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*  Darcy’s Law

*
*
*
Q *
* Q is proportional to Ah
¥*
Ah *
R

*  sectional area, A

Ah=h,—h,

Datum (z = 0)
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Q is inversely
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Darcy’s Law

« Combine and insert a constant of proportionality
Q =—KA,.[4n/l]

« A, - sample cross-sectional area [m?]
sPerpendicular to flow direction

« K = hydraulic conductivity [m/s]

« Ah/l = hydraulic gradient [-]
=l measured along the flow direction

» Sometimes written as Q/A, . = q = —K[Ah/I]

s\Where g = specific discharge a.k.a. “Darcy
velocity”

« Hydraulic gradient often written as a differential,
dh/dl

49




Effect of Geologic Material and Fluid Property

=Q =-KA, [dh/dl] =Re-run experiments with a
=Re-run experiments with different fluid
different geologic materials =e.g. petroleum,

e.g., grain size trichloroethylene, ethanol
=General relationship still =General relationship still
holds — but — holds — but —
=Need a new constant of =Need a new constant of
proportionality (K) proportionality (K)

=K is a property of the =K is a property of the

porous material fluid

50




Intrinsic Permeability - K

- Separate the effects of the . Fluid resisting force =
fluid and the porous medium  dynamic viscosity

» K= (porous medium oK =K [pg/y]
property) x gflmd property) 0 = _KAxc@ L g = _odl
= Porous medium property: dl Axcdh

= k; = intrinsic permeability Where:_ | |
sEssentially a function of = dh/dl is dimensionless

pore opening size » Q=[m?s]
«Think of it as a ‘friction' = A .=[m?]
term = Therefore,
« K=k;x fluid driving _[m3[1][m] _ [m
force/fluid resisting force " K= [ s ] [m2] [E] - [?]

- Fluid driving force = specific
weight

o1




Intrinsic Permeability - Units

« Write as: Q = —K,(pg/wA, [dh/dl]

di
. Solve for k; = —2
Axcpg dh

« Where: Q = [m3/s]; A . =[m?]; p = [kg/m3]; g = [m/s?]; u =
[kg/m/s]

- Therefore, k; —[ ” ”mz” ”m] [m]

- Magnitude of Intrinsic Permeablllty
=« (pg/u) is a large number: For water at 15 °C,
=pg/n =999.1 x 9.81/0.0011 = 8,910,155 [1/(m-s)]
« If K=1m/s then, ki = K/(pg/n) = 1.12x10"" m?
- Therefore we usually use a smaller unit —
=1 Darcy = 9.87x10° cm?
= This course: typically use hydraulic conductivity (K)
» Contaminant transport, petroleum geology: k; is important
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Effect of Temperature

= Density and viscosity (p and p) for water are a function of
temperature

= K Is therefore a function of temperature, but
« Ki 1S NOT a function of temperature

sMore fundamental unit controlling flow
- Lab standards are run at 60 °F (15.6 °C)

sFor most of the remainder of the course, we will assume
that temperature is 15.6 °C

= S0, how does K vary as a function of temperature??
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Effect of T on K
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K; In Rocks

= Primary openings

sFormed as the rock forms - e.g. the initial porosity of the
pre-cementation sediments

=K; In sedimentary rocks is the K; of the sediments from
which they form

=Crystalline rocks (igneous, metamorphic): Low primary
permeability (possible exception: some igneous rocks
with interconnected pores)

= Secondary openings (after the rock formed)
sFractures
sDissolution
= Along fractures, bedding planes

= Important for chemically precipitated rocks -
limestone, dolostone, gypsum, halite

=\Weathering
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Table 2.2 Range of Values of Hydraulic Conductivity

Estimating K iy
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Estimating K, k;

(2) Empirical Relations to Grain Size

= Where K is hydraulic
conductivity in cm/sec

= dy, IS the effective grain size
=10%o0f the soil by weight
IS finer in grain size, 90%
IS coarser
= C 1s an empirical coefficient

ki = Co(Dsp)?e o

Hazen's Formula

K'=C (dyp)’

K is proportional to the square of grain size

Soil Type C
Very fine sand, poorly sorted 40-80
Fine sand with appreciable fines 40-80
Medium sand, well sorted 80-120
Coarse sand, poorly sorted 80-120
Coarse sand, well sorted, clean 120-150

*Where k; = intrinsic permeability (in Darcie); C, = an
empirical constant ~760 Darcy/mm; ¢ = an empirical constant
~ 1.31; Dy, = median diameter of sediment (in mm); o, =
standard deviation of grain size in ¢ units

58




Estimating K, k;

(2) Empirical Relations to Grain Size

=Kozeney (1927):
.Ki = CTlB/S*Z
*Where K; = intrinsic permeability (in darcies);
=C = an empirical constant ~0.5, 0.562, & 0.597 for
circular, square, and equilateral triangular pore openings;
"N = porosity;
=S = specific surface - interstitial surface areas of pores
per unit bulk volume of the medium.

»Kozeny-Carmen Bear (1972)

3 2
n — Pwd " n (dm)
U (1-n)?% \180

*Where K = hydraulic conductivity; p,, = fluid density; p
= fluid viscosity; g = gravitational constant; d , = any
representative grain size; n = porosity
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Measuring K

(3) Constant Head Permeameter

= Basically, redo Darcy's experiments:
<« Continuous Supply

l

Overflow

Volume/time 1 Darcy’s Law
=Q L || |Q=KA[AhL]

Rearrange, solve for K
= —[QLI[A,AN]*

B
R

Cross-Sectional Area, A

60




Constant Head Permeameter Test Protocols

= Keep Ah at reasonable field conditions
a(<1/21)

- Be certain that no air is trapped in the sample
sAir bubbles will act as impermeable lenses

sFill slowly from the bottom to force air upwards

=De-gas water

= Design test, so all parameters can be measured accurately

= Design test, so it can be conducted in a reasonable amount of
time

= Good for relatively coarse grained material with relatively
high hydraulic conductivity
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Constant Head Permeameter Test Design

_oQL Vel eXL . Lxvol
- K= AAR axdh Fime = KX AXAh
«Trial Design: L=10cm long; A, =5cm?; Head
difference (Ah) =—5 cm; K = 101 cm/sec(~ coarse

sand);VVolume collected = 100 ml;
=TIme = 10x100/(0.10x5x5) =400 s

? Effect of Grain Size

1000

100 -

10

test (minutes)

1
@ 0.2 0.4 0.6 0.8 1

0.1 —

time for completion of constant head

0.01

grain size (mm)
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Measuring K

(3) Falling Head Permeameter

=

T e ]
oo P ]
T e ]
oo P ]
T e ]
oo P ]
T e ]
oo P ]
T e ]
oo P ]
e ]

| Head falls from h, at t, to
.......... hytot,

Datum:z=0;P=0

Stand pipe with
cross-sectional Area of a

]
]
]
]
]
]

B R L A BB R0
L A AN A A A A o AW A A AR A R A A A A L

e e e e
T T e e ]
B T sy

Sample with cross-sectional Area A,
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Falling Head Permeameter Analysis

- Apply to fine grained soils

sConstant head permeameter test inaccurate, lengthy

« Mass balance — standpipe

Q — d—V — ad—h
at at Therefore, h
« Darcy’s Law — sample

outlet —

Set datum at outlet

=0 and

el P =

h
"Q = —KAys Att=t,
« Set Q equal Ah =h e —
dh h Att=t
at L Ah=h

outlet —

h. =

0]

h, =

—h

0]

_h1
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Falling Head Permeameter Analysis

» Combine mass balance and Darcy’s Law

dh h
a— = —KA.,.—-
"ar XS,

=« Separate variables and integrate

_ KAxs
ho alL f

hO — KAxS(tl_tO)
hl alL

aln —

K= oty

alL h,
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Falling Head Permeameter Test Design

« Solve fortime=t; — t, = o P
KAyg h4
= Trial Design:
sL =10 cm
sA,, =10 cm?

«Stand pipe a = 0.5 cm?
sh, =20 cm; h; =19 cm
=K = 1073 cm/sec (~ fine sand with silt)

0.5%10 20
In— = 25.6 s
0.001X10 19

- Time=t; — t, =
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Example of the use of Darcy's Law
Q=-KA(AhL) -~
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h=20m

K =104 cm/sec

River

*How much water is flowing from the pool into the river per second
over a 50 m stretch?
*Ah = -5 m (head decreases in the direction of flow)

| =100 m; Ah/l =-0.05

*A.=bxw=2mx50m=100 o S PERPENDICULAR to the

direction of flow!

=K =104 cm/sec
=Q =-10"% cm/sec x 100 m? x 100% cm?/m? x (-0.05) = 5 cm3/s
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Other Ways to Express Flow

Flow per Unit Width

What is the flow through the aquifer per unit width (per
cm)?

1Q = —KA, (Ah/l) A.=bxw
1Q = —K(b x w)x(Ah/l) divide both sides by w
=Q/w = —Kb(Ah/l)

« Q/w =-10-*cm/sec x 2 m x 100 cm/m x (—.05)=
= 0.001 [cm3stcm]
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Other Ways to Express Flow
Flow per Unit Width per Unit Gradient

« What is the flow through the aquifer per unit width (per cm)
per unit hydraulic gradient?

= This Is a measure often used to compare aquifers.

sQ = —K(b xw)(Ah/l) divide both sides by w

=Q/w = —Kb(Ah/l) divide both sides by (Ah/I)
«(Q/w)/(Ah/l) = —Kb

« (Q/w)/(Ah/l) = =104 cm/sec x 2 m x 100 cm/m =
=0.02 [cm?s71]
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Transmissivity (T)

= The rate at which water is transmitted through a unit width
of aquifer under a unit hydraulic gradient

= Our last calculation (flux per unit width per unit hydraulic
gradient)

= A common unit in hydrogeology
1Q = —KA,(Ah/l) A.=bxw
1Q = —K(b x w)(Ah/l) divide both sides by w
sQ/w =—-K(b)(Ah/l)  divide both sides by —Ah/I
=Q/W/(=Ah/l) = Kb

Kb =K is the hydraulic conductivity
=D Is the aquifer thickness

.
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Transmissivity (T)

« For confined aquifers, b is the aquifer thickness (may
vary in space)

« For unconfined aquifers, b is not well defined, since it can
also change with position and through time. Use b as the
saturated thickness

« Alternate way of expressing Darcy's Law

1Q = KA (Ah/I)

=Q =-K(b x w)(Ah/l)

=Q = -Tw(Ah/I)

= W IS the aquifer width (horizontal dimension
perpendicular to flow)

« Units: (volume/time)/length, Eg. gallons/day/foot or
« Units: length?/time [m?/s]
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Gradients in Hydraulic Head

- We measure gradients In
head using piezometers

= We can map these as shown - / /)}U//

- We often observe changes High Gradient
In head gradient

- What aquifer properties can
cause changes in these 180

gradients? 0 Flow

100

Low Gradient

S

Hydraulic gradient = Ah/I
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Head Gradient

- Head profile for homogeneous material
= Slope Is constant
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Effect of K on Change in Head Gradient

« Length, L, from Ato B and B to C is same
- Width, w, L to the page Is constant

= Thickness, b, at A, B & C Is the same

« Q, = Q, by continuity (mass balance)

« Let K, = 2K,

- How does head vary? (What is the profile?)

aquifer 1 aquifer 2
A low K B high K C
Flow
—

Q Q
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Head Profile (Effect of K)

«» By continuity, Q,= Q,
» Write Darcy’s Law

—K,A; (Ah/l), = —K,A, (Ah/l),
« Cancel like terms, A, |
« Substitute K, = 2K,

K;Ah, = K, Ah, = 2K, Ah,
» Cancel K,; therefore,

Ah, = 2 Ah,
« Determine Ah; and Ah,
Ah:= Ah, + Ah,= 2 Ah, + Ah,= 3 Ah,
Ah,=Ah;/3
Ah; = 2 Ah; /3

aquifer 1 aq_uiferz
A lowK g highK C

Flow
Tt ey

Q Q,
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Change in K can cause Change in Head Gradient

Head loss is greater !
in_low K_unit :

aquifer 1 aquifer 2
A low K high K
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Effect of b on Change in Head Gradient

= Length, L, from A to B and B to C is same
= Width, w, L to the page Is constant

- Hydraulic conductivity, K, Is the same

» Q; = Q, by continuity (mass balance)

« Let b, = 2b,; therefore A, = 2A,

- How does head vary? (What is the profile?)

aquifer 2
B Largebh  C

aquifer 1
A Small b

Flow
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Head Profile (Effect of b)

. By continuity, Q,= Q,
« Write Darcy’s Law

—K,A; (Ah/l); = —K,A, (Ah/l),
« Cancel like terms, substitute A, = 2A,

A, Ah, = A, Ah, = 2A, Ah,
« Therefore,

Ah,= 2 Ah,
» Determine dh, and dh,
Ah:= Ah; + Ah,= 2 Ah, + Ah,= 3 Ah,
Ah,=Ah;/3
Ah, = 2 Ah;/3

aquifer 2
B Largeb C

aquifer 1
A Smallb

Eloy

[\
.
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Changes in b can cause Changes in Head Gradient

Head loss Is greater
for smaller thickness

aquifer 2
Large b

aquifer 1
Small b

Elow

M
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Head Distribution Reflects Transmissivity, T,

not hydraulic conductivity K

- Groundwater computer models
calculate the distribution of
hydraulic head, try to match
measured and calculated head o

= Note that the head distribution
reflects T, not K 0

= You can’t determine K and b o
separately from head distribution '
(or hydraulic gradient)
measurements. Must know one
to calculate the other
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How Fast is Groundwater Moving?

b

b

» Consider Darcy

sample
=Q = KA (
th/AXS: —K(

’s experiment with a vertical

n/L) Divide through by A,

nJ/L) =q [m/s]

=( = Specific Discharge (Darcy velocity)

sQIA = Ays(Ny — N/t — 1)/ As
aq = QA= (h, — h))/(t, - t,)

81




Specific Discharge — Darcy Velocity

« Darcy Velocity is the velocity of water in the standpipe
above the sample, not in the sample
= Specific discharge Is an apparent velocity

=Does not occur in porous media

« Also called an approach velocity
« It Is the velocity of the water, IF the aquifer had been an
open conduit

=“Empty bed” velocity
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How Fast Is Groundwater Moving?

« How Is groundwater velocity in the porous medium
related to specific discharge?

- Consider a pipe carrying water under pressure

« If a pipe became half clogged, but the flow through
the pipe was kept constant, the velocity would
double.

Q = VZ(AXS / 2)
v, = QIA V, = 2QIA,
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Effect of Porosity on Velocity

- Similarly, if the pipe was filled with sand having a porosity of
50%, only half the area is available for flow

=If the flow through the pipe was kept constant, the velocity

would double

«» The area available for flow is therefore n A,
« Groundwater velocity v = Q/Aq,, = Q/n A= g/n,

"\ Average linear velocity
Seepage velocity
v=Q/n A

Q= VA Q = V(A /2) V= —K/ne(dh/L)
Vi = Q/ Axs Vo = 2Q/ Axs

84




Average Linear Velocity Vs Microscopic Scale

Average linear velocity
v=g/n,=-K (dh/L)/n,

= Pores have different sizes — velocity will differ in different size
pores

- Water flowing near the pore walls will be slowed by viscosity,
flow near the center of the pore throat will move fastest

- Flow paths are of different lengths, and some must split and
branch around grains

= Actual v will vary about the mean
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Flow Across Layers — Effective K

A aquifer 1 aquifer 2

Elow

M
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« Continuity: Q;= Q, |
. Head: dh; +dh,= dh; e
» Flow path: I, +1,=1 i

» Darcy’s Law — solve for K

A aquifer 1 B aquifer2 C

Flow:

d dh +dh
Q:KeffA_hT:KeffA hl : l; l,
| |, +1, i
_Q(,+1,)
“ A(dh +dh,)
 Darcy’s Law — solve for dh, and dh, Q= KAdh1 dh, =
, AK,
(+1) _ |

e Substitute Ket = =
Il + |2 Il + |2
Kl K2 Kl KZ
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Flow Along Layers — Effective K

Head loss in each layer
Is the same

dh

g Aguifer 1
b, Aguifer 2
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Head Ioss in each layer

« Continuity: Q;+ Q,= Q7
« Head: dh; =dh, = dh-

« Flow area: byw +b,w= A
« Darcy’s Law — solve for K«

b, 1B aquifer 1
by aquifer 2

=

L
Qr =Ky B +BWSE Ky =
(b, +b,)wdh,
e Darcy’s Law — solve for Q, 1b1W hT
e Substitute Q;+ Q,= Q; K - Kb +Kb _ Kb +Kpb,

= (b +Db,) B
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Vertical vs Horizontal K

- Vertical flow — across layers

- Horizontal flow — along layers

. Example B
«K; =1and K, =100 m/d
« Find K for horizontal and vertical flow
- For vertical K (Flow across layers)
= ithe) = 1.98 [m/d
eff — [ ] [ — L [m/ ]
1 100

« For horizontal K (Flow along Layers)

K1b1+K1b1 _ 1X2+100X2 _
opy = Saitlaly  DEMOOE _ 505 [/
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Vertical vs Horizontal K

« Vertical effective conductivity is dominated by the
layer having the lowest K

« Horizontal effective conductivity is dominated by
the high K layer

- Horizontal effective K i1s much larger than the
vertical effective K
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2. Governing equation

= Two conceptual views of groundwater:
sAquifer system view point

sFlow system view point
= The aquifer view point:

als based on the concept of confined and unconfined aquifers.
als especially suited to analysis of flow to pumping wells

als the basis for many analytical solutions including those of
Theim, Theis and Jacob.

= The groundwater flow assumed to be strictly horizontal through
aquifers and strictly vertical through confining beds.

=ls used to simulate two dimensional horizontal flow.

= In the flow system view point equipotential lines pass through all
geologic units, both aquifers and confining beds.
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« The governing equation for water flow in saturated
medium can be obtained by combining a special form of
Darcy’s law (derived from the water phase momentum
balance) and the continuity equation written for the water
phase.

= The derivation is traditionally done by referring to a cube
of porous material (Figure 1) that is large enough to be
representative of the properties of the porous medium and
yet small enough so that the change of head within the
volume is relatively small (Anderson and Woessnher,
1992).
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Groundwater Flow Equation

- Figure 1 Representative elementary volume used in the
derivation

= The cube in Figure 1 is called the representative elementary
volume (REV). Its volume is equal to A,A/A,. The flow of
water through the REV is expressed in terms of the discharge
rate (g), whose magnitude in the three coordinates will be g,

g, and q,.
T< 4y >
X A
i 4,
(Qy)in B i >(Cly)out
- - - —>y
7z
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- T e Water tatance equation (conservation

of mass) states that: 2

=Mass Out — Mass In = Change of the i n
Mass in storage

ah—RNY N ﬂnm
= Consider flow along the y-axis of the REV. \' §§/
Influx to REV occurs through the face A A, /
and Is equal to (qy);,- Flux out s (qy) -

ﬂ‘___?r

The volumetric flow rate along y-axis is: (qy,out - qy,m)AxAz
This can also be written as:  (Ayou =), , »
X—y—z

y

Dropping the ‘in’and ‘out’ subscripts, the change in flow

rate through the REV along the y-axis is: Ay A A
oy
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« Similar expression can be written for the change in flow rate
along the x- and z- axes. The total change In flow rate Is
equal to the rate of change in storage:

(aqx _|_an 4+ aqz

A A A, =Rate of Changein storage 1
ox oy oz

=« The existence of sink (e.g. a pumping well) or source of
water (e.g. injection well or some other source of recharge)
within the REV is undeniable. The volumetric inflow rate
of such sources is represented by R"A,4,4,. Here the R™ is
defined to be intrinsically positive when it is a source of
water; therefore it is added to the right hand side of Eq. 1.

Therefore Eg. 1 becomes:

a . -
aq, 4 9y n a9, _ R |AA /A, =Rate of Change in storage 2
oXx oy oz
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= The change in storage Is represented by specific storage
(Sg). It is defined as the volume of water released from
storage per unit change in head (h) per unit volume of
aguifer (Anderson and Woessner, 1992) i.e. AV

" AhALA A,

= The sign convention is that the AV is intrinsically positive
when the 4h Is negative, in other words, water Is released
from the REV when head decreases.

- The rate of change in storage in REV will be:

AV Ah
2T S.ZAAA
At SAt KV 3

» Combining Eq. 2 and Eq. 3: Lo, oq,_  oh .y

X oy o ot
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« Darcy law Is used to set the relationship between g and h.
Darcy law in three dimension is written as (Anderson and
Woessner, 1992):

oh oh ah
=—-K, — =-K, — __gk <&
Oy A dy ' By q, =K, .

= Substituting these expressions in Eqg. A.4 the desired
groundwater flow equation is formulated:

PR PR PR B PR B S

OX OX ay Yoy ) oz 0z > ot

« Where K,, K,, and K, are components of the hydraulic
conductivity.
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= In the above derivation it is assumed that K, ,

= If the geology Is such that it is not possible to
align the principal direction of the hydraulic
conductivity tensor with the rectilinear

K,» and K, are collinear to the x, y- and z- axes.

K =

coordinate system, a modified form of equation

that utilizes the hydraulic conductivity tensor
required.

= By using a global coordinate system for the
entire problem domain and a local coordinate
system for each REV in the grid, the off
diagonal terms in the hydraulic conductivity
tensor could have zero value (Anderson and
Woessner, 1992).
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- The X-z coordinate system
Is aligned with the principal
directions of the hydraulic
conductivity tensor.

101
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) "R |

A global coordinate system (x-z)
Is defined. Local coordinates (x'-
z") are aligned with the principal
directions of the local hydraulic

conductivity tensor.




3. Initial and boundary conditions

- For a well posed boundary value problem: (i) A solution
must exist, (i1) The solution must be unique and (iii) The
solution must be stable, in the sense that sufficiently small
variations in the given data should lead to arbitrary small
changes in the solution

- Initial and boundary conditions are needed for a unigque
solution of the groundwater flow equations (second-order
partial differential equations) for a specific flow domain of
Interest

= Initial conditions: specification of the distribution of the
state variable (hydraulic head for the groundwater flow
equation) at some initial time, usually at t = 0.

= For example y,2,0)= f (X,y,z) inD
= In which f(x,y, z) is a nown functlon ) ig the flow domain.
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= Boundary conditions: specification of the interaction

between the flow domain and its surrounding
environment, which is a mathematical representation of

the physical reality
= Known water fluxes

= Known values of state variables, such as hydraulic
nead, that the external domain imposes on the flow

regime
= Different initial and boundary conditions result in
different solutions
= Three mathematical boundary conditions:
1. Dirichlet
2. Neumann

3. Cauchy
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= Three mathematical boundary conditions

sDirichlet condition (boundary condition of the first
kind): the fluid pressure (or hydraulic head) Is specified
as a known function of space and time.

= This occurs whenever the porous medium flow
domain is in contact with a body of open water (AB,
EG surfaces)

p(x,t)=f(xt) onB

f and g are two known functions

h(x,t)=g(x,t) onB

= Special case : Equipotential boundary

\\ ]
Water table

Flow domain

(a) Semipervious
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= Neumann condition (boundary condition of the second
Kind): the pressure gradient (or hydraulic gradient), or a
Inear combination of their components, is specified as a
Known function of space and time on the boundary.

g,-v= m(x,t) on B m(x, t) is a known function

= This occurs when constant flux (discharge) is seen
across a certain portion of the boundary (BE).

= Thus an impervious boundary (Boundary along AG) is
Neumann boundary with \flux equal to zero.

\\ »
Water table

Flow domain

(a) Semipervious
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« Cauchy, Mixed boundary condition, boundary condition
of the third kind) : the condition which specifies the
Information on the relationship between the state
variable and its derivatives

= This occurs when the porous medium domain is in
contact with a body of water continuum (or another
porous medium domain) through a relatively thin semi
pervious layer separating the two domains (e.g., FG in
the bottom figure)

\\ »
Water table

Flow domain

Semipervious

(a)
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Analytical Method Example:

= The ends A and B of a soil column, 200 cm long, have head
at 0 cm and 40 cm until steady state prevails. If the head of
the ends are changed to 0 cm. Find the head distribution in
the soil column at any time t. Take Ss as 103 and K as 107

cm/s.

s N _ Kazf;jﬁh:lO:Z 822 h(0)=c,x0+c, =0=>c, =0cm
ot OX ot 107 ox h(x) = c,X
2
:»Z—T_omg—;‘ h(200) = ¢, x 200 = 40 = ¢, = 0.2
For steady state: h(x) =0.2x
a_h_0016_2h_0:>8_2h o |Since the head at Aand B are
ot OX” OX” suddenly changed we gain transient

Upon Integration : h(x) = ¢,X +¢,| state whose initial condition could be
described by the above equation.
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2
ah = 0. Ola—h
8t OX?

Let h=TX 1is the solution

oh _dT.oh_ L dX

ot dt ~'ox  dx

= 8—2h =T d’X
OX° dx*

Substituting :

2
d—TX 001Td X
dt dx?

2
d_T —0.01 d XZ
Tdt Xdx

dr _ e 9T g
Tdt T

T 2
In —=-ct=T=ce "
Cl

d2>( , d*X
—

0.01 ~ +100¢2X =0

Xdx? dx
Solving this ODE

X =, sin(10cx)+ ¢, cos(10cx)

thus h=TX

= h=ce"(c,sin(10cx)+c, cos(10cx))
h=e""(C,sin(10cx)+C, cos(10cx))

h(0,t) =e**(C,x0+C,x1)=0=C, =0
= h(x,t) = C,e ™" sin (10cx)
h(200,t) = C,e* *sin(10cx 200) =0

Sin(2000¢) = 0 =sin(Nnz) = ¢ = —
2000
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The general solution would be

o0 _nizt . nﬂx o0 . nﬂX
h(x,t) = be(”o") sinl — [att=0h=0.2x=x= > 5b sin| —
%0 ngi " (ZOOJ n; " (200)

= 5b, =—— j xsin| 2% |dx Note : Fourier sin e series
200 200

200

2 | 200 n7x 200 . (nax

5b, = X —COS| —— | |—| — | sin| —
200 Nz 200 Nz 200 .

5o, = (1) T2 =, = (-1

h(x,t) = Z e 52 (ZOOOJtsin(%Z(’)‘j

h(X,t) _ 80 i (_:::])n+1 e—(grgéoj sin (ﬂ_ﬂX)

T =1
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4. Dupuit assumption

= The boundary of an unconfined aquifer (z) is indeed the
solution (h) that needs to be determined.

= Dupuit assumptions: First developed by Dupuit (1863) and
then advanced by Forchheimer (1930), or called Dupuit-
Forchheimer theory

sFrom observations, the slope of phreatic surface (water
table) is very small (commonly 1/1000)

= TWO assumptions

« The hydraulic gradient is equal to the slope of the
free surface and is invariant with depth

= The equipotential lines are vertical, i.e., the flow
lines are horizontal, 1.e., op

pe —P9Y
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a. The real flow field with non-
vertical equipotential lines

near the water table

b. The flow field obtained by the
Dupuit assumption, i.e.,
vertical equipotential lines

For small 0, sin © can be replaced by tan 6, then

g, =q, :—KtanQ:—K@
dx

(for h = h(x))
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(A) For horizontal bottom and 3-D steady-state, free surface flows

h(x,y,z) > h(x,y)

x:_Kg_h
" = q=-KV'h
oh

y=—K—
oy

in which V' :ii +ij
OX

W

Note that for 1-D flows, h(x, y) — h(x) and V' is replaced by ij

because the assumption of vertical equipotential lines
(or horizontal flows)

Q, = —KWh Z—h
or X — Q=—KWhV'h or Q/W=—KhV'h

oh

Q, =-KwhZ

oy

(W is the width of the unconfined aquifer)

dx

2
Note that {\%} = {%} = {&} = % = discharge per unit widthj

W
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Example : two-dimensional steady-state flow without
accretion

Q, =—Kh dh _ constant

dx
e s = Q,dx =—Khdh
| E E ] .* . - " hy —h;
TRGEE ﬁili\* ) = QXI dx = —KI hdh = K ( 0 L)
o o o/ 0 ho 2
K(hs—h?
=Q, = | o ) (1)
(After Bear and Verruijt, 1987)
(Dupuit equation)

(Q, = flow per unit width)
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Example : three-dimensional steady-state flow with accretion
Mass in —mass out = A M = 0 (steady state)

Under Dupuit assumptions : h(x, y, z) = h(X, y)
W
| qy+dydx

w [L/T] : rate of water into or out .
of the unconfined aquifer per unit G

area of the unconfined aquifer 1.e. §
- . - qxdy 1 —_>qx+dxdy
w > 0 for infiltration, w < O for Vi L
evaporation "W = discharge
ax 1| per unit width
(Adapted from Fetter, 1994) W - )
1 £ dy

dx

(impervious, horizontal bottom)
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pq,dyAt— pq, , dyAt + pq dxAt — pq, ., At + pwdxdyAt = 0

= pAtdy

X

x),

/ .

2
X

a )x+dx

+ pAtdx

+pwdxdyAt =0
0

= pAtdy{K .

:Ki h—h

"5

Al

oh?  oh?
+

X\ ox
=K
(8x2 oy’

2

dx |+ pAtdx| K
a)}p {a

X

0

dxdy + K—

y

~-
qx+Ax

N
0 0

jz 2w (2)

y

0(,0

y

h—

"

sink/source

_Kh (@
oy

(3),(

/

2

8y jy+dyJ

'

Oy

jdxdy +wdxdy =0
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Furthermore, for one-dimensional

flows, Eq(2) reduces to Kd—z(hz)z—zw BCs h(x=0)=h,
dx’ " h(x=L)=h,
i+ % &  Generalsolution: hz(x):—%x2+clx+c2
N o S TR
= el h(x=0)=h, =c, =
— = . h?—h?) wL
= :: F: B h(X=L)=h2:>C1=( 2 ] 1j+ K
== == : =
— h? —h?)x
FIGURE 5.19 L;conii:ec‘I flow, which is subject to infiltration or evaporation h2 (X) = h12 —( - |_ 2) + \|/<V(L— X)X
After Fetter, 1994 h® —hZ)x
(After Fetter ) Hence h(X)Z\/hlz—( 1 LZ) —I—\|I<V(L—X)X (3)
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h* —hZ)x
h(x):\/hf—(1 L2) +\|’<V(L—x)x:\/—ax2+bx+c=ﬁ
hZ —h?
a:ﬂ>0,b:<2 1)+WL,c:h12>0
K K
dh —2ax+b b _L K(h-hf) dh
= , X=— =—+ where — =0
_ dx 2JT 2a 2 2wl dx
dzh_—4ac—b2<O
dx* 4T
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« Hence, the water table surface is a hyperbola with
maximum elevation occurs at

" L K(h 1) . (hf+h§)+w|_2 K (hZ —h?)’

max ! max +
2 2wl \/ 2 4K 4wL?

= 1he location of maximum h occurs to the left of the
midpoint if h, < hy, or to the right if h, > h,.

= ‘Wi

Xmax

e n

impervious

hy

Impervious
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From Eq(3) and if w = 0 then

h2 h? 2 2
h(x)z\/hl2 ( 1 ) =Jax+b =T, a—h L ,b=h’>0
dh

dX Nax +b

d h B a’ <0
dx* 4(ax+b)3/2

Hence, the water table surface is a parabola with a positive
slope when h, > h,, or a negative slope when h, < h;

L h -
h 1
h, L{Z 5 L{Z h,

impervious Impervious
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= Transient 2-D unconfined flows
For incompressible fluids and homogeneous and isotropic aquifers

Mass In —mass out=A M

q...dx Under Dupuit assumptions: h(x,y,z) -
A h(X,y)

qxdy /i/ —_’qx+dxdy
h % g = discharge
q,dx’| | | per unit width
n /dy

dx

(impervious, horizontal bottom)
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,qudyAt _ qux+dxdyAt + ,qudXAt _ /qu+dyAt — IOSdedyAh

= pAtdy

X

_Kh(@j +K(h@j
a X 8X X+dx

VT

Ox

_Kh(@

qX+AX

j+K(h@
o), oy

J

Jy+dy

'

Qy

OX

h@jdxdy+ Ki

'

qy+Ay

oy

o AV
S. =specific yield =
y =P Y AAh

W

= 5, dxdyAh

h@ dxdy =S dxdy@
oy Y ot

S
= g (h ahj+ g h6h _>y o (Boussinesq equation)
ox\ ox) oy\ oy K ot
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= Boussinesq equation is a non-linear PDE, which can not be solved
analytically except under some idealized conditions

- Approximations: Drawdown in the aquifer is small, 1.e., h = b
(averaged thickness assumed to be constant over the aquifer)

a( Ghj a( ahj a( 8hj a( ahj S, éh
h— |+=|h—|~=|b—|+=|b— |=2L=
ox\_ ox) oy\ oy) ox\  ox) oy\ oy K ot

oh &*h _S, oh
ox>  oy> Kb ot

From (4):

()

—

(Note that (5) is similar to the 2-D flow in a confined aquifer,
except that S, Storativity of a confined aquifer, is used instead of

Sy)
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- Conditions when Dupuit assumption does not work

- Vertical flow is not negligible (\Vertical impervious boundary;
Crest of water table (or water divide); Seepage face

= Rule of thumb (Bear and Verruijt, 1987): Dupuit assumption is
valid at distances from the downstream end larger than twice the
average height of the flow domain. However, discharge calculated
from Dupuit assumption is a satisfactory estimation for most cases

Examples of seepage face

Vertical
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N
Vertical flow: horizontal water table

S ;— 3 4 %
XK
-
Vertical

? flow - - ,
hg Q_
\/
i ik
— (b)
Not valhd Not vald o
eepage
(a) face

« Examples where Dupuit N
assumption is not valid S

Equipotentials
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Example : (Problem 2.14, Bear and Verruijt, 1987)

1 V. water table

(. (a) Determine Q if K =18 m/d
' (b) Repeat (a) if K=30m/d fromx =0to
4Omi ) Q X =800 m, and K = 10 m/d for the
remaining 400 m.
Y z=-10m
_ X
Solution :

(a) Because the flow field is steady-state, Q is a constant. Hence

2 2 _an2
Q:—Khdh:—th :_1840 30
dx 2 dx 2 1200

(b) The hydraulic head at x = 800 must be continuous. Furthermore, Q is a constant because
the flow field is steady-state. Hence

2 2 2 h2
Q:(—Kh@j:(_m@j _ 30h*-40°  1030°-h
1 2

=5.25m*/d

dx dx 2 800 2 400
= h=36.33m
—=Q=5.25m"/d
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5. Flow net

= The 2D steady state Groundwater flow equation in isotropic and
homogeneous porous medium can be expressed by Laplace’s

Equation:
o°h | o‘h
ox?>  oy?
= Graphically, the equation can be represented by two sets of
curves known as ‘Equipotential line’ and ‘flow lines’, that
Intersect at right angles. The combined representation of two

sets of lines Is called a flow net. With the help of a flow net, the
groundwater flow problems can be analyzed.

O
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= Equipotential line: A line on which values of hydraulic head
are the same.

=Potential of groundwater ¢ = Vh = mechanical energy
(pressure energy + elevation energy) per unit mass of
groundwater. Equipotential lines are always perpendicu

tot

- Flow
that a

ne direction of Vh, no matter the isotropy of the mec
Ine (Fetter, 1994): An imaginary line that traces the

an aquifer.

=Flow lines will cross equipotential lines at right angles in an
Isotropic aquifer

=Flow lines will cross the equipotential lines at an angle
dictated by the degree of anisotropy and the orientation of

Vh

to the hydraulic conductivity tensor ellipsoid

ar
ium

nath

particle of groundwater would follow as it flows through

=Flow lines are parallel to Vh in isotropic media but not in
anisotropic media
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//_ _--HH‘“ .

. i . - e
4 Maximum equipotential

Impermeable dam | Minimum equipotential

T |I T T = ) N — - |
Che T T ]
|l| \l LY . - i |
- _,_é -_:‘_\}.- ) J'E:I'-. .'II |I
—— {Q‘r”f 4 7 - - ]
/ 6 - _ql}f';' / !.f
e B N e VA
/ ‘ N
Q _ KmH _____]'L_ — -'I,I_——____d__«\ ]'.\.".'-"__Eh"’ s g
n | Eﬂ"ﬁ - .
| |

No-flow boundary
Q : flow per unit width [L?/T]
K : homogeneous/isotropic hydraulic conductivity [L/T]
m : # of stream tubes (flow tubes, I.e., area between two adjacent
flow lines)
n : # of divisions of head in the flow net
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Equipotential

Flow

= Darcy’s equation: v = ki; where k 1s hydraulic conductivity (m/s)
and 1 (= Ah/Al) Is hydraulic gradient. The seepage flow g, through
a cross sectional area A iIs computed as; q = VA = KkIA.

= In the flow net case: for a single net A = bX1 =Db; q = kbAh/Al,
but Ah = H/N4 where Ny is the number of equipotential drops; and
H Is the head difference between the initial and end section along
the groundwater flow direction.

= The total discharge per unit width Q = N(q) = N+kbH/(N,Al);
however if the flow net is drawn so that b=Al, Q = KHN/N,

s\Where N; is the number of flow tubes.
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Boundary conditions Vs flow lines

« Boundary conditions vs flow lines and equipotential lines

= No-flow boundary (Neumann): Adjacent flow lines are parallel
to this boundary, and equipotential lines are perpendicular to this
boundary

» Constant-head boundary (Dirichlet): This boundary represents
an equipotential line and adjacent equipotential lines are parallel
to this boundary. Flow lines will intersect the constant-head
boundary at right angles

- Water-table boundary: the water table, in general, is neither a
flow line nor an equipotential line. It is a line where head Is
known. If Dupuit assumption is valid, equipotential lines are
vertical and flow lines are horizontal. If there is recharge or
discharge across the water table, flow lines will be at an oblique
angle to the water table.
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Three BC’s vs flow lines and equipotential lines

’ i [
/ JE S |
e i - -
“ | | o
] ¥ o !
. - |==1=- L e
A ' | 1
/ I o | [
- | \
) ‘# | I
(a) (b ) (c)

Figure 5.1 Groundwater flow in the vicinity of (a) an impermeable bound-
ary, (b) a constant-head boundary, and (c) a8 water-tahle hound -
ary.

(After Freeze and Cherry, 1979)
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Flow nets for anisotropic media

« For isotropic soil the flow net is orthogonal; however the flow
net in case of anisotropic soil is not orthogonal. Thus the two
dimensional seepage flow equation is not a Laplace equation.

=« As the permeability is different in the two directions. For
example in horizontally stratified aquifers, the horizontal
permeability is usually greater than the vertical. Thus the
seepage flow equation in an isotropic soils will be:

2 2
kah:kyagz
oy

* OX?
« However this equation can be modified to work as
Laplace equation as:

O
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k, 0°h 82h
K, OX* 8y
o°h  0°h

2 T 2
ox,” oYy

=0 let x, _x\/ky/k

=0

« For example If k, = 4k,; X, = X/2; The section of the
medium is transformed by halving the horizontal
dimension. Draw the flow net for the transformed section
then transfer the flow net back to the original section.
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Steps:

1. Transform the coordinates according
to a specific scaling

2. Construct a flow net for the
transformed, isotropic medium

3. Invert the scaling ratio

h=100

The total discharge per unit, { = [ =
width: RRIRL I B b —
Q = kabH/(NdAI), (o) (b (e)

Where k = (kxky)llz Figure 5.8 (a) Flow problem in a homogeneous anisotropic region with

K [a/ K, = 4, (b) Flow netin the transformed isotropic section.
(¢) Flow net in the actual anisotropic section. T, transformation ;

{, inversion.

134




6. Approaches to groundwater flow analysis in fractured aquifers

a . b
rock (primary porosity »,)

= Yera Vi ite are
fracture 2 R P — :
(secondary W~ £F" "'\ 4.\ magnification
porosity n,) e Wy e
P, U-
SBOEY SHDOE DEPS 38 z(w) ;
weathered( . . - LracKs. .- |-~
material = W(v)

x(u)
- A fractured medium consists of solid rock with some primary
porosity cut by a system of cracks, microcracks, joints,
fracture zones, and shear zones that create secondary porosity




= Fractured systems are typically modeled using one or more of

1.

the following conceptual models:

Equivalent porous medium (EPM): This model Replaces
the primary and secondary hydrogeologic parameters with
a continuous porous medium having so-called equivalent or
effective hydraulic properties. EPM assumes that the
fractured material can be treated as a continuum.

Discrete fractures (DF): Flow through a single fracture
may be idealized as occurring between two parallel plates
with a uniform separation equal to the fracture aperture
(2b). Typically applied to fractured media with low
primary permeability such as crystalline rocks.

Dual porosity (DP): If the rock matrix containing the
fracture network has significant primary permeability, a DP

model may be used.
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Equivalent porous Medium (EPM)

- The difficulty in applying the EPM approach arises in
determining the appropriate size of the REV needed to define
equivalent hydraulic properties.

= When fractures are few and far between and the unfractured
block hydraulic conductivity is low, the EPM method may
not be appropriate even with a large REV.

- EPM approach may adequately represent the behavior of a
regional flow system, but poorly reproduces local conditions.

FIELD SYSTEM

q=0

EQUIVALENT CONTINUUM

> 2b=? Hp=0 E q=20cc|.’ : :.'._Ke=3:3x_16:—66|;\‘/33(.:":‘.‘:_.-‘ ]
An'n b...- . -".4"'.--:'..'_.‘-::. ., :-.--‘
q— | i =

b .. .
——— -
q e

Hy 20 m Ll

=0
9 2m

1r .'.'-
K B

J
-

2m
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Discrete Fracture (DF) approach

« The flow rate (Qy): Q; = 2bwK; (dh/dl), where w is the width, K,
(= pg(2b)?/(12w)) the hydraulic conductivity of the fracture, h is
hydraulic head, and 1 is the length over which the hydraulic
gradient is measured, p is fluid density, u Is viscosity, and g Is
gravity. Note that Q; is proportional to the (2b)3.

= Use of a cubic model (above equation) requires a description of
the fracture network, including fracture apertures and geometry.
These data are extremely difficult to collect or estimate.

F IELDqggSTEM SINGLE FRACTURE

(=
q=20cc (/A\\ T q=20cc ////
! -2
{mln min K§=9.8x10°€ cm/sec
q —q / // Yo /

—- :I.;z_o_; )3\0 """":bzo “faf: Vézgz}jéé}{“%_.q My =0

WA /
BLOCKISIMPERGEABLEa

ek L A L o L g £ o 2 g L
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« Further complications in using a DF model arise when
fracture widths are less than 10 um and when portions of the
fracture surfaces touch or are rough. Under these conditions
the cubic law for flow through a fracture may not be valid.

= Furthermore, increases in stress with depth and with
decreases in pore pressure (e.g., from dewatering) cause a
decrease in fracture aperture. Hence, the relative orientation
of the fractures and the stress field in relation to the
groundwater flow field must also be considered.

- Models based on the DF approach are computationally
Intensive. To date, applications have been mainly to research
problems.
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Dual Porosity (DP)

= In this conceptual model, flow through the fractures is
accompanied by exchange of water and solute to and from
the surrounding porous rock matrix.

« Obviously, the fracture network as well as the properties of
the porous blocks must be described prior to modeling.

FIELD SYSTEM
q=0

>\/\ DUAL POROSITY




