AAiT

(AAiT)

of Technology

nstitute

Chapter Two : Precipitation data analysis

- Rainfall Data Processing and Quality Test
- Mean Areal Precipitation:
 - Thiessen polygons Isohyets IWD Methods
 - Kriging and Co-Kriging
 - Orographic Influences and their analysis
- Design Storms
 - Design Hyetographs
 - Storm event-based analysis
 - IDF-based analysis
- Estimated Limiting Storms

Addis Ababa University

Rainfall in Ethiopia is the results of multi weather systems

- Sub Tropical Jet (STJ)
- Inter Tropical Convergence Zone (ITCZ)
- Read Sea Convergence Zone (RSCZ)
- Tropical Easterly Jet (TEJ) and Somalia Jet (NMA, 1996).
- The rainfall in the country is characterized by
 - seasonal and inter-annual variability.
 - topography variability of the country
- It makes the rainfall system of the country more complex.

of Technology (AAiT)

Institute

Addis Ababa University

Magnitude

- southeast, east and northeast lower < 200mm
- central and north west border medium 800 1200
- central and west highlands High up to 2200mm.

Belete Berhanu (PhD) Hydrologist/Water Resources modeler

Addis Ababa University titute of Technology (AAiT)

Institute

GIRDC,

Meteorological Observation data

•There about 1260

- Regional office
 - Adam
 - Jijiga
 - Hawasa
 - Assosa
 - BahirDar
 - Mekele
 - Kombolcha
 - •etc

Belete Berhanu (PhD) Hydrologist/Water Resources modeler

AAiT

CFSR reanalysis data set

Addis Ababa Universi

AAIT

Technology

d

nstitute

Rainfall estimates (RFE) - FEWS NET Data Portals – USGS

- http://www.cpc.ncep.noaa.gov/products/fews/rfe.shtml
- Starts from 2001
- Spatial Resolution 8km
- Temporal data set (Daily, Decadal, monthly and Annually)

Tropical Rainfall Measuring Mission (TRMM)

- <u>http://disc.sci.gsfc.nasa.gov/airquality/services/opendap/TRMM/t</u>
 <u>rmm.shtml</u>
- Starts from 1998
- Spatial Resolution 8km
- Temporal data set (Daily, Decadal, monthly and Annually)

AA

Technology

Addis Ababa Universi

GPCC Global Precipitation Climatology Centre

http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html

Temporal Coverage:

Monthly values 1901/01

through 2010 (full V6).

Spatial Coverage:

- 0.5 degree latitude x 0.5 degree longitude
- 1.0 degree latitude x 1.0 degree longitude
- 2.5 degree latitude x 2.5 degree longitude

January Rainfall

August Rainfall

stitute

7 Belete Berhanu (PhD) Hydrologist/Water Resources modeler

Addis Ababa Universit

(AAIT)

Technology

ot

nstitute

CLIMWAT 2.0 for CROPWAT

http://www.fao.org/nr/water/infores_databases_climwat.html

CLIMWAT provides long-term monthly mean values of seven climatic parameters, namely:

- Mean daily maximum temperature in °C
- Mean daily minimum temperature in °C
- Mean relative humidity in %
- Mean wind speed in km/day
- Mean sunshine hours per day
- Mean solar radiation in MJ/m2/day
- Monthly rainfall in mm/month
- Monthly effective rainfall in mm/month
- Reference evapotranspiration calculated with the <u>Penman-</u> <u>Monteith method</u> in mm/day.

Optimum number of rain gauges

Region Type	Range of norms for min network [km²/gauge]	Range of provisional norms in difficult conditions [km ² /gauge]
Ι	600 - 900	900 - 3000
IIa	100 – 250	250 – 1,000
IIb	25	
III	1500 – 10,000	

The optimum number of rain gauges (N) can be obtained using statistical methods :

Where: Cv = Coefficient of variation of rainfall based on the existing rain gauge stations;

> E = Allowable percentage error in the estimate of basic mean rainfall

 $N = \left\lceil \frac{C_v}{E} \right\rceil$

Optimum number of rain gauges

Example 3.1:

There are four rain gauge stations existing in the catchment of a river. The average annual rainfall values at these stations are 800, 620, 400 and 540 mm respectively.

- (a) Determine the optimum number of rain gauges in the catchment, if it is desired to limit error in the mean value of rainfall in the catchment to 10%.
- (b) How many more gauges will then be required to be installed?

Optimum number of rain gauges

Solution

Stations	RF(mm)			
1	800	CV	0.28	
2	620	E	0.1	
3	400	Ν	7.84	~8
4	540			
sum	2360	Additiona	ıl 8-4 =	4
Average	590			
SD	166.93			
CV	0.28			

11 Belete Berhanu (PhD) Hydrologist/Water Resources modeler

of Technology (AA

Addis Ababa University

Arithmetic Mean Method $P_x = \frac{1}{M} [P_1 + P_2 + P_3 \dots + P_m]$

Normal-Ratio Method

$$P_{x} = \frac{N_{x}}{M} \left[\frac{P_{1}}{N_{1}} + \frac{P_{2}}{N_{2}} + \frac{P_{3}}{N_{3}} \dots + \frac{P_{m}}{N_{m}} \right]$$

Inverse Distance Method $Px = \sum_{i=1}^{n} w_i p_i$ where $w_i = \frac{1/d_i^2}{\sum_{i=1}^{4} 1/d_i^2}$

Multiple Regression : Develop fitting equation with different stations in the same rainfall regimes Equating

nstitute

A

Vgo

Ō

Techn

6

stitute

Data Inconsistency Test

Double Mass Curve

Procedure

- The mean annual (monthly) data of the station X and the average rainfall of the base stations covering a long period is arranged in the reverse chronological order
- The accumulated rainfall of the station X (i.e., ΣPx) and the accumulated values of the average of the base stations (i.e., ΣPav) are calculated starting from the latest record.
- Plot the accumulated values of Station X against the accumulated value of base stations
- A break in the slope of the resulting plot indicates a change in the precipitation regime of station X.
- The precipitation values at station X beyond the period of change of regime is corrected by using the relation $P_{cx} = P_x \frac{M_c}{M_a}$

Addis Ababa Universi

of Technology (AA

stitute

Addis Ababa University

Example

Test the consistency of the 10 year data of annual rainfall measured at station A. Rainfall data for the station A and the average annual rainfall measured at group of Eight stations located in the meteorologically homogonous region are given below in the table.

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Rainfall											
Station A (mm)	1880	1850	1720	1550	1480	1420	1400	1300	1370	1300	1630
Avg. Rainfall of											
8 Stations (mm)	1640	1550	1430	1150	1350	1580	1550	1430	1500	1450	1610

Data Inconsistent Test : Solution

of Technology (AAiT) Addis Ababa University Institute

A		10000		19.40		2	3	١
C.	1		5	ć		2 2		

Л	D	ata	Incon	siste	ent 1	est	t :	Sol	utio
Ч	Year	PA(mm)	PAvg. (mm)	acc. Pavg	acc. PA			Cor.PA	acc_P _{AC}
	2010	1630	1610	1610	1630			1630	1630
	2009	1300	1450	3060	2930			1300	2930
	2008	1370	1500	4560	4300	Mc =	0.9	1370	4300
	2007	1300	1430	5990	5600			1300	5600
	2006	1400	1550	7540	7000			1400	7000
	2005	1420	1580	9120	8420	k	0.75	1420	8420
	2004	1480	1350	10470	9900			1103	9523
	2003	1550	1150	11620	11450	Ma	1.21	1155.2	10678
	2002	1720	1430	13050	13170			1281.8	11960
	2001	1850	1550	14600	15020			1378.7	13339
	2000	1880	1640	16240	16900			1401.1	14740

15

Addis Ababa Universit

AAIT

of Technology

Area rainfall

- Thiessen polygons Isohyets IWD Methods
- Kriging and Co-Kriging
- Orographic Influences and their analysis

nstitute

A

OgV

0

Techn

0

nstitute

KRIGIG

- Kriging is developed the method empirically for estimating amounts of gold in bodies of rock from fragmentary information in the mines of South Africa (D. G. Krige, 1951, 1966).
- Kriging is a general term that embraces several estimation procedures (Krige et al., 1989)
- What makes kriging unique and highly commendable compared with other methods of estimation is that its estimates are unbiased and have minimum variance
 - punctual kriging
 - Simple kriging
 - cokriging
 - universal kriging

Addis Ababa Universit

• The general statistical approach to prediction embodied in regionalized variable theory combines a deterministic component, such as that of trend surface analysis, with a stochastic one, so that the spatial variation in an attribute is expressed by $z(\mathbf{x}) = \Sigma a_k f_k(\mathbf{x}) + \varepsilon(\mathbf{x})$, Stochastic Element

Deterministic Element

 $z(\mathbf{x}) = \mu_v + \varepsilon(\mathbf{x}),$

$$\operatorname{var}[\varepsilon(\mathbf{x}) - \varepsilon(\mathbf{x} + \mathbf{h})] = \operatorname{E}[\{\varepsilon(\mathbf{x}) - \varepsilon(\mathbf{x} + \mathbf{h})\}^2] = 2\gamma(\mathbf{h})$$

Where h is a vector, the lag that separates the two places X and X+h

VgO

0

lech

0

Ð

ESTIMATING THE VARIOGRAM

The variogram is central to geostatistics.

- it is essential for optimal estimation and interpolation by kriging
- The variogram describes the magnitude, spatial scale and general form of the variation. It can indicate whether the data are second-order stationary or just intrinsi
- The semi-variance for any given lag h in one, two or three dimensions is readily estimated from sample data.
- The variogram describes the magnitude, spatial scale and general form of the variation. It can indicate whether the data are second-order stationary or just intrinsi
- Several points must be considered when estimating and interpreting the variogram. The sample variogram of any property in a given region is not unique

Addis Ababa Universit

AA

of Technology

nstitute

FORMS AND MODELS OF VARIOGRAMS

- An ordered set of values, y(h), a sample variogram, when plotted displays the average change of a property with changing lag
- They fall into two broad groups
 - unbounded (Fig. 2a, b and c)
 - bounded
- Unbounded models have no finite a priori variance and the intrinsic hypothesis only holds.
- Bounded or transitive models reack an upper bound, known as the sill

Project Assignment : Section one

- Select one basin of the country and develop Annual surface rainfall for the basin using Co-kriging
 - Hint
 - Access location and point rainfall data from NMA
 - Select station that can address your basin
 - Use 90m dem for elevation input

Addis Ababa Universit

AA

of Technology

nstitute

Design Storm

- Design storm:- precipitation pattern defined for use in the design of hydrologic system serves as an input to the hydrologic system
- It Can by described by:
 - 1. Hyetograph (time distribution of rainfall)
 - 2. Isohyetal map (spatial distribution of rainfall)

Addis Ababa Universit

AA

of Technology

nstitute

Addis Ababa Universit

(AAIT)

of Technology

stitute

- Historic data of precipitation is available
- Precipitation data are converted to different durations
- Annual maximum precipitation for a given duration is selected for each year
- Frequency analysis is performed to derive design precipitation depths for different return periods
- The depths are converted to intensities by dividing by precipitation durations

Addis Ababa Universi

ology

Techn

stitute

Design Precipitation Hyetographs

- Most often hydrologists are interested in precipitation hyetographs and not just the peak estimates.
- Techniques for developing design precipitation hyetographs
 - 1. SCS method
 - 2. Triangular hyetograph method
 - 3. Using IDF relationships (Alternating block method)

AA

Technology

ð

SCS Method

- SCS (1973) adopted method similar to DDF to develop dimensionless rainfall temporal patterns called type curves for four different regions in the US.
- SCS type curves are in the form of percentage mass (cumulative) curves based on 24-hr rainfall of the desired frequency.
- If a single precipitation depth of desired frequency is known, the SCS type curve is rescaled (multiplied by the known number) to get the time distribution.
- For durations less than 24 hr, the steepest part of the type curve for required duration is used

Addis Ababa Universit

SCS Method Steps

- Given T_d and frequency/T, find the design hyetograph
 - 1. Compute P/i (from DDF/IDF curves or equations)
 - 2. Pick a SCS type curve based on the location
 - 3. If T_d = 24 hour, multiply (rescale) the type curve with P to get the design mass curve
 - If T_d is less than 24 hr, pick the steepest part of the type curve for rescaling
 - 4. Get the incremental precipitation from the rescaled mass curve to develop the design hyetograph

SCS type curves for Texas (II&III)

SCS 24-Hour Rainfall Distributions								
T (hrs)	Fraction of 24-hr rainfall							
	Type II	Type III						
11.5	0.283	0.298						
11.8	0.357	0.339						
12.0	0.663	0.500						
12.5	0.735	0.702						
13.0	0.772	0.751						
13.5	0.799	0.785						
14.0	0.820	0.811						
15.0	0.854	0.854						
16.0	0.880	0.886						
17.0	0.903	0.910						
18.0	0.922	0.928						
19.0	0.938	0.943						
20.0	0.952	0.957						
21.0	0.964	0.969						
22.0	0.976	0.981						
23.0	0.988	0.991						
24.0	1.000	1.000						

Example – SCS Method

 Find - rainfall hyetograph for a 25-year, 24-hour duration SCS Type-III storm in Harris County using a one-hour time increment a = 81, b = 7.7, c = 0.724 (from Tx-DOT hydraulic manual)

$$i = \frac{a}{(t+b)^c} = \frac{81}{(24*60+7.7)^{0.724}} = 0.417 \, in \, / \, hr$$

 $P = i * T_d = 0.417 in / hr * 24 hr = 10.01 in$

- Find
 - Cumulative fraction interpolate SCS table
 - Cumulative rainfall = product of cumulative fraction * total 24hour rainfall (10.01 *in*)
 - Incremental rainfall = difference between current and preceding cumulative rainfall

AA

of Technology

nstitute

Addis Ababa Universit

TxDOT hydraulic manual is available at: <u>http://manuals.dot.state.tx.us/docs/colbridg/forms/hyd.pdf</u>

SCS – Example (Cont.)

If a hyetograph for less than 24 needs to be prepared, pick time intervals that include the steepest part of the type curve (to capture peak rainfall). For 3-hr pick 11 to 13, 6-hr pick 9 to 14 and so on.

Time	Cumulative	Cumulative	Incremental
	Fraction	Precipitation	Precipitation
(hours)	Pt/P24	Pt (in)	(in)
0	0.000	0.00	0.00
1	0.010	0.10	0.10
2	0.020	0.20	0.10
3	0.032	0.32	0.12
4	0.043	0.43	0.12
5	0.058	0.58	0.15
6	0.072	0.72	0.15
7	0.089	0.89	0.17
8	0.115	1.15	0.26
9	0.148	1.48	0.33
10	0.189	1.89	0.41
11	0.250	2.50	0.61
12	0.500	5.01	2.50
13	0.751	7.52	2.51
14	0.811	8.12	0.60
15	0.849	8.49	0.38
16	0.886	8.87	0.38
17	0.904	9.05	0.18
18	0.922	9.22	0.18
19	0.939	9.40	0.18
20	0.957	9.58	0.18
21	0.968	9.69	0.11
22	0.979	9.79	0.11
23	0.989	9.90	0.11
24	1.000	10.01	0.11

AA

of Technology

Triangular Hyetograph Method

$$P = \frac{1}{2}T_{d}h$$
$$h = \frac{2P}{T_{d}}$$

T_d: hyetograph base length = precipitation duration

t_a: time before the peak

r: storm advancement coefficient = t_a/T_d

 t_{h} : recession time = $T_{d} - t_{a} = (1-r)T_{d}$

- **Addis Ababa Universit** nstitute
- Given T_d and frequency/T, find the design hyetograph
 - 1. Compute P/i (from DDF/IDF curves or equations)
 - 2. Use above equations to get t_a , t_b , T_d and h (r is available for various locations)

AAIT

of Technology

Institute

Triangular hyetograph - example

Find - rainfall hyetograph for a 25-year, 6-hour duration in Harris County. Use storm advancement coefficient of 0.5. a = 81, b = 7.7, c = 0.724 (from Tx-DOT hydraulic manual)

$$i = \frac{a}{(t+b)^c} = \frac{81}{(6*60+7.7)^{0.724}} = 1.12 in / hr$$

P = i * 6 = 1.12 in / hr * 6 hr = 6.72 in

$$h = \frac{2P}{T_d} = \frac{2 \times 6.72}{6} = \frac{13.44}{6} = 2.24 \ in/hr$$

$$t_a = rT_d = 0.5 \times 6 = 3 hr$$

 $t_b = T_d - t_a = 6 - 3 = 3 hr$

3 hr

3 hr

Addis Ababa University

Alternating block method

Given ${\rm T_d}$ and T/frequency, develop a hyetograph in Δt increments

- 1. Using T, find i for Δt , $2\Delta t$, $3\Delta t$,...n Δt using the IDF curve for the specified location
- 2. Using i compute P for Δt , $2\Delta t$, $3\Delta t$,...n Δt . This gives cumulative P.
- 3. Compute incremental precipitation from cumulative P.
- 4. Pick the highest incremental precipitation (maximum block) and place it in the middle of the hyetograph. Pick the second highest block and place it to the right of the maximum block, pick the third highest block and place it to the left of the maximum block, pick the fourth highest block and place it to the right of the maximum block (after block and place), and so on until the last block.

AiT)

Example: Alternating Block Method

0.8

0.6

110-120

Find: Design precipitation hyetograph for a 2-hour storm (in 10 minute increments) in Denver with a 10-year return period 10-minute

066

logy ($i = \frac{c}{\left(T_d\right)^e}$
aba Ur Techno	Duration
	10
4 0	20
e N	30
<u>t</u> d	40
ъ Э	50
i. k	60
イエー	70
	80

·_ ·		90.0		Ê 05		
$-\frac{1}{(T_d)^e}$	$+f^{-}\overline{(T_d)}$	$(1)^{0.97} + 13.9$	0	6.0 6.0		
				E 0.3		
	1	i = des	ign rainfall inten	sity of		
		$T_{i} = Du$	ration of storm			
		$c, e, f = \operatorname{coe}$	fficients	0.0	10 10-20 20-30 30-40 40-5	50 50-60 60-70 70-80 80-90
		Cumulative	Incremental			Time (min)
Duration	Intensity	Depth	Depth	Time	Precip	
(min)	(in/hr)	(in)	(in)	(min)	(in)	
10	4.158	0.693	0.693	0-10	0.024	
20	3.002	1.001	0.308	10-20	0.033	
30	2.357	1.178	0.178	20-30	0.050	
40	1.943	1.296	0.117	30-40	0.084	
50	1.655	1.379	0.084	40-50	0.178	
60	1.443	1.443	0.063	50-60	0.693	
70	1.279	1.492	0.050	60-70	0.308	
80	1.149	1.533	0.040	70-80	0.117	
90	1.044	1.566	0.033	80-90	0.063	
100	0.956	1.594	0.028	90-100	0.040	
110	0.883	1.618	0.024	100-110	0.028	
120	0.820	1.639	0.021 33	110-120	0.021	

- An IDF is a three parameter curve, in which intensity of a certain return period is related to duration of rainfall even
- An IDF curve enables the hydrologists to develop hydrologic systems that consider worst-case scenarios of rainfall intensity and duration during a given interval of time
- For instance, in urban watersheds, flooding may occur such that large volumes of water may not be handled by the storm water
- system appropriate values of precipitation intensities and frequencies should be considered in the design of the hydrologic systems
- Different relationships of IDF

$$i = \frac{C}{T_{d}^{e} + f} \quad i = \frac{CT^{m}}{T_{d} + f} \quad or \quad i = \frac{CT^{m}}{T_{d}^{e} + f} \quad I = \frac{A}{(D+B)^{c}} \quad or \quad I = \frac{A}{D^{c} + B}$$

Addis Ababa Universit

A A A

of Technology

nstitute

IDF development in Ethiopia

Where; I= rainfall intensity (mm/hr)

D= duration of rainfall (minutes)

A= coefficient with units of mm/hr

B= time constant in minutes

C= an exponent usually less than one

Cherkos TeJera, Muluneh Yitaye and Ylema Seleshi 2006

No	Name of station	Longitude	Latitude	titude Parameters for $T = 2$ Yrs				s for $T =$	5 Yrs
	and an interest	(degree)	(degree)	a	b	С	a	b	С
1	Addis Ababa OB	38.75	9.03	1292	11.7	0.89	1870	11.1	0.906
2	Debre Brehan	. 39.50	9.63	1422	44.9	0.932	731	5.0	0.816
3	Combolcha	39.73	11.12	1442	11.1	0.886	1709	8.1	0.917
4	Assaita	41.45	11.57	190	13.4	0.849	155	13.4	0.74
5	Dubti	41.10	11.75	1334	39.5	0.995	1319	24.8	0.924
6	Mekele	39.48	13.50	804	4.1	0.895	863 .	0.0	0.851
7	Shire Indeselasie	38.27	14.10	1237	20.2	0.906	1778	25.4	0.915
8	Bahir dar	37.40	11.60	1619	26.2	0.844	2367	20.2	0.899
9	Gonder	37.42	12.55	505	0.0	0.802	615	0.0	0.789
10	Assosa	34.52	10.02	1412	13.3	0.946	1454	6.1	0.907
.11	Lima	36.83	7.67	666	2.2	0.815	910	0.0	0.829

Addis Ababa Universit

AA

ology

Tech

Ö

nstitute

IDF development in Ethiopia

Works of Felek & moges (2007)

Where; I= rainfall intensity (mm/hr)

D= duration of rainfall (minutes)

A= coefficient with units of mm/hr

B= time constant in minutes

C= an exponent usually less than one

T F Region	T Region Four T Discordant Region Two Region Three T T
Regional distributions for 1 hour duration Region 1 GEV Region 2 G & PIII Region 3 GEV Region 4 GEV Discordant station G2	T T T Lideboo

			d frequency	frequency			
Region	Parameters	T=2	T=5	T=10	T=25	T=50	T=100
86.	A	1885.08	2029.85	1877.43	1628.18	1394.11	1781.66
	В	14.25	12.81	10.10	6.62	3.20	7.47
	С	0.92	0.89	0.86	0.82	0.78	0.81
Region one	SEE	0.61	0.75	0.85	1.06	1.25	1.07
	A	1483.25	1777.78	2211.10	2811.00	3464.46	4262.60
	В	0.01	0.99	5.35	11.15	16.94	23.27
	С	0.91	0.90	0.91	0.93	0.95	0.96
Region two	SEE	2.24	1.61	1.10	0.59	0.52	0.72
2 - A	A	1551.18	2182.20	2537.83	2992.38	3315.94	3576.87
	В	7.47	10.10	11.15	12.67	13.76	14.45
	С	0.92	0.93	0.93	0.94	0.94	0.94
Region three	SEE	0.22	0.37	0.51	0.75	0.97	1.20
5 0530C	A	1403.61	1852.58	2098.90	2471.82	2741.05	2791.64
	В	10.80	10.09	9.24	9.21	9.23	7.47
	С	0.90	0.91	0.92	0.93	0.93	0.93
Region four	SEE	0.55	0.71	0.91	1.25	1.58	1.95
	A	840.72	1768.13	2967.40	4978.40	7986.20	11664.43
	В	34.03	55.42	71.99	88.05	104.67	117.38
	С	0.82	0.92	0.99	1.06	1.12	1.17
Station Gojeb	SE	5.35	5.02	4.65	4.23	4.01	3.91

Belete Berhanu (PhD) Hydrologist/Water Resources modeler

AAiT

AAIT

of Technology

Te

IDF development Ethiopia

Arnold and Williams (1989) proposed a statistical disaggregating method, proposed by is applied to disaggregate

$$R_{tc} = \alpha_{tc} \cdot R_{day}$$

$$\alpha_{tc,\min} = \frac{R_{tc}}{R_{day}} = \frac{i \cdot t_{conc}}{i_{24} \cdot 24} = \frac{t_{conc}}{24}$$

Thus, α_{tc} falls in the range $t_{conc}/24 \le \alpha_{tc} \le 1.0$.

$$\alpha_{tc} = 1 - \exp[2 \cdot t_{conc} \cdot \ln(1 - \alpha_{0.5})]$$

 $\alpha_{0.5} = 1 - exp(-125/(R_{day} + 5))$

$$l = \frac{(1 - \exp(2Tc * \ln(1 - \alpha 0.5))) * Rday}{Tc}$$

Belete Berhanu (PhD) Hydrologist/Water Resources modeler

Addis Ababa Universit

IDF development Ethiopia

Addis Ababa University

Belete Berhanu (PhD) Hydrologist/Water Resources modeler

IDF development Ethiopia

of Technology (AAiT) **Addis Ababa University** Institute

Probable Maximum Precipitation

- Probable maximum precipitation
 - Greatest depth of precipitation for a given duration that is physically possible and reasonably characteristic over a particular geographic region at a certain time of year
 - Not completely reliable; probability of occurrence is unknown
- Variety of methods to estimate PMP
 - 1. Application of storm models
 - 2. Maximization of actual storms
 - 3. Generalized PMP charts

Addis Ababa Universi

Technology

of

stitute

AA

Technology

of

nstitute

Probable Maximum Storm

- Probable maximum storm
 - Temporal distribution of rainfall
 - Given as maximum accumulated depths for a specified duration
 - Information on spatial and temporal distribution of PMP is required to develop probable maximum storm hyetograph

Addis Ababa Universit