- Q1. Rainfall Analysis
 - A. Review the different methods for the development of Intensity Duration curve (IDF) and write a brief not for the merit and limitations of the methods (at least three methods)
 - B. Consider the following annual maximum daily rainfall data; Estimate the annual maximum 30 minute rainfall intensity with 20 years return period.

Year	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
Depth (mm)	82	78	110	89	74	80	86	99	93	76

C. Justify your reason for the choice of the method you applied on section B above

Q2. Rainfall-Runoff linear theory

- A. Write a brief note on the concept of hydrograph and unit hydrograph and give a brief for three methods of methods and application for unit hydrograph
- B. For a given catchment having a catchment and flow characteristics presented below in the table. develop the inflow hydrograph for the reservoir at the outlet of this catchment

Catchment Characteristics	Dimension	Flow characteristics	m ³ /sec
Area (km2)	105.0	Qp for 100 year Return period	66.0
Length (km)	34.0	Qb for the catchment at dry season	3.6
Centroid distance (km)	18.4		
Slope of catchment (m/m)	0.0038		

C. If you have an event based rainfall excess and storm hydrograph presented below in the table, Develop the 2hr-UH, and IUH for the catchment

Time (hr)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
Flow												
(m3/sec)	1	44.5	110.5	85.5	102.8	94	38.4	18.6	10.9	5.3	2.9	0.5
ER (cm)	0.5	0.7	0.0	0.8								

Q3. Flood Routing

- A. Write 5 pages an assessment report on the flood routing methods used in HEC-HMS model with their applications and limitations. Give your opinion on the improvement of the limitation
- B. The inflow hydrograph you develop in Q2B is an input for the reservoir stage-storage-out flow discharge in the table. Route the computed inflow
- C. using the routed outflow and the inflow in Q2B develop the K and X parameters for the channel

E(m)	100.0	100.5	101.1	101.5	102.0	102.5	102.75	103.0
$S(10^6 m^3)$	3.350	3.472	3.880	4.383	4.882	5.370	5.5527	5.856
Q (m ³ /s)	0	10	26	46	72	100	116	130

Q4. Hydrological statistics

- A. Give examples of hydrological variables that can be modeled with a
 - a continuous valued and a discrete-valued
 - random series,
 - lattice process, or continuous-time process, or continuous-space process, or continuous space-time process
- B. The covariance of a random function is described by: C(h) = 10 exp(-h 30/), and a constant mean. The probability distribution function (PDF) at a given location is the Gamma distribution. Is this process: a) wide sense stationary; b) second order stationary; d) strict stationary? Briefly Justify your choice
- C. Write the basic concept and principle of linear uni-variate time series models and give three example models with their question formulation

Q5. Flood Frequency

Consider the following yearly daily maximum daily stream flow data (m³/sec) of a gauging station

							-										
1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	
1266	1492	1862	861	715	1367	1837	1429	1429	1261	1607	2132	1652	1537	1155	1899	1956	
1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	
1596	1380	745	2181	955	1007	824	1271	1044	597	1216	1061	1450	2016	1270	1341	1075	
1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	
2482	874	1689	1554	1831	1149	1444	1791	1207	3050	1578	2817	792	1143	1698	2076	1204	

- A. Fit the data with multi-probability distribution and select the three best fit probability distribution for the data set
- B. Determine the parameters of the three best fit probability distributions
- C. Plot the quantiel of the stream flow using the three best fit and analysis the similarity and different of the results among the probability distributions
- D. Estimate PMF the station

Q6. Time series Analysis

- A. Describe the functional form of the simplest AR and ARMA models
- B. Why such models are referred to as *autoregressive* or *moving average*
- C. State the three steps in ARMA modeling
- D. The diagnostic patterns of the autocorrelation and partial autocorrelation functions for an AR(1) time series
- E. Write a simple R-code for time series data plotting and statistics computation

Instructor Belete Berhanu (PhD) Chairperson of hydrology and Water resources system chair