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Q is proportional to Dh

Q

A

Q is proportional to cross

sectional area, Axs

Q is inversely 

proportional

to sample length, lQ

l

Dh

Q
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Darcy’s Law

◼ Combine and insert a constant of proportionality

Q = –KAxc [Dh/l] 

◼ Axc = sample cross-sectional area [m2]

◼Perpendicular to flow direction

◼ K = hydraulic conductivity [m/s]

◼ Dh/l = hydraulic gradient [-]

◼l measured along the flow direction

◼ Sometimes written as Q/Axc = q = –K[Dh/l] 

◼Where q = specific discharge a.k.a. “Darcy 
velocity”

◼ Hydraulic gradient often written as a differential, 
dh/dl
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▪Q = –KAxc[dh/dl]

▪Re-run experiments with 

different geologic materials

▪e.g., grain size 

▪General relationship still 

holds – but –

▪Need a new constant of 

proportionality (K)

▪K is a property of the 

porous material

▪Re-run experiments with a 

different fluid

▪e.g. petroleum, 

trichloroethylene, ethanol 

▪General relationship still 

holds – but –

▪Need a new constant of 

proportionality (K) 

▪K is a property of the 

fluid

Effect of Geologic Material and Fluid Property
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Intrinsic Permeability - Ki

◼ Separate the effects of the 
fluid and the porous medium 

◼ K = (porous medium 
property) x (fluid property) 

◼ Porous medium property:

◼ ki = intrinsic permeability

◼Essentially a function of 
pore opening size 

◼Think of it as a 'friction' 
term

◼ K = ki x fluid driving 
force/fluid resisting force

◼ Fluid driving force = specific 
weight

◼ Fluid resisting force = 
dynamic viscosity

◼K = Ki [rg/m]

◼ 𝑄 = −𝐾𝐴𝑥𝑐
𝑑ℎ

𝑑𝑙
→ 𝐾 =

𝑄𝑑𝑙

𝐴𝑥𝑐𝑑ℎ

Where:

◼ dh/dl is dimensionless

◼ Q  [m3 s–1]

◼ Axc [m2]

◼ Therefore, 

◼ 𝐾 ≡
𝑚3

𝑠

1

𝑚2

𝑚

𝑚
≡

𝑚

𝑠
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Intrinsic Permeability - Units
◼ Write as: Q = –Ki(rg/m)Axc[dh/dl]

◼ Solve for 𝑘𝑖 =
𝑄μ

𝐴𝑥𝑐ρ𝑔

𝑑𝑙

𝑑ℎ

◼ Where: Q = [m3/s]; Axc =[m2]; r = [kg/m3]; g = [m/s2]; m = 
[kg/m/s]

◼ Therefore, 𝑘𝑖 =
𝑚3

𝑠

𝑘𝑔

𝑚 𝑠

1

𝑚2

𝑚3

𝑘𝑔

𝑠2

𝑚

𝑚

𝑚
= 𝑚2

◼ Magnitude of Intrinsic Permeability

◼ (rg/m) is a large number: For water at 15 oC, 

◼rg/m = 999.1 x 9.81/0.0011 = 8,910,155 [1/(m-s)]

◼ If K = 1 m/s then, ki = K/(rg/m)  = 1.12x10-7 m2

◼ Therefore we usually use a smaller unit –

◼1 Darcy = 9.87x10-9 cm2

◼ This course: typically use hydraulic conductivity (K)

◼ Contaminant transport, petroleum geology: ki is important
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Effect of Temperature

◼ Density and viscosity (r and m) for water are a function of 
temperature 

◼ K is therefore a function of temperature, but 

◼ Ki is NOT a function of temperature 

◼More fundamental unit controlling flow

◼ Lab standards are run at 60 oF (15.6 oC)

◼For most of the remainder of the course, we will assume 
that temperature is 15.6 oC

◼ So, how does K vary as a function of temperature??
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K = Ki(rg/m)
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Effect of T on K

K = Ki(rg/m)
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Ki in Rocks

◼ Primary openings 

◼Formed as the rock forms - e.g. the initial porosity of the 
pre-cementation sediments

◼Ki in sedimentary rocks is the Ki of the sediments from 
which they form

◼Crystalline rocks (igneous, metamorphic): Low primary 
permeability (possible exception: some igneous rocks 
with interconnected pores)

◼ Secondary openings (after the rock formed)

◼Fractures

◼Dissolution

◼ Along fractures, bedding planes

◼ Important for chemically precipitated rocks -
limestone, dolostone, gypsum, halite

◼Weathering 
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Estimating K

Note the ENORMOUS

variability in Hydraulic 

Conductivity!!!

ki

(1) past experience

0.86 m/d
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Estimating K, ki

(2) Empirical Relations to Grain Size

◼ Where K is hydraulic 

conductivity in cm/sec

◼ d10 is the effective grain size 

◼10%of the soil by weight 

is finer in grain size, 90% 

is coarser

◼ C is an empirical coefficient

Soil Type C

Very fine sand, poorly sorted 40-80

Fine sand with appreciable fines 40-80

Medium sand, well sorted 80-120

Coarse sand, poorly sorted 80-120

Coarse sand, well sorted, clean 120-150

K is proportional to the square of grain size

Hazen's Formula

K = C (d10)
2
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▪𝑘𝑖 = 𝐶0(𝐷50)
2𝑒−𝑐𝜎Φ

▪Where ki = intrinsic permeability (in Darcie); C0 = an 

empirical constant ~760 Darcy/mm; c = an empirical constant 

~ 1.31; D50 = median diameter of sediment (in mm); σφ = 

standard deviation of grain size in φ units



▪Kozeney (1927):

▪𝐾𝑖 = 𝐶𝑛3/𝑆∗2

▪Where Ki  = intrinsic permeability (in darcies); 

▪C = an empirical constant ~0.5, 0.562, & 0.597 for 

circular, square, and equilateral triangular pore openings; 

▪n = porosity; 

▪S* = specific surface - interstitial surface areas of pores 

per unit bulk volume of the medium.

▪Kozeny-Carmen Bear (1972)

▪𝐾 =
𝜌𝑤𝑔

𝜇
∗

𝑛3

(1−𝑛)2
𝑑𝑚
2

180

▪Where K = hydraulic conductivity; ρw = fluid density; μ

= fluid viscosity; g = gravitational constant; dm = any 

representative grain size; n = porosity
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Estimating K, ki

(2) Empirical Relations to Grain Size



Measuring K 
(3) Constant Head Permeameter 

◼ Basically, redo Darcy's experiments:

Darcy's Law

Q = KAxc[- Dh/L]

Rearrange, solve for K

K = –[QL][AxcDh]-1

L

Continuous Supply

Overflow

Volume/time

= Q

 Dh

Cross-Sectional Area, A
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Constant Head Permeameter Test Protocols

◼ Keep Dh at reasonable field conditions   

◼(< 1/2 L)

◼ Be certain that no air is trapped in the sample 

◼Air bubbles will act as impermeable lenses

◼Fill slowly from the bottom to force air upwards

◼De-gas water

◼ Design test, so all parameters can be measured accurately

◼ Design test, so it can be conducted in a reasonable amount of 

time

◼ Good for relatively coarse grained material with relatively 

high hydraulic conductivity
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Constant Head Permeameter Test Design

◼ 𝐾 = −
𝑄𝐿

𝐴∆ℎ
= −

ൗ𝑉𝑜𝑙
𝑇𝑖𝑚𝑒×𝐿

𝐴×∆ℎ
→ 𝑇𝑖𝑚𝑒 = −

𝐿×𝑉𝑜𝑙

𝐾×𝐴×∆ℎ

◼Trial Design: L = 10 cm long; Axs = 5 cm2 ; Head 
difference (Dh) = – 5 cm; K = 10-1 cm/sec(~ coarse 
sand);Volume collected = 100 ml;

◼Time = 10x100/(0.10x5x5) = 400 s
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Measuring K 
(3) Falling Head Permeameter

Stand pipe with

cross-sectional Area of a

Head falls from h0 at t0 to 

h1 to t1

Sample with cross-sectional Area Axs

L

h0
h1

Datum: z = 0; P = 0
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Falling Head Permeameter Analysis

◼ Apply to fine grained soils

◼Constant head permeameter test inaccurate, lengthy

◼ Mass balance – standpipe

◼𝑄 =
𝑑𝑉

𝑑𝑡
= 𝑎

𝑑ℎ

𝑑𝑡

◼ Darcy’s Law – sample

◼𝑄 = −𝐾𝐴𝑥𝑠
ℎ

𝐿

◼ Set Q equal

◼𝑎
𝑑ℎ

𝑑𝑡
= −𝐾𝐴𝑥𝑠

ℎ

𝐿

Set datum at outlet

Therefore, houtlet = 0 and

Dh = houtlet – h = –h

At t = to

Dh = houtlet – ho = –ho

At t = t1

Dh = houtlet – h1 = –h1
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Falling Head Permeameter Analysis

◼ Combine mass balance and Darcy’s Law

◼𝑎
𝑑ℎ

𝑑𝑡
= −𝐾𝐴𝑥𝑠

ℎ

𝐿

◼ Separate variables and integrate

ℎ𝑜׬−◼
ℎ1 𝑑ℎ

ℎ
=

𝐾𝐴𝑥𝑠

𝑎𝐿
𝑡𝑜׬
𝑡1 𝑑𝑡

◼ln
ℎ𝑜

ℎ1
=

𝐾𝐴𝑥𝑠(𝑡1−𝑡𝑜)

𝑎𝐿

◼𝐾 =
𝑎𝐿

𝐴𝑥𝑠(𝑡1−𝑡𝑜)
ln

ℎ𝑜

ℎ1
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Falling Head Permeameter Test Design

◼ Solve for time = 𝑡1 − 𝑡𝑜 =
𝑎𝐿

𝐾𝐴𝑥𝑠
ln

ℎ𝑜

ℎ1

◼ Trial Design:

◼L = 10 cm 

◼Axs = 10 cm2 

◼Stand pipe a = 0.5 cm2 

◼ho = 20 cm; h1 = 19 cm

◼K = 10-3 cm/sec (~ fine sand with silt)

◼ Time =𝑡1 − 𝑡𝑜 =
0.5×10

0.001×10
ln

20

19
= 25.6 s
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Example of the use of Darcy's Law

▪How much water is flowing from the pool into the river per second 

over a 50 m stretch?

▪Dh = –5 m (head decreases in the direction of flow)

▪l = 100 m; Dh/l = –0.05

▪Axc = b x w = 2 m x 50 m = 100 m2

▪K = 10–4 cm/sec

▪Q = –10–4 cm/sec x 100 m2 x 1002 cm2/m2 x (–0.05) = 5 cm3/s

Q = –KAxs( Dh/L)

w =50 m

h = 25 m

L = 100 m

Pool
h = 20 m

River

b = 2 m

K = 10–4 cm/sec

PERPENDICULAR to the 

direction of flow!
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Other Ways to Express Flow

Flow per Unit Width

◼ What is the flow through the aquifer per unit width (per 

cm)?

◼Q = –KAxs(Dh/l) Axs = b x w

◼Q = –K(b x w)x(Dh/l) divide both sides by w

◼Q/w = –Kb(Dh/l)

◼ Q/w = –10–4 cm/sec x 2 m x 100 cm/m x (–.05)=

= 0.001 [cm3 s–1 cm–1] 
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Other Ways to Express Flow

Flow per Unit Width per Unit Gradient

◼ What is the flow through the aquifer per unit width (per cm) 

per unit hydraulic gradient? 

◼This is a measure often used to compare aquifers.

◼Q = –K(b x w)(Dh/l) divide both sides by w

◼Q/w = –Kb(Dh/l) divide both sides by (Dh/l)

◼(Q/w)/(Dh/l) = –Kb

◼ (Q/w )/(Dh/l) = –10–4 cm/sec x 2 m x 100 cm/m =

= 0.02 [cm2 s–1]
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Transmissivity (T)

◼ The rate at which water is transmitted through a unit width 
of aquifer under a unit hydraulic gradient

◼ Our last calculation (flux per unit width per unit hydraulic 
gradient) 

◼ A common unit in hydrogeology 

◼Q = –KAxs(Dh/l) Axs = b x w

◼Q = –K(b x w)(Dh/l) divide both sides by w

◼Q/w = –K(b )(Dh/l) divide both sides by –Dh/l

◼Q/w/(–Dh/l) = Kb 

T = Kb ▪K is the hydraulic conductivity

▪b is the aquifer thickness
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Transmissivity (T)

◼ For confined aquifers, b is the aquifer thickness (may 
vary in space)  

◼ For unconfined aquifers, b is not well defined, since it can 
also change with position and through time. Use b as the 
saturated thickness

◼ Alternate way of expressing Darcy's Law 

◼Q = –KAxs(Dh/l)

◼Q = –K(b x w)(Dh/l)

◼Q = –Tw(Dh/l)

◼ w is the aquifer width (horizontal dimension 
perpendicular to flow)

◼ Units: (volume/time)/length, Eg. gallons/day/foot or

◼ Units: length2/time [m2/s]
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Gradients in Hydraulic Head

◼ We measure gradients in 
head using piezometers

◼ We can map these as shown

◼ We often observe changes 
in head gradient

◼ What aquifer properties can 
cause changes in these 
gradients?

190

180

150

100

High Gradient

Low Gradient

Flow

Hydraulic gradient = Dh/l
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Head Gradient

◼ Head profile for homogeneous material

◼ Slope is constant

Flow

DhT
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Effect of K on Change in Head Gradient

◼ Length, L, from A to B and B to C is same

◼ Width, w, ⊥ to the page is constant

◼ Thickness, b, at A, B & C is the same

◼ Q1 = Q2 by continuity (mass balance)

◼ Let K2 = 2K1

◼ How does head vary? (What is the profile?)

Flow

A B C
aquifer 1

low K

aquifer 2

high K

Q1 Q2
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Head Profile (Effect of K)

◼ By continuity, Q1= Q2

◼ Write Darcy’s Law

–K1A1 (Dh/l)1 = –K2A2 (Dh/l)2

◼ Cancel like terms, A, l

◼ Substitute K2 = 2K1

K1 Dh1 = K2 Dh2 = 2K1 Dh2

◼ Cancel K1; therefore, 

Dh1 = 2 Dh2

◼ Determine Dh1 and Dh2 

DhT = Dh1 + Dh2 = 2 Dh2 + Dh2 = 3 Dh2  

Dh2 = DhT /3

Dh1 = 2 DhT /3

Flow

A B C

aquifer 1

low K

aquifer 2

high K

Q1 Q2
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Change in K can cause Change in Head Gradient

Head loss is greater 

in low K unit

Flow

A B C
aquifer 1

low K

aquifer 2

high K

DhT /3

2 DhT /3
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Effect of b on Change in Head Gradient

◼ Length, L, from A to B and B to C is same

◼ Width, w, ⊥ to the page is constant

◼ Hydraulic conductivity, K, is the same

◼ Q1 = Q2 by continuity (mass balance)

◼ Let b2 = 2b1; therefore A2 = 2A1

◼ How does head vary? (What is the profile?)

Flow

A

B C

aquifer 1

Small b

aquifer 2

Large b
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◼ By continuity, Q1= Q2

◼ Write Darcy’s Law

–K1A1 (Dh/l)1 = –K2A2 (Dh/l)2

◼ Cancel like terms, substitute A2 = 2A1

A1 Dh1 = A2 Dh2 = 2A1 Dh2

◼ Therefore, 

Dh1 = 2 Dh2

◼ Determine dh1 and dh2 

DhT = Dh1 + Dh2 = 2 Dh2 + Dh2 = 3 Dh2  

Dh2 = DhT /3

Dh1 = 2 DhT /3

Flow

A

B C

aquifer 1

Small b

aquifer 2

Large b

Head Profile (Effect of b)
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Changes in b can cause Changes in Head Gradient

Head loss is greater 

for smaller thickness

ΔhT /3

2ΔhT /3

Flow

aquifer 1

Small b

aquifer 2

Large b
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Head Distribution Reflects Transmissivity, T, 

not hydraulic conductivity K

◼ Groundwater computer models 
calculate the distribution of 
hydraulic head, try to match 
measured and calculated head 

◼ Note that the head distribution 
reflects T, not K

◼ You can’t determine K and b
separately from head distribution 
(or hydraulic gradient) 
measurements. Must know one 
to calculate the other
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How Fast is Groundwater Moving?

◼ Consider Darcy’s experiment with a vertical 

sample

◼Qt = –KAxs (ht/L)  Divide through by Axs:

◼Qt/Axs= –K (ht/L) = q [m/s]

◼q = Specific Discharge (Darcy velocity)

◼Q/Axs= Axs(ho – h1)/(t1 – t0)/ Axs

◼q = Q/Axs= (ho – h1)/(t1 – t0)

t0

t1

Qt

Axs

ho

h1
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Specific Discharge – Darcy Velocity

◼ Darcy Velocity is the velocity of water in the standpipe 

above the sample, not in the sample

◼ Specific discharge is an apparent velocity

◼Does not occur in porous media

◼ Also called an approach velocity 

◼ It is the velocity of the water, IF the aquifer had been an 

open conduit

◼“Empty bed” velocity
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How Fast is Groundwater Moving?

◼ How is groundwater velocity in the porous medium 

related to specific discharge?

◼ Consider a pipe carrying water under pressure

◼ If a pipe became half clogged, but the flow through 

the pipe was kept constant, the velocity would 

double.

Q = v1Axs

v1 = Q/Axs

Q = v2(Axs /2)

v2 = 2Q/Axs
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Effect of Porosity on Velocity

◼ Similarly, if the pipe was filled with sand having a porosity of 

50%, only half the area is available for flow

◼If the flow through the pipe was kept constant, the velocity 

would double

◼ The area available for flow is therefore neAxs

◼ Groundwater  velocity v = Q/Aflow = Q/neAxs = q/ne

Q = v1Axs

v1 = Q/Axs

Q = v2(Axs /2)

v2 = 2Q/Axs

Average linear velocity

Seepage velocity  

v = Q/neAxs

v = –K/ne(dh/L)
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Average Linear Velocity Vs Microscopic Scale 

◼ Pores have different sizes – velocity will differ in different size 
pores

◼ Water flowing near the pore walls will be slowed by viscosity, 
flow near the center of the pore throat will move fastest 

◼ Flow paths are of different lengths, and some must split and 
branch around grains

◼ Actual v will vary about the mean
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Average linear velocity

v = q/ne = –K (dh/L)/ne



Flow Across Layers – Effective K

Flow

A B Caquifer 1 aquifer 2

dh1

dh2

l1 l2
l

dh1 + dh2 = dhT
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◼ Continuity: Q1= Q2

◼ Head: dh1  + dh2 = dhT

◼ Flow path: l1  + l2 = l

◼ Darcy’s Law – solve for Keff

21

21

ll

dhdh
AK

l

dh
AKQ eff

T
eff

+

+
==

)(

)(

21

21

dhdhA

llQ
Keff

+

+
=

1

1
1

AK

Ql
dh =

1

1
1

l

dh
AKQ =









+

=









+

+
=

2

2

1

1

2

2

1

1

21 )(

K

l

K

l

l

K

l

K

l

ll
Keff

• Darcy’s Law – solve for dh1 and dh2

• Substitute

Flow

A B Caquifer 1 aquifer 2

dh1

dh2

l1 l2
l

Flow
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Flow Along Layers – Effective K

Aquifer 1

Aquifer 2

b1

b2

dhT

B

Head loss in each layer

is the same

l
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◼ Continuity: Q1+ Q2 = QT

◼ Head: dh1  = dh2 = dhT

◼ Flow area: b1w + b2w = A

◼ Darcy’s Law – solve for Keff

L

dh
wbbKQ T

effT )( 21 +=

l

h
wbKQ TD

= 111

T

T
eff

wdhbb

LQ
K

)( 21 +
=

1 1 1 1 1 1 2 2

1 2
( )

eff

K b K b K b K b
K

b b B

+ +
= =

+

• Darcy’s Law – solve for Q1

• Substitute Q1+ Q2 = QT

aquifer 1

aquifer 2

b1

b2

dhT

B

Head loss in each layer

is the same

L
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Vertical vs Horizontal K

◼ Vertical flow – across layers

◼ Horizontal flow – along layers

◼ Example

◼K1 = 1 and K2 = 100 m/d

◼b1 = 2 and b2 = 2 m

◼ Find Keff for horizontal and vertical flow

◼ For vertical K (Flow across layers)

◼𝐾𝑒𝑓𝑓 =
(𝑏1+𝑏2)
𝑏1
𝐾1
+
𝑏2
𝐾2

=
4

2

1
+

2

100

= 1.98 [m/d]

◼ For horizontal K (Flow along Layers)

◼𝐾𝑒𝑓𝑓 =
𝐾1𝑏1+𝐾1𝑏1

(𝑏1+𝑏2)
=

1×2+100×2

4
= 50.5 [m/d]

b1

b2

B
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Vertical vs Horizontal K

◼ Vertical effective conductivity is dominated by the 

layer having the lowest K

◼ Horizontal effective conductivity is dominated by 

the high K layer

◼ Horizontal effective K is much larger than the 

vertical effective K

b1

b2

b3

B
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◼ Two conceptual views of groundwater:

◼Aquifer system view point

◼Flow system view point

◼ The aquifer view point:

◼Is based on the concept of confined and unconfined aquifers. 

◼Is especially suited to analysis of flow to pumping wells 

◼Is the basis for many analytical solutions including those of 

Theim, Theis and Jacob. 

◼The groundwater flow assumed to be strictly horizontal through 

aquifers and strictly vertical through confining beds.

◼Is used to simulate two dimensional horizontal flow.

◼ In the flow system view point equipotential lines pass through all 
geologic units, both aquifers and confining beds.

2. Governing equation
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SAND

SAND

CLAY

BED ROCK

Layer 1

Layer 3

Layer 2

BED ROCK

Unconfined Aqui.

Confined Aqui.

Confining Bed

BED ROCK

Equipotential lines

The geologic system

The aquifer 

System view point

The flow system 

view point

Modified from Anderson and Woessner, 1992
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◼ The governing equation for water flow in saturated 

medium can be obtained by combining a special form of 

Darcy’s law (derived from the water phase momentum 

balance) and the continuity equation written for the water 

phase. 

◼ The derivation is traditionally done by referring to a cube 

of porous material (Figure 1) that is large enough to be 

representative of the properties of the porous medium and 

yet small enough so that the change of head within the 

volume is relatively small (Anderson and Woessner, 

1992).
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Groundwater Flow Equation

◼ Figure 1 Representative elementary volume used in the 

derivation

◼ The cube in Figure 1 is called the representative elementary 

volume (REV). Its volume is equal to ΔxΔyΔz. The flow of 

water through the REV is expressed in terms of the discharge 

rate (q), whose magnitude in the three coordinates will be qx, 

qy, and qz.  

y 

r 
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◼ The water balance equation (conservation 

of mass) states that:

◼Mass Out – Mass In = Change of the 

Mass in storage

◼ Consider flow along the y-axis of the REV. 

Influx to REV occurs through the face DxDz

and is equal to (qy)in. Flux out is (qy)out. 

( )
zyx

y

inyouty qq
DDD

D

− ,,

zyx

y

y

q
DDD





 The volumetric flow rate along y-axis is:

 This can also be written as:

 Dropping the ‘in’ and ‘out’ subscripts, the change in flow 

rate through the REV along the y-axis is:

( )
zxinyouty qq DD− ,,
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◼ Similar expression can be written for the change in flow rate 

along the x- and z- axes. The total change in flow rate is 

equal to the rate of change in storage:

◼ The existence of sink (e.g. a pumping well) or source of 

water (e.g. injection well or some other source of recharge) 

within the REV is undeniable. The volumetric inflow rate 

of such sources is represented by R*DxDyDz. Here the R* is 

defined to be intrinsically positive when it is a source of 

water; therefore it is added to the right hand side of Eq. 1. 

Therefore Eq. 1 becomes:

storageinChangeofRate
z

q

y

q

x

q
zyx

zyx =DDD











+




+




1

storageinChangeofRateR
z

q

y

q

x

q
zyx

zyx =DDD







−




+




+



 *

2
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◼ The change in storage is represented by specific storage 

(SS). It is defined as the volume of water released from 

storage per unit change in head (h) per unit volume of 

aquifer (Anderson and Woessner, 1992) i.e.

◼ The sign convention is that the DV is intrinsically positive 

when the Dh is negative, in other words, water is released 

from the REV when head decreases. 

◼ The rate of change in storage in REV will be:

◼ Combining Eq. 2 and Eq. 3:

zyx

S
h

V
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DDDD

D
−=

zyxS
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h
S

t

V
DDD
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D
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t

h
S

z
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y
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x

q
S

zyx +



−=




+
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
+




4
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◼ Darcy law is used to set the relationship between q and h. 

Darcy law in three dimension is written as (Anderson and 

Woessner, 1992):

◼ Substituting these expressions in Eq. A.4 the desired 

groundwater flow equation is formulated:

◼ Where Kx, Ky, and Kz are components of the hydraulic 

conductivity.

x

h
Kq xx




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y

h
Kq yy




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z
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Kq zz
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
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t
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S
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Szyx −




=
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

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






+
















+
















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◼ In the above derivation it is assumed that Kx, 

Ky, and Kz are collinear to the x, y- and z- axes. 

◼ If the geology is such that it is not possible to 

align the principal direction of the hydraulic 

conductivity tensor with the rectilinear 

coordinate system, a modified form of equation 

that utilizes the hydraulic conductivity tensor is 

required. 

◼ By using a global coordinate system for the 

entire problem domain and a local coordinate 

system for each REV in the grid, the off 

diagonal terms in the hydraulic conductivity 

tensor could have zero value (Anderson and 

Woessner, 1992).
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◼ The x-z coordinate system 
is aligned with the principal 
directions of the hydraulic 
conductivity tensor.

kz

kx

x

z

 A global coordinate system (x-z) 
is defined. Local coordinates (x'-
z') are aligned with the principal 
directions of the local hydraulic 
conductivity tensor.
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3. Initial and boundary conditions
◼ For a well posed boundary value problem: (i) A solution 

must exist, (ii) The solution must be unique and (iii) The 

solution must be stable, in the sense that sufficiently small 

variations in the given data should lead to arbitrary small 

changes in the solution

◼ Initial and boundary conditions are needed for a unique 

solution of the groundwater flow equations (second-order 

partial differential equations) for a specific flow domain of 

interest

◼ Initial conditions: specification of the distribution of the 
state variable (hydraulic head for the groundwater flow 
equation) at some initial time, usually at t = 0. 

◼ For example

◼ in which f(x,y,z) is a known function, D is the flow domain.
( ) ( ), , ,0 , , in Dh h x y z f x y z= =
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◼ Boundary conditions: specification of the interaction 
between the flow domain and its surrounding 
environment, which is a mathematical representation of 
the physical reality

◼ Known water fluxes

◼ Known values of state variables, such as hydraulic 
head, that the external domain imposes on the flow 
regime 

◼ Different initial and boundary conditions result in 
different solutions

◼ Three mathematical boundary conditions:

1. Dirichlet

2. Neumann

3. Cauchy
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◼ Three mathematical boundary conditions

◼Dirichlet condition (boundary condition of the first 
kind): the fluid pressure (or hydraulic head) is specified 
as a known function of space and time. 

◼ This occurs whenever the porous medium flow 
domain is in contact with a body of open water (AB, 
EG surfaces)

( ) ( )

( ) ( )

,t , on B

, , on B

p f t

h t g t

=

=

x x

x x

◼ Special case : Equipotential boundary

f and g are two known functions
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◼ Neumann condition (boundary condition of the second 
kind): the pressure gradient (or hydraulic gradient), or a 
linear combination of their components, is specified as a 
known function of space and time on the boundary.

◼ This occurs when constant flux (discharge) is seen 
across a certain portion of the boundary (BE). 

◼ Thus an impervious boundary (Boundary along AG) is 
Neumann boundary with flux equal to zero.

m(x, t) is a known function( ) Bontxmqr ,=

105



◼ Cauchy, Mixed boundary condition, boundary condition 
of the third kind) : the condition which specifies the 
information on the relationship between the state 
variable and its derivatives

◼ This occurs when the porous medium domain is in 
contact with a body of water continuum (or another 
porous medium domain) through a relatively thin semi 
pervious layer separating the two domains (e.g., FG in 
the bottom figure)
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Analytical Method Example:

◼ The ends A and B of a soil column, 200 cm long, have head 

at 0 cm and 40 cm until steady state prevails. If the head of 

the ends are changed to 0 cm. Find the head distribution in 

the soil column at any time t. Take Ss as 10-3 and K as 10-5 

cm/s.
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The general solution would be
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4. Dupuit assumption

◼ The boundary of an unconfined aquifer (z) is indeed the 

solution (h) that needs to be determined. 

◼ Dupuit assumptions: First developed by Dupuit (1863) and 

then advanced by Forchheimer (1930), or called Dupuit-

Forchheimer theory

◼From observations, the slope of phreatic surface (water 

table) is very small (commonly 1/1000)

◼Two assumptions 

◼ The hydraulic gradient is equal to the slope of the 

free surface and is invariant with depth

◼ The equipotential lines are vertical, i.e., the flow 

lines are horizontal, i.e., p
g

z
r


= −


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sin

tan

s

dh
q K

ds

dz
K

ds

K

K

dh
K

dx





= −

= −

= −

 −

= −

a. The real flow field with non-

vertical equipotential lines 

near the water table

b. The flow field obtained by the 

Dupuit assumption, i.e., 

vertical equipotential lines

For small , sin  can be replaced by tan , then

tans x

dh
q q K K

dx
 = − = − (for h = h(x))
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(A) For horizontal bottom and 3-D steady-state, free surface flows

( ) ( ), , ,h x y z h x y→ because the assumption of vertical equipotential lines

(or horizontal flows)
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
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



= −

QQ
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x y

 
 = +

 
i j

( ) ( )Note that for 1-D flows, ,  and  is replaced by 
d

h x y h x
dx

 
→  

 

2
yx

QQ L

W W W T

     
= = = =     

      

Q
Note that discharge per unit width

(W is the width of the unconfined aquifer)
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Example : two-dimensional steady-state flow without 

accretion 

(After Bear and Verruijt, 1987)

( )

( )
0

2 2

0

0

2 2

0

con

2

2

stant

L

x

x

L

L

x

h

L

x

h

dh
Q Kh

dx

Q dx Khdh

h h
Q dx K h

K h h
Q

dh K

L

= − =

 = −

−
 = −

−

=

 =

 

(Dupuit equation)

(Qx = flow per unit width)

(1)
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Example : three-dimensional steady-state flow with accretion 

(impervious, horizontal bottom)

Mass in – mass out = D M = 0 (steady state) 

dx

dy

h

w

xq dy x dxq dy+

q = discharge 

per unit width
yq dx

y dyq dx+

w [L/T] : rate of water into or out 

of the unconfined aquifer per unit 

area of the unconfined aquifer i.e., 

w > 0 for infiltration, w < 0 for 

evaporation 

(Adapted from Fetter, 1994)

Under Dupuit assumptions : h(x, y, z) → h(x, y) 
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Furthermore, for one-dimensional 

flows, Eq(2) reduces to 

(After Fetter, 1994)

BC’s :
( )
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0h x h

h x L h

= =

= =
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From Eq. (3)
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◼ Hence, the water table surface is a hyperbola with 

maximum elevation occurs at

◼ The location of maximum h occurs to the left of the 

midpoint if h2 < h1, or to the right if h2 > h1. 

( ) ( ) ( )
2

2 2 2 2 2 22
2 1 1 2 2 1

max max 2
+ ,

2 2 2 4 4

K h h h h K h hL wL
x h

wL K wL

− + −
= = + +
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h1
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L/2

xmax

w
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h2

L/2

xmax

w
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From Eq(3) and if w = 0 then

( )
( )

( )

2 2 2 2
1 22 22 1

1 1

2 2

3/ 22

, , 0

2

0
4

h h x h h
h x h ax b T a b h

L L

dh a

dx ax b

d h a

dx ax b

− −
= − = + = = = 

=
+



= − 
+

Hence, the water table surface is a parabola with a positive 

slope when h2 > h1, or a negative slope when h2 < h1

impervious

h1
h2

L/2

impervious

h1

h2L/2
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◼ Transient 2-D unconfined flows

For incompressible fluids and homogeneous and isotropic aquifers 

Mass in – mass out = D M  

dx

dy

h

xq dy x dxq dy+

(impervious, horizontal bottom)

q = discharge 

per unit widthyq dx

y dyq dx+

Under Dupuit assumptions: h(x,y,z) →

h(x,y) 
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◼ Boussinesq equation is a non-linear PDE, which can not be solved 

analytically except under some idealized conditions

◼ Approximations: Drawdown in the aquifer is small, i.e., h  b 

(averaged thickness assumed to be constant over the aquifer)

From (4): 

2 2

2 2

y

y

Sh h h h h
h h b b

x x y y x

S

x y y K

h h h

x y Kb t

t

         



    
+  + =      

      

 
 + =

      

  



(5) 

(Note that (5) is similar to the 2-D flow in a confined aquifer, 

except that S, Storativity of a confined aquifer, is used instead of 

Sy)
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◼ Conditions when Dupuit assumption does not work

◼ Vertical flow is not negligible (Vertical impervious boundary; 
Crest of water table (or water divide); Seepage face

◼ Rule of thumb (Bear and Verruijt, 1987): Dupuit assumption is 
valid at distances from the downstream end larger than twice the 
average height of the flow domain. However, discharge calculated 
from Dupuit assumption is a satisfactory estimation for most cases

Examples of seepage face
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◼ Examples where Dupuit 

assumption is not valid
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Example : (Problem 2.14, Bear and Verruijt, 1987)

(a) Determine Q if K = 18 m/d

(b) Repeat (a) if K = 30 m/d from x = 0 to 

x = 800 m, and K = 10 m/d for the 

remaining 400 m.

Solution :
x

z = -10 m

40 m
30 m

water table

Q

(a) Because the flow field is steady-state, Q is a constant. Hence

2 2 2
218 40 30

5.25 /
2 2 1200

dh K dh
Q Kh m d

dx dx

−
= − = − = − =

(b) The hydraulic head at x = 800 must be continuous. Furthermore, Q is a constant because 

the flow field is steady-state. Hence

2 2 2 2

1 2

2

30 40 10 30

2 800 2 400

36.33

5.25 /

dh dh h h
Q Kh Kh

dx dx

h m

Q m d

− −   
= − = − = − = −   

   

 =

 =
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▪ Graphically, the equation can be represented by two sets of 

curves known as ‘Equipotential line’ and ‘flow lines’, that 

intersect at right angles. The combined representation of two 

sets of lines is called a flow net. With the help of a flow net, the 

groundwater flow problems can be analyzed. 

5. Flow net

◼ The 2D steady state Groundwater flow equation in isotropic and 

homogeneous porous medium  can be expressed by Laplace’s 

Equation:
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
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h

x

h

126



◼ Equipotential line: A line on which values of hydraulic head 
are the same.

◼Potential of groundwater ϕ = h = mechanical energy 
(pressure energy + elevation energy) per unit mass of 
groundwater. Equipotential lines are always perpendicular 
to the direction of h, no matter the isotropy of the medium

◼ Flow line (Fetter, 1994): An imaginary line that traces the path 
that a particle of groundwater would follow as it flows through 
an aquifer.

◼Flow lines will cross equipotential lines at right angles in an 
isotropic aquifer

◼Flow lines will cross the equipotential lines at an angle 
dictated by the degree of anisotropy and the orientation of 
h to the hydraulic conductivity tensor ellipsoid

◼Flow lines are parallel to h in isotropic media but not in 
anisotropic media
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KmH
Q

n
=

Q : flow per unit width [L2/T]

K : homogeneous/isotropic hydraulic conductivity [L/T]

m : # of stream tubes (flow tubes, i.e., area between two adjacent 

flow lines)

n : # of divisions of head in the flow net
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◼ Darcy’s equation: v = ki; where k is hydraulic conductivity (m/s) 

and i (= Δh/Δl) is hydraulic gradient. The seepage flow q, through 

a cross sectional area A is computed as; q = vA = kiA.

◼ In the flow net case: for a single net A = bX1 = b; q = kbΔh/Δl, 

but Δh = H/Nd where Nd is the number of equipotential drops; and 

H is the head difference between the initial and end section along 

the groundwater flow direction.

◼ The total discharge per unit width Q = Nf(q) = NfkbH/(NdΔl); 

however if the flow net is drawn so that b≈Δl, Q = kHNf/Nd

◼Where Nf is the number of flow tubes.

Flow

Equipotential 
Δl b

129



Boundary conditions Vs flow lines

◼ Boundary conditions vs flow lines and equipotential lines

◼ No-flow boundary (Neumann): Adjacent flow lines are parallel 
to this boundary, and equipotential lines are perpendicular to this 
boundary

◼ Constant-head boundary (Dirichlet): This boundary represents 
an equipotential line and adjacent equipotential lines are parallel 
to this boundary. Flow lines will intersect the constant-head 
boundary at right angles

◼ Water-table boundary: the water table, in general, is neither a 
flow line nor an equipotential line. It is a line where head is 
known. If Dupuit assumption is valid, equipotential lines are 
vertical and flow lines are horizontal. If there is recharge or 
discharge across the water table, flow lines will be at an oblique 
angle to the water table.
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Three BC’s vs flow lines and equipotential lines

(After Freeze and Cherry, 1979)
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Flow nets for anisotropic media

◼ For isotropic soil the flow net is orthogonal; however the flow 

net in case of anisotropic soil is not orthogonal. Thus the two 

dimensional seepage flow equation is not a Laplace equation. 

◼ As the permeability is different in the two directions. For 

example in horizontally stratified aquifers, the horizontal 

permeability is usually greater than the vertical. Thus the 

seepage flow equation in an isotropic soils will be:
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• However this equation can be modified to work as 

Laplace equation as:
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◼ For example if kx = 4ky; xt = x/2; The section of the 

medium is transformed by halving the horizontal 

dimension. Draw the flow net for the transformed section 

then transfer the flow net back to the original section.
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Steps:

1. Transform the coordinates according 

to a specific scaling

2. Construct a flow net for the 

transformed, isotropic medium

3. Invert the scaling ratio

The total discharge per unit 

width:

Q = NfkbH/(NdΔl); 

Where k = (kxky)
1/2
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6. Approaches to groundwater flow analysis in fractured aquifers

◼ A fractured medium consists of solid rock with some primary 

porosity cut by a system of cracks, microcracks, joints, 

fracture zones, and shear zones that create secondary porosity
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◼ Fractured systems are typically modeled using one or more of 

the following conceptual models: 

1. Equivalent porous medium (EPM): This model Replaces 

the primary and secondary hydrogeologic parameters with 

a continuous porous medium having so-called equivalent or 

effective hydraulic properties. EPM assumes that the 

fractured material can be treated as a continuum.

2. Discrete fractures (DF): Flow through a single fracture 

may be idealized as occurring between two parallel plates 

with a uniform separation equal to the fracture aperture 

(2b). Typically applied to fractured media with low 

primary permeability such as crystalline rocks.

3. Dual porosity (DP): If the rock matrix containing the 

fracture network has significant primary permeability, a DP 

model may be used. 
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Equivalent porous Medium (EPM)

◼ The difficulty in applying the EPM approach arises in 

determining the appropriate size of the REV needed to define 

equivalent hydraulic properties.

◼ When fractures are few and far between and the unfractured 

block hydraulic conductivity is low, the EPM method may 

not be appropriate even with a large REV.

◼ EPM approach may adequately represent the behavior of a 

regional flow system, but poorly reproduces local conditions.
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Discrete Fracture (DF) approach

◼ The flow rate (Qf): Qf = 2bwKf (dh/dl), where w is the width, Kf

(= ρg(2b)2/(12μ)) the hydraulic conductivity of the fracture, h is 

hydraulic head, and 1 is the length over which the hydraulic 

gradient is measured, ρ is fluid density, μ is viscosity, and g is 

gravity. Note that Qf is proportional to the (2b)3. 

◼ Use of a cubic model (above equation) requires a description of 

the fracture network, including fracture apertures and geometry. 

These data are extremely difficult to collect or estimate.
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◼ Further complications in using a DF model arise when 

fracture widths are less than 10 μm and when portions of the 

fracture surfaces touch or are rough. Under these conditions 

the cubic law for flow through a fracture may not be valid. 

◼ Furthermore, increases in stress with depth and with 

decreases in pore pressure (e.g., from dewatering) cause a 

decrease in fracture aperture. Hence, the relative orientation 

of the fractures and the stress field in relation to the 

groundwater flow field must also be considered.

◼ Models based on the DF approach are computationally 

intensive. To date, applications have been mainly to research 

problems.
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Dual Porosity (DP)

◼ In this conceptual model, flow through the fractures is 

accompanied by exchange of water and solute to and from 

the surrounding porous rock matrix. 

◼ Obviously, the fracture network as well as the properties of 

the porous blocks must be described prior to modeling. 
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