AAIT Chapter Four
H-l Stochastic Analysis of Stream flow

Stochastic and empirical models
e Time Series Analysis, and Hydrological Forecasting
e Markov Processes

e Markov Chains
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AAIT Time-Series Analysis : Definitions

Man?/ dynamic variables in hydrology are observed at more or less
regular time intervals.

— rainfall,
— surface water stage or flow
— groundwater levels.

ty

* Successive observations from a particular monitoring station
observed at regular intervals are called a time series.

iversli

* In the context of stochastic hydrology we should look at a time series
as a realization of a random function.

— real-valued discrete-time random function or

— areal-valued continuous-time random function
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* Irrespective of this view of reality, hydrologists have been using
techniques specially designed to analyze and model hydrological time
series, Which collectively know as “time series analysis”.
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The main reasons for analyzing hydrological time series
are:

1. Characterization:- to analyze seasonal behavior and trend
values .

ﬂ" Time-Series Analysis: Reasons

2. Prediction and forecasting:- to estimate the value of the
time series at non-observed points in time. This can be

e aprediction at a time in future (forecasting), or

e aprediction at a non-observed point in time in the past (fill
in gaps in the observed series due to missing values).

3. Identify and quantify input-response relations:-

. Many hydrological variables are the result of a number of
natural and man-induced influences. To quantify the effect
of an individual influence and to evaluate water
management measures, the observed series is split into
components which can be attributed to the most
important influences
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By Number variables/stations involves
— Single/univariate /time series

ﬂ" Time-Series Analysis: Classifications

4? — Multiple time series
d By the relation with time
g — Autocorrelation/correlation/correlation with time /dependent

— Uncorrelation /independent

e By the time Space
— Regular time series
— irregular time series
e By the trends and shifts involved

— Stationary
— Non-stationary
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e Others
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— Intermittent time series

— Counting time series
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Time-Series Analysis: Terminologies and rules
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e Moments and Expectation

— A single time series is considered to be a stochastic process that can be
characterized by its (central) statistical moments. In particular the first
and second order moments are relevant: the mean value, the variance
and the autocorrelation function. For a statistical stationary process
the mean value and the variance are

02 =VAR[Z1=E[lZ -u. WZ —u_}]
- The autocovarlance iS E: 1iIcaouil C vl LliIcC ICIC!LIUIIJIII[J Ul LI1IC process at
two points in time. For two points in time k time steps apart (often k is

* Discrete stationary time series :-

— most hydrological variables are continuous in time. However, if we consider the
variable Z(t) at regular intervals in time At , we can define a discrete time series

Z =Z(kA1) k=-c,.,~10L.. =,

called the time lag), the autocovariance is defined by

COVIZ,.Z, 1= EUZ,-u. MZ,, —p. }] k=—c,..,

—LOL... o
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Time-Series Analysis: Terminologies and rules

e Autocorrelation function (ACF):-
— In time series analysis we often use the function is called

3 Autocorrelation function (ACF), that defined by

‘n ,f _ _

e o _CoviZ,.Z.,]1 _ ElZ —u, }{ﬁZf-; i }] k= o 101 e
Q =t cov|z,.Z,] o’

=

— It can be proven that the value of the ACF is always between 1 and -1.
A value of 1 or -1 means a perfect correlation, while a value 0 indicates
the absence of correlation. From the definition it follows that the ACF
is maximum for k=0.

— The graphical representation of the ACF is called the autocorrellogram
Because the ACF is symmetrical around k=0, only the right (positive)
side is shown.

— The dynamic behavior of a time series is characterized by its variance
and ACF. This is visualized in figure for zero mean time series.
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e Autocorrelation function (ACF):-

ﬂ-‘ Time-Series Analysis: Terminologies and rules
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Time-Series Analysis: Terminologies and rules

* Discrete white noise process :-
— An important class of time series is the discrete white noise process a,.

ElZ+X]=E|Z]+E[X]
ElZX |=E|Z]E|X ]+ COV [Z£.X]

—
=

> < This is a zero mean time series with a Gaussian probability
e < distribution and no correlation in time.

m '

= >

UV oo Ela ]=0
E o . _[eZ i k=0

o ['“_-”.'1-1: I_ | [I' f:,F ﬂ —_® .D

= C - -

c = — Because of the absence of correlation in time, the discrete white noise
L0 8 process at time step t does not contain any information about the
g [t process at other time steps
< o * Rules of calculus
v — Calculation rules with expectations are summarized as:
©T

Flcl=c
T 2

< ‘S ElcZ]=cE[Z]

<

— Where X and Z are discrete time series and c is a constant.
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Time series Modeling
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All the concepts and principles discussed in the previous
sections are for the purpose representing the hydrological
time series by mathematical models

A number of stochastic models are presented with their
parameter estimation methods and model testing
procedures

The models in this section belongs to

a purely random process,

an autoregressive (AR) process

a moving average (MA) process,

an autoregressive moving average (ARMA) process, and

an autoregressive integrated moving average (ARIMA)process.



AAIT Time-Series Models: Principle

* Principle of linear univariate time series models :-
— The general concept of (linear) time series models is to capture as much

> information as possible in the model. This information is characterized
e by the mean value, the variance and the ACF. We consider the time
ﬂ series Z, as a linear function of a white noise process a,

Q

02

i J

4 Time series model v Z,

— Because the ACF(k) of the white noise process equals zero for any k # 0,
all information of the autocorrelation in Z, is captured in the time series
model.
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Time-Series Models: Autoregressive (AR)
 AR(1) Model:-

— Definition: A zero mean AR(1) process (Zt)is definedas Z,=¢Z,_, +q,

3 — Parameter Determination : since the white noise process is a zero
N mean, uncorrelated process, therefore the AR(1) process contain two
unknowns:

g * the first order auto regressive parameter ¢, and

* the variance of the white noise process o2

e These unknowns have to be determined from the characteristics of
the time series Z,, in particular the variance and the ACF

E[Z ,Z] . E[Z,]

o’
o = {} i
o a2

o, =00, +0. — crj=1 .
—

p ' o} O = Pzz

— Properties of an AR(1) model is stationary the absolute value of the
model parameter should be smaller than 1. |¢,| <1 if this condition is
not fulfilled, it follows that the variance of the process Z, does not exist.
In this case, the process Z, is said to be non-stationary.

— Example of an AR(1) process :- Let Zt be a zero mean AR(1) process,
with ¢ =0.9 and o =1:
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: Autoregressive (AR)

Time-Series Models
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Time-Series Models: Autoregressive (AR)

 AR(p) Model:-
- Definition: z: = ?Iz:—l T ;'-I’l}‘lz:—? T +¢pzj'—p + {I:
— Parameter Determination : Similar to the parameter determination of

an AR(1) process, the parameters of the AR(p) model can be expressed
in terms of the variance and auto correlation of the process

Z:—]Z: =l.:E“ill Z .,z +¢2 Z ,Z

—1 -1 —1"=-2

+eetp £ L +Z a

-l Ti-p -1

z:—izr :ﬂ’l}l Z:—E zr—l + '.:‘ﬁi z:—? zr—?_ Tt ¢p z:—z z:—p + z:—zﬂ:

Z:—pzr =¢"l zr—p zr—l +¢2 Z Z

ip Lyt pZ;_pz;_erZ:_pﬂ;
Pz =0,  +0, pﬂ,l+...+¢p Pz p
Pz s =@, Pz +¢@, +--+ ;ﬁrp Pz o 1 Pz © Pz | |9 Prz.
. Pzza 1 " Pzzpa . ¢, _ Pzz 2
Przp =0 Przp1 0 Przp o+ + 0, | Pazps Przpa U | 0| | Py
2
_Pzz,]“_pzz,z} _Pzz,z — Pz
;E’II[ - 2 ?‘Z - 1 y)
]._ pzzJ - PEE 1
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Time-Series Models: Moving average (MA)
e MA(1) Model:-

— Definition: A zero mean MA(1) process (Z, ) is defined as 4 =@ 6.,

— Parameter Determination : since the white noise process is a zero
mean, uncorrelated process, therefore the AR(1) process contain two
unknowns:

e the moving average parameter 6, and
» -the variance of the white noise process o2

e These unknowns have to be determined from the characteristics of
the time series Z,, in particular the variance and the ACF

2 — 80’ - : — 2 o;
ElZZ 1=-6¢> , =--9% , _ _-60, _ -6 o; =—=
-1 1™ a 7, ] o2 1
£

zz 1 “_ﬁll}gj_{l_i_ﬁ.ll} b 1+If'}|:‘

— Properties of an AR(1) model is always stationary and invertible. This
can be seen by subtracting two successive values of the process Zt.

— Example of an AR(1) process :- Let Zt be a zero mean MA(1) process,
with 6, =-09and o> =1,
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Time-Series Models: Moving average (MA)
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AAIT Time-Series Models: Moving average (MA)
MA(p) Model:-

— Definition: <. =a —6a_,-——6a_,
— Parameter Determination : Similar to the parameter determination of

an MR(1) process, the parameters of the MR(p) model can be
expressed in terms of the variance and auto correlation of the process

E[ZZ

=k

] = E[{a: - l'Ellﬂr—] - an:—q )(ar—& - Elar—&—] - _H a:—k—q) (6?4}

For k=0 equation (6.74) yields:

E[ZZ =0, =El(a,-8a,,——6a, )]
’ ! S (6.75)
o, =(1+6 +6; +--+6,)0,
For k>0 equation (6.74) gives:
HZZ - (-6, +6,6,,, ++6,6)0; fork=12...4q (676)
fork=>gq
Combining (6.75) and (6.76) yields the set of equations:
COOOMT 00 g, g
Pry=7 U+67+6, +-+8) (6.77)

0 fork > gq




Autoregressive Moving Average Model

We will now discuss models that are combinations of the AR and MA models. These
are called autoregressive moving average (ARMA) models. An ARMA(p, ) mode] is
defined as
X=X 4o+ 0 g 64 Pty +0 4 Bytreg
Using the lag operator L, we can wrile this as
dL)X, = O(L)e,
where ®(L) and (L) are polynomials of orders p and ¢, respectively, defined as
OL)=1 -l — oyl = —a,L”

BL)=14+BL+ oL’ +- + L

For stationarity we require that the roots of ®(L) = 0 lie outside the unit circle. For
invertibility of the MA component, we require that the roots of 6(L) lie outside the
unit circle. For instance, for the ARMA(2, 2) process these conditions are given by
equations (13.1) and (13.4). The acyf and acf of an ARMA model are more complicated
than for an AR or MA model.
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ARMA Model....

We will derive the acf for the simplest case: the ARMA(I, 1) process
Xi=wi X+ + e
In terms of the lag operator L this can be wnitten as
X, —a X1 =&+ Pié—y

or
(1 —eq L)X, = (1 + piL)e

or

= (14 L)1 +aL +&*L2 4+ e,
=[l1+(e+fL +ala + AL’ +a2{a+ﬁ}L3 +
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ARMA Model....
Since &, is a pure random process with variance o” we get
var(X) = [+ (e + B + o+ )’ 4o’

2 2
i (1+{c¢+ﬁ) )f: . +2a,ﬂﬂ1

B | —a? | —at
Also
cov(X, X)) = [+ B) +ala+ Bl + @ + B + - lo*

?
= (u'+ﬁ+ (Elt’:zw) 0’

{ﬂ‘l‘ﬁ](l +ﬂﬂ) 7
- - 0
| -
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ARMA Model....

cov(X,, X)) (@4 )1 +ef)
var(X,) 1+ B+ 2ap

Successive values of p(k) can be obtained from the recurrence relation p(k) = ap(k — 1)
for k = 2. For the AR(1) process of p(1) = o, 1t can be verified that p(1) for the ARMA(I,

) process 1s = a or < « depending on whether f > 0 or < 0, respectively.

p(l) =
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ﬁ-‘ Autoregressive Integrated Moving Average Model

Autoregressive Integrated Moving Average Process

[n practice, most time series are nonstationary. One procedure that is often used to conver
a nonstationary series 0 a stationary series 1§ successive differencing, Let us define the
operator A = 1 - L, so that AX, = X, = Xy, A%, = (X, = X,y ) = (X, = X,.o), and
50 on, Suppose that A”X, is a stationary series that can be represented by an ARMA( p,
g) model. Then we say that X, can be represented by an auloregressive integraled moving
average (ARIMA) model ARIMA(p, d, g). The model 15 called an integrated model
because the stationary ARMA model that is fitted to the differenced data has to be
summed or “integrated” to provide a model for the nonstationary data. Actually, even
If there 15 no need for a moving average component n modeling X, the procedure of
differencing X, will produce a moving average process (the Slutsky effect mentioned in
our discussion of the MA process).
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Al GAR Models

-"I:"' GAR Models. Skewed hydrologic processes must be transformed into normal proc-
=  esses before AR and ARMA models are applied. However, a direct modeling ap-
> < proach which does not require a transformation may be a viable alternative. The
4= & gamma autoregressive process (GAR process) offers such an alternative. It is defined
.U_') S 103
= >
.~ b ye=dy-+¢ (19.3.15)
‘& ™=  where ¢ is the autoregressive coefficient, ¢, is a random component, and y, has a
cC o0 coetncient, & ! :
oD three-parameter gamma marginal distribution. The noise £, can be obtained as a
© £ function of ¢ and the parameters of the gamma distribution A, «, and f(the location,
o O scale, and shape parameters, respectively) as
o Y
.2 : e=A(l—d)+n (19.3.16)
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AA'TM Multivariate AR and ARMA models

Multivariate AR and Multivariate ARMA Models. Consideg a multiple time ser@es
Y,, a column vector with elements ¢V, . . . , " in which n1s the number of series

3 (number of sites or number of variables) under consideration. The multivariate
N AR(1) model suggested by Matalas!'* is defined as
Q Z,=AZ,_,+ Be, (19.3.42)
> . .
o= in which Z, =Y, — u, A, and B are n- by n-parameter matrices and g is a column
parameter vector with elements £V, . . . , 4. The noise term ¢, is also a column
vector of noises &V, . . . , &, each with zero mean such that E(e.eT) =1, where T

denotes the transpose of the matrix and I is the identity matrix, and E(e,e”_,) = O for
k # 0. In addition, it is assumed that g, is uncorrelated with Z,_, and g, is normally
distributed. Model (19.3.42) has been widely used in operational hydrology. Higher-
order multivariate AR models are also available.!34!5% Likewise, the multivariate
ARMA(1, 1) model is written as!30.135

ZI = A|Z,_l + BG, - Cl8,_1 (19.3.43)

in which C, is an additional n- by n-parameter matrix.
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AAIT Estimation of AR, MA, and ARMA Models

e Testing Goodness of Fit

3 — When an AR, MA, or ARMA model has been fitted to a given
ﬂ time series, it is advisable to check that the model does really
Q

> give an adequate description of the data

— There are two criteria often used that reflect the closeness of

fit and the number of parameters estimated.
e Akaike information criterion (AIC), and

e Schwartz Bayesiancriterion (SBC) or Bayesian information

Addis Ababa Un
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ﬁ‘ Estimation of AR, MA, and ARMA Models
AIC(p) = nlogd +2p
BICIp) = nlogd7 + plog

Here n 1s the sample size, If RSS is the residual sum of squares, V', then a; =
RSS/(n - p). If we are considering several ARMA models, we choose the one with th
Jowest AIC or BIC, (The two criteria can lead to different conclusions.) These goodnes:

of fit eriteria are more like the R or minimum 6*-type crterion, In addition, we have
t0 check the serial correlation pattern of the residuals—that is, we need to be surc
that there is no serial correlation. One can look at the first-order autocorrelation among

the tesiduals. However, as discussed in Chapter 6, on cannot use the Durbin-Watsor
statist. With autoregressive models, we have to use Durbin’s -fest, or the TM fes

discussed in Section 6.8,
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‘ﬂ Disaggregation Models

Disaggregation of Annual to Seasonal Series

Generally, modeling of seasonal hydrologic time series is geared to preserving sea-
sonal statistics only, while statistics at other levels of aggregation, such as annual
statistics, may not be preserved. For instance, if the PAR(1) model is used to generate
monthly flows, the historical monthly statistics are usually preserved, yet if such
generated monthly flows are aggregated to obtain the corresponding annual flows,
there 1s no assurance that the historical annual statistics will be preserved. Disaggre-
gation models have been developed for reproducing statistics at more than one level
of aggregation, Disaggregation models can be used for both temporal and spatial
disaggregation; however, the models in this section are mostly described in terms of
temporal disaggregation,

Monlhly

Addis Ababa University
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Traditional Valencia-Schaake Model.
Y=AX+ Be

where X is an n vector of annual values at n sites, Y is an ne vector of seasonal value:
in which w 1s the number of seasons in the year, A and B are nw- by nw-paramete
matrices, and & is an n vector of independent standard normal variables. A desir
able property of disaggregation models is additivity, i.e., the sum of the seasona
values must add up to the annual values. The parameters A and B may be estimate

byl39
A = SyxSxx
ﬁﬁr = SY}" — ASXY

ﬂ Disaggregation Models
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Disaggregation Models
Markov Chains

The models included in the previous sections are applicable for continuous variables.
However, various processes in hydrology can be formulated as discrete-valued proc-
esses Of continuous processes can be discretized for computational convenience. In
these cases, the theory of Markov chains may be applicable. Markov chains have been
used in hydrology for modeling processes such as precipitation, stream flow, soil
moisture, and water storage in reservoirs.

Definition and Properties. Consider X(¢) to be a discrete-valued process which
started at time 0 and developed through time ;. The values that the X() process takes
on are denoted by x,, t=0,1, . . . . Then

PX(t) = x)X(0) = xp, X() =X, . . ., X(t—1)=x_,] (19.3.68)

is the probability of the process being equal to x, at time ¢, given its entire history. If
the foregoing probability simplifies to

PX(t) = x| X(t — 1) =x,_,] (19.3.69)



AAIT | Disaggregation Models : Markov Chains

. Transition Probability Matrix. A simple Markov chain is defined by its transition

—
= probability matrix P(t), which is a square matrix with elements p;(¢) given by

2 pil) = PLX@) = jIX(t — 1) = i] (19.3.70)

w - : L

S= S. forall/,jpairs. Figure 19.3.4 shows that the chain may go from state /at ime ¢ — 1 to

g BO states 1, . . ., rat time ¢, with corresponding transition probabilities p;,(¢), . . . ,
= O .. Then,

S 8 ,
D) =1 i=1,...,r
g 'S 2‘1 p;(t)

(C |a_J Furthermore, if the transition probability matrix P(¢) does not depend on time, the
0 @  Markov chain is a homogeneous chain or a stationary chain. In this case, the nota-
<L o) tions P and p,; are used. For the rest of this section, a homogeneous Markov chain is

v q assumed.

T n-Step Probability. Assume that the chain is now in state fand after ntime stepsitis
O 3 in state j. The transition probability from i to j in n steps, denoted by p{?, is given
< - m— byl33
fd
(V))
c = 2‘, iV, n>1 (19.3.71)
and p{) = p;;. Thus, p{P, i,j =1, . , rare elements of the n-step transition proba-

§ bthty mamx P@ It may be shown that P"') can be found by multiplying the one-step
77 transition probability matrix P by itself n times.

-
~aw”
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Al Disaggregation Models : Markov Chains

Steady-State Probabilities. The steady-state probability vector q* with ele-

ments q¥, . . . , g¥represents the average fraction of time the chain is in states
S~ 1, . . ., r, respectively. It can be found by estimating P’ for large ¢ until it con-
= verges. Also, the elements g%, i =1, . . . , r can be found by solving the system of
v equations
—
) r
> @d=>aqp. i=1,...,r (19.3.734a)

k=1
>agr= (19.3.73b)

=]
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4-L| Disaggregation Models : Markov Chains

Example. Assume that daily rainfall for a given site is represented by a simple
Markov chain with two states, j = 1 for dry and j = 2 for wet, and a transition
probability matrix P with elements p,, = 0.6, p;; = 0.4, p,, = 0.3, and p,, = 0.7.
Assume also that initially the day is dry or j =1 at ¢t = 0. This also means that the
initial marginal state probability vector is g(0) = [1, 0]. Find: (1) the probability that
the next day will be a dry day, (2) the probability that after 2 days, the day will be wet,
(3) the probability of states dry and wet after 3 days, and (4) the probability of states
dry and wet at any given day (regardless of the initial state). Since initially the day is
dry, then p{9 = p,, = 0.60 and Eq. (19.3.71) gives p{3 = p, D1z + D120 = 0.6 X
0.4 + 0.4 X 0.7 = 0.52. The probabilities of states dry and wet after 3 days are deter-

mined by

0.6 041}’ 0.444 0.556
a(3) = q(0) [0_3 0_7] = 0] [0.417 0.583

Finally, the probabilities of states dry and wet regardless of the initial state (long-run
probabilities) are obtained by solving the system of Eqs. (19.3.73). Alternatively, it
may be obtained from P® where ¢ is large. For example, for / = 8, it may be shown

p® — [0.429 0.571]

] =[0.444 0.556]

0.429 0.571
Therefore, ¢* = [0.429 0.571] with approximation to the third decimal figure.



AAIT Tools use for Time series Analysis

e Excel
 Matlab
e R

e SPSS

* Mintab
e etc
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Time Series Structure Tests
H-‘Trends and Shifts
Natural and human factors may produce gradual and instantaneous
> re
- trends or shifts (jumps)
7
T e Examples
= — Effect of a large forest fire in a

basin on runoff
— Large land slides sediment
transport on water quality
— Changes of land use or

reservoir construction on

stream flows

— Effects of global warming ar " i Al 4 t
climate changes | o {m
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Test for Trends

Turning Point test
— Itis a method, which identify how many turning points are there in a

—
=
- < sample data.
= < ,
B O~ — the procedure is
= S eArrange the data in order of their occurrence
UV oo
> (o) *Apply either of the conditions
C o X, 1< X, >X.,; OF X, 1 >X<Xi\q
> C eLet the total number of turning point be P
g 'S *Expected number of turning points in the series is E(p) = 2(N -2)
(g+] IQ_J where N is the total number of data 3
o
(T
ﬁ o *Variance of P is y/5r(p) = (16N —29)
T S ;
me = * Expressing P in standard normal form z = (P—E(P)
afd 05
g ‘= Var(p)
fd
(V))
c

*Test it at 5% level of significance, that is take the value of Zas * 1.96
at 5% level of significance
oIf Zcal < Ztab there is no trend

&

i
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Determination and testing of Trends

Kendal’s Rank-correlation Test

Pick up the first value of the series xi and compare it with the rest of the
series x2, X3, ....xn. And find out how many times it is greater than others,
assign all the great values with one suffix (P1ex = all expected values of X1)
Repeat it for all other values

Find P= Plex +P2ex +........ Pnex

Maximum value of P can be n(n—1)

n(n-1)

E(P) =
4P
n(n-1)

Kendal’s T is computed as 7 = H }—1}('[) should be zero

Variance of T= var(r) = {{Zg(nz(:—ti’))}}

Standard test for Statistics of 7 — ‘
Var(z)"?

Test the hypothesis at 5% level of significance of Z, i.e. Z= £1.96



AAIT 1 Test for Shifts (Jumps)

Test for Shift in the Mean. Supposethaty,,r=1, . . . , Nisanannual hydrologi¢
series which is uncorrelated and normally distributed with mean u and standar
deviation ¢ and N = sample size. The series is divided into two subseries of sizes N
and N, such that N, + N, = N, The first subseries y,, t = 1,2, . . . ,N;,hasmeanu
and standard deviation g, and the second subsenes y,,t =N, + |, N, +2, . . .,
is assumed to have mean y, and standard deviation o. The simple / test can be used t
test the hypothesis 1, = u, when the two subseries have the same standard deviatio
o. Rejection of the hypothesis can be considered as a detection of a shift. The t
statistic in this case is given by!06.173

iversity

T, = Iyzl—ylll (19.2.26
SN TR,

\/(N - l)s2+ (Nz— 1)s3

1

(19.2.27)

Addis Ababa Un
Institute of Technology (AAIT)

where ¥, and y, and s? and s are the estimated means and variances of the first an
the second subseries, respectively. The hypothesis u, = u, isrejectedif 7.> T, _,,
where T,_,,, is the 1 — a/2 quantile of the Student’s  distribution with v = N —
degrees of freedom and a is the significance level of the test. Modifications of the t
are available when the variances in each group are different!’® and when the da
exhibit some significant serial correlation.!%
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Test for Shifts (Jumps)

Mann-Whitney Test for Shift in the Mean. Suppose thaty,,t=1, ... ,Nisan
annual hydrologic series that can be divided into two subseries y,, . . . , yy, and
Vn..» - - - »ynOfsizes N and N,, respectively, such that N, + N, = N. A new series,
z,,t=1, ... ,N,isdefined by rearranging the original data y, in increasing order of
magnitude. One can test the hypothesis that the mean of the first subseries is equal to
the mean of the second subseries by using the statistic!”?

N,
3 RO, = NN, + Ny + 1)2

— 1=1
e T TIN NN, ¥ N, + 1D)/12]7 (19.2.28)
where R(y,) 1s the rank of the observation y, in ordered series z,. The hypothesis
of equal means of the two subseries is rejected if lu | > u, _,,,, where u,_,, is the
1 — a/2 quantile of the standard normal distribution and « is the significance level of
the test. Equation (19.2.28) can be modified for the case of groups of values that are
tied.>3
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Test of Stationary

One way of describing a stochastic process is to specify the joint
distribution of the variables X.. This is quite complicated and not
usually attempted in practice. Instead, what is usually done is that we
define the first and second moments of the variables X; .

These are

1. The mean pu(r) = E(X;).
2. The variance (1) = var(X,).
3. The autocovariances 1y, 12) = cov(X;y, X2).

When 1, = f» = 1, the autocovariance is just o>(1).
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