Chapter Four Stochastic Analysis of Stream flow

- Introduction
- Descriptive statistics
- Probability and random variables
- Hydrological statistics and extremes
- Random functions
- Time series analysis
- Geostatistics
- Forward stochastic modelling
- Optimal state prediction and the Kalman filter

Stochastic

- The term "Stochastic" derives from the Greek word "Stochasticos", which in turn is derived from "Stochazesthai" means
 - (a) to shoot (an arrow) at a target,
 - (b) to guess or conjecture (the target),
 - (c) to imagine, think deeply, bethink, contemplate, cogitate, meditate
- In the modern sense "stochastic" in stochastic methods refers to the random element incorporated in these methods.
- Stochastic methods thus aim
 - at predicting the value of some variable at non-observed times or at non-observed locations, while also stating how uncertain we are when making these predictions

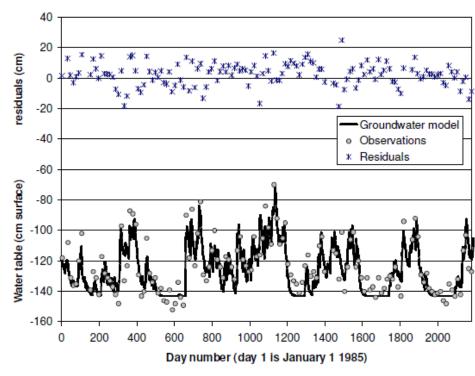
Addis Ababa Universit

AA

of Technology

uncertainty associated with our predictions

AA **Addis Ababa Universit** of Technology Institute



- observation errors
- errors in boundary conditions, initial conditions and input
- unknown heterogeneity and parameters
- scale discrepancy
- model or system errors

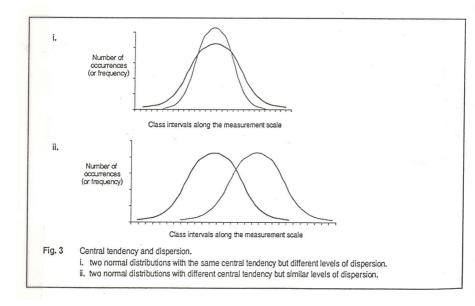
Hydrologic Models

- Deterministic (eg. Rainfall runoff analysis)
 - Analysis of hydrological processes using deterministic approaches
 - Hydrological parameters are based on physical relations of the various components of the hydrologic cycle.
 - Do not consider randomness; a given input produces the same output.
- Stochastic (eg. flood frequency analysis)
 - Probabilistic description and modeling of hydrologic phenomena
 - Stastical analysis of hydrologic data based on their randomness.

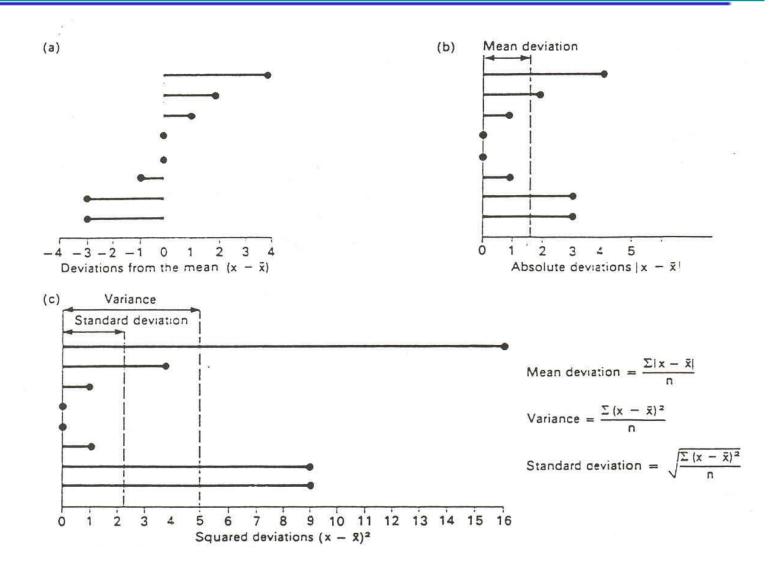
Statistics in Hydrology

- Mean, median and mode (central tendency)
- Dispersion: the spread of the items in a data set around its central value

<u>Measure of central tendency</u> Mode Median Mean Measure of dispersion Range Quartile deviation Standard dev.

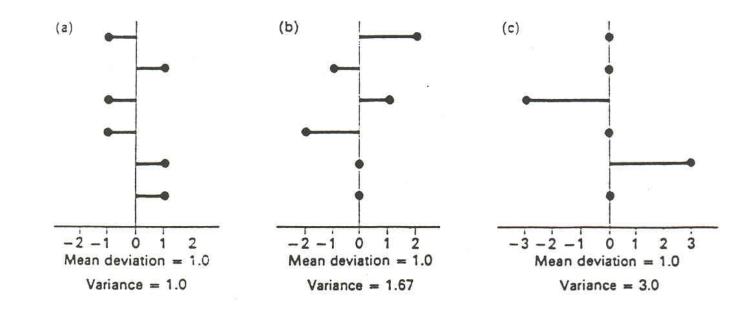


Institute of Technology (AAiT) **Addis Ababa University**



Statistics in Hydrology

Why do we need to include variance/SD?



of Technology (AAiT

nstitute

Addis Ababa University

Events and extreme events

"Man can believe the impossible. But man can never believe the improbable."

Oscar Wilde

"It seems that the rivers know the [extreme value] theory. It only remains to convince the engineers of the validity of this analysis."

E.J. Gumbel

AA

of Technology

nstitute

FREQUENCY ANALYSIS

• **Basic Problem:**

To relate the magnitude of extreme events to their frequency of occurrence through the use of probability distributions.

Addis Ababa University

of Technology (AAi

Addis Ababa University

FREQUENCY ANALYSIS

Basic Assumptions:

A. Analyzed Data are to be statistically independent and identically distributed

selection of data (Time dependence, time scale, mechanisms).

B. Change over time due to man-made (eg. urbanization) or natural processes do not alter the frequency relation

temporal trend in data (stationarity)

AA

Technology

FREQUENCY ANALYSIS

Practical Problems:

- Selection of reasonable and simple distribution.
- Estimation of parameters in distribution.
- Assessment of risk with reasonable accuracy.

nstitute

Addis Ababa University

of Technology (AAiT

Addis Ababa University

REVIEW OF BASIC CONCEPTS

<u>Probabilistic</u>

Outcome of a hydrologic event (e.g., rainfall amount & duration; flood peak discharge; wave height, etc.) is random and cannot be predicted with certainty.

• <u>Population</u>

The collection of all possible outcomes relevant to the process of interest. Example:

(1) Max. 2-hr rainfall depth: all non-negative real numbers;

(2) No. of storm in June: all non-negative integer numbers.

• <u>Sample</u>

A measured segment (or subset) of the population.

• <u>Random Variable</u>

A variable describable by a probability distribution which specifies the chance that the variable will assume a particular value.

of Technology (AAiT

nstitute

Addis Ababa University

REVIEW OF BASIC CONCEPTS

Frequency and Relative Frequency

- o For discrete random variables:
 - o Frequency is the number of occurrences of a specific event.
 - Relative frequency is resulting from dividing frequency by the total number of events. e.g.

n =no. of years having exactly 50 rainy days;

Let *n*=10 years and *N*=100 years.

Then, the frequency of having exactly 50 rainy days is 10 and the relative frequency of having exactly 50 rainy days in 100 years is n/N = 0.1.

- o For continuous random variables:
 - o Frequency needs to be defined for a class interval.
 - A plot of frequency or relative frequency versus class intervals is called histogram or probability polygon.
 - As the number of sample gets infinitely large and class interval length approaches to zero, the histogram will become a smooth curve, called **probability density function (PDF)**.

of Technology (AAiT)

nstitute

Addis Ababa University

REVIEW OF BASIC CONCEPTS

Probability Density Function (PDF) -

• For a continuous random variable, the PDF must satisfy

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

and $f(x) \ge 0$ for all values of *x*.

• For a discrete random variable, the PDF must satisfy $\sum_{all x} p(x) = 1$

and $1 \ge p(x) \ge 0$ for all values of x.

(AAIT)

of Technology

nstitute

REVIEW OF BASIC CONCEPTS

Cumulative Distribution Function -

For a continuous random variable,

$$\Pr(X \le x_o) = \int_{-\infty}^{x_o} f(x) \, dx$$

For a discrete random variable, by

$$\Pr(X \leq x_o) = \sum_{all \ x_i \leq x_o} p(x_i)$$

Addis Ababa University

Statistical Moments

- Descriptors commonly used to show statistical properties of a sample those indicative to population
 - (1) Central tendency;
 - (2) Dispersion;
 - (3) Asymmetry.
- Frequently used descriptors in these three categories are related to <u>statistical moments</u>

- Two types of statistical moments are commonly used in hydrosystem engineering applications:
 - (1) product-moments and
 - (2) L-moments.

of Technology (AAiT

Addis Ababa University

Product-Moments

*r*th-order <u>product-moment</u> of X about any reference point $X=x_o$ is defined,

for continuous case, as $E\left[\left(X-x_o\right)^r\right] = \int_{-\infty}^{\infty} \left(x-x_o\right)^r f_x(x) dx = \int_{-\infty}^{\infty} \left(x-x_o\right)^r dF_x(x)$

for discrete case, $E\left[\left(X-x_o\right)^r\right] = \sum_{k=1}^K (x_k - x_o)^r p_x(x_k)$

where $E[\cdot]$ is a <u>statistical expectation operator</u>.

- In practice, the first three moments (*r*=1, 2, 3) are used to describe the **central tendency**, **variability**, **and asymmetry**.
- Two types of product-moments are commonly used:
 - <u>Raw moments</u>: $\mu_r' = E[X^r]$ *r*th-order moment about the origin;
 - <u>Central moments</u>: $\mu_r = E[(X \mu_x)^r] = r$ th-order central moment

4

Technology

nstitute

Addis Ababa Universit

Product-Moments

Relations between two types of product-moments are:

where $C_{n,x}$ = binomial coefficient = n!/(x!(n-x)!)

Main disadvantages of the product-moments are:

- 1. Estimation from sample observations is sensitive to the presence of <u>outliers</u>; and
- 2. Accuracy of sample product-moments deteriorates rapidly with increase in the order of the moments.

of Technology (AAiT)

Addis Ababa University

Mean, Mode, Median, and Quantiles

Expectation (1st-order moment) measures central tendency of random variable X

$$E[X] \neq x = \int_{-\infty}^{\infty} f_{x}(d)x = \int_{-\infty}^{\infty} dF_{x}(d) = \int_{-\infty}^{\infty} \left[1 F_{x}(d)x\right]$$

- Mean (μ) = Expectation = λ_1 = location of the centroid of PDF or PMF.
- Two operational properties of the expectation are useful:

for dependent $E\left(\sum_{k=1}^{K} a_k X_k\right) = \sum_{k=1}^{K} a_k \mu_k$ in which $\mu_k = E[X^k]$ for k = 1, 2, ..., K.

For independent random variables,

$$E\left(\prod_{k=1}^{K} X_{k}\right) = \prod_{k=1}^{K} \mu_{k}$$

<u>Mode</u> (x_{mo}) - the value at which its PDF is peaked. The mode, x_{mo} , can be obtained by solving

$$\left[\frac{\partial f_{x}(x)}{\partial x}\right]_{x=x_{mo}}=0$$

Addis Ababa University

(AAIT)

Technology

b

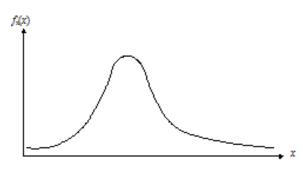
nstitute

Mean, Mode, Median, and Quantiles

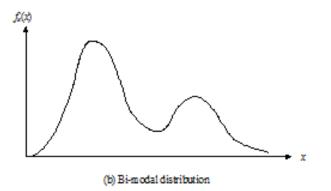
<u>Median (x_{md}) </u> - value that splits the distribution into two equal halves, i.e.,

$$F_{x}(x_{md}) = \int_{-\infty}^{x_{md}} f_{x}(x) dx = 0.5$$

- <u>Quantiles</u> 100*p*th quantile of a RV *X* is a quantity x_p that satisfies $P(X \le x_p) = F_x(x_p) = p$
- A PDF could be uni-modal, bimodal, or multi-modal. Generally, the mean, median, and mode of a random variable are different, unless the PDF is symmetric and uni-modal.



(a) Uni-modal distribution



Variance, Standard Deviation, and Coefficient of Variation

<u>Variance</u> is the second-order central moment measuring the spreading of a RV over its range,

$$Var[X] = \mu_2 = \mu \sigma_x^2 = \mathcal{E}\left[\left(X - \mu_x\right)^2\right] \int \int_{-\infty}^{\infty} (dx - x)^2 x(x)$$

- <u>Standard deviation</u> (σ_x) is the positive square root of the variance.
- <u>Coefficient of variation</u>, $\Omega_x = \sigma_x / \mu_x$, is a dimensionless measure; useful for comparing the degree of uncertainty of two RVs with different units.
- Three important properties of the variance are:
 - (1) Var[c] = 0 when c is a constant.
 - $(2) Var[X] = E[X^2] E^2[X]$
 - For multiple independent random variables,

$$Var\left(\sum_{k=1}^{K} a_k X_k\right) = \sum_{k=1}^{K} a_k^2 \sigma_k^2$$

where a_k = a constant and σ_k = standard deviation of X_k , k=1,2, ..., K.

Addis Ababa University

(AAIT)

Technology

ot

nstitute

Skewness Coefficient

Measures asymmetry of the PDF of a random variabl

<u>Skewness coefficient</u>, γ_x , defined as

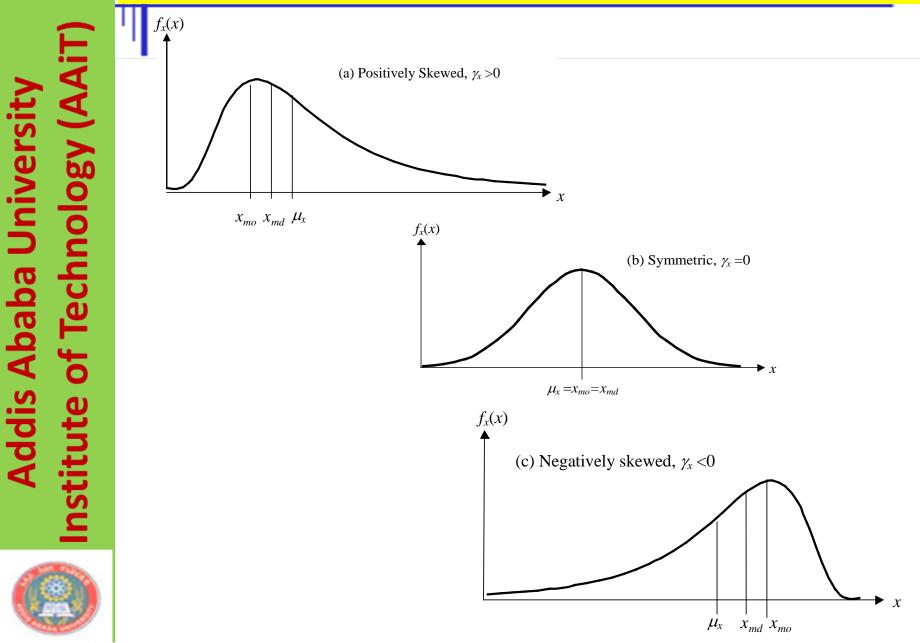
$$\gamma_{x} = \frac{\mu_{3}}{\mu_{2}^{1.5}} = \frac{E\left[\mu X - x\right]^{3}}{\sigma_{x}^{3}}$$

- The sign of the <u>skewness coefficient</u> indicates the degree of symmetry of the probability distribution function.
- <u>Pearson skewness coefficient</u> –

$$\gamma_1 = \frac{\mu_x - \chi_{mo}}{\sigma_x}$$

• In practice, product-moments higher than 3rd-order are less used because they are unreliable and inaccurate when estimated from a small number of samples

AAIT Relative locations of mean, median, and mode for positively skewed, symmetric, and negatively-skewed distributions.



Addis Ababa University

(AAiT)

of Technology

- Measure of the peakedness of a distribution.
- Related to the 4th central product-moment as

$$\kappa_{x} = \frac{\mu_{4}}{\mu_{2}^{2}} = \frac{E\left[\left(\mu X - \mu_{x}\right)^{4}\right]}{\sigma_{x}^{4}}$$

- For a normal RV, its kurtosis is equal to 3. Sometimes, coefficient of excess, $\varepsilon_x = \kappa_x 3$, is used.
- All feasible distribution functions, skewness coefficient and kurtosis must satisfy

$$\gamma_x^2 + 1 \le \kappa_x$$

F

Product-moments of random variables

	1
2	
	2
LS	>
J e	60
.2	
2	lo
σ	4
9	S
a	Ĕ
9	ي و
4	Ö
S	Ð
G	Ě
J	2
4	÷E
	S

_					
Moment	Measure of	Definition	Continuous Variable	Discrete Variable	Sample Estimator
First	Central Location	Mean, Expected value $E(X) = \mu_x$	$\mu_x = \int_{-\infty}^{\infty} x f_x(x) dx$	$\mu_x = \sum_{all x's} x_k p(x_k)$	$\overline{x} = \sum x_i / n$
		Variance, $Var(X) = \mu_2 = \sigma_x^2$	$\sigma_x^2 = \int_{-\infty}^{\infty} (x - \mu_x)^2 f_x(x) dx$	$\sigma_x^2 = \sum_{all \ x's} (x_k - \mu_x)^2 P_x(x_k)$	$s^2 = \frac{1}{n-1} \sum \left(x_i - \overline{x} \right)^2$
Second	Dispersion	Standard deviation, σ_x	$\sigma_x = \sqrt{Var(X)}$	$\sigma_x = \sqrt{Var(X)}$	$s = \sqrt{\frac{1}{n-1} \sum \left(x_i - \overline{x}\right)^2}$
		Coefficient of variation, Ω_x	$ \Omega_x = \sigma_x / \mu_x $	$\Omega_x = \sigma_x / \mu_x$	$C_v = s/\bar{x}$
Third	Asymmetry	Skewness	$\mu_3 = \int_{-\infty}^{\infty} (x - \mu_x)^3 f_x(x) dx$	$\mu_3 = \sum_{all \ x's} (x_k - \mu_x)^3 p_x(x_k)$	$m_3 = \frac{n}{(n-1)(n-2)} \sum (x_i - \bar{x})^3$
		Skewness coefficient, γ_x	$\gamma_x = \mu_3 / \sigma_x^3$	$\gamma_x = \mu_3 / \sigma_x^3$	$g = m_3 / s^3$
			$\mu_4 = \int_{-\infty}^{\infty} (x - \mu_x)^4 f_x(x) dx$	$\mu_4 = \sum_{all \ x's} (x_k - \mu_x)^4 p_x(x_k)$	$m_4 = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum \left(x_i - \bar{x}\right)^4$
Fourth	Peakedness	Kurtosis, κ_x	$\kappa_x = \mu_4 / \sigma_x^4$	$\kappa_x = \mu_4 / \sigma_x^4$	$k = m_4 / s^4$
		Excess coefficient, ε_x	$\varepsilon_x = \kappa_x - 3$	$\varepsilon_x = \kappa_x - 3$	

of Technology (AAiT)

Addis Ababa University

Some Commonly Used Distributions

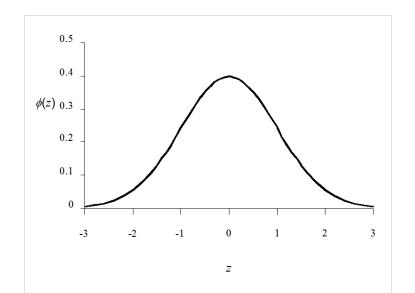
NORMAL DISTRIBUTION

$$f_N\left(x \mid \mu_x, \sigma_x^2\right) = \frac{1}{\sqrt{2\pi} \sigma_x} \exp\left[-\frac{1}{2} \left(\frac{x - \mu_x}{\sigma_x}\right)^2\right], \text{ for } -\infty < x < \infty$$

Standardized Variable:

$$Z = \frac{X - \mu}{\sigma}$$

Z has mean 0 and standard deviation 1.



Addis Ababa University titute of Technology (AAiT)

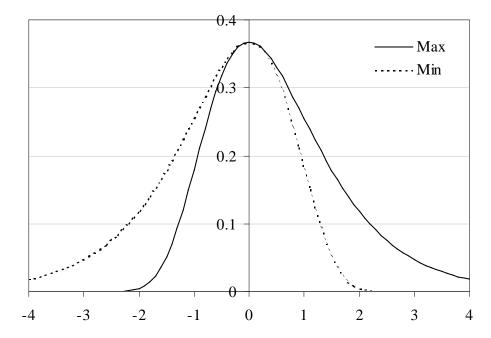
Some Commonly Used Distributions LOG-NORMAL DISTRIBUTION $f_{LN}(x \mid \mu_{\ln x}, \sigma_{\ln x}^{2}) = \frac{1}{\sqrt{2\pi} \sigma_{\ln x} x} \exp \left| -\frac{1}{2} \left(\frac{\ln(x) - \mu_{\ln x}}{\sigma_{\ln x}} \right)^{2} \right|, x > 0$ 1.6 1.4 (a) $\mu_x = 1.0$ $\Omega_x=0.$ 1.2 1.0 0.8 $(x)^{NT}f$ 0.6 $\Omega_x=0.$ 0.4^{-1} $\Omega = 1.3$ 0.2^{-} 0.0^{-1} 3 x 5 0 2 4 6 1 0.7 u*_*=1.65 0.6 (b) $\Omega_{x} = 1.30$ 0.5 0.4 $\mu = 2.25$ $(x)^{NT}_{0.3}$ μ_=4.50 0.2 0.1 0 2 3 5 0 1 4 6 х

Some Commonly Used Distributions

Gumbel (Extreme-Value Type I) Distribution

$$F_{EV1}(x \mid \xi, \beta) = \exp\left\{-\exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \quad \text{for maxima}_{f_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left[-\left(\frac{x-\xi}{\beta}\right)\right]\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left\{-\left(\frac{x-\xi}{\beta}\right)\right\}\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left\{-\left(\frac{x-\xi}{\beta}\right)\right\}\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left\{-\left(\frac{x-\xi}{\beta}\right)\right\}\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left\{-\left(\frac{x-\xi}{\beta}\right)\right\}\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left\{-\left(\frac{x-\xi}{\beta}\right)\right\}\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left\{-\left(\frac{x-\xi}{\beta}\right)\right\}\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left\{-\left(\frac{x-\xi}{\beta}\right)\right\}\right\} \text{ for maxima}_{F_{EV1}}(x \mid \xi, \beta) = \frac{1}{\beta}\exp\left\{-\left(\frac{x-\xi}{\beta}\right) - \exp\left\{-\left(\frac{x-\xi}{\beta}\right)\right\}\right\} \text{ for maxima}_{F_{$$

 $f_{EV1}(y)$



Institute

of Technology (AAiT)

Addis Ababa University

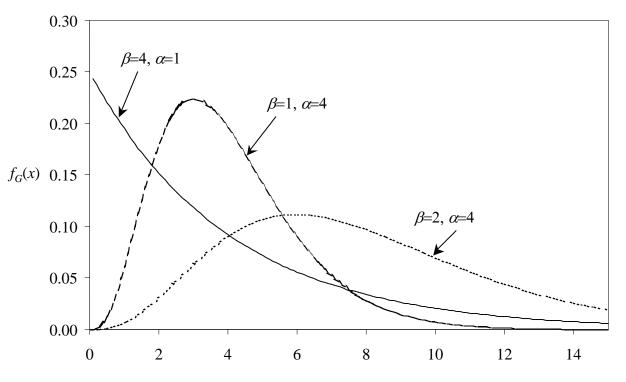
of Technology (AAiT)

Addis Ababa University

Some Commonly Used Distributions

Log-Pearson Type 3 Distribution

$$f_{P3}(x \mid \xi, \alpha, \beta) = \frac{1}{|\beta| \Gamma(\alpha)} \left(\frac{x - \xi}{\beta}\right)^{\alpha - 1} e^{-(x - \xi)/\beta}$$



(AAiT)

of Technology

nstitute

Concept of Risk

RISK = HAZARD * VULNERABILITY * AMOUNT

Hazard = Probability of event with a certain magnitude

Hazard Characteristic	Definition
	Only those occurrences that exceed some
Magnitude	
	common level of magnitude are extreme.
Frequency	How often an event of a given magnitude may
	be expected to occur in the long-run average.
Duration	The length of time over which a hazardous event
	persists, the onset to peak period.
Areal Extent	The space covered by the hazardous event.
Speed of Onset	The length of time between the first appearance
5. T	of an event and its peak.
Spatial Dispersion	The pattern of distribution over the space in
1 1	which its impacts can occur.
Temporal Spacing	The sequencing of events, ranging along a
h arm a harma	continuum from random to periodic.

Addis Ababa University

Flow duration curve

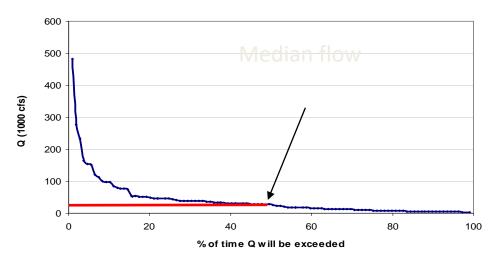
- A cumulative frequency curve that shows the percentage of time that specified discharges are equaled or exceeded.
- Steps
 - Arrange flows in chronological order
 - Find the number of records (N)
 - Sort the data from highest to lowest
 - Rank the data (m=1 for the highest value and m=N for the lowest value)
 - Compute exceedance probability for each value using the following formula

$$p = 100 \times \frac{m}{N+1}$$

Plot p on x axis and Q (sorted) on y axis

Flow duration curve in Excel

		А	В	С	D	E
1	1	Year	Q	Q _{sorted}	Rank	р
	2	1905	30.2	481	1	0.92
	3	1905	113	276	2	1.83
	4	1900	151	234	3	2.75
	5	1901	28.7	164	4	3.67
	6	1902	35.9	154	5	4.59
	7	1903	33.7	151	6	5.50
	8	1904	31.5	120	7	6.42
	9	1905	52.9	113	8	7.34
	10	1906	78.5	100	9	8.26
	11	1907	28.1	98.2	10	9.17
	12	1908	100	97.6	11	10.09
	13	1909	29.7	84	12	11.01
	14	1910	27.4	78.5	13	11.93



AA

Technology

ð

stitute

DESIGN FLOOD

- Flood adopted for the design of a structure
 - Spillway Design Flood (SDF): the flood specifically compute for the design of a spillway of a storage structure
 - Standard Project Flood (SPF): the flood that would result from a severe combination of meteorological and hydrological factors that reasonably applicable to the region
 - Probable maximum Flood (PMF): the extreme flood that physically possible in a region as a result of severe most combinations of meteorological and hydrological factors
- The criteria used for selecting the design flood for various hydraulics structures vary from one country to another

Addis Ababa Universi

ERA Standard for design frequency

η	Table 2-1 Design Storm Frequency (Yrs) by Geometric Design Criteria				
	Structure Type	Geometric Design Standard			
		DS1/DS2	DS3/DS4	DS5/6/7	DS8/9/10
	Gutters and Inlets*	10/5	2	2	_
	Side Ditches	10	10	5	5
	Ford/Low-Water Bridge	-	-	-	5
	Culvert, pipe (see Note)	25	10	5	5
	Span<2m				
	Culvert, 2m <span <6m<="" td=""><td>50</td><td>25</td><td>10</td><td>10</td>	50	25	10	10
	Short Span Bridges	50	50	25	25
	6m <span<15m< td=""><td></td><td></td><td></td><td></td></span<15m<>				
	Medium Span Bridges	100	50	50	50
	15m <span<50m< td=""><td></td><td></td><td></td><td></td></span<50m<>				
	Long Span Bridges	100	100	100	100
	spans>50m				
	Check/Review Flood	200	200	100	100

