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Chapter 1: Introduction 
 

1.1 Why stochastic hydrology? 

 

The term “stochastics” derives from the Greek word “Stochasticos” (Στοχαστικός) which 

in turn is derived from “Stochazesthai” (Στοχάζεσθαι), which is derived from Stochos 

(Στόχος). The word Stochos means “target”, while the word Stochazesthai has the 

following meanings: (a) to shoot (an arrow) at a target, (b) to guess or conjecture (the 

target), (c) to imagine, think deeply, bethink, contemplate, cogitate, meditate (after 

Koutsoyiannis, 2010, p. 951). In the modern sense “stochastic” in stochastic methods 

refers to the random element incorporated in these methods. Stochastic methods thus aim 

at predicting the value of some variable at non-observed times or at non-observed 

locations, while also stating how uncertain we are when making these predictions 

 

But why should we care so much about the uncertainty associated with our predictions? 

The following example (Figure 1.1) shows a time series of observed water table 

elevations in a piezometer and the outcome of a groundwater model at this location. Also 

plotted are the differences between the data and the model results. We can observe two 

features. First, the model time series seems to vary more smoothly then the observations. 

Secondly, there are noisy differences between model results and observations. These 

differences, which are called residuals, have among others the following causes: 

• observation errors. Is it rarely possible to observe a hydrological variable without 
error. Often, external factors influence an observation, such as temperature and air 

pressure variations during observation of water levels; 

• errors in boundary conditions, initial conditions and input. Hydrological models only 

describe part of reality, for example groundwater flow in a limited region. At the 

boundaries of the model values of the hydrological variables (such groundwater heads 

or fluxes) have to be prescribed. These boundary values cannot be observed 

everywhere, so there is likely to be some error involved. Also, if a model describes 

the variation of a hydrological system in time, then the hydrological variables at time 

step zero must be known as it determines how the system will be evolve in later time 

steps. Again, the initial values of all the hydrological variables at all locations are not 

exactly known and are estimated with error. Finally, hydrological models are driven 

by inputs such as rainfall and evaporation. Observing rainfall and evaporation for 

larger areas is very cumbersome and will usually be done with considerable error; 

• unknown heterogeneity and parameters. Properties of the land surface and subsurface 

are highly heterogeneous. Parameters of hydrological systems such as surface 

roughness, hydraulic conductivity and vegetation properties are therefore highly 

variable in space and often also in time. Even if we were able to observe these 

parameters without error, we cannot possibly measure them everywhere. In many 

hydrological models parameters are assumed homogeneous, i.e. represented by a 

single value for the entire (or part of the) model region. Even if models take account 

of the heterogeneity of parameters, this heterogeneity is usually represented by some 

interpolated map from a few locations where the parameters have been observed. 

Obviously, these imperfect representations of parameters lead to errors in model 

results; 
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• scale discrepancy. Many hydrological models consist of numerical approximations of 

solutions to partial differential equations using either finite element or finite 

difference methods. Output of these models can at best be interpreted as average 

values for elements or model blocks. The outputs thus ignore the within element or 

within block variation of hydrological variables. So, when compared to observations 

that represent averages for much smaller volumes (virtually points), there is 

discrepancy in scale that will yield differences between observations and model 

outcomes (Bierkens et al., 2000); 

• model or system errors. All models are simplified versions of reality. They cannot 

contain all the intricate mechanisms and interactions that operate in natural systems. 

For instance, saturated groundwater flow is described by Darcy’s Law, while in 

reality it is not valid in case of strongly varying velocities, in areas of partly non-

laminar flow (e.g. faults) or in areas of very low permeability and high concentrations 

of solvents. Another example is when a surface water model uses a kinematic wave 

approximation of surface water flow, while in reality subtle slope gradients in surface 

water levels dominate the flow. In such cases, the physics of reality differ from that of 

the model. This will cause an additional error in model results. 

 

In conclusion, apart from the observation errors, the discrepancy between observations 

and model outcomes are caused by various error sources in our modelling process. 

 

Figure 1.1 Observed water table depths and water table depths predicted with a groundwater model at the 

same location. Also shown are the residuals: the differences between model outcome and observations. 

 

 

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Day number (day 1 is January 1 1985)

W
a
te

r 
ta

b
le

 (
c
m

 s
u

rf
a
c
e
) 

  
  
  
  
  
  

  
  
 r

e
s
id

u
a
ls

 (
c
m

)

Groundwater model

Observations

Residuals



 7 

There are two distinct ways of dealing with errors in hydrological model outcomes: 

 

Deterministic hydrology. In deterministic hydrology one is usually aware of these errors. 

They are taken into account, often in a primitive way, during calibration of models. 

During this phase of the modelling process one tries to find the parameter values of the 

model (e.g. surface roughness or hydraulic conductivity) such that the magnitude of the 

residuals is minimized. After calibration of the model, the errors are not explicitly taken 

into account while performing further calculations with the model. Errors in model 

outcomes are thus ignored. 

 

Stochastic Hydrology. Stochastic hydrology not only tries to use models for predicting 

hydrological variables, but also tries to quantify the errors in model outcomes. Of course, 

in practice we do not know the exact values of the errors of our model predictions; if we 

knew them, we could correct our model outcomes for them and be totally accurate.  What 

we often do know, usually from the few measurements that we did take, is some 

probability distribution of the errors. We will define the probability distribution more 

precisely in the next chapters. Here it suffices to know that a probability distribution tells 

one how likely it is that an error has a certain value.  

 

To make this difference more clear, Figure 1.2 is shown. Consider some hydrological 

variable z, say soil moisture content, whose value is calculated (at some location and at 

some time) by a unsaturated zone model. The model output is denoted as z
(

. We then 

consider the error zze −=
(

. Because we do not know it exactly we consider it as a so 

called random variable (chapter 3) E (notice the use of capitals for random variables) 

whose exact value we do not know but of which we do know the probability distribution. 

So in case of deterministic hydrology modelling efforts would only yield z
(

 (upper figure 

of Figure 1.2a), while stochastic hydrology would yield both z
(

and the probability 

distribution of the (random) error E (lower figure of Figure 1.2a). 
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ẑ

P
ro

b
ab

il
it

y
 d

en
si

ty

P
ro

b
ab

il
it

y
 d

en
si

ty

 
Figure 1.2 Stochastic Hydrology is about combining deterministic model outcomes with a probability 

distribution of the errors (Figure 1.2a), or alternatively, considering the hydrological variable as random 

and determining its probability distribution and some “best prediction”(Figure 1.2b). 
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Most of the methods used in stochastic hydrology do not consider errors in model 

outcomes explicitly. Instead it is assumed that the hydrological variable z itself is a 

random variable Z. This means that we consider the hydrological variable (e.g. soil 

moisture) as one for which we cannot know the exact value, but for which we can 

calculate the probability distribution (see Figure 1.2b). The probability distribution of 

Figure 1.2b thus tells us that although we do not know the soil moisture content exactly, 

we do know that it is more likely to be around 0.3 then around 0.2 or 0.5. Models that 

provide probability distributions of target variables instead of single values are called 

stochastic models. Based on the probability distribution it is usually possible to obtain a 

so called best prediction ẑ , which is the one for which the errors are smallest on average. 

Incidentally, the value of the best prediction does not have to be the same as the 

deterministic model outcome z
(

. 

 

Box 1. Stochastic models and physics  
A widespread misconception about deterministic and stochastic models is that the former 

use physical laws (such mass and momentum conservation), while the latter are largely 

empirical and based entirely on data-analysis. This of course is not true. Deterministic 

models can be either physically-based (e.g. a model based on Saint-Venant equations for 

flood routing) and empirical (e.g. a rating curve used as a deterministic model for 

predicting sediment loads from water levels). Conversely, any physically-based model 

becomes a stochastic model once its inputs, parameters or outputs are treated as random. 

 

There are a number of clear advantages in taking the uncertainty in model results into 

account, i.e. using stochastic instead of deterministic models. 

• The example of Figure 1.1 shows that model outcomes often give a much smoother 

picture of reality. This is because models are often based on an idealized 

representation of reality with simple processes and homogenous parameters. 

However, reality is usually messy and rugged. This may be a problem when interest is 

focussed on extreme values: deterministic models typically underestimate the 

probability of occurrence of extremes, which is rather unfortunate when predicting for 

instance river stages for dam building. Stochastic models can be used with a 

technique called “stochastic simulation” (see chapters hereafter) which is able to 

produce images of reality that are rugged enough to get the extreme statistics right. 

• As stated above, the value of the best prediction ẑ does not have to be the same as the 

deterministic model outcome z
(

. This is particularly the case when the relation 

between model input (e.g. rainfall, evaporation) or model parameters (e.g. hydraulic 

conductivity, manning coefficient) and model output is non-linear (this is the case in 

almost all hydrological models) and our deterministic assessment of model inputs and 

parameters is not error free (also almost always the case). In this case, stochastic 

models are able to provide the best prediction using the probability distribution of 

model outcomes, while deterministic models cannot and are therefore less accurate. 

• If we look closely at the residuals in Figure 1 it can be seen that they are correlated in 
time: a positive residual is more likely to be followed by another positive residual and 

vice versa. This correlation, if significant, means that there is still some information 
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present in the residual time series. This information can be used to improve model 

predictions between observation times, for instance by using time series modelling 

(chapter 5) or geostatistics (chapter 6). This will yield better predictions than the 

deterministic model alone. Also, it turns out that if the residuals are correlated, 

calibration of deterministic models (which assume no correlation between residuals) 

yield less accurate or even biased (with systematic errors) calibration results when 

compared with stochastic models that do take account of the correlation of residuals 

(te Stroet, 1995). 

• By explicitly accounting for the uncertainty in our prediction we may in fact be able 

to make better decisions. A classical example is remediation of polluted soil, where 

stochastic methods can be used to estimate the probability distribution of pollutant 

concentration at some non-visited location. Given a critical threshold above which 

regulation states that remediation is necessary, it is possible to calculate the 

probability of a false positive decision (we decide to remediate, while in reality the 

concentration is below the threshold) and that of a false negative (we decide not to 

remediate while in reality the concentration is above the threshold).  Given these 

probabilities and the associated costs (of remediation and health risk) it is then 

possible for each location to decide whether to remediate such that the total costs and 

health risk are minimised. 

• There are abundant stochastic methods where a relation is established between the 

uncertainty in model outcomes and the number of observations in time and space 

used to either parameterize or calibrate the model. If such a relation exists, it can be 

used for monitoring network design. For example, in groundwater exploration wells 

are drilled to perform pumping tests for the estimation of transmissivities and to 

observe hydraulic heads. The transmissivity observations can be used to make an 

initial map of transmissivity used in the groundwater model. This initial map can 

subsequently be updated by calibrating the groundwater model to head observations 

in the wells. Certain stochastic methods are able to quantify the uncertainty in 

groundwater head predicted by the model in relation to the number of wells drilled, 

their location and how often they have been observed (e.g. Bierkens, 2006). These 

stochastic methods can therefore be used to perform monitoring network 

optimization: finding the optimal well locations and observation times to minimise 

uncertainty in model predictions.  

• The last reason why stochastic methods are advantageous over deterministic methods 

is related to the previous one. Stochastic methods enable us to relate the uncertainty 

in model outcomes to different sources of uncertainty (errors) in input variables, 

parameters and boundary conditions. Therefore, using stochastic analysis we also 

know which (error) source contributes the most to the uncertainty in model outcomes, 

which source comes second etc.  If our resources are limited, stochastic hydrology 

thus can guide us where to spend our money (how many observations for which 

variable or parameter) to achieve maximum uncertainty reduction at minimum cost. 

An excellent book on this view on uncertainty is written by Heuvelink (1998). 
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1.2 Scope and content of these lecture notes 
 

These notes aim at presenting an overview of the field of stochastic hydrology at an 

introductory level. This means that a wide range of topics and methods will be treated, 

while each topic and method is only treated at a basic level. So, the book is meant as an 

introduction to the field while showing its breadth, rather than providing an in depth 

treatise. References are given to more advanced texts and papers for each subject. The 

book thus aims at teaching the basics to hydrologists who are seeking to apply stochastic 

methods. It can be used for a one-semester course at third year undergraduate or first year 

graduate level.  

 

The lecture notes treat basic topics that should be the core of any course on stochastic 

hydrology. These topics are: descriptive statistics; probability and random variables; 

hydrological statistics and extremes; random functions; time series analysis; geostatistics; 

forward stochastic modelling; state prediction and data-assimilation. A number of more 

advanced topics that could constitute enough material for a second course are not treated. 

These are, among others: sampling and monitoring; inverse estimation; ordinary 

stochastic differential equations; point processes; upscaling and downscaling methods, 

uncertainty and decision making. During the course these advanced topics will be shortly 

introduced during the lectures. Students are required to study one of these topics from 

exemplary papers and write a research proposal about it. 

 

 

1.3 Some useful definitions for the following chapters 

 

1.3.1 Description of a model according to system’s theory 

 

Many methods in stochastic hydrology are best understood by looking at a hydrological 

model from the viewpoint of system’s theory. What follows here is how a model is 

defined in system’s theory, as well as definitions for state variables, input variables, 

parameters and constants.  

input variables output variables
state variables

parameters

constants

model boundary

 
Figure 1.3 Model and model properties according to system’s theory 

 

Figure 1.3 shows a schematic representation of a model as used in system’s theory. A 

model is a simplified representation of part of reality. The model boundary separates the 

part of reality described by the model from the rest of reality. Everything that is to know 
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about the part of reality described by the model at a certain time is contained in the state 

variables. These are variables because their values can change both in space and time. 

The variation of the state variables is caused by the variation of one or more input 

variables. Input variables are always observed and originate from outside the model 

boundary. Consequently, input variables also include boundary conditions and initial 

conditions such as used when solving differential equations. If the state variables are 

known, one or more output variables can be calculated. An output variable traverses the 

model boundary and thus influences the part of reality not described by the model. Both 

input variables and output variables can change in space and time. The state variables are 

related to the input variables and output variables through parameters. Parameters may 

change in space but are invariant in time. Because they are constant in time, parameters 

represent the intrinsic properties of the model. Finally, a model may have one or more 

constants. Constants are properties of a model that do not change in both space and time 

(within the confines of the model). Examples of such constants are the gravity constant 

and the viscosity of water in density independent groundwater flow at a constant 

temperature.  

v(t)

q(t)

p(t)

k r
A

 
Figure 1.4 Illustration of model properties following system’s theory with a model of a catchment; v(t): 

state variable, storage surface water in catchment [L
3
]; q(t): output variable, surface runoff from 

catchment [L
3
T

-1
]; p(t): input variable, precipitation [LT

-1
]; k : parameter, reservoir constant [T

-1
]; r : 

parameter, infiltration capacity [LT
-1

]; A: constant, area of the catchment [L
2
]. 

 

Because the description above is rather abstract, we will try to illustrate it with the 

example shown in Figure 1.4. We consider a model describing the discharge from surface 

runoff q [L
3
T

-1
] from a catchment caused by the average precipitation p [LT

-1
] observed 

as averages over discrete time steps ∆t, i.e. q(t) and p(t) represent the average discharge 

and precipitation between t-∆t and t. The model boundary is formed by geographical 
boundaries such as the catchment boundary (i.e. the divide) on the sides, the catchment’s 

surface below and a few meters above the catchment’s surface above, and also by the 

virtual boundary with everything that is not described by the model such as groundwater 

flow, soil moisture, chemical transport etc. Obviously, precipitation is the input variable 

and surface runoff the output variable. The state variable of this model is the amount of 

water stored on the catchment’s surface: v [L
3
]. The state variable is modelled with the 

following water balance equation: 
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{ } ttqrtptvtv ∆−−⋅+−= + )(])([A)1()(    (1.1) 

 

where r [LT-1] is the infiltration capacity. The superscript + is added to [p(t)-r] to denote 

that if p(t) < r we have [p(t)-r] = 0. The output variable q is related to the state variable v 

at the previous time step with the following equation: 
 

)()( tkvtq =      (1.2) 

 

Through substitution of (1.2) into (1.1) we can calculate the development in time of the 

state variable directly from the input variable as: 
 

trtptvtktv ∆−⋅+−⋅∆−= +])([A)1(]1[)(     (1.3) 

 

Two model parameters can be distinguished: the infiltration capacity of the soil r [LT-1] 

which relates the input variable with the state variable and the catchment parameter k  

 [T
-1

] relating the output variable to the state variable. The constant A [L
2
] is the area of 

the catchment. 

 

 

1.3.2 Notation 

 

The concept of random variables and random functions will be explained in detail in the 

following chapters. However, it is useful to define the notation conventions briefly in the 

beginning. Readers can thus refer back to this subsection while studying the rest of this 

book. 

 

Constants are denoted in roman, e.g. the constant g for gravity acceleration, or A for the 

area.  

 

Variables and parameters are denoted in italics: e.g. h for hydraulic head and k for 

hydraulic conductivity. The distinction between deterministic and random (stochastic) 

variables is made by denoting the latter as capital italics. So, h stands for the 

deterministic groundwater head (assumed completely known) and H for groundwater 

head as a random variable. 

 

Vectors and matrices are given in bold face notation. Vectors are denoted as lower case, 

e.g. h a vector of groundwater heads at the nodes of a finite difference model, while 

matrices are denoted as capitals, such as K for a tensor with conductivities in various 

directions. Unfortunately, it is difficult to make a distinction between stochastic and 

deterministic vectors and matrices. Therefore, if not clear from the context, it will be 

indicated explicitly in the text whether a vector or matrix is stochastic or not.  

 

Spatial co-ordinates (x,y,z) are denoted with the space vector x, while t is reserved for 

time. Discrete points in space and time are denoted as xi and tk respectively. Random 
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functions of space, time and space-time are thus denoted as (example with H):  H(x), 

H(t), H(x,t). 

 

Outcomes from a deterministic model are denoted as (example with h): h
(

. Optimal 

estimates of deterministic parameters, constants or variables are denoted with a hat 

(example with k): k̂ , while optimal predictions of realisations of random variable 

denoted by K̂ . Note that the term estimate is reserved for deterministic variables and 

prediction for random (stochastic) variables.  

 

To denote a spatial or temporal or spatio-temporal average of a function an overbar is 

used, e.g. h  if hydraulic head is deterministic and H if it is stochastic. So, x)(
ˆ

H stands 

for the prediction of the spatial average of the random function H(x).  
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Chapter 2: Descriptive statistics 
 
 

In this chapter and further on in this book we make use of a synthetic but extremely 

illustrative data set (Walker lake data set) that has been constructed by Journel and 

Deutsch (1998)
1
. The data set is used to show how some simple statistics can be 

calculated. 

 

 

2.1 Univariate statistics 

 

Let us assume that we have made 140 observations of some hydrological variable z (e.g. 

hydraulic conductivity in m/d).  Figure 2.1 shows a plot of the sample locations with the 

grey scale of the dots according to the value of the observation. 

 
Figure 2.1 Samples of hydraulic conductivity z 

 

 

To obtain insight into our dataset it is good practice to make a histogram. To this end we 

divide the range of value found into a number (say m) of classes z1-z2,  z2-z3,  z3-z4, …,  

zm-1-zm and counts the number of data values falling into each class. The number of 

observations falling into a class divided by the total number of observations is called the 

(relative) frequency. Figure 2.2 shows the histogram or frequency distribution of the z-

                                                 
1
 All of the larger numerical examples shown in this chapter are based on the Walker-lake data set. The 

geostatistical analyses and the plots are performed using the GSLIB geostatistical software of Deutsch and 

Journel (1998). 
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data. From the histogram we can see how the observations are distributed over the range 

of values. For instance, we can see that approximately 33% of our data has a value of 

hydraulic conductivity between 0-1 m/d.  

 

 
Figure 2.2 Histogram or frequency distribution of hydraulic conductivity z 

 

Another way of representing the distribution of data values is by using the cumulative 

frequency distribution. Here we first sort the data in ascending order. Next data are given 

a rank number i, i=1,..,n, with n the total number of observations (in our case 140).  After 

that, the data values are plotted against the rank number divided by the total number of 

observations plus on: i/(n+1). Figure 2.3 shows the cumulative frequency distribution of 

the hydraulic conductivity data. 
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Figure 2.3 Cumulative frequency distribution of hydraulic conductivity 

 

The cumulative frequency distribution shows us the percentage of data with values 

smaller than a given threshold. For instance, from 2.3 we see that 64% of the 

observations has a value smaller than 5 m/d. Note, that if the 140 samples were taken in 

such a way that they are representative of the area (e.g. by random sampling) that the 

cumulative frequency distribution provides an estimate of the fraction of the research area 

with values smaller or equal to a certain value. This may for instance be relevant when 

mapping pollution. The cumulative frequency distribution then provides immediately an 

estimate of the fraction of a terrain with concentrations above critical thresholds, i.e. the 

fraction that should be remediated. 

 

To make a continuous curve the values between the data points have been linearly 

interpolated.  Figure 2.4 shows the relation between the histogram and the cumulative 

frequency distribution. It shows that once the cumulative frequency distribution function 

is constructed from the data (5 data values for this simple example) it can be used to 

construct a histogram by “differentiation”. 
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Figure 2.4 The relation between the Cumulative frequency distribution (left) and the histogram 

 

To describe the form of frequency distribution a number of measures are usually 

calculated.  

 

The mean m is the average value of the data and is a measure of locality, i.e. the centre of 

mass of the histogram. With n the number data and zi the value of the ith observation we 

have 

 

∑
=

=
n

i

iz z
n

m
1

1
         (2.1) 

 

The variance 2

zs is a measure of the spread of the data and is calculated as: 

∑∑
==

−=−=
n

i

zi

n

i

xiz mz
n

mz
n

s
1

22

1

22 1
)(

1
      (2.2) 

 

The larger the variance the wider is the frequency distribution. For instance in Figure 2.5 

two histograms are shown with the same mean value but with a different variance. 
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Figure 2.5 Two histograms of datasets with the same mean value but with different variances 

 

Standard deviation 

The standard deviation is also a measure of spread and has the advantage that is has the 

same units as the original variable. It is calculated as the square-root of the variance: 

 

∑
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−==
n

i

xizz mz
n
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1

22 )(
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       (2.3) 

 

Coefficient of variation 

To obtain a measure of spread that is relative to the magnitude of the variable considered 

the coefficient of variation is often used: 

 

z

z

z
m

s
CV =          (2.4) 

 

Note that this measure only makes sense for variables with strictly positive values (e.g. 

hydraulic conductivity, soil moisture content, discharge). 

 

Skewness 

The skewness of the frequency distribution tells us whether it is symmetrical around its 

central value or whether it is asymmetrical with a longer tail to the left (<0) or to the right 

(>0) 

 

3

1

3)(
1

z

n

i

zi

z
s

mz
n

CS

∑
=

−

=        (2.5) 

 

Figure 2.6 shows two histograms with the same variance, where one is negatively and 

one is positively skewed. 
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Figure 2.6 Two frequency distributions with the same variances but with different coefficients of skewness. 

 

Curtosis 

The curtosis measures the “peakedness” of the frequency distribution (see Figure 2.7) and 

is calculated from the data as: 
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Figure 2.7 Frequency distributions with positive and negative curtosis 

 

The value 3 is deducted in Equation (2.6) because for a normal (Gaussian) distribution 

(see also chapter 3), the first part of Equation (2.6) is exactly equalt to 3. So by CCz we 

we compared the peakedness of the distribution with that of a normal distribution, being 

more peaked when larger than zero and flatter when smaller than zero. 

 

Figure 2.8 shows some additional measures of locality and spread for the cumulative 

frequency distribution function. 
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Figure 2.9 Some additional measures of locality and spread based on the cumulative distribution function. 

 

The f-percentile (or f/100-quantile) of a frequency distribution is the value that is larger 

than or equal to f percent of the data values. 

 

The 50-percentile (or 0.5-quantile) is also called the median. It is often used as an 

alternative measure of locality to the mean in case the frequency distribution is positively 

skewed. The mean is not a very robust measure in that case as it is very sensitive to the 

largest (or smallest) values in the dataset. 

 

The 25-percentile, 50-percentile and 75-percentile are denoted as the first, second and 

third quartiles of the frequency distribution: Q1, Q2, Q3 respectively. 

 

The interquartile range Q3-Q1 is an alternative measure of spread to the variance that is 

preferably used in case of skewed distributions. The reason is that the variance, like the 

mean, is very sensitive to the largest (or smallest) values in the dataset. 

 

An efficient way of displaying locality and spread statistics of a frequency distribution is 

making a Box-and-whisker plot. Figure 2.10 shows an example.  The width of the box 

provides the interquartile range, its sides the first and third quartile. The line in the 

middle represents the median and the cross the mean. The whiskers length’s are equal to 

the minimum and the maximum value (circles) as long as these extremes are within 1.5 

times the interquartile range (e.g. lower whisker in Figure 2.10), otherwise the whisker is 

set equal to 1.5 times the interquartile range (e.g. upper whisker in Figure 2.10). 

Observations lying outside 1.5 times the interquartile range are often identified as 

outliers. Box-and-whisker plots are a convenient way of viewing statistical properties, 

especially when comparing multiple groups or classes (see Figure 2.11 for an example of 

observations of hydraulic conductivity for various texture classes). 
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Figure 2.10 Components of a box-and-whisker plot 

 

 

 
Figure 2.11 Box-and-whisker plots are a convenient way to compare the statistical properties of multiple 

groups or classes (from Bierkens, 1996) 

 

 

2.2 Bivariate statistics 
 

Up to know we have considered statistical properties of a single variable: univariate 

statistical properties. In this section statistics of two variables are considered, i.e. 

bivariate statistics. In case we are dealing with two variables measured simultaneously at 

a single location or at a single time, additional statistics can be obtained that measure the 

degree of co-variation of the two data sets, i.e. the degree to which high values of one 

variable are related with high (or low) values of the other variable.  

 

Covariance 

The covariance measures linear co-variation of two datasets of variables z and y. It is 

calculated from the data as: 
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Correlation coefficient 

The covariance depends on the actual values of the variables. The correlation coefficient 

provides a measure of linear co-variation that is normalized with respect to the 

magnitudes of the variables z and y: 
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A convenient way of calculating the correlation coefficient is as follows: 
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So, one calculates izΣ , iyΣ , 2

izΣ , 2

iyΣ and ii yzΣ  and evaluates (2.9).  Figure 2.12 shows a 

so called scatterplot between the z-values observed at the 140 locations of Figure 2.1 and 

the y-values also observed there (e.g. z could for instance be hydraulic conductivity and y 

sand fraction in %). The correlation coefficient between the z- and y-values equals 0.57. 

 

Figure 2.13 shows examples of various degrees of correlation between two variables, 

including negative correlation (large values of one exist together with small values of the 

other). Beware that the correlation coefficient only measures the degree of linear co-

variation (i.e. linear dependence) between two variables. This can also be seen in Figure 

2.13 (lower right figure), where obviously there is strong dependence between z and y, 

although the correlation coefficient is zero.  
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Figure 2.12 Scatter plot of z- and y-data showing covariation. The correlation coefficient equals 0.57 
 

 

 

y

z
ρYZ = 1

y

z 0 < ρYZ < 1

y

z ρYZ =  0

y

z
-1 < ρYZ < 0

y

z ρYZ = -1

y

z
ρYZ =  0

y

z

y

z
ρYZ = 1

y

z 0 < ρYZ < 1

y

z

y

z 0 < ρYZ < 1

y

z

y

z ρYZ =  0

y

z

y

z
-1 < ρYZ < 0

y

z

y

z ρYZ = -1

y

z

y

z
ρYZ =  0

 
 
Figure 2.13 Scatter plots showing covariation and the associated correlation coefficients between two sets 

of variables that have been observed simultaneously.  
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2.3 Exercises 

 

Consider the following data set: 

 

n 1 2 3 4 5 6 7 8 9 10 

z 1.7 6.26 7.56 7.92 0.96 2.47 2.55 0.28 1.34 0.71 

y 1.3 17.02 19.74 12.01 0.66 1.8 15.91 0.62 2.15 2.07  

 

n 11 12 13 14 15 16 17 18 19 20 

z 1.66 2.99 8.71 0.09 0.62 0.99 10.27 2.96 5.54 3.61 

y 4.68 2.74 11.72 0.24 2.3 0.52 5.67 3.17 5.92 5.03 

 

 

1. Make a histogram of z with class-widths of 5 units. What fraction of the data has 

values between 5 and 10? 

2. Construct the cumulative frequency distribution of z and y 

3. Calculate the mean, the variance, the skewnes, the quantiles, the medium and the 

interquantile range of z and y. 

4. Draw a box-and-whisker plot of the z- and y-values. Are there any possible 

outliers? 

5. Suppose that z is the concentration of some pollutant in the soil (mg/kg). Suppose 

that the samples have been taken randomly from the site of interest. If the critical 

concentration is 5 mg/kg and the site is 8000 m
2
. Approximately what area of the 

site has be cleaned up? 

6. Calculate the correlation coefficient between z and y? 

7. What fraction of the data has a z-value smaller than 5 and a y-value smaller than 

10? 

8. What fraction of the data has a z-value smaller than 5 or a y-value smaller than 

10? 
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Chapter 3. Probability and random variables 

 

 

3.1 Random variables and probability distributions 
 

A random variable is a variable that can have a set of different values generated by some 

probabilistic mechanism. We do not know the value of a stochastic variable, but we do 

know the probability with which a certain value can occur. For instance, the outcome of 

throwing a die is not known beforehand. We do however know the probability that the 

outcome is 3. This probability is 1/6 (if the die is not tampered with). So the outcome of 

throwing a die is a random variable. The same goes for the outcome of throwing two 

dice. The probability of the outcome being 3 is now 1/18.  A random variable is usually 

written as a capital (e.g. D for the unknown outcome of throwing two dice) and an actual 

outcome (after the dice have been thrown) with a lower case (e.g. d). 

The “expected value” or “mean” of a random variable can be calculated if we know 

which values the random variable can take and with which probability. If D is the 

outcome of throwing two dice, the probability distribution Pr(d) is given in the  following 

table: 

 
Table 3.1 Probabilities of outcomes of throwing two dice 

D 2 3 4 5 6 7 8 9 10 11 12 

Pr(d) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 

 

The mean or expected value is calculated as (Nd the number of possible outcomes and di 

outcome i): 
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That the expected value equals 7 means that if we were to throw the two dice a very large 

number of times and calculate the average outcomes of all these throws we would end up 

with a number very close to 7. This means that we could take a sample of n outcomes dj 

of a random variable D and estimate its mean with an equation such as (2.1): 
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The mean is the centre of mass of the probability distribution and tells us what would be 

the average of generating many outcomes. The variance is a measure of spread. It tells us 

something about the width of the probability distribution. Also, it tells us how different 

the various generated outcomes (throws of the dice) are. A larger variance means that the 

probability distribution is wide, the variation among outcomes is large and therefore we 

are more uncertain about the outcome of the random variable. Figure 2.5 shows two 

probability distributions with the same mean, but with different variances. The variance 

of a random variable is calculated from the probability distribution as: 



 28 

8333.5

36/1)712(.....36/2)73(36/1)72(

]Pr[])[(]])[[(]VAR[

222

1

22

=

⋅−++⋅−+⋅−=

−=−= ∑
=

dN

i

ii dDEdDEDED

   (3.3) 

 

The variance can be estimated from a random sample of n outcomes (n throws of two 

dice) dj as: 
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When we compare equation 3.4 with the variance formula given in chapter 2 (Equation 

2.2) we see that here we divide by n-1 instead of n. This is because in this case we 

provide an estimator of the variance in case the mean is not known and must be estimated 

from the data. To obtain an unbiased estimate for the variance (without systematic error) 

we have to account for the uncertainty about the mean. Hence we divide by n-1, leading 

to a slightly larger variance. The number n-1 is also called the degrees of freedom. 

Another way of looking at this is that we have to hand in one degree of freedom as we 

already used it to estimate the mean! 

 

Instead of the variance, one often uses its square root as a measure of spread. This square 

root is called the standard deviation. Greek symbols used for the mean, variance and 

standard deviation are  µ ,σ 2 and σ  respectively. 

 

The concept of a random variable is used to express uncertainty. If we are uncertain about 

the actual value of some property (e.g. the concentration of a pollutant or the number of 

individuals in a population), this property is “modelled” as a random variable. The more 

uncertain we are about the actual but unknown value, the larger the variance of the 

probability distribution of this random variable. 
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z
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Figure 3.1. A probability density function 
 



 29 

The outcome of throwing dice is a discrete property. It can only take a limited number of 

countable values. If the property is continuous it can take any real value between certain 

bounds (e.g. altitude, hydraulic conductivity, concentration). To describe the probability 

of a certain outcome of real valued random variable Z, instead of a (discrete) probability 

distribution, a continuous function called the probability density function fZ(z) is used 

(see Figure 3.1).  The probability density itself does not provide a probability. For 

instance, we cannot say Pr[Z=z1] = fz(z1)! Instead, the probability density gives the 

probability mass per unit z. So, the probability that Z lies between two boundaries can be 

calculated from the probability density by taking the integral: 
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Equation (3.5) can now be used to arrive at a more formal definition of probability 

density by taking the following limit: 
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An additional condition necessary for fZ(z) to be a probability density function (pdf) is 

that the area under it is equal to 1: 
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The probability that Z is smaller than a certain value z is given by the cumulative 

probability distribution function (cpdf), also simply called distribution function: 
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From 3.8 it also follows that the pdf is the derivative of the cpdf: 
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In risk analysis one is often interested in calculating the probability that a certain critical 

threshold zc is exceeded. This can be calculated from both the pdf and the cpdf as: 
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Similarly, the probability that Z is in between two values can be calculated with the pdf 

(Equation 3.5), but also with the cpdf: 

  

)()(]Pr[ 1221 zFzFzZz ZZ −=≤<       (3.11) 

 

 

3.2 Elements of probability theory 

 

The basic rules used in stochastic analysis stem from elementary probability theory. 

Logically, we would like to start out with a definition of probability.  As it turns out this 

is not straightforward as there exist different notions about probability. A first 

subdivision that can be made is between objectivistic and subjectivistic notions of 

probability (e.g. Christakos, 1992). 

 

 

3.2.1 Objectivistic definitions 

 

There are three different definitions here. Central to these definitions is the notion of 

some event A (e.g. an event can be the die falling on 5, a flood occurring or the value of 

conductivity being in the 5-10 m/d range). 

 

The classical definition 

This is the oldest notion of probability and it can for instance be used to deduce the 

probability distributions of throwing two dice. The probability Pr(A) of an event A is 

determined a priori (without experimentation) with the ratio: 

 

N

N
A A=)Pr(          (3.12) 

 

with N the number of possible outcomes and NA all the outcomes resulting in event A, 

provided that all outcomes are equally likely. A problem with this definition of course is 

that it is not always possible to deduce N (especially is N is infinite such as in continuous 

valued events). Moreover, the definition contains the term equally likely, which is itself a 

probability statement. 

 

The relative frequency definition 

This notion of probability uses the following definition. The probability Pr(A) of an event 

A is the limit of performing probabilistic experiments: 
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where nA the number of occurrences of A and n the number of trials. This frequentistic 

view of probability is intuitively appealing because it provides a nice link between 
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probability and the relative frequency described in chapter 2. However, there are some 

problems, such as the fact that it is in practice not possible to perform infinite trials. 

 

The axiomatic definition 

This definition, which can be attributed to Kolmogorov († 1933), uses set theory to define 

probability.  We imagine an experiment, in which the event A is the outcome of a trial. 

The set of all possible outcomes of a trial is called the sampling space or the certain event 

S.  The union {A∪B} of two events A and B is the event that A or B occurs. The 

axiomatic definition of probability is based entirely on the following three postulates:  

1. The probability of an event is a positive number assigned to this event: 

 

0)Pr( ≥A           (3.14) 

 

2. The probability of the certain event (the event is equal to all possible outcomes) 

equals 1: 

 

Pr( ) 1S =           (3.15) 

 

3. If the events A and B are mutually exclusive then: 

 

)Pr()Pr()Pr( BABA +=∪         (3.16) 

 

Figure 3.2 shows schematically using so called Venn diagrams the certain event S with 

events A and B that are mutually exclusive (left figure) and not mutually exclusive (right 

figure). Some more derived rules based on the axiomatic probability definition will be 

given hereafter. 
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Figure 3.2 Example of Venn diagrams showing two mutually exclusive events A and B and two events that 

are not mutually exclusive. 

 

Generally, the axiomatic notion of probability is deemed superior to the others. For an 

extensive description on the subtle differences and peculiarities of the various definitions 

of probability we refer to Papoulis (1991). 
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3.2.2 Subjectivistic definition 

 

In the subjectivistic definition, probability measures our “confidence” about the value or 

a range of values of a property whose value is unknown. The probability distribution thus 

reflects our uncertainty about the unknown but true value of a property. The probability 

density function then measures the likelihood that the true but unknown value is between 

certain limits. So, in this subjectivistic definition of probability we do not have to think 

about frequencies, population sizes or events. We are faced with some property that is not 

known exactly, either because we can only measure it with some (random) measurement 

error or because we cannot measure it at all, or only partly. Think for instance about 

hydraulic conductivity in a heterogeneous geological formation. It is impossible to 

measure it everywhere at reasonable costs, so in practice we can only measure it at a 

limited number of locations (often with measurement error, because taking undisturbed 

sediment cores and perform Darcy experiments is very difficult in practice). If we have 

an aquifer with no observations, but we do know that it consists of sands, we know that 

the true value at some location is more likely to be close to 10 md
-1

 than 0.0001 md
-1

 or 

1000 md
-1

. Based on this experience from elsewhere (observations in other aquifers) we 

can then define an a priori probability distribution that measures the likelihood of the 

various possible values at our unknown location. What we do in the back of our mind is 

collecting all the information we have on sandy aquifers in the rest of the world and 

propose that their conductivities are similar to the one at hand. We can then use 

observations from these other aquifers to construct a prior distribution function. If 

subsequently observations are being collected that are specific to the aquifer at hand, we 

may use these observations to narrow the a priori probability distribution down, by 

incorporating the observed values. What results is a so called a posteriori probability 

distribution that has a smaller variance, such that we are more certain about the unknown 

conductivity at an unobserved location then we were before the observations.  

 

The subjectivistic probability does not need any observation to define it. It can be defined 

from the top of our head, thus expressing our uncertainty or confidence about an 

unknown value. This way of viewing probability and the possibility to update such a 

probability with observations is called Bayesian statistics (see hereafter) and has led to 

much debate and controversy in the statistical community, especially between people 

who accept Bayesian statistics and people who view probability as axiomatic or 

frequentistic.  In stochastic hydrology, which is an applied scientific discipline, the 

various notions of probability have never been a real issue, but insights have been 

borrowed from the various probability concepts: 

• probability is mostly viewed as subjectivistic (except maybe Hydrological statistics 

(chapter 4) which is more frequentistic in nature); 

• a priori probability distributions are often not really subjectivistic but based on 

observations taken at other times or locations in the same area of interest; 

• updating of the a priori probability distributions to a posteriori distributions makes 

use of Bayes’ theorem, which is in fact best defined using axiomatic probability rules. 
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Box 2: About uncertainty and reality 
Often one can read in papers statements like: “hydraulic conductivity is uncertain”, or 

“the uncertain behaviour of river discharge is modelled as..” . Such statements seem to 

suggest that reality itself is random. Whether this is true or not is a rather philosophical 

question. The most common view is that nature is deterministic, except maybe at the sub-

atomic level. We will adhere to this view in this book and use the following notion of 

reality and uncertainty, which relates to a subjectivistic view on probability: Reality is 

completely deterministic. However, we do not have perfect knowledge of reality, because 

we only have limited information on it. We can only observe it partly, observe it with 

error or do not exactly know the underlying process description. It is because of this that 

we may perceive (parts of) reality as random and find that a random variable or random 

process and the associated concepts of probability constitute a useful model of reality. 

Therefore, randomness is not a property of reality but a property of the stochastic model 

that we use to describe reality and our uncertainty about it. 

 

 

3.2.3 Brief review of elementary probability theory 

 

Even though the definition of probability may be a subjectivistic one, to really perform 

calculations with probabilities requires rules derived from the axiomatic definition. Here 

we will review some of these rules. This review is based on Vanmarcke (1983). 

 

The basic axioms of probability are given by 3.14 and 3.16. As stated above, the union of 

events A and B is the event that either A or B occurs and is denoted as {A∪B}. The joint 

event {A∩B} is the event that both A and B occur. From the Venn diagram Figure 3.3 it 

follows directly that the probability of the union of events and the joint event are related 

as follows: 

 

)Pr()Pr()Pr()Pr( BABABA ∩−+=∪       (3.17) 

 

If events A and B are mutually exclusive (Figure 3.2 left figure) it can be seen that 

)Pr()Pr()Pr( BABA +=∪ and 0)Pr( =∩ BA . If the multiple events A1, A2…, AM are 

mutually exclusive, then probability of the union of these events is the sum of their 

probabilities: 
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In the special case that all events in S are mutually exclusive and that they constitute all 

possible events (they are said to be collectively exhaustive) then it follows that their 

probabilities sum to 1: 
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Mutually exclusive and collectively exhaustive events are also called simple events. For 

M=2 simple events imply that )Pr(1)Pr( c AA −= with c
A the complement of A  
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Figure 3.3 Venn diagram showing the relation between the union of events and joint events. 

 

The degree of probabilistic dependence between two events is measured by the so called 

conditional probability of A given B: 
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Of course A and B can be interchanged so that 

 

)()|Pr()()|Pr()Pr( APABBPBABA ==∩      (3.20) 

 

Two events A and B are said to be (statistically) independent if the probability of their 

joint event is equal to the product of the probabilities of the individual events: 

 

)Pr()Pr()Pr( BABA =∩        (3.21) 

 

This also implies that ).Pr()Pr()|Pr( and )Pr()Pr()|Pr( BAABABBA == This means that 

knowledge about B does not have an effect on the uncertainty about A and vice versa.  

 

Finally, if we consider a set of simple events Ai intersected by an event B, we can deduce 

from the Venn diagram in Figure 3.4 and Equation (3.20) the following relationship: 
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This shows that the probability of B is the weighted sum of the probability of B given Ai 

with the probability of Ai as weight.  This relationship is known as the total probability 

theorem. An example on how to use this is as follows: suppose that we have from 

previous data-analyses for each texture class, i.e. sand, clay, silt and peat, the probability 

distribution of hydraulic conductivity. Then, if we have estimated at some unvisited 

location the probabilities on sand, clay, silt and peat from borehole data (see for instance 

chapter 7), we are able to derive probabilities of hydraulic conductivity from these using 

(3.22). 

 

The conditional probability of Ai, given B can be calculated by combining Equations 

(3.19) and (3.22): 
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This relationship is known as Bayes’ theorem. As explained before, it can be used to 

update a priori distributions using data. For instance, suppose that we have from 

information elsewhere the a priori probability of soil moisture content at some non-

observed location, say Pr(Ai). Let B represent the outcomes of observations around the 

non-observed location. The probability Pr(Ai|B) is called the a posteriori probability, i.e. 

the probability of soil moisture content at the unobserved location given the observed 

values around it. To calculate the a posteriori probability we need the so called likelihood 

Pr(B|Ai), i.e. the probability of observing B given that soil moisture content Ai is true. 
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Figure 3.4 Venn diagram showing the intersection between an event B and a set of mutually exclusive and 

collectively exhaustive events Ai, i=1,..,M. 
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3.3 Measures of (continuous) probability distributions 

 

In Chapter 2 we introduced a number of measures of frequency distributions, which are 

related to datasets and their histogram form. Similar to a histogram, the locality and form 

of probability density functions can be described by a number of measures. These 

measures are like Equations (3.1) and (3.3), but as we are now working with continuous 

variables, the sums are replaced by integrals. Before introducing these measures we start 

with the definition of the expected value.  

 

Let g(Z) be a function of some random variable Z. The expected value of g(Z) is defined 

as: 
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For discrete random variables D the expected value g(D) is defined as  
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where )( iD dp is the probability mass function of a discrete random variable (e.g. the 

probabilities in Table 3.1). So we see that it can be viewed as the weighted sum of g(Z) 

over the domain of Z with the probability density of Z as weight. If we take g(Z) = Z we 

obtain the mean or expected value of Z (the continuous version of 3.1). 
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If we take g(Z) = (Z-µZ)
2
 we obtain the variance (continuous version of 3.3): 
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The estimators of the mean and the variance are the same as in Equations (3.2) and (3.4) 

with dj replaced with zj. The standard deviation is given by 2

ZZ σσ = and the coefficient 

of variation by  

 

Z

Z

ZCV
µ

σ
=          (3.28) 

 

The following rules apply to mean and variance (if a and b are deterministic constants): 
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]E[]E[ ZbabZa +=+        (3.29) 

 

]VAR[]VAR[ 2 ZbbZa =+        (3.30) 

 

The skewness is defined as: 
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and the curtosis as: 
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Skewness and curtosis can be estimated with equations 2.5 and 2.6 with n replaced by n-1 

if the mean and the variance have been estimated as well. 

 

 

3.4 Moments 

 

The kth moment kµ of a random variable Z is defined as: 
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Often, one works with the central moments defined as: 
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Moments and central moments are related to the more standard measures of probability 

distributions as: 
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3.5 Characteristic functions 

 

There are a number of transformations of probability distributions that are useful when 

working with random variables. We start we the moment generating function, which is 

defined as: 

∫
∞

∞−

== dzzf
sz

e
sZ

esM ZZ )(]E[)(       (3.36) 

 

The moment-generating function is related to the Laplace transform. The moment 

generating function can be used to calculate the moments as: 
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Take for instance the negative exponential distribution:  
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The moment generating function of this distribution is: 
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From this we can calculate the moments: 
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So the variance is equal to 1/λ2
. 

 

Another transformation often used is the characteristic function: 
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The characteristic function is akin to the Fourier transform. The inverse of (3.42) can also 

be defined: 

 

∫
∞
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This means that if two random variables have the same characteristic function they are 

identically distributed. Like the moment generating function the characteristic function 

can be used to calculate the moments: 
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If we expand the exponential exp(isZ)  in a Taylor series around Z=0 we obtain: 

 

...)(
6

1
)(

2

1
1 32 ++++= isZisZisZ

isZ
e      (3.45) 

 

By taking expectations on both sides we obtain an expression relating the characteristic 

function to moments of Z: 
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Or written more generally: 
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I can be proven that the pdf of Z is completely defined by its characteristic function. 

From (3.47) it can also be seen that if all moments exist and if (3.47) converges, that the 

characteristic function and (through 3.43) also the pdf is completely defined. This is the 

case for most of the pdfs encountered in practice. This means that for all practical 

purposes one can approximate the pdf through a sufficient number of moments. 

 

Some additional properties of the characteristic function: If Z1 and Z2 are two 

independent random variables we have (Grimmet and Stirzaker, 1982):  
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The same relation holds for the moment generating function. Also we have that for a 

variable Y= a+bZ the characteristic function becomes (Grimmet and Stirzaker, 1982): 

 

)a(
b

)( s
is

es ZY ϕϕ =         (3.49) 

 

From (3.48) we can also deduce that if we have the sum of M identically distributed 

variables with characteristic function )(sZϕ  
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the characteristic function of Y is given by: 
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M
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The form of (3.51) stimulates the introduction of the logarithm of the characteristic 

function. This is called the cumulant function and is defined as: 

 

)(ln)( ssK ZZ ϕ=         (3.52) 

 

From (3.51) and (3.52) then follows that the cumulant of the sum Y of M identically 

distributed variables with cumulant function )(sKZ
is by: 
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The series expansion of the cumulant function is given by: 
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where 
nκ are called the cumulants which are related to the cumulant function as: 
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The cumulants are conveniently related to the moments of the pdf, such that we can 

calculate moments from cumulants and vice versa: 
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Up to know we have only talked about continuous random variables. The moment 

generating function and the characteristic function also exist for discrete random 

variables. In this case we have (with )( nD dp  the probability mass function): 
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Apart from these functions, discrete random variables can also be characterized with 

using the probability generating function: 

 

)(]E[)( nD
n

n

D dp
d

s
D

ssG ∑==       (3.59) 

 

This transformation is related to the Z-transform and only exists for discrete variables.  

Note that )0Pr()0( == dGD  and 1)1( =DG . Some useful properties (Grimmet and 

Stirzaker, 1982): 
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3.6 Some well known probability distributions and their properties 

 

There are many different models for probability distributions. Which model to choose for 

which variable depends on its type. Many hydrological variables are strictly positive (e.g. 

hydraulic conductivity, rainfall intensity) and require therefore probability density 

functions (pdfs) for positive variables. Also, certain variables, such as the number of rain 
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storms arriving in a fixed interval, are discrete, while others are continuous. In this 

section we will provide an overview of a number of probability density functions and 

their properties. Table 3.2 gives the pdfs and expressions for the mean and the variance in 

terms of the distribution parameters. Also given in the last column are a number of 

hydrological variables that may be described with the various pdfs. Figure 3.5 provides 

plots for a number of the continuous pdfs of Table 3.2 and Table 3.3 gives expressions 

for the associated generating functions. 

 

Some words should be spent on the most famous of distributions: the normal or Gaussian 

distribution. This is the distribution that naturally arises for random variables that are 

themselves the result of the sum of a large number of independent events. The underlying 

rule is called the Central Limit Theorem and it reads: 

 

Let Z1, Z2,…, ZN be a set of N independent random variables that have an arbitrary 

probability distribution with mean iµ  and variance 2

iσ . Then the normal form random 

variable                      
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has a limiting cumulative distribution function that approaches the normal (standard 

Gaussian) distribution 

 

Typically error distributions, very relevant to stochastic hydrology, are Gaussian 

distributed, because errors are often the sum of many independent error sources. If N is 

very large and the individual variables are mildly dependent then it turns out in practice 

that the summed variable is approximately Gaussian. An example of a hydrological 

variable that can often be described with a Gaussian distribution is a freely fluctuating 

groundwater level Ht that fluctuates under pulses of precipitation surplus Pt (precipitation 

minus evapotranspiration). Using a simple water balance of the soil column it is possible 

to write the groundwater level at some time t as the sum of precipitation surplus events 

(Knotters and Bierkens, 1999): 

 

∑
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If we view the rainfall surplus series as random variables, then the groundwater level will 

be approximately Gaussian distributed if M and α are large enough. Table 3.4 provides a 

cumulative distribution table Fχ(x) = Pr[χ≤x] for the standard normal random variable χ, 

with mean zero (µZ=0) and standard deviation equal to 1 (σZ=1). A number of often used 

quantiles of the distribution are given in Table 3.5. 
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Another distribution often used in hydrology that is worth mentioning is the lognormal 

distribution. A variable Z has a lognormal or logGaussian distribution if its natural 

logarithm Y=lnZ is Gaussian distributed. A well-known example is hydraulic 

conductivity. When sampled randomly in space, hydraulic conductivity obeys a 

lognormal distribution (Freeze, 1975). This assumption has been reconfirmed by many 

observations thereafter. Some useful transformation formulae between the means and 

variances of the normal and the lognormal distribution are: 
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Table 3.2 Some well known discrete and continuous probability density functions  

Distribution Probability density/mass Expected 

value 
Variance Example of Hydrological 

application 

Binomial B(N,p) 
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N
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−



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Np 

 

Np(1-p) 

The number n of flood 

events with probability p 

occurring in N time steps 

Geometric G(p) pp n 1)1( −−  

p

1
 

2

1

p

p−
 

The number of time steps 

until a flood event with 

probability p occurs. 

Poisson P(λ) 

!n

e nλλ−

 
 
λ 

 
λ 

The number of rain storms 

occurring in a given time 

period. 

Uniform U(a,b) 
bza
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(Non-informative) prior 

distribution of a 

hydrological parameter 

provided to a parameter 

estimation method  

Exponential E(λ) z
e
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λ
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The time between two rain 

storms 

Gaussian/Normal  

N(µ,σ) 
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z
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Many applications: prior 

distribution for parameter 
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exponentially distributed 
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hydrograph of n linear 

reservoirs in series; pdf of 

travel times in a catchment; 
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very flexible distribution 

for strictly positive 

variables. 
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Table 3.3 Characteristic functions for a number of probability distributions 

Distribution Probability 

generating 

function 

Moment 

generating 

function 

Characteristic 

function 

Binomial B(n,p) npsp )1( +−  
nspep )1( +−  

nispep )1( +−  

Geometric G(p) 

sp

ps

)1(1 −−
 

s

s

ep

pe

)1(1 −−
 

is

is

ep

pe

)1(1 −−
 

Poisson P(λ) )1( −s
e

λ
 )1( −se

e
λ

 
)1( −ise

e
λ

 

Uniform U(a,b) - 

)( abs

ee asbs

−

−
 

)( abis

ee aisibs

−

−
 

Exponential E(λ) - 

s−λ

λ
 

is−λ

λ
 

Gaussian/normal 

),( σµN   

- 22

2

1
ss

e
σµ +

 

22

2

1
ssi

e
σµ −

 

Gamma ),( λnΓ  -
 

n

s









−λ

λ
 

n

is









−λ

λ
 

 



 45 

 

 
Figure 3.5 Plots for some well known probability density functions 

 

 

 

3.7 Two or more random variables 

 

If two random variables Z and Y are simultaneously considered (e.g. hydraulic 

conductivity and porosity) we are interested in the bivariate probability density function 

fZY(z,y) that can be used to calculate the probability that both Z and Y are between certain 

limits: 
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A more formal definition of the bivariate pdf is: 
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The bivariate cumulative distribution function is FZY(z,y) is given by: 

 

]Pr[),( yYzZyzFZY ≤∩≤=       (3.69) 

 

The density function and the distribution function are related as: 
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The marginal distribution of Z can be obtained from the bivariate distribution by 

integrating out the Y variable: 
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The conditional probability can be obtained from the distribution function as: 

 

 )|Pr{)|(| yYzZyzF YZ =≤=       (3.73) 

 

which thus provides the probability that Z is smaller than z given that Y takes the value of 

y. The conditional pdf can be derived from this by differentiation: 
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The conditional density satisfies: 
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The relation between the bivariate pdf and the conditional pdf is given by (see also 3.2.3): 
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The total probability theorem in terms of density functions reads: 
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and Bayes’ theorem becomes: 
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A measure of linear statistical dependence between random variables Z and Y is the 

covariance is defined as: 
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The covariance between two data sets can be estimated using Equation (2.7), where we 

have to replace the number of observations n by n-1 if the respective mean values of Z 

and Y have been estimated too. The following relations between variance and covariance 

exist (a and b constants): 

 

],COV[2]VAR[]VAR[]VAR[

],COV[2]VAR[]VAR[]VAR[

22

22

YZabYbZabYaZ

YZabYbZabYaZ

−+=−

++=+
  (3.80) 

 

Often the correlation coefficient is used as a measure of linear statistical dependence: 
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The following should be noted. If two random variables are statistically independent they 

are also uncorrelated: COV[Y,Z]=0 and ρYZ = 0. However a zero correlation coefficient 

does not necessarily mean that Y and Z are statistically independent. The covariance and 

correlation coefficient only measure linear statistical dependence. If a non-linear relation 

exists, the correlation may be 0 but the two variables may still be statistically dependent, 

as is shown in the lower right figure of Figure 2.13. 

 

Figure 3.6 shows surface plots and isoplots of the bivariate Gaussian Distribution: 
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where the left plots show the situation for which 0=ZTρ and the right plots for which 

8.0=ZTρ . We can see that the isolines form an ellipse whose form is determined by the 

ratio YZ σσ /  and its principle direction by ZTρ . 

 

 

 
Figure 3.6 Surface plots and isoplots of the bivariate Gaussian distribution of independent (left) and 

dependent random variables Z and Y. 

 

From the relationship )(/),()|(| yfyzfyzf YZYYZ =  we can derive that the conditional 

Gaussian density )|(| yYzf YZ = has a Gaussian distribution ),( σµN with 

 

( )Z
Z ZY Y

Y

y
σ

µ µ ρ µ
σ

= + −  and 2 2 2(1 )Z ZYσ σ ρ= −     (3.83) 

 

From these expressions we learn that if we have two dependent random variables and we 

measure one of them (in this case Y) that our a priori distribution is updated to a new a 

posteriori distribution and that our uncertainty about Z (through the variance) has 

decreased. Of course, if both variables are independent we see that 
Zµµ =  and 22

Zσσ = . 
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Finally, a useful property of the Gaussian distribution is that any linear combination of 

Gaussian random variables (with ak deterministic weights) 

 

 ∑
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         (3.84) 

 

with mean µi, i=1,..,N, variance σi
2
, i=1,..,N  and ρij, i,j=1,..,N correlation coefficients 

between random variables i and j, is itself Gaussian distributed ),( YYN σµ  with mean and 

variance given by: 
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We will end this chapter with some notes on multivariate distributions. All the 

relationships given here for bivariate distributions can be easily generalised to probability 

distributions of multiple variables (multivariate distributions): ),..,( 1..1 NZZ zzf
N

. 

 

A distribution often used in stochastic hydrology to parameterise multivariate 

distributions is the multivariate Gaussian distribution. It can be defined as follows: Let  

Z1,Z2,…,ZN be a collection of N random variables that are collectively Gaussian 

distributed with mean µi, i=1,..,N, variance σi
2
, i=1,..,N  and ρij, i,j=1,..,N correlation 

coefficients between variables i and j. We define a stochastic vector z
 
= (Z1,Z2,…,ZN )

T
 

and a vector of mean values µµµµ = (µ1,µ2,…,µN )
T
 (superscript 

T
 stands for transpose).  The 

covariance matrix Czz is defined as E[(z-µµµµ)(z-µµµµ)Τ]. Τhe covariance matrix is a N×N 

matrix of covariances. Element Cij of this matrix is equal to ρijσiσj. The multivariate 

Gaussian probability density function is given by: 
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with || zzC  the determinant of the covariance matrix and 1−
zzC  the inverse. 
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Table 3.4 Cmulative distribution table for the standard normal (Gaussian) distribution N(0,1);  

Fχ(x) = Pr[χ≤x], e.g. F χ (0.61)=0.7921; note Fχ(-x) =1- Fχ(x) 

 

 
 

Table 3.5 Selected quantiles of the standard normal distribution N(0,1);note that q1-p = - qp 
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3.8 Questions 
 

3.1 Consider the intensity of one-hour rainfall which is assumed to follow an 

exponential distribution: z
ezfZ

λλ −=)( . With λ=0.1, calculate: Pr[Z>20]. 

 

3.2 Consider the following probability density function describing average soil 

moisture content Z in the root zone of some soil (see also the Figure): 
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a) Give the expression for the cumulative probability distribution. 

b) Calculate the probability that average soil moisture exceeds 0.30. 

c) Calculate the mean Zµ and the variance 2

Zσ of soil moisture content. 

 

3.3 Hydraulic conductivity at some unobserved location is modelled with a log-

normal distribution. The mean of Y=lnK is 2.0 and the variance is 1.5. Calculate 

the mean and the variance of K? 

 

3.4 Hydraulic conductivity for an aquifer has a lognormal distribution with mean 10 

m/d and variance 200 m
2
/d

2
. What is the probability that at a non-observed 

location the conductivity is larger than 30 m/d?  
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3.5 Based on a geological analysis we extracted the following probabilities of texture 

classes occurring in some aquifer: Pr[sand]=0.7, Pr[clay]=0.2, Pr[peat]=0.1. The 

following table shows the probability distributions of conductivity classes for the 

three textures: 

 
Table: probabilities of conductivity classes (m/d) for three texture classes 

Texture 10
-3 

10
-2

 10
-1

 10
0
 10 20 50 100 

Sand 0 0 0 0.1 0.4 0.3 0.1 0.1 

Clay 0.3 0.4 0.2 0.1 0 0 0 0 

Peat 0.1 0.3 0.3 0.2 0.1 0 0 0 

  

 Calculate the probability distribution of conductivity for the entire aquifer (use the 

total probability theorem for this). 

  

3.6 Consider two random variables Z1 and Z2 with mean 10 and 25 and variances 300 

and 450 respectively. The correlation coefficient between both variables equals 

0.7.  

a. Calculate the covariance between Z1 and Z2. 

b. Calculate the expected value of Y = Z1 + Z2. 

c. Calculate the variance of Y = Z1 + Z2. 

 

3.7 For the same two variables of 3.5: Assume that they are bivariate Gaussian 

distributed and:  

a. Calculate the probability Pr[Z1 < 30] 

b. Calculate the probability Pr[Z1 + Z2 < 50] 

c. Write the expression for the probability Pr[Z1 < 30 ∩ Z2 < 40] 

d. Write the expression for the probability Pr[Z1 < 30 ∪ Z2 < 40] 

 

3.7* Derive equations (3.48), (3.49), (3.51) and (3.54). 
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4. Hydrological statistics and extremes 
 

 

4.1 Introduction 
 

The field of statistics is extensive and all of its methods are probably applicable to 

hydrological problems. Some elementary descriptive statistics was already treated in 

chapter 2, while geostatistics will be treated in chapter 7. The field of hydrological 

statistics is mainly concerned with the statistics of extremes, which will be the main topic 

in this chapter. In the first part we will mainly look at the analysis of maximum values, in 

particular to flood estimation. In the second part we will cover some of the statistical tests 

that should be applied to series of maxima before any further analysis on extremes is 

possible. 

 

 

4.2 The analysis of maximum values 
 

 

4.2.1 Flow duration curve 
 

We start out with a time series of more then 100 years of daily averaged flow data of the 

River Rhine at Lobith (approximately) the location where the Rhine enters the 

Netherlands). Figure 4.1 shows a plot of this time series. To say something about the flow 

frequency a so -called flow duration curve can be made. Such a curve is shown in Figure 

4.2. The flow frequency may be informative in certain cases, e.g. for 5 % of the time the 

discharge will be above 5000 m3/s. However, when it comes to building dams or dikes, 

only the frequency of individual floods or discharge peaks are important. To elaborate: if 

one needs to find the required height of a dike, then the maximum height of a peak is 

most important and to a lesser extent its duration.  So our goal is to analyse flood peaks. 

Generally, two different methods are used to convert a series of discharges into a series of 

peaks: one is based on identification of the maximum discharge per year and the other on 

analysing all discharge values above a given threshold. We will concentrate on the first 

method here, and briefly treat the second. 

 

 

4.2.2 Recurrence times 

 
To obtain a series of maximum values we simply record for each year the largest 

discharge measured. This results in the same number of maximum discharges as recorded 

years. Sometimes, if maximum discharges occur in one part of the season (winter), it may 

be wise to work with hydrological years (April 1 to March 31st in Northern Europe). This 

has been done with the Rhine discharges. The plot with maxima is shown in Figure 4.2. 

To further analyse these maximum values the following assumptions are made: 

1. the maximum values are realisations of independent random variables; 

2. there is no trend in time; 

3. the maximum values are identically distributed. 
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Figure 4.1 Daily average discharges (m

3
/s) of the Rhine river at Lobith 

 
 

Figure 4.2 Flow duration curve of the Rhine river at Lobith  
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Figure 4.3 yearly maximum values of daily average discharge of the Rhine river at Lobith 
 

 

 

In section 4.3 we will describe some statistical tests to check whether these assumptions 

are likely to be valid.  

 

If the maximum values are indeed independent random variables, the first step of an 

analysis would be to calculate the cumulative frequency distribution and use this as an 

estimate for the (cumulative) distribution function )Pr()( yYyF ≤= . The probability that 

a certain value y is exceeded by the maximum values is given by the function 

)(1)Pr()( yFyYyP −=>= . Finally, the recurrence time or return period T(y) when 

applied to yearly maximum values is the mean (or expected) number of years between 

two flood events that are larger than y and is calculated using either F(y) or P(y) as: 

 

)(1

1

)(

1
)(

yFyP
yT

−
==        (4.1) 

 

To estimate the recurrence time, first the cumulative distribution function must be 

estimated. The most common way of doing this is by arranging the values in ascending 

order and assigning rank numbers from small to large: yi,i=1,..,N, with N the number of 

years.  Ordinates of the cumulative distribution function are then estimated by: 
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N

i
yF i         (4.2) 

 

There have been other estimators proposed (e.g. Gringorten: )12.0/()44.0()(ˆ +−= iiiyF ), 

but for larger N differences between these are small. Table 4.1 shows (part of) the 

analysis performed on the maximum discharge values for the Rhine river. As can be seen, 

the maximum recurrence period that can be analysed with the raw data is N+1 years (103 

in the example). However, many dams and dikes are designed at larger return periods. 

For instance, river dikes in the Netherlands are based on 1:1250 year floods. To be able to 

predict flood sizes belonging to these larger recurrence times we need to somehow 

extrapolate the record. One way of doing this is to fit some probability distribution to the 

data and use this probability distribution to predict the magnitudes of floods with larger 

recurrence times. As will be shown in the next section, the Gumbel distribution is a good 

candidate for extrapolating maximum value data. 

 
Table 4.1 Analysis of maximum values of Rhine discharge at Lobith for recurrence time 

Y Rank F(y) P(y) T(y) 

2790 1 0.00971 0.99029 1.0098 

2800 2 0.01942 0.98058 1.0198 

2905 3 0.02913 0.97087 1.0300 

3061 4 0.03883 0.96117 1.0404 

3220 5 0.04854 0.95146 1.0510 

3444 6 0.05825 0.94175 1.0619 

3459 7 0.06796 0.93204 1.0729 

. . . . . 

. . . . . 
9140 90 0.87379 0.12621 7.9231 

9300 91 0.88350 0.11650 8.5833 

9372 92 0.89320 0.10680 9.3636 

9413 93 0.90291 0.09709 10.3000 

9510 94 0.91262 0.08738 11.4444 

9707 95 0.92233 0.07767 12.8750 

9785 96 0.93204 0.06796 14.7143 

9850 97 0.94175 0.05825 17.1667 

10274 98 0.95146 0.04854 20.6000 

11100 99 0.96117 0.03883 25.7500 

11365 100 0.97087 0.02913 34.3333 

11931 101 0.98058 0.01942 51.5000 

12280 102 0.99029 0.00971 103.0000 

 

 

4.2.2 Maximum values and the Gumbel distribution 
 

The added assumption with regard to the record of maximum values is that they are 

random variables that follow a Gumbel distribution, i.e. the following pdf and 

distribution function: 
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)exp()( )()( azbazb

Z ebezf −−−− −=       (4.3) 

 

)exp()( )( azb

Z ezF −−−=        (4.4) 

 

Here we will show that the distribution of the maximum values is likely to be a Gumbel 

distribution. Let Z1, Z2,…,ZN be N independent and identically distributed variables with 

distribution function FZ(z). Let Y be the maximum of this series Y = max(Z1, Z2,…,ZN ). 

The distribution function of Y is then given by: 
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   (4.5) 

 

We cannot derive the probability distribution from (4.5) alone, because ( )N

Z yF )(  is a so 

called degenerative distribution: if ( ) 0)(then →∞→
N

Z yFN . To obtain a non- 

degenerative distribution of Y we need to reduce and normalize the maximum values. 

Now suppose that the Z variables have an exponential distribution: )exp(1)( bzzFZ −−=  

with b> 0. We apply the following transformation of the maximum Y: 
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The distribution function of this variable becomes: 
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Taking the limit yields: 
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which is the normalized Gumbel distribution. So the limit distribution of X if Z has 

exponential distribution is )exp( xe−− . If we define bNa /log= then X=b(Y-a). So for 

large N we have: 
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So, finally we have shown that the maximum Y of N independently and identically 

exponentially distributed random variables ZI has a Gumbel distribution with parameters 

a and b. For finite N this distribution is also used, where a and b are found through fitting 

the distribution to the data.  

 

It can be shown in a similar way as for the exponential distribution that the Gumbel limit 

distribution is also found for the maximum of independent variables with the following 

distributions: Gaussian, logGaussian, Gamma, Logistic and Gumbel itself. This is the 

reason why the Gumbel distribution has been found to be a suitable distribution to model 

probabilities of maximum values, such as shown in Figure 4.3. Of course, we have to 

assume that these maximum values themselves are obtained from independent variables Z 

within a year. This is clearly not the case as is shown in Figure 4.1. However, as long as 

the maximum values are approximately independent of other maximum values, it turns 

out that the Gumbel distribution provides a good model if a and b can be fitted. 

 

 

4.2.3 Fitting the Gumbel distribution 
 

To be able to use the Gumbel distribution to predict larger recurrence times it has to be 

fitted to the data. There are several ways of doing this: 1) using Gumbel probability 

paper; 2) linear regression; 3) the methods of moments; 4) maximum likelihood 

estimation. The first three methods will be shown here. 

 

Gumbel probability paper 

Using equation (4.4) it can be shown that the following relation holds between a given 

maximum y and the distribution function F(y)  

 

))(lnln(
1

yF
b

ay −−=        (4.10) 

 

So by plotting -ln(-lnF(y)) against the maximum values y we should obtain a straight line 

if the maximum values follow a Gumbel distribution. If Gumbel probability paper is used 

the double log-transformation of the distribution function is already implicit in the scale 

of the abscissa. On this special paper plotting maximum values yi with rank i against 

)]1/(/[11)( +−= NiyT i
will yield a straight line if they are Gumbel distributed. The 

Rhine discharge maximum values of table 4.1 have been plotted in Figure 4.4. Once these 

data have been plotted a straight line can be fitted by hand, from which the parameters a 

and 1/b can calculated. The fitted line is also shown in Figure 4.4.  
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Figure 4.4 Gumbel probability plot of Rhine discharge maximum values and a fitted linear relation; 

0.0005877ˆ,5604ˆ == ba  

 

Linear Regression 

Alternatively, one can plot yi against ))]1/(ln(ln[ +−− Ni on a linear scale. This will 

provide a straight line in case the yi are Gumbel distributed. Fitting a straight line with 

linear regression will yield the intercept a at 0))]1/(ln(ln[ =+−− Ni and the slope 1/b. 

 

Methods of moments 

The easiest way to obtaining the Gumbel parameters is by the method of moments. From 

the probability density function it can be derived that the mean 
Yµ and variance 2

Yσ are 

given by (see also Table 3.3):  

 

b
a

Y

5772.0
+=µ         (4.11) 

 

2

2
2

6b
Y

π
σ =          (4.12) 

 

Using standard estimators for the mean ( ∑= iY Ynm /1 ) and the variance 

( ∑ −−= 22 )()1/(1 YiY mYns ) the parameters can thus be estimated as: 
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Figure 4.5 shows a plot of the recurrence time versus maximum discharge with 

parameters fitted with the method of moments. 
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Figure 4.5: Recurrence time versus yearly maximum of daily averaged discharge of the Rhine river at 

Lobith: 0.00061674ˆ,5621ˆ == ba  

 

The method of moments yields a biased estimate of the parameters. More sophisticated 

estimators are unbiased and more accurate are the probability weighted moments method 

(Landwehr at al, 1979) and debiased maximum likelihood methods (e.g. Hosking, 1985). 

These estimation methods are however much more complex, while the results are not 

always very different.  

 

 

4.2.4 Estimation of the T-year event and its confidence limits 
 

Once the parameters of the Gumbel-distribution have been estimated we can estimate 

magnitude the T-year event, which is the basis for our design. This event is estimated by 

(note this is a biased estimate): 
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Alternatively, one could of course read it directly from the Gumbel plot on probability 

paper. When applied to the Rhine dataset and the parameters obtained from the method of 

moments we obtain for instance for T=1250 (this is the current design norm) 

./m 17182))9992.0ln(ln(16215621 3

1250 sy =−⋅−=  With the parameters obtained from 

linear regression we obtain 17736 m
3
/s.  

 

When parameters are obtained through linear regression the 95%-confidence limits of yT 

can be obtained through: 
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with t95 the 95-point of the student’s t-distribution, and
Y

s ˆ the standard error of the 

(regression) prediction error (taking account of parameter uncertainty) which is estimated 

as: 
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with )]/)1ln((ln[)( iii TTTx −−−=  the transform of recurrence interval Ti of event with 

rank i from the N pairs (Ti, yTi ) in the Gumbel plot. In Figure 4.4 the 95% confidence 

limits are also given. The 95% confidence limits of the 1250 years event are {17183, 

18289} m
3
/s. 

 

An approximate estimate of the estimation variance of yT in case the parameters are 

estimated with the method of moments is given by (Stedinger et al., 1993):  

 

Nb

xx
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with )]/)1ln(ln[ TTx −−−= . In figure 4.5 the 95%-confidence limits are given assuming 

the estimation error of Tŷ to be Gaussian distributed: )ˆ(Var96.1ˆ
TT yy ± . For T=1250 

years these limits are:  {15862,19611} m
3
/s. In Van Montfort (1969) confidence limits 

are given for the case when the parameters are obtained with maximum likelihood 

estimation.   

  

The number of T-year events in a given period 

 

It should be stressed that the T-year flood event does not exactly arise every T years! If 

we had a very long period of observations (say τ years, with τ in the order of 100000 
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years or so) then the T-year event would occur on average τ/T times. The probability that 

in N years a T-year flood event occurs n times follows a binomial distribution: 
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with Tp /1= . So the probability of a 100 year flood event occurring in the next year is 

0.1. The probability of exactly one flood even occurring in the coming 10 years is  
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The probability that one or more flood events occur in 10 years is 1-Pr(no events) = 

0956.099.01 10 =− . Going back to our Rhine example: the probability of at least one 

T=1250 years event occurring in the next 100 years is 0769.09992.01 100 =− , which is 

still almost 8%! 

 

The time until the occurrence of a T-year event 

 

The number of years m until the next T-year event is a random variable with a geometric 

distribution with p = 1/T : 

 

pp  ym m

T

1)1()event  until years Pr( −−=      (4.21) 

 

The recurrence time T is the expected value of this distribution: ./1][ TpmE ==  The 

probability of a T-year flood occurring in the next year is p (as expected). 

  

 

4.2.6 Pot data 
 

An alternative way of obtaining flood statistics from time series of discharges is through 

partial duration series or peak over threshold (pot) data. The idea is to choose a 

threshold above which we imagine that discharge peaks would be called a flood event. 

We then consider only the discharges above this threshold. Figure 4.6 shows the pot-data 

for the Rhine catchment for a threshold of 6000 m3/s. If there are n exceedances and if the 

magnitude of the exceedances Z are independent and identically distributed with 

distribution function FZ(z)  than the probability of the maximum Y of these exceedances 

is given by ( )0 if 0 and 0 ==≥ nyy  
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Because the number of exceedences N is also a random variable (from Equation 3.22) we 

find: 
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It turns out that if the threshold is large enough that the number of exceedances has a 

Poisson distribution. Thus we have for (4.23): 
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If the exceedances obey an exponential distribution then it follows that the maximum of 

the Pot-data has a Gumbel distribution: 
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So in conclusion: the maximum value of a Poisson number of independent and 

exponentially distributed exceedances follows a Gumbel distribution. 
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Figure 4.6 Peak over threshold data of daily average Rhine discharge at Lobith 
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The analysis of the pot data is rather straightforward. The T-year exceedance is given by: 
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with λ the mean number of exceedances per time unit n and 1/b the average magnitude of 

the exceedances z  which can both be estimated from the pot data. The pot data of the 

Rhine data at Lobith yield: 5.786=n and 1228=z m
3
/s. The 1250 year exceedance is 

thus given by: 
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The 1:1250 year event then is obtained by adding the threshold: 16910 m
3
/s. 

 

 

4.2.7 Other distributions for maximum values 

 
The Gumbel distribution is not the only probability distribution that is used to model 

maximum values. In fact, the Gumbel distribution is a specific case of the so called 

General Extreme Value distribution (GEV): 
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Where θ is a form parameter. As can be seen the GEV reverts to the Gumbel distribution 

for θ =0. The Gumbel distribution therefore is often called the Extreme value distribution 

of type I (EV type I). If θ >0 we obtain a EV type III distribution (or Weibull 

distribution) which has a finite upper bound. If θ < 0 it is called the EV type II 

distribution whose right hand tail is thicker than the Gumbel distribution, such that we 

have a larger probability of larger floods. Figure 4.7 shows the three types of extreme 

value distributions on Gumbel probability paper. As can be seen, the three distributions 

coincide for T = 1/(1-e) ≈1.582 years. Apart from the GEV distribution other 

distributions used to model maximum values are the lognormal distribution (see 3.2) and 

the log-Pearson type 3 distribution. The parameters of the lognormal distribution can be 

obtained through for instance the method of moments by estimating the mean and the 

variance of the log-maximum values Ylnµ and .2

ln Yσ  The Pearson type 3 distribution does 

not have a closed form solution but is tabulated.  The p-quantile yp of the probability 

distribution (value of y for which ))Pr( pyY =≤ is also tabulated using so called 

frequency factors Kp(CSY): 

 

)( YpYYp CSKy σµ +=        (4.29) 
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with 
YYY CS,,σµ the mean, standard deviation and coefficient of skewness respectively. 

The Log-Pearson type 3 distribution is obtained by using the mean, variance and 

skewness of the logarithms: .,, lnlnln YYY CSσµ  Differences between extrapolations with 

these distributions can be substantial if the time series is length is limited, in which case 

the choice of the distribution may be very critical. To be safe, sometimes several 

distributions are fitted and the most critical taken as design norm. Figure 4.8 shows two 

different distributions fitted to the Rhine data. 

 

 
Figure 4.7 GEV-distributions on Gumbel probability paper. 
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Figure 4.8 Gumbel and lognormal distributions fitted to the same maximum values. 

 

4.2.8 Minimum values 
 

Up to now we have only been concerned with maximum values. However in the analysis 

of, for instance, low flows we may be concerned with modelling the probability 

distribution of yearly minimum discharge. One simple way of dealing with minimum 

values is to transform them into maximum values, e.g. by considering –y or 1/y. Also, the 

GEV type III or Weibull distribution is suitable for modelling minimum values that are 

bounded below by zero. 

 

 

4.3 Some useful statistical tests 
 

Estimation of T-year events from records of maximum values is based on the assumption 

that the maximum values are independent, are homogenous (there is no change in mean 

and variance over time) and have a certain probability distribution (e.g. Gumbel). Here 

we will provide some useful tests for checking maximum value data on independence, 

trends and assumed distribution. For each of the assumptions there are numerous tests 

available. We do not presume to be complete here, but only present one test per 

assumption. 
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4.3.1 Testing for independence 
 

Von Neuman’s Q-statistic can be used to test whether a series of data can be considered 

as realisations of independent random variables:  
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where Yi is the maximum value of year i and Yi+1 is the maximum value of year i+1 etc., 

and n the length of the series. It can be shown that if the correlation coefficient between 

maximum values of two subsequent years is positive ( 0>ρ , which is usually the case 

for natural processes), that Q will be smaller if ρ  is larger. If we accept that if the 

maximum values are dependent that their correlation will be positive, we can use Q as a 

test statistic for the following two hypothesis: H0: the maximum values are independent; 

H1: they are dependent. In that case we have a lower critical area. Table 4.2 shows lower 

critical values for Q. Under the assumption that yi are independent and from the same 

distribution we have that E[Q]=2. If Q is smaller than a critical value for a certain 

confidence level α (here either 0.001, 0.01 or 0.05) we can say with an accuracy of α that 

the data are dependent. For instance, taking the maximum values of the last 20 years 

(1984-2003) at Lobith we obtain for n=20 that Q = 2.16. From Table 4.2 we see that Q is 

not in the critical area, so there is no reason to reject the hypothesis that the data are 

independent. Note that for large n we have that  
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is approximately standard Gaussian distributed. In case of the Rhine data set we have for 

n=103 that Q=2.071 and therefore Q’ = 0.366 which is far from the critical 0.05 value of 

–1.96: the zero-hypothesis of independent maximum values cannot be rejected. 

 



 68 

Table 4.2 Lower critical values for von Neuman’s test of independence. 

n n

α α
n n

α α

 
 

 

4.3.2 Testing for trends 
 

There are many tests on trends, some of them specifically focussed on linear trends or 

step trends or based on special assumptions about the distribution of the data sequence. 

Here a nonparametric test statistic is presented (the Mann-Kendall test for trends) that 

makes no assumptions about the type of trend (linear or non-linear) or the distribution of 

the data. The trend must however be monotoneous and not periodic. Consider the series 

of annual maximum values Yi  i=1,..,n. Each value Yi  i=2,..,n is compared with all the 

subsequent values Yj  j=1,..,i-1 to compute the Mann-Kendall test statistic: 
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For large n (n>40) and no serial dependence of the data the statistic T is asymptotically 

Gaussian distributed with mean 0][ =TE and variance .18/)]52)(1([][ +−= nnnTVar  

This means that the test H0: the maximum values have no trend; H1: they have a trend, 

using the test statistic )]52)(1(/[18' +−= nnnTT has a two-sided critical area with critical 

levels given by the quantiles of the standard normal distribution: 2/12/  and αα χχ − (with 

α the significance level. Performing this test for the Rhine data set of maximum values 

yields: T=689 and T’=1.992. This means that the Hypothesis of no trend is rejected. The 

value of T’ suggests a positive trend at 5% accuracy.  

 

 

4.3.3 Testing a presumed probability distribution 
 

A very general test on a distribution is Pearson’s chi-squared ( 2χ ) test. Consider a data 

set with n maximum values. The values are classified into m non-overlapping classes to 

obtain a histogram. For each class i we calculate the number ni of data falling in this class 

(note that nn
m

i i =∑ =1
). Using the presumed distribution function2 FY(y) the expected 

number of data falling into class i can be calculated as:  
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with 
lowup  and yy the upper and lower boundaries of class i respectively. The test statistic 

is given as: 
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The statistic 2Χ has a 2

1−mχ distribution, i.e. a chi-squared distribution with m-1 degrees of 

freedom. Table 4.3 provides upper critical values for the 2χ distribution for various 

degrees of freedom and significance levels. Application to the Rhine data set gives for 20 

classes of width 500 from 2500 to 13000 m
3
/d. and the assumed Gumbel distribution with 

a=5621 and b= 0.000616735 leads to 70.232 =Χ . This is outside the critical area for 19 

                                                 
2 Note that if the parameters of the presumed distribution are estimated with the method 

of moments some bias is introduced. 
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degrees of freedom and an accuracy of 5%. We therefore conclude that the assumption of 

the maxima being Gumbel distributed cannot be rejected. Performing the same test with 

the lognormal distribution yields 36.142 =Χ which fits even better. 
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Table 4.3 Upper critical values for the 
2χ distribution 

             Probability of exceeding the critical value 

  ν           0.10      0.05     0.025      0.01     0.001 
 

  1          2.706     3.841     5.024     6.635    10.828 

  2          4.605     5.991     7.378     9.210    13.816 

  3          6.251     7.815     9.348    11.345    16.266 

  4          7.779     9.488    11.143    13.277    18.467 

  5          9.236    11.070    12.833    15.086    20.515 

  6         10.645    12.592    14.449    16.812    22.458 

  7         12.017    14.067    16.013    18.475    24.322 

  8         13.362    15.507    17.535    20.090    26.125 

  9         14.684    16.919    19.023    21.666    27.877 

 10         15.987    18.307    20.483    23.209    29.588 

 11         17.275    19.675    21.920    24.725    31.264 

 12         18.549    21.026    23.337    26.217    32.910 

 13         19.812    22.362    24.736    27.688    34.528 

 14         21.064    23.685    26.119    29.141    36.123 

 15         22.307    24.996    27.488    30.578    37.697 

 16         23.542    26.296    28.845    32.000    39.252 

 17         24.769    27.587    30.191    33.409    40.790 

 18         25.989    28.869    31.526    34.805    42.312 

 19         27.204    30.144    32.852    36.191    43.820 

 20         28.412    31.410    34.170    37.566    45.315 

 21         29.615    32.671    35.479    38.932    46.797 

 22         30.813    33.924    36.781    40.289    48.268 

 23         32.007    35.172    38.076    41.638    49.728 

 24         33.196    36.415    39.364    42.980    51.179 

 25         34.382    37.652    40.646    44.314    52.620 

 26         35.563    38.885    41.923    45.642    54.052 

 27         36.741    40.113    43.195    46.963    55.476 

 28         37.916    41.337    44.461    48.278    56.892 

 29         39.087    42.557    45.722    49.588    58.301 

 30         40.256    43.773    46.979    50.892    59.703 

 31         41.422    44.985    48.232    52.191    61.098 

 32         42.585    46.194    49.480    53.486    62.487 

 33         43.745    47.400    50.725    54.776    63.870 

 34         44.903    48.602    51.966    56.061    65.247 

 35         46.059    49.802    53.203    57.342    66.619 

 36         47.212    50.998    54.437    58.619    67.985 

 37         48.363    52.192    55.668    59.893    69.347 

 38         49.513    53.384    56.896    61.162    70.703 

 39         50.660    54.572    58.120    62.428    72.055 

 40         51.805    55.758    59.342    63.691    73.402 

 41         52.949    56.942    60.561    64.950    74.745 

 42         54.090    58.124    61.777    66.206    76.084 

 43         55.230    59.304    62.990    67.459    77.419 

 44         56.369    60.481    64.201    68.710    78.750 

 45         57.505    61.656    65.410    69.957    80.077 

 46         58.641    62.830    66.617    71.201    81.400 

 47         59.774    64.001    67.821    72.443    82.720 

 48         60.907    65.171    69.023    73.683    84.037 

 49         62.038    66.339    70.222    74.919    85.351 

 50         63.167    67.505    71.420    76.154    86.661 

  

             

 Probability of exceeding the critical value 

 ν            0.10      0.05     0.025      0.01     0.001 
 

 51         64.295    68.669    72.616    77.386    87.968 

 52         65.422    69.832    73.810    78.616    89.272 

 53         66.548    70.993    75.002    79.843    90.573 

 54         67.673    72.153    76.192    81.069    91.872 

 55         68.796    73.311    77.380    82.292    93.168 

 56         69.919    74.468    78.567    83.513    94.461 

 57         71.040    75.624    79.752    84.733    95.751 

 58         72.160    76.778    80.936    85.950    97.039 

 59         73.279    77.931    82.117    87.166    98.324 

 60         74.397    79.082    83.298    88.379    99.607 

 61         75.514    80.232    84.476    89.591   100.888 

 62         76.630    81.381    85.654    90.802   102.166 

 63         77.745    82.529    86.830    92.010   103.442 

 64         78.860    83.675    88.004    93.217   104.716 

 65         79.973    84.821    89.177    94.422   105.988 

 66         81.085    85.965    90.349    95.626   107.258 

 67         82.197    87.108    91.519    96.828   108.526 

 68         83.308    88.250    92.689    98.028   109.791 

 69         84.418    89.391    93.856    99.228   111.055 

 70         85.527    90.531    95.023   100.425   112.317 

 71         86.635    91.670    96.189   101.621   113.577 

 72         87.743    92.808    97.353   102.816   114.835 

 73         88.850    93.945    98.516   104.010   116.092 

 74         89.956    95.081    99.678   105.202   117.346 

 75         91.061    96.217   100.839   106.393   118.599 

 76         92.166    97.351   101.999   107.583   119.850 

 77         93.270    98.484   103.158   108.771   121.100 

 78         94.374    99.617   104.316   109.958   122.348 

 79         95.476   100.749   105.473   111.144   123.594 

 80         96.578   101.879   106.629   112.329   124.839 

 81         97.680   103.010   107.783   113.512   126.083 

 82         98.780   104.139   108.937   114.695   127.324 

 83         99.880   105.267   110.090   115.876   128.565 

 84        100.980   106.395   111.242   117.057   129.804 

 85        102.079   107.522   112.393   118.236   131.041 

 86        103.177   108.648   113.544   119.414   132.277 

 87        104.275   109.773   114.693   120.591   133.512 

 88        105.372   110.898   115.841   121.767   134.746 

 89        106.469   112.022   116.989   122.942   135.978 

 90        107.565   113.145   118.136   124.116   137.208 

 91        108.661   114.268   119.282   125.289   138.438 

 92        109.756   115.390   120.427   126.462   139.666 

 93        110.850   116.511   121.571   127.633   140.893 

 94        111.944   117.632   122.715   128.803   142.119 

 95        113.038   118.752   123.858   129.973   143.344 

 96        114.131   119.871   125.000   131.141   144.567 

 97        115.223   120.990   126.141   132.309   145.789 

 98        116.315   122.108   127.282   133.476   147.010 

 99        117.407   123.225   128.422   134.642   148.230 

100        118.498   124.342   129.561   135.807   149.449 
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4.4 Exercises 
 

4.1 Consider the following yearly maximum daily streamflow data of the Meuse river at 

the Eysden station at the Dutch-Belgian border (daily average discharge in m3/s) 

 

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

1266 1492 1862 861 715 1367 1837 1429 1429 1261 1607 2132 1652 1537 1155 1899 1956 1596 1380 745 2181

                     

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

955 1007 824 1271 1044 597 1216 1061 1450 2016 1270 1341 1075 2482 874 1689 1554 1831 1149 1444 1791

                     

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

1207 3050 1578 2817 792 1143 1698 2076 1204 1835

  

a. Plot the data on Gumbel-probability paper and determine the parameters of the 

Gumbel distribution. Estimate the 1000-year flood? 

b. Determine the parameters of the Gumbel distribution by linear regression of Qmax 

against –ln[-ln{i/(n+1)}] with i the rank of the ith smallest maximum. Estimate the 

1000-year flood and its 95% confidence limits. 

c. Determine the parameters of the Gumbel distribution with the method of moments. 

Estimate the 1000-year flood and its 95% confidence limits.  

d. Estimate the 1000-year flood assuming a lognormal distribution of the maximum 

values. 

e. Test whether these maximum values can be modelled as independent stochastic 

variables. 

f. Test whether the data can be considered as outcomes of a Gumbel distribution. 

g. Test whether the data can be considered as outcomes of a lognormal distribution. 

h. What is the probability that the 1000-year flood occurs at least once within the next 

40 years? 

i. What is the probability that the 1000-year flood occurs twice in the next 100 years? 
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5. Random functions 

 

 

In chapter 3 random variables were treated. In this chapter these concepts are extended to 

random functions. Only the basic properties of random functions are treated. Elaborate 

treatment of random functions can be found in standard textbooks on the subject such as 

Papoulis (1991) and Vanmarcke (1983). A very basic and excellent introduction to 

random functions can be found in Isaaks and Srivastava (1989).  

 

 

5.1 Definitions 
 

Figure 5.1 shows the schematically the concept of a random function (RF). Consider 

some property z that varies in space (e.g. hydraulic conductivity), time (e.g. surface water 

levels) or space and time (e.g. groundwater depth). Except at locations or times where the 

value of property z is observed, we do not know the exact values of z. In order to express 

our uncertainty about z we adopt the following concept. Instead of using a single function 

to describe the variation of z in space and/or time, a family of functions is chosen. Each 

of these functions is assumed to have an equal probability of representing the true but 

unknown variation in space and/or time. The family of equally probably functions is 

called the ensemble, or alternatively a random function. As with a random variable, a 

random function is usually denoted with a capital.  

 

If Z is a function of space it is also referred to as a random space function (RSF) or 

random field: 

 

 32 ),,(or  ),(),( ℜ∈=ℜ∈= zyxyxZ xxx        

 

If Z is a function of time it is referred to as a random time function (RTF), random 

process or stochastic process: 

 

 ),( ℜ∈ttZ            

 

If Z is a function of space and time it is referred to as a random space-time function 

(RSTF) or space-time random field: 

 

 ℜ∈ℜℜ∈ ttZ ,/),,( 32xx          

  

In this chapter we will treat most of the theory of random functions using the temporal 

framework )(tZ . The spatial framework )(xZ is used for concepts that are a) only defined 

in space; b) can be better explained in space c) in case certain definitions in the spatial 

framework are different from the temporal framework.  

 

In Figure 5.1 four functions (ensemble members) are shown. One particular function or 

ensemble member out of the many is called a realisation and is denoted with the lower 
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case z(t). Depending on the type of random function (see hereafter) the number of 

possible realisations making up a random function can be either finite or infinite. 

tt1 t2

Z(t)

 

Figure 5.1 Schematic representation of a random function  

 

Another way of looking at a random function is as a collection of random variables (one 

at every location in space or point in time) that are all mutually statistically dependent. If 

we return to the example of Figure 5.1: at every point in time t a random variable Z(t) is 

defined. At each t the random variable Z(t) is described with a probability density 

function (pdf) fZ(z;t) which not only depends on the value of z, but also on the value of t. 

This pdf could be estimated by sampling all realisations at a certain point (say t1) in time 

or location and calculating the histogram of the samples. Figure 5.1 shows that the 

variation among the realisations is larger at point t1 than at point t2, leading to a 

probability density function at t1 with a larger variance than at t2. So, we are less certain 

about the unknown value at t1 than we are at t2.  

 

At each point in time (or location) we can calculate the time- (or location-) dependent 

mean and variance: 
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and the variance is defined as 
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Also, the random variables are usually correlated in time (or in space for spatial random 

functions): 0)](),(COV[ 21 ≠tZtZ . The covariance is generally smaller when random 

variables are considered at locations further apart. The covariance is defined as: 
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For t1= t2 the covariance equals the variance (5.2).  

 

For a set of N discrete random variables the joint or multivariate probability distribution 

Pr[d1,d2,…,dN] describes the probability that N random variables have a certain value, i.e. 

that D1 = d1 and D2 = d2 and ….and DN = dN. Similarly, for N continuous random 

variables the multivariate probability density f(z1,z2,…. zN) is a measure of N random 

variables Zi, i=1,..,N variables having a certain value. The analogue for a random function 

is the probability measure that a realisation of Z(t) at a set of N locations ti, i = 1,..,N has 

the values between
1111 )( dzztzz +≤< ,

2222 )( dzztzz +≤< ,..,
NNNN dzztzz +≤< )(  

respectively. The associated multivariate probability density function (pdf) is denoted as 

f(z1,z2,…. zN ; t1,t2,…. tN) and defined as: 
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Because it relates to random variables at different points or locations, the multivariate pdf 

of a random function is sometime referred to as multipoint pdf. Theoretically, a random 

function is fully characterised (we know all there is to know about it) if the multivariate 

probability distribution for any set of points is known. 

 

 

5.2 Types of random functions 
 

Random functions can be divided into types based on whether their functional values are 

continuous (e.g. hydraulic conductivity in space or discharge in time) or discrete (e.g. the 

number of floods in a given period). Another distinction is based on the way the domain 

of the random function is defined (see Figure 5.2). For instance, a continuous valued 

random function Z can be: 

a) defined at all locations in time, space or space time: Z(t), Z(x) or Z(x,t); 

b) defined at discrete points in time, space or space time, where Z(k∆t), k=1,..,K is 

referred to as a random time series and Z(i∆x, j∆y), i=1,..,I; j=1,..,J as a lattice 

process; 

c) defined at random times or random locations in space and time: Z(T), Z(X) or Z(X,T). 

Such a process is called a compound point process. The occurrence of the points at 
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random co-ordinates in space and time is called a point process. If the occurrence of 

such a point is associated with the occurrence of a random variable (e.g. the 

occurrence of a thunder storm cell at a certain location in space with a random 

intensity of rainfall) it is called a compound point process. 

 

Naturally, one can make the same distinction for discrete-valued random functions, e.g. 

D(t), D(k∆t) or D(T); D(x), D(i∆x, j∆y) or D(X) etc. 

 

Z(t)

t∆
k∆t

Z(k∆t)

i∆x
x∆

Z(i∆x,j∆y)
j∆y

y∆

(a) (b)

(c)

t T

Z(T)

(d)

Figure 5.2 Examples of realisations of different types of random functions based on the way they are 

defined on the functional domain; a) random time series; b) lattice process; c) continuous-time random 

function; d) compound point process. 

 

 

5.3 Stationary random functions 
 

5.3.1 Strict stationary random functions 
 

A special kind of random function is a called a strict stationary random function. A 

random function is called strict stationary if its multivariate pdf is invariant under 

translation. So for any set of N locations and for any translation t’ we have that 
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Thus, we can have any configuration of points on the time axis and move this 

configuration (the whole configuration, not one point at the time) of points forward and 

backwards in time and have the same multivariate pdf. For the spatial domain we have to 

stress that strict stationarity means an invariant pdf under translation only, not rotation. 

So for a strict stationary random function in two dimensions, the two sets of locations in 

the left figure of 5.3 have the same multivariate pdf, but those in the right figure not 

necessarily so. A random function whose multivariate pdf is invariant under rotation is 

called a statistically isotropic random function. 

x

y

x

y

 

Figure 5.3. Translation of a configuration of points without rotation (left figure) and with rotation (right 

figure) 

 

 

5.3.2 Ergodic random functions 
 

One could ask why the property of stationarity is so important. The reason lies in 

estimating the statistical properties of a random function such as the mean, the variance 

and the covariance. In case of a random variable, such as the outcome of throwing dice, 

we can do a series of random experiments (actually throwing the dice) and estimate the 

mean and variance from the results of these experiments. This is not the case with 

random functions. To estimate the statistical properties of a random function, we should 

be able to draw a large number of realisations. However, in practice, we only have one 

realisation of the random function, namely reality itself. So we must be able to estimate 

all the relevant statistics of the random function from a single realisation.  It turns out that 

this is only possible for stationary random functions. The reason is that strict stationarity 

actually says that all statistical properties are the same, no matter where you are. For 

instance, suppose we want to estimate the mean µΖ(t1) at a certain point t1. The normal 

procedure would be to take the average of many realisations at point t1, which is 

impossible because we only have one realisation (reality). However, if the random 

function is stationary the pdf fZ(z;t) at any location is the same and therefore also the 

mean. This also means that within any single realisation we have at every location a 

sample from the same pdf fZ(z;t). So, the mean can also be estimated if we take a 

sufficient number of samples from a single realisation, such as our reality. This is 

illustrated further in Figure 5.4. This property of a random function, i.e. being able to 

estimate statistical properties of a random function from a large number of samples of a 
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single realisation is called ergodicity. Apart from the random function being strict 

stationary, there is another condition necessary for ergodicity to apply. The samples from 

the single realisation should be taken from a large enough period of time or, in the spatial 

case, large enough area. 

 

A more formal definition of a random function that is ergodic in its mean is:  
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So the integral over the probability distribution (the ensemble) can be replaced by a 

temporal (or spatial or spatio-temporal) integral of a very large interval T (or area or 

volume). Similarly, a random function is said to be covariance-ergodic if: 
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Figure 5.4. Ergodic random functions: the average of (observations from) a single realisation is the same 

as the average of many realisations at a given location 

 

 

5.3.3 Second order stationary random functions 
 

A weaker form of stationarity is second order stationarity. Here we require that the 

bivariate (or two-point) probability distribution is invariant under translation: 

 

τ,,)',';,(  );,( 2121212121 ttttt tzzf,t tzzf ∀++=    (5.8) 

  

Often, the number of observations available is only sufficient to estimate the mean, 

variance and covariances of the random function. So in practice, we require only 
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ergodicity and therefore only stationarity for the mean, variance and covariances. Hence, 

an even milder form of stationarity is usually assumed which is called wide sense 

stationarity. For wide sense stationary random functions (also called homogenous 

random functions) the mean and variance do not depend on t (or x) and the covariance 

depends only on the separation distance between two points in time (or space):   
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The graph describing the covariance as a function of the distance τ=t2-t1 (also called lag) 

is called the covariance function. In case of wide sense stationarity, the covariance 

function for t2=t1 is equal to the variance and decreases to zero when the distances t2-t1 

becomes larger. This means that random variables at sufficiently large distances are not 

correlated.  

 

For random space functions weak sense stationarity means that 

 

 )()()](),(COV[ 1221 hxxxx ZZ CCZZ =−=      (5.10) 

 

where h = x2- x1 is the difference vector between two locations (see Figure 5.5). If the 

random function is also isotropic we have that  
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where lag || h=h is the norm (length) of the difference vector. If the covariance function 

is divided by the variance we obtain the correlation function: 
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Figure 5.5 In case of spatial random functions the covariance depends on the lag vector h=x2-x1 with 

length h. In case of an isotropic RSF the covariance between x1 and x2 is the same as between x1 and x3, 

which implies that the covariance only depends on the length of the vector h. 
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For data that are regularly positioned in time (or space) the covariance function can be 

estimated as: 
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with tk∆ the lag (in units of time or space) and t∆ the time/distance between observations. 

This estimator is often used in time series analysis (see chapter 6). In case of irregularly 

positioned data in space the covariance function can be estimated as: 
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where h is the lag (which is a vector in space), h∆ is a lag-tolerance which is needed to 

group a number of data-pairs together to get stable estimates for a given lag and n(h) are 

the number of data-pairs that are a distance (and direction) hh ∆± apart. 

 

In Figure 5.6 two different hydrological time series are shown. Figure 5.6a shows a time 

series of maximum discharge for the Rhine river at the Lobith Gauging station. The 

values are uncorrelated in time. Also given in Figure 5.6b is the theoretical correlation 

function that fit these data. The underlying stochastic process that belongs to this 

theoretical correlation function is called white noise, which is a special process consisting 

of uncorrelated Gaussian deviates at every two times no matter how small the lage τ 

between these times. Figure 5.6c shows a realisation of this continuous process. If the 

process is sampled at the same discrete times as the maximum discharge series (once a 

year) we obtain a series that looks similar as that shown in Figure 5.6a. Figure 5.6d 

shows a time series of groundwater depth data observed once a day for the years 1994-

1995 at a town called De Bilt in The Netherlands. The correlation function estimated 

from these data is shown in Figure 5.6e. Also shown is a fitted correlation function 

belonging to the continuous process shown in Figure 6.6f. Again, when samples at the 

same discrete times are taken as that of the groundwater head series we obtain a discrete 

process with similar statistical properties as the original series. This shows that a discrete 

time series can be modelled with a discrete random function, as will be shown in chapter 

6, but also as a discrete sample of a continuous random function. 
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Figure 5.6 a) Time series of yearly maximum values of daily discharge for the Rhine river at Lobith; b) 

estimated correlation function and fitting correlation functionof a continuous random function: white 

noise; c) realisation of white noise; d) time series of water table depths at De Bilt; e) estimated correlation 

function from groundwater level time series and fitted correlation function of a continuous RF; e) 

realisation of this Random Function..  

 

There are numerous models for modelling the covariance function of wide sense 

stationary processes. Table 5.1 shows four of them for isotropic random functions. The 

parameter a is called the correlation scale or integral scale of the process, and is a 

measure for the length over which the random variables at two locations of the random 

function (RF) are still correlated. In case of anisotropic random functions, for instance in 
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three spatial dimensions with integral scales ax, ay, az, the same model can be used as 

those shown in Table 5.1 by replacing h/a with the following transformation: 
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This form of anisotropy, where only the degree of correlation various with direction but 

not the variance of the process is called geometric anisotropy. 

 
Table 5.1 A number of possible covariance models for wide sense stationary random functions 
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* The white noise process has infinite variance, so strictly speaking it is not wide sense stationary. Here, 

we thus only provide the correlation function that does exist. 

 

 

5.3.4 Relations between various forms of stationarity 
 

A strict sense stationary random function is also second order stationary and is also wide 

sense stationary, but not necessarily the other way around. However, if a random function 

is wide sense stationary and its multivariate pdf is a Gaussian distribution (Equation 

3.87), it is also second order stationary3 and also a strict sense stationary random 

function. More important, a wide sense stationary random function that is multivariate 

Gaussian (and thus also strict stationary) is completely characterised by only a few 

statistics: a constant mean µZ(t) = µZ and a covariance function CZ(t2-t1) that is only 

dependent on the separation distance.  So to recapitulate (arrow means “implies”) 

 

In general: 
Type of stationarity: Strict sense Second order Wide sense 

Property: Multivariate pdf 

translation invariant 

Bivariate pdf  

translation invariant 

Mean and variance 

translation invariant 

                                                 
3
 Often in the literature the term “second order stationary” is used when in fact one means “wide sense 

stationary”. 
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If the multivariate pdf is Gaussian: 
Type of stationarity: Wide sense Second order Strict sense 

Property: Mean and variance 

translation invariant 

Bivariate pdf  

translation invariant 

Multivariate pdf 

translation invariant 

 

 

5.3.5 Intrinsic random functions 
 

An even milder form of stationary random functions are intrinsic random functions. For 

an intrinsic random function we require (we show the spatial form here): 
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So the mean is constant and the expected quadratic difference is only a function of the 

lag-vector h = x2-x1. The function )( 12 x-xγ is called the semivariogram and is defined 

as: 
2
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The semivariogram can be estimated from observations as (similarly in the temporal 

domain): 
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Table 5.2 shows examples of continuous semivariogram models that can be fitted to 

estimated semivariograms.  

 
Table 5.2 A number of possible semivariance models for intrinsic random functions  
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The semivariogram and the covariance function of a wide sense stationary random 

function are related as follows: 

 

)()( 12
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12 xxxx −−=− ZZZ Cσγ       (5.19) 

 

This means that the semivariogram and the covariance function are mirror images with 
2

Zc σ= as can be seen in Figure 5.7. This also means that where the covariance function 

becomes zero for large enough separation distances, the semivariogram will reach a 

plateau (called the sill of the semivariogram) that is equal to the variance. The distance at 

which this occurs (called the range of the semivariogram) is the distance beyond which 

values on the random function are no longer correlated. The first five models of table 5.2 

are semivariogram models that imply wide sense stationary functions whith .2

Zc σ=  For 

the sixth model, the power model, this is not the case. Here, the variance does not have to 

be finite, while the semivariance keeps on growing with increasing lag. This shows that if 

a random function is wide sense stationary, it is also intrinsic. However, an intrinsic 

random function does not have to be wide sense stationary, i.e. if the semivariogram does 

not reach a sill. 

 

h=|x2- x1|

sill

range

)(hZγ

)(hCZ

2

Zσ

 
Figure 5.7. Covariance function and semivariogram for a wide sense stationary random function 

 

 

5.3.6 Integral scale and scale of fluctuation 
 

The integral scale or correlation scale is a measure of the degree of correlation for 

stationary random processes and is defined as the area under the correlation function. 
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)( )( ττρ dI tZ
        (5.20) 

 

For the exponential, Gaussian and spherical correlation functions the integral scales are 

equal to a, 2/)( πa  and (3/8)a respectively. Given that the correlation functions of wide 

sense stationary processes are even functions, i.e. )()( τρτρ −= , another measure of 

correlation is the scale of fluctuation defined as: 
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For a 2D and 3D random space function the integral scales are defined as: 
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5.4 Conditional random functions 
 

In this section we investigate what happens if observations are done on a random 

function. Suppose that we have a stationary random function in time that is observed at a 

number of locations. Suppose for the moment that these observations are without error. 

Figure 5.8 shows a number of realisations of a continuous time random function that is 

observed at four locations without error. It can be seen that the realisations are free to 

vary and differ between the observation points but are constraint, i.e. conditioned, by 

these points. This can be seen when comparing the pdfs at two locations t1 and t2. It can 

be seen that uncertainty is larger further from an observation (t1) than close to an 

observation (t2). This is intuitively correct because an observation is able to reduce 

uncertainty for a limited interval proportional to the integral scale of the random function. 

At a distance larger than the range, the random values are no longer correlated with the 

random variable at the observation location and the uncertainty is as large (the variance 

of the pdf is a large) as that of the random function without observations. 

 

t

Z(t)

t1 t2  
Figure 5.8. Realisations of a random function that is conditional to a number of observations; dashed line 

is the conditional mean. 
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The random function that is observed at a number of locations and/or times is called a 

conditional random function and the probability distributions at locations t1 and t2 

conditional probability density functions (cpdfs): ),..,|;( 11 mZ yytzf , ),..,|;( 12 mZ yytzf . 

Where y1,…, ym are the observations. The complete conditional random function is 

defined by the conditional multivariate pdf:  yy. t,,t ; t. z,,zzf mNN ).,..,|( 12121 …… The 

conditional multivariate pdf can in theory be derived from the (unconditional) 

multivariate pdf using Bayes’ rule. However, this is usually very cumbersome. An 

alternative way of obtaining all the required statistics of the conditional random function 

is called stochastic simulation. In chapters 7 and 8 some methods are presented for 

simulating realisations of both unconditional and conditional random functions. 

 

The conditional distribution of Z(s1,t), or its mean value (see dashed line) and variance, 

can also be obtained directly through geostatistical prediction or kriging (chapter 7) and 

state-space prediction methods such as the Kalman filter (chapter 9). These methods use 

the observations and the statistics (e.g. semivariogram or covariance function) of the 

random function  (statistics estimated from the observations) to directly estimate the 

conditional distribution or its mean and variance.   

 

 

5.5 Spectral representation of random functions 
 

The correlation function of the time series of water table depth at De Bilt in Figure 5.6 

has only been analysed for two years. Had we analysed a longer period we would have 

seen a correaltion function with periodic behaviour, such as the Hole-effect model in 

Tables 5.1 and 5.2. Figure 5.9 shows the correlation function of the daily observations of 

discharge of the Rhine river at Lobith. A clear periodic behaviour is observed as well. 

The periodic behaviour which is also apparent in the time series (see Figure 4.1) is caused 

by the fact that evaporation which is driven by radiation and temperature has a clear 

seasonal character at higher and lower latitudes and temperate climates. In arctic climates 

the temperature cycle and associated snow accumulation and melt cause seasonality, 

while in the sub-tropics and semi-arid climates the occurrence of rainfall is strongly 

seasonal.  

 

In conclusion, most hydrological time series show a seasonal variation. This means that 

to analyse these models with stationary random functions requires that this seasonality is 

removed (see for instance chapter 6). The occurrence of seasonality has also inspired the 

use of spectral methods in stochastic modelling, although it must be stressed that spectral 

methods are also very suitable for analysing stationary random functions.  
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Figure 5.9 Correlation function of daily averaged discharge of the river Rhine at Lobith. 

  

 

5.5.1 Spectral density function 
 

We will therefore start by a spectral representation of a stationary random function Z(t). 

Such a presentation means that the random function is expressed as a sum of its mean 

Zµ and 2K sinusoids with increasing frequencies, where each frequency has a random 

amplitude Ck and random phase angle Φk: 
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    (5.23) 

 

Figure 5.10 shows schematically how a stationary random function is decomposed into 

random harmonics.  
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Figure 5.10 Schematic of the spectral representation of a stationary random function as a decomposition of 

the random signal into harmonics of increasing frequency with random amplitude Ck and random phase 

angle Φk:  

 

Based on this representation it can be shown (see Vanmarcke pp. 84-86) that the 

following relations hold: 
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These relations are known as the Winer-Khinchine relations. The function )(ωZS is 

known as the spectral density function of the random process and Equations (5.24) thus 

show that the covariance function is a Fourier transform of the spectrum and vice versa: 

they form a Fourier pair.  

 

The physical meaning of the spectral density function can best be understood by setting 

the lag τ equal to zero in (5.24). We then obtain: 
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It can be seen that the variance of the random function is equal to the integral over the 

spectral density. This means that the variance is a weighted sum of variance components, 
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where each component consists of a random harmonic function of a given frequency. The 

spectral density then represents the weight of each of the attributing random harmonics, 

i.e. the relative importance of each random harmonic in explaining the total variance of 

the random function. It is easy to see the analogy with the electromagnetic spectrum 

where the total energy of electromagnetic radiation (which is analogous to the variance of 

our random signal) is found by the area under the spectrum and can be attributed to 

relative contributions from different wavelengths.  

 

In table 5.3 expressions are given of spectral density functions belonging to some of the 

covariance functions given in Table 5.1. Figure 5.11 (From Gelhar, 1993) shows typical 

realisations of the random functions involved, their correlation function and the 

associated spectrum. What can be seen from this is that the spectrum of white noise is a 

horizontal line, implying an infinite variance according to Equation (5.26). This shows 

that white noise is a mathematical construct, and not a feasible physical process: the area 

under the spectrum is a measure for the total energy of a process. This area is infinitely 

large, such that all the energy in the universe would not be sufficient to generate such a 

process. In practice one often talks about wide band processes, where the spectrum has a 

wide band of frequencies, but encloses a finite area.  

 

Table 5.3 A number of possible covariance function and associated spectral density functions (τ=|t2-t1|) 
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Figure 5.11 Schematic examples of covariance function-spectral density pairs (adapted from Gelhar, 

1993).  

 

The spectral density function is an even function (as is the covariance function): 

)(ωZS = )( ω−ZS . This motivates the introduction of the one-sided spectral density 

function .0),(2)( ≥= ωωω ZZ SG  The Wiener-Khinchine relations relations then 

become: 
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Sometimes it is convenient to work with the normalised spectral density functions, by 

dividing the spectra by the variance: 2/)()( ZZZ Ss σωω =  and 2/)()( ZZZ Gg σωω = . For 

instance, from (5.25) we can see that there is a relation between the normalised spectral 
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density function )(ωZs  and the scale of fluctuation. Setting 0=ω in Equation (5.25) we 

obtain: 

π

θ
ωτρ

π 2
)(

2

1
)0( == ∫

∞

∞−

ds ZZ        (5.29) 

 

 

5.5.2 Formal (complex) spectral representation 
 

Often a more formal definition of the spectral density is used in the literature based on the 

formulation in terms of complex calculus. Here the random function Z(t) is defined as the 

real part of a complex random function Z
*
(t): 
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ωω ∆−= )12(with
2
1 kk

 the frequency, and Xk a complex random number representing 

the amplitude. This equation entails that the complex random process is decomposed into 

a large number of complex harmonic functions )sin()cos( tite
ti ωωω += with random 

complex amplitude, Given this representation it is possible derive the Wiener-Khinchine 

equations as (Vanmarcke, 1983, p. 88): 
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It can be shown (Vanmarcke, 1983, p.94) that Equations (5.31) and (5.32) are 

mathematically equivalent to Equations (5.24) and (5.25) respectively. 

 

 

5.5.3 Estimating the spectral density function 
 

For wide sense stationary random functions the spectral density can be estimated from 

estimated covariance function as: 
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with .,..,1||,/ MiMii == πω The weights
kλ are necessary to smooth the covariances 

before performing the transformation. This way a smoothed spectral density function is 
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obtained displaying only the relevant features. There are numerous types of smoothing 

weights. Two frequently used expressions are the Tukey window 
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and the Parzen window 
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The highest frequency that is analysed is equal to .5.02/maxmax == πωf  This is the 

highest frequency that can be estimated from a time series, i.e. half of the frequency of 

the observations. This frequency is called the Nyquist frequency. So if hydraulic head is 

observed once per day than the highest frequency that can be detected is one cycle per 

two days. The smallest frequency (largest wavelength) that can be analysed depends on 

the discretisation M: )2/1()2/(min MMf == ππ , where M is also the cutoff level 

(maximum lag considered) of the covariance function. The width of the smoothing 

windows is adjusted accordingly. 

 

As an example the spectrum of the daily discharge data of the Rhine river at Lobith 

(Figure 4.1 and Figure 5.9 for the correlation function) was estimated using a Parzen 

window with M=9000. Figure 5.12 shows the normalised spectral density function so 

obtained. Clearly, small frequencies dominate with a small peak between 4 and 5 years. 

Most prominent of course, as expected, there is a peak at a frequency of once a year, 

which exemplifies the strong seasonality in the time series. 

 

 

5.3.4 Spectral representations of random space functions 
 

If we extend the previous to two dimensions the stationary random function Z(x1,x2) can 

be expressed in terms of random harmonics as: 
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with 
1212  and ΦC= random amplitude and phase angle belonging to frequency 2,1, =i

ikω :  
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ω
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Figure 5.11 Normalised spectral density function of daily averaged discharge of the river Rhine at Lobith. 

 

The Wiener-Khinchine equations then become 

 

 

∫ ∫
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   (5.38) 
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The variance is given by the volume under the 2D spectral density function. 
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If we use a vector-notation we have: . and),(,),( 1111

T

21

T

21 hωhω ⋅=+== hhhh ωωωω A 

short hand way of writing (5.38) and (5.39) results: 
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These equations are valid for higher dimensional random functions, where 
2)2/(1 replaces process)dimension  ()2/(1 ππ =DD  in (5.42). The more formal definition 

using complex calculus then gives: 
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The Wiener Khinchine equations become 

 

∫
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5.6 Local averaging of stationary random functions 

 

Consider a stationary random function Z(t) and consider the random function ZT(t)  that is 

obtained by local moving averaging (see Figure 5.12): 
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Figure 5.12 Local (moving) averaging of a stationary random function 
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Local averaging of a stationary random process will not affect the mean, but it does 

reduce the variance. The variance of the averaged process can be calculated as (without 

loss of generality we can set the mean to zero here): 
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A new function is introduced that is called the variance function: 
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The variance function thus describes the reduction in variance when averaging a random 

function as a function of the averaging interval T. From (5.47) we can see that the 

variance function is related to the correlation function as: 
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Vanmarcke (1983, p 117) shows that Equation (5.49) can be simplified to: 
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In Table 5.4 a number of correlation functions and their variance functions are given. If 

we examine the behaviour of the variance function for large T we get (see Vanmarcke, 

1983): 

 

T
TVZ

T

θ
→

∞→
)(lim         (5.51) 

 

where θ is scale of fluctuation. In table 5.1 the scale of fluctuation is also given for the 

three correlation models. The scale of fluctuation was already introduced earlier as a 

measure of spatial correlation of the random function and can also be calculated using the 

correlation function (Equation 5.21) or the spectral density (Equation 5.29). Equation 
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5.51 thus states that for larger averaging intervals the variance reduction through 

averaging is inversely proportional to the scale of fluctuation: the larger the scale of 

fluctuation the larger T should be to achieve a given variance reduction. In practice, 

relation (5.51) is already valid for θ2>T  (vanmarcke, 1983). 

 

Table 5.4 Variance functions and scale of fluctuation for three different correlation functions (τ=|t2-t1|) 
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The covariance of the averaged process is given by: 
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Generally it is not easy to obtain closed form expressions for (5.52). However as shown 

in chapter 7, it is relatively easy to obtain values for this function through numerical 

integration. 

 

We end this section by giving the equations for the 2D-spatial case, where it is 

straightforward to generalise these results to higher dimensions.  The local average 

process is for an area A=L1L2 defined as: 
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The variance function is given by: 
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The limit of the variance function defines the spatial “scale of fluctuation” or 

characteristic area α: 
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where α can calculated from the correlation function as follows: 
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The characteristic area α can also be obtained through the spectral representation by 

setting 021 == ωω in the Wiener-Khinchine relation (5.39) 
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Combining equations (5.56) and (5.57) then leads to: 
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In Table 5.5 the various way of obtaining the scale of fluctuation and the characteristic 

area summarized: 

 
Table 5.5 Three ways of obtaining the scale of fluctuation (time) and characteristic area (2D space) (after 

Vanmarcke, 1983) 
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Finally, the covariance of the averaged random function in two dimensions is given by: 
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The covariance of the spatially averaged random function is frequently used in 

geostatistical mapping, as explained in chapter 7, where its values are approximated with 

numerical integration. To limit the notational burden, Equation (5.59) is usually written 

in vector notation with T
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5.7 Exercises 
 

1. Give examples of hydrological variables that can be modelled with a continuous-

valued and a discrete-valued 1) random series, 2) lattice process, 3) continuous-

time process, 4) continuous-space process, 5) continuous space-time process, 6) 

time compound point process, 7) space-compound point process. Note that 14 

combinations are asked for. 

 

2. The covariance of a random function is described by: ),30/exp(10)( hhC −= and a 

constant mean. The pdf at a given location is the Gamma distribution. Is this 

process: a) wide sense stationary; b) second order stationary; d) strict stationary? 

 

3. The covariance of a random function is described by: ),30/exp(10)( hhC −= and a 

constant mean. The pdf at a given location is the Gaussian distribution. Is this 

process: a) wide sense stationary; b) second order stationary; c) strict stationary? 

 

4. The covariance of a random function is described by: ),30/exp(10)( hhC −= and a 

constant mean. The multivariate pdf of any set of locations is the Gaussian 

distribution. Is this process: a) wide sense stationary; c) second order stationary; 

d) strict stationary? 

 

5. Consider the following isotropic covariance function of a random function Z(x): 
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The random function has a constant mean. 

a. What type of stationarity can be assumed here? 

b. What is the variance of the random function? 

c. Calculate the values of the correlation function for lags h = 2, 5, 10, 15. 

d. Calculate the integral scale of the random function. 

 

6. Consider a stationary random function Z(t) whose spectral density  is given by the 

following equation: 

 
10/20)( ωω −= eSZ  

 

What is the variance of the random function? 

 

7.* Show that the integral scale of the exponential correlation function of Table 5.1 is 

equal to parameter a and of the spherical correlation function is equal to (3/8)a. 
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8.* Consider a random function Z(t) with a scale of fluctuation θ =50 days, an 

exponential covariance function and 202 =Zσ . Plot the relation between the 

variance of the averaged process ZT(t) with T increasing from  1 to 100 days. 
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6. Time series analysis 
 

6.1 Introduction 

Many dynamic variables in hydrology are observed at more or less regular time intervals. 

Examples are rainfall, surface water stage and groundwater levels. Successive 

observations from a particular monitoring station observed at regular intervals are called 

a time series. In the context of stochastic hydrology we should look at a time series as a 

realization of a random function. In the terminology of Chapter 5 a time series can either 

be viewed as real-valued discrete-time random function (Figure 5.2a) or a real-valued 

continuous-time random function that has been observed at discrete times (Figure 5.6). 

Irrespective of this view of reality, separately from the theory of random functions, 

hydrologists have been using techniques (mostly coming from econometrics) specially 

designed to analyze and model hydrological time series. The most common of these 

techniques, collectively know as “time series analysis”, will be treated in this chapter. 

 

The main reasons for analyzing hydrological time series are: 

1. Characterization. This includes not only the analysis of properties like average values 

and probability of exceeding threshold values, but also characteristics such as 

seasonal behavior and trend. 

2. Prediction and forecasting. The aim of prediction and forecasting is to estimate the 

value of the time series at non-observed points in time. This can be a prediction at a 

time in future (forecasting), or a prediction at a non-observed point in time in the past, 

for example to fill in gaps in the observed series due to missing values. 

3. Identify and quantify input-response relations. Many hydrological variables are the 

result of a number of natural and man-induced influences. To quantify the effect of an 

individual influence and to evaluate water management measures, the observed series 

is split into components which can be attributed to the most important influences. 

 

The focus of this chapter is on time series models, expressing the value of the time series 

as a function of its past behavior and time series of influences factors (e.g. input variables 

that influence the hydrological variable that is analyzed). In this chapter we restrict 

ourselves to linear time series models as described by Box and Jenkins (1976). This 

means that the value of the variable under consideration is a linear function of its past and 

of the relevant influence factors. Extensive discussions on time series analysis can, 

amongst others, be found in books of Box and Jenkins (1976), Priestly (1989) and Hipel 

and McLeod (1996).  
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6.2  Definitions 

Similar to the analysis and modeling of spatial random functions by geostatistics (Chapter 
7), the time series analysis literature uses its own terminology which may be slightly 
different from the more formal definitions used in chapters 3 and 5. Consequently, some 
definitions of properties of random time series will be repeated first. Also the symbols 
used may be slightly different than used in the previous chapters, although we try to keep 
the notation as close a possible to that used elsewhere in the book. For instance, contrary 
to convention, stochastic variables representing noise are represented with lower case 
letters, while deterministic input variables are denoted as capitals. 
 

6.2.1 Discrete stationary time series  
 

As stated before, most hydrological variables, like river stages, are continuous is time. 

However, if we consider the variable Z(t) at regular intervals in time t∆ ,  we can define a 

discrete time series (see figure 6.1).  
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Figure 6.1 Schematic of a continuous random function observed at discrete times )(tZ  

 

The values of the continuous time series at the regular times intervals are:  

 

∞−∞−=∆= ,.....,1,0,1,...,)( ktkZZ k .       (6.1) 

 

The series Zk is called a discrete time series. In the time series literature often the 

subscript t is used instead of the subscript k.  

 

∞−∞−= ,.....,1,0,1,...,tZ t .         (6.2) 
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In the remainder of this chapter we will use the subscript t. Note that the subscript t is a 

rank number rather than a value of the running time. 

 

6.2.2 Moments and Expectation  
 

A single time series is considered to be a stochastic process that can be characterized by 

its (central) statistical moments. In particular the first and second order moments are 

relevant: the mean value, the variance and the autocorrelation function. For a statistical 

stationary process the mean value and the variance are: 

 

][ tz ZE=µ           (6.3) 
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ztzttz ZZEZVAR µµσ −−==       (6.4) 

 

The autocovariance is a measure of the relationship of the process at two points in time. 

For two points in time k time steps apart, the autocovariance is defined by:  

 

∞−−∞=−−= ++ ,...,1,0,1,...,}]}{[{],[ kZZEZZCOV zktztktt µµ    (6.5) 

 

Often k is called the time lag. 

 

i. note that for k = 0  2
],[ zktt ZZCOV σ=+                 (6.6a) 

   ii.note that ],[],[],[ ktttktktt ZZCOVZZCOVZZCOV −++ ==      (6.6b) 

 

In time series analysis we often use the autocorrelation function (ACF), defined by: 
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It can be proven that the value of the ACF is always between 1 and -1. A value of 1 or -1 

means a perfect correlation, while a value 0 indicates the absence of correlation. From the 

definition it follows that the ACF is maximum for k=0 ( )10, =zzρ . Just like for the 

autocovariance it follows from the definition that: 

 

∞−−∞== − ,...,1,0,1,...,,, kkzzkzz ρρ        (6.8) 

 

The graphical representation of the ACF is called the autocorrellogram (see figure 6.2). 

Because the ACF is symmetrical around k=0, only the right (positive) side is shown. 

 

The dynamic behavior of a time series is characterized by its variance and ACF. This is 

visualized in figure 6.2 for zero mean time series. 
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Figure 6.2 Different characteristics of zero mean time series due to high and low values for the variance 

and the ACF. 

 

Analogous to the autocovariance and the ACF, that expresses the relation of a time series 

with itself, the relation between two different time series is expressed by the cross 

covariance and the crosscorrelation function (CCF). The cross covariance and CCF for 

the time series Zt and Xt is defined as: 

 

}]}{[{],[ zktxtktt ZXEZXCOV µµ −−= ++       (6.9) 
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Analogous to the ACF it can be proven that the value of the CCF is always between 1 and 

-1. However the CCF is not symmetrical around k=0. 

 

kXZkXZ −≠ ,, ρρ           (6.11) 

 

From the definition it follows that  
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kZXkXZ −= ,, ρρ           (6.12) 

 

In the real world we don't know the process Zt exactly and we have to estimate all 

information from observations. In absence of observation errors, the observation zt equals 

the value of the process Zt . Suppose we have observations of the process from time step 

0 until time step t. Than the conditional expectation of the process at time step τ is 

denoted as: 

 

tt ZzzZE |0
ˆ],...,|[ ττ =          (6.13) 

 

We will use two operators: the backshift operator B and the difference operator∇ .  

The backshift operator is defined as: 

 

1−= tt ZZB           (6.14) 

 

And therefore 
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The difference operator is defined as: 
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And  
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6.2.3 Discrete white noise process 
 

An important class of time series is the discrete white noise process at. This is a zero 

mean time series with a Gaussian probability distribution and no correlation in time.  
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Because of the absence of correlation in time, the discrete white noise process at time 

step t does not contain any information about the process at other time steps. 
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6.2.4 Rules of calculus 
 

Calculation rules with expectations are summarized as: 

 

],[][][][
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       (6.19) 

 

Where X and Z are discrete time series and c is a constant. 

 

 

6.3 Principle of linear univariate time series models  
 

The general concept of (linear) time series models is to capture as much information as 

possible in the model. This information is characterized by the mean value, the variance 

and the ACF. We consider the time series Zt as a linear function of a white noise process 

at (see figure 6.3). 

 

 

 

 
Figure 6.3 Schematic representation of a time series model. 

 

Because the ACF(k) of the white noise process equals zero for any k ≠ 0, all information 

of the autocorrelation in Zt is captured in the time series model.  

 

In the following we will describe the different types of random processes that underly the 

most commonly used time series models. For each process, we start with introducing the 

recurrent equation defining the process, followed by the relation between the process 

parameters and statistical properties of the process, showing how such processes can be 

predicted if observations are taken and ending with a numerical example. 

 

6.4 Autoregressive processes 

6.4.1 AR(1) process 
 

Definition 

 

The first class of linear time series processes discussed in this chapter is formed by the 

autoregressive (AR) processes. The most simple autoregressive process is the AR(1) 

Time series model Zt
at
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process (AutoRegressive process of order 1). A zero mean AR(1) process (Zt ) is defined 

as: 

 

 ttt aZZ += −11φ          (6.20) 

 

Parameter Determination 

 

As stated before, the white noise process is a zero mean, uncorrelated process. Therefore 

the AR(1) process contain two unknowns:  

- the first order auto  regressive parameter φ1 and 

- the variance of the white noise process 2

aσ  

These unknowns have to be determined from the characteristics of the time series Zt, in 

particular the variance and the ACF. 

 

By multiplying both sides of equation 6.20 with Zt-1 and taking the expectation we obtain 

 

][][][][ 1

2

1111111 ttttttttt aZEZEaZZZEZZE −−−−−− +=+= φφ     (6.21) 

 

The process Zt is independent of future values of the white noise process. Therefore, the 

value of the process Zt-1 is independent of the white noise at time step t and the second 

term at the right hand side of 6.21 equals zero. Dividing 6.21 by the variance 2

Zσ  yields: 
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σ
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σ
−− =         (6.22) 

 

And because 0][ =ZE and
22

1][ ZtZE σ=−  the first order auto regressive parameter is: 

 

1,1 ZZρφ =           (6.23) 

 

The variance of the white noise process is determined by taking the expectations of the 

square of both sides of equation 6.20. 
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From 6.24 it follows that: 
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Properties of an AR(1) process 

 

Stationarity: Because the time series Zt is a temporally correlated process, the past values 

of the process contain information about the future behavior. In hydrology (and in many 
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other fields of application as well) if we go further into the future mostly the influence of 

past values eventually disappears. In other words, the process has a limited memory. To 

ensure this, the time series process should be stationary. In order for an AR(1) process to 

be stationary the absolute value of the model parameter should be smaller than 1. 

 

11 <φ            (6.26) 

 

Note that if the condition 6.26 is not fulfilled, from 6.25 it follows that the variance of the 

process Zt does not exist. In this case, the process Zt is said to be non-stationary. 

 

ACF of an AR(1) process: By repetitive use of equation 6.20, Zt can be expressed as: 
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Multiplying both sides by Zt-k and taking the expectations yields: 
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Since Zt-k is independent of future values of the white noise process only the first term at 

the right hand side is non-zero. Dividing both sides by 22 ][ ZktZE σ=−  yields for the ACF: 
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From 6.29 it can be seen that the ACF of a stationary AR(1) process is an exponential 

function.  

 

Forecast of an AR(1) process 

 

Suppose we have observations up to time t ( tizi ,,L−∞=  ). From 6.20 it follows that 

the forecast for t+1 is: 

 

tttttt aZZ |1|1|1
ˆˆˆ

++ +=φ          (6.30) 

 

Since 

 

0ˆandˆ
|1| == + ttttt azZ         (6.31) 

 

It follows that 
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ttt zZ 1|1
ˆ φ=+           (6.32) 

 

In general the forecast for time l+t equals 
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The forecast error for time l+t is: 

 

∑∑
=

+−+
−

=

+−+
−

+++ =−+=−=
l

i

it

i

t

l

i

it

i

tttttt azazZZe
1

1

1

11

1

1

1

11||
ˆ

l

l

l

l

lll
φφφφ    (6.34) 

 

Taking the expectations of the square of both sides the variance of the forecast error for 

time l+t is: 
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Note that the error variance for a forecast far in the future approaches the variance of the 

process Zt. 
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Example of an AR(1) process 

 

Let Zt be a zero mean AR(1) process, with 9.01 =φ  and 12 =aσ : 

 

ttt aZZ += −19.0          (6.37) 

 

From (6.29) it follows that the ACF(k) of the process Zt equals: 

 
k

kzz 9.0, =ρ  
         (6.38) 

The autocorrellogram of the process Zt is given in figure 6.4. 
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Figure 6.4 Autocorrellogram of the AR(1) process 

 

The forecast of the AR(1) process and the forecast error variance are given by 6.33 and 

6.35:  

l

l
9.0ˆ

| =+ ttZ    and ∑
=

−=
+

l

l

1

)1(22 9.01
|

i

i

e tt
σ        (6.39) 

The forecast and the corresponding 95% confidence interval (
ttz |ˆ96.1

l+
± σ ) are given in 

figure 6.5. 
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Figure. 6.5 Forecast of an AR(1) process with corresponding 95% confidence interval. 

 

As can be seen from figure 6.5, the forecast of the AR(1) process gradually approaches 

zero for a forecast further into the future. The decay curve of the forecast reflects the 

memory of the AR(1) process. Consequently, the confidence interval gradually 

approaches its maximum value Zσ96.1± for forecasts further in the future. 
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tptpttt aZZZZ ++++= −−− φφφ K2211

 
6.4.2 AR(p) process 
 

Definition 

 

The general form of a zero mean AutoRegressive process of order AR(p) is defined as: 

 

      (6.40) 

 

The parameters φi (i=1,…,p) are called the auto  regressive parameters of the order i. 

 

Parameter determination 

 

Similar to the parameter determination of an AR(1) process, the parameters of the AR(p) 

process can be expressed in terms of the variance and auto  correlation of the process Zt. 

Both sides of (6.40) are multiplied by Zt-i  (i=1,…,p). This yields the set of equations: 
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Taking expectations and dividing both sides by the variance 2

Zσ  yields: 
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Writing this set of equations in matrix form yields: 
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The AR-parameters can de solved from the set of equations (6.43) which is known as the 

Yule-Walker Equations. For example the parameters of an auto regressive model of order 

2 are: 
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         (6.44) 

Note that unlike the parameter in the AR(1) process, for the AR(2) process 11 ρφ ≠ . 

 

Properties of a AR(p) process  

 

Using the backshift operator B (defined with 
tt BZZ =−1
), an AR(p) process can be 

written as: 

 

tt

p

pttt aZBZBBZZ ++++= φφφ L
2

21       (6.45) 

 

Defining: 

 
p

pBBBB φφφ L−−−=Φ 2

211)(        (6.46) 

 

The general form of an AR(p) process is: 

 

tt a
B

Z
)(

1

Φ
=  

 

Stationarity Analogous to the AR(1) process, the values of the parameters are limited in 

order for the AR(p) process to be stationary. Without proof it is stated here that an AR(p) 

model is stationary if all (complex) roots of the equation: 

 

0)( =Φ B            (6.47) 

 

lie outside the unit circle. 

 

For example, for an AR(2) process the roots of  the function 

 

01)( 2
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must lie outside the unit circle. This implies that the parameters 
1φ and 

2φ must lie in the 

region 
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ACF of an AR(p) process. Multiplication of equation (6.40) by Zt-k , taking the 

expectations and dividing both sides by the variance 2

Zσ  yields: 

 

pkZZpkZZkZZkZZ −−− ++= ,2,21,1, ρφρφρφρ L       (6.51) 

 

As an example, the autocorrellogram for the AR(2) process 

tttt aZZZ ++= −− 21 45.035.0 is given in figure 6.6. 

 

 
 
Figure 6.6. Auto correllogram of an AR(2) process 

 

The acf(0) is 1 by definition. From the acf(1) and acf(2) in figure 6.6, the effect of the 

second order auto regressive parameter can be seen. Similar to the AR(1) model, the auto  

correlation for larger time lags decays gradually. This gradual decay is a general 

characteristic of AR-models. 

 

Forecast of an AR(p) process 

 

Forecasting an AR(p) process is similar to that of an AR(1) process. The AR(p) process 

at some point in time is dependent on the p time steps before. Therefore, the forecast of 

an AR(p) process does not show a single exponential pattern. In the first p time steps of 

the forecast the pattern of the last observations is reflected, but eventually the forecast 

will decay exponentially to zero.  

 

As an example the AR(2) 
tttt aZZZ ++= −− 21 45.035.0 process is given in figure 6.7. As 

show, the confidence interval tends to a constant value when the forecast approaches 

zero. Like in the case of an AR(1) process it can be proven that: 
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Figure 6.7 Forecast of an AR(2) process with corresponding 95% confidence interval. 

 

6.5 Moving average processes  

6.5.1 MA(1) process 
 

Definition 

 

The second class of time series processes consists of the Moving Average (MA) 

processes. The most simple in this class is the MA(1) process (Moving Average process 

of order 1). The zero mean MA(1) process is defined as: 

 

11 −−= ttt aaZ θ           (6.53) 

 

Parameter determination 

 

Like in the case of the AR-processes, from the statistical properties of the process Zt, we 

have to determine: 

- the moving average parameter 1θ and 

- the variance of the white noise process 2

aσ  

 

Taking the expectation of the square of both sides of (6.53) yields: 
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Multiplication of 6.53 by Zt-1, taking the expectation and dividing both sides by 2

Zσ  

yields: 
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Combining (6.54) and (6.55) we obtain the equation: 
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Mathematically, equation (6.56) has two solutions for 
1θ  and the question arises which 

one of the two solutions is the proper one to describe the MA(1) process. The selection of 

the proper value of 
1θ  is based on the invertibility criterion. This criterion means that we 

like to be able to reconstruct the white noise series at uniquely from the realization of the 

process Zt. By repetitive use of the definition of the MA(1) process (6.53) it follows that: 
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And therefore: 
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If we require the MA- process Zt to be invertible the term ∑
=

−
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Z

1

1θ should approach zero 

for ∞→k . This requirement leads to the condition: 

 

11 <θ            (6.59) 

 

It can be proven that (6.56) always has one root whose absolute value is larger than 1 and 

one root whose absolute value is smaller than 1. Therefore with the condition (6.59) the 

MA parameter 1θ  can be determined uniquely.  The variance of the white noise process 

follows from (6.54): 
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Properties of a MA(1) process 

 

Stationarity. From the definition (6.53) it follows that the MA(1) process is always 

stationary. Note that the AR(p) process is always invertible. This can be seen by 

subtracting two successive values of the process Zt.  

 

ACF of the MA(1) process. The lag k auto correlation coefficient of the MA(1) process Zt 

is defined by: 
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Because 0][ =−kttaaE for 0≠k it follows from (6.61) that: 
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Forecast of the MA(1)  process 

 

From the definition of the MA(1) process (6.53) it follows that the forecast for time step 

t+1 given observations up to time t, is:  

 

 tttttt aaZ |1|1|1
ˆˆˆ θ−= ++          (6.63) 

 

Because the conditional expectation of the white noise process at time step t+1 given the 

observations until time step t is zero, the forecast is: 
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k aθ . Therefore, with (6.58), the conditional expectation of the 

white noise process at time step t, given the observations until time step t can be derived 

as: 
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Therefore the one time step ahead forecast is: 

 

ttt aZ 1|1
ˆ θ−=+           (6.66) 
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The conditional expectation for the white noise process at time step 1; >+ llt given 

the observations up to time step t is zero. Therefore the forecast of the MA(1) process is 

given by: 
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The error in the forecast is: 
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And the error variance of the forecast of the MA(1) process is: 

 





>=+

=
=

+ 1)1(

1
22

1

2

2

|
l

l

Za

a

e tlt σσθ

σ
σ        (6.69) 

 

From (6.68) and (6.69) it can be seen that the memory of the MA(1) process is only 1 

time step. Forecasts for time steps larger than 1 are all zero. The variance of the forecast 

error is equal to the variance of the process Zt. 

 

Example of a MA(1) process 

 

Let Zt be a zero mean MA(1) process with 9.01 −=θ and 12 =aσ . 

 

19.0 −+= ttt aaZ          (6.70) 

 

From (6.62) is follows that the ACF equals: 
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The auto correllogram is given in figure 6.8. 
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 Figure 6.8. ACF of the MA(1) process with 9.01 −=θ . 

 

The forecast of the MA(1) process and the corresponding error variance is calculated 

using (6.67) and (6.69). In figure 6.9 the forecast of the MA(1) process with 9.01 −=θ is 

plotted with the 95% confidence interval. 
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Figure 6.9. Forecast of the MA(1) process with 9.01 −=θ with the corresponding 95% confidence 

interval. 

 

Figure 6.9 shows that the memory of the MA(1) process is only one time step. Forecasts 

for more than one time step are all zero, which equals the unconditional expected value of 

the process. Consequently, the confidence interval reaches its maximum value after one 

time step.  
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6.5.2 MA(q) process 
 

Definition 

 

The general form of a Moving Average processes of order q (MA(q) processes) is defined 

as: 

 

qtqttt aaaZ −− −−= θθ L11         (6.72) 

 

The parameters  qii ,,1; L=θ  are called the moving average parameters of order i. 

Using the backshift operator (6.72) can be written as: 
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Where: q
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Parameter determination 

 

To determine the parameters of the MA(q) model, equation (6.72) is multiplied by Zt-k. 

Taking the expectation of both sides thereafter gives:  
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For k=0 equation (6.74) yields: 
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For k>0 equation (6.74) gives: 
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Combining (6.75) and (6.76) yields the set of equations: 
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The set (6.77) gives q equations with q unknown Moving Average parameters. Because 

the equations have a quadratic form, there are multiple solutions. Similar to the 
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determination of the parameter of the MA(1) process, the parameters of the MA(q) 

process can be determined using the invertibility criterion. Without proof, it is stated here 

that for a MA(q) process to be invertible, the roots of the equation  

 

0)( =Θ B           (6.78) 

 

should all be outside the unit circle, and there is only one solution that obeys the 

invertibility criterion. For example the parameters of a MA(2) process are determined by 

the set of equations: 
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The parameters can be found using the condition that the roots of the equation (6.78) 

should lie outside the unit circle. For the parameters of a MA(2) process this condition 

means: 
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The variance of the white noise process at can be derived from (6.75). 
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Properties of a  MA(q)  process 

 

Stationarity. Like in the case of a MA(1) the stationarity of a MA(q) is always assured. 

 

ACF of a MA(q) process. The ACF of a MA(q) process follows from (6.77). As can be 

seen the MA(q) process has a memory of q time steps. After q time steps, the ACF is cut 

off and all values >q are zero. The ACF of the MA(2) process 21 5.04.0 −− ++= tttt aaaZ  

is given in figure 6.10. 
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Figure 6.10. ACF of the MA(2) process 21 5.04.0 −− ++= tttt aaaZ . 

 

Forecast of an MA(q)  process 

 

The forecast of a MA(q) process is a straight forward extension of the forecast of a 

MA(1) model. Up to q time steps ahead the forecast has a non-zero value. Further than q 

time steps the forecast equals the mean value of the process, which is zero. The variance 

of the forecast error after q time steps equals the variance of the process Zt. Consequently, 

the 95% confidence interval has a constant value beyond the forecast of q time steps. In 

figure 6.11 the forecast and the corresponding 95% confidence interval is given for the 

MA(2) process 21 5.04.0 −− ++= tttt aaaZ . As can be seen from this figure, after two time 

steps the forecast is zero and the confidence interval has a constant value. 

 

Figure 6.11. Forecast of the MA(2) process 21 5.04.0 −− ++= tttt aaaZ  with the corresponding 95% 

confidence interval. 
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6.6 Autoregressive Integrated Moving Average processes 

6.6.1 Autoregressive Moving Average processes 
 

Definition 

 

We have seen that the typical characteristic of an AR(p) process is the gradual decay of 

the temporal correlation. If at some point in time the value of an AR(p) process is high, it 

will stay high for some time. A measured value at time step t carries information for 

many time steps into the future. The amount of information gradually decreases when we 

go further into the future. In contrast, MA(q) processes have a memory of a limited 

number of time steps. A measurement at time step t carries information of Zt q time steps 

into future. The temporal correlation of a MA(q) process drops to zero after q time steps. 

Many processes in hydrology show characteristics of both processes. At small time lags 

we see the random shock characteristics that look like a Moving Average process, and for 

larger time lags the process exhibits a gradual decay. This class of processes combining 

both characteristics is the Autoregressive Moving Average processes (ARMA(p,q)), 

which is defined as: 
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or using the back shift operator B: 
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Parameter determination and properties 

 

In an ARMA(p,q) process there are p+q+1 parameters which have to be determined. 

These are the p auto regressive parameters ( pφ ), q moving average parameters ( qθ ) and 

the variance of the white noise process ( 2

aσ ). The determination of the parameters of an 

ARMA process is similar to the determination of the parameters of AR and MA 

processes by multiplying (6.82) with respectively Zt-k and at-k and take the expectations of 

both sides. Although straight forward, the equations are more complex than in the case of 

AR(p) or MA(q) processes. Therefore we will not give the general equations for 

parameter determination of an ARMA(p,q) process. As an illustration the determination 

and the correllogram are given for an ARMA(1,1) process in the next section.  

  

In order for an ARMA(p,q) process to be stationary and invertible the same conditions 

hold as in case of an AR(p) process and a MA(q) process. To assure stationarity all the 

roots of the function 0)( =Φ B  should lie outside the unit circle and for invertibility the 

roots of the function 0)( =Θ B should lie outside the unit circle. 
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The ACF of an ARMA process shows elements of both the AR process and the MA 

process. There might be some spikes in the first q time lags and for larger time lags the 

ACF exponentially decays to zero. As an example the auto correllogram of the 

ARMA(1,1) process is given below. 

 

Example of an ARMA(1,1) process 

 

Consider the ARMA(1,1) process: 

 

11 5.07.0 −− ++= tttt aaZZ         (6.84) 

 

It can be derived that the ACF of an ARMA(1,1) process is given by: 
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The auto correllogram is given in Figure 6.12. 

 

  
 

Figure 6.12. Auto correllogram of the ARMA(1,1) process 11 5.07.0 −− ++= tttt aaZZ . 

 

In Figure 6.12 it can be seen that for lags higher than 2, the ACF shows an exponential 

decay, like an AR process. The ACF lag 1 is higher than it would be in case of an AR(1) 

process. This reflects the first moving average term. 

An illustration of a forecast of the ARMA(1,1) process 11 5.07.0 −− ++= tttt aaZZ  is given 

in figure 6.13. The forecast shows characteristics of an AR process as well as a MA 

process.  In the forecast one time step ahead, we see the influence of the MA term. For 

larger time steps the forecast decays gradually to zero, just like an AR process. 

 

 

k 
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Fig. 6.13. Forecast of the ARMA(1,1) process 11 5.07.0 −− ++= tttt aaZZ . 

 

6.6.2 Non-zero mean ARMA processes and non-Gaussian time series 
 

The ARMA(p,q) process can be extended to non-zero processes. Let the expected value 

of the process Zt be
Zµ . The non-zero-mean ARMA process is now defined as: 
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A non-zero mean ARMA process has the same characteristics as a zero-mean ARMA 

process except of a shift in the level.  

 

We assumed the processes Zt and at to be Gaussian processes. If the series Zt is non-

Gaussian, we can try to transform the series in order to get a Gaussian process. Widely 

use are the so called Box-Cox transformations (Box and Cox, 1960). 

 

6.6.3 Autoregressive Integrated Moving Average processes 
 

Some processes have a time dependent expected value. For example if the time series 

shows a trend. In this case we speak of a non-stationary process. However, the difference 

between two successive values of the time series might be described by a stationary 

process. In general the d
th

 order difference of a non-stationary time series might be 

described as a stationary ARMA process. To arrive at the original series, the stationary 
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ARMA process of the differences has to be integrated. The class of time series processes 

that describe this type of non-stationary behavior is formed by the Autoregressive 

Integrated Moving Average processes ARIMA(p,d,q), where d stands for the order of 

difference operations. Using the difference operator, the general form of an 

ARIMA(p,d,q) model is: 
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Note that when applying a difference operation the non-zero expected value of the 

process disappears.  

 

For example the ARIMA(1,1,1) model can be expanded to: 
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And the ARIMA(0,2,1) process is: 
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The ARIMA process can be useful to describe the past behavior of non-stationary 

processes, but we should be careful forecasting a non-stationary time series, because the 

variance of the forecast error has no limited value for forecasts further in future. Consider 

the ARIMA(1,1,0) process: 
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Similar to (6.34) it follows that 
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And the variance of the forecast error is: 
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The variance of the forecast error grows unlimited unless the variance of the white noise 

equals zero. As an example the forecast of the ARIMA(1,1,0) process 

( ) ttttt aZZZZ +−=− −−− 211 7.0 is shown in figure 6.14. The variance of the white noise 

equals 1. As can be seen in Figure 6.14 the forecast further into the future tends to a 

constant value but the confidence interval increases continuously. 
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Figure 6.14. Forecast of the ARIMA(1,1,0) process ( ) ttttt aZZZZ +−=− −−− 211 7.0 . 

 

6.6.4 Seasonal ARIMA processes 
 

Many time series in hydrology, like air temperature, rainfall and river discharge, show a 

seasonal behavior. In order to describe seasonal (or periodic) behavior, the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) process is introduced. The 

seasonal process has exactly the same form as the ARIMA process discussed in the 

previous section. However, the time steps of the terms of the seasonal process are related 

to the seasonal period instead of the regular time. The seasonal ARIMA process is 

denoted as: SARIMA(P,D,Q)s , where P is the number of seasonal Autoregressive terms, 

D is de number of seasonal differences, Q is the number of seasonal Moving Average 

terms and s is the seasonal period. The general form of a SARIMA(P,D,Q)s process is: 
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For example a time series with monthly values and a periodic behavior with a period of 

one year, might be described by a SARIMA(1,1,1)12 process: 
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In many cases, the time series doesn't show a pure seasonal behavior, as given in (6.93), 

but also exhibits a dependency on values of previous time steps. To account for the 

seasonal behavior as well as for the behavior in regular time, both descriptions can be 

combined by multiplication. Such a process is denoted as: SARIMA(p,d,q)x(P,D,P)s. The 

symbols p,d,q,P,D,Q,s have the same meaning as before. The general form of a 

SARIMA(p,d,q)x(P,D,Q)s process is: 
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Obviously the general form (6.95) can describe a broad class of processes, depending on 

the orders of the regular and seasonal differences and the auto regressive and moving 

average terms. As an example here the SARIMA(1,0,0)x(0,1,1)12 process with 8.01 =φ , 

6.012 =θ  and 12 =aσ  is given: 
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A graph with observed and forecasted values of the process is given in figure 6.15. This 

figure shows that the time series is dominated by a periodic behavior with a period of 12 

month. In addition to the periodic function, variations can be seen that are due to the 

regular part of the process. In the forecasts, the information of the regular part dampes 

out after some time steps and the forecast further into the future only reflects the seasonal 

behavior of the process. 
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Fig. 6.15. Forecast of the SARIMA(1,0,0)x(0,1,1)12 process 

1213121 6.08.08.0 −−−− −+−+= tttttt aaZZZZ  
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6.7 Modelling aspects 

6.7.1 General 
 

In practice, we have only observations of a time series over a limited period in time. The 

real process is unknown, and we don't know whether the series is a realization of a linear 

process, let alone what type of process AR(1), ARMA(1,2),..,we are dealing with. 

Nevertheless, for many processes in hydrology, we can fit a linear time series model, that 

describes the major behavior of the process. The general formulation of equation (6.95) 

allows taking a large number of possible linear time series models into account. The 

question arises how we can determine the 'best' time series model. In general, the 

modeling process consists of three stages.  

1. In de identification stage we try to characterize the time series and we select 

possible time series models. 

2. In the estimation stage, the parameters of the possible models are estimated. 

3. In de diagnostic (or verification) stage, it is evaluated whether a time series 

models is valid, and which of the valid time series models is chosen to be the 

'best' to describe the time series. Based on the diagnostics other model structures 

might be considered and stages 2 and 3 repeated. 

In almost all computer programs for time series modeling, these three stages can be 

recognized. Here only a brief introduction to the three stages is given. An extensive 

discussion can for example be found in Box and Jenkins (1976). 

 

6.7.2 Identification 
 

The goal of the identification is to select the most likely form of the time-series model. 

To decide whether we should apply a seasonal model we examine the periodic behavior 

of the time series. Also we determine whether or not the time series has a constant 

expected value pattern.  The most important tools for identification of the model structure 

are the plot of the time series and the auto correllogram. In order to have reliable 

estimates a rule of thumb is that the maximum lag of the ACF should preferable not 

exceed 1/3 of the observation period. Also, in general, the more observations we have, 

the more reliable the estimates of the ACF.  

 

From the ACF and the graph of the time series, we have to decide whether the series is 

non-stationary and/or exhibits a periodic pattern. Many time series in hydrology show a 

seasonal pattern with a period of one year. The ACF of a periodic time series also shows 

a cyclic pattern. In many cases in hydrological time series the seasonal behavior asks for 

a seasonal difference in the time series model. 

 

Non-stationary behavior of a time series means that the expected value is not a constant, 

but a function of time. This function may have different forms. A step function occurs 

when there is a sudden change of the regime, for example a change in the groundwater 

level series due to the start of pumping groundwater. Also other forms of non-stationarity 

are possible indicating a (linear) trend in a time series. You can model the melting of a 
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glacier as such a trend.  Often non-stationarity is reflected as a very slow decay in the 

ACF. Non-stationary behavior requires differencing in the regular part of the time series 

model. 

 

The following examples show typical characteristics of time series and how that behavior 

is reflected in the auto correllogram. The first example is a groundwater head series, with 

an observation frequency of 24 times/year, given in Figure 6.16. The observation well is 

located close to a groundwater abstraction. At some point in time (around 70 time steps) 

the abstracted volume of groundwater increased. This is reflected in a sharp decrease of 

the groundwater head. It is obvious that in this case the expected value before the 

increase of the abstracted groundwater differs from the expected values after the increase 

of the abstraction. Therefore the time series is non-stationary. The corresponding auto 

correllogram is given in Figure 6.17.  
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Figure 6.16. Groundwater head series from an observation well close to a groundwater abstraction. 

 

 
Figure 6.17 Auto correllogram of the groundwater series given inFigure 6.16. 

 

The second example is the groundwater head series, with observation frequency of 24 

times/year, given in Figure 6.18. This figure shows a clear seasonal behavior with a 

period of 24. The high values of the groundwater head occur in winter and the low values  

in summer. The seasonal behavior is reflected in the auto correllogram  (Figure 6.19). 

The auto correlation shows a positive maximum at time lag 24 (=one year) and a negative 

maximum at time lag 12. 
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Figure 6.18 Groundwater head series showing a seasonal pattern. 
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Figure 6.19 Autocorrellogram of the groundwater series given in figure 6.18. 

 

The last example, given in Figure 6.20, is also a groundwater head series with 

observation frequency of 24 times/year. Like the previous example, the time series in 

figure 6.20 shows a seasonal behavior. In addition, there also is a positive trend over 

many years. The seasonal behavior is reflected in the auto correllogram (Figure 6.21) by 

the periodic pattern. The trend is reflected in the slow decay of the auto correlation, with 

the periodic pattern superimposed. 
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Figure 6.20 Groundwater head series showing a seasonal pattern and a trend. 
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Figure 6.21 Autocorrellogram of the groundwater series given in Figure 6.20. 

 

6.7.3 Estimation 
 

The identification phase gives us indications whether the time series models should have 

a seasonal part, whether we should use a difference operator and it provides us with 

diagnostics of the memory of the system (in the form of the ACF). Therefore we have an 

idea what type of time series model will be the most appropriate. In order to estimate the 

model parameters we have to specify the following input to the estimation program: 

- whether the model should have a seasonal component, and if so, the seasonal 

period (s); 

- whether we should apply a difference operation in the regular model or the 

seasonal model, and if so, the order of difference operations (d and D); 

- whether or not the series is zero mean; 
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- the order of AR terms in the regular model, and if applicable also in the seasonal 

model (p and P); 

- the order of MA terms in the regular model, and if applicable also in the seasonal 

model (q and Q). 

 

With these specifications the type of time series model is defined, and the parameters can 

be estimated. There are several computer codes available to perform the estimation. Most 

of them use a maximum likelihood estimation procedure. The estimation program 

privides of estimates of: 

- the regular AR-parameters ( pii ,...,1=φ ); 

- the regular MA-parameters ( qii ,...,1=θ ); 

- for seasonal models the seasonal AR-parameters ( Pii ,...,1=φ ); 

- for seasonal models the seasonal MA-parameters ( Qii ,...,1=θ ); 

- the residual variance 2

aσ ;  

- the expected value of the series Zµ . 

 

In addition to the model parameters listed above, most estimation programs also provide 

useful model diagnostics, in particular: 

- the residual series (which should be white noise) and its ACF; 

- the standard error of the estimated parameters, (this enables establishing the 

statistical significance of each parameter); 

- the correlation between the parameter estimation errors.  

 

6.7.4 Diagnostics 
 

We can estimate different time series models with different orders of the AR and MA 

coefficients. For example, for a time series we might have estimated an AR(1) model and 

an AR(2) model. Now the question arises which one should we use? Therefore we have 

to answer two questions: 

1. Is the model valid?  

2. Which of the models is the best one? 

 

Model validity 

 

As discussed in previous sections, for a time series model to be valid, it should be 

stationary and invertible.  Mostly, stationarity and invertibility is checked in the 

estimation programs, as the estimation process will not converge if these conditions are 

not met. The residual series should be white noise. This can be tested for example with a 
2χ test. Also the autocorrellogram of the residual series can be plotted and tested against 

the hypothesis of white noise. Finally, it is advisable to plot the residual series itself.  
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Selecting the best time series 

 

To discriminate between several time series models, there are two effects that we should 

be aware of. The residual variance is the estimate of the variance of the white noise 

series. The smaller the residual variance, the more variation of the time series is captured 

in the time series model. Therefore in principle, we go for the time series model with the 

smallest residual variance. In general for the same time series, a model with more 

parameters will result in a smaller value of the residual variance. However, an increase of 

the number of parameters, also results in higher standard errors of the parameter 

estimates and higher correlations between parameter estimates. High standard errors of 

the parameter estimates implicate that the forecast uncertainty increases. Higher 

correlations between parameter estimates indicate dependence estimates and leads to 

redundant terms in de model. In conclusion, we strive to minimize the residual variance, 

but at the same time to develop models with the smallest number of parameters (‘the 

principle of parsimony’). Here, we will not go into further detail, but in literature (for 

example Hipel and McLeod, 1996), several criteria are developed to find the balance 

between residual variance and model reliability. 

 

6.8 Transfer function/noise models 

6.8.1 Formulation of Transfer function models. 
 

Not all time series that we measure in hydrology are best described by process driven by 

a white noise process only. Often the measured time series is the result of hydrological 

processes with known driving forces. Examples are the variation of the river stage driven 

by precipitation and the draw-down of groundwater head due to groundwater abstraction. 

An observed time series of a driving force is called the input series and the series that we 

like to describe as a function of the input series is called the output series. We can 

describe the output series by a linear transfer function (TF) of the input series. The 

general form of a TF(b,r,d,s) model is: 
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Where: Xt  is the input series 

  b the delay time between the input and the output.  

iω is the moving average parameter of lag i (i=0,…,s) 
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  s is the order of the moving average part of the TF-model (Note that the 

symbol s is also being used to indicate the seasonal period in SARIMA 

models). 

iδ is the auto regressive parameter of lag i (i=1,…,r) 

  r is the order of the auto regressive part of the TF-model. 

 

For example the TF(4,1,0,2) model is: 
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The general form of a linear transfer model is similar to an ARIMA model, but there are 

some differences.  

- In stead of a white noise series, the driving force is an observed input series which 

can have any pattern. The input series might show auto correlation, a seasonal 

pattern, or a trend. This implies that the output series does not necessarily need to 

have a Gaussian probability distribution. 

- The input series is an observed series, that often has another dimension than the 

output series. Therefore, also the parameters ωi  have a dimension and unlike the 

ARIMA model, ω0≠1. For example, if the input series X is the precipitation in 

[mm/day] and the output series is the river stage in [m], than the dimension of the 

parameters ωi is [m (mm/day)
-1

]. 

- In principle, we can have a difference operation in a TF-model. This indicates a 

non stationary relation between input and output. In hydrology, non-stationary 

behavior of the output series is mostly due to a non-stationary input but the 

transfer function itself is stationary. In case the transfer function itself is non-

stationary it is questionable whether a transfer function model is the most suitable 

way of describing the process. Therefore, in the reminder of this chapter we will 

not consider the difference operation in the TF models.  

 

The behavior of an output series might be influenced by more that one input series. For 

example the groundwater head at a particular location might be influenced by 

precipitation, a groundwater abstraction and the surface water level. We can extent the 

TF-model (6.97) to accommodate more than one input series. For m input series the TF-

model is defined as: 
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Note that the orders r and s and the delay time b can be different for each input series.  
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The response series Zi,t is called the component of the output series due to the input Xi. In 

line with linear theory, the TF-models can be regarded impulse response functions. 

 

6.8.2 Formulation of transfer function/noise models. 
 

In hydrological practice an output series will never be exactly the response of a limited 

number of input series. The difference between the sum of all components in (6.99) and 

the output series is called the innovation series nt. This innovation series, which is also 

called the noise component, can be modeled as an (S)ARIMA-model. The goal of 

TF/noise models is almost always to link patterns like seasonal patterns and trends in the 

output series to observed input series. Therefore here we restrict ourselves to noise 

components that can be modeled by a regular ARMA model. The formulation of a 

TF/noise model is given in (6.100) and depeicted schematically in Figure 6.22. 
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Figure 6.22 Schematic structure of a TF/noise model 

 

6.8.3 Modeling aspects of TF/noise models. 
 

Similar to the ARIMA models, we distinguish three phases in the modeling process: 

identification, estimation and verification/diagnostics. 
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Identification. 

 

The relationship between two time series is characterized by the cross correlation 

function CCF (6.10). The CCF is illustrated by two examples given in the figures 6.23 

and 6.24.  

 

The first example is the cross correlation between an abstraction of groundwater and the 

groundwater head close to that abstraction. This situation is shown in Figure 6.23a. The 

observation frequency is 24 times/year. The observed time series of the groundwater 

abstraction and the groundwater head in the observation well is given in figure 6.23b. 

Figure 6.23c presents the corresponding CCF. As can be seen the groundwater head 

drops when the groundwater abstraction is increased. This is reflected in a large negative 

value of the CCF. The CCF also shows that the largest value occurs at time lag 0, so there 

is no time delay. The value of the CCF at time lag 0 is close to -1. This indicates that a 

large part of the pattern in the groundwater head series can be explained by the variations 

of the groundwater abstraction. 

 

If we look at the observed series (6.23b) we might expect that the CCF shows high values 

only at a few small time lags, because the groundwater head is more or less the scaled 

mirror image of the groundwater abstraction. However, we see in the CCF a gradual 

decay for larger time lags, both at the positive and the negative side. This effect is caused 

by the auto correlation of both series, and it is not a property of the relation between the 

two series. The auto correlation of the series hampers a clear identification of the 

relationship between the series. As shown after the second example, in some cases we 

can remove the autocorrelation by means of ARIMA modeling.  

 

In the second example the groundwater head variation is driven by the seasonal behavior 

of the precipitation and evapotranspiration (figure 6.24a). These driving forces are 

combined in the precipitation excess, defined by: 

 

ttt EPPN 8.0−=           (6.101) 

 

Where: Nt is the precipitation excess 

 Pt is the precipitation and 

 EPt is the potential evapotranspiration (according to Penman) 
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Figure 6.23. Observed groundwater abstraction and groundwater head series and the corresponding CCF. 
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Figure 6.24 Observed precipitation excess and groundwater head series and the corresponding CCF. 

 

Figure 6.24b shows that both the precipitation excess and the groundwater head have a 

seasonal pattern with a period of one year (the observation frequency is 24 times/year). 

The seasonal behavior can also be seen in the CCF (6.24c). Like in the previous example, 

the relation between the precipitation excess and the groundwater head is obscured by the 

(seasonal) auto correlation in both series. Nevertheless, figure 6.24c indicates a shift of 

one or two time steps, indicating that the full reaction of the groundwater head to 

precipitation excess is not instantaneous, but is spread over some time steps. Also, the 
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maximum value of the CCF is around 0.6. Obviously, the groundwater head series can 

not be fully explained by the precipitation excess.  

 

As stated above, a clear view of the relation between two series is hampered by the auto 

correlation of both series. In case we can describe the input series by an (S)ARIMA 

model we can apply the following procedure, which is known as prewhitening. The 

principle of prewhitening is denoted in Figure 6.25. 

 

TF model ZtXtARIMA model (ARIMA model)-1αt
βt

TF model

 
 

Figure 6.25. Principle of prewhitening. 

 

Suppose the relation between the output series Zt and the input series Xt is described by a 

TF model and the input series can be modeled by an ARIMA model. The residual white 

noise series of this ARIMA model is αt. Now, we also apply the ARIMA model of the 

input series to the output series Zt. This yields the series βt, which generally will not be a 

white noise series. The ARIMA model is a linear operation. Therefore, the TF model 

between Xt and Zt is exactly the same as the TF model between αt and βt. Because αt is a 

white noise series, the CCF between αt and βt does not show temporal correlation due to 

the auto correlation, and we can identify the TF model between αt and βt easier than 

between Xt and Zt.  

 

To illustrate prewhitening we take the example of Figure 6.24. The SARIMA model of 

the input series Nt is estimated as SARIMA(1,0,0)(0,1,0)
24  

 

      (6.102) 

 

Applying the SARIMA model (6.102) to the output series Zt yields the series βt. The 

series αt and βt are plotted in Figure 6.26 and the CCF ραβ is given in Figure 6.27 

ttttt NNNN α+−−= −−− )(33.0 25124
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Figure 6.26. The series αt and βt obtained after after prewhitening Xt and Zt with the 

SARIMA(1,0,0)(0,1,0)
24 

 model. 

 

The CCF ραβ in Figure 6.27 is much clearer than the CCF in Figure 6.25. Figure 6.27 

shows a high value (0.64) at time lag 0 and a decay at the positive side. This indicates 

that there is no delay time (b=0) and we can expect an auto regressive part in the Transfer 

model. 
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Figure 6.27. CCF ραβ of the time series The series αt and βt in Figure 6.26. 

 

 

Estimation  

 

The estimation of a TF/noise model is similar to the estimation of an ARIMA model. We 

have to provide the orders(b,r,d,s) of all TF models and the orders of the noise model (see 

section 6.7.3). Generally, with TF/noise models we try to explain dominant patterns, like 

seasonal behavior and trends, by the input series. Therefore, most noise models (ARIMA 

model of the noise component) do not have a seasonal part or a difference operation. 

Often the noise model is very simple, for example an ARIMA(1,0,0) model. 
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The estimation program will return the same type of output as in case of ARIMA models. 

These are: 

- the estimated values of all parameters and there statistical significances;  

- the expected value and variance of the residual white noise series; 

- the ACF of the residuals;  

- the standard error of all estimates and the correlation between all estimation 

errors.  

 

Often also time series of all individual components (Zi,t and nt) and the residual white 

noise series at can be extracted from the estimation program.  

 

Verification/diagnostics  

 

As with the ARIMA models, we have to check whether the TF/noise model is valid, and 

we have to select the 'best' model. The validity check is the same as in case of an ARIMA 

model (see 6.7.4), by checking the residual white noise series. To choose the best model, 

we select the model with the best balance between minimizing the residual variance and 

the standard error of the parameter estimation. In particular we have to pay attention to 

the correlation between the estimation errors of the parameters. As with ARIMA models, 

highly correlated estimation errors of a TF model indicate that the order of the TF model 

should be reduced. More serious is correlation between estimated parameters of different 

TF models. High correlation between parameters of two TF models implies that we can 

not separate the influence of one input series from the other. Consequently, we can not 

use the individual TF models as the input response functions. 

 

6.8.4 Use of TF/noise models; an example 
 

Consider the situation of Figure 6.23. The groundwater head time series is modeled as a 

TF/noise model with one input series, the abstraction Qt. The TF/noise model is: 
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The parameter values, residual white noise variance and the corresponding standard 

errors are given in the table below. 

 

parameter value s.e. 

0ω   [1000⋅cm/m
3
] -2.59126 0.3327 

1ω   [1000⋅cm/m
3
] 1.75496 0.3297 

1φ    [-] 0.47027 0.08078 

n    [cm] 172.35 7.12726 
2

aσ  [cm
2
] 198 

 
- 
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This table shows that the standard errors for all parameters are small in comparison to the 

values of the corresponding parameters. The parameter 0ω  is negative and the parameter 

1ω  is positive. This is due to the fact that a positive value of the groundwater abstraction 

results in a drawdown of the groundwater level (see (6.103)).  

 

The correlation matrix between the estimation errors is:  

 

 
0ω  1ω  

1φ  

0ω  1 0.86 0.17 

1ω  0.86 1 0.16 

1φ  0.17 0.16 1 

 

This table shows that the parameters of the TF model are highly correlated (0.86), with 

might indicate redundant information and we might consider a transfer model with only 

one moving average term.. However, because both parameters are always used together 

in the same model and the correlation between these parameters and the parameters of the 

noise component is small, we can successfully separate the component of the 

groundwater head due to the abstraction and the noise component.  

 

Decomposition. 

 

In Figure 6.28 the decomposition of the groundwater head series is graphically displayed. 

The groundwater head is split into a component of the groundwater abstraction and a 

noise component. In Figure 6.28a the observed groundwater head series (+) and the 

component of the groundwater abstraction (line) are plotted in the same figure. The 

component of the groundwater abstraction is the drawdown of the groundwater head due 

to the abstraction. In Figure 6.26b the noise component is given. This component 

represents all other variations of the groundwater head. 

 

Forecasting 

 

We can also apply the TF model to forecast the effect of an increase of the groundwater 

abstraction. This is done by simply providing values for the groundwater abstraction Qt to 

the TF model in (6.103). In particular the equilibrium drawdown ( ∞,1Z )   is of interest. 

This is the drawdown that will occur if the groundwater abstraction is constant in time 

( ∞Q ). From (6.103) it follows that: 

 

∞∞∞ −=−= QQZ 34622.4)( 10,1 ωω        (6.104) 

 

With the standard error of both parameters and the corresponding correlation coefficient 

we can calculate the standard error 175.0)( 10
=−ωωσ  and we can construct the 95% 

confidence interval for any volume of abstracted groundwater: 
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∞±− Q)175.034622.4(         (6.105) 

 

The estimated equilibrium drawdown and 95% confidence interval (assuming Gaussian 

error in the parameters 
10 ,ωω ) is given in Figure 6.29. 
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Figure 6.28 Decomposition of a groundwater head series in a component due to groundwater abstraction 

and a noise component. 
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Figure 6.29. Estimated equilibrium drawdown as function of the abstracted volume, inclusive the 95% 

confidence interval. 

 

 

 



7. Geostatistics

7.1 Introduction

Geostatistics is the part of statistics that is concerned with geo-referenced data, i.e. data that
are linked to spatial coordinates. To describe the spatial variation of the property observed at
data locations, the property is modelled with a spatial random function (or random field) Zx,
xT  x,y or xT  x,y, z. The focus of geostatistics can be further explained by Figure 7.1.
Suppose that the values of some property (for instance hydraulic conductivity) have been
observed at the four locations x1, x2, x3 and x4 and that, respectively, the values z1, z2, z3 and
z4 have been found at these locations. Geostatistics is concerned with the unknown value z0 at
the non-observed location x0. In particular, geostatistics deals with:

1. spatial interpolation and mapping: predicting the value of Z0 at x0 as accurately as
possible, using the values found at the surrounding locations (note that Z0 is written here
in capitals to denote that it is considered to be a random variable);

2. local uncertainty assessment: estimating the probability distribution of Z0 at x0 given the
values found at the surrounding locations, i.e. estimating the probability density function
fzz0;x0 | z1x1, z2x2, z3x3. This probability distribution expresses the uncertainty
about the actual but unknown value z0 at x0;

3. simulation: generating realisations of the conditional RF Zx| zxi, i  1, .., 4at many
non-observed locations xi simultaneously (usually on a lattice or grid) given the values
found at the observed locations; e.g. hydraulic conductivity is observed at a limited
number of locations but must be input to a groundwater model on a grid.

Figure7.1 Focus of geostatistics
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Geostatistics was first used as a practical solution to estimating ore grades of mining blocks
using observations of ore grades that were sampled preferentially. i.e. along outcrops (Krige,
1993). Later it was extended to a comprehensive statistical theory for geo-referenced data
(Matheron, 1970) Presently, geostatistics is applied in a great number of fields such as
petroleum engineering, hydrology, soil science, environmental pollution and fisheries.
Standard text books have been written by David (1977) , Journel and Huijbregts (1998) ,
Isaaks and Srivastava (1989) and Goovaerts (1997). Some important hydrological problems
that have been tackled using geostatistics are among others:

 spatial interpolation and mapping of rainfall depths and hydraulic heads;

 estimation and simulation of representative conductivities of model blocks used in
groundwater models;

 simulation of subsoil properties such as rock types, texture classes and geological facies;

 uncertainty analysis of groundwater flow and -transport through heterogeneous formations
(if hydraulic conductivity, dispersivity or chemical properties are spatially varying and
largely unknown) (see chapter 8).

The remaining of this chapter is divided into four parts. The first part briefly revisits
descriptive statistics, but now in a spatial context. The second part is concerned with spatial
interpolation using a technique called kriging. The third part uses kriging for the estimation of
the local conditional probability distribution. The last part deals with the simulation of
realisations of spatial random functions.

7.2 Descriptive spatial statistics

Declustering
In this section we will briefly revisit the subject of descriptive statistics, but now focussed on
spatial (i.e. geo-referenced) data. Looking at Figure 7.1 it can be seen that not all observation
locations are evenly spread in space. Certain location appear to be clustered. This can for
instance be the case because it is convenient to take a number of samples close together.
Another reason could be that certain data clusters are taken purposively, e.g. to estimate the
short distance variance. If the histogram or cumulative frequency distribution of the data is
calculated with the purpose of estimating the true but unknown spatial frequency distribution
of an area, it would not be fair to give the same weight to clustered observations as to
observations that are far from the others. The latter represent a much larger area and thus
deserve to be given more weight. To correct for the clustering effect declustering methods can
be used. Here, one particular declustering method called polygon declustering is illustrated.
Figure 7.2 shows schematically a spatial array of measurement locations. The objective is to
estimate the spatial statistics (mean, variance, histogram) of the property (e.g. hydraulic
conductivity) of the field. The idea is to draw Thiessen polygons around the observation
locations first: by this procedure each location of the field is assigned to the closest
observation. The relative sizes of the Thiessen polygons are used as declustering weights:
wi  A i/ j

A j. Using these weights the declustered histogram and cumulative frequency

distribution can be calculated as shown in Figure 7.3, as well as the declustered moments such
as the mean and variance:
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Figure 7.2 Schematic example of polygon declustering.
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Figure 7.3 Schematic example of declustered frequency distributions
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The effect of declustering can be demonstrated using the synthetic Walker lake data-set shown
in Figure 2.1 (all of the larger numerical examples shown in this chapter are based on the
Walker-lake data set. The geostatistical analyses and the plots are performed using the GSLIB
geostatistical software of Deutsch and Journel (1998). Figure 2.1 only shows the 140 values at
the sample locations. The associated histogram is shown in Figure 2.2. Because this is a
synthetic data set we also have the exhaustive dat of the entire area (2500 values). Figure 7.4
shows the declusterd histogram based on the 140 data and the ”true” histogram based on 2500
values. Clearly, the are very much alike, while the histogram based on the non-weighted data
(Figure 2.2) is much different. The estimated mean without weighting equals 4.35 which is
much too large. The reason is the existance of clusters with very high data values present in
the observations (see Figure 2.1). Declustering can correct for this as can be seen from the
decslustered mean in Figure 7.4 which is 2.53 and very close to te true mean of 2.58.

Histogram of declustered obsv. True histogram

Figure 7.4 Declustered histogram of the 140 data values (left) and the true histogram of the
Walker lake data set (right)

Semivariance and correlation

Using the Walker-Lake data set of 140 observations we will further illustate the concept of the
semivariogram and the correlation function. Figure 7.5 shows scatter plots of the zx and
zx  h for |h| 1,5,10,20 units (pixels) apart. For each pair of points the distance di to the
one-to-one line is can be calculated. The semivariance of a given distance is given by (with
nh the number of pairs of points that are a distance h  |h| apart):

h  1
2nh 

i1

nh

di
2  1

2nh 
i1

nh

zx  h  zx2     (7.3)

and the correlation coefficient:
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 h  1
nh 

i1

nh
zx  hzx mzxhmzx

szxhszx
    (7.4)

where mzxh,mzx and szxh, szx are the means and variances of the zx and zx  h data

values respectively. These estimators were already introduced in chapter 5 for data that are not
on a grid. Figure 7.6 shows plots of the semivariance and the correlation as a function of
distance. These plots are called the semivariogram and the correlogram respectively. If we
imagine the data z to be observations from a realisation of a random function Zx and this
random function is assumed to be intrinsic or wide sense stationary (see chapter 5) then (7.3)
and (7.4) are estimators for the semivariance function and the correlation function.
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Figure 7.4 Scatter plots of zx and zx  h for |h|  1,5,10,20 units (pixels) apart from the
Walker lake data set.
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Figure 7.5 Semivariogram and correlogram based on Figure 7.4.

7.3 Spatial interpolation by kriging

Kriging is a collection of methods that can be used for spatial interpolation. Kriging provides
optimal linear predictions at non-observed locations by assuming that the unknown spatial
variation of the property is a realisation of a random function that has been observed at the
data points only. Apart from the prediction, kriging also provides the variance of the prediction
error. Here, two kriging variants are discussed: simple kriging and ordinary kriging which are
based on slightly different random function models.

7.3.1 Simple kriging

Theory
The most elementary of kriging methods is called simple kriging and is treated here. Simple
kriging is based on a RF that is wide sense stationary, i.e. with the following properties (see
also chapter 5):

EZx  Z  constant

VarZx  EZx  Z2  Z2  constant (and finite)

COVZx1,Zx2  EZx1  ZZx2  Z  CZx2  x1  CZh

Simple kriging is the appropriate kriging method if the RF is second order stationary and the

mean of the RF EZx   is known without error. With simple kriging a predictor

Zx0 is

sought that

1. is a linear function of the surrounding data,

2. is unbiased: E

Zx0  Zx0  0,

3. and has the smallest possible error, i.e.

Zx0  Zx0 is minimal.
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A linear and unbiased predictor is obtained when considering the following weighted average
of deviations from the mean:


Zx0  Z 

i1

n

iZxi  Z     (7.5)

with Zxi the values of Zx at the surrounding observation locations. Usually, not all
observed locations are included in the predictor, but only a limited number of locations within
a given search neighbourhood. Equation (7.5) is unbiased by definition:

E

Zx0  Zx0  Z 

i1

n

iEZxi  Z  EZx0 

Z 
i1

n

iZ  Z  Z  0     (7.6)

The weights i should be chosen such that the prediction error is minimal. However, as the
real value zx0 is unknown, we cannot calculate the prediction error. Therefore, instead of
minimizing the prediction error we must be satisfied with minimizing the variance of the

prediction error Var

Zx0  Zx0. Because the predictor is unbiased, the variance of the

prediction error can be written as:

Var

Zx0  Zx0  E


Zx0  Zx02 

E 
i1

n

iEZxi  Z  Zx0  Z
2




i1

n


j1

n

ijEZxi  ZZxj  Z 

2
i1

n

iEZxi  ZZx0  Z  EZx0  Z2     (7.7)

Using the definition of the covariance of a second order stationary SF
EZxi  ZZxj  Z  CZxi  xj and CZ0  Z2 , we obtain for the variance of
the prediction error:

Var

Zx0  Zx0 


i1

n


j1

n

ijCZxi  xj  2
i1

n

iCZxi  x0  Z2     (7.8)

To obtain the mininum value of Equation (7.8) we have to equate all its partial derivatives with
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respect to the i to zero:


i

Var

Zx0  Zx0  2

j1

n

jCZxi  xj  2CZxi  x0  0

i  1, ..,n     (7.9)

This results in the following system of n equations referred to as the simple kriging system:


j1

n

jCZxi  xj  CZxi  x0 i  1, ..,n     (7.10)

The n unknown values i can be uniquely solved from these n equations if all the xi are
different. The predictor (7.5) with the i found from solving (7.10) is the one with the
minimum prediction error variance. This variance can be calculated using equation (7.8).
However, it can be shown (e.g. de Marsily, 1986, p.290) that the variance of the prediction
error can be written in a simpler form as:

Var

Zx0  Zx0  Z2 

i1

n

iCZxi  x0     (7.11)

The error variance very nicely shows how kriging takes advantage of the spatial dependence of
Zxi. If only the marginal probability distribution had been estimated from the data and the
spatial coordinates had not been taken into account, the best prediction for every non-observed
location would have been the mean Z. Consequently, the variance of the prediction error
would have been equal to Z2 . As the larger kriging weights are positive, it can be seen from
(7.11) that the prediction error variance of the kriging predictor is always smaller than the
variance of the RF.

To obtain a positive error variance using Equation (7.11) the function Ch must be positive
definite. This means that for all possible x1, ...xn  N N  1,2 or 3 and for all 1, ...,n  
the following inequality must hold:


i1

n


j1

n

ijCZxi  xj  0     (7.12)

It is difficult to ensure that this is the case for any covariance function. Therefore, we cannot
just estimate a covariance function directly from the data for a limited number of separation
distances and then obtain a continuous function by linear interpolation between the
experimental points (such as in Figure 7.5) . If such a covariance function were used in (7.10) ,
Equation (7.11) would not necessarily lead to a positive estimate of the prediction error
variance. In fact, there are only a limited number of functions for which it is proven that
inequality (7.12) will always hold. So the practical solution used in kriging is to take one of
these ‘permissible’ functions and fit it through the points of the experimental covariance
function. Next, the values of the fitted function are used to build the kriging system (7.10) and
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to estimate the kriging variance using (7.11). Table 7.1 gives a number of covariance functions
that can be used for simple kriging (i.e. using a wide sense stationary RF). Such a table was
already introduced in chapter 5 but is repeated for convenience here. Figure 7.6 shows an
example of an exponential model that is fitted to the estimated covariances. Of course, in case
of second order stationarity the parameter c should be equal to the variance of the RF: c  Z2 .

Table7.1 Permissible covariance functions for simple kriging; his the length of the lag vector

(a) spherical model Ch  
c 1  3

2
 ha  

1
2
 ha 

3
if h  a

0 if h  a

(b) exponential model Ch  cexph/a

(c) Gaussian model Ch  cexph/a2

(d) nugget model Ch  
c if h  0

0 if h  0
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Figure 7.6 Example of an exponential covariance model fitted to estimated covariances

Some remarks should be made about the nugget model. The nugget stems from the mining
practice. Imagine that we find occasional gold nuggets in surrounding rock that doesn’t
contain any gold itself. If we were to estimate the covariance function of gold content from our
observation, we would get the nugget model with c  Z2  p1  p (with p the probability of
finding a gold nugget).

Any linear combination of a permissible covariance model is a permissible covariance model
itself. Often a combination of a nugget model and another model is observed, e.g:
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Ch   c0  c1 if h  0

c1 exph/a if h  0
    (7.13)

where c0  c1  Z2 . In this case c0 is often used to model the part of the variance that is
attributable to observation errors or spatial variation that occurs at distances smaller than the
minimal distance between observations.
The box below shows a simple numerical example of simple kriging.
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A simple example of simple kriging. Top left gives the spatial lay-out of the

data points and the target location for prediction of the property. Top right

shows the table of distances between these locations. The kriging system is

shown therafter, with the xi-xj covariances on the left and the xi-x0 on the right.

Using the assumed mean and covariance function shown, the next boxes show

the numerical solution of the kriging equations and the evaluation of the kriging

predictor and the kriging variance.

Box 3: Simple kriging example

Practice
The practical application of simple kriging would involve the mapping of some variable
observed at a limited number of locations. In practice, the kriging routine would consist of the
following steps, which will be illustrated with the Walker-lake dataset:

1. Estimate the mean and the covariance function from the data

The mean value of the Walker-lake data based on the observations and declustering is
2.53.

2. Fit a permissible covariance model to the experimental semivariogram
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Usually one does not estimate the covariance function but the semivariogram when
kriging. The semivariogram is somewhat better suited for estimating data that are
irregularly distributed in space. After fitting a semivariogram function that is suited for
wide sense stationary processes (See the first four models in Table 7.2), the covariance
function can be obtained through Equation (5.19): CZh  Z2  Zh. Figure 7.7 shows
the semivariogram of the Walker-lake data set based on 140 data points and the fitted
model:

If kriging is used for making maps, the locations where the predictions are made are usually
located on a grid. So, when in the following steps we refer to a prediction location x0 we refer
to a location on this grid. Thus, the following steps are repeated for every grid node:

3. Solve the simple kriging system

Using Equation (7.11) and the covariance function CZh the i are obtained for location
x0.

4. Predict the value Zx0
With the i, the observed values zxi and the estimated value of Z in Equation (7.5) the
unknown value of Zx0 is predicted

5. Calculate the variance of the prediction error

Using ix0, CZh and Z2 the variance of the prediction error is calculated with (7.11).

The result is a map of predicted properties on a grid and a map of associated error variances.
Figure 7.8 shows the map of kriging predictions and the associated prediction variance or
kriging variance:
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Figure 7.7 Semivariogram and fitted semivariance function of the 140 locations of the Walker
lake data set (Figure 2.1); SPH() spherical model.
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Figure 7.8 Interpolation with simple kriging predictions and the associated kriging variance of
theWalker lake data

7.3.2 Ordinary kriging

Theory
Ordinary kriging can be used if

1. Zx is a wide sense stationary RF but the mean of Zx is unknown, or

2. Zx is an intrinsic RF.

An intrinsic RF has the following properties (see also chapter 5):

EZx2  Zx1  0

EZx2  Zx12  2x2  x1  2h

The mean difference between the RVs at any two locations is zero (i.e. constant mean) and the
variance of this difference is a function that only depends on the separation vector h. The
function h  1

2
EZx  Zx  h2 is the semivariogram.

The ordinary kriging predictor is a weighted average of the surrounding observations:


Zx0  

i1

n

iZxi     (7.14)

with Zxi the values of Zx at the observation locations (usually within a limited search
neighbourhood). As with the simple kriging predictor we want (7.14) to be unbiased:

E

Zx0  Zx0  E

i1

n

iZxi  Zx0 
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
i1

n

iEZxi  EZx0  0     (7.15)

As the unknown mean is constant, i.e. EZxi  EZx0xi,x0, we find the following
“unbiasedness constraint” for the i:


i1

n

i  1     (7.16)

Apart from being unbiased we also want to have a predictor with a minimum variance of the
prediction error. The error variance for predictor (7.14) can be written in terms of the
semivariance as (see for instance de Marsily (1986) for a complete derivation):

V

Zx0  Zx0  E


Zx0  Zx02 


i1

n


j1

n

ijZxi  xj  2
i1

n

iZxi  x0     (7.17)

We want to minimize the error variance subject to the constraint (7.16). In other words, we
want to find the set of values i, i  1, ..,n for which (7.17) is minimum without violating
constraint (7.16). To find these, a mathematical trick is used. First the expression of the error
variance is extended as follows:

E

Zx0  Zx02 


i1

n


j1

n

ijZxi  xj  2
i1

n

iZxi  x0  2 
i1

n

i  1     (7.18)

If the estimator is really unbiased, nothing has happened to the error variance as the added
term is zero by definition. The dummy variable  is called the Lagrange multiplier. It can be
shown that if we find the set of i, i  1, ..,n and the value of  for which (7.18) has its
minimum value, we have also have the set of ix0, i  1, ..,n for which the error variance of
the ordinary kriging predictor is minimal, while at the same time i  1. As with simple

kriging, the minimum value is found by partial differentation of (7.18) with respect to
i, i  1, ..,n and  and equating the partial derivatives to zero. This results in the following
system of (n  1) linear equations:


j1

n

jZxi  xj    Zxi  x0 i  1, ..,n


i1

n

i  1

    (7.19)
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Using the langrange multiplier, the value for the (minimum) variance of the prediction error
can be conveniently written as:

V

Zx0  Zx0  

i1

n

iZxi  x0       (7.20)

A unique solution of the system (7.19) and a positive kriging variance is only ensured if thew
semivariogram function is “conditionally non-negative definite”. This means that for all
possible x1, ...xn  N N  1,2 or 3 and for all 1, ...,n   such that 

i
i  1, the

following inequality must hold:


i1

n


j1

n

ijZxi  xj  0     (7.21)

This is ensured if one of the permissible semivariogram models (Table 7.2 ,see also chapter 5))
is fitted to the experimental semivariogram data.

Table 7.2 Permisible semivariogram models for ordinary kriging; here h denotes the length of
the lag vector h.

(a) spherical model h  
c 3

2
 ha   1

2
 ha 

3
if h  a

c if h  a

(b) exponential model h  c1  exph/a

(c) Gaussian model h  c1  exph/a2

(d) nugget model h  
0 if h  0

1 if h  0

(e) power model h  ch 0    2

Models (a) to (d) are also permissible in cases the RF is wide sense stationary. The power
model, which does not reach a sill can be used in case of an intrinsic RF but not in case of a
wide sense stationary RF.

The unknown mean Z and the langrange multiplier  require some further explanation. If all
the data are used to obtain predictions at every location, at all locations the same unknown
mean Z is implicitly estimated by the ordinary kriging predictor. The lagrange multiplier
represents the additional uncertainty that is added to the kriging prediction by the fact that the
mean is unknown and must be estimated. Therefore, if the RF is wide sense stationary, the
variance of the prediction error for ordinary kriging is larger than that for simple kriging, the
difference being the lagrange multiplier. This can be deduced from substituting in
Equation(7.20) Zh  Z2  CZh and taking into account that i  1. This means that,
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whenever the mean is not exactly known and has to be estimated from the data it is better to
use ordinary kriging, so that the added uncertainty about the mean is taken into account.
Even in simple kriging one rarely uses all data to obtain kriging predictions. Usually only a
limited number of data close to the prediction location are used. This is to avoid that the
kriging systems become too large and the mapping too slow. The most common way of
selecting data is to center an area or volume at the prediction location x0. Usually the radius is
taken about the size of the variogram range. A limited number of data points that fall within
the search area are retained for the kriging prediction. This means that the number of data
locations becomes a function of the prediction location: n  nx0. Also, if ordinary kriging is
used, a local mean is implicitly estimated that changes with x0. So we have   x0 and

  x0 footnote . This shows that, apart from correcting for the uncertainty in the mean and

being able to cope with a weaker form of stationarity, ordinary kriging has a third advantage
when compared to simple kriging: even though the intrinsic hypothesis assumes that the mean
is constant, using ordinary kriging with a search neighbourhood enables one to correct for
local deviations in the mean. This makes the ordinary kriging predictor more robust to trends
in the data than the simple kriging predictor.

Note:that for briefness of notation we will use n and  in the kriging equations, instead of
ns0 and s0. The reader should be aware that in most equations that follow, both the
number of observations and the lagrange multipliers depend on the prediction location s0,
except for those rare occasions that a global search neighbourhood is used.

In box 4 the ordinary kriging prediction is illustrated using the same example as Box 3. When
compared to simple kriging it can be seen that the prediction is slightly different and that the
prediction variance is larger.

Practice
In practice ordinary kriging consists of the following steps (illustrated again with the Walker
lake data set):

1. Estimate the semivariogram

2. Fit a permissible semivariogram model

For every node on the grid repeat:

3. Solve the kriging equations

Using the fitted semivariogram model Zh in the n  1 linear equations (7.19) yields,
after solving them, the kriging weights i, i  1, ..,n and the lagrange multiplier .

4. Predict the value Zx0
With the i, the observed values zxi (usually within the search neighbourhood) in
equation (7.14) the unknown value of Zx0 is predicted.

5. Calculate the variance of the prediction error

Using i, Zh and  the variance of the prediction error is calculated with (7.20).

The semivariogram was already shown in Figure 7.7. Figure 7.9 shows the ordinary kriging
prediction and the ordinary kriging variance. Due to the large number of observations (140)
there are no visual differences between Figure 7.9 and 7.8.
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A simple example of ordinary kriging. For spatial lay-out of the data points and

the table of distances between locations we refer to Box 3. The kriging system is

shown therafter, with the xi-xj semivariances on the left and the xi-x0

semivariances on the right. Using the assumed mean and semivariance function

shown, the next boxes show the numerical solution of the kriging equations and

the evaluation of the kriging predictor and the kriging variance.

Box 4: Ordinary kriging example
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Figure 7.9 Interpolation with simple kriging predictions and the associated kriging variance of
theWalker lake data
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7.3.3 Block kriging

Up to known we have been concerned with predicting the values of attributes at the same
support (averaging volume) as the observations, usually point support. However, in many
cases one may be interested in the mean value of the attribute for some area or volume much
larger than the support of the observations. For instance, one may be interested in the average
porosity of a model block that is used in a numerical groundwater model, or the average
precipation of a catchment. These average quantities can be predicted using block kriging. The
term “block kriging” is used as opposed to “point kriging” or “punctual kriging” where
attributes are predicted at the same support as the observations. Any form of kriging has a
point form and a block form. So, there is simple point kriging and simple block kriging and
ordinary point kriging and ordinary block kriging etc. Usually, the term “point” is ommited
and the term “block” is added only if the block kriging form is used.
Consider the problem of predicting the mean Z of the attribute z that varies with spatial
co-ordinate x for some area or volume D with size |D| (length, area or volume):

Z  1
|D|


xD
Zxdx

In case D is a block in three dimensions with upper an lower boundaries boundaries x l, y l, zl,
xu, yu, zu the spatial integral (7.22) stands for

1
|D|


xD
Zxdx 

1
|xu  x l||yu  y l||zu  zl|


zl

zu 
yl

yu 
xl

xu

Zs1, s2, s3ds1ds2ds3     (7.23)

Of course, the block D can be of any form, in which case a more complicated spatial integral is
used (e.g. Figure 7.10 in two dimensions):

Z

Figure 7.10 Example of block kriging in two dimensions to predict the mean value of Z of some
irregular area D
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Similar to point kriging, the unknown value of Z can be predicted as linear combination of the
observations by assuming that the predictant and the observations are partial realizations of a
RF. So, the ordinary bock kriging predictor becomes:


Z  

i1

n

iZxi     (7.24)

where the block kriging weights i are determined such that

Z is unbiased and the prediction

variance Var

Z  Z is minimal. This is achieved by solving the i from the ordinary block

kriging system:


j1

n

jZxi  xj    Zxi,D i  1, ..,n


i1

n

i  1

    (7.25)

It can be seen that the ordinary block kriging system looks almost the same as the ordinary
(point) kriging system, except for the term on the right hand side which is the average
semivariance between an location xi and all the locations inside the area of interest D:

Zxi,D  1
|D|


xD

Zxi  xdx     (7.26)

When building the block kriging system, the integral in equation (7.26) is usually not solved.
Instead, it is approximated by first discretizing the area of interest in a limited number of
points. Second, the semivariances are calculated between the observation location and the N
points xj discretizing D (see Figure 7.10 left figure). Third, the average semivariance is
approximated by averaging these semivariances as:

Zxi,D  1
N

j1

N

Zxi  xj     (7.27)

),( DiZ x&

D

ix ),( DDZ&

D

Figure7.11 Numerical approximation of the spatial integrals (7.26) (left) and (7.29) (right)
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The variance of the prediction error is given by

Var

Z  Z  E


Z  Z2  

i1

n

iZxi,D    ZD,D     (7.28)

where ZD,D is the average semivariance within the area D, i.e. the average semivariance
between all locations with D:

ZD,D  1
|D|2


x2D


x1D

x1  x2dx1dx2     (7.29)

which in practice is approximated by N points xi discretizing D as (see also Figure 7.11, right
figure)

ZD,D  1
N2 

i1

N


j1

N

xi  xj     (7.30)

Figure 7.12 shows the result of block kriging applied to the Walker lake data set with block
sizes of 5  5 units.

Here we have given the equations for ordinary block kriging. The simple block kriging
equations can be deduced in a similar manner from the simple kriging equations (7.10) by
replacing the covariance on the right hand side by the point-block covariance CZxi,D. The
prediction error variance is given by (7.11) with Z2 replaced by the within block variance
CZD,D (the average covariance of points within D) and CZxi  x0 by CZxi,D. The
point-block covariance and the within block covariance are defined as in Equations (7.26) and
(7.29) with Zx1  x2 replaced by CZx1  x2.

Figure 7.12 Block kriging applied to the Walker lake data set with block sizes of 5  5 units
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7.4 Estimating the local conditional distribution

Kriging can also be used to estimate for each non-observed location the probability
distribution fzz;x | z(xi, i  1, ..,n, i.e the probability distribution given the observed values
at the observation locations. Let us return to Figure 5.8. This figure shows conditional random
functions. Each realisation is conditioned by the observations, i.e. it passes through the
observed value, but is free to vary between observations. The farther away from an
observation, the more the realisations differ. This is reflected by the conditional pdf fzz;x |
z(xi, i  1, ..,n at a given location (two of which are shown in Figure 5.8). The farther away
from an observation, the larger the variance of the conditional pdf, which means the more
uncertain we are about the actual but unknown value zx. In the following sections methods
are shown that can be used to estimate the conditional pdf fzz;x | z(xi, i  1, ..,n through
kriging.

7.4.1 Multivariate Gaussian random functions

If, apart from being wide sense stationary, the RSF is also multivariate Gaussian distributed
then we have:

 The kriging error is Gaussian distributed with mean zero and variance equal to the simple

kriging variance SK2 x0  VARZx0  Zx0. A 95%-prediction interval would then
be given by zSKx0  2SKx0, zSKx0  2SKx0, where zSKx0 is the simple kriging
prediction.

 The conditional cumulative probability distribution function (ccpdf) is Gaussian with
mean equal to the simple kriging prediction zSKx0 (the dashed line in Figure 5.8) and
variance equal to the variance of the simple kriging prediction error SK2 x0 (the variance
over the realisations shown in Figure 5.8):

Fz|z1..znz;x0 | zxi, i  1, ..,n 

1

2SK2 x0



z

exp
z  zSKx0

SK2 x0

2

dz     (7.31)

where zx1, ...., zxn are the observed values at locations x1, ....,xn respectively. The second
property is very convenient and the reason why the multivariate Gaussian and stationary RSF
is very popular model in geostatistics. After performing simple kriging predictions, one is able
to give an estimate of the ccpdf of Zx exceeding a given threshold for every location in the
domain of interest. For instance, if Zx is a concentration of some pollutant in the
groundwater and zc is critical threshold above which the pollutant becomes a health hazard,
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simple kriging and Equation (7.31) can be used to map the probability of exceeding this
threshold, given the concentrations found at the observation locations. Instead of delineating a
single plume based upon some predicted value, several alternative plumes can be delineated,
depending on which probability contour is taken as its boundary. This way, both the observed
concentration values as well as the local uncertainty are taken into account when mapping the
plume. Also, the risk of not treating hazardous groundwater can be weighted against the costs
of remediation. For instance, if the risk of not treating hazardous groundwater should be
smaller than 5 %, all the water within the 0.05 contour should be treated. Obsviously this
results in much higher costs then if, for instance, a 10% risk is deemed acceptable. For a more
elaborate discussion about probability distributions and the trade off between risk and costs,
we refer to Goovaerts (1997, section 7.4).

7.4.2 Log-normal kriging

Many geophysical variables, such as hydraulic conductivity and pollutant concentration, are
approximately log-normal distributed. A frequently used RSF model to decribe these variables
is the multivariate logGaussian distribition. If Zx is multivariate lognormal distributed, the
natural logarithm Yx  lnZx is multivariate Gaussian distributed. Log-normal kriging
then consists of the following steps:

1. Transform the observations zxi by taking their logarithms yxi  lnzxi.
2. Estimate the semivariogram  Yh from the logtransformed data yxi and fit a

permissible model (note: that mean mY must be determined and assumed known if simple
kriging is used).

3. Using the semivariogram Yh, the data yxi (and the mean mY in case of simple
kriging), the kriging equations are solved to obtain at every non-observed location x0 the
prediction  SKx0 and prediction error variance YSK2 x0 in cased of simple kriging or
 OKx0, YOK2 x0 in case of ordinary kriging.

4. An unbiased prediction of Zx0 is obtained by the following backtransforms footnote :

for simple kriging:

Zx0  exp SKx0  1
2
YSK2      (7.32)

and for ordinary kriging:

Zx0  exp OKx0  1
2
YOK2  Y     (7.33)

where Y is the lagrange multiplier used in the ordinary kriging system.

5. If Yx is multivariate Gaussian distributed and stationary, the ccpdf can be calculated
from the simple kriging prediction !SKx0 and prediction variance as:

137



Fz|z1..znz;x0 | zxi, i  1, ..,n 

1

2YSK2 x0



z

exp
lnz  !SKx0

YSK2 x0

2

dz     (7.34)

An additional reason why in many geostatistical studies the observations are logtransformed
before kriging is that the semivariogram of logtransorms can be better estimated (shows less
noise) because of the imposed variance reduction.

7.4.3 Kriging normal-score transforms

An even more general transformation is the normal-score transform using the histogram.
Through this transform, it is possible to transform any set of observations to univariate
Gaussian distributed variables, regardless of the distribution of these observations. A normal
score-transform proceeds as follows:

1. The n observations are ranked in ascending order:

zxi1  zxj2  ..  zxkr  ..  zxln

where r  1, ..,n are the ranks of the observations.

2. The cumulative probability associated with observation zxk  zk with rank r is estimated
as:

F zk  rzk/n  1.     (7.35)

or in case of declustering

F zk  
i1

rzk

wrzk.     (7.36)

3. The associated normal score transform is given by the p r-quantile of the standard normal
distribution:

ynszkxk  N1Fzkxk     (7.37)

where Nz is the standard Gaussian cumulative distribution function and N1p its
inverse.

Figure 7.13 shows graphically how the normal-score transform works. The left figure shows
the estimated cumulative distribution of the original (non-transformed) data and the right
figure the standard Gaussian cumulative distribution. The dashed lines show how the observed
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values zk are transformed into the normal-score transform ynszk.

Standard normal distribution

0          5         10         15  

1

0

FZ(z)

1

0

FY(y)

0-2 2

Cum. Freq.  Distr. (decluster if neccesary)

z yns(z)

Figure 7.13 Normal score transformation

If we assume that the normal-score transforms are stationary and multivariate Gaussian
distributed (see Goovaerts, 1997 for suggestions how to check this), the local ccpdfs can be
obtained through simple kriging as follows:

1. Perform a normal score transform of the observations such as decribed above.

2. Estimate the semivariogram of the normal-score transformed data ynsxk  ynszxk and
fit a permissible semivariogram model Yh. By definition, the mean value of the
tranformed RSF Ynsx is zero.

3. Use the fitted semivariogram model and the normal-score transforms ynsxk in the simple
kriging equations (with mY  0) to obtain the prediction  SKx0 and the associated
prediction error variance YSK2 x0.

4. The local ccpdf is then given by

Fz|z1..znz;x0 | zxi, i  1, ..,n  PrG!SKx0,YSKx0  ynsz 

1

2YSK2 x0



z

exp
ynsz  !SKx0

YSK2 x0

2

dz     (7.38)

where ynsz is the normal-score transform of the value z and G, a Gaussian variate
with mean  and variance .

This is also shown graphically in Figure 7.13. Suppose we want to known for the
non-observed location the probability that Zx0  z. We first obtain through the
transformation the value of ynsz. From the simple kriging of transformed data we have at x0:
!SKx0 and YSK2 x0. Finally, we evaluate PrG!SKx0,YSKx0  ynsz (Equation 7.38)
to obtain the probability.

To calculate the normal-score transform of any given value z (which is not necessarily equal to

the value of one of the observations), the resolution of the estimated cpdf F z must be
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increased. Usually, a linear interpolation is used to estimate the values of F z between two
observations (see Figure7.13). Of course, most critical is the extrapolation that must be

performed to obtain the lower and upper tails of F z. For instance, if the upper tail of F z
rises too quickly to 1, the probability of high values of z (e.g. a pollutant in groundwater) may
be underestimated. Usually a power model is used to extrapolate the lower tail and a
hyperbolic model to extrapolate the upper tail. Several models for interpolating between
quantiles, as well as rules of thumb about which model to use, are given in Deutsch and
Journel (1998) and Goovaerts (1997).

This section is concluded by application of the normal score transform to the Walker lake data
set. Figure 7.14 shows the histogram and the semivariogram of of the normal score transforms.
It can be seen that semivariogram is less noisy than that of the non-transformed data (Figure
7.7), because transformation decreases the effect of the very large values. The simple kriging
predictions and associated variances are shown in Figure 7.15. Figure 7.16 shows the
probability that the z exceeds the value of 5 and 10. If these were critical values and the
Walker lake data groundwater concentrations Figure 7.16 shows the effect of the critical
concentration on the probability of exceeding and through this on the area that must be cleaned
up.
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Figure 7.14 Histogram and semivariogram of normal score transforms of the Walker lake data
set; fitted semivariogram model: h  0.2Nugh  0.8Sphh/19.9
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Figure 7.15 Simple kriging results of normal score transforms of the Walker lake data set

Figure 7.16 Probability of exceeding 5 and 10 based on normal score simple kriging of the
Walker lake data set

7.5 Geostatistical simulation

The third field of application of geostatistics is simulating realisations of the conditional
random function Zx|zxi, i  1, ..,n. Returning to Figure 5.8: in case of a wide sense
stationary and multiGaussian RSF Zx, simple kriging provides the dashed line, which is the
mean of all possible conditional realisations. The aim of geostatistical simulation is to
generate in the individual conditional realisations. There are two important reasons why
sometimes individual realisations of the conditional RSF are preferred over the interpolated
map that is provided by kriging:

1. kriging provides a so called best linear prediction (it produces values that minimize the

variance of the prediction error: Var

Zx0  Zx0), but the resulting maps are much
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smoother than reality. This can again be seen from Figure 5.8. The individual realisations
are very noisy and rugged while the kriging prediction produces a smoothly varying
surface.The noisy realisations have a semivariogram that resembles that of the data, so one
can say that the real variation of the property considered is much more like the realisations
than the kriging map. This has repercussions if the kriging map is not the end point of the
analysis (such as mapping concentrations). For instance, suppose that the goal is to
produce a map of hydraulic conductivities that is to be used in a groundwater flow model.
To use the kriged map as input in the groundwater flow model would produce flow lines
that are probably too smooth also. Especially if the goal is to model groundwater
transport, a smooth map of hydraulic conductivity will yield an underestimation of solute
spreading. In that case it is better use realisations of the random function as input. Of
course, as each realisation has equal probability to be drawn and is therefore an equally
viable picture of reality, the question remains: which realisation should then be used? The
answer is: not a single realisation should be analysed, but a great number of realisations.
This conclusion brings us to the second reason why realisations are often preferred over
kriging maps;

2. multiple realisations as input for a model can be used for uncertainty analysis and
ensemble prediction. Figure 5.8 shows that usually we only have limited information
about reality and we therefore represent our uncertainty about reality with a random
function (see also chapters 1 and 5). Returning to the example of hydraulic conductivity, if
we are uncertain about the parameters of a groundwater model, we also want to know
what the uncertainty is about the model output (heads, fluxes). So instead of analysing a
single input of hydraulic conductivity, a large number of conditional realisations of
hydraulic conductivity (say 1000) are used as model input. If we use 1000 conditional
realisations of hydraulic conductivity as input, we also have 1000 model runs with the
groundwater model, producing (in case of a steady state groundwater model) 1000 head
fields and 1000 flow fields. From this, it is possible to estimate the probability of
hydraulic head at each location, or the probability that a contaminant plume reaches
certain sensitive area. This way of modelling is really stochastic modelling, and because
we do not produce one prediction, but an ensemble of predictions it is often referred to as
ensemble prediction. The variance of the output realisations is a measure of our
uncertainty about the output (e.g. hydraulic heads) that is caused by our uncertainty (lack
of perfect knowledge) about the model parameters (e.g. hydraulic conductivity). So,
through this way of stochastic modelling one performs an uncertainty analysis: estimating
the uncertainty about model output that is caused by uncertainty about model input or
model parameters. There are several ways of performing such an analysis, as will be
shown extensively in chapter 8. The method described here, i.e. generating realisations of
parameters or input variables and analysing them with a numerical model, is called Monte
Carlo simulation. In Figure 7.17 the method of Monte carlo Simulation for uncertainty
analysis is shown schematically.
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Figure 7.17 Schematic representation of Monte Carlo simulation applied for uncertainty
analysis of hydraulic conductivity in groundwater modelling. Hydraulic conductivity is
spatially varying and sampled at a limited number of locations. Hydraulic conductivity is
modelled as a random space function. Using the observations statistics are estimated that
characterise this function (histogram, senivariogram). Next M realisations of this random
function are simulated and used in the groundwater model. This yields M realisations of
groundwater model output (e.g. head fields). From these realisations it is possible to obtain
for a given location (e.g. x0) the probability density function of the ouput variables (e.g. head,
concentration).

The technique of Monte Carlo simulation is further explained in the next chapter. Here, we
focus only on the generation of multiple realisations of the conditional random space function,
commonly referred to as (conditional) geostatistical simulation. There are quite a few methods
for simulating realisations of MultiGaussian random space functions. The most commonly
used are LU-decomposition (Alabert, 1987), the turning band method (Mantoglou and Wilson,
1982) and Sequential Gaussian simulation (Goméz-Hernández and Journel, 1993), while there
are even more methods for simulating non-Gaussian random functions (e.g. Amstrong and
Dowd, 1994). The most flexible simulation algorithm and mostly used nowadays is sequential
simulation. Sequential Gaussian simulation (sGs) will be treated here briefly. For a more
elaborate description of the method one is referred to Goovaerts (1997) and Deutsch and
Journel (1998).
Conditional simulation with sGs needs the mean Z and the semivariogram of the random
space function Zh and proceeds as follows.

1. The area is divided into a finite number of grid points N (location indices x1,x2, ..,xN) at
which values of the conditional realisations are to be simulated. The grid points are visited
in a random order.

2. For the first grid point x1 a simple kriging is performed from the given data zs1, .., zsn
yielding the prediction Z SKx1 and the prediction variance SK2 x1. Under the assumption
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that Zx is stationary and multiGaussian the conditional cumulative distribution is
Gaussian:

FZz,x1|zs1, .., zsn  Nz;Z SKx1,SKx1     (7.39)

.

3. A random value P between zero and one is drawn from a uniform distribution U0,1.
Using the inverse of the conditional distribution (7.39) the random quantile P is used to
draw a random value Z:

Zx1  N1P;Z SKx1,SKx1     (7.40)

4. For the second grid point x2 a simple kriging is performed using the data zs1, .., zsn and
the previously simulated value zx1 in the kriging equations (so the previously simulated

value is now treated as a data point). This yields the prediction Z SKx2 and the prediction
variance SK2 x2 from which the conditional cumulative distribution

FZz,x2|zx1, zs1, .., zsn  Nz;Z SKx2,SKx2 is build.

5. A random value P between zero and one is drawn from a uniform distribution U0,1 and

using the inverse of the conditional distribution N1P;Z SKx2,SKx2 the random
quantile P is used to draw a random value Zx2.

6. For the third grid point x3 a simple kriging is performed using the data zs1, .., zsn and
the previously simulated values zx1, zx2 in the kriging equations yielding

FZz,x3|zx1, zx2, zs1, .., zsn  Nz;Z SKx3,SKx3.

7. Using a random value P drawn from a uniform distribution U0,1 the random variable
Zx3 is drawn and added to the data set.

8. Steps 6 and 7 are repeated adding more and more simulated values to the conditioning
data set until all values on the grid have been simulated: the last simple kriging exercise
thus yields the conditional probability FZz,xN|zx1, ..., zxN, zs1, .., zsn.

It can be shown heuristically that by construction this procedure produces a draw (realisation)
from the multivariate conditional distribution FZzx1, ..., zxN|zs1, .., zsn
(Goméz-Hernández and Journel, 1993; Goovaerts, 1997), i.e. a realisation from the conditional
randum function Zx|zs1, .., zsn. To simulate another realisation the above procedure is
repeated using a different random path over the grid nodes and drawing different random
numbers for the quantiles P  U0,1. Unconditional realisations of the random function Zx
can also be simulated by starting at the first grid point with a draw from the Gaussian
distribution Nz;Z,Z and conditioning at every step on previously simulated points only.
Obviously, the number of conditioning points and thus the size of the kriging system to be
solved increases as the simulation proceeds. This would lead to unacceptably large computer
storage requirements and computation times. To avoid this, a search area is used, usually with
a radius equal to the semivariogram range, while only a limited number of observations and
previously simulated points in the search radius are used in the kriging system (Deustch and
Journel, 1998).
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Obviously, the assumption underlying the simulation algorithm is that the RSF Zx is
stationary and multiGaussian. For a RSF to be multiGaussian it should at least have a
univariate Gaussian distribution fZx  Nz;Z,Z. So, if this method is applied, for
instance, to the Walker-lake data set, a normal score transformation is required. The simulation
procedure for a realisation of Zx|zs1, .., zsn would then involve the following steps:

1. Perform a normal score transform of the observations .ynszksi  N1Fzkxi (see
Figure 7.13).

2. Estimate the semivariogram of the normal-score transformed data ynsxi and fit a
permissible semivariogram model Yh. By definition, the mean value of the tranformed
RSF Ynsx is zero.

3. Assuming Ynsx to be stationary and multiGaussian, simulate a realisation of the
conditional random function Ynsx|ynsx1, ..,ynsxN using sequential Gaussian
simulation.

4. Back-transform the simulated values (zx F 1Nynszkx, i.e.reversing the arrows
in Figure 7.13) to obtain a realisation of the conditional random function
Zx|zs1, .., zsn.

In the geostatistical toolbox of Deutsch and Journel (1998) the simulation program sgsim
performs the normal score transform, sequential simulation and the back transform all
together. The parameters of the semivariogram of transforms Yh have to be provided
separately. Figure 7.18 shows two realisations of the conditional random function based on the
Walker lake data.

Figure7.18 Two simulated realisations of a conditional random function based on the Walker
lake data set
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7.6 More geostatistics

In this chapter the basic geostatistical methods have been presented. Naturally, the area of
geostatistics is much more extensive. More advanced geostatistical methods are presented in
various textbooks, such as that of Cressie (1993), Rivoirard (1994), Goovaerts (1997), Chilès
and Delfiner (1999), and Christakos (2000). More advanced geostatistical methods are
concerned with:

 kriging in case of non-stationary random functions;

 kriging using auxiliary information;

 estimating conditional probabilities of non-Gaussian random functions;

 simulating realisations of non-Gaussian random functions (e.g. positively skewed
variables such a s rainfall; categorical data such as texture classes);

 geostatistical methods applied to space-time random functions;

 geostatistics applied to random functions defined on other metric spaces such as a sphere
or river networks;

 Bayesian geostatistics, i.e using various forms of a priori information about the random
function and formally updating this prior information with observations.

One is referred to above references for elaborate descriptions of these methods.

7.7 Exercises

Consider a square area size 1010 units. Data points are located at locations (2,3), (3,8) and
(7,9) with values of a property z of 3, 8, 5 respectively. The property is modelled with a
stationary and isotropic multivariate Gaussian random space function Zx with mean Z  6
and exponential semivariogram h  20exph/2.
1. Predict the value of Zx at x0  5,5 using simple kriging.

2. Predict the value of Zx at x0  5,5 using ordinary kriging.

3. Calculate the probability that Z5,5  10.

4. Predict the average Z value of the 1010 area using block kriging. For calculating the
necessary point-block semivariances x,D and average block semivariance D,D
discretise the block with four points at locations (2,2), (2,8), (8,2), (8,8).
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8. Forward stochastic modelling 
 

 

8.1 Introduction 
 

In previous chapters methods were introduced for stochastic modelling of single 

variables, time series and spatial fields. A hydrological property that is represented by a 

random variable or a random function can be the target itself, e.g. flood events (chapter 

4), groundwater head series (chapter 6) and areas of high concentration in groundwater 

(chapter 7). Often however, we have imperfect knowledge about some hydrological 

property that is used as parameter, input series, boundary condition or initial condition in 

a hydrological model.  In that case, interest is focussed on the probability distribution or 

some uncertainty measure of the model output, given the uncertainty about the model 

input. This chapter is focussed on deriving these probability distributions or uncertainty 

measures.  

 

More formally, consider a random variable Z that is used as input
4
 for some hydrological 

model g to produce an output variable Y, which is also stochastic: 

 

)(ZgY =          (8.1) 

 

The problem to solve is then: given that we know the probability distribution of Z 

)(zf Z or some of its moments (e.g. mean and variance), what is the probability 

distribution )(yfY
of Y or its moments? This problem is called forward stochastic 

modelling, as opposed to backward or inverse (stochastic) modelling. In the latter case we 

have observations of Y and the unknown value of some deterministic parameter z is 

estimated from these observations or, if Z is stochastic, its conditional probability 

distribution. )|( yzf Z
. 

 

Obviously, the problem of forward stochastic modelling can be put in more general 

terms, i.e. in case the input or the output are random functions of time, space or space-

time, vectors of more random variables or even vector random functions. Also, he 

function g() can have various forms, such a an explicit scalar or vector function, a 

differential equation or the outcome of a numerical model. Based on the form of g() and 

the form of Z the following types of relations are considered in the framework of forward 

stochastic modelling (see Heuvelink (1998) for a good monograph about the subject): 

• explicit functions of one random variable; 

• explicit functions of multiple random variables; 

• explicit vector functions; 

• explicit functions of random functions of time, space or space-time; 

• differential equations with a random parameter; 

• stochastic differential equations. 

                                                 
4
 We use “input” here, but we mean in fact (see chapter 1 for system theory definitions) “input variables”, 

“parameters”, “boundary conditions” or “initial conditions”. 
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In the following sections each of these problems is treated. For each problem type, a 

number of solution techniques are presented, where for each solution technique the 

conditions are given that should be met for its application. 

 

 

8.2 Explicit functions of one random variable 

 
Consider the relation between two random variables as shown in Equation (8.1). 

 

 

a) Derived distributions 
 

Goal:  

• the probability density function )(yfY
. 

Requirements: 

• the probability density )(zf Z of Z is known; 

• the function g(Z) is monotonous (only increasing or only decreasing), differentiable 

and can be inverted. 

 

The cumulative distribution function of Y can be obtained from the distribution function 

of Z as follows: 

 

))(()( 1 ygFyF ZY

−=         (8.2) 

 

while the probability density function (pdf) of Y is related to the pdf of Z as (Papoulis, 

1991): 

 

))((
)]([

)( 1
1

ygf
dy

ygd
yf ZY

−
−

=       (8.3) 

 

where )(1 yg − is the inverse function and the term | . | the absolute value of its derivative. 

The term | . | ensures that the area under )(yfY
is equal to 1. 

 

Example Take the relation between water height above a weir crest h and the discharge q 

that is used to measure discharge with a weir (this could also be a rating curve for some 

river): 

 bahq =          (8.4) 

 

Now suppose that the water height is observed with some error making it stochastic with 

pdf   The inverse of this relation and its derivative are given as: 

 

b

a

q
g

1

1








=−          (8.5) 
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The probability density function of discharge )(hf H
then is given by: 
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b) Derived moments 
 

Goal:  

• the moments of Y, e.g. Yµ  and 2

Yσ . 

Requirements: 

• the probability density )(zf Z of Z is known. 

 

The first two moments are then obtained through (see also 3.24): 

  

∫
∞

∞−

= dzzfzg ZY )()(µ         (8.8) 

 

222 )()( ZZY dzzfzg µσ −= ∫
∞

∞−

       (8.9) 

 

Example Consider the same rating curve (Equation 8.4) with H following a uniform 

distribution between upper and lower values hu and hl: 

 

lu

H
hh

hf
−

=
1

)(         (8.10) 

 

The mean then becomes 
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and the variance is given by: 
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In case that (8.7) and (8.8) cannot be evaluated analytically, the integrals can of course be 

solved numerically using for instance Euler-type integration methods. 

 

 

c) Monte Carlo simulation  
 

Goal:  

• the probability density function )(yfY or its moments. 

Requirements: 

• the probability density )(zf Z of Z is known. 

 

The principle of Monte Carlo simulation has been explained before in chapter 7, but is 

repeated here. Monte Carlo simulation is the advised method if the probability 

distribution of the input is known, if the complete distribution of model output is required 

and if the derived density approach (a) cannot be applied or if (8.2) cannot be evaluated 

analytically. Monte Carlo simulation proceeds as follows: 

1.  Draw a realisation zi of Z using the pdf )(zf Z . This is achieved by calculating the 

distribution function from the pdf 

 

∫
∞−

=≤=
z

Zz dzzfzZzF )'(]Pr[)( '       (8.13) 

 

drawing a uniform deviate ui between 0 and 1 using a pseudo random number 

generator (e.g. Press et al, 1986), and converting 
iu  using the inverse )(1

iZi uFz −=  

(see Figure 8.1). 

 

1

0

FZ(z)

z

ui

zi  
Figure 8.1 Drawing a random number from a given distribution function 

 

2. Calculate the realisation yi of Y by inserting zi: )( ii zgy = . 

3. Repeat steps 1 and 2 a large number of times (typically order 1000 to 10000 draws 

are necessary). 

4. From the M simulated output realisations yi, i=1,..,M the probability density function 

or cumulative distribution function of Y can be estimated.  
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Example Consider again the rating curve (8.4) with parameter values a=5 and b=1.5, with 

Q in m
3
/d and with H in m following a Gaussian distribution with mean 0.3 m and 

standard error of 0.02 m. Figure 8.2 shows the cumulative distribution function estimated 

from 1000 realisations of Q calculated from 1000 simulated realisations of H. Also 

shown is the exact cumulative distribution function calculated using (8.2). It can be seen 

that both distributions are very close. 
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Figure 8.2 Cumulative distribution functions: exact and estimated from Monte Carlo simulation.  

 

The Monte Carlo simulation presented here uses simple random sampling: values of U 

are drawn from the entire range 0-1. To limit the number of realisations needed to 

accurately estimate the pdf of model output, a technique called stratified random 

sampling can be used. In that case, the interval 0-1 is divided into a finite number of 

intervals, preferably of equal width (e.g. 0-0.1, 0.1-0.2,..,0.9-1 in case of 10 intervals). In 

each interval a number of values of U and the associated Z are drawn. The result of this 

procedure is that the drawn realisations of Z are more evenly spread over the value range, 

and that less realisations are necessary to obtain accurate estimates of )(yfY . 

 

d) Taylor expansion approximation 
 

Goal:  

• the moments of Y, e.g. 
Yµ  and 2

Yσ . 

Requirements: 

• the moments of Z, e.g. 
Zµ  and 2

Zσ , are known; 

• the variance 2

Zσ should not be too large. 
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Consider the Taylor expansion of the function g(Z) around the value :)( Zg µ  
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 (8.14) 

 

The first order Taylor approximation only considers the first two terms. The expected 

value is then approximated as: 
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and the variance 
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Keeping the first three terms of Equation (8.14) and taking expectations yields the second 

order Taylor approximation.   

 

The mean becomes: 
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The general expression for the variance is very large, but can be simplified in case Z is 

Gaussian (see Heuvelink, 1998). Here only the expression for Gaussian Z is shown. For 

the full expression one is referred to Heuvelink (1998): 
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Example One of the requirements for the Taylor approximation to work is that the 

variance of Z is not too large. To test this the first and second order Taylor 

approximations are applied to the rating curve baHQ =  for increasing variance of H. 

The derivatives that are necessary for this analysis are: 
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with the first order Taylor approximation: 

 
b

HQ aµµ ≈      (8.21) 

 
222

HQ σασ ≈      (8.22) 

 

and the second order Taylor approximation: 

 

2

2
H

b

HQ a σ
β

µµ +≈      (8.23) 
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HHQ σ
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To be able to analyse a large range of variances, the mean
Hµ  is set to 0.8 m (was 0.3 m). 

With a=5 and b=1.5 we have .193.4 and 708.6 == βα  Figure 8.3 shows a plot of 

QQ σµ  and  as a function of the standard deviation 
Hσ  as obtained from Monte Carlo 

simulation (1000 realisations) and with first and second order Taylor analysis. Clearly the 

Taylor approximation fails in estimating the mean if the variance becomes too large, 

although the second order methods performs much better than the first. In this example 

the variance is approximated accurately with both methods.  

 

At this time it is convenient to remark that the methods presented in this chapter can also 

be viewed from the point of prediction errors. So, instead of having a mean 
Zµ  and 

variance 2

Zσ  of a stochastic input variable Z, we have a predictor Ẑ of Z and the 

prediction error variance ].ˆ[2
ˆ ZZVar
Z

−=σ  If the prediction error is unbiased, i.e. 

0]ˆ[ =− ZZE , then the same equations can be used as above, but with the mean 
Zµ  

replaced by the prediction ẑ and the variance 2

Zσ by the error variance .2

Ẑ
σ  From the point 

of error analysis the mean value of Q then becomes: 
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Equation (8.25) and Figure 8.3 show that in case of non-linear models unbiased (and even 

optimal predictions) of the model input do not yield unbiased (and certainly not optimal) 

predictions of the model output (see the remarks in Chapter 1). Adding higher order 

correction terms such as in (8.25) produce better results.  
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Figure 8.3 

QQ σµ  and (left) (right) as a function of the standard deviation 
Hσ  as obtained from Monte 

Carlo simulation (1000 realisations) and the first and second order Taylor approximation. 

 

As a final remark: if the moments of Y are required, but g() is not differentiable or the 

variance of Z is large, then Monte Carlo simulation could be used to derive the moments 

of Y. However, this means that some distribution type of Z should be assumed. 

 

 

8.3 Explicit functions of multiple random variables 

 
The following explicit function of multiple random variables is considered: 

 

),..,( 1 mZZgY =         (8.26) 

 

Depending on what is aked about Y , what is known about Z1,..,Zm and the form of g() a 

number of different methods can be distinguished: 

 

a) Derived distribution in the linear and Gaussian case 

 

Goal:  

• the probability density function )(yfY . 

Requirements: 

• the joint probability density ),..,( 1 mzzf of Z1,..,Zm is known and multivariate 

Gaussian; 

• the function g() is linear:  
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In the linear and multiGaussian case, the random variable Y is also Gaussian distributed. 

The multivariate Gaussian distribution of  Z1,..,Zm is completely described by the mean 

values mµµ ,..,1 , the variances 22

1 ,.., mσσ and the correlation coefficients  mjiij ,..,1,, =ρ  

with jiij ==  if 1ρ . The mean and variance of Y can then be obtained by: 

 

∑
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Note that in case the Zi are not MultiGaussiasian that (8.28) and (8.29) are still valid 

expressions for the mean and the variance. However, in this case the mean Yµ and the 

variance 2

Yσ are not sufficient to characterise the complete pdf of Y. 

 

 

b) Derived distribution in the non-linear and Gaussian case 

 

Goal:  

• the probability density function )(yfY . 

Requirements: 

• the joint probability density ),..,( 1 mzzf of Z1,..,Zm is known and multivariate 

Gaussian. 

 

In case ),..,( 1 mzzgY = is non-linear we have to derive the distribution of Y through 

Monte Carlo simulation. To achieve this we have to draw realisations from the joint 

distribution ),..,( 1 mzzf . If this joint distribution is multivariate Gaussian this is possible 

through a technique called Cholesky decomposition (see box 5).  The method then 

consists of: 

1. Draw M realisations of the set of random variables  Mkzz k

m

k ,..,1,,.., )()(

1 = from 

),..,( 1 mzzf  using simulation by Cholesky-decomposition. 

2. Use the M sets Mkzz k

m

k ,..,1,,.., )()(

1 = as input for the function g() to get M values of y: 

Mky k ,..,1,)( = . 

3. Estimate the distribution function or probability density function of Y from 

Mky k ,..,1,)( = . 

 

In case the joint distribution of ),..,( 1 mzzf is not multivariate Gaussian, a solution is to 

apply a transformation to each of the variables Z1,..,Zm: )Tr(),...,Tr( 11 mm ZXZX == , 

such that we can assume mXX ,...,1  multivariate Gaussian with 0,..,21 ==== mµµµ , 
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1,..,
22

2

2

1 === mσσσ . If we assume additionally that the correlation coefficients are 

unaltered by the transformation (note that this is generally not the case!), then realisations 

of mXX ,...,1 can be simulated by Cholesky decomposition.  The simulated realisations of 

mXX ,...,1  are subsequently  back transformed to realisations of Z1,..,Zm , which can then 

be used in the Monte Carlo analysis described above. 

 

c) Derived moments 

 

Goal:  

• the moments of Y, e.g. Yµ  and 2

Yσ . 

Requirements: 

• the joint probability density ),..,( 1 mzzf of Z1,..,Zm is known. 

 

The first two moments of Y are then obtained through: 
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In practice it is highly unlikely that ),..,( 1 mzzf is known, other than under the assumption 

that it is multivariate Gaussian. Also, evaluating the integrals, even numerically is likely 

to be very cumbersome.  So, in practice this problem will be solved by assuming 

),..,( 1 mzzf to be multiGaussian  (at least after transformation) and use Monte Carlo 

simulation as explained under (b). 

 

 

Box 5 Simulation by Cholesky-decomposition 
 

The goal is to simulate realisations of the set of random variables Z1,..,Zm with 

multivariate Gaussian joint distribution ),..,( 1 mzzf , with parameters mµµ ,..,1 , 

22

1 ,.., mσσ and mjiij ,..,1,, =ρ  with jiij ==  if 1ρ . The following steps are taken: 

1. a vector of mean values is defined: ;),..,,( T

21 mµµµ=µ  

2. the covariance matrix C is constructed with element [Cij] given by: 

 

jiijijC σσρ=][ ;        (8.32) 

 

3. the covariance matrix is decomposed in a lower and upper triangular matrix that are 

each others transpose: 
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T
 with ULLUC == ;        (8.33) 

 

 This operation is called Cholesky decomposition (a special form of LU-

decomposition, so that the technique is also referred to as simulation by LU-

decomposition). A routine to perform this operation can for instance be found in Press 

et al. (1986). 

 

4. A realisation of the random vector T

21 ),..,,( mZZZ=z can now be simulated by 

simulating a vector T

21 ),..,,( mXXX=x of independent standard Gaussian random 

variables mXX ,...,1 using a random number generator (see 8.2) and performing the 

transformation: 

 

Lxµz +=          (8.34) 

 

That (8.34) yield the right variables can be seen as follows. First, (8.33) yields linear 

transformations of Gaussian random variables so the simulated variables are Gaussian. 

Second, they have the correct mean value as: 

 

µxLµLxµz =+=+= ][][][][ EEEE      (8.35) 

 

And the correct covariance structure  

 

CLULLLIL

LxxLLLxxLxLxµzµz

====

===−−
TT

TTTTTT ][][])([]))([( EEEE
  (8.36) 

 

So the simulated variables are indeed drawn from a multivariate Gaussian distribution 

with the preposed statistics. 

 

Note that this method can also be used to simulate realisations of multiGaussian random 

space functions on a grid, i.e. as an alternative to sequential simulation. In that case the 

random vector contains the values of the random space function at the grid nodes 
T

21 ))(),..,(),(( mZZZ xxxz = , the mean is constant and the covariance matrix is 

constructed as: 

 

),(][ jiZij CC xx= ;        (8.37) 

 

 

d) Taylor expansion approximation 

 

Goal:  

• the moments of Y, e.g. 
Yµ  and 2

Yσ . 
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Requirements: 

• the joint moments of mZZ ,..,1  are known up to a certain order, e.g.: mµµ ,..,1 , 

22

1 ,.., mσσ  and mjiij ,..,1,, =ρ  ; 

• the variances 22

1 ,.., mσσ should not be too large. 

 

We first define a vector T

21 ),..,,( mµµµ=µ that contains the mean of the m random input 

variables. Next, we consider the Taylor expansion of the function g(Z) around the value 

:),..,,()( 21 mgg µµµ=µ  
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The first order Taylor approximation only considers the first two terms. The expected 

value is then approximated as: 
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and the variance 
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Keeping the first three terms of Equation (8.38) and taking expectations yields the second 

order Taylor approximation. We will only show the expression for the mean here. For the 

variance one is referred to Heuvelink (1998). 
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Example Consider the weir equation or rating curve BAhQ = , where A and B are random 

variables with statistics . and ,,, 22

ABBBAA ρσµσµ  The first order Taylor approximation of 

the mean becomes: 

 

BhQE A

µ
µ≈][         (8.42) 

 

and the second order approximation: 

 

( ) BAABBAA hhhhhQE BBB σσρσµµ
µµµ

)ln(ln][ 2
)

2
(

2

1
+≈ +   (8.43) 

 

The variance from the first order Taylor analysis is given by: 

 

( ) 2222
)

22
2(

2
)

2
ln)ln4(( BABAABABQ hhhhh BBB σµσσρµσσ

µµµ
++≈  (8.44) 

 

As can be seen, these expressions quickly become quite extensive, especially if due to 

larger variances  , 22

BA σσ higher order terms have to be included. The alternative then is to 

use Monte Carlo simulation by jointly simulating realisations of the variables A and B 

using Cholesky decomposition. Of course, this means that some joint probability 

distribution for these random variables has to be assumed. 

 

 

8.4  Spatial, temporal or spatio-temporal integrals of random functions  
 

We consider the following relationship (here we consider space, but it could also be time 

or space-time): 

 

xx
x

dZgY
D

D )]([∫
∈

=         (8.45) 
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a) Simple averaging of moments 

 

Goal: 

• the moments of Y, e.g. Yµ  and 2

Yσ , ).,(
21 DD YYCOV  

Conditions: 

• the function g[] is linear;  

• the random function Z(x) is wide sense stationary (see chapter 5); 

• the mean 
Zµ  and covariance function )(),( 1221 xxxx −= ZZ CC are known. 

 

If the function g[] is linear, e.g. g[Z(x)]= a+bZ(x), the moments of YD can be evaluated  

by spatial integration of the moments of Z(x) (see also  section 5.6 and 7.3.3). 

 

 

 

The mean of YD is given by 
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and the variance by: 
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By the same type of derivation the covariance between spatial averages of two domains 

can be derived (see also section 5.6 and 7.3.3): 

 

 

∫ ∫
∈ ∈

=

22 11

21 2121

2 ),(),(
D D

ZDD ddCbYYCOV
x x

xxxx        (8.48) 

 

The spatial integrals can be solved either analytically in certain cases (e.g. Vanmarcke, 

1983), but  are usually approximated numerically as is explained in section 7.3.3. 

 

Note that if the random function Z(x) is wide sense stationary and multiGaussian, YD will 

be Gaussian distributed also and its probability density function is given through the 

mean (8.46) and the variance (8.47). 

 

 

b) Monte Carlo simulation 

 

Goal: 

• the moments of Y, e.g. 
Yµ  and 2

Yσ , ),(
21 DD YYCOV or its probability density ).(yfY

 

Conditions: 

• the multivariate probability density function of Z(x) is known. 

 

If g() is non-linear or we are interested in the complete probability density function 

geostatistical simulation in a Monte Carlo analysis is the appropriate method. The 

following steps are taken: 

 

1. generate M realisations mkz k ,..,1,)( )( =x of the random function Z(x) using 

geostatistical simulation on a fine grid discretising the domain D. If Z(x) is non-

Gaussian, a transformation to a Gaussian distribution is in order, after which 

sequential Gaussian simulation can be applied (see sections 7.4.3 and 7.5 for 

elaborate descriptions of normal-transforms and geostatistical simulation 

respectively); 

2. the M realisations are used as input for the spatial integral (8.45) yielding M results 

;,..,1,)( Mky k

D =  

3. from the simulated values Mky k

D ,..,1,)( = the moments and the probability density 

function of YD can be estimated. 

 

If the random function is observed at a number of locations, conditional realisations 

should be drawn (see also section 7.5). This allows one to investigate the effect of 

additional sampling of Z on the uncertainty about YD. 
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8.5  Vector functions 

 

Consider a vector of model inputs (parameters, input variables, boundary conditions etc) 

that are random variables: T

1 ),...,( mZZ=z . The vector of model inputs is linked to a 

vector of model outputs T

1 ),...,( nYY=y through a functional relationship g(): 

 

)(zy g=          (8.49) 

 

The goal is to get the joint pdf or the moments of y.  

 

 

 

 

 

 

a) First order analysis 

 

Required: 

• the statistical moments of y: T

1 ])[],...,[(][ nYEYEE == yµ y and the covariance matrix 

]))([( T

yyyy µyµy −−= EC . 

Conditions: 

• The statistical moments of z should be known: T

1 ),..(][ mE µµ== zµ z , 

]))([( T

zzzz µzµz −−= EC . 

• The variances of the elements of z 22

1 ,.., mσσ should not be too large. 

 

The first order analysis is in fact the first order Taylor approximation (see 8.3) applied to 

each of the elements of y. The first order approximation is given by: 

 

)(][ Zµy gE ≈          (8.50) 

    

To obtain the covariance matrix of y the covariance matrix of z is constructed. This is an 

m×m matrix with the following elements (with ijρ  the correlation between Zi and Zj): 

 

jiijzz jiC σσρ=)],([         (8.51) 

 

Also, the sensitivity matrix or Jacobian is required. This n×m matrix gives the derivatives 

of element Yi with respect to input Zj and has the following form: 
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Sometimes it is possible to construct this matrix analytically, i.e. if the vector function 

g(z) consist for each element yi of y of a separate explicit and differentiable function 

gi(z1,..,zm). However, usually this is not the case and g(z) may represent some numerical 

model, e.g. a groundwater model, where the elements yi of y are state elements, perhaps 

defined at some grid. In this case, a sensitivity analysis must be performed by running the 

the model g() m+1 times: one baseline run where the model inputs are set at there mean 

values (i.e. Equation 8.50) and one run for each model in inputs zj where zj is slightly 

changed, e.g. jjj zz ∆+= µ . From these runs the changes in the values of the elements of 

yi , e.g. 
iy∆ , are calculated and the derivatives are subsequently estimated as: 

 

j

i

j

i

z

y

z

y

∆

∆
≈

∂

∂
         (8.53) 

 

With the sensitivity matrix and the covariance matrix a first order approximation of the 

covariance matrix of y can be provided: 

 
T

JJCC zzyy =          (8.54) 

 

Some additional remarks about this method: 

• Above equations have been developed for stochastic input variables with prescribed 

means and variances. Of course, as is the case with the Taylor approximation in 

sections 8.2 and 8.3, this method can also be used as a first order approximation of a 

prediction error covariance. In that case the prediction equation becomes: 

 

)ˆ(ˆ zy g≈          (8.55) 

 

with )ˆ,..,ˆ(ˆ
1 mZZ=z  the predicted values of the model inputs and 

])ˆ)(ˆ[( T

ˆˆ zzzzC zz −−= E  the covariance matrix of the prediction errors; and similarly 

for y.  Equation (8.54) then becomes: 

 
T

ˆˆˆˆ JJCC zzyy =          (8.56) 
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• If the function g() is a matrix multiplication 

 

Azy =          (8.57) 

 

the system is linear, the elements of the sensitivity matrix are exactly the elements of 

the matrix A, i.e. ][][ ijij aj =  , and an exact equation for the covariance of y is given 

by: 

 
T

AACC zzyy =         (8.58) 

 

If on top of that z has a multivariate Gaussian distribution then y is also multivariate 

Gaussian and the derived mean and variance of y completely determine its probability 

distribution (using Equation 3.87 with yµ and ).yyC  

• This method can also be used for transient models. Suppose that the following model 

applies: 

 

),()( tgt zy =          (8.59) 

 

where y is the outcome of some dynamic model, e.g. a transient groundwater model,  

with stochastic input or parameters z. Then m+1 transient runs can be performed, i.e. 

the baseline and one for each perturbed parameter, and for each time that one requires 

the sensitivity can be determined: 
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)(         (8.60) 

 

and the covariance of y(t) be approximated at each time as: 

 

)()()( T ttt JCJC zzyy =        (8.61) 

 

 

b) Monte Carlo simulation 
 

In case of strong non-linearity of g() or large variances of the elements of z, the linear 

approximation would no longer work. In that case Monte Carlo simulation is to be 

applied, as described before: 1) M realisations of z are simulated (e.g. using Cholesky 

decomposition as shown in Box 5); 2) the M simulated realisations z are used as input for 

g(z) yielding M realisations y ; 3) the statistics of y can be estimated from the M 

realisations of y. 
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8.6 Differential equations with a random variable 
 

Consider a partial differential equation with two random parameters, e.g. the groundwater 

equation in two spatial dimensions with a homogenous and isotropic but random 

transmissivity T and a homogenous storage coefficient S: 
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What can immediately be seen from (8.62) is that, even though the transmissivity T is 

random, it can be placed outside the derivatives because it does not change with space. If 

the transmissivity is a single random variable there are effectively two way of obtaining 

the statistics of the random head H, depending on whether an analytical solution is 

available. 

 

1. If an analytical solution is available, Equation (8.62) can be solved for given T  and S 

(as if they were deterministic) to produce an explicit relation between H(x,t) and S 

and T. This relation would generally be non-linear and the a Taylor approximation 

could be used to derive the statistics of H(x,t) from the joint statistics of S and T: 

. and ,,, 22

STTTSS ρσµσµ  If a Taylor approximation is not appropriate, e.g. because the 

variances of S and T are large, then realisations of S and T  can be simulated assuming 

some joint distribution ),( Tsf of S and T  (if multiGaussian Cholosky decomposition 

can be used). These realisations can then be plugged into the analytical solution of 

(8.62) to produce realisations of H(x,t) from which its statistics can be obtained. 

2. If no analytical solution can be obtained, then Monte Carlo simulation in combination 

with a numerical method, e.g. finite elements or finite difference, is the only option. 

A large number M of realisations of S and T are simulated assuming a joint 

distribution ),( Tsf of S and T  (if multiGaussian Cholosky decomposition can be 

used). The M simulated realisations are used as parameters in the equations solved by 

the finite difference or finite element scheme. The numerical solution is obtained for 

each simulated parameter set to yield M realisations of H
(k)

(xi,tj), k=1,..,M at a finite 

number of points in space and time. From these, the statistics (mean, variance, spatial 

and temporal covariance) of H(x,t) can be obtained. 

 

So, in short: if random parameters are involved in differential equations that are not 

random functions of space or time, they can treated as deterministic while solving the 

differential equation and analysed as stochastic variables afterwards; that is if an 

analytical solution can be found.  

 

Example Consider the following differential equation describing the concentration of 

some pollutant in a lake as a function of time: 

 

inqvKC
dt

dC
v +−=         (8.63) 
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where v  is the volume of the lake (assumed constant and known) qin is the constant an 

known input load and K is a random decay coefficient. The solution to this equation is 

(with known initial concentration c(t)=0):   

 

 ( )Kt
e

vK

q
tC in −−= 1)(         (8.64) 

 

Now the statistics of C(t) can be derived from those of K. For instance, using a first order 

Taylor approximation (see section 8.2) the following relation can be derived for the 

variance:   
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Figure 8.65 shows the development of the mean concentration with time as well as the 

confidence band of one standard deviation based on a first order Taylor analysis and the 

assumption that C is Gaussian distributed. The following parameters are used: 

)year(01.0),year(5.0),yearm mg(100/ 221-1-3 −− === KKin vq σµ . 
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Figure 8.4 Evolution of concentration of pollutant in a lake described by Equation (8.64) with random 

decay rate K. Mean concentration (central line) and one standard deviation prediction intervals (outer 

lines) are approximated by a first order Taylor analysis; parameters: 

)year(01.0),year(5.0),yearm mg(100/ 221-1-3 −− === KKin vq σµ . 
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8.7 Stochastic differential equations 

 

As a last case, consider the following differential equations: 

 

1. Transient groundwater equation for two-dimensional flow with heterogeneous storage 

coefficient and transmissivity, described as random space functions: 
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9.* Evolution of lake concentration with decay rate as a random function of time: 

 

 inqCtvK
dt

dC
v +−= )(        (8.67) 

 

In both of these cases we cannot hope to find an analytical solution given a particular 

realisation of the random functions S(x), T(x) or K(t), as the behaviour of random 

functions is generally wild and not described by a simple analytical expression. There are 

two alternatives to solve these stochastic differential equations:  

 

The first alternative is to assume some form of stationarity about the random functions 

and then develop differential equations in terms of the moments of the dependent 

variables and the moments of the random inputs. As the latter are assumed (wide sense) 

stationary the moments are constant, such that analytical solutions may be feasible.  

 

The second alternative is to use Monte Carlo simulation, i.e. simulate realisations of the 

random function and use these as input for the differential equations. The differential 

equations are subsequently solved for each realisation with a numerical scheme such as 

finite difference or fine elements. 

 

In the following examples of both approaches are given. The field of stochastic 

subsurface hydrology is the most advanced in terms of analytical stochastic analysis of 

parameter heterogeneity, with many papers in various hydrological journals, in particular 

in Water Resources Research. Although not very recent, extensive overviews of the 

advances in this field can be found in Dagan (1989) and Gelhar (1993). The applications 

in these books mostly pertain to flow and transport in porous media described with wide 

sense stationary stochastic functions and assuming infinite domains with uniform flow. 

Since the appearance of these books, advances have been made on finding (quasi)-

analytical solutions for finite domains, non-uniform flow, random boundary conditions, 

unsaturated flow, two-phase flow, non-stationary (even fractal) random media and fractal 

porous media. A more recent book with some advanced topics is written by Zhang 

(2002). 
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Box 6 Mean square differentiable random functions and white noise 
 

In both approaches, we would like to use the rules of standard differential and integral 

calculus. For these standard rules to apply, the random functions involved have to be 

mean square integrable, i.e. the following limit expressions should exists (a similar 

expression can be formulated for random functions of space): 
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So, averaged over all possible realisations, the quadratic difference between the 

derivative of the random function and its finite difference approximation should approach 

to zero if we look at increasingly smaller intervals τ. If (8.68) exists, and we interpret the 

differential dZ/dt in the mean square sense, normal calculus rules can thus be applied. 

 

A necessary and sufficient condition for this to apply is that the following equation is 

finite (Gelhar, 1993, p. 53): 
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where )(ωZS is the spectral density function of the random function Z(t). An alternative 

necessary and sufficient condition is that the second derivative if the covariance function 

at lags approaching zero is finite (Gelhar, 1993): 
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From equation (8.69) it can be seen that if aB stationary random function is mean square 

differentiable, it must have a spectral density that goes to zero more rapidly than .|| 3−ω  

This means that the random function should be limited with respect to the higher 

frequency components. From Table 5.3 it can be seen that this is not the case for instance 

the exponential covariance function. However, Gelhar (1993, p. 53) shows how cutting 

off the spectrum at some maximum frequency mω  does produce a random function that is 

mean square differentiable, while this weeding out of the high frequency components 

only slightly decreases the variance of Z(t). Such a cut off is also physically defendable, 

as many hydrological variables such as porosity, hydraulic conductivity or rainfall 

intensity are only defined as continuous variables above a certain minimum averaging in 

space or time. A natural cut-off for conductivity for instance could be the Representative 

Elementary Volume (REV) as defined by Bear (1972). The random function used has no 

validity for variations within this volume, or, in ters of the covariance function (8.70): it 

is not applied at lag differences smaller than the REV size. Given this assumption it can 
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then be assumed that the regular limited-band stationary random functions used are mean 

square differentiable. 

 

An important exception is the white noise process. Not only is this process not mean 

square differentiable, it also has infinite variance. This can be seen as follows. White 

noise can be defined as the formal derivative of Brownian motion: 
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Brownian motion is a process for which the variance of the difference between two 

values sampled at two different times is proportional to the time interval between the 

sample times (where the mean of the difference is zero): 
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Using this definition in (8.71) one obtains:  
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    (8.73) 

 

 

White noise is usually not used as a model for measurable variables, but for random 

influences that are virtually uncorrelated in space and time, e.g. measurement noise or 

fluctuations in input, parameters and boundary conditions which have much smaller 

space or time scales than the target variable of interest. For instance, looking at the 

equation modelling the concentration in a lake (Equation 8.67): if the random process 

K(t) is a stationary process with a correlation scale comparable to the dynamics of the 

concentration variations (e.g. it may depend on temperature, which fluctuates in the order 

of weeks or even months; see Figure 8.4), then it would be treated with the methods 

described in this section. However, suppose it is meant to incorporate the influence of 

turbulence on the decay rate. In that case it has a time scale of seconds and is thus best 

modelled as a white noise process. In that case, the methods described here no longer 

apply and (8.67) is solved using a special form of stochastic calculus (called Ito calculus) 

(e.g. Gardiner, 1983). 
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a) Small perturbation analysis 

 

First order perturbation analysis has been widely used to analyse the effect of unknown 

heterogeneity in hydraulic parameters on the uncertainty about hydraulic heads, fluxes 

and concentration plumes. The applicability of the method and the tractability of 

analytical solutions rest on the following conditions: 

• The logarithm of hydraulic conductivity Y=lnK is modelled as (locally) wide sense 

stationary random function. If a process is locally wide sense stationary it means that 

the mean of the random function may be a function of space, but it changes very 

slowly compared to the integral scale (see chapter 5) of the random function. So if 

)()()(' xxx YYY µ−= is the wide sense stationary residual with integral scale YI  then 

the condition to be met is (for two dimensions): 
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• The flow takes place in an infinite domain and is uniform or at least slowly varying in  

space. In that case the gradient of hydraulic head H∇ can also be assumed a (locally) 

wide sense stationary random function (that is if hydraulic conductivity is locally 

wide sense stationary). It means that the following condition should hold (with HI∇  

the integral scale of the head gradient): 

 

;1<<








∂

∂
+

∂

∂ ∇∇
∇

yx
I HH

H

µµ
        (8.75) 

 

• The variance of the logarithm of hydraulic conductivity 2

Yσ is small. As a rule of 

thumb one usually requires that .12 ≤Yσ  

 

Above conditions are formulated in terms of lnK because it is more convenient to work 

with lnK than K. There are three reasons why this is so (Gelhar, 1993). First, it is 

generally accepted that the logarithm of K follows a Gaussian distribution (e.g. Freeze, 

1975), so that the assumption of wide sense stationary lnK means that the mean and the 

covariance function are sufficient to describe its multivariate probability (see chapter 5). 

Second, the variation in lnK is smaller than that of K, which makes the small perturbation 

approach applicable to a wider range of variances of K. The third reason is that the 

logarithm of hydraulic conductivity appears naturally in the equation for groundwater 

flow (as will be shown hereafter (Equation 8.77)). 

 

The following explanation of the workings of the small perturbation approximation is 

taken from Gelhar (1993). We start with the steady-state groundwater flow equation in 

multiple dimensions:  
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This equation can be rewritten as (with Y=lnK): 
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Equation (8.77) show that variations in hydraulic head are driven by variations in lnK. 

The random functions for logconductivity and hydraulic head are written as a mean value 

and a perturbation as follows: 
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Substitution of these expansions into (8.77) yields: 
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 (8.80) 

 

Taking the expected value of this equation and considering that E[H’]=E[Y’] = 0 yields 

the equation for the mean: 
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Subtracting this equation from (8.80) yields the equation for the head perturbation: 
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In the small perturbation approach it is assumed that perturbations Y’ and H’ are small. 

Hence, the products of these terms are even smaller. If these second order terms are 

neglected the following equations result for the mean and the perturbation: 
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To show how these equations can be solved we consider the one-dimensional case 

(Figure 8.5): 

 

q

x

h(x)

 
Figure 8.5 One-dimensional flow in a tube with random conductivity and constant and known flux q. 

 

Figure 8.5 shows schematically the random head variation in one-dimensional flow in a 

tube due to random variation of hydraulic conductivity. Assuming that logconductivity 

lnK is described by a wide sense stationary function with constant mean, the equation for 

the mean is given by (8.83) with :0=∂∂ xYµ  
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It can be seen that the mean groundwater head is decribed by Laplace equation. 

Integrating one time yields: 
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To find the value of the constant c we first return to Darcy’s law and assume that the 

constant flux q is known: 
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The Taylor approximnation of exp(-Y) around Yµ is is given by: 

 

.....)
2

1
) 2

(( −−+−=
−−

−
−

−
YY YeYeee YYYY µµ

µµµ
   (8.88) 

 

Keeping the second order terms and taking expectations then yields: 
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Combining equation (8.86) and (8.89) then yields the value for the constant c. Integrating 

(8.89) once more yields the solution for the mean of H, if the value of h(x=0) = h0 is 

known: 

 

xqehxH Y
Y )

2

1
1()( 2

0 σ
µ

+−=
−

      (8.90) 

 

The variance can be obtained by writing the perturbations as spectral representations (see 

Equation 5.30): 
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where )( and )( ωω HY dXdX are the complex random amplitudes for frequency ω  

belonging respectively to the lnK(x) and H(x) random functions. The equation for the 

variance (8.84) with 0=∂∂ xYµ  and setting xJ H ∂∂= µ becomes: 
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Substitution of the spectral representations in (8.93) gives: 
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As the integrals are with respect to the frequencies and not the x, the differentials and the 

integrals can be interchanged leading to: 
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Differentiation of  (8.95) with respect toω  leads to the following relationship 
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The following relationship holds between the complex amplitute and its complex 

conjugate: 
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By multiplying Equation (8.97) by its complex conjugate (noting that 

)( and )( ωω HY dXdX  are independent) and taking the expectation, the following equation 

is obtained that relates the spectrum of hydraulic head to that of logconductivity: 
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The variance of logconductivity is then obtained by applying equation (5.26) : 
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An analytical solution of the integral (8.100) can be obtained when the covariance 

function is the hole effect model (see table 5.3), having the spectrum: 
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The variance then becomes: 

 
2222

YH aJ σσ =         (8.102) 

 

Figure 8.6 shows the expected value of the head as given for 1,0 2 == YY σµ , q = 0.5 m/d 

and h(x0) = 100 m for a domain length of 100 m (i.e. the head gradient is –0.75 m/m). 

Also given are the 95% confidence intervals of H(x) as calculated from (8.102) with 

correlation parameter scale a = 10 m (i.e. var[H(x)] = 28.13 m
2
). Figure 8.6 shows that, 

apart from being approximations, the solutions also contain an inconsistency. To obtain a 

closed form solution to the expected head (8.90) we need to know h(x0). So the actual 

confidence interval close to x0 should decrease to zero as indicated by the dashed line in 

Figure 8.6. Solution (8.102) is therefore only valid for large enough x, where the 

influence of the boundary condition is diminished. Boundary effects are treated 

extensively by Gelhar (1993). 

 

Similar analyses can be performed on flow and transport in higher dimensions. Gelhar 

(1993) presents many examples of these. Solutions that are valid for larger variances can 

be found in Dagan (1998). 

 

x (m)

h (m)

h0=100

0 100  
Figure 8.6 Expected value of hydraulic head (solid line) calculated with Equation (8.90) and the 95%-

confidence interval (dashed lines) according to Equation (8.102); the true confidence interval close to x=0 

is given by the dotted lines. 

 

b) Monte Carlo simulation 

 

If some of the conditions required for small perturbation analysis are not met, Monte 

Carlo analysis is an alternative. Consider two-dimensional flow in a heterogeneous 

porous media (Equation 8.66). Suppose that transmissivity is a random function of space 

and we are interested in obtaining the probability distribution of hydraulic head (or its 

moments, e.g. mean and variance) at each location. Monte Carlo simulation then 

proceeds as follows (see also section 7.5): 

1) simulate a large number M of realisations of the transmissivity random function T(x). 

In case data on transmissivity are present, conditional geostatististical simulation is 

used, otherwise unconditional simulation. If the pdf T(x) is not Gaussian, it could be 

transformed to a Gaussian pdf using a normal-score transform (see section 7.4.3). 
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Assuming a multivariate Gaussian distribution, the random function Y(x) = G[T(x)], 

can be simulated using sequential Gaussian simulation (sGs) (see section 7.5); 

2) the M realisations Mky k ,..,1),()( =x are transformed back to conductivity fields by 

taling the inverse of the normal-score transform: )]([)( )(1)( xx kk yGT
−= ; 

3) the numerical groundwater model solving (8.66) for the required boundary conditions 

is run M times with each of the simulated transmissivity fields )()( xk
T as input, 

yielding M realisations of hydraulic head: Mkh k ,..,1),()( =x ; 

4) from the M realisations of hydraulic head the statistics (pdf, mean, variance, spatial 

covariance) of the (conditional or unconditional) head random function H(x) can be 

estimated. 

 

The great advantage of Monte Carlo simulation compared to analytical stochastic 

analysis is that it is very general. It can be applied for any model under any type of 

boundary condition, large variances of heterogenous parameter fields and, given the right 

geostatistical simulation procedure, for any kind of random function that is used. Also, 

conditioning on observations can be achieved quite naturally using Monte Carlo analysis, 

either directly (e.g. conditioning on transmissivity measurements by conditional 

simulation) or indirectly through inverse methods (e.g. conditioning on head and 

concentration measurements: Gómez-Hernández et al, 1998). Another advantage, one 

that is not often spoken of, is that Monte Carlo simulation is a technique that is very 

simple to apply and requires much less mathematical background than the analytical 

approaches. 

 

A disadvantage of Monte Carlo simulation is obviously the required computation time, 

especially when models are large (contain a large number of grid points). As will be 

shown in the example hereafter, quite a large number of realisations have to be analysed 

to obtain stable estimates of higher order moments and the tail of the probability 

distributions, especially if the number of grid nodes is large. A considerable disadvantage 

of Monte Carlo simulation is that it will yield in case of many realisations an accurate 

estimate of the uncertainty, but it does not reveal in a straightforward manner what are 

the major causes of this uncertainty. For instance, the small perturbation analysis reveals 

through Equation (8.102) that apart from the variance of lnK (which is obvious), also the 

mean head gradient and the correlation scale of lnK determine the variance (i.e. 

uncertainty) of hydraulic head. Such information could only be obtained through monte 

Carlo analysis by performing a sensitivity analysis on top of it, e.g. repeating the Monte 

Carlo experiments for various settings of mean head gradient and variance and 

correlation scale of lnK. In large-scale problems, this is generally not feasible due to the 

enormous computation times involved. 

 

In general, if insight into the nature of uncertainty propagation in some hydrological 

compartment is required (a more academic question), then analytical approaches are often 

used. Unconditional simulation is then applied to compare its results with the analytical 

solutions, i.e. to check whether the assumptions made to arrive at closed form analytical 

solutions are valid. In applied studies, where many of the assumptions underlying 

analytical approaches are not met, where measurements have to be taken into account and 
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where the goal is a single uncertainty measure of the model output, Monte carlo analysis 

(using conditional simulation) is the approach that is usually followed. 

 

Example As an example two-dimensional steady state flow in a square domain of 

1000×1000 m is considered.  The boundary of the domain has a prescribed hydraulic 

head of 0.0 m. Groundwater recharge takes place at a rate of 1 mm per day. This model 

represents an idealized version of an island in the sea. Groundwater flow takes place 

through an aquifer with a constant thickness of 10 m. The domain is modelled with a 

numerical groundwater model (MODFLOW, McDonald and Harbaugh, 2000) using a 

constant cell size of 50 m. Depth averaged hydraulic conductivity is heterogenous and 

isotropic and its logarithm lnk is modelled with a stationary and isotropic multivariate 

Gaussian random field Y(x) with mean 10ln=Yµ  (geometric mean: 

10)exp( == YGK µ m/d) a variance 22 =Yσ  and a spherical covariance function (Table 

5.1) with parameter a=500 m. A single realisation (simulated with the program SGSIM 

from GSLIB (Deutsch and Journel, 1998)) of hydraulic conductivity is used as reality. 

Figure  8.7 shows the simulated reality (left) and the associated head field (right) as 

calculated by the groundwater model. 

 

Figure 8.7 Simulated reality: logarithm of hydraulic conductivity (left) and hydraulic head (m) 

 

If the hydraulic head is calculated with an assumed homogeneous hydraulic conductivity 

of m/d 10== GKk it can be seen from Figure 8.8 that the results are far from the 

assumed reality. Hence, some form of uncertainty analysis using a random function to  

model heterogeneity is in order. 

 

In the following the results from a Monte Carlo analysis are demonstrated. To investigate 

the effect of the number of observations on the head uncertainty, four sets of datapoints 

are sampled from the “real” field of hydraulic conductivity of Figure 8.7. In a real 

application usually a limited budget is available to take samples or to perform well or 

pumping tests to measure the depth averaged hydraulic conductivity at a number of 

locations. The four sets of data contain 9, 16, 25 and 36 observations respectively. The 

observations are taken on a square regular grid (3×3, 4×4, 5×5 and 6×6). Monte Carlo 

analysis was thus performed five times: one time for unconditional simulation, and four 
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times with conditional simulation using the four data sets. The results are shown in 

Figures 8.9 and 8.10. Figure 8.9 shows examples of the realisations of lnK(x) and 

associated hydraulic head calculated with the lnK(x) realisations as input. Realisations in 

the top row relate to unconditional simulation, the middle row to conditional simulation 

with 9 observations and the bottom row to conditional simulation with 36 observations. 

Figure 8.10 shows the mean head field and its standard deviation as obtained from 1000 

realisations. Again, the upper row presents the results from conditional simulation and the 

middle and lower rows from conditional simulation with 9 and 36 observations 

respectively. These figures show that as the number of conditioning data increases, that 

both the individual realisations as well as the mean head field are closer to the true one. 

Also, the variance decreases quite significantly if the number of conditioning data 

increases. This is also shown in Figure 8.11 where the average head standard deviation of 

the model domain is plotted against the number of conditioning points. Obviously, the 

effect of conditioning data on the reduction of head variance depends on the correlation 

scale. If the correlation scale is small, many observations are needed to achieve a given 

reduction in uncertainty. 

 

 
Figure 8.8 Hydraulic head (m) calculated with a presumed homogenous porous media with hydraulic 

conductivity m/d 10== GKk  

 

Previously, the required number of realisations was discussed. To show the effect of the 

number of realisations on the accuracy of the uncertainty estimates, Figure 8.12 is added. 

This figure shows the estimate of the mean head and the head standard deviation in case 

of unconditional simulation using 100 instead of 1000 realisations. It can be seen that 100 

realisations is sufficient to obtain accurate (stable estinates) of the mean, but far from 

sufficient to estimate the head variance. In fact, even in case of 1000 realisations the 

estimate of the standard deviation still looks asymmetric for the unconditional case. This 

suggests that even more realisations are needed.
5
   

                                                 
5
 In case of groundwater flow with and random hydraulic conductivity, generally the largest variance 

between hydraulic head realisations occurs when the correlation length is such that zones of high 

conductivity cross the domain with 50% probability, such that half of the realisations show shortcuts and 

half don’t. For stationary and multivariate Gaussian random fields this is generally the case for correlation 

lengths between 0.5 and 1 times the domain size.  
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Figure 8.9 Realisations of lnK(x) (left column) and associated hydraulic head (right column in m/d); top 

row: unconditional simulation; middle row: conditional simulation with 9 observations; bottom row:  

conditional simulation with 36 observations. 
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Figure 8.10 Mean head (left colum) and head standard deviation (right column) obtained from 1000 

realisation of lnK(x); top row: unconditional simulation; middle row: conditional simulation with 9 

observations; bottom row:  conditional simulation with 36 observations. 



 219 

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25 30 35 40

Number of conditioning points

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 h

e
a

d
 σσ σσ

H

 
Figure 8.11 Relationship between the domain average standard deviation of hydraulic head and the 

number of observations used for conditioning (zero observations means unconditional simulation). 

 

 

Figure 8.12 Mean head and head standard deviation in case of unconditional simulation using 100 instead 

of 1000 realisations. 
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8.8 Exercises 

 

8.1. Consider the following fitted relation between concentration of some pollutant C 

and discharge Q: 

)ln(QbaC −=  

 

with Q a random variable with pdf  fQ(q). Give an expression for the pdf of C? 

 

8.2. For the same relationship as given in question 21: The mean and variance of Q are 

1.5 m
3
/s and 0.01 m

6
/s

2
, respectively. C is expressed in mg/l and a = 200 mg/l and 

b=20 mg/l.  What are the mean and variance of C, based on a first order Taylor 

approximation? What is the mean of C based on a second order Taylor 

approximation? 

 

8.3. Consider the same relationship as used in Question 21, but now with known 

discharge  q and random parameters A and B: 

 

)ln(qBAC −=  

 

with the following statistics: A: 10,200 == AA σµ and B: 1,20 == AB σµ  and 

correlation coefficient .7.0=ABρ Calculate the mean and the variance of C? 

 

8.4. The long term average variation of the phreatic level between two water courses 

(see Figure) at a distance l apart is given by the following equation: 

 

lxxlx
T

p
hxH ≤≤−+= 0)()( 2

0  

8.5.

p

lx

H(x)

T
h0

 
 

with 

H(x):  groundwater elevation (m) as a function of location x  

L:   distance between water courses: 200 m 

h0:    water levels in water courses: 1 m 

p:  long year average groundwater recharge (0.001 m/d) 

T:  Transmissivity of the aquifer (m
2
/d).  
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The transmissivity is not exactly known and is treated as random variable with 

mean /dm10 2=Tµ  and a variance of 242 /dm4=Tσ . 

a. Use a first order Taylor approximation to estimate the mean )(xHµ and the 

variance )(2 xHσ of hydraulic head for x = 0, 25, 50, 

75,100,125,150,175,200 m. Make a plot of mean head and the 95%-

confidence interval, assuming H(x) Gaussian distributed. 

b. Explain why the width of the confidence interval changes with location x. 

 

 

8.6. Consider the following differential equation describing the concentration C of some 

pollutant in a lake of known volume v , with constant but random influx Qin and 

known decay coefficient k: 

inQkC
dt

dC
v +−=  

 

Derive an expression for the mean and the variance of the concentration.  
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9. Optimal state prediction and the Kalman filter 

 

9.1  Introduction 

As discussed in the previous chapters, the dynamic behavior of hydrological systems is 

often described by a model. This can either be a time series model, or a differential 

equations based on physical processes. Due to simplification, discretization and 

schematization, the model is only an approximation of reality. Moreover, parameters and 

input variables are not exactly known. They are subject to uncertainty. One of the 

objectives of stochastic hydrology is to quantify statistically the difference between the 

model predictions and reality, or in other words to quantify the predictive uncertainty. 

A system is called causal, if the system variables depend only on past and present input. 

For example, a river discharge at some time (t=τ) depends on rainfall up to that time  

(-∞<t≤τ), while future rainfall (t>τ) does not effect the discharge at t=τ. Likewise, the 

system’s future behavior (for t=τ+ℓ, ℓ>0) only depends on the system variables at time 

(t=τ) and the future inputs (τ<t≤τ+ℓ). In causal systems we can define the state of the 

system (see also section 1.3.1) as a set of values of the systems variables, such that all 

information of the past of the system, relevant for the future behavior is embedded in this 

set of values. According to this definition, the future behavior of the system is completely 

determined by the present state and the future input. An example of a state in the field of 

dynamic groundwater flow is the spatial pressure distribution at some point is time. In the 

governing differential equation for groundwater flow, the state appears as initial 

condition and the input is formed by the boundary conditions. 

At successive points in time, we can predict the unknown state (seen here as the unknown 

realization of set of random variables, chapters 3 and 5) and the corresponding 

uncertainty, for instance with stochastic modeling or time series modeling. At discrete 

points in time and space, the state of the system can be observed and we can compare the 

state prediction with the observation. If all elements of the state are observed and 

observation errors can be neglected, we can replace the state prediction by the 

observation. However, in practice often the observation error may be significant. 

Moreover not all elements of the state can be observed directly. Therefore, we have to 

deal with two sources of information to predict the inknown state, the model prediction 

and the observation, both with uncertainty. The aim of optimal state prediction is that we 

optimally combine both sources of information, given the uncertainty of both sources. In 

this chapter we focus on the linear Kalman Filter, which is a powerful method in optimal 

state prediction. First, in section 9.2, we discuss the principles of Kalman Filtering and 

we present the associated state estimation algorithm. In sections 9.3 and 9.4 it is 

demonstrated how the Kalman Filter can be applied to respectively time series models 

and spatially distributed process models. Finally in section 9.5 some applications in 

hydrological practice are discussed. 
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9.2 Principles of Kalman filtering 

9.2.1  State equation and measurement equation. 
 

In this chapter we restrict ourselves to systems of which the evolution of the state can be 

described by the linear state equation (9.1) in discrete time: 

 

ttttt wuBzAz 1t ++= −        (9.1) 

 

Where zt the state vector at time t.  

At the parameter matrix, relating the state vector at time t to the state vector 

at time t-1. 

 ut the input vector, representing the known input (driving forces)  at time t. 

 Bt  the parameter matrix, relating the state vector at time t to input at time t 

wt the system noise vector, representing all influences that are not described 

by the model (first two terms on the right hand side of (9.1)). The system 

noise includes also unknown inputs, and errors in the parameter matrices. 

Sometimes in literature the system noise is referred to as model error. 

 

Systems that can be described by matrices that are independent of time (At=A and Bt=B) 

are called time invariant systems.  

 

The observation process can be described by the measurement equation (9.2): 

 

tttt vzHy +=          (9.2) 

 

Where yt is the measurement vector at time t, containing the observations. 

Ht the measurement matrix, relating the state at time t to the measurement 

vector at time t  

 vt the measurement error vector at time t. 

 

If the monitoring system doesn’t change with time, the measurement matrix is time 

invariant Ht = H. 

9.2.2 Optimal state prediction algorithm. 
 

In the optimal state prediction algorithm, commonly referred to as the Kalman filter, we 

use the following definitions and assumptions: 

 

- the conditional prediction of the state vector at time t given observations up to and 

including time t and the corresponding error covariance matrix are denoted as: 

  

]E[zzt t|t=ˆ  and ]eE[e])z)(zzE[(zP ||

TTˆˆ
ttttttttt =−−=     (9.3) 
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- The conditional prediction of the state vector at time t given observations up to 

and including time t-1 and the corresponding error covariance matrix are denoted 

as: 

 

]E[zz 1−= t|tt  and ]eE[e])z)(zzE[(zM
T

11

T

−−=−−= t|tt|tttttt    (9.4) 

 

Furthermore, we assume the system noise as well as the measurement error to be 

mutually independent white noise processes with known statistics: 

 

0]vE[w

0

R
]vE[v

0]E[v

0

Q
]wE[w

0]E[w

=





≠

=
=

=
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
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≠

=
=

=

T

T

T

if

if

if

if

τt

t

τt

t

t

τt

t

τt

τt

τt

τt

       (9.5) 

 

 

Let the conditional prediction of the state vector at time t-1 given observations up to time 

t-1 ( 1
ˆ

−tz ) and the corresponding error covariance matrix (Pt-1) be known. Given the model 

(known matrices At and Bt) and the known input ut , the conditional prediction of the 

state at time t given the observations up to time t-1 follows from equation (9.1): 

 

ttttt uBzAz += −1
ˆ         (9.6) 

 

Note that from the statistics (9.5) it follows that 0]E[w =−1t|t . 

The conditional prediction (9.6) is called the time up-date. The prediction error is the p is 

obtained by subtracting (9.6) from (9.1): 

 

t|tttttttt|t wAew)zA(zzze 1 +=+−=−= −−−−−− 11111
ˆ      (9.7) 

 

From (9.7) is can be seen that the error of the prediction is a function of the error of the 

conditional estimate at the previous time step (t-1) and the system noise at time t. If the 

model (matrices At and Bt) are well calibrated, the expected value of the error terms is 

equal to 0. The covariance of the prediction error can be derived from (9.7): 

 

{ } tttttt|tt|tttt|tt|tt QAPAQA]eE[eA]eE[eM +=+== −−−−−−−
T

1

TT

1111

T

11    (9.8) 

 

At time t the observations yt become available, and we like to correct the prediction with 

these observations. This can be done by calculating the conditional prediction of the state 

vector at time t given observations up to and including time t. It can be proven that we get 
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the minimum error covariance if the correction step (also called measurement update) is 

done by: 

 

}zH{yKzz 11
ˆ

−− −+= t|ttttt|tt|t            (9.9) 

 

With 

}RHM{HMHK ttttttt −= T
       (9.10) 

 

The matrix Kt is called the Kalman gain.  

 

Finally with the error statistics (9.5) and the equations (9.9) and (9.10) it can be proven 

that the covariance matrix of the conditional state estimate at time t given observations up 

to time t equals: 

 

{ } tttt MHKIP −=         (9.11) 

 

The measurement up-date is the optimal linear estimate of the state at time t given 

observations up to time t (minimal error variance).  With the measurement up-date (9.9) 

and the corresponding covariance matrix (9.11) we can repeat the calculation for time 

step t+1. The state prediction algorithm is summarized in the figure below. 

 

)zH(yKzz tttttt −+=ˆ

tt1ttt uBzAz += −
ˆ t

T

t1ttt QAPAM += −

1

t

T

ttt

T

ttt ]RHM[HHMK −+=

0P
0ẑ

tttt )MHK(IP −=

1t1tt1t1t uBzAz ++++ += ˆ 1t

T

1tt1t1t QAPAM ++++ +=

tu

ty

1tu +

)zH(yKzz tttttt −+=ˆ

tt1ttt uBzAz += −
ˆ t

T

t1ttt QAPAM += −

1

t

T

ttt

T

ttt ]RHM[HHMK −+=

0P
0ẑ

tttt )MHK(IP −=

1t1tt1t1t uBzAz ++++ += ˆ 1t

T

1tt1t1t QAPAM ++++ +=

tu

ty

1tu +

 
Figure 9.1 Linear Kalman Filter algorithm 

 

Note that: 

• In hydrology we often we have time invariant systems (At= A, Bt=B, Qt=Q and 

Rt=R). 

• In practice, the matrices At, Bt, Qt and Rt have to be estimated or calibrated. 

However, the calibration is beyond the scope of this chapter. More information can be 

found in in for instance Van Geer et al. (1992). 
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9.3 Kalman filtering and time series 

9.3.1 Kalman filter algorithm for transferfunction/noise models. 
 

In this section we apply the Kalman Filter to a simple transfer/noise model (see chapter 

6). As will be seen, this leads to a simple scalar example that is very informative about 

the properties of the Kalman filter. Consider the transfer/noise model:   

 

Z t = δ1Z t −1 +ω 0X t + at         (9.12) 

 

Equation (9.12) is a scalar form of the state equation (9.1) where: 

 

z t = Z t ,      A = δ1,      B = ω 0,      ut = X t ,      wt = at ,     Q t = σ a

2  (9.13) 

 

In chapter 6 we neglected measurement errors, but here we account for measurement 

errors. At observation times the measurement equation is: 

 

Yt = Zt + v t          (9.14) 

 

Where we have: 

 

 y t = Yt ,      H t =1,    v t = v t ,    Rt = σv

2      (9.15) 

 

Suppose we have an observation at each time step and the input Xt as well as the initial 

conditions ˆ Z t −1 and Pt-1 are known. Then, substitution of the quantities (9.13) and (9.15) 

into the algorithm of section 9.2 yields: 

 

Time update:  Z t = δ1
ˆ Z t −1 +ω0X t  

2

1

2

1 att PM σφ += −  

Measurement up-date: 
2

vt

t

t
M

M
K

σ+
=      (9.16) 

   ˆ Z t = Z t + Kt Yt − Z t{ } 

   { } ttt MKP −= 1  

 

9.3.2  Properties of the linear Kalman Filter applied to a simple 
Transferfunction/noise model. 

 

Balance 

From (9.16) we can see that the Kalman Filter balances the information from the model 

prediction and the observation.  
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- One extreme is that we have perfect observations ( 02 =vσ ). It follows from (9.16) 

that Kt=1 and therefore: ˆ Z t = Yt . The best estimate of the state at time t is equal to 

the observation at that time.  

- The other extreme is that we have a perfect model ( 0
2 =aσ ), it follows that the 

Kalman gain Kt=0 and tt ZZ =ˆ . In this case we keep the model prediction and the 

observation does not contain any additional information.  

- If the uncertainty of both the model and the observation are equal (
22

va σσ = ) it 

follows that Kt = ½ and the best state estimate is the average of the model 

prediction and the observation.  

 

In general, it can be stated that 10 ≤≤ tK . If we are more uncertain about the model, the 

Kalman gain will tend to 1, and if the observations are subject to large uncertainty, the 

Kalman gain tends to 0. Therefore we can consider the Kalman gain as a mechanism that 

balances the model and the observation, according to the relative uncertainty. Because the 

Kalman gain is always in between 0 and 1, the measurement up-date ( ˆ Z t ) is always in 

between the time up-date ( tZ ) and the observation (Yt ).  

 

Magnitude of the measurement  up-date. 

From the algorithm (9.16) it can also be seen that the magnitude of the measurement up-

date depends on the difference between the time up-date and the observation  

(= innovationYt − Z t ). If the observation is far away from the time up-date ( Yt − Z t is 

large), the correction in the measurement up-date is large. If the observation is close to 

the time up-date ( Yt − Z t is small), the correction in the measurement up-date is small. 

 

Uncertainty reduction 

Because the Kalman gain is a positive number in between 0 and 1, the last equation from 

algorithm (9.16) shows that the variance of the measurement up-date is always smaller 

than (or equal to) the variance of the time up-date ( tt MP ≤ ). Also it can be proven that 

the variance of the measurement up-date is always smaller than the variance of the 

measurement error (
2

vtP σ≤ ). Combining the model with observations yields a reduction 

of the uncertainty relative to the prediction with the model (time up-date) as well as to the 

observation.  

 

Non observed time steps. 

The algorithm (9.16) is valid if we have observations at each time step. In practice, we 

may not have observations at certain points in time and we can’t calculate the 

measurement up-date. At non-observed time steps, the algorithm reduces to (see also the 

forecast in chapter 6): 

  

Z t = δ1
ˆ Z t −1 +ω 0X t  

M t = δ
1

2
Pt −1 + σ a

2         (9.17) 
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tt ZZ =ˆ  

tt MP =  

 

In figure 9.2 we show the effect of observed and non-observed time steps. In between the 

observation times, the error variance grows until the next observation time. At the 

observation time the error variance drops below the variance of the observation error. 

 

 

 

 

 
Figure 9.2. Error variance (Pt) at observed and non-observed time steps.  

 

State estimation with Kalman Filter compared to open loop 

The effect of state prediction with Kalman Filtering can be illustrated by comparison with 

an open loop prediction. An open loop prediction is a state prediction without using 

observations. Figure 9.3 shows the comparison for a time series model of the form (9.12). 

In this illustration the Kalman Filter uses observations at each time step. Figure 9.3. 

Figure 9.3. Comparison state prediction using Kalman Filtering and open loop. 

 

From figure 9.3 it can be seen that at each observation time, the optimal prediction 

(measurement up-date) is in between the time up-date and the observation. The open loop 

prediction uses only the input Xt and it doesn’t use the observations. The time up-date is 

Time up-date 

Observation 

Optim. prediction 
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similar as in the Kalman Filter, but there is no measurement up-date. The most important 

consequence is that for the open loop the errors propagate in time. If at some point in 

time the prediction of Zt is too small, it tends to persist in being too small for the next 

time steps. The errors in the open loop prediction are correlated in time, whereas for the 

Kalman Filter, it can be proven that the errors for the measurement up-date are 

uncorrelated in time and the predictions are closer to the observations.  

  

9.4 Example groundwater head time series. 
 

Many time series of shallow groundwater head show a seasonal pattern, which is driven 

by the seasonal behavior of precipitation and evapotranspiration (see figure 9.4).  The 

groundwater observation frequency is 24 time per year, which yields an observation 

interval of ca. 15.2 days. This interval is taken as the time step in the time series model. 

For each time step, we calculate the average precipitation excess from the available 

observations of precipitation and evapotranspiration. The groundwater head is described 

by the Transfer/noise model:   

 

 

H1,t = δ1H1,t −1 +ω 0Pt

nt − c = φ1(nt −1 − c) + at

H t = H1,t + nt

       (9.18) 

With:  

Ht :  the groundwater depth below surface at time t, 

pt : the precipitation surplus (precipitation minus evaporation) during 

the time step from t-1 to t, 

H1,t :   the component of the groundwater head due to the precipitation excess 

nt :  the noise component at time t, 

at :  the white noise at time t, 

δ1,  ω 0,  φ1 : parameters of the transfer/noise model,     

c :   the long term average groundwater depth in case pt=0. 

 

 
 
Figure 9.4 Situation around a groundwater observation. 
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To formulate the transfer/noise model in term of the state equation of the Kalman Filter, 

we define the state vector, the input vector and the system noise vector respectively as: 

 

 z t =
H1,t

nt

 

 
 

 

 
 ,          ut = [Pt ]      and   wt = [at ]     (9.20) 

  

Using the definitions (9.13) the state equation of the form (9.1) for the model (9.12) 

becomes: 

 

   z t =
δ1 0

0 φ1

 

 
 

 

 
 z t −1 +

ω 0

0

 

 
 

 

 
 ut +

0

1

 

 
 
 

 
 wt       (9.21) 

 

We have observation of ht every time step.  The measurement equation is: 

 

Yt = Ht + vt          
(9.22) 

 

Where: Yt is the observation at time t 

 vt is the measurement error at time t. 

 

The measurement error standard deviation is dependent on the equipment used. For 

monitoring shallow groundwater we estimated the measurement error standard 

deviation cmv 0.1=σ . The parameters of the time series model, including the standard 

deviation of the system noise are estimated as:  

 

)(4.20),(23),(619.0),/(515.0,865.0 101 cmcmcdaysmmcm a ===== σφωδ  

 

In Figure 9.5 the results of the state prediction with respectively open loop and Kalman 

Filter are visualized. The open loop estimate is the forecast using the observations of the 

precipitation excess and the transfer function. In the open loop, the groundwater 

observations are not used, whereas in the state prediction of the Kalman Filter, we have 

an observation of the groundwater head every third time step.  

 

Although both predictions in figure 9.5 resemble the seasonal pattern quite well, it is 

clear that the Kalman Filter predictionis more close to the observations. This effect will 

be even stronger if we applied a higher observation frequency.  
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Figure 9.5. State estimation Kalman filter and open loop estimation compared to groundwater head 

observations. 

 

The differences between the observations and respectively the Kalman filter prediction 

and the open loop prediction are show in Figure 9.6. From this figure it is even more 

clear that the Kalman filter predictions are closer to the observations than the open loop 

predictions. Moreover, the differences of the open loop predictions show more 

persistence in time. In other words, the errors of the open loop prediction show more 

temporal correlation than the Kalman Filter prediction errors, meaning that more 

information remains unused. 

  

 
 
Figure 9.6. Difference between observations and respectively the Kalman Filter estimate and the open loop 

estimate. 

 

9.5 Kalman Filtering and spatial distributed systems 

In section 9.4 we discussed the application of the Kalman Filter to a scalar time series 

model. However, Kalman Filtering can be applied to any system that can be described by 

a linear difference equation. In this section, we show how the Kalman Filter can be 

applied to a simple spatially distributed groundwater system. 

 



 233 

9.5.1 Example uncertainty for a one-dimensional groundwater flow. 
 

We consider a one-dimensional groundwater system as shown in figure 9.7. The system 

can be described with the differential equation (9.20). The groundwater head is a function 

of a spatial x-co-ordinate and time t: h(x,t). The left hand side boundary condition is the 

surface water level Hl and the right hand side boundary condition is Hr. 

 

 
Figure 9.7. One-dimensional groundwater system. 

 

The governing differential equation is: 

 

S
∂H

∂t
= −T

∂2
H

∂x 2
         (9.23) 

 

Where: H is the groundwater head (a function of space coordinate x and time t) 

 S is the storage coefficient 

 T is the transmissivity  

 

Equation (9.23) can be discretized using the following difference approximations: 

 

∂H

∂t
≈

H i,t −1 − H i,t

δt
         (9.24) 

 

and 

 

∂2
H

∂x
2

≈
H i+1,t − H i,t( )− H i,t − H i,−1t( )

δx( )
2

       (9.25) 

 

Substitution of (9.24) and (9.26) in (9.23) yields: 

 

 

1+ 2/α( )Hi,t − 1/α( )Hi−1,t − 1/α( )Hi+1,t = Hi,k−1    
(9.26) 

 

with:  

 

α =
S δx( )

2

Tδt
         (9.27) 
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If there are N grid nodes, we define the state vector as: 

 

  

ht =

H1,t

M
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Hi,t
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          (9.28) 

 

Using (9.26) and (9.28) the linear state equation is: 

 

 tt1tt wBuAhh ++= −        (9.29) 

 

Where: 
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and 

 

 

  

But = A −1
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At a point in time t we observe the groundwater at M grid nodes. This results in the 

measurement equation: 
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      (9.32) 
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The elements of the measurement matrix (H) are all equal zero, except for the elements 

corresponding with the grid node where we have an observation. Those elements equal 1.  

 

The prediction uncertainty for the groundwater system given in Figure 9.7 is quantified 

with the covariance matrix Pt. In particular the diagonal elements hold the prediction 

variance of the grid nodes. At observation times we calculate Pt using the equations (9.8), 

(9.10) and (9.11). Analogous to (9.17) at time steps in between the observation time steps 

this reduces to Pt=Mt. To perform the calculations, we should know the matrices A, H, Q 

and R. In table 9.1 the values of the parameters which determine these matrices in this 

example are given. 

 

 

Table 9.1 Parameter values of the example system of figure 9.7. 

Parameter  

T 600 m
2
/day 

S 0.1 

δx 150 m 

δt 15 days 

q(i,j) q(i, j) = 3 1 − exp(−dij /10){ }  cm
2, with q(i,j) is the element at row i and 

column j of the matrix Q; d(i,j) is the distance between the spatial nodes i 

and j. 
r(i,j) 1 cm

2
 i=j   

0 cm
2 
i≠j 

 r(i,j) is the element at row i and column j of the matrix R 

 

Note: If we only want to calculate the covariance matrix Pt, we don’t need to calculate 

the state and consequently we don’t need the matrix B and the input ut. This can be seen 

from the scheme given in Figure 9.1. 

 

In the example we use 50 grid nodes (N=50) and three monitoring locations (M=3). The 

monitoring locations are at the grid nodes 15, 30 and 45 and we have observations every 

5 time steps. Figure 9.8 shows the prediction error variance p(i,i) (i.e. the diagonal 

elements in matrix Pt) for the different grid nodes at five successive time steps at and 

after an observation time T. The influence of the observations can clearly be seen. At the 

monitoring locations the variance is small (<1 cm2
). In between the monitoring locations 

the variance is larger. During the non-observed time steps T+1 till T+4, the variance 

grows. The influence of the observations is still visible, but if the time to the observations 

becomes larger, the influence of the observations become smaller. The time step T+5 is 

again an observation time step, and the variance is equal to the variance at time step T. 

The succession of the variance at time steps T till T+4 repeats. Also the effect of the 

boundary conditions, which are assumed to be exactly known at all time steps, is clear 

from Figure 9.8.  
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Figure 9.8. Variance at 5 time steps as a function of the space coordinate x. 

 

Figure 9.9 shows the estimation variance at the grid nodes 15, 20 and 24 as a function of 

time. The grid node 15 is a monitoring location whereas grid nodes 20 and 24 are in 

between the observation locations. 

 
Figure 9.9. Estimation variance at three different grind nodes as a function of time. 

 

9.5.2 Example two dimensional groundwater flow 
 

Let’s consider the hypothetical two-dimensional domain given in figure 9.10 taken from 

De Gruijter et al. (2006). The size of the domain is 30 x 30 km and a numerical 

groundwater model is built with a square calculation grid km1== yx δδ and the model time 

step day1=tδ . Similar to the one-dimensional example in 9.5.1, we can construct a state 

equation of the form (9.29) and a measurement equation of the form (9.32). We assume a 

monitoring network with 16 locations at regular distances, where the groundwater head is 

observed. The spacing between the observation screens is km10=∆=∆ yx . The 

groundwater head is observed at regular time intervals of 10 times the calculation time 

step ( tt δ10=∆ ). The system is time invariant and the matrices A, B, Q and R are known. 



 237 

At observation times those elements of measurement matrix H that correspond with the 

16 locations of the observations equal 1, the other elements equal 0.  

 

Using the Kalman Filter algorithm given in 9.2.2 we calculate the prediction error 

covariance matrix (measurement up-date) at all time steps (Pt). As before, the element 

p(i,i) at the diagonal of the Pt  is the variance of the measurement up-date in grid point 

(i,i). Also, at non-observed time steps we calculate the matrix Pt as Pt=Mt. The ratio 

between the variances in the matrix Pt and the variance of the system noise (denoted 

as ( )22 / QP σσ  ) is plotted in Figure 9.11.  The figure at the left hand side is the spatial pattern 

of this ratio at a observation time, and the figure at the right hand side is the pattern of the 

ratio 9 time steps ( tδ ) after observation time. 

 

 
Figure 9.10. Hypothetical two-dimensional groundwater flow domain. 

 

From the left hand side Figure 9.11 we can easily identify the locations of the 16 

observation locations at the dark spots. At the observation locations the ratio is very small 

(<0.1). Thus,  also the uncertainty is  very small at those locations. If we move away from 

an observation location the ratio grows. At points far from the observation locations, such 

as point (15,15) the ratio exceeds 0.5. Observations provide more information in the 

vicinity of the observation locations than at points at some distance from the observation 

locations. The pattern in the left hand side figure 9.11 is comparable to the Kriging 

variance described in chapter 7. In the right hand side figure 9.11, the observation 

locations are not identifiable. Obviously, the observations carry only information about 

the groundwater for a limited period of time. The ratio is much larger than at observation 

times. In the middle (location (15,15)) the ratio is over 2.2. The low values at the 

boundaries are due to the fact that in this hypothetical example the boundaries conditions 

are known, fixed heads. 

 



 238 

As shown in figure 9.11 the spatial pattern of the ratio at two points in time are quite 

different. It is clear that the estimation variance is a function of space as well of time. In 

figure 9.12 the temporal behavior of the ratio ( )22 / QP σσ  is given for two locations (see 

figure 9.10). At the observation times, groundwater observations are available at location 

(10,10).  The location (15,15) is the location that is the most far from the observation 

locations. 

 

 
 

Figure 9.11. Ratio of the estimation variance the variance of the system noise ( )22 / QP σσ  at an observation 

time (left) and 9 time steps after a observation time (right) (From de Gruijter et al., 2006). 

 

 
Figure 9.12. Ratio ( )22 / QP σσ  as function of time for two locations (10,10) and (15,15) ) (From de Gruijter 

et al., 2006). 
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From figure 9.12 it can be seen that the ratio grows with time after a observation time. At 

the next observation time, the ratio drops. The ratio at the monitoring location is always 

smaller than at the non-observed location.  

 

Evaluation of a monitoring strategy. 

When looking closer at the Kalman Filter algorithm (Equations 9.9 and 9.10), it becomes 

clear that for a time invariant system, the only reason for the covariance matrices Mt and 

Pt to be functions of time is the fact that the measurement matrix Ht is a function of time. 

The measurement matrix Ht holds the monitoring strategy (when and where do we have 

observations). So the covariance matrix of measurement up-date Pt is a function of the 

monitoring strategy only. Similar to the Kriging variance, we can calculate the covariance 

matrix Pt for a given monitoring strategy (locations and times) without having actual 

observations. We can use the relationship between Pt and Ht to evaluate the effectiveness 

of monitoring strategies. Here the domain average ratio ( )22 / QP σσ  is adopted as evaluation 

criterion. The spacing between the observation locations is varied between two to ten 

times the grid size of the model grid ( ( ) 5.0/1.0 ≤∆≤ xxδ ). The observation interval is 

varied between two to ten times the time step of the model ( ( ) 5.0/1.0 ≤∆≤ ttδ ). 

 

In figure 9.13 the domain average ratio ( )22 / QP σσ  is plotted against the ratio’s ( )xx ∆/δ  and 

( )tt ∆/δ . In this figure lines of equal value of the ratio ( )22 / QP σσ  are given. Figure 9.13 

shows that an increase of the network density (smaller spacing of the observation 

locations) or an increase of the monitoring strategy frequency (smaller observation 

intervals) result in smaller values for the ratio ( )22 / QP σσ , and therefore in smaller prediction 

uncertainty. Figure 9.13 also shows there is a trade off between network density and 

observation frequency. The equipotential lines give multiple combinations of network 

density and observation frequency that result in the same value of the ratio ( )22 / QP σσ .  This 

type of analysis can be used in optimizing the monitoring strategy.  If we specify a target 

level of the ratio ( )22 / QP σσ  we can choose the most suitable (=cheapest) combination of 

network density and observation frequency to reach that target. 

 



 240 

 
 

Figure 9.13 Domain average ratio ( )22 / QP σσ  as function of the ratio’s ( )xx ∆/δ  and ( )tt ∆/δ  ( from de 

Gruijter et al. (2006)).
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Appendix: Exam Stochastic Hydrology 2008 
 

 

1. (5 points) The multivariate probability density function of a random function is 

Gaussian. The mean of the random function is constant, the variance is finite and 

constant and the covariance between the values at two locations only depends on the 

distance between these locations. Is this random function: 

a. Intrinsic? 

b. Wide sense stationary? 

c. Second order stationary? 

d. Strict stationary? 

e. Isotropic? 

Briefly explain your answers? 

 

2. (2 points) Provide two advantages of using ordinary kriging over simple kriging? 

 

3. (6 points) The cumulative probability distribution of root zone soil moisture content 

θ at a certain location is given by (see Figure): 
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a) Give the expression for the probability density function of root zone soil moisture 

content. 

b) Derive expressions for the mean and the variance of root zone soil moisture 

content.  

c) If  θs = 0.45 and θr = 0.04 and the root zone depth is 30 cm. On a given day we 

have a precipitation event of 30 mm. If we assume that all precipitation infiltrates 

and that percolation during the rain event can be neglected: What is the 

probability that this precipitation event generates surface runoff (i.e. that it causes 

the root zone to become saturated)? 

 

4. (6 points) Consider the following isotropic covariance function of a wide-sense 

stationary random function with mean µZ = 10: 

 

)10/exp(20)( hhCZ −=     (2) 

 

Observations have been made at locations z(x,y) = z(1,1) = 6 and  z(x,y) = z(4,5) = 13. 

Use simple Kriging to predict the value of )(xZ  at location (x,y) =  (2,4) and estimate 

the prediction error variance.  

 

5. (8 points) Discharge in an open channel can be predicted using Manning’s equation: 

 

2/13/2
SR

m

A
Q =      (3) 

 

with Q the discharge (m
3
/s), A the wetted perimeter (m

2
), R hydraulic radius (m), m 

Manning’s coefficient and S the slope of the water surface. In a hydraulic laboratory 

this equation is used to determine Manning’s coefficients of different types of channel 

bottom material by running water over this material in a experimental flume with a 

known discharge and measuring the water height at two locations along the channel at 

a distance L from each other. From the measurements H1 and H2 first the slope 

calculated as: 

L

HH
S 12 −

=      (4) 

 

after which Manning’s coefficient is calculating by Manning’equation as: 

 

2/13/2
SR

Q

A
m =      (5) 

 

a. The water levels H1 and H2 are measured with a random measurement error with 

mean zero and the same variance 2

Hσ . Furthermore, the measurement errors at the 

two locations are independent. Give an expression for the variance of the error of 

the slope 2

Sσ  as a function of 2

Hσ . 



 247 

b. Use the first order Taylor approximation to derive an expression for the variance 

of estimated Manning coefficient 2

mσ as a function of the variance 2

Sσ ; next use 

the results of 5a to derive the expression of 2

mσ  as a function of 2

Hσ . 

c. Suppose we have A = 2 m
2
, R = 1 m, L = 10 m and Q = 0.20 m

3
/s and we estimate 

from observations that the expected value of the slope Sµ is 0.0005 m/m. The 

standard deviation Hσ of the observation error that occurs when measuring the 

water level is m.001.0=Hσ Give a first order estimate of the Manning-

coefficient and a first order estimate of the estimation variance. What is the 

relative error mm µσ / ? 

d. If the flume has a length of 20 m. What would be an easy way to improve the 

accuracy of the estimate of Manning’s coefficient? 

 

6. (7 points) Consider the following stochastic model describing monthly concentration 

of nitrogen ck (in mg/l) in a lake with time steps of one month (index k is the month 

number): 

kkkk WqCC ++= − 126.0 1
     (6) 

 

with qk the monthly nitrogen input into the lake (10
3
 kg /month) and Wk a zero-mean 

model error. Nitrogen qk input is given in the following Table: 

 
Time (month numbers) 1 2 3 4 5 6 7 8 9 10 

N input (10
3
 kg /month) 4 12 9 8 2 3 4 2 1 0 

 

The initial concentration  is 10 mg/l with an initial error with variance 
222

0|0 /9 lmg=σ . The variance of the model error is 222
/36 lmgW =σ . At k=3 and 

k=9 observations yk are taken. We have y3 = 173 mg/l and y9= 83 mg/l. The variance 

of the observation error is the same for both times: ./9 222 lmgV =σ  

a) Apply the Kalman filter to obtain the optimal prediction kĉ  and prediction 

variance ])ˆ[(
22

| kkkk ccE −=σ  for all time steps k=1,..,10.  

b) Make a plot of kĉ  and kk |σ versus time k. In the plot with kĉ also plot the results of 

applying the deterministic model ( kkk qcc 126.0 1 += − ) without using the Kalman 

filter. How many months can we see the influence of a model update in our model 

predictions? 
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