Solve for Element Stresses and Strains

8. Interpret the Results

Typical Steps in FEA Process
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Common FEA Procedure for Structures

0. Idealization
The given structure needs to be idealized based on 
engineering judgment. Identify the governing 
equation.

1. Discretization
The continuum system is disassembled into a 
number of small and manageable parts (finite 
elements).
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2 – 4. Derivation of Element Equations
Derive the relationship between the unknown and 
given parameters at the nodes of the element.

5a. Assembly
Assembling the global stiffness matrix from the 
element stiffness matrices based on compatibility 
of displacements and equilibrium of forces.
For example:

Common FEA Procedure for Structures

     
e e e

f k u
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 Displacement of a node is always 
the same for the adjoining elements 
and for the whole structure.

2
1

1
2

2
1

1
2

vvV

uuU

i

i





Common FEA Procedure for Structures
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For the whole structure, this process results in the master
stiffness equation:

 The sum of the forces on each element 
of a particular node must balance the 
external force at that node. 

Common FEA Procedure for Structures
1 2
2 1

1 2
2 1

i
x

i
y

F f x f x

F f y f y
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5b. Introduce Boundary Conditions
After applying prescribed nodal displacements 
(and known external forces) to the master stiffness 
equation, the resulting equation becomes the 
modified master stiffness equation:

Common FEA Procedure for Structures

    K U F
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6. Solve for the primary unknowns

7/8. Compute other values of interest
Secondary unknowns are determined using the 
known nodal displacements. Result 
interpretation.

Common FEA Procedure for Structures

     
1

U K F
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1. Linear analysis: small deflection and elastic 
material properties.

2. Non-linear analysis: 
• Material non-linearity: small deflection and 

non-linear material properties.
• Geometric non-linearity: large deflection and 

elastic material properties.
• Both material and geometric non-linearity. 

Types of FEA in Structures
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Advantages of Finite Element Analysis

• Models Bodies of Complex Shape

• Can Handle General Loading/Boundary Conditions

• Models Bodies Composed of Composite Materials

• Model is Easily Refined for Improved Accuracy by 

Varying Element Size and Type (Approximation 

Scheme)

• Time Dependent and Dynamic Effects Can Be Included

• Can Handle a Variety Nonlinear Effects
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Common Sources of Error in FEA

• Domain Approximation

• Element Interpolation/Approximation

• Numerical Integration Errors

(Including Spatial and Time Integration)

• Computer Errors (Round-Off, Etc., )
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Measures of Accuracy in FEA

Accuracy

Error = |(Exact Solution)-(FEM Solution)|

Convergence

Limit of Error as: 

Number of Elements (h-convergence) 
or

Approximation Order (p-convergence) 

Increases

Ideally, Error  0 as Number of Elements or 
Approximation Order is Higher
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Numerical Methods

 Several approaches can be used to transform 
the physical formulation of the problem to its 
finite element discrete analogue. 

 Ritz/ Galerkin methods – the physical 
formulation of the problem is known as a 
differential equation. 

 Variational formulation – the physical problem 
can be formulated as minimization of a 
functional.
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Variational Method cont.

• A mathematical model is a set of 
mathematical statements which attempts to 
describe a given physical system.
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 Strong Form (SF): A system of ordinary or 
partial differential equations in space and/or 
time, complemented by appropriate 
boundary conditions. 

 Weak Form (WF): A weighted integral 
equation that “relaxes” the strong form into 
a domain-averaging statement.

 Variational Form (VF): A functional whose 
stationary conditions generate the weak 
and strong forms.

Variational Method cont.
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Elasticity

x

xy
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z

zy

zx xz

yz

xy

 3D Stress block
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Elasticity cont.

 Stress Equilibrium Equations
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Elasticity cont.
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Elasticity cont.

 Strain – Displacement
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Elasticity cont.

 3D Stress – Strain Relationships
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Bar Elements

(1) The longitudinal dimension or axial 
dimension is much larger that the 
transverse dimension(s). The 
intersection of a plane normal to the 
longitudinal dimension and the bar 
defines the cross sections.

(2) The bar resists an internal axial force 
along its longitudinal dimension.
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Bar Elements cont.
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Bar Elements cont.
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Bar Elements cont.

• It must be in equilibrium.
• It must satisfy the elastic stress–strain 
law (Hooke’s law)

• The displacement field must be 
compatible.

• It must satisfy the strain–displacement 
equation.
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Governing Equation

The governing differential equation of 
the bar element is given by

P
dx

du
AE

u

conditionsboundary

q
dx
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Admissible displacement function is 
continuous over the length and satisfies 
any boundary condition:

Principles of Minimum Potential Energy – Of all 

kinematically admissible displacement equations, 
those corresponding to equilibrium extermize the 
TPE. If the extremum is a minimum, the equilibrium 
state is stable.

Approximate Solution
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Kinematically admissible 
Displacement Functions

those that satisfy the single-valued nature of 
displacements (compatibility) and the 
boundary conditions

Usually Polynomials

Continuous within element.

Inter-element compatibility. Prevent overlap 
or gaps.

Allow for rigid body displacement and 
constant strain.
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Total Potential Energy (TPE)

Strain 
Energy 
(Internal

work)
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External work of loads

Total Potential Energy

TPE
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Strain energy

External energy

Total potential energy

1

2

Total Potential Energy
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Ritz-Method
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Ritz-Method

Using the Ritz-method, approximate 
displacement function is obtained by:

Assume arbitrary displacement

Introduce this into the TPE functional

Performing differentiation and integration to 
obtain a function

Minimizing the resulting function

nn fafafa  ...2211

nifor
da

d

i

,...,2,10 
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Ritz-Method

Consider the linear elastic one-dimensional 
rod with the force shown below

• The potential energy of this system is:

1

2

0

2

2
1 2udx

dx

du
EAΠ 
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Ritz-Method

Consider the polynomial function:

To be kinematically admissible u must satisfy 
the boundary conditions u = 0 at both (x = 
0) and (x = 2)

Thus:

&
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Ritz-Method

• TPE of this system becomes:

• Minimizing the TPE:

• Thus, an approximate u is given by:

• Rayleigh-Ritz method assumes trial 
functions over entire structure
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Galerkin-Method

For the one-dimensional rod considered in the 
pervious example, the governing equation is: 

The Galerkin method aims at setting the 
residual relative to a weighting function Wi, 
to zero. The weighting functions, Wi, are 
chosen from the basis functions used for 
constructing û (approximate displacement 
function).
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Galerkin-Method

Using the Galerkin-method, approximate 
displacement function is obtained by:

The governing DE is written in residual form

Multiply this RES by weight function f and 
integrate and equate to zero

Perform differentiation and integration to 
obtain the approximate u
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Galerkin-Method
Consider the rod shown below

• Multiplying by Φ (weighting function) and 
integrating gives (by parts):
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Galerkin-Method
The function Φ is zero at (x = 0) and (x = 2) 

and EA(du/dx) is the force in the rod, which 
equals 2 at (x = 1). Thus:

• Using the same polynomial function for u and 
Φ and if u1 and Φ1 are the values at (x = 1):

• Setting these and

E=A=1 in the integral:
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Galerkin-Method
Equating the value in the bracket to zero and 

performing the integral:

• In elasticity problems Galerkin’s method turns 
out to be the principle of virtual work.

4
3

1 u  2275.0 xxu 
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Bar Element 



L

1

2

xx fd 11
ˆ,ˆ
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Assumptions

The bar cannot resist shear forces.

That is:

Effects of transverse displacements 
are ignored.

Hooke’s law applies.

That is:

0f̂f̂ ŷ2ŷ1 

xx E
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Select a Displacement Function

Assume a linear function.

No. of coefficients = No. of DOF

Written in matrix form:

Expressed as function of        and     

û
xaau ˆˆ 21 

 









2

1ˆ1ˆ
a

a
xu

LaddLaadLu

adaadu

xxx

xx

212212

11211

ˆˆ)(ˆ)(ˆ

ˆ)0(ˆ)0(ˆ





x1d̂ x2d̂

AAiT – Civil Engineering    – Bedilu Habte                                                    59

Shape functions:
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û 1

ˆL L d

d̂
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Shape Functions

N1 and N2 are called Shape Functions or Interpolation 
Functions. They express the shape of the assumed 
displacements.
N1 =1 N2 =0 at node 1
N1 =0 N2 =1 at node 2
N1 + N2 =1 at any point 

1 2

N1 N2

L

1 1
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Define Strain/Displacement and Stress/Strain 
Relationships
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Derive the Element Stiffness 
Matrix and Equations

Assemble Global Stiffness Matrix, apply BC and solve 
the Master stiffness equation for the unknown 

displacements:
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Potential Energy Approach
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Potential Energy Approach
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Potential Energy Approach

[D] is the constitutive matrix
(elasticity property matrix)
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Potential Energy Approach
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Potential Energy Approach
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Potential Energy Approach
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Transformation Matrix (Local  Global)

θS

θC

Let

sin

cos





    
    fTf

dTd

d

d

d

d

CS

SC

CS

SC

d

d

d

d

y

x

y

x

y

x

y

x












































































ˆ

ˆ

00

00

00

00

ˆ

ˆ

ˆ

ˆ

2

2

1

1

2

2

1

1

 























CS

SC

CS

SC

T

00

00

00

00

AAiT – Civil Engineering    – Bedilu Habte                                                    70

Element stiffness equation in local coordinate:

Element stiffness matrix
in the global coordinate:
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Obtain displacement function for the one-dimensional 
quadratic element with three nodes shown below. 

Quadratic Bar Element 

A quadratic displacement function:

No. of coefficients = No. of DOF

Written in matrix form:  
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Quadratic Shape Functions

N1 =1 N2 = N3 =0 at node 1
N2 =1 N1 = N3 =0 at node 2
N3 =1 N1 = N2 =0 at node 3

N1 + N2 + N3 = 1 at any point 
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PROPERTIES OF THE SHAPE FUNCTIONS

The shape function at any node has a value of 1 at that node and 
a value of zero at ALL other nodes.
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Compatibility: The displacement approximation is continuous 
across element boundaries

x1 x2
El #1 x3El #2

Hence the displacement approximation is continuous across elements
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Writing shape functions (without deriving): 

x1 x2
El #1

1 1

The Kronecker delta property (the shape function at any node 
has value of 1 at that node and a value of zero at all other nodes)

Notice that the length of the element = x2-x1

Node at which N1 is 0

The denominator is 
the numerator evaluated at 
the node itself 
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3-Node bar element: varying quadratically inside the bar

  
  
  
  
  
  3231

21
3

2321

31
2

1312

32
1

x-xx-x

x-xx-x
(x)N

x-xx-x
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(x)N
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(x)N







xx1 x2

(x)N1
(x)N3

x3

1

(x)N2

1 1x 2 2x 3 3xu(x) N (x)d N (x)d N (x)d  

This is a quadratic finite element in 
1D and it has three nodes and three 
associated shape functions per element. 
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Writing shape functions for higher DOFs: 
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STRAIN and STRESS WITHIN EACH ELEMENT 

From equation (1), the displacement within each element 

The strain in the bar

Hence

(2)

The matrix B is known as the “strain-displacement matrix”

( x ) = N d

dx

d
ε




d N
ε d B d

dx

 
  
 

d N
B

dx
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For a linear finite element 

Hence

For a linear bar element, strain is a constant within the element.

 
2 1 2 1 2 1

-1 1 1
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x1 x2

El #1

Displacement is linear

Strain is constant

The stress in the bar

Inside the element, 
the approximate 
stress is

The stiffness matrix

2xd

1xd x

0 1(x ) a a x  

2 x 1 x

2 1

d -d
ε =

x x

d u
E ε = E

d x
 

E B d 

     
T

V

k B E B d V 
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O
1

2P

x1

x2 = x1 + L

L

Mapped on the following Natural Coordinate

Natural Coordinates

-1
P

2

1
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2 Node Linear Element

1
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1 2
3

1 2
3

1 2
3

3 Node Quadratic Element
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Beam Theory – Terminology

A general beam is a bar-like member designed to 
resist a combination of loading actions such as 
biaxial bending, transverse shears, axial stretching 
or compression, and possibly torsion. 

If the beam is subject primarily to bending and axial 
forces, it is called a beam-column. 

A beam is straight if its longitudinal axis is straight. It 
is prismatic if its cross section is constant.

A spatial beam supports transverse loads that can 
act on arbitrary directions along the cross section.

A plane beam resists primarily transverse loading on 
a preferred longitudinal plane.
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Mathematical Models

One-dimensional mathematical models of structural 
beams are constructed on the basis of beam 
theories. 

The simplest and best known models for straight, 
prismatic beams are based on the: 

 Bernoulli-Euler theory (also called classical beam theory or 
engineering beam theory)

 Timoshenko beam theory
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Beam Theory – Kinematics
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Beam Theory – Terminology
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Bernoulli-Euler Model
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Mathematical Model

Total Potential Energy of Beam Members
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Bernoulli-Euler Beam Theory
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Iso-P Shape Function
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Iso-P Shape Function
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Element Equations
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Element Stiffness
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Loading
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General 3D Frame Element
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Example 1 – Analyse the plane truss
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Example 1
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Example 2 – Analyze the Plane Frame
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Example 2 – Element and node numbering
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Example 2 – Boundary Condition & Solve
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