CE 6504 *Finite Elements Method in Structures* (Part 1) AAiT March 2020 *Bedilu Habte*

1. Introductio	n
2. Preliminari	ies
3. 1D (2-Node) Line Elements
Bar, Truss,	Beam-elements, Shape functions
4. 2D Element	ts
Plane Stres	ss and Plane Strain Problems
5. 3D Element	ts
Tetrahedra	l, Hexahedral Elements
6. Plate Bendi	ing & Shells
7. Further Iss	ues
Modeling,	Errors, Non-linearity

References Finite Element Analysis (Text) By: S.S. BHAVIKATTI Concepts and Applications of Finite Element Analysis By: Robert D. Cook, David S. Malkus and Michael E. Plesha Finite Element Procedures in Engineering Analysis By: K.-J. Bathe The Finite Element Method O.C. Zienkiewicz An Introduction to the Finite Element Method By: J. N. Reddy

Internet References:
FEM Primer Part 1 - 4
Mike Barton & S. D. Rajan
Arizona State University
http://enpub.fulton.asu.edu/structures/FEMPrimer-Part1.ppt
Introduction to Finite Element Methods
Department of Aerospace Engineering Sciences
University of Colorado at Boulder
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html
Advanced Finite Element Methods
Department of Aerospace Engineering Sciences
University of Colorado at Boulder
http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/Home.html
AAiT – Civil Engineering – Bedilu Habte 4

I Introduction

What is FEM?

Finite element method is a numerical method that generates approximate solutions to engineering problems which are usually expressed in terms of differential equations.

Used for stress analysis, heat transfer, fluid flow, electromagnetic etc.

AAiT – Civil Engineering – Bedilu Habte

What is FEM?

- Use of several materials within the same structure,
- complicated or discontinuous geometry,
- complicated loading, etc,

→ makes the closed form (analytical) solution of structural problems very difficult.

One resorts to a numerical solution, the best of which is the FEM.

AAiT – Civil Engineering – Bedilu Habte

What is FEM? Structure is partitioned into FINITE ELEMENTS – that are joined to each other at limited number of NODES

Behavior of an individual element can be described with a simple set of equations

Bedilu Habte

AAiT – Civil Engineering –

AAIT - Civil Engineering

Assembling the element equations, to a large set, is supposed to describe the behavior of the whole structure.

Discretization Example Find the circumference of a circle with a unit diameter – find the value of π . Approximation with that of regular polygons:

Bedilu Habte

Estimated vs. e	xact value of $\pi = 3.14$	415926536
No. of sides	Inscribed polygon	Error
3	2.5980762114	0.5435164422
4	2.8284271247	0.3131655288
8	3.0614674589	0.0801251947
16	3.1214451523	0.0201475013
32	3.1365484905	0.0050441630
64	3.1403311570	0.0012614966
128	3.1412772509	0.0003154027
1000	3.1415874859	0.0000051677
10000	3.1415926019	0.000000517
100000	3.1415926531	0.000000005
1000000	3.1415926536	0.000000000

Brief History			
A formal mathematical theory for the FEM			
started some 60 years ago			
The steps in FEA are very similar to the			
method of the <i>direct stiffness method</i> in matrix			
structural analysis			
 The term <i>finite element</i> was first used by Clough ir 1960. 	1		
 The first book on the FEM by Zienkiewicz and Cheung was published in 1967. 			
 In the late 1960s and early 1970s, the FEM was applied to a wide variety of engineering problems. 			
AAiT – Civil Engineering – Bedilu Habte	11		

Brief History		
The Pioneers – 1950 to 1962; Clough, Turner, Argyris, etc.; thought structural elements as a device to transmit forces ("force transducer").		
 The Golden Age – 1962–1972; Zienkiewicz, Cheung, Martin, Carey etc.; thought discrete elements approximate continuum models (displacement formulation). 		
AIT - Civil Engineering - Bedilu Habte 12		

Brief History

AAiT – Civil Engineering

- The 1970s → advances in mathematical treatments, including the development of new elements, and
- convergence studies.
 Most commercial FEM software packages originated in the 1970s and 1980s.
- The FEM is one of the most important developments in computational methods to occur in the 20th century.

14

Bedilu Habte

Proprietary Software	
ANSYS	
□ MSC/NASTRAN	
□ ABAQUS	
ADINA	
ALGOR	
NISA	
COSMOS/M	
STARDYNE	
IMAGES-3D	

Common FEA Procedure for Structures

0. Idealization

The given structure needs to be idealized based on engineering judgment. Identify the governing equation.

1. Discretization

The continuum system is disassembled into a number of small and manageable parts (finite elements).

18

AAiT – Civil Engineering – Bedilu Habte

Common FEA Procedure for Structures 2-4. Derivation of Element Equations Derive the relationship between the unknown and given parameters at the nodes of the element. $\{f\}^e = [k]^e \{u\}^e$

5a. Assembly

AAIT – Civil Engineering –

Assembling the global stiffness matrix from the element stiffness matrices based on compatibility of displacements and equilibrium of forces. For example:

19

Bedilu Habte

Common FEA Procedure for Structures <u>5b. Introduce Boundary Conditions</u> After applying prescribed nodal displacements (and known external forces) to the master stiffness equation, the resulting equation becomes the modified master stiffness equation: $[K]{U} = {F}$

Bedilu Habte

AAiT – Civil Engineering

22

Common Sources of Error in FEA

• Domain Approximation

AAiT - Civil Engineering -

- Element Interpolation/Approximation
- Numerical Integration Errors
- (Including Spatial and Time Integration)

Bedilu Habte

26

• Computer Errors (Round-Off, Etc.,)

Numerical Methods

- Several approaches can be used to transform the physical formulation of the problem to its finite element discrete analogue.
- Ritz/ Galerkin methods the physical formulation of the problem is known as a differential equation.

AAiT - Civil Engineering -

 Variational formulation – the physical problem can be formulated as minimization of a functional.

Bedilu Habte

28

• A mathematical model is a set of mathematical statements which attempts to describe a given physical system.

Bedilu Habte

29

30

AAiT – Civil Engineering –

AAiT – Civil Engineering –

Variational Method cont.

- Strong Form (SF): A system of ordinary or partial differential equations in space and/or time, complemented by appropriate boundary conditions.
- Weak Form (WF): A weighted integral equation that "relaxes" the strong form into a domain-averaging statement.
- Variational Form (VF): A functional whose stationary conditions generate the weak and strong forms.

Bedilu Habte

Elasticity cont. • Stress Equilibrium Equations $\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + X_b = 0$ $\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + Y_b = 0$ $\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + Z_b = 0$ Att-civil Engineering - Bell Hable

Ela	sticity cont.	
Strain – Displace	cement	
$\mathbf{\epsilon}_{\mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$	
$\mathbf{\epsilon}_{\mathbf{y}} = \frac{\partial \mathbf{v}}{\partial \mathbf{y}}$	$\gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}$	
$\mathbf{\epsilon}_{z} = \frac{\partial \mathbf{w}}{\partial z}$	$\gamma_{yz} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}$	
(u,v,w) ar	e the x, y and z	
components	s of displacement	
AAiT – Civil Engineering –	Bedilu Habte	34

<section-header><list-item><list-item>

Quantity	Meaning
x	Longitudinal bar axis*
(.)'	d(.)/dx
u(x)	Axial displacement
q(x)	Distributed axial force, given per unit of bar length
L	Total bar length
E	Elastic modulus
A	Cross section area; may vary with x
EA	Axial rigidity
e = du/dx = u'	Infinitesimal axial strain
$\sigma = Ee = Eu'$	Axial stress
$p = A\sigma = EAe = EAu'$	Internal axial force
P	Prescribed end load

Kinematically admissible Displacement Functions those that satisfy the single-valued nature of displacements (compatibility) and the

Usually Polynomials

AAiT – Civil Engineering –

boundary conditions

Continuous within element.

Inter-element compatibility. Prevent overlap or gaps.

Allow for rigid body displacement and constant strain.

Bedilu Habte

42

Total Potential Energy (TPE) $\pi_{p} = U - W$ $dU = \sigma_{x} (\Delta x) (\Delta y) (\Delta z) d\varepsilon_{x}$ Strain $dU = \sigma_{x} d\varepsilon_{x} dV$ Energy
(Internal
work) $U = \iiint_{V} \left\{ \int_{0}^{\varepsilon_{x}} \sigma_{x} d\varepsilon_{x} \right\} dV$ $U = \frac{1}{2} \iiint_{V} \sigma_{x} \varepsilon_{x} dV$ EXAMPLE - Civil Engineering - Bediu Habte 43

• TPE of this system $\Pi = \frac{4}{3}a_3^2 + 2a_3^2$	Method becomes: a ₃
Minimizing the TPE	$\frac{\partial \Pi}{\partial a_3} = \frac{8}{3}a_3 + 2 = 0$ $\Rightarrow a_3 = -\frac{3}{4}$
 Thus, an approximation u(x) = 	ate u is given by: $0.75(2x - x^2)$
Rayleigh-Ritz methor functions over entire	od assumes trial e structure
AAiT – Civil Engineering – Bedilu	Habte 50

Galerkin-Method The function \oint is zero at (x = 0) and (x = 2)and EA(du/dx) is the force in the rod, which equals 2 at (x = 1). Thus: $-\frac{2}{0}EA\frac{du}{dx}\frac{d\phi}{dx}dx+2\phi_1=0$ • Using the same polynomial function for u and \oint and if u_1 and \oint_1 are the values at (x = 1): $u = (2x - x^2)u_1 \qquad \phi = (2x - x^2)\phi_1$ • Setting these and E = A = 1 in the integral: $\phi_1 \left[-u_1 \int_0^2 (2 - 2x)^2 dx + 2 \right] = 0$

Select a Displacement Function	
Assume a linear function. $\hat{\mathbf{u}}$ $\hat{u} = a_1 + a_2 \hat{x}$ No. of coefficients = No. of DOF	
• Written in matrix form: $\hat{u} = \begin{bmatrix} 1 & \hat{x} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$	
Expressed as function of $\hat{\mathbf{d}}_{1x}$ and $\hat{\mathbf{d}}_{2x}$	
$\hat{u}(0) = \hat{d}_{1x} = a_1 + a_2(0) \Rightarrow \hat{d}_{1x} = a_1$	
$\hat{u}(L) = \hat{d}_{2x} = a_1 + a_2(L) \Longrightarrow \hat{d}_{2x} = \hat{d}_{1x} + a_2L$	
AAiT – Civil Engineering – Bedilu Habte	58

Potential Energy Approach

$$\pi_{p} = U - W$$

$$dU = \sigma_{x} d\varepsilon_{x} dV$$

$$U = \frac{1}{2} \iiint_{V} \sigma_{x} \varepsilon_{x} dV$$

$$W = -\iiint_{V} \hat{X}_{b} \hat{u} dV - \iiint_{S} \hat{T}_{x} u dS - \sum_{i=1}^{M} \hat{f}_{ix} \hat{d}_{ix}$$
MAXE - Civil Engineering - Bedilu Habte 63

Potential Energy Approach

$$\pi_{p} = \frac{1}{2} \int_{0}^{L} A \sigma_{x} \varepsilon_{x} d\hat{x} - \hat{f}_{1x} \hat{d}_{1x} - \hat{f}_{2x} \hat{d}_{2x} - \iint_{S} \hat{u} \hat{T}_{x} dS - \iiint_{V} \hat{u} \hat{X}_{b} dv$$

$$\hat{u} = [N] \{\hat{d}\}$$

$$[N] = \begin{bmatrix} 1 - \frac{\hat{x}}{L} & \frac{\hat{x}}{L} \end{bmatrix} \quad \{\varepsilon_{x}\} = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \{\hat{d}\}$$

$$\{\hat{d}\} = \begin{bmatrix} \hat{d}_{1x} \\ \hat{d}_{2x} \end{bmatrix} \quad [B] = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix}$$

 $\begin{aligned} & \text{Potential Energy Approach} \\ \pi_p &= \frac{A}{2} \int_0^L \{\sigma_x\}^T \{\varepsilon_x\} d\hat{x} - \left\{\hat{d}\right\}^T \{P\} - \iint_S \{\hat{u}\}^T \{\hat{T}_x\} dS - \iiint_V \{\hat{u}\}^T \{\hat{X}_b\} dv \\ & \pi_p &= \frac{A}{2} \int_0^L \{\hat{d}\}^T [B]^T [D]^T [B] \{\hat{d}\} d\hat{x} \\ & - \left\{\hat{d}\right\}^T \{P\} - \iint_S \{\hat{d}\}^T [N]^T \{\hat{T}_x\} dS - \iiint_V \{\hat{d}\}^T [N]^T \{\hat{X}_b\} dv \\ & \pi_p &= \frac{AL}{2} \left\{\hat{d}\}^T [B]^T [D]^T [B] \{\hat{d}\} - \left\{\hat{d}\}^T \{\hat{f}\} \\ & \left\{\hat{f}\} = \{P\} + \iiint_S [N]^T \{\hat{T}_x\} dS + \iiint_V [N]^T \{\hat{X}_b\} dv \end{aligned}$

Potential Energy Approach

$$\{U^*\} = \{\hat{d}\}^T [B]^T [D]^T [B] \{\hat{d}\}$$

$$\{U^*\} = \begin{bmatrix} \hat{d}_{1x} & \hat{d}_{2x} \end{bmatrix} \begin{bmatrix} -\frac{1}{L} \\ \frac{1}{L} \end{bmatrix} [E] \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \{\hat{d}_{1x} \\ \hat{d}_{2x} \}$$

$$U^* = \frac{E}{L^2} (\hat{d}_{1x}^2 - 2\hat{d}_{1x}\hat{d}_{2x} + \hat{d}_{2x}^2)$$

$$\{\hat{d}\}^T \{\hat{f}\} = \hat{d}_{1x}\hat{f}_{1x} + \hat{d}_{2x}\hat{f}_{2x}$$
MAT - Civil Engineering - Bediu Habe 67

Potential Energy Approach

$$\frac{\partial \pi_p}{\partial \hat{d}_{1x}} = \frac{AL}{2} \left[\frac{E}{L^2} \left(2\hat{d}_{1x} - 2\hat{d}_{2x} \right) \right] - \hat{f}_{1x} = 0$$

$$\frac{\partial \pi_p}{\partial \hat{d}_{2x}} = \frac{AL}{2} \left[\frac{E}{L^2} \left(2\hat{d}_{2x} - 2\hat{d}_{1x} \right) \right] - \hat{f}_{2x} = 0$$

$$\Rightarrow \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \left\{ \hat{d}_{1x} \\ \hat{d}_{2x} \right\} = \left\{ \hat{f}_{1x} \\ \hat{f}_{2x} \right\}$$

$$\begin{bmatrix} k \end{bmatrix} = \int_{V} \begin{bmatrix} B \end{bmatrix}^T \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B \end{bmatrix} dV$$

$$\begin{bmatrix} D \end{bmatrix}^T = \begin{bmatrix} D \end{bmatrix}$$

Element stiffne	ss equat	tion in lo	cal coordinate:
$\begin{cases} \hat{f}_{1x} \\ \hat{f}_{1y} \\ \hat{f}_{2x} \\ \hat{f}_{2y} \end{cases} = \frac{AE}{L} \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$	$\begin{array}{ccc} 0 & -1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}$	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array} \begin{bmatrix} d_{1x}\\ d_{1y}\\ d_{1y}\\ d_{2x}\\ d_{2y} \end{bmatrix} $	$[T]{f} = [\hat{k}][T]{d}$
			${f} = [T]^{-1} [\hat{k}] [T] {d}$
			$\begin{bmatrix} T \end{bmatrix}^{-1} = \begin{bmatrix} T \end{bmatrix}^T$
Element	stiffness	s matrix	${f} = [T]^T [\hat{k}] [T] {d}$
in the glo	bal coo	rdinate:	$[k] = [T]^T \left[\hat{k}\right][T]$
AAiT - Civil Engineering	Ro	dilu Habto	70

$$\begin{aligned} \hat{u} \bigg|_{\hat{x} = \frac{-L}{2}} &= d_1 & d_1 = a_1 - \frac{a_2 L}{2} + \frac{a_3 L^2}{4} \\ \hat{u} \bigg|_{\hat{x} = 0} &= d_2 \implies d_2 = a_1 \\ \hat{u} \bigg|_{\hat{x} = \frac{L}{2}} &= d_3 & d_3 = a_1 + \frac{a_2 L}{2} + \frac{a_3 L^2}{4} \\ \hat{u} &= d_2 + \frac{d_3 - d_1}{L} \hat{x} + 2 \left(d_3 - 2d_2 + d_1 \right) \frac{\hat{x}^2}{L^2} \\ &= \left[-\frac{\hat{x}}{L} + \frac{2\hat{x}^2}{L^2} - 1 - \frac{4\hat{x}^2}{L^2} - \frac{\hat{x}}{L} + \frac{2\hat{x}^2}{L^2} \right] \begin{cases} d_1 \\ d_2 \\ d_3 \end{cases} \\ &= \left[N_1 - N_2 - N_3 \right] \begin{cases} d_1 \\ d_2 \\ d_3 \end{cases} \end{aligned}$$

AAIT - Civil Engineering - Bedilu Habte 72

STRAIN and STRESS WITHIN EACH ELEMENT	
From equation (1), the displacement within each element	
$\Phi(\mathbf{x}) = \underline{\mathbf{N}} \underline{\mathbf{d}}$	
The strain in the bar $\varepsilon = \frac{d\Phi}{dx}$	
Hence	
$\varepsilon = \left[\frac{d\underline{N}}{dx}\right]\underline{d} = \underline{B} \underline{d} $ (2)	
The matrix \underline{B} is known as the "strain-displacement matrix"	
$\underline{\mathbf{B}} = \left[\frac{\mathrm{d}\underline{\mathbf{N}}}{\mathrm{d}\mathbf{x}} \right]$	
AAIT – Civil Engineering – Bedilu Habte	79

For a linear finite element	
$\underline{\mathbf{N}} = \begin{bmatrix} \mathbf{N}_{1}(\mathbf{x}) & \mathbf{N}_{2}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{x}_{2} \cdot \mathbf{x}}{\mathbf{x}_{2} - \mathbf{x}_{1}} & \frac{\mathbf{x} \cdot \mathbf{x}_{1}}{\mathbf{x}_{2} - \mathbf{x}_{1}} \end{bmatrix}$	
Hence	
$\mathbf{B} = \begin{bmatrix} -1 & 1 \\ x_2 - x_1 & x_2 - x_1 \end{bmatrix} = \frac{1}{x_2 - x_1} \begin{bmatrix} -1 & 1 \end{bmatrix}$	
$\varepsilon = \underline{\mathbf{B}} \underline{\mathbf{d}} = \begin{bmatrix} -1 & 1 \\ \overline{\mathbf{x}_2 - \mathbf{x}_1} & \overline{\mathbf{x}_2 - \mathbf{x}_1} \end{bmatrix} \begin{bmatrix} \mathbf{d}_{1x} \\ \mathbf{d}_{2x} \end{bmatrix}$	
$= \frac{d_{2x} - d_{1x}}{x_{2} - x_{1}}$	
For a linear bar element, strain is a constant within the element.	
AAiT – Civil Engineering – Bedilu Habte 80	

85

Bedilu Habte

AAiT - Civil Engineering -

Mathematical Model
Total Potential Energy of Beam Members
$\Pi = U - W$
$U = \frac{1}{2} \int_{V} \sigma_{xx} e_{xx} dV = \frac{1}{2} \int_{0}^{L} M\kappa dx = \frac{1}{2} \int_{0}^{L} EI\left(\frac{\partial^{2} v}{\partial x^{2}}\right)^{2} dx$
$= \frac{1}{2} \int_0^L E I \kappa^2 dx$
$W = \int_0^L q v dx$
AAiT - Civil Engineering - Bedilu Habte 90

$$v^{(e)} = \begin{bmatrix} N_{v_i}^{(e)} & N_{\theta_i}^{(e)} & N_{v_j}^{(e)} & N_{\theta_j}^{(e)} \end{bmatrix} \begin{bmatrix} v_i^{(e)} \\ \theta_i^{(e)} \\ v_j^{(e)} \\ \theta_j^{(e)} \end{bmatrix} = \mathbf{N} \mathbf{u}^{(e)}$$
$$\xi = \frac{2x}{\ell} - 1$$
$$N_{v_i}^{(e)} = \frac{1}{4}(1 - \xi)^2(2 + \xi), \qquad N_{\theta_i}^{(e)} = \frac{1}{8}\ell(1 - \xi)^2(1 + \xi),$$
$$N_{v_j}^{(e)} = \frac{1}{4}(1 + \xi)^2(2 - \xi), \qquad N_{\theta_j}^{(e)} = -\frac{1}{8}\ell(1 + \xi)^2(1 - \xi).$$

Element Equations

$$\mathbf{B} = \frac{1}{\ell} \begin{bmatrix} 6\frac{\xi}{\ell} & 3\xi - 1 & -6\frac{\xi}{\ell} & 3\xi + 1 \end{bmatrix}$$

$$\Pi^{(e)} = \frac{1}{2} \mathbf{u}^{(e)T} \mathbf{K}^{(e)} \mathbf{u}^{(e)} - \mathbf{u}^{(e)T} \mathbf{f}^{(e)}$$

$$\mathbf{K}^{(e)} = \int_{0}^{\ell} EI \ \mathbf{B}^{T} \mathbf{B} \ dx = \int_{-1}^{1} EI \ \mathbf{B}^{T} \mathbf{B} \ \frac{1}{2}\ell \ d\xi$$

$$\mathbf{f}^{(e)} = \int_{0}^{\ell} \mathbf{N}^{T} q \ dx = \int_{-1}^{1} \mathbf{N}^{T} q \ \frac{1}{2}\ell \ d\xi$$
Att - Civil Engineering - Bediu Habte 94

$$\begin{aligned} \mathbf{Element Stiffness} \\ \mathbf{K}^{(e)} &= \frac{EI}{2\ell^3} \int_{-1}^{1} \begin{bmatrix} 36\xi^2 & 6\xi(3\xi-1)\ell & -36\xi^2 & 6\xi(3\xi+1)\ell \\ (3\xi-1)^2\ell^2 & -6\xi(3\xi-1)\ell & (9\xi^2-1)\ell^2 \\ (3\xi-1)^2\ell^2 & -6\xi(3\xi-1)\ell & (9\xi^2-1)\ell^2 \\ 36\xi^2 & -6\xi(3\xi+1)\ell \\ (3\xi+1)^2\ell^2 \end{bmatrix} d\xi \\ &= \frac{EI}{\ell^3} \begin{bmatrix} 12 & 6\ell & -12 & 6\ell \\ 4\ell^2 & -6\ell & 2\ell^2 \\ 12 & -6\ell \\ symm & 4\ell^2 \end{bmatrix} \end{aligned}$$

Loading

$$\mathbf{f}^{(e)} = \frac{1}{2}q \ell \int_{-1}^{1} \mathbf{N} d\xi$$

$$= \frac{1}{2}q \ell \int_{-1}^{1} \begin{bmatrix} \frac{1}{4}(1-\xi)^{2}(2+\xi) \\ \frac{1}{8}\ell(1-\xi)^{2}(1+\xi) \\ \frac{1}{4}(1+\xi)^{2}(2-\xi) \\ -\frac{1}{8}\ell(1+\xi)^{2}(1-\xi) \end{bmatrix} d\xi$$
Alt - Chil Engineering - Retill Here of

