
6. Approaches to groundwater flow analysis in fractured aquifers

 A fractured medium consists of solid rock with some 

primary porosity cut by a system of cracks, microcracks, 

joints, fracture zones, and shear zones that create 

secondary porosity
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 Fractured systems are typically modeled using one or more of 

the following conceptual models: 

1. Equivalent porous medium (EPM): This model Replaces 

the primary and secondary hydrogeologic parameters with 

a continuous porous medium having so-called equivalent or 

effective hydraulic properties. EPM assumes that the 

fractured material can be treated as a continuum.

2. Discrete fractures (DF): Flow through a single fracture 

may be idealized as occurring between two parallel plates 

with a uniform separation equal to the fracture aperture 

(2b). Typically applied to fractured media with low 

primary permeability such as crystalline rocks.

3. Dual porosity (DP): If the rock matrix containing the 

fracture network has significant primary permeability, a DP 

model may be used. 
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Equivalent porous Medium (EPM)

 The difficulty in applying the EPM approach arises in 

determining the appropriate size of the REV needed to define 

equivalent hydraulic properties.

 When fractures are few and far between and the unfractured 

block hydraulic conductivity is low, the EPM method may 

not be appropriate even with a large REV.

 EPM approach may adequately represent the behavior of a 

regional flow system, but poorly reproduces local conditions.
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Discrete Fracture (DF) approach

 The flow rate (Qf): Qf = 2bwKf (dh/dl), where w is the width, Kf

(= ρg(2b)2/(12μ)) the hydraulic conductivity of the fracture, h is 

hydraulic head, and 1 is the length over which the hydraulic 

gradient is measured, ρ is fluid density, μ is viscosity, and g is 

gravity. Note that Qf is proportional to the (2b)3. 

 Use of a cubic model (above equation) requires a description of 

the fracture network, including fracture apertures and geometry. 

These data are extremely difficult to collect or estimate.

142



 Further complications in using a DF model arise when 

fracture widths are less than 10 μm and when portions of the 

fracture surfaces touch or are rough. Under these conditions 

the cubic law for flow through a fracture may not be valid. 

 Furthermore, increases in stress with depth and with 

decreases in pore pressure (e.g., from dewatering) cause a 

decrease in fracture aperture. Hence, the relative orientation 

of the fractures and the stress field in relation to the 

groundwater flow field must also be considered.

 Models based on the DF approach are computationally 

intensive. To date, applications have been mainly to research 

problems.
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Dual Porosity (DP)

 In this conceptual model, flow through the fractures is 

accompanied by exchange of water and solute to and from 

the surrounding porous rock matrix. 

 Obviously, the fracture network as well as the properties of 

the porous blocks must be described prior to modeling. 
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Groundwater Hydraulics

Chapter  3 – Well Hydraulics
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Well Hydraulics

 A water well is a hydraulic structure that is designed 

and constructed to permit economic withdrawal of 

water from an aquifer

 Water well construction includes:

Selection of appropriate drilling methods

Selection of appropriate completion materials

Analysis and interpretation of well and aquifer 

performance
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1. Pumping Well Terminology

 Static Water Level [SWL] 
(ho) is the equilibrium water 
level before pumping 
commences

 Pumping Water Level [PWL] 
(h) is the water level during 
pumping

 Drawdown (s = ho - h) is the 
difference between SWL and 
PWL

 Well Yield (Q) is the volume 
of water pumped per unit time

 Specific Capacity (Q/s) is the 
yield per unit drawdown

ho

h

s

Q
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Cone of Depression

 A zone of low pressure is created centered on the pumping well

 Drawdown is maximum at the well and reduces radially

 Head gradient decreases away from the well and the pattern 

resembles an inverted cone called the cone of depression

 The cone expands over time until the inflows (from various 

boundaries) match the well extraction

 The shape of the equilibrium cone is controlled by hydraulic 

conductivity

Low Kh aquifer

High Kh aquifer

Kh  Kv
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Aquifer Characteristics

 Pump tests allow estimation of transmission and storage 
characteristics of aquifers

 Transmissivity (T = Kb) is the rate of flow through a 
vertical strip of aquifer (thickness b) of unit width under 
a unit hydraulic gradient

 Storage Coefficient (S = Sy + Ssb) is storage change per 
unit volume of aquifer per unit change in head

 Radius of Influence (R) for a well is the maximum 
horizontal extent of the cone of depression when the 
well is in equilibrium with inflows
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2. Unsteady Radial Confined Flow

 Assumptions

Isotropic, homogeneous, infinite 

aquifer, 2-D radial flow

 Initial Conditions

h(r,0) = ho for all r

 Boundary Conditions

h(,t) = ho for all t

• PDE  

• Solution is more complex than 

steady-state

• Change the dependent 

variable by letting

• The ultimate solution is:

• where the integral is called the 

exponential integral written as 

the well function W(u)

This is the Theis Equation
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Theis PDE to ODE

 Let  = S/T (to simplify notation where  is called the 

inverse hydraulic diffusivity)
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Theis PDE to ODE

 Rewriting partial derivatives in terms of u
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Theis Integration

 The resulting ODE is:

 To eliminate exp(c), use Darcy’s Law:

 Remember 

 Simplifying:
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Theis integration

 Finally, using h(,t) = ho to eliminate C:

 The integral is called the exponential integral but is often 
written as the Theis well function

 Well function is dimensionless
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Theis Plot : 1/u vs W(u)
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Theis Plot : Log(time) vs Log(drawdown)
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Theis Plot : Log(time) vs Log(drawdown)

0.0

0.1

1.0

10.0

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

Time since pump started (s)

D
ra

w
d

o
w

n
 (

m
)

[1,1] 

Type

Curve

s=0.17m

t=51s

158



Theis Analysis

1. Overlay type-curve on data-curve keeping axes parallel

2. Select a point on the type-curve (any will do but [1,1] is 

simplest)

3. Read off the corresponding co-ordinates on the data-curve [td, 

sd]

4. For [1,1] on the type curve corresponding to [td, sd], T = 

Q/4sd and S = 4Ttd/r
2 = Qtd/r2sd

5. For the example, Q = 32 L/s or 0.032 m3/s; r = 120 m; td = 51 

s and sd = 0.17 m

6. T = (0.032)/(12.56 x 0.17) = 0.015 m2/s = 1300 m2/d

7. S = (0.032 x 51)/(3.14 x 120 x 120 x 0.17) = 2.1 x 10-4
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Copper Jacob
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Cooper-Jacob

 In  the above figure, the Theis well function W(u) is plotted vs. 

1/u on semi-log paper.

 This figure shows that, for large values of 1/u, the Theis well 

function exhibits a straight-line segment. 

 The Jacob method is based on this phenomenon. Cooper and 

Jacob (1946) showed that, for the straight-line segment, s can be 

approximated by 

with an error less than 1%, 2%, 5%, and 10% for 1/u larger than 
30, 20, 10, and 7, respectively.

 The Cooper-Jacob simplification expresses drawdown (s) as a 
linear function of ln(t) or log(t).
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Cooper-Jacob Plot : Log(t) vs s
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Cooper-Jacob Analysis

 Fit straight-line to data (excluding early and late times if 
necessary): 

 Note: at early times the Cooper-Jacob approximation may 
not be valid and at late times boundaries may significantly 
influence drawdown

 Determine intercept on the time axis for s=0

 Determine drawdown increment (Ds) for one log-cycle

 For straight-line fit, 

 For the example, Q = 32 l/s or 0.032 m3/s; r = 120 m; to = 84 
s and Ds = 0.39 m

 T = (2.3 x 0.032)/(12.56 x 0.39) = 0.015 m2/s = 1300 m2/d

 S = (2.3 x 0.032 x 84)/(1.78 x 3.14 x 120 x 120 x 0.39)                 
= 1.9 x 10-4
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Theis-Cooper-Jacob Assumptions

 Real aquifers rarely conform to the assumptions made for 

Theis-Cooper-Jacob non-equilibrium analysis

• Isotropic, homogeneous, uniform thickness

• Fully penetrating well

• Laminar flow

• Flat potentiometric surface

• Infinite areal extent

• No recharge

 Failure of some or all of these assumptions leads to “non-

ideal” behavior and deviations from the Theis and Cooper-

Jacob analytical solutions for radial unsteady flow
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Recharge Effect : Recharge > Well Yield

Recharge causes the slope of the log(time) vs drawdown curve to 
flatten as the recharge in the zone of influence of the well matches 
the discharge. The gradient and intercept can still be used to 
estimate the aquifer characteristics (T, S).
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Recharge Effect : Leakage Rate

Recharge by vertical leakage from overlying (or underlying 
beds) can be quantified using analytical solutions developed by 
Jacob (1946). The analysis assumes a single uniform leaky bed.
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Recharge Effect : Recharge < Well Yield

If the recharge is insufficient to match the discharge, the log(time) 
vs drawdown curve flattens but does not become horizontal and 
drawdown continues to increase at a reduced rate. 

The same result will be obtained if the average T and/or S increased

T and S can be estimated from the first leg of the curve.
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Sources of Recharge

 Various sources of recharge may cause deviation from 
the ideal Theis behavior.

 Surface water: river, stream or lake boundaries may 
provide a source of recharge, halting the expansion of 
the cone of depression.

 Vertical seepage from an overlying aquifer, through an 
intervening aquitard, as a result of vertical gradients 
created by pumping, can also provide a source of 
recharge.

 Where the cone of depression extends over large areas, 
leakage from aquitards may provide sufficient recharge.
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Barrier Effect : No Flow Boundary

Steepening of the log(time) vs. drawdown curve indicates:

 An aquifer limited by a barrier boundary of some kind.

 The average transmissivity and/or storativity decreased

Aquifer characteristics (T,S) can be estimated from the first leg.
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Potential Flow Barriers

 Various flow barriers may cause deviation from the ideal 

Theis behavior.

 Fault truncations against low permeability aquitards.

 Lenticular pinch outs and lateral facies changes associated 

with reduced permeability.

 Groundwater divides associated with scarp slopes.

 Spring lines with discharge captured by wells.

 Artificial barriers such as grout curtains and slurry walls.
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Casing Storage

 It has been known for many decades that early time data can 
give erroneous results because of removal of water stored in 
the well casing.

 When pumping begins, this water is removed and the amount 
drawn from the aquifer is consequently reduced.

 The true aquifer response is masked until the casing storage is 
exhausted.

 Analytical solutions accounting for casing storage were 
developed by Papadopulos and Cooper (1967) and Ramey et al 
(1973)

 Unfortunately, these solutions require prior knowledge of well 
efficiencies and aquifer characteristics
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Casing Storage

Schafer (1978) suggests that an estimate of the 
critical time to exhaust casing storage can be made 
more easily:

tc = 3.75(dc
2 – dp

2) / (Q/s) = 15 Va /Q

where:  tc is the critical time (d); dc is the inside 
casing diameter (m); dp is the outside diameter of the 
rising main (m); Q/s is the specific capacity of the 
well (m3/d/m);  Va is the volume of water removed 
from the annulus between casing and rising main.

Note: It is safest to ignore data from pumped wells 
earlier than time tc in wells in low-K region.

s

dc

dp

Q
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3. Distance-Drawdown 

 Simultaneous drawdown data from at least three observation 
wells, each at different radial distances, can be used to plot a 
log(distance)-drawdown graph.

 The Cooper-Jacob equation, for fixed t, has the form:

 So the log(distance)-drawdown curve can be used to estimate 
aquifer characteristics by measuring Ds for one log-cycle and 
the ro intercept on the distance-axis.
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Distance-Drawdown Graph
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Distance drawdown Analysis

 For the example: t = 0.35 days and Q = 1100 m3/d

T = 0.366 x 1100 / 3.8 = 106 m2/d

S = 2.25 x 106 x 0.35 / (126 x 126) = 5.3 x 10-3

 The estimates of T and S from log(time)-drawdown and 
log(distance)-drawdown plots are independent of one 
another and so are recommended as a check for consistency 
in data derived from pump tests.

 Ideally 4 or 5 observation wells are needed for the distance-
drawdown graph and it is recommended that T and S are 
computed for several different times.
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Well Efficiency

 The efficiency of a pumped well can be evaluated using 
distance-drawdown graphs.

 The distance-drawdown graph is extended to the outer radius of 
the pumped well (including any filter pack) to estimate the 
theoretical drawdown for a 100% efficient well.

 This analysis assumes the well is fully-penetrating and the 
entire saturated thickness is screened.

 The theoretical drawdown (estimated) divided by the actual 
well drawdown (observed) is a measure of well efficiency.

 A correction is necessary for unconfined wells to allow for the 
reduction in saturated thickness as a result of drawdown.
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Theoretical Pumped Well Drawdown
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Unconfined Well Correction

 The adjusted drawdown for an unconfined well is given by:

where b is the initial saturated thickness;
sa is the measured drawdown; and
sc is the corrected drawdown

 For example, if b = 20 m; sa = 6 m; then the corrected 
drawdown sc = 0.85sa = 5.1 m

 If the drawdown is not corrected, the Jacob and Theis 
analysis underestimates the true transmissivity under 
saturated conditions by a factor of sc/ sa.
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Causes of Well Inefficiency

 Factors contributing to well inefficiency (excess head loss) 

fall into two groups:

Design factors

 Insufficient open area of screen

 Poor distribution of open area

 Insufficient length of screen

 Improperly designed filter pack

Construction factor

 Improper placement of screen relative to aquifer 

interval

 Compaction of aquifers near by the well

 Clogging of the aquifer by the drilling mud
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Radius of Influence

 The radius of influence of a well can be determined from a 
distance-drawdown plot.

 For all practical purposes, a useful comparative index is the 
intercept of the distance-drawdown graph on the distance axis.

 Radius of influence can be used as a guide for well spacing to 
avoid interference.

 Since radius of influence depends on the balance between aquifer 
recharge and well discharge, the radius may vary from year to 
year.

 For unconfined wells in productive aquifers, the radius of 
influence is typically a few hundred meters.

 For confined wells may have a radius of influence extending 
several kilometers.
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Determining ro
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4. Partial Penetration

 Partial penetration effects occur when the intake of the well 

is less than the full thickness of the aquifer
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Effects of Partial Penetration

 The flow is not strictly horizontal and radial.

 Flow-lines curve upwards and downwards as they approach 
the intake and flow-paths are consequently longer.

 The convergence of flow-lines and the longer flow-paths 
result in greater head-loss than predicted by the analytical 
equations.

 For a given yield (Q), the drawdown of a partially 
penetrating well is more than that for a fully penetrating 
well.

 The analysis of the partially penetrating case is difficult but 
Kozeny (1933) provides a practical method to estimate the 
change in specific capacity (Q/s).
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Q/s Reduction Factors

 Kozeny (1933) gives the following approximate reduction factor 
to correct specific capacity (Q/s) for partial penetration effects:

where b is the total aquifer thickness (m); r  is the well radius (m); 
and L is screen length (m).  

 The equation is valid for L/b < 0.5 and L/r > 30
 For a 300 mm dia. well with an aquifer thickness of 30 m and a 

screen length of 15 m, L/b = 0.5 and 2L/r = 200 the reduction 
factor is:

F = 0.5 x {1 + 7 x 0.707 (1/200)} = 0.67

 Other factor are provided by Muskat (1937), Hantush (1964), 
Huisman (1964), Neumann (1974) but they are harder to use.
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Screen Design

 300 mm dia. well with 

single screened interval of 

15 m in aquifer of thickness 

30 m.

L/b = 0.5 and 2L/r = 200

F = 0.5 x {1 + 7 x cos

(0.5π/2) (1/200)} = 0.67

 300 mm dia. well with 5 x 3 m solid 
sections alternating with 5 x 3m 
screened sections, in an aquifer of 
thickness 30 m.

There effectively are five aquifers.

L/b = 0.5 and 2L/r = 40
F = 0.5 x {1 + 7 x cos(0.5π/2) 

(1/40)} = 0.89
This is clearly a much more 
efficient well completion.
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5. Recovery Data

 When pumping is halted, water levels rise towards their pre-

pumping levels.

 The rate of recovery provides a second method for 

calculating aquifer characteristics.

 Monitoring recovery heads is an important part of the well-

testing process.

 Observation well data (from multiple wells) is preferable to 

that gathered from pumped wells.

 Pumped well recovery records are less useful but can be 

used in a more limited way to provide information on 

aquifer properties.
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Recovery Curve

The recovery curve on a linear scale appears as an inverted 

image of the drawdown curve. The dotted line represent the 

continuation of the drawdown curve.
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Superposition

 The drawdown (s) for a well pumping at a constant rate (Q) for a 

period (t) is given by:

 The effects of well recovery can be calculated by adding the 

effects of a pumping well to those of a recharge well using the 

superposition theorem.

 Applying this principle, it is assumed that, after the pump has 

been shut down, the well continues to be pumped at the same 

discharge as before, and that an imaginary recharge, equal to the 

discharge, is injected into the well. The recharge and discharge 

thus cancel each other, resulting in an idle well as is required for 

the recovery period.
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 The drawdown (sr) for a well recharged at a constant rate (-Q) 

for a period (t' = t - tr) starting from time tr (the time at which 

the pumping stopped) is given by:

 The total (Residual) drawdown according to Theis for t > tr is:
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Residual Drawdown and Recovery

 The Cooper-Jacob approximation can be applied giving:

 The equation predicting the recovery is:

For t > tr, the recovery sr is the difference between the observed 

drawdown s’ and the extrapolated pumping drawdown (s).
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Time-Recovery Graph

Aquifer characteristics can be calculated from a log(time)-recovery 

plot but the drawdown (s) curve for the pumping phase must be 

extrapolated to estimate recovery (s - s’)
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Time-Recovery Analysis

 For a constant rate of pumping (Q), the recovery any time (t’) 

after pumping stops:

 For the example, Dsr = 4.6 m and Q = 1100 m3/d so:

T = 1100 / (12.56 x 4.6) = 19 m2/d

 The storage coefficient can be estimated for an observation 

well (r = 30 m) using: S = 4Tto’/r
2

 For the example, to’ =  0.12 and Q = 1100 m3/d so:

S = 4 x 19 x 0.12 / (24 x 30 x 30) = 4.3 x 10-4
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Time-Residual Drawdown Graph

Transmissivity can be calculated from a log(time ratio)-residual 

drawdown (s’) graph by determining the gradient. For such cases, 

the x-axis is log(t/t’) and thus is a ratio.
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Time-Residual Drawdown Analysis
 For a constant rate of pumping (Q), the recovery any time (t’) 

after pumping stops:

 For the example, Dsr = 5.2 m and Q = 1100 m3/d so:

T = 1100 / (12.56 x 5.2) = 17 m2/d

 Notice that the graph plots t/t’ so the points on the LHS 

represent long recovery times and those on the RHS short 

recovery times.

 The storage coefficient cannot be estimated for the residual 

drawdown plot because the intercept t / t'  1 as t' . 

Remembering t' = t - tr where tr is the elapsed pumping time 

before recovery starts. 
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Residual Drawdown for Real Aquifers

 Theoretical intercept is 1

 >> 1 indicates a recharge effect

 >1 may indicate greater S for pumping than recovery

 < 1 indicates incomplete recovery of initial head - finite 

aquifer volume

 << 1 indicates incomplete recovery of initial head - small 

aquifer volume
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6. Bounded Aquifers

 Superposition was used to calculate well recovery by adding the 

effects of a pumping and recharge well starting at different 

times.

 Superposition can also be used to simulate the effects of aquifer 

boundaries by adding wells at different positions.

 For boundaries within the radius of influence, the wells that 

create the same effect as a boundary are called image wells.

 This, relatively simple application of superposition for analysis 

of aquifer boundaries, was described by Ferris (1959)

197



Image Wells

 Recharge boundaries at 

distance (r) are simulated by 

a recharge image well at an 

equal distance (r) across the 

boundary.

 Barrier boundaries at 

distance (r) are simulated by 

a pumping image well at an 

equal distance (r) across the 

boundary.

r r r r
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General Solution

The general solution for adding image wells to 

a real pumping well can be written:

Where rp, ri are the distances from the pumping 

and image wells respectively.

 For a barrier boundary, for all points on the boundary rp = ri

the drawdown is doubled.

 For a recharge boundary, for all points on the boundary rp = ri

the drawdown is zero.
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Specific Solutions

 For the recharge boundary 
case:

 The use of Cooper-Jacob approximation is only possible for 

large values of 1/u i.e. u < 0.05 for all r so the Theis well 

function is used:

• For the barrier boundary 
case:
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Multiple Boundaries

 A recharge boundary and 
a barrier boundary at 
right angles can be 
generated by two pairs of 
pumping and recharge 
wells.

 Two barrier boundaries at 
right angles can be 
generated by 
superposition of an array 
of four pumping wells.
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 The image wells are 

usually lie on a circle 

centered at the apex of 

the wedge and radius 

equal to the distance 

between the pumping 

well and the apex. 

 The number of image wells, n, necessary for a wedge 
angle θ is given by: n = 360/θ – 1. 

202



Parallel Boundaries

 A parallel recharge boundary and a barrier boundary (or 
any pattern with parallel boundaries) requires an infinite 
array of image wells.

 Each successively added secondary image well produces 
a residual effect at the opposite boundary.

 It is only necessary to add pairs of image wells until the 
next pair has negligible influence on the sum of all image 
well effects out to the point.
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Boundary Location

 For an observation well at distance r1, measure off the 

same drawdown (s), before and after the “dog leg” on a 

log(time) vs. drawdown plot.
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Boundary Location

 Assuming that the “dog leg” is created by an image well at 

distance r2 , if the drawdown are identical then W(u1) = W(u2) 

so u1 = u2.

 Thus:

▪ The distance r2 the radial distance 

from the observation point to the 

boundary. 

▪ Repeating for additional 

observation wells may help locate 

the boundary.
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