Related Pergamon Titles of Interest

Books

ALLUM
Photogeology and Regional Mapping

GHOSH
Analytical Photogrammetry 2nd Edition

LISLE
Geological Structures and Maps

MALING
Measurements from Maps

ROBERTS
Introduction to Geological Maps and Structures

Journals

International Journal of Rock Mechanics and Mining Sciences
Journal of Geodynamics

Journal of Structural Geology

Full details of all Pergamon publications/free specimen copy of any
Pergamon journal available on request from your nearest Pergamon
office.



Coordinate Systems
and Map Projections

SECOND EDITION
by

D. H. MALING

Formerly University of Wales

©

PERGAMON PRESS
OXFORD - NEW YORK - SEOUL - TOKYO



U.K.

U.S.A.

KOREA
JAPAN

Pergamon Press plc, Headington Hill Hall,
Oxford OX3 0BW, England

Pergamon Press Inc., 395 Saw Mill River Road, Elmsford,
New York 10523, U.S.A.

Pergamon Press Korea, KPO Box 315, Seoul 110-603, Korea

Pergamon Press Japan, Tsunashima Building Annex,
3-20-12 Yushima, Bunkyo-ku, Tokyo 113, Japan

Copyright © 1992 D. H. Maling

All Rights Reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in
any form or by any means: electronic, electrostatic, magnetic
tape, mechanical, photocopying, recording or otherwise,
without permission in writing from the publishers.

First edition 1973
Reprinted 1980
Second edition 1992

Library of Congress Cataloging-in-Publication Data

Maling, D. H.

Coordinate systems and map projections by D. H.
Maling - 2nd ed.

p. cm.

Includes bibliographical references and index.

1. Map projection. 2. Grids (Cartography) |. Title.
GA110.M32 1991

526'.8-dc20 91-9291

British Library Cataloguing in Publication Data
Maling, D. H. (Derek Hylton)

Coordinate systems and map projections.—2nd ed.

1. Map projections

I. Title

526.8

ISBN 0-08-037234-1

The cover illustration is an extract from the map compiled
by D. Eckhardt and published as the cover illustration
for EOS, Transactions of the American Geophysical
Union, Vol. 64, No. 25, 1983. Copyright © American
Geophysical Union

Printed in Great Britain by B.P.C.C. Wheatons Ltd., Exeter



Preface

The original version of this book was written in response to a need for
suitable textbooks to cover the requirements of the British national and
technical certificates in cartography and surveying which had been created
in the early 1970s. It was intended that the British Cartographic Society
should sponsor publication of a series of titles, but, in the event, only this
book ever appeared. In the Preface to the 1973 edition I described the
reasons for writing this book as follows:

It can be argued that the subject of Map Projections is better documented than some
other fields in cartography: why then produce another book on the subject rather than
concentrate on these other fields? There are two reasons why this is desirable. The first
is that a textbook for the professional cartographer might reasonably be expected to be
up to date in its treatment of the practical tasks of choosing projections for specific
purposes, computing and plotting them as the preliminary to compilation. Few of the
textbooks which are available satisfy these needs. The second reason is that a book of
somewhat higher standard is needed for the professional cartographer of tomorrow
than has hitherto been regarded as adequate for geography students. Very little has
been published in Britain since the beginning of the twentieth century which treats with
the mathematics of map projections at an intellectual level higher than the requirements
for plane geometry and trigonometry associated with the Ordinary Level Syllabus of
the General Certificate of Education. Consequently the subject of map projections often
appears to the intelligent outsider as a rag-bag of separate and apparently unrelated
geometrical exercises which has very little to do with the kind of map projections which
are used for published maps. The weaknesses in the systems of classification evinced by
many English textbooks suggest that the relationship between different projections is
also not very clear to the authors. Analysis of the distortions and deformations which
are inherent to all map projections are usually dealt with qualitatively rather than
quantitatively. The methods of construction which are described are those of the school-
room rather than the drawing office.

During the years which followed Coordinate Systems and Map Pro-
Jjections was much used by many people who had occasion to learn
about map projections but who were not necessarily National Certificate
students. For example it was used as an introductory textbook for several
university geography courses. Since the feedback to the author was com-
ing from these other sources, rather than the National Certificate courses,
it became apparent that a much more comprehensive work was needed.
There have been particularly insistent demands for some information
about the transformations from one projection to another and from one
geodetic datum to another needed by surveyors and those involved with
GIS.

xiii
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Seventeen years have elapsed since publication of the first edition. The
intervening years have witnessed a profound change in the availability
and use of digital computing, with concomitant changes in cartographic
practice. There has also been a technological revolution in surveying
practices which owes as much to the changes in opinion about what might
be needed from a survey as to the development of new instruments and
methods.

Of course digital computers have been around for more than 40 years;
for example the author had first used them for work on map projections
in the early 1960s, and by some standards was already late on the scene.
In those days the work was all done by batch processing on what we now
call mainframe computer systems. The later developments of on-line
working and, particularly the availability of microcomputers immediately
to hand, have revolutionised the way in which we carry out computations.

A major thesis presented in Chapter 8 concerns the construction of
map projections. 1 argue that, provided the appropriate coordinate
expressions are known, construction is purely a mechanical task, whether
this be done by on-line graph plotter, or by a trainee draughtsman using
spring-bow dividers and a scale to plot the master grid coordinates upon
a sheet of plastic. This runs counter to the tradition of learning a unique
way to construct each projection which smacks of the way trade secrets
used to be handed on to apprentices. Thus we might suppose that the
apprentice cartographer of the late sixteenth or seventeenth centuries
would be regarded as being a right and proper person to ply his trade
when he knew and could recite the rules for constructing the Stereo-
graphic, Ortelius’ and the Sinusoidal projections and did not confuse one
of them with another. This kind of approach differs little from that still
to be found in many books on map projections.

The chapters about practical construction and computing projection
coordinates are now two of the most out-of-date parts of the first edition.
In the early 1970s such important innovations as the programmable
pocket calculator had only just reached the UK, and the first micro-
computers were still 5 years away. The methods described in the first
edition still needed access to tables and, for the benefit of the majority
who did not yet have access to a digital computer, there was serious
consideration of the relative merits and economies to be obtained from
calculating coordinates with the aid of logarithms or mechanical cal-
culators; the comparative advantages of solving spherical triangles using
haversines rather than the conventional trigonometric functions. All the
coordinate computations and even the equations to determine spheroidal
parameters such as radii of curvature and meridional arc distance can be
done efficiently on a pocket calculator costing no more than £10. More-
over, the draughtsman may not necessarily plot the projection coordinates
manually. The automated methods in cartography imagined in the 1960s
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have now evolved into Geographical or Land Information Systems.
Much of the work may be done using graphics packages to produce a
suitable monitor display rather than a paper map. The subsequent stages
of map use by comparison and evaluation of different mapped images
for a particular purpose are to be found in handling GIS or LIS layers.
It means that the conventional paper map is going to be replaced more
and more, so that it seems possible that in another 20 years most maps
as we know them will have become rarities to be consulted in libraries.

However, it is unrealistic to imagine that all GIS work can be handled
by microcomputer. Since the files comprising individual layers in such
systems may each comprise millions of pixels, there is need to process
such data economically and in terms of transforming them geometrically,
so that one layer is properly registered to another. Because of the demands
upon space and storage, different and more economical numerical
methods are needed to handle very large files than was traditionally used
in mathematical cartography. The so-called rubber-sheeting methods,
based upon numerical interpolation between control points, has divorced
much of the work from the classic methods of computing map projections.
Although some of the methods are considered towards the end of the
book, the treatment is by no means exhaustive. Moreover, before plung-
ing headlong into these methods, it is wise to heed Paul Curran’s warning
(Curran, 1987) that although the current geographical information sys-
tems bandwagon has much to offer by way of models and analysis:

It has generated a plethora of empirical studies in which vast amounts of data have
been sandwiched together, just because it was computationally possible to do so.

The principal growth area for new surveying practices has been at sea,
where the absence of visible marks at the surface, and the need to operate
out of sight of land, has led to the development of a new branch of the
subject —marine geodesy. The impetus for this development has of course
been economic; the need is for extremely accurate surveys to locate trial
borings, well-heads, pipelines and drilling rigs required for the com-
mercial exploitation of the offshore oilfields. Because some of the most
valuable sites are to be found in places far beyond the conventional and
practical limits of national control surveys, the need to relate such surveys
to properly defined projection systems has become an important aspect
of locating points or boundaries on the sea bed.

Like the first edition, the present book is concerned with principles and
practical methods rather than with the formal description of the 50 or so
individual map projections which have been commonly used. Thus it is
not until Chapter 10 that the derivation of any specific map projection is
described in any detail. Here only three are described, and primarily to
demonstrate the methods of analysis which may be employed to define a
map projection to meet a specific requirement. Far more important than
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the facility to carry out an elaborate geometrical construction, or to treat
systematically with all the important projections, is the appreciation of
the patterns of distortion, and thereby to choose a suitable projection to
show a particular country or distribution. Here again, the greater flexi-
bility provided by on-line handling of GIS files gives advantages over
traditional cartographic practice. In Chapter 11 the reader is warned that
it is an unfamiliar luxury to choose the projection to be used as the base
of a new map. This is because recompilation of detail to a different
projection by traditional methods was so slow, and therefore expensive,
that such a step was not undertaken lightly. Today it can be done quickly
and efficiently, albeit to produce an ephemeral display upon a screen.
Moreover it is now possible to consider two entirely different approaches
to this problem. First, there is the time-honoured task of choosing which
projection will show the desired feature with the least amount of defor-
mation. The second is the opposite procedure; to seek to exaggerate a
feature so that the resulting map is a caricature of what occurs on the
ground.

One chapter which has remained virtually unaltered from the first
edition concerns the use of map projections in navigation, and it contains
a summary of the techniques used in Dead Reckoning navigation. Even
in the early 1970s some reviewers considered it to be out of date and
therefore irrelevant, but obviously missed the point that it was these
traditional methods of navigation, not modern avionic systems, which
made exacting demands upon chart use, and this stemmed directly from
the nature of the projections used for navigation charts. Methods which
did not differ greatly from those which had been used at sea in the late
fifteenth century had survived from the beginning of air navigation until
about 1950, and lasted for another quarter-century at sea. In the 1950s
the greater speed of jet aircraft rendered graphical solutions too slow,
and soon the electromagnetic version of the doppler effect was harnessed
to measure track and ground speed directly. A decade later doppler was
used to fix position both at sea and in the air with reference to clusters
of artificial satellites, and it has now transformed geodesy and surveying,
too. Since the late 1950s the character of marine transport has also
changed. Nowadays there are no ocean-going passenger vessels, small
coastal carriers or tramp steamers. Only huge tankers and bulk carriers
remain, and these are naturally equipped with modern navigation aids.
Consequently the kind of navigation carried out in a wet and pitching
charthouse with a blunt pencil on a grubby chart has gone, and with it the
special graphical techniques which were peculiar to the use of Mercator’s
projection. Yet the graphical methods of DR navigation were vitally
dependent upon knowledge of the special properties of the map pro-
jections in use.

There are now few of us left who used graphical DR navigation to find
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our way over mainland Europe, at night, in bad weather and against
hostile opposition. Those of us who used them and survived bomber
operations are all now aged about 70. When we have gone, the methods
which we used will run the risk of being forgotten. Let this chapter remain
unaltered as some small tribute, and a memorial for those navigators to
whom a computer was a small analogue device for solving triangles of
velocities, who were never really sure of their track or ground speed and
to whom obtaining a fix had an entirely different meaning to its modern
usage in the language.

In addition to the names of those former colleagues who helped in
many ways in the production of the first edition, I would like to add that
of Martin Coulson, whose advice and encouragement in recent years has
been invaluable.

DEREK MALING
Defynnog, Powys
21 June 1990



The Symbols and Notation used in This Book

The number in parentheses denotes the page where the symbol was first
defined or introduced.

a major semi-axis of ellipsoid (2); maximum value for
scanner angle (390); coefficient (395) (422)

a maximum particular scale (99)

A coefficient for coordinate transformations (38);
coefficient for meridional arc distance (71); coefficient
for Gauss—Kriiger projection (342); A,-A4, Meade’s
coefficients for Transverse Mercator projection (444)

A scale factor for stereographic projection (251)

b minor semi-axis of ellipsoid (2); coefficient (282)
(395) (422)

B coefficient for coordinate transformations (38);

coefficient for meridional arc distance (71); coefficient
for Gauss-Kriiger projection (342); B,-B, Meade’s
coefficients for Transverse Mercator projection (446)

b minimum particular scale (99)

c polar radius of curvature of ellipsoid (65); constant
(147); scale factor (284); coefficient (395) (422)

C coefficient for coordinate transformations (38);

coefficient for meridional arc distance (71); coefficient
for Gauss—Kriiger projection (342); C,—C; Meade’s
coefficients for Transverse Mercator projection (448)

C integration constant (199); convergence (320)

d distance between two points on a map (283); lateral
offset of scan lines (393); coefficient (395) (422);
slope distance between two points on the ground (317)

d’ horizontal distance between two points (317)

d” distance between two points corrected for height above
reference figure (317)

D coefficient for coordinate transformation (38);

coefficient for meridional arc distance (71); arc distance

between two points on the surface of a spheroid (76);

distance from sateliite to centre of earth (372); D,-D;
xviii
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Symbols and Notation Xix

Meade’s coefficients for Transverse Mercator projection
(447)

eccentricity of ellipsoid (64); coefficient (395)

second eccentricity of ellipsoid (65)

scale error (109)

Easting coordinate (31); coeflicient for coordinate trans-
formation (38); coefficient in Sodano’s formula for
foot-point latitude (446)

Gaussian fundamental quantity of the first order (97)
flattening of ellipsoid (2); direction cosine (192);
coefficient (395)

indication of a function (80)

coefficient for coordinate transformation (38); indi-
cation of a function (416); coefficient in Sodano’s for-
mula for foot-point latitude (446); scale factor (448);
F,—F, Meade’s coefficients for Transverse Mercator pro-
jection (445)

Gaussian fundamental quantity of the first order (97)
coefficient in Sodano’s formula for foot-point latitude
(446); G,—G, Meade’s coefficients for Transverse Mer-
cator projection (448)

direction cosine (192)

Gaussian fundamental quantity of first order (97)
direction cosine (192); height above reference surface
317

height of satellite (389)

particular scale along the meridian through a point
(98)

complex variable (i = —1) (344)

harmonic of a satellite orbit (14)

particular scale along the parallel through a point
(98)

particular scale along a standard parallel (204); scale
factor for Transverse Mercator projection (340)
coefficient (390); constant (428)

chord distance between two points on the surface of a
spheroid (75)

Kavraisky’s constant for locating standard parallels
(242)

A.cos ¢ (443)

scale-factor in coordinate transformation (39); mer-
idional arc length on spheroid (70)

distance between centre of map and specified particular
scale (283)
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Symbols and Notation

number of points analysed or used (46); ellipsoidal
parameter (a—b)/(a+b) (65)

constant of the cone (203)

Northing coordinate (31)

parameter used in Rodrigues matrix (192)

area scale (104)

rotation and scale coefficient used in grid-on-grid trans-
formation (42); coefficient for Gauss—Kriiger projec-
tion (342); longitude function in UTM tables (362);
Py-P; coefficients in n and ¢ used for the Transverse
Mercator double-projection (350)

parameter used in Rodrigues matrix (192); isometric lati-
tude (216)

rotation and scale coefficient used in grid-on-grid trans-
formation (42); coefficient for Gauss—Kriiger projection
(342); Eastings term in UTM tables (362)

meridional quadrant, being the length of the meridi-
onal arc from the equator to the geographical pole
(350)

radius vector in polar coordinates (33); radius of a small
circle (59); radius of generating globe (82); parameter
used in Rodrigues matrix (192)

radial distance from the principal point of a photograph
to an image point (373)

radius of a sphere (5); radius of the spherical earth (5);
coefficient for Gauss—Kriiger projection (342)

rotation matrix (42)

scale in the hyperbolic projection (283)

arc length on sphere or spheroid (23); linear distance
(326)

arc length on equator (60)

arc length on meridian (59)

arc length on parallel (59)

distance corresponding to s on plane (97); linear dis-
tance (322)

denominator of principal scale (82)

arc (23); maximum linear displacement (23); tan ¢
(345); scanning time of sensor (390); ¥/ (417)

bearing of visual observation (327)

bearing of rhumb-line corresponding to ¢ (327)

reduced or parametric latitude (74); coefficient used in
Williams’ solution of Transverse Mercator formulae
(351); coefficient used in relating image points to the
grid coordinates of the principal point of a photograph
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« (alpha)

B (beta)

7 (gamma)

0 (delta)

Symbols and Notation xxi

(380); mathematical model comprising translation,
scaling and rotation (428)

angle on sphere measured from principal direction (101)
angle on plane corresponding to u and measured from
principal direction (101)

coeflicient used in Williams’ solution of Transverse Mer-
cator formulae (351)

coefficient used in Williams’ solution of Transverse Mer-
cator formulae (351)

abscissa of cartesian coordinates (29); an angle (73);
numerous combinations of symbols such as x’, x”, x¢x;
X; X, etc. are defined in the text

ordinate of cartesian coordinates (29); numerous com-
binations such as y; Y; 7, etc. are defined in the text
angular distance measured at the centre of a sphere (5)
maximum radial distance to the edge of an area to be
mapped (233)

third dimension cartesian coordinate (74); (X+iY)
(426)

azimuth (54)

grid convergence (33); angle of rotation of coordinate
axes (40); bearing (54); coefficient for meridional arc
distance (71); Euler’s angle of rotation about the Z-axis
(185); Wray’s aspect parameter (190)

coefficient for meridional arc distance (71); angle on
globe between principal direction and meridian cor-
responding to f” on map (103); maximum angular extent
of a map (110); Euler’s angle of rotation about the X-
axis (185); Wray’s aspect parameter (190); bearing (322)
angle between the axes of a plane cartesian system (43);
convergence (62); coeflicient for meridional arc distance
(71); Euler’s angle of rotation about the Y-axis (185);
Wray’s aspect parameter (190)

finite difference in the quantity which follows, e.g. d¢ is
a difference in latitude (51); coefficient for meridional
arc distance (71)

definite difference in the quantity which follows, e.g. Ax
is a difference in x; scale term in Rodrigues matrix (193);
D/R, where D is the height of a satellite above earth’s
centre (372); displacements in MSS images (404)
maximum difference in arc length (23)

minimum separation of parallel circles in an area to be
mapped (233); displacement of images on aerial photo-
graphs owing to earth curvature (374)
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¢ (epsilon)
n (eta)

0 (theta)

0 1,02,03,04505
A (lambda)
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# (mu)
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¢ (xi)
7 (pi)
p (rho)
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o (sigma)
@ (phi)
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Symbols and Notation

orbital inclination of satellite track (379); base of natu-
ral logarithms (417)

ordinate of curvature (333); n = (v/p)"? = (¢’? cos? ¢)'?
(3495)

bearing (23); vectorial angle in polar coordinates (33);
an angle (100); angle of intersection between a meridian
and parallel on a map (103); angle of elevation between
two ground points at different heights (317); heading of
a satellite (379); scanning angle (389)

Bowring’s auxiliary angles used in the determination of
Gauss—Kriiger equations (347)

longitude (52); independent parameter in Rodrigues
matrix (192)

Wray’s aspect parameter (190); longitude on an auxiliary
sphere corresponding to geodetic longitude (1) on the
spheroid (350)

particular scale (99); independent parameter in Rodri-
gues matrix (192)

principal scale (83)

transverse radius of curvature of an ellipsoid (68); inde-
pendent parameter in Rodrigues matrix (192)

spherical angle used in change in aspect (192)
3-14159...

meridional radius of curvature of an ellipsoid (68); por-
tion of the orbital arc of a satellite (379)

radius vector on a ground plane corresponding to r on
the aerial photograph (373)

constant (282)

latitude (50); geodetic latitude (66)

foot-point latitude (33); authalic latitude (415)

Wray’s aspect parameter (190); latitude on an auxiliary
sphere corresponding to geodetic latitude on the spheroid
(350)

colatitude (51)

geocentric latitude (66)

maximum angular deformation (105)

Wray’s aspect parameter (190)

Coordinate systems

(E,N)
(x,y)
(x’,y)
(X, Y, 2)

grid coordinates of a point (31)

plane cartesian coordinates of a point (29)

master grid coordinates (182)

three dimensional cartesian coordinates (17); model
coordinates in photogrammetry (368)



(X*, Y*, Z*)

(z, o)
(r, 6)
(o, 4)
(@, A)
(r,¢)

(u, v)

Symbols and Notation xxiii

rotated three-dimensional cartesian coordinates fol-
lowing change in aspect (191)

bearing and distance (spherical polar coordinates) (178)
plane polar coordinates of a point (33)

geographical coordinates (52)

geographical coordinates on an auxiliary sphere (350)
row and column coordinates locating pixels in a scanned
image (394)

plate coordinates on an aerial photograph (380)



CHAPTER 1

The Figure of the Earth and the reference
surfaces used in surveying and mapping

The precise shape of the earth is usually referred to as a ‘geoid’, a term which
conveys nothing beyond earth-shaped.
G. P. Kellaway, Map Projections, 1946

Introduction

Geodesy is the science concerned with the study of the shape and size of
the earth in the geometrical sense and with the study of certain physical
phenomena, such as gravity, in seeking éxplanation of fine irregularities
in the earth’s shape. The subject is intimately linked with surveying and
cartography. A major part of the evidence about the shape and size of
the earth is based upon surveys. Indeed in some European languages the
word ‘geodesy’ is practically equivalent to English usage of the word
‘surveying’. Knowledge about the earth’s size and shape is indispensable
if we are to make maps of its surface. Put in the simplest form, it is
necessary to know the size of the earth in order to make maps of it at
known scale.

We know that the earth is a nearly spherical planet upon which are
superimposed the surface irregularities created by land and sea, highland
and lowland, mountains and valleys. However these topographical irregu-
larities represent little more than a roughening of the surface. Since the
radius of the earth is about 6371 km and since the major relief features
do not rise more than 9 km above or fall more than 11 km below sea
level, they are relatively less important than, say, the seam on a cricket
ball or the indentations on the surface of a golf ball. For example, if the
earth is drawn to scale as a circle of radius 6 cm, which is almost as large
as the width of this page can accommodate, the variation in line thickness
of the circumference which would show the entire height range from
Mount Everest to the Mariana Trench at the same scale is less than
0-2 mm.

The idea that the earth is a sphere dates from the Greek geometers of

1
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the sixth century BC. The first serious attempt to measure the size of this
sphere was the classic experiment carried out by Eratosthenes in the third
century BC.

Towards the end of the seventeenth century, Newton demonstrated
that the concept of a truly spherical earth was inadequate to explain the
equilibrium of ocean surface. He argued that because the earth is a
rotating planet, the forces created by its own rotation would tend to force
any liquids on the surface towards the equator. He showed, by means
of a simple theoretical model, that hydrostatic equilibrium would be
maintained if the equatorial axis of the earth were longer than the polar
axis. This is equivalent to the statement that the body is flattened towards
the poles.

The ellipsoid of rotation or spheroid

The three-dimensional body which corresponds is called an ellipsoid of
rotation, which may be represented in section by means of an ellipse, as
shown in Fig. 1.01 and elsewhere. The amount of polar flattening may
be expressed by

f=(a—b)a (1.01)

where a and b are the lengths of the major and minor semi-axes of the
ellipse. The value of f, which is also known as the ellipticity or compression
of the body, is always expressed as a fraction. For the earth this value is
close to 1/298. We now know that the difference in length between the
two semi-axes is approximately 11-5 km, or the polar axis is about 23 km
shorter than the equatorial axis. It is interesting to reflect that this differ-
ence is about the same order of magnitude as the total relief variation on
the earth. Thus at the approximate scale of 1/100 000 000 which represents
the earth by a circle of radius 6 cm, the amount of polar flattening is also
about 0-2 mm. Since 0-2 mm is also the width or gauge of line used for
fine linear detail on maps, it follows that at very small scales the ellipticity
of the earth is about the width of the line used to draw the elliptical
section, and is therefore negligible. This is an important conclusion from
the cartographic viewpoint because it permits the assumption that the
earth can be regarded as truly spherical for certain purposes. We examine
the validity of this assumption elsewhere (pp. 20-26). However, we must
also note that any attempt to represent the terrestrial ellipsoid dia-
grammatically by a recognisable ellipse must involve considerable exag-
geration. This, in turn, leads to possible misinterpretation of some of the
illustrations depicting the geometry of the ellipsoid.

Since the ellipsoid of rotation approximates so closely to the sphere it
may be called a spheroid. Since the flattening occurs at the poles rather
than the equator, the figure may be further defined as an oblate spheroid.



The Figure of the Earth 3

N

f=

S
o
o

f=1/2

f=1/5

-
o
de— oY

S

F1G.1.01 The relationship between ellipses of different ellipticity. This diagram
shows three ellipses with ellipticity f = 1/2, f = 1/5 and f = 1/50 which have the
same major axis. The semi-axes of the ellipse for which f=1/50 are a and b
respectively. These ellipses are compared with a circle of radius a which is also
an ellipse with ellipticity f = 0. Since most Figures of the Earth have flattening
of approximately 1/298 it is clear from this figure that the terrestrial ellipsoid
cannot be depicted in section at this scale in a form distinguishable from the
circle. Consequently the terrestrial ellipsoid is usually represented by an ellipse
with ellipticity 1/5 or thereabouts.

In the literature of surveying and cartography no real distinction can be
made between the use of the two words ‘ellipsoid’ and ‘spheroid’. Both
are used indiscriminately.

Measurement of the earth’s figure

Eight kinds of evidence have been used to determine the shape and size
of the earth. These are:

measurement of astro-geodetic arcs on the earth’s surface,
measurement of variations in gravity at the earth’s surface,
measurement of small perturbations of the moon’s orbit,
measurement of the motion of the earth’s axis of rotation relative to
the stars,

measurements of the earth’s gravity field from the orbits of artificial
satellites,

measurement of very long astro-geodetic arcs derived from world-
wide triangulation networks,
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® satellite tracking using lasers and doppler,
® measurement of the height of the sea surface using radar altimeters
mounted on artificial satellites.

Certain of the methods are only of value in determining the parameter f.
The purely astronomical methods, which are the third and fourth in this
list, are now only of historical interest. By for the most important modern
method of determination is that of radar altimetry, which has been used
since 1973.

Astro-geodetic arc measurement

This is the classic method which has been used to measure both the size
and shape of the earth. It is based upon comparison of the angular distance
between two points on the earth’s surface and the linear distance between
them. The first may be determined by making astronomical observations
at the two places; the second by using the precise methods of surveying
referred to as geodetic or first-order survey. The radii of curvature of the
earth may be determined from these data and finally the lengths of the
semi-axes of the ellipsoid can be calculated.

If the earth were a true sphere its radius would be easily calculated, for
it is a fundamental property of a sphere that all points on the surface are
equidistant from its centre, i.e. it has constant radius. This is why it is
possible to illustrate any section passing through the centre of a sphere
by means of a circle as in Fig. 1.02. If there are two points, 4 and B, on
the surface of the sphere with centre O, the angular distance between the
points is the angle AOB measured at the centre and the arc distance

@

FiG. 1.02 A sphere in section, illustrating the relationship between angular
distance and arc distance for all parts of the surface. A7 represents a tangent to
the circumference at A.
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between them is the shorter part of the circumference passing through
the points. The relationship between these two measurements can be
determined from

arc length AB=R .z (1.02)

where R is the radius of the sphere and z is the angle 4O0B expressed in
radians. For example, if z = 10° = 0-174 53 radians and R = 6371 km,
the arc distance AB = 1111-9 km. This is constant for all values of z = 10°
on this sphere irrespective of where the arc is situated. The converse
argument is used to derive the radius from the measured length of the arc
and an angular measurement. Thus, if astronomical observations made
at both 4 and B showed that they lie 10° apart and survey has established
that the distance between them on the surface is 1111-9 km from equation
(1.02)

R = 1111:9/0-17453
= 6371 km

The radius of the sphere has been defined as the line OA. A further
property of the sphere, which may be proved from the elementary plane
geometry of the circle, is that when a tangent meets a circle at the point
A, the normal or perpendicular to that tangent passes through the centre
of the circle. Thus on the sphere, OA4 is perpendicular to any tangent at
A and if a series of tangents are drawn through A in any other directions
than the section illustrated, these all lie in the same tangent plane.

This is important in defining the radii of curvature of an ellipsoid which
are lines perpendicular to the tangent plane at any point on the curved
surface. They are not represented by straight lines joining points on the
surface to the geometrical centre of the body. Thus at some point 4 on
the surface of the ellipsoid, we may imagine the tangent plane. In Fig.
1.03 the normal to this tangent plane is AQ’Q. A further difficulty in
defining the geometry of the ellipsoid is that two separate radii may be
distinguished. One of these is the radius of the arc NAE; the other is the
radius of the arc which is perpendicular to NAE at A. The radii are
represented in Fig. 1.03 by the lines AQ’ and AQ respectively. Thus
both arcs occupy the same position in space but have different lengths.
Moreover the line 4Q’Q does not pass through the geometrical centre of
the ellipse, O, except where the normal to the surface forms either NO or
EON, which are the semi-axes of the figure. It follows that the radii of
an ellipsoid are variable quantities. Two separate radii may be defined
for each point on the surface and both of these vary with position of the
point. It follows, therefore, that the linear distance corresponding to a
given angular distance varies with latitude. For example, the angle z = 10°
between the points 4 and B near the equator represents an arc distance
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F1G. 1.03  An ellipsoid in section illustrating the meridional radius of curvature
AQ’ and the transverse radius of curvature 4Q of the point 4. The shaded plane
is perpendicular to the meridian NAE through 4.

of approximately 1105-6 km on the surface of the terrestrial ellipsoid,
whereas the same angle between the points 4° and B’ near the poles
corresponds to about 1169-9 km. In other words the arc distance cor-
responding to a given angle increases polewards. This relationship is shown
on Fig. 1.04, but care must be taken in the interpretation of the diagram.
The ellipse is shown with exaggerated compression and the directions of
the radii of curvature are shown as the normals to the tangents at the
four points. These must be produced to give the points of intersection at
K and M’ to show that AKB = 10° = A’M’B’. The reader should avoid
making the implied comparison with Fig. 1.02, which suggests that the
radii of the ellipse are the lines AK, BK etc., and hence the fallacious
interpretation of them as being much greater or less than OA4 or OB in
Fig. 1.02.

This preliminary excursion into the geometrical properties of the sphere
and ellipsoid, which are examined in greater detail in Chapter 3, has been
made to indicate the kind of evidence to be obtained from astro-geodetic
arc measurement. The variation in arc length with latitude was one of
the first important pieces of evidence to be obtained which supported
Newton’s theoretical gravitational model. It was obtained from the
measurement of two arcs, in Peru and Lapland, by the French during the
early part of the eighteenth century.

The period of greatest activity in this field of geodesy occurred during
the nineteenth and early twentieth centuries. Figure 1.05 illustrates those
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FiG. 1.04 An ellipsoid in section, illustrating how a given angular distance, z,

is represented by a longer arc distance A’B’, near the poles than is the arc

distance, 4B, near the equator. Note that the radii of curvature K4 and M’ A4’ also

increase towards the poles but are exaggerated here owing to the exaggeration of
the ellipticity of the ellipse.

arcs measured and used for the determination of different Figures of the
Earth before 1914. At that time the only satisfactory method for control
surveys of the requisite order of precision was by means of triangulation.
The preferred type of measurement was the arc of the meridian, i.e. a
survey made between points which differed greatly in latitude but little
in longitude, so that the network of connecting triangles was aligned
along the same meridian.

Note how early in the history of science some of these determinations
were made. For example, the Great Trigonometrical Survey of India had
measured the arc following the meridian 78°E, which crosses the centre
of the subcontinent from Cape Cormorin to Kalianpur by 1825 and
reached the Himalaya by 1841. Everest made the first determination of
the Figure of the Earth which bears his name, and which is still in use.
during a prolonged spell of sick leave from his post as Superintendent of
the Great Trigonometrical Survey. For a biographical commentary on
Everest and this work see Heaney (1967).

The small differences in the size and ellipticity which are shown in
Table 1.01 result from subtle and small variations in the earth’s figure
causing it to depart from the perfect spheroid. Consequently the par-
ameters for each Figure of the Earth depend upon which astro-geodetic
arc measurements are used in the determination, and therefore the differ-
ent figures tend to fit certain parts of the world better than others.

We may also observe that many of the recent figures differ by only a
few centimetres in the length of the semi-major axis, a, and the flattening
by 1 part in 10~7. The differences are so small that it might be argued
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The Figure of the Earth 9

whether there is any justification for regarding these as deserving separate
recognition. The figures have been determined by modern methods of
using tracking of artificial satellites and by direct measurement of the
height of the sea surface using radar altimetry. Associated with these
developments also came the methods of position fixing by measuring
doppler frequency changes and therefore distances between craft and
groups of artificial satellites. The systems known as the Navy Navigation
System (Transit or Navstar) and the Global Positioning System (GPS)
both require the motions of such a satellite (or its ephemeris) to be referred
to a specific Figure of the Earth. Conversely, the correct figure must be
used with a particular navigation system to achieve the expected accuracy.

Gravity measurements

Newton arrived at the conclusion that the earth was an ellipsoid from the
theoretical consideration of the forces created by the earth’s mass and
rotation (see page 64). Consequently the second important line of evidence
concerning the shape of the earth has been from the study of variation
in gravity.

In the absolute sense gravity varies with latitude, and it was early
recognised that pendulum clocks which kept good time in Europe tended
to lose time near the equator.

Gravity also affects the observations made during astro-geodetic arc
measurement. It is this relative aspect of gravity which is particularly
important in geodesy. In order to make observations in survey and
astronomy it i1s necessary to align the instruments to a common datum.
This datum is provided by the tangent plane to the earth’s curved surface
at the point of observation. This plane is geometrically important and
also has a physical significance because it is defined by the spirit bubble
mounted on a theodolite which is adjusted by means of its footscrews
until the bubble is stationary in the centre of its run. The normal to
this tangent plane is defined by the plumb-line which is used to set the
instrument precisely over the point from which the observations are to
be made. In short, we use gravity to determine both the horizontal plane
of reference and the direction of the vertical. These adjustments are
normal survey practice and are especially important in geodetic measure-
ments. Supposedly horizontal angles observed by a theodolite which 1s
not level contain errors which consequently deform the shapes of the
triangles which have been observed. This, in turn, leads to errors in the
computed distances between points and therefore to error in the computed
positions of the stations. Precise determination of the horizontal plane of
reference is an even more vital requirement in field astronomy because
position is determined from measurements of vertical angles (or the
altitudes) of stars. The datum for these measurements is the horizontal
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12 Coordinate Systems and Map Projections

plane indicated by the spirit bubble, or an artificial horizon formed by a
liquid such as a dish of mercury which takes a horizontal position through
gravitational attraction. The consequence of a slight inclination of either
plane of reference leads to incorrect measurement of the vertical angle,
and therefore to the determination of an incorrect astronomical position
for the instrument.

The geoid

If the height of each observation station is reduced to sea-level, then by
virtue of the fact that the instruments have always been carefully levelled,
this is equivalent to stating that the observations have all been reduced
to the same equipotential surface where the spirit bubble is always at rest.
This surface is known as the geoid. It can be likened to the surface of an
imaginary world ocean without land, waves, swell, tides or currents.

If the earth were such a homogeneous body, then from classical gravi-
tational theory the surface of the geoid would coincide everywhere with
the surface of an ellipsoid of rotation. However, this is not so. The
geological history of the earth has led to irregular distribution of crustal
rocks having different densities. The denser rocks exert their own attrac-
tion upon a spirit bubble, although this is small compared with the main
gravitational component. Thus an instrument may appear to be level
because the spirit bubble is at rest in the centre of its run, but the plumb-
line is not normal to the spheroid for it is deflected slightly towards the
areas of greater rock density. Since the amount of deflection varies from
place to place it follows that the geoid has an undulating surface. Figure
1.06 illustrates how these undulations occur. Since all the observations
have been made with reference to the geoid, additional measurements of
the gravity anomalies which are present can be used to correct for and
increase knowledge about the location of the undulations of its surface.
Stokes first demonstrated these principles in 1849 and methods of cor-
recting for anomalies have been used since 1855, when Pratt attempted
to account for discrepancies in the position of Kalianpur observed in the
astro-geodetic arc measured by the Great Trigonometrical Survey of
India. The attempts to explain this and similar inconsistencies in other
arc measurements led to the formulation of the different theories of
isostasy, which have been a major preoccupation of geodesists and also
revolutionised early theories about structural geology.

It follows that the increasing refinement of determination of the Figure
of the Earth, characterised by the small variation in f, obtained after
1900, is largely owing to the increasing availability of gravity data and
the methods of employing these to adjust the astro-geodetic observations.
By the late 1940s sufficient information about gravity anomalies had been
collected to attempt the compilation of maps showing the undulations of
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F1G. 1.06  The relationship between the geoid and reference spheroid, indicating
the deflection of the perpendicular to the geoid and resulting undulations in the
surface of the geoid.

the geoid by means of contours. However, these maps were confined to
showing quite small parts of the northern hemisphere (USA and western
Europe) where there was sufficient density of information to attempt an
interpretation. Ultimately it might have been possible to proceed with
such work on a world-wide basis (indeed this has been in progress ever
since those days), but it would have been a very long job. At that time
there was still very little information about gravity anomalies in the
southern hemisphere and, moreover, there were still practical difficulties
about obtaining satisfactory gravity measurements at sea. This means
that there were no data from more than 70% of the earth’s surface. The
first successful measurements of gravity from a surface ship were only
made in November 1957.

The contribution of satellite geodesy

The first artificial satellite had been launched a month earlier. This
heralded a major step forward in advancement of knowledge about the
earth’s true shape and size, and moreover removed the dependence upon
the slow acquisition of terrestrial measurements. The principal reason for
this advance was that artificial satellites overcame a fundamental difficulty
in deciphering the earth’s gravity field, namely that because terrestrial
measurements were confined within it, this made it impossible to make
any external measurement of the forces. This difficulty had long been
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realised; indeed, attempts had been made to employ the moon, as our
natural satellite. However, the attempted measurements were somewhat
insensitive because of the distance between the earth and the moon.

The evidence of satellite tracking

The earliest, and some of the most significant, information was obtained
within a year or two, simply from observation of the changing orbits of
the early Sputnik and Vanguard satellites. Satellite tracking has yielded
much information about the gravity potential of the earth, and led eventu-
ally to remarkably detailed mapping of the geoid throughout the world
(Figs 1.10 and 1.11). The second use of satellites has been to provide
survey beacons which have been located high enough above the earth’s
surface to be simultaneously visible from places which are hundreds, or
even thousands, of miles apart. Consequently these may be used to create
unified and world-wide networks of geodetic stations (Fig. 1.07). This
made it possible to compare astro-geodetic arcs for much greater distances
on the earth’s surface than had ever been accomplished in classic geodesy.

If the earth were spherical, and of homogeneous density, the orbit of
a satellite would be an ellipse fixed in shape and size, and with its plane
in a fixed direction in space. Any departure of the earth from a spherical
form causes changes in the gravitational forces acting upon the satellite,
and therefore upon its orbit. The main effect of the earth’s ellipticity upon
a satellite orbit is to make the plane of the orbit rotate about the earth’s
axis in the direction opposite to the satellite’s motion, while leaving the
inclination of the orbit to the equator virtually constant. This phenom-
enon is known as the precession of the nodes (Fig. 1.08). The rate of
procession can be measured with extraordinarily high precision using
quite simple equipment because the movement is regular and therefore it
can be allowed to accumulate over long periods and therefore many orbits
between observations. The value of ellipticity, obtained only a year or so
after the first artificial satellite had been launched, was f = 1/298-24, or
practically the same as that determined by Helmert in 1907 and Krasovsky
in 1940.

Study of the variations in gravity potential with latitude has led to the
evaluation of a series of numerical coefficients, called J-harmonics, which
describe a sequence of increasingly elaborate geometrical figures. The J,
coeflicient, which defines the ellipticity of the spheroid, is by far the most
important of these, but some of the other coefficients are not wholly
insignificant. They indicate that the earth is somewhat asymmetrical in
section, for the North Pole lies about 10 m further from the equator than
can be accounted for by ellipticity of 1/298-24, but the South Pole lies
about 30 m nearer the equator than this amount of compression suggests.
The resulting meridional section (Fig. 1.09) has been likened to the shape
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Fig. 1.08 Diagrammatic representation of the precession of the nodes. The

equator-wards force, resulting from the earth’s equatorial bulge, causes an arti-

ficial satellite to cross the equator on a different meridian at each successive
orbit.

20 Metres

FiG. 1.09 Inferred meridional section of the earth based upon the calculation

of variations in gravity potential with latitude but excluding any variation with

longitude. The diagram indicates the departure (in metres) of this section (full
line) from an ellipse with compression 1/298-24 (broken line).
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of a pear. However, despite much publicity of this conclusion in the early
days of satellite tracking, not too much importance should be placed on
it, for the pear shape is an average value of the undulations of the geoid
determined with reference to latitude and ignoring any variations in
longitude. More important to modern concepts of geodesy were the
attempts to produce a contour map of the height of the geoid for the
whole world. A study first undertaken by Kaula in 1961 produced the
world map illustrated in the first edition of this book. Events have pro-
ceeded so quickly that much more detailed geoid contours are now
available, as illustrated in Fig. 1.11.

It is also important to appreciate that in classical geodesy the arc
measurements were self-contained and isolated from one another by
whole continents and oceans. Consequently the results of these arc
measurements were fitted to a comparatively small portion of the
spheroid, and it was impossible to relate the results precisely to the axis
of rotation and the true centre of the earth. Thus a particular Figure of
the Earth would not be referred to the true axis of rotation but to a
parallel axis which was displaced from the true axis by a small but
unknown amount, as illustrated in Fig. 1.10. For the creation of reliable
satellite navigation systems the ephemeris of each satellite has to be
known more precisely. This includes knowledge about the true position
of the earth’s centre. Consequently there has been a revolution in the
concept of how the earth’s figure should be defined, and a variety of new
figures have emerged from these data. Modern determinations of the

Geoid
Clarke 1866 spheriod
CE \\
\ )
o™ y
X GRS 80 spheroid

CE is the centre of the ellipsoid at the intersection of the axes.
CM is the centre of mass at the origin of the XYZ coordinates.

F1G. 1.10 A comparison between the earth’s figure based upon an equipotential

ellipsoid, having a geocentric origin to the X,Y,Z, cartesian coordinate system,

and a figure derived from classical methods of geodesy in which the centre is
offset from its true position.
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earth’s figure from the time of GRS67 onwards are truly geocentric and
based upon the theory of an equipotential ellipsoid. Consequently the
modern trend is to describe new figures initially in geophysical terms and
only later derive the various parameters to which we are accustomed.
See, for example, the detailed description of the IUGG specification for
GRS80 by Moritz (1980a).

Global triangulation schemes

A vital stage in satellite geodesy was therefore the accomplishment of
various world-wide control surveys. The period of greatest activity in this
field was in the late 1960s, during which time the whole task of providing
a world-wide geodetic control network was accomplished. A variety of
different techniques were employed by the different branches of the US
administration involved in this renaissance of geodesy. One system fav-
oured the use of large satellites, like the PAGEOS satellite which was a
balloon that became inflated when in orbit, and therefore large enough
to be simultaneously photographed against the background of stars by
several BC-4 ballistic cameras. Because of the designation of the camera
this project is now commonly referred to as the BC-4 Triangulation. The
ANNA satellite contained a brilliant flashing light bright enough to be
identifiable as a beacon in space. The third idea was to use electronic
distance measurement to track a comparatively small reflecting satellite.
This was exemplified by the SECOR system used to establish an equatorial
control network round the world. Later still came the application of even
more sophisticated methods of distance measurement using lasers and
doppler, resulting in much greater accuracy in the methods of satellite
tracking. Indeed the roles were reversed; for the positions of many modern
satellites are now determined so accurately that distance measurements
from clusters of them are now used to locate positions on the earth’s
surface. This has been developed through the various satellite navigation
systems to the Global Positioning System (GPS) which promises to offer
the world-wide ability to fix position with an accuracy equivalent to
conventional geodetic surveys.

Satellite altimetry

Satellite altimeters directly measure the distance between a satellite and
the instantaneous sea surface. By accurately determining the satellite
orbit with respect to positions on the earth’s surface it is possible to
estimate the height of the sea surface above the reference ellipsoid. There-
fore the construction of contours for the surface of the geoid can be used
to estimate the deflection of the vertical at sea. The first experiments in
radar altimetry in space were made from SKYLAB, launched in
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November 1973. Two later satellites have so far been equipped with radar
altimeters, first GEOS-3 and secondly SEASAT.

We have already likened the equipotential surface of the geoid to that
of an imaginary planetary ocean. The question which naturally arises is
whether the actual surface of the ocean is anything like the idealised
surface, and what corrections can be applied to the natural disturbances
caused by ocean currents, tides and other surface displacements in order
to describe the geoid.

The GEOS-3 mission was designed to improve knowledge of the earth’s
gravitational field, the size and shape of the terrestrial geoid, deep ocean
tides, sea state, current structure, crustal structure, solid earth dynamics,
and remote sensing technology. The GEOS-3 altimeter was designed to
provide the means for establishing the feasibility for directly measuring
some of these variables. In every respect the altimeter far exceeded its
expectations. For example, although the system was designed for a 1-
year lifetime, the satellite was still operational after more than 33 years
in orbit. In addition, the altimeter showed that it was capable of providing
valid measurements over land and ice. Neither of these capabilities had
been predicted prior to launch.

The second reason for the success of altimetric measurements is the
speed with which the information may be collected by satellite compared
with conventional marine gravity measurements. A research ship on a
cruise to the Antarctic might be away for 6 months, but only a small
proportion of that time will be spent making observations in the intended
working area. By contrast a satellite will not only make the journey 14
times in one day, storing its results and transmitting them to a convenient
ground station, but will also sense all the other oceans several times in
the same day.

The principal limitation in the use of GEOS-3 altimetry was the restric-
ted cover of the world’s oceans which could be sampled. These data were
largely confined to the North Atlantic, the Gulf of Mexico, North Pacific
and the Bering Sea. The restricted cover was owing to the small number
and the location of ground stations capable of receiving signals from the
satellite.

An important method of analysis of the altimeter records is the study
of those crossover points where the height of a point on the sea surface
has been measured when the satellite has occupied different orbits (Marsh
et al., 1982a,b) allowing the precision of the surfaces to approach that of
the measurements themselves (25 cm for GEOS-3, better than 10 cm for
SEASAT). Analysis of the sea height residuals at the crossing points of
the satellite arcs provides information about the long-term variability of
sea height in these regions.

A more sensitive radar altimeter was fitted aboard SEASAT, which
was launched on 27 June 1978; the network of receiving stations had also
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been much extended. The satellite operated successfully until 10 October
1978, when a power failure brought transmission to a stop. A mission
overview has been given by Lame and Born (1982), who have shown that,
despite its short lifetime, SEASAT acquired a wealth of data on sea-
surface winds and temperature, ocean wave heights, internal waves, atmo-
spheric water content, sea ice, topography of the ocean surface and shape
of the marine geoid. Analysis of the output from the radar altimeter was
one of the most important aspects because most of the world’s oceans
were sampled; therefore better estimations were obtained for the slope of
the marine geoid for the world as a whole.

Concurrent with these developments, various attempts were made to
produce increasingly more sophisticated models of the geoid. These have
been conventionally named after the American laboratories which have
undertaken the study; notably the Smithsonian model earths, labelled
SAO, after the Smithsonian Astrophysical Observatory and the GEM,
or Goddard Earth Models, after the Goddard Space Center operated by
NASA.

The choice of a suitable reference surface for mapping

Because we now know that the geoid is a complicated body, we must
enquire how it should be described mathematically for the practical
purposes of mapping. Since there is no merit to be gained from increasing
the mathematical complexity of a solution beyond defining those irregu-
lanities which have practical significance, it is desirable to consider the
possibility of using various reference surfaces which describe the shape
and size of the earth adequately for different purposes. The variations
illustrated by the contour pattern in Fig. 1.11 may amount to only a few
metres but they are of considerable importance to the study of dynamic
geodesy and some branches of geophysics. For work in these fields there
are cogent reasons for defining as a reference surface a triaxial ellipsoid
in which the observed undulations along the equator may also be fitted
to an ellipse. However, these variations in the geoid are practically neg-
ligible for most other kinds of survey and in cartography.

Thus we may simplify the problem and consider three different ways
in which we may define the shape and size of the earth for different
purposes in surveying and mapping. These are:

1. a plane which is tangential to the earth at some point;
2. a perfect sphere of suitable radius;
3. an ellipsoid of rotation of suitable dimensions and ellipticity.

They are listed in ascending order of refinement. Thus a suitable ellipsoid
fits the shape of the geoid better than does a perfect sphere of equivalent
size. The sphere, in turn, is a better approximation of the curved surface



21

-opn)ISuO[ JOJ SAN[BA ,0f PUEB IpNINE[ J0] Sanjea 0T S1BIPUL $3d1) [eurdIew NQ ‘UMoOYs jJou st 3[naNeId [nj YL
‘yoodse [ewIou oy ul (g "oN) uonssfoid jueisipinbe Jesupui£?) Jo 9911e)) 21eld 2Y) uodn paseq st dews plIOM SIY | (8L61) 91PH-Sury
:90IN0§ "$S7'867/1 SUIIaNERY JO ploIoyds UBSW B 9A0QE SIIPW U SIYSH [opowr 01 WHD wey poindwod aoejins plodny  [[°[ DI

<081 06 0]

The Figure of the Earth




22 Coordinate Systems and Map Projections

than is a plane. On the other hand, the list is in order of increasing
mathematical difficulty. The formulae needed to define position, to deter-
mine the relationships between distances and angles on a plane are simpler
than are those for the curved surface of a sphere. These, in turn, are
simpler than the corresponding formulae for an ellipsoid. Bearing in mind
the desirability of using the simplest reference figure which is compatible
with accuracy of representation, it follows that we should inspect the
properties of each kind of reference surface to discover when it should
be used.

The plane reference surface

At first sight it may seem to be a retrograde step to assume that the earth
is a plane. However, it is a very useful assumption because it is so simple
to use. For a start we can avoid the whole problem of map projection
transformations which are the preoccupation of this book. Figure 1.02
indicates that near a point A on the curved surface of the earth, the
tangent to the curved surface also lies close to it. The tangent plane and
the curved surface only diverge from one another as one moves away
from A. It may therefore be argued that if we only need to make a survey
of a small area around A, it is reasonable to assume that we are making
the measurements on the tangent plane. The survey can be computed by
the methods of plane trigonometry (it is then called plane surveying).
Plotting of the map can be done simply by converting ground dimensions
to the required map scale. The crux of the argument is the definition of
what is represented by the immediate vicinity around the point 4. It
implies that the plane assumption should be confined to the preparation
of maps of small areas, but it still remains necessary to define what we
mean by a small area. We defer quantitative consideration of this problem
until Chapter 15 (pp. 310-335) because it is desirable to consider this
assumption together with the kinds of map projections which are used
by surveyors, and which are also important in large-scale cartography of
small areas.

The spherical assumption

We have already commented upon the fact that, at a scale of
1/100 000 000, the lengths of the two axes of the spheroid differ by about
the width of the lines needed to draw them. This implies that the main
use of the spherical assumption will occur in the preparation and use of
comparatively small format maps showing large parts of the earth’s
surface such as maps of the world, a hemisphere, a continent or even a
large country, such as appear in atlases. The question to be answered is:
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‘What is the approximate maximum scale at which the spherical assump-
tion can be justified?’

This subject was tackled theoretically by Driencourt in 1932, and his
work has been reproduced more recently by Richardus and Adler (1972).
Therefore we need not reproduce the detailed mathematical argument
here. Driencourt showed that the largest errors occur in lines which are
orientated east or west from a point, and that the maximum linear
displacement, At is directed northwards or southwards. He calculated the
following results for a line of length s (km). The following table shows
that the discrepancy At at a distance of approximately 100 km from the
central point, does not exceed 1| mm or 1075, At a distance of 1000 km
from the point the proportion At/s is approximately 10~ 7, which is about
three times the present precision of electronic distance measurement.

Tobler (1964) also investigated the problem from the point of view of
mapping the United States of America. He calculated the distances and
bearings between 200 randomly selected places in the USA for both the
sphere and spheroid. He used the Clarke 1866 Figure of the Earth, which

(b}

(a)

F1G. 1.12  The geometry of the reference surfaces; a comparison between the
spheroidal (a) and spherical (b) surfaces showing corresponding observations. A
line of length s is measured from the point O along a bearing (. On the spheroid
this bearing traces the arc t, at the distance s from O; on the sphere the cor-
responding arc is t,. The difference At = t,—t, in these arc lengths is a measure
of the discrepancies which occur if the earth is assumed to be spherical. The
amount varies with the size of the angle 0 and with the distance s. (Source:
Driencourt and Laborde, 1932.)
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TABLE 1.02  Driencourt’s values for the maximum discrepancies
between the lengths of great circle arcs and geodesics

s (km) 103-7 184-4 3279 5831 1039-9
At (m) 0-001 0-01 0-1 1-0 10-0

was that still in use for North America at the time. For the spherical
assumption he chose as the radius R = 6378-:206 km, which is the equa-
torial radius for the Clarke 1866 figure. The results are given in Table
1.03.

If we assume 0-2 mm to be the smallest linear distance which can be
measured on a map without special magnification, and if we take Tobler’s
average difference in distance as being equal to this, then the largest scale
at which the USA might be represented by a projection of the sphere is
1/370000. However, the spread of the results, characterised by the values
for the standard deviation and the two extremes, indicates that it would
be optimistic to use the spherical assumption at such a large scale and
imagine that no errors in mapping would arise from this cause. The
figures suggest that, strictly speaking, the spherical assumption ought to
be confined to use for maps of scale 1/15000000 or smaller, which is
about the scale at which 7-8 km is represented by 0-2 mm. In practical
cartography, however, the limit of using the spherical assumption is
usually taken to be a scale of 1/5000 000 or thereabouts. Using Tobler’s
data it can be argued that at this scale about two-thirds of the points lie
within 1 mm of the spheroidal position if mapped on a sphere. We shall
see later that this discrepancy is small compared with the displacements
which are inherent in the process of representing a large country at a
small scale on a plane map.

A third approach has been adopted by Snyder (1987a), who has applied
the same distortion theory which we shall investigate in the study of plane
map projections to the projection of the spheroid to the sphere. This gives
rise to a series of values for particular scales and distortion characteristics

TABLE 1.03  Comparison of the differences

in distances and bearing between 200 points

in the United States of America computed
on both a sphere and a spheroid

Distance Angular

difference difference

(km) (degrees)
Average 0-074 0-006
Standard deviation 3053 0-083
Minimum —6100 —0-150

Maximum + 7-844 +0-159
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which are introduced in Chapter 5. The numerical characteristics thus
obtained may be used to determine the maximum scale at which the
distortion cannot be recognised on a map.

The spheroidal assumption

Obviously the spheroid fits the shape of the geoid more closely than does
a sphere. Consequently this is the reference surface which ought to be
employed in surveying. This is because the survey of a country is first
computed to determine the positions of the control points in their natural
dimensions or, as it were, for a map of scale 1/1. Consequently the small
discrepancies in position (or closing errors) may be expressed to the
nearest millimetre or less on the ground and not absorbed by scale
reduction as would happen if the results of a survey were first plotted on
a sheet of paper. In order to appreciate the quality and precision of the
work it is desirable to make these computations with respect to a par-
ticular reference spheroid rather than risking the introduction of errors
arising from assuming a flat or spherical earth. At the later stage of
producing topographical and other map series, extending throughout an
entire country, continuity of information across boundaries of adjacent
map sheets is important. Hence it is desirable to use the reference ellipsoid
as the basis of such maps. It is also used for the compilation of large-
scale navigation charts and small-scale charts to the approximate limit of
1/4 000 000—1/5 000 000.

Table 1.01, on page 10, indicated that about 15 different reference
ellipsoids may be encountered in world mapping, and about six of them
are in common use. From the point of view of practical cartographic
work the correct spheroid for use should always be clearly stated in the
mapping specification. From the point of view of evaluating existing
topographical or other maps as source documents for compilation, ref-
erences such as the United Nations’ summaries on the status of world
topographic mapping (United Nations, 1970, 1976, 1979) and the national
survey reports provide the information which is needed. In an analysis
of the UN data Brandenberger and Gosh (1985) have estimated that
nearly 93% of the earth’s land area has been mapped on only four of the
classical figures. These are:

International spheroid 28-3%
Krasovsky spheroid 25%

Bessel spheroid 19-9%
Clarke 1880 spheroid 19-4%.

Originally a particular spheroid was selected by the national survey
because the parameters of the figure fitted the observed data better than
any other. A typical example of this was the use of the Airy spheroid for
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Great Britain, for this had been derived from astro-geodetic distances
obtained during the original Primary Triangulation of the country. In
the days before digital computing, once a national survey had been
computed using a particular reference figure it would have been extremely
inconvenient and costly to convert the positions of many hundreds or
even thousands of control points to another spheroid. It was done in the
USSR when the decision was taken in 1942 to transform the entire control
network from the Bessel spheroid to the newly described Krasovsky
figure, but that was a practically unique example. It follows that usually
a national survey continued to be based upon a particular figure long
after the original reasons for its choice had ceased to be valid.

This argument carries less weight today than before digital computing
became commonplace. It is interesting to note in this context that prob-
ably the first major use of digital computing in geodesy and surveying
was the work undertaken by the US Army Map Service shortly after
World War II, when they accomplished the formidable task of reducing
the national surveys of western Europe to a common datum on the
International Spheroid. This is known as the European Datum, 1950, or
ED50. This network had hitherto been based upon a multiplicity of
different points of origin, reference spheroids, units of measure and pro-
jections. We shall also refer to the change in the North American Datum
from NAD 27 into NAD 83 during the 1980s, which amongst other
changes includes that from the Clarke 1866 figure to GRS 80.

Nevertheless the use of different figures still remains. It arises partly
from historical accident, partly from inertia and partly for reasons of
national prestige. Sometimes it also happens that the chosen spheroid fits
the shape of the geoid in that country better than any of the others.

Finally the continuity of use is important. Indeed Chovitz (1981) has
argued that this continuity is at least as important as the formal accuracy
of recording the length of the major semi-axis and flattening. Some of the
better-known figures, such as Airy, Everest and the three useful Clarke
determinations, have been slightly modified on many occasions for use
in different places or for different purposes. Typical examples include
retaining the original value for the semi-axis, a, but using it with a slightly
different (rounded) value for f. Other changes have been enforced by the
discrepancies introduced to the dimensions of the semi-axes through
converting from British Standard into metric units or vice-versa. For
example, Strasser (1975) has shown how US legislation concerning the
definition of the metre has created numerous difficulties in reconciling
different versions of the Clarke 1866 figure. Sometimes we know enough
about the history of a survey to understand where discrepancies have
arisen. More often it may be extremely difficult to reconcile these so that
mistakes are sometimes made in choosing the correct version of Everest
or Airy.



CHAPTER 2

Coordinate reference systems on the plane

It is impossible not to feel stirred at the thought of the emotions of men at certain
historic moments of adventure and discovery — Columbus when he first saw the
Western shore, Pizarro when he stared at the Pacific Ocean, Franklin when the
electric spark came from the string of his kite, Galileo when he first turned his
telescope to the heavens. Such moments are also granted to students in the
abstract region of thought, and high among them must be placed the morning
when Descartes lay in bed and invented the method of co-ordinate geometry.
A. N. Whitehead

introduction

In this chapter we review some of the fundamental ideas about the plane
coordinate systems which are used in surveying and mapping, both from
the viewpoint of studying the mathematics of map projections and the
practical tasks which arise in cartography.

Coordinates are a convenient method of recording position in space.
They may be used to locate position in two dimensions, such as a point
on a graph. An extension of this method to map use allows the location
of a place by its grid reference. Definition of coordinate position on the
surface of a three-dimensional body such as a sphere or spheroid is rather
more difficult. However, the reader should already be aware of the method
of describing location by means of latitude and longitude, which are
geographical coordinates. These are defined in Chapters 3 and 4, where
the differences between defining latitude on a sphere and on a spheroid
are introduced. In addition to providing a means of reference, coordinates
can also be used as a convenient way of solving certain geometrical
problems. The branch of mathematics known as coordinate geometry
analyses problems through the relationship between points as defined by
their coordinates. By these means, for example, it is possible to derive
algebraic expressions defining different kinds of curve which cannot be
done by Euclidean geometry. Coordinate geometry is an exceptionally
powerful tool in the study of the theory of map projections, and without
its help it is practically impossible to pass beyond the elementary descrip-
tive stage. Plane coordinate geometry is usually studied first through the

27
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medium of the conic sections or the definition of the different kinds of
curve formed by the surface of a cone where this has been intersected by
a plane. Two of the resulting sections, the ellipse and the circle, are of
fundamental importance to the theory of distortions in map projections.

There are an infinite number of ways in which one point on a plane
surface may be referred to another point on the same plane. Every
map projection creates a unique reference system which satisfies this
requirement and an infinity of different map projections could theo-
retically be described. However it is desirable to use some kind of coor-
dinate system to describe, analyse and construct each of these projections.
Any system to be used for such purposes ought to be easy to understand
and simple to express algebraically. For plane representation the choice
lies between plane cartesian coordinates and polar coordinates.

Plane cartesian coordinates

The reader will already be familiar with graphs as a method of plotting
two variables on specially ruled paper and with the National Grid on
Ordnance Survey maps. The graph and the National Grid are simple, but
special, examples of plane cartesian coordinates. In the general case, any
plane coordinate system which makes use of linear measurements in two
directions from a pair of fixed axes can be regarded as a cartesian system.
The coordinate system comprises sets or families of lines which intersect
one another to form a network when plotted. The only necessary con-
ditions which must be fulfilled are:

® that the two families of lines are distinct from one another;

@ that every line of one family should intersect every line of the other
family at one point only;

@ that no two lines of the same family should intersect one another.

Thus a cartesian coordinate system can comprise families of straight lines
or curves which may intersect at any angle. However, it is a distinct
advantage if the special case is chosen in which both families of lines are
straight and that they are orthogonal, or intersect at right angles. This
special case, characterised by ordinary graph paper and by the National
Grid on Ordnance Survey maps, may be called a plane rectangular car-
tesian coordinate system, or, in short, rectangular coordinates.

In Fig. 2.01 the origin of the rectangular coordinate system is the point
O, through which two orthogonal axes, OX and OY, have been plotted.
These axes define the directions of the two families of lines. Since the axes
are straight lines and perpendicular to one another, it follows that all the
lines composing one family will be parallel to one another and that all
the points of intersection within the network are made from lines which
are perpendicular to one another. The position of a point 4 is defined by
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Fic. 2.01 Plane rectangular cartesian coordinates.

the two linear measurements OM and ON made from the origin to the
points M and N on the two axes, which are drawn perpendicular from A4
to the axes. Clearly AM is parallel to OY and AN is parallel to OX. The
mathematical convention is to refer to the horizontal axis OX as the X-
axis or abscissa. The vertical line OY is called the Y-axis or ordinate.
However, the convention is not always observed in the study of geodesy,
surveying and map projections. In some books the notation is reversed
and OX is the axis pointing upwards on the page. There are cogent
reasons for this change in notation, to do with the direction in which
angles are measured, as described on p. 34, but the change in axes is
extremely confusing to the beginner. We shall use the standard math-
ematical, or graph, convention throughout most of this book and refer
to the coordinates of the point A as being (X, y) according to the axes
illustrated in Fig. 2.01. It is not until Chapter 15 that we have to change
the notation for particular purposes. Even then we use it sparingly.

The units into which the axes are subdivided for the purposes of linear
measurement are quite arbitrary. For example, graph paper is available
with both millimetre and inch ruling, with various combinations of mul-
tiples and fractions of these. The National Grid is measured in metres.
We shall make considerable use of units of earth radius, R, in which
coordinates are expressed in multiples or decimals of R without having
to convert into units suitable for plotting on a sheet of paper.

There is a sign convention to be observed in the use of rectangular
coordinates. This states that the X-axis is reckoned positive towards the
right and the Y-axis is positive towards the top of the page. In other
words, a point in the top right-hand quarter of a graph illustrated by Fig.
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2.01 is defined by positive values of x and y, whereas a point in the bottom
left-hand quarter has negative values for x and y. The quarters are termed
quadrants and these are numbered 14 in a clockwise direction com-
mencing with the top right quadrant. Hence the sign convention is;

Ist quadrant  +x, +vy
2nd quadrant +x, —y
3rd quadrant —x, —y
4th quadrant —x, +vy

The map grid as an example of plane rectangular
coordinates

A grid has been defined in the Glossary of Technical Terms in Cartography
(Royal Society, 1966) as * ‘a cartesian reference system using distances
measured on a chosen projection’.t In the first edition of this book the
author disagreed with the last seven words in this definition, but as a
major contributor to the Glossary felt a certain loyalty to the deliberations
of the working group, limiting himself to making only a mild criticism of
this particular definition. Professor E. H. Thompson (1973) was not
restrained by such inhibitions, and in his important review of the first
edition of this book made the following characteristically forthright state-
ment:
It is sad to see an author, who has clearly thought out so much of the problem for
himself, committing old faults because his courage fails him at the last minute. He says
‘For the moment it will suffice to regard a grid as a system of rectangular coordinates
superimposed upon a plane corresponding to the ground’. Why ‘For the moment™?
Grids are simply sets of squares and to paraphrase Gertrude Stein, a square is a square
is a square. It is indeed a pity that we are also given a definition from the Royal Society
Glossary of Technical Terms in Cartography. ... Whatever has a projection to do with
a grid? The sin is Dr Maling’s only in so far as he perpetuates it and he barely does that
for he says, about the above definition, *.. . the last seven words. .. are probably necess-
ary but tend to confuse the issue’. They are not necessary and they do indeed confuse
the issue by being quite wrong.

One family of lines is orientated approximately north-south and the
other family, by definition, is perpendicular to them. Measurements along
the axes are made in some units used for ground measurement. Nowadays
the metric system is used almost everywhere, but formerly some grids
used feet or yards as the unit. By virtue of the approximate orientation

tFrequent reference will be made in this book to the labours of the United Kingdom
Working Group on Terminology and to the preparation of the Glossary of Technical Terms
in Cartography. published by the Royal Society in 1966. The definitions in that work were
subsequently combined with other national contributions to the Multilingual Dictionary
of Technical Terms in Cartography, published by ICA in 1973. The preferred terms relating
to map projections which appear in those works are used throughout the book. Definitions
which are those used in the Glossary are prefaced with the symbol *.
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of a grid, the abscissa of a point is usually called its Easting and the
ordinate is its Northing. Thus E corresponds to x and N corresponds to
y in the mathematical and graph conventions. We will introduce this
substitution without further comment where it is appropriate to refer to
a point by its (E, N) coordinates rather than by (x, y). The order in which
the grid coordinates are recorded is often confusing to the beginner, who
has probably only just learnt to describe geographical position in the
order ‘latitude-followed-by-longitude’. If it is remembered that a grid
is like a graph, then the logic of using ‘Easting-followed-by-Northing’
matching the ‘x-followed-by-y’ graph convention is apparent.

We do not attempt to describe in detail how a grid reference may be
obtained from a map, for it is assumed that the reader can do this already.
Military manuals, such as Ministry of Defence (1973, 1978) are always
painstaking in describing this aspect of map use, for it is vital to military
communications. The practices adopted by the Ordnance Survey for use
with the National Grid are described in Ordnance Survey (1951) and
Harley (1975). This distinguishes the slightly different procedures to be
adopted at different map scales. Moreover many Ordnance Survey and
other national survey maps have the appropriate instructions, with a
worked example, printed in the margin.

Because a grid is a form of graph it must have an origin. Moreover if
the grid is to satisfy its purpose to serve as a national or international
standard of reference, the point of origin must be explicitly stated, to-
gether with the orientation of the axes at this point. It is this aspect of a
grid which introduces the confusing ideas in the second part of the
definition given on p. 30. For example, the National Grid (Fig. 2.02) has
its origin at the point with latitude 49°N, longitude 2°W. This is situated
in the Golfe de St Malo, about 20 km south-east of St Helier in Jersey.
The same point is also taken as the origin of the map projection used by
the Ordnance Survey for all topographical maps of England, Scotland
and Wales. We defer the projection part of the problem to a later chapter.
Here it is desirable to consider two properties of the grid, its orientation
and the system of numbering along the axes.

The ordinate of the system is orientated so that it coincides with the
meridian 2°W. It follows that since all meridians point towards true north
(see Chapter 3 for justification of this statement), the ordinate of the
National Grid also points towards true north. Since the grid is composed
of families of straight lines, it follows that all other vertical grid lines
point in the constant direction defined by the ordinate. This constant
direction may be called grid north. On the other hand all meridians
converge towards the geographical poles, therefore a meridian through a
point lying east or west of longitude 2°'W does not coincide everywhere
with a grid line through the same point. This gives rise to the angular
discrepancy between the meridians and grid lines which is illustrated
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F1G.2.02 The National Grid of Great Britain, showing the relationship between
the grid lines (broken) at every 100 km, and the graticule of meridians and
parallels (full lines) at 1° intervals of latitude and longitude.

in a much exaggerated form in Fig. 2.03. The angle is known as grid
convergence. Within the range in longitude occupied by southern England,
the amount of convergence is small, for example it is 2° 54’ near Lands’
End and nearly 3° on the Norfolk coast.

The choice of the meridian 2°W as the longitude for the origin is simply
because this lies near the middle of the part of the British Isles covered
by the National Grid. It is a line which passes through the Isle of Purbeck
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True North

Central meridian

0

F1G. 2.03 The relationship between true north, represented by the meridians
converging to the geographical pole, N, and grid north which is a constant
direction for any particular grid. Grid convergence is indicated by the angles, a.

in Dorset, through Birmingham, Berwick and Fraserburgh. From the
sign convention used with graphs this means that everywhere in Britain
lying to the west of the Birmingham-Berwick—Fraserburgh line, i.e. all
Wales, most of Scotland and much of England, would be assigned nega-
tive Easting coordinates and referred to in this inconvenient way. The
method of overcoming likely confusion is to imagine that the origin of
the National Grid has been shifted westwards until the whole country lies
in the first quadrant of the graph. In the example of the British National
Grid the shift in origin is 400 km to the west and 100 km to the north of
the point near the Channel Islands, so that zero on the National Grid lies
at a point located about 80 km west of the Scilly Isles. This is equivalent to
assigning the arbitrary coordinate values £ = 400000 m, ¥ = 100000 m
to the true origin and renumbering the grid lines. The point £ =0 m,
N = 0 m is referred to as the false origin of the grid to distinguish it from
the point in latitude 49°N, 2°W which is the true origin. They way in
which the shift has been applied may be imagined mathematically as the
parallel shift of each axis through the defined distances. This is called
translation of the axes.

Plane polar coordinates

Polar coordinates define position by means of one linear measurement
and one angular measurement. The pair of orthogonal axes passing
through the origin is replaced by a single line OQ, in Fig. 2.04, passing
through the origin O, or pole of the system. The position of any point 4
may be defined with reference to this pole and the polar axis or initial
line, OQ by means of the distance OA4 = r and the angle QOA = 0. The
line OA is known as the radius vector and the angle 0 is the vectorial angle
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0 Q

FiG. 2.04 Plane polar coordinates.

which the radius vector makes with the initial line. Hence the position of
A may be defined by the coordinates (r, #). The order of referring to the
radius vector followed by the vectorial angle is standard to all branches
of pure and applied mathematics. The vectorial angle may be expressed
in sexagesimal (degree) or centisimal (grad) units to plot or locate a point
instrumentally . *

In the theoretical derivation of map projections, where 6 enters directly
into an equation and is not introduced as some trigonometric function
of the angle, it is necessary to express this angle in absolute angular units,
or radians. This is because both elements of the coordinate system must
have the character of length.

The direction in which the vectorial angle is measured depends upon the
purpose for which polar coordinates are used. Usually the mathematician
regards + 0 as the anticlockwise angle measured from the initial line. This
is the sign convention which is used, for example, in vector algebra. On
the other hand, the navigator, surveyor and cartographer are accustomed
to measure a positive angle in the clockwise direction. This is because
direction on the earth’s surface is conventionally measured clockwise
from north or clockwise from a reference object. In many practical appli-
cations, formal recognition of the sign of an angle is unimportant because
the user can visualise the relationship between angles measured on the
360° circle. However, difficulties arise in automatic data processing
because the standard subroutines, for example those to convert from
rectangular into polar coordinates, invariably use the mathematical con-
vention. This kind of calculation, which is described in the next section,
is extremely common in surveying and cartography. Consequently the
user of a computer or calculator must be aware of the difference in
convention, how the instrument deals with such data and write suitable
program steps which overcome the difficulty. Similarly in writing programs
for digital processing it is frequently necessary to introduce a series of
tests and conditional statements to allow uninterrupted processing of
data which have been collected according to the clockwise convention.
The simplest way of overcoming the difficulty is to interchange the axes,
so that the x-axis points towards the north. This is equivalent to a rotation

*One right angle is representated by 90° in sexagesimal notation, 1008 in centisimal units
or n/2 radians. Many pocket calculators can operate in all three modes.
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FiG. 2.05 The relationship between plane rectangular and plane polar coor-
dinates with common origin and one common axis.

plus a reflection of Fig. 2.05, which may be verified by tracing this diagram
on a piece of transparent plastic.

Transformation from polar into rectangular coordinates and
vice-versa

Figure 2.05 illustrates the relationship between the rectangular and polar
coordinates of a point A. The rectangular coordinates of the point are
(x, y) referred to the origin O and the axes OX and OY. Superimposed
upon this is a system of polar coordinates in which the pole also lies at
O and the initial line coincides with OY. Then the polar coordinates of
A are (r, 6) where r=04 and 0 =angle YO4, AN=x and
AM = NO =y. It is evident from the right-angled triangle AON that

Xx=r.sinf (2.01)
y=r.cos0 (2.02)

The inverse transformation from rectangular to polar coordinates can be
accomplished using a variety of different formulae. For example

tan 0 = x/y (2.03)
r=y.sect (2.04)
r = x.cosecf (2.05)
r’=x+y? (2.06)
sinf = x/r (2.07)

cosf =y/r (2.08)
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Note that these expressions are based upon the assumption that the
angle # has been measured ‘clockwise-from-grid-north’. The coordinate
expressions corresponding to these in most mathematical textbooks are
derived from the complement of the vectorial angle, i.e. AOX = 90°—4.

From the expressions which may be used to transform from rectangular
to polar coordinates, the formulae (2.03) and either (2.04) or (2.05) used
to be the most convenient in numerical work, and the reader would be
warned against using Pythagoras’ Theorem (2.06) to find the length of
the radius vector because this was slow and inconvenient to calculate by
logarithms. Nowadays most pocket calculators can be used to obtain
square roots directly, so this caveat no longer applies.

Two-dimensional coordinate transformations

A series of numerical procedures which are commonly required in the
mapping sciences are the two-dimensional linear transformations from
one cartesian coordinate system into another. We provide here five exam-
ples of applications, and this list is by no means exhaustive. It includes:

(1) Determination of the positions of intersections of a grid to be
plotted on a map manuscript which has been compiled from and shows
a different grid. This is necessary for mapping the zone of overlap between
two grid systems and both of them have to be shown on the map.

(2) Determination of the positions of intersections of a new grid to be
plotted on a map manuscript originally compiled on a different grid which
has been superseded. Now that most national surveys are based upon
either the Universal Transverse Mercator (UTM) projection or the similar
Soviet Unified Reference System (SURS), the need for this conversion is
much less than it was in the early postwar decades, when many separate,
or local, grid systems were still in use.

(3) Conversion of the coordinate output of some other mapping process
so that the results car be used with a particular grid. A typical example
of this kind of work is when aerial triangulation has been carried out in
an analogue photogrammetric plotter. The output from this includes a
stream of (X, Y) model coordinates for control points which have been
observed in the plotter and whose positions are recorded with respect to
the axial movements of the plotter. These now have to be transferred to
the same system as the map grid in order to fit the photogrammetric
control to ground surveys. The concept of the analytical plotter which
has more or less replaced the older analogue instruments is based upon
continuous transformation from the plane of the aerial photograph to
that of the map by digital methods.

(4) Perhaps the most important application of all now arises in digital
mapping, in the use of vector digitised map information to refer digitiser
coordinates to the map grid. The majority of instruments functioning in
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FiG. 2.06 Diagrammatic representation of a vector digitiser used to measure
and output the coordinates of the position of the cursor. (Source: Maling, 1989.)

the vector mode comprise a special table containing the electronic hard-
ware which converts the positions of a measuring mark mounted in a
special cursor into rectangular coordinates defined by the manufacturer
of the table. Information about position is obtained by pointing to or
tracing the map detail (called /ine-following) with the measuring mark.
The coordinates of a single point or points along a line are recorded and
stored in digital form on tape or disc according to the (x, y) coordinate
system built into the instrument. Hence the (E, N) grid of a topographical
map is converted into the (x, y) coordinates of the digitiser and the precise
relationship between the two depends upon the way in which the map
sheet was placed upon and attached to the table. In order to reproduce
any of the map detail in a desired form it is necessary to convert back
from the (x, y) system of digitised coordinates into the (E, N) system of
the map grid. This is usually done by digitising the four corners of the
map and using these control points to determine the translation, rotation
and scale change components of the transformation.

(5) A second stage of this kind of digital mapping is contained in the
need to change from one map projection to another, from a source map
on one map projection to a new map which is compiled upon another.
We consider this particular application of the two-dimensional trans-
formations in detail in Chapter 19. Here we confine our attention to the
two simplest methods:
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® The linear conformal, similarity or Helmert transformation, expressed
in the general form:

X =A+Cx+Dy

Y = B—Dx+Cy} (2.09)
® The affine transformation:

X =A+Cx+Dy

Y=B—Ex+Fy} (2.10)

In these equations the known (x, y) coordinates of a point in one system
are transformed into the (X, Y) coordinates of a second system, through
the use of four or six coefficients A-F. In the first we see that the C and
D coefficients are common to both the equations for X and Y, but in
affine transformation it is necessary to introduce separate corrections for
each direction. The risk of confusion of the coefficient E in equation
(2.10) with the abbreviation for Easting should be noted.

Linear conformal, similarity or Helmert transformation
Both transformations may be resolved into three components:

@ translation of the axes or change of origin, corresponding to the
coefficients A and B in both equations (2.09 and 2.10);

® change in scale from one grid system to the other;

@ rotation of the axes of one grid system with respect to their directions
in the other.

The difference between the Helmert and affine transformations comes in
the treatment of scale changes and rotations of the axes.

Translation of the axes or change of origin

We have already described this transformation for it has been used to
introduce a false origin to a grid. This is simplest if the axes of the original
system and those of the final system are parallel to one another as
illustrated in Fig. 2.07. In this figure the point A4 has (x, y) coordinates in
the original system which has its origin at O. We wish to refer the point
to the second system in (x’, y') coordinates which have their origin at O".
The differences between O and O’ are the coordinate displacements x”
and y”. It follows that the new coordinates of 4 may be written

X =x+x" .11
Yy =y+y” (2.12)
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FiG. 2.07 Translation of the axes of a plane rectangular coordinate system.

The signs of x” and y” depend upon the direction in which the shift has
been made. However, in dealing with grids of topographical maps, the
false origin has usually been assigned to a position which lies to the south
and west of any point likely to be referred to the grid, thereby avoiding
the inconvenience of having negative grid references. It follows that
normally x’ > x and that y’ >y so that x” and y” are both positive
corrections. We may express the pair of equations (2.11) and (2.12) in the

( ’) ( ) ( ”) ( ' )

Change in scale from one coordinate system to another

Consider two points, 4 and B, which are common to two coordinate
systems. In the first system the straight line AB joins the pair of points
and in the second system the corresponding line is ab. If AB # ab, a scale
factor must be introduced to convert coordinates in the first system into
coordinates within the second system. This scale factor is

m = ab/AB 2.14)

from which it follows that
X'=m.x 2.15)
y=m.y (2.16)

In matrix notation this has the form

(") =m. /"> @.17)
y y

where the term m is appropriately called a scalar. A typical application
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of this part of the transformation is the conversion of (x, y) projection
coordinates, which are given in units of earth radius, into the (x’, y’)
system of master grid coordinates which are needed to plot points on a
master grid in millimetres. We shall see in Chapter 8§ that this is the
customary method of constructing a map to a required scale.

Rotation of the axes about the origin

We assume that the origin of each system is the same point, O, but the
axes have been rotated through the angle a. Thus OX becomes OX’ and
OY becomes OY", as illustrated in Figs 2.08 and 2.09. These two figures
illustrate the difference between the clockwise and anticlockwise rotations
of the axes. We shall study the effect of a clockwise rotation of the axes
in detail.

If A =(x, y) in the first system it is required to determine its (x’, y’)
coordinates after rotation of the axes to form the second system. From
equations (2.01) and (2.02) we know that x =r.sinf and y = r.cos®0,
where 0 is the angle AOY. Moreover the angle AOY’ = § —a. Therefore

X' =r.sin(0—a) (2.18)
y =r.cos(f—a) (2.19)

The sine and cosine of the difference between two angles are well-known
formulae from plane trigonometry. Here

sin{(@—o) = sinf.cosa—cosf.sina 2.20)
cos(0—a) =cosf.cosa+sinf.sina (2.21)
Y Y’
_[=X
a , /|y
8 a
yl

FiG. 2.08 Clockwise rotation of plane rectangular coordinate axes about the
origin.
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FiG. 2.09 Anticlockwise rotation of plane rectangular coordinate axes about
the origin.

Substituting these expressions in equations (2.18) and (2.19)

’

x'=r.sinf.cosa—r.cosf.sina (2.22)

’

y =r.cosf.cosax+r.sinf.sina (2.23)

From equations (2.01) and (2.02) we may now substitute x and y for
r.sinf and r. cos @ respectively. Thus

X' =X.cosx—y.sina (2.24)
y =Xx.sina+y.coso (2.25)

Note the order in which the terms for x and y are written. This corresponds
to the rules governing the order in which terms and coefficients are written
in matrices, so that these two equations have the matrix notation

(x:>=<C9sa —sinzx>.<x> (2.26)
y sin « cosa/ \y

The 2 x 2 matrix containing the trigonometric coefficients is known as the
rotation matrix. We turn now to the anticlockwise rotation of the axes
illustrated by Fig. 2.09, where the angle Y'OA4 = 8+ a. Using the same
arguments with the trigonometric expressions defining the sine and cosine
of the sum of two angles, the final equations are:

X'=Xx.cosa+y.sina (2.27)

’

y = —Xx.sina+y.cosa (2.28)
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which means that the rotation matrix is now

R=< Cf)SO( sina) 2.29)
—sina  cosa

We observe that the two elements in sinx have different signs and the
position of —sin a has changed between (2.26) which refers to the clock-
wise rotation and (2.29) describing the anticlockwise rotation.

Coordinate transformations involving all three displacements

We may now combine the effects of all three displacements to produce
the pair of equations

X’ =(m.x.cosa+m.y.sina)+Xx" (2.30)
y =(—m.Xx.sina+m.y.cosa)+y" (2.31)

Several different versions may be used to express the result in matrix
form. The simplest is to write

X’ m.cosa m.sinoa) (X x"
()R G A
y —m.sine m.cosa/ \y y
In many survey applications there is a convention of writing P = m.sina
and Q = m. cos a. Consequently the expression (2.32) may be written

DS DE6) e

The inverse transformation is that of determining the (X, y) coordinates
whose (x’, y') coordinates are already known. It may be required in
converting from one map projection to another, because this is often a
two-way process, as shown in Chapter 9. It can be shown that the inverse
transformation corresponding to (2.33) is

06 HOG) e

where Q' = cosa/m and P’ = sina/m.

Affine transformation

The assumption which is made in the Helmert transformation is that the
scalar, m, is a single, unique value. In other words the ratio ab/AB is the
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FiG. 2.10 The geometry of the affine transformation. Transformation (a) (x, y)
to (x’, y'). Transformation (b) (x’,y’) to (E’, N’). Transformation (c) (E’,N’) to
(E, N). (Source: Sprinsky, 1987.)

same whatever the directions of these lines. This is a reasonable assump-
tion to make in some work, but it may not be justified for other jobs. For
example in photogrammetry the location of image points on a film may
be affected by deformation of the film base by stretching and shrinking,
and this is not usually the same in all directions. In the extraction of
positional information by digitising a paper map, the influence of differ-
ential stretching or shrinking of the paper must be considered. This may
be large and unpredictable, as described by Maling (1989). For these
applications it is desirable to use the affine transformation because this
allows for different scales in the directions of the two axes, m, and m,.
This may also be combined with small departures of the coordinate axes
from the perpendicular, as illustrated in Fig. 2.10. Here we see that the
(x, y) axes intersect at an angle y # 90°. We need to determine six
coefficients to solve equation (2.10).

Grid-on-Grid Calculations

The linear conformal transformation from one cartesian system to
another is, as already stated, commonly used in cartography. From the
nature of the first problem, all these transformations may be called Grid-
on-Grid Calculations.

Although equation (2.33), with appropriate changes in notation from
x to E and y to N, specify the final equations need to convert from the
known (E’, N’) coordinates into the required (E, N) values, it is still
necessary to determine suitable numerical values for P, Q, E” and N”.

Provided that there are at least two points which are common to both
systems, these terms can be calculated and used to convert as many
additional points as are required. The method of solving the unknowns
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may be carried out as below:
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FiG. 2.11 The Grid-on-Grid problem. Stage 1, defining the relationship of two

points 4 and B, whose coordinates on both grids are already known. E’ and N’

denote the initial grid; E and N denote the second grid to which other points are
to be transformed.

In Fig. 2.11 the two points 4 and B are common to both grids. We use
the following notation to described each point:

Point  Ist grid 2nd grid
A E.LN; E., N,
B Ei, N Ey, Ny

The coordinate differences between the two points may be expressed as
follows, using the convention that the Greek letter J signifies the difference
between two coordinate values.

1st grid 2nd grid
E;—Ej = 0F’ E,—E, = 6E
N;—Ng = 0N’ N,—N, =N
These terms have the geometrical significance which is illustrated in Fig.
2.11. Using arguments similar to those already used to determine the
effects of rotation and scale change upon the coordinates, it can be shown
that

Q = [6E.6N'— N . 6E')/[0E" 2+ 5N} (2.35)
P = [6N.SN’+8E. SE']/[6E 2+ 0N"?] (2.36)
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FiG. 2.12 The Grid-on-Grid problem. Stage 2, indicating the relationship of
any point, P, whose coordinates on the initial grid (E;, N;) are known, to the
second grid upon which it must be plotted.

The translation terms E”, N”, corresponding to x” and y” in equations
(2.33) etc. may be found from

E'=E,~P.E,~Q.N; (2.37)
=E,~P.E,—Q.N; (2.38)
N’ =N,+Q.E,—P.N;, (2.39)
=N,+Q.E;—P.N; (2.40)

Hence the required equations to transform the (E’, N’) coordinates of
any other point, P (Fig. 2.12) to the (E, N) system are

E=Q.E +P.N+E" (2.41)
N=—Q.FE+P.N+N (2.42)

which, converted into matrix notion provides an expression like (2.33).
The equations (2.35)~2.38) have been given here without proof, but
their derivation can be found, for example, in Ministry of Defence (1978).
In Admiralty (1965) there is also described the method of solving the
coeflicients when there are three points common to both systems. If there
are more than three common points, such as occurs in vector digitising
and in the adjustment of aerial triangulation to many ground control
points, the determination of the coefficients from only two or three of
them is inadequate because the coordinates of any of those points may
contain small errors and the use of them will introduce error into the
transformation of all other points. Under these circumstances all of the
data which are available for the determination of P and Q ought to be
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taken into consideration. This involves a solution of the coefficients by
the methods of least squares, which is a more sophisticated numerical
solution based upon statistical error analysis.

The best procedure is to translate the axes of both system to a common
origin at the centroid of the n points, obtained simply by determining the
mean value of each coordinate. Thus for n points, labelledi = 1...n,

Eg = Y E/n (2.43)
Ng = ¥ Ni/n (2.44)

with similar determinations for Eg and Ng.

The individual coordinates, E;, N;, E;, N/ are now referred to these
centroids as origin and the analysis of the most probable values for P and
Q derived by standard routines. Modern textbooks on survey adjustments
and computations, e.g. Hirvonen (1971), Cooper (1974), Mikhail (1976),
Mikhail and Gracie (1981), and Methley (1986) all deal with the subject,
and this book deals later (Chapter 19) with polynomial transformations,
of which these are elementary examples.

The reader who is particularly concerned with the adjustment of vector
digitised coordinates measured from paper maps which may also have
been folded is referred specifically to the important paper by Sprinsky
(1987).



CHAPTER 3

Coordinate reference systems on the sphere

‘What’s the good of Mercator’s North Poles and Equators,
Tropics, Zones and Meridian lines?’
So the Bellman would cry: and the crew would reply
‘They are merely conventional signs.’
Lewis Carroll, The Hunting of the Snark

Introduction

It has been assumed in Chapters 1 and 2 that the reader already knows
something about the terms which are used to describe planes, arcs and
angles on the earth. For example, the idea of latitude and longitude;
parallels and meridians and the convergence of the meridians have been
introduced without formal definition. However, it is desirable to consider
these definitions and develop further our knowledge about the geometry
of the earth. There are two reasons for this. First, we need to introduce
a standardised system of algebraic notation for the different quantities
which will be used throughout this book. Secondly it is necessary to
demonstrate certain important geometrical differences between the sphere
and the spheroid. In order to appreciate the distinctions to be made
between these bodies it is essential to know precisely what is represented
by planes, arcs and angles on each of them.

Some of the properties of a sphere have already been described
in Chapter 1. These may be summarised as a preliminary to further
definitions:

@ A sphere is a solid body whose curved surface is everywhere equi-
distant from its centre.

@ It follows that any sphere has constant radius.

@ If a tangent plane meets any point on the curved surface, a line
normal to this plane at the point of tangency 1s a radius to the centre
of the sphere.

® The distance between two points on the sphere can be defined and
measured either as the angular distance or the arc distance. There is

47



48 Coordinate Systems and Map Projections

a simple relationship between the two measures of distance, which
has been given in equation (1.02).

Definitions of planes, arcs and angles on the sphere

If a plane intersects a sphere, the resulting section of the curved surface
which is traced on the plane is a circle. Two kinds of circle may be
distinguished; a great circle and a small circle. If the intersecting plane
passes through the centre of the sphere, the resulting section is the circle
whose radius is the largest which can occur and is equal to the radius of
the sphere itself. This is a great circle, illustrated by the outline of the
sphere in Figs 1.02, 1.03, and many other later diagrams. Only one great
circle can be drawn through any two points on the spherical surface which
are not diametrically opposite to one another. The shorter arc of the great
circle through two points is the shortest distance between the points on
the spherical surface.

If the plane does not pass through the centre of the sphere, the radius
of the resulting circle is less than that of the sphere. This is a small
circle, shown in Fig. 3.01 by the line EFGH. These points all lie on the
circumference of a circle with centre O".

The axis of any circle is the straight line passing through the centre of
the sphere at right angles to the plane of the circle. Thus, in Fig. 3.01, the
line POP’ is the axis to the great circle DABC. From the definition that
only one great circle can be drawn through a pair of points that are not
diametrically opposite, it follows that the axes of two or more great circles
cannot coincide. However, one great circle and any number of small
circles can have a common axis. From the definition of an axis it follows
that, in this special case, the planes of the great circle and all the small

FiG. 3.01 Great circles and small circles on the sphere.
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circles will be parallel to one another. Moreover if the planes are parallel,
the circumferences of the circles are also parallel.

The poles of any circle are the points where the axis to a circle intersects
the surface of the sphere. These are shown in Fig. 3.01 by the points P
and P’, which are the poles to the great circle DABC. From the definitions
that a sphere has constant radius and that the section of a great circle
passes through the centre of the sphere, it follows that the poles to a great
circle are equidistant from its plane. From the corresponding definition
of a small circle, clearly one pole is nearer than the other. If the great
circle DABC is further described as a primary or primitive great circle,
then any great circle which passes through its poles may be called a
secondary great circle. Since the poles are diametrically opposite to one
another any number of secondaries may be specified. In Fig. 3.01 the
great circle arcs PFAP'CH and PGBP’'DE are both secondaries to the
great circle DABC. Since the axis to the primary great circle coincides
with the plane of each secondary, it follows that the plane and therefore
the circumference of the primary great circle will also have planes and
circumferences which are perpendicular to the secondaries to that great
circle.

Geographical coordinates

Since the earth is a rotating body, the obvious datum from which we may
define its geometry is its axis of rotation. This axis intersects the surface
at two points which are the poles to a primary great circle whose plane
is perpendicular to the axis. The primary great circle is the equator and
its poles are the north and south geographical poles. The secondaries to
the equator are not given a single name but the word meridian describes
each semicircle of a pair which together form a single secondary. The
word meridian should be used in the restricted sense of being the arc of
any great circle passing through and limited by the geographical poles.
The complete secondary comprises one meridian together with its anti-
meridian.

It follows from the use of angles at the centre of a sphere to measure
distances between points on the curved surface, that a system of three-
dimensional polar coordinates may be used as a method of locating
position with respect to the centre of the sphere as origin. By extension
of the concept of plane polar coordinates described in Chapter 2, a point
may be located in space if we know fwo vectorial angles and the radius
vector. These are known as spherical polar coordinates in mathematics.
However, all points on the surface of the sphere are equidistant from the
centre. Therefore the radius vector is always equal to the radius of the
sphere and serves no useful purpose, in this special case of coordinate
location. Thus coordinate position on the spherical surface is uniquely
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defined by means of two vectorial angles. For these, two orthogonal
planes are chosen which intersect at the origin (i.e. the centre of the
sphere). One plane has already been defined and is the plane of the
equator. This 1s used as the datum of measurement of the vectorial angle
which we know as latitude. The other plane is that of the meridian chosen
as zero longitude.

Latitude

The latitude of a point may be formally defined as the angle measured at
the centre of the earth between the plane of the equator and the radius
drawn to the point. It is, for example, the angle A0Q in Fig. 3.02. This
definition applies only to latitude measured in a true sphere. It will be
seen later that it is necessary to use different definitions for latitude on the
spheroid. For most practical purposes, latitudes may be expressed in
sexagesimal units north and south of the equator. Centisimal units are
used for this purpose in certain countries or for certain purposes, but it
is important to realise that, just because a nation had adopted the metric
system and decimal notation for most other kinds of measurement, this
does not automatically mean that angles are measured in grads. Geo-
graphical coordinates expressed in centisimal units are the exception
rather than the rule. Algebraically the angle is usually denoted by ¢, and
this symbol is used to mean latitude throughout the present book. In order
to use a logical sign convention for algebraic purposes it is customary to
regard north latitude as + ¢ whereas south latitude is —¢.

FiG. 3.02 Latitude and longitude on the sphere. The plane of the Greenwich
Meridian is shaded.
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The difference in latitude between any two points is the quantity

00 = @, — ¢y (3.01)

where the symbol & indicates a finite angular difference between the
latitude of some point 4 = ¢, and another point B = ¢,, both angles
measured from the plane of the equator according to the definition given
above. If we need to refer to a very (infinitely) small change in latitude,
we introduce the notation of the calculus and state that as dp — 0 (which
is the mathematical shorthand for the statement ‘as the difference in
latitude approaches zero’) it may be represented by de¢.

For any given value of ¢ there are an infinity of points on the surface
of the earth each of which makes this angle with the plane of the equator.
The locus of these points is the circumference of a circle, the plane of
which is parallel to that of the equator. Consequently it may be called a
parallel of latitude, or simply a parallel. 1t follows that as the plane of
this circle is parallel to the equatorial plane they share a common axis.
Because the equator is a great circle, it follows that any parallel of latitude
other than the equator must be a small circle.

Since the plane of the equator is perpendicular to the earth’s axis of
rotation, the angle measured at the centre of the sphere between this axis
and the radius to a point in latitude ¢, such as NOA in Fig. 3.02, is the
complement of the latitude (90°—¢° or n/2— ¢ radians). This angle is
therefore called the colatitude of the point and will be denoted algebraic-

ally by 7.

Longitude

The longitude of any point on the earth’s surface represents the second
vectorial angle required to define position. This may be defined as the
angle measured in the plane of the equator between the plane of the
meridian through the point and the plane of some other meridian selected
as datum.

The choice of a datum meridian for measurement of longitude is arbi-
trary. Although we are generally accustomed to the use of the meridian
passing through the former site of the Royal Observatory at Greenwich
as the Prime Meridian for measurement of longitude, any other meridian
would be equally satisfactory. From the point of view of a national survey
and the production of topographical map series it can be argued that
no particular national advantage is served by relating longitude to the
Greenwich Meridian. For example, the longitude of Paris is used as the
datum for French maps, the meridians of Oslo, Rome and Leningrad
(Pulkova Observatory) have been respectively employed for the origin of
longitude on maps of Norway, Italy and the USSR. Sometimes a more
or less arbitrary origin has been used. The classic example of this was the
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use of the approximate meridian of Ferro in the Canary Islands as the
datum for longitude, first in France, later in the Austro-Hungarian and
German Empires and therefore to quite modern maps of Austria,
Czechoslovakia, and Hungary. To confuse the issue further, precise defi-
nition of the longitude of Ferro varied according to how a particular
survey organisation originally interpreted it.

For other purposes, particularly in navigation and astronomy, where
the apparent movements of heavenly bodies with time must be referred
to longitude, it is extremely inconvenient to have more than one origin
for measurement. The use of the Greenwich Meridian as the Prime Mer-
idian was agreed internationally in 1884, and this remains the preferred
datum.

Longitude is measured from this plane, normally in sexagesimal units
east and west of Greenwich. The algebraic symbol used for the angle is
A. The sign convention is that + A indicates east longitude whereas —4
means west longitude.

The term

6 = A, — 4, (3.02)

signifies the difference in longitude between two places, 4 = 4,and C = 4.
This is the angle DOQ in Fig. 3.02. The symbol é again indicates a finite
difference in longitude and for an infinitely small increment in longitude
we use dA. Frequently in the derivation of general expressions for map
projections it is convenient to refer longitude to some meridian other
than Greenwich such as the central meridian of a map. Then we denote
this meridian as 4,.

Graticule

The resulting network of parallels and meridians which comprise the
system of geographical coordinates is known as a graticule or net, but
with reference to the earth’s surface and to the representation of it on a
plane surface by means of a map projection. A graticule intersection is
the point where the parallel ¢ intersects the meridian 4, and is referred
to by its geographical coordinates (¢, 4). The convention of describing
these coordinates in the order latitude-followed-by-longitude is univer-
sally accepted.

Position in geographical coordinates is by far the best-known method
of providing unique reference of location in geography, navigation and
all the other sciences and technologies which are concerned with the
earth. The network of parallels and meridians on the map or chart
constitutes a form of geometrical control to map use which is understood
by most cultures and at many different levels of education. It is a reference
system taught to schoolchildren early in their geographical education. It
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follows that the network of parallels and meridians as remembered from
maps in a school atlas and from a globe ought to remain an important
spatial frame of reference for map use in later life. Moreover the graticule
has historical importance, for it is much older than the general concept
of spherical polar coordinates or other systems. Some kind of rep-
resentation of the parallels, in the form of zones, has been used since the
time of Marinus and Ptolemy in the first century AD. Few worthwhile
maps have been produced since the early seventeenth century which do
not show some kind of graticule.

Nevertheless it would be wrong to suppose that geographical coor-
dinates are the only method of defining position upon the earth’s surface.
Reference has already been made to the generalised system of polar
coordinates in three dimensions, of which the (¢, 1) system is a special
case. Another system of spherical polar coordinates which are, again,
suitably simplified for representation of the curved surface of a sphere
are the bearing and distance coordinates, which have particular value in
the construction of map projections. These are studied in Chapter 7. A
third and quite different system of location is by three-dimensional car-
tesian coordinates which differ from plane rectangular coordinates by the
addition of a third, Z, axis which is perpendicular to the other two and,
for both sphere and spheroid, corresponds to the axis of rotation. This
is described in Chapter 4.

Angles on the sphere

Having established the properties of geographical coordinates as the
primary method of location, it is now desirable to introduce some
additional concepts about the geometry of the sphere.

A spherical angle is the inclination, at their point of intersection, of
two arcs of great circles measured on the curved surface of the sphere. It
is also equal to the plane angle formed between two tangents, drawn at
the point of intersection, one to each great circle. Thus in Fig. 3.03, the
spherical angle between the two great circles PA and PD is the angle
DPA, which is equal to the plane angle KPJ. For the purpose of the
present study spherical angles are encountered in two forms. The first is
to permit an alternative definition of longitude. That given on page 51
describing longitude as an angle measured at the centre of the sphere in
the plane of the equator is so worded to emphasise that geographical
coordinates are a form of polar coordinates and the vectorial angles
should therefore be measured at the origin of the system. However, we
can see from Figs 3.01, 3.02 and 3.03 that the angle A can be measured
anywhere on the earth’s axis of rotation, provided that this angle is
measured in a plane parallel to the equator. Thus the angle FO’'G = AOB
in Fig. 3.01 and the longitude can be measured in the plane of any parallel
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F1G. 3.03 Definition of a spherical angle.

of latitude. Extending this argument to the geographical poles, such as P
in Figs 3.01 and 3.03, it follows that the plane through P which is parallel
to the equator is also the tangent plane at P. Hence longitude can be
measured as the plane angle KPJ in Fig. 3.03 or as the spherical angle
APD.

The second important kind of angle encountered on the earth’s surface
is the azimuth or bearing of one point measured from another. This
introduces the concept of direction on the earth and also some rather fine
distinctions of definition. Consider the three points N, 4 and B illustrated
in Fig. 3.04. The point N is the North Pole, so that the great circle arc
NA represents part of the meridian through A4. Similarly the arc NB is
part of the meridian through B. The line AB represents the shortest
distance between A and BV and is therefore the arc of the great circle.
Hence the spherical triangle has been formed by the intersection of three
great circle arcs.

Azimuth and bearing

Azimuth may be defined as: * the spherical angle between any great circle
and a meridian. Thus the angle NAB represents the azimuth of B measured
at A; the angle NBA represents the azimuth of A from B. In the southern
hemisphere the equivalent azimuths are SAB and SBA. We have seen
in Chapter 2 that in navigation, surveying and cartography the usual
convention is to measure angles according to the 360° or 400° circle in a
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FIG. 3.04 The definition of bearing («), reverse bearing («), azimuth (Z) and

reverse azimuth (Z’) for four different versions of the arc 48 on the spherical

surface. The description in the text specifically refers to the arc 4B in the north-
east part of the diagram.

clockwise direction. This convention is contained in the formal definition
of bearing which is: * the horizontal angle at a given point measured
clockwise from a specific reference point to a third point. If the specific
reference point is the North Pole, then we have the definition of a true
bearing which is: * the direction of an object from a point, expressed as a
horizontal angle measured clockwise from true North. In the north-east
quadrant of Fig. 3.04 the azimuth at 4 is the acute angle Z, measured
clockwise from the meridian 4AN. Here « = Z and the angle also represents
the true bearing of B from A4.

From the definition of azimuth, the angle NBA represents the azimuth
of A from B. However, according to the clockwise convention of bearing,
the true bearing of 4 from B is the clockwise angle at that point indicated
as o’. In the southern hemisphere of Fig. 3.04 the azimuths would have
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been referred to the South Pole, whereas the true bearings are still mea-
sured clockwise from true north. Such distinctions are not always made
in the literature.

Spherical triangle

A spherical triangle is the figure formed by the intersection of any three
arcs of great circles. Like a plane triangle it comprises six parts; three
angles and three sides. The notation which is used to describe these parts
for simple algebraic expression is the same as plane geometry. Thus, in
Fig. 3.05 we may write for the angles ABC = B, ACB = Cand BAC = A.
Similarly the three sides are described as CB = a, AC = b and 4B = c.
Since the arc of a great circle has length proportional to the radius of the
sphere, and since all the sides belong to the same sphere, it is sufficient
to define the lengths of the sides only by angular distance. This, as we
saw in Chapter 1, is measured at the centre of the sphere by the angles
between the radii drawn to the three points.

Many of the fundamental properties of a spherical triangle are equi-
valent to those of a plane triangle. To quote just one example, the greatest
side of a spherical triangle is always opposite the largest angle. However,
the properties of a spherical triangle differ from those of a plane triangle
in one extremely important respect. The sum of the three angles of a
spherical triangle does not equal 180° but is always greater. The difference
between the sum of the angles and 180° is known as the spherical excess,
and is proportional to the area of the triangle. For example, the spherical
triangle representing 1/8 of the total surface area of the sphere, in which
all the sides and angles are equal to 90°, has spherical excess amounting
to 90°. The existence of spherical excess profoundly influences the

F1G. 3.05 The spherical triangle.
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methods of spherical geometry and trigonometry. It is not possible, as
in plane geometry, to determine the value of an unknown angle of a
spherical triangle by subtracting the sum of two known angles from 180°.

Determination of the unknown parts of a
spherical triangle

Just as plane trigonometry can be used to determine the length of an
unknown side, or the size of an unknown angle in a plane triangle, so
equivalent calculations can be used to solve unknown parts of spherical
triangles. The methods of solution may be grouped under the heading
spherical trigonometry. It is a branch of mathematics which is particularly
important in certain practical applications such as navigation, surveying
and astronomy. For example, position finding by astronomical methods
is almost wholly dependent upon the solution of spherical triangles on
the celestrial sphere and the earth. The subject is also important to the
study of map projections. Space does not permit full derivation of the
formulae which are useful to the cartographer. We therefore refer to
certain other works such as Admiralty (1960), Clough-Smith (1966) and
Cotter (1969) which are devoted to spherical trigonometry or navigation.

The two most important formulae of spherical trigonometry, from
which all others may be derived, are:

® The Cosine or Fundamental Formula;
® The Sine Formula.

Cosine formula

This gives the relationship between one unknown side of a spherical
triangle when the other two sides and their included angle are known.
For the triangle 4BC illustrated in Fig. 3.05 this may be written for three
possibilities:
1. Unknown side a; known sides b and ¢; known angle A
cosa=cosb.cosc+sinb.sinc.cos A (3.03)
2. Unknown side b; known sides a and c; known angle B
cosb=cosa.cosc+sina.sinc.cos B (3.04)
3. Unknown side ¢; known sides a and b; known angle C
cosc =cosa.cos b+sinc.sinb.cosC (3.05)

On the other hand, if the three sides of the triangle are known, the
formulae may be modified to solve one unknown angle,

cos A =[cosa—cos b.cosc|/[sinb.sin c] (3.06)
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These formulae give a single, unambiguous, result for the unknown side
or angle. By convention, the sides and angles of a spherical triangle
cannot exceed 180°. Therefore the result must be the cosine of an angle
in the first or second quadrant. If the answer is positive, this indicates
that the angle lies in the first quadrant (0° < a < 90°) but if it is negative
this means that the angle lies in the second quadrant (90° < o < 180°).
These sign differences are important in computing; a subject to which we
shall return later.

Sine formula
This has the form
sin a/sin A = sin b/sin B = sin ¢/sin C (3.07)

Thus, knowing three parts (sides and angles) for any pair of ratios, it is
possible to find the unknown part. For example, if a, b and B are known

sinA = (sina.sin B)/sinb (3.08)
=sina.sin B.cosecb (3.09)

The sine formula suffers from the important disadvantage that there is
ambiguity about the part found, for sin A = sin (180° — A). Various rules
are given, in the textbooks of spherical trigonometry, which attempt to
overcome this difficulty.

The lengths of arcs on the earth’s surface

There are three kinds of arc measurement which are important to the
study of map projections. These are:

@ the length of the arc of a meridian;
® the length of the arc of a parallel;
@® the length of the arc of any great circle.

The first two are essential to the derivation of the scale errors and dis-
tortions in the directions of the meridian and parallels at a point. Knowl-
edge about these is an essential prerequisite to the derivation of any map
projection which is intended to satisfy one of the mathematical properties
described in Chapter 4. The third kind of measurement is more commonly
thought of as a procedure in navigation and other kinds of qualitative
map or chart use. This is the way to determine the great circle distance
between two places when a high order of accuracy is not required and
the spherical assumption suffices. However, this general expression for
determining the arc of any great circle arises in the transformation
from geographical into bearing and distance coordinates, as described in
Chapter 9 (pp. 178-183).
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The length of the arc of a meridian

This problem was mentioned superficially in Chapter 1 to indicate the
methods of astro-geodetic arc measurement as a means of determining
the Figure of the Earth. From equation (1.02), and using the algebraic
notation introduced in this chapter, various meridional arc relationships
may be expressed as follows (Fig. 3.06):

® The length of the arc measured from the plane of the equator to the
point Fin latitude ¢y

sm=R.q, (3.10)

® The length of the arc measured from the nearer pole to the same
point:

Sm = R.y% 3.11)

® The arc distance between two points, 4 = (¢, 4,) and F = (¢, 4,)
both of which lie on the same meridian.

s’ = R.6¢ (3.12)
Where 5(p = (po—(pf.

Following the derivation of (1.02) all the angles in equations (3.10)~3.12)
are expressed in radians.

The length of the arc of a parallel

It has been shown that a parallel of latitude is a small circle. This has
radius r and, by definition r < R. Thus, for any given angular distance,
the arc distance along a parallel is less than the corresponding arc distance
along the equator. In Fig. 3.06, for example, NFA represents the meridian
A, and NGB is the meridian A,. Therefore the angle AOB = FO'G = 4.
From equation (1.02):

AB =R .64 (3.13)
and
FG =r.64 (3.14)

In the right-angled triangle OFO’, OF = R and O’F = r. Moreover the
angle O’OF is the colatitude, x of F. Therefore

r=R.siny (3.15)
= R.cos¢ (3.16)

Consequently the arc distance along the parallel of latitude ¢ is
s, = R.cos ¢.d4 3.17)
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F1G. 3.06 The relationship of the radius of a parallel, r, to the radius of the
sphere, R.

For an arc on the equator, we put ¢ = 0° so that cos ¢ = 1-0. Then (3.17)
becomes

s.=R.54 (3.18)

which is the result we would expect from the definition of the equator as
a great circle.

The length of the arc of any great circle

In equation (1.02) we used z to indicate the angular distance between two
points. We now return to the general case of the length of any great circle
arc and we use this letter to indicate the unknown angular distance
between two points which lie in different latitudes and longitudes. Thus,
if 4= (o, 4,) and B = (¢, 4,), as illustrated in Fig. 3.04, we have to
solve the spherical triangle NAB to find the unknown side 4B = z.

The two known sides of the triangle are the meridional arcs N4 and
NB, which are of length y, and y, respectively. The spherical angle
ANB = A,— A, = 6/ is also known. From the cosine formula (3.03)-
(3.05),

COS Z = COS ), - COS Y +S5in ¥, .sin ¥, .cos 54 (3.19)

This is more conveniently expressed in terms of latitude rather than
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colatitude. Thus
COS Z = Sin ¢, . Sin @, +COoS @, . COS @y, . COs 04 (3.20)
and, finally,
s=R.z (3.21)

Conversion of arc length into linear distance

In order to convert any of the values of s, s, s, or s, into linear units, we
require a suitable value for R, which must be determined from the radii
of the adopted Figure of the Earth. We shall see later that there are
many ways of obtaining a suitable radius, but, in order to appreciate the
significance of the different measures, it is necessary to know more about
the geometry of the spheroid. Therefore we do not compare the different
methods or their results until the end of Chapter 4, where they are listed
in Table 4.02, page 79.

It will be seen that for a given Figure of the Earth (the International
Spheroid in Table 4.02) there are substantial differences between the
results. Before attempting to make a choice it must also be appreciated
that we have made the initial assumption that the earth is a perfect sphere.
From the point of view of constructing a map to a specified scale, this
assumption naturally influences all subsequent calculations so that use of
R correct to the nearest metre, as in Table 4.02, may introduce a spurious
appearance of accuracy to some calculations. In the example of making
calculations to construct the graticule, the reduction of the metric values
by a scale fraction which may be less than 1/1 000 000, will result in any
small niceties in the metric values for R being wholly absorbed in the
plotting process. Then it is sufficient to use either of the most commonly
used values for R. These are the authalic radius, being the radius of a
sphere having the same surface area as the chosen Figure of the Earth,
and the radius of the sphere having the same volume as the chosen
figure for a sphere based upon these two determinations made from the
International Spheroid are 6371228 m and 6371221 m, respectively. For
most practical applications in small-scale cartography it is sufficient to
take the radius of the sphere as being 6371-2 km. Without prejudice to
these comments it is also necessary to appreciate that in some geodetic
applications, including the projection of the spheroid to a plane map, we
sometimes employ an auxiliary sphere to make certain transformations.
This is a part of the spherical surface which is considered to be tangential
to some part of the spheroid. For these purposes, as we shall see in
Chapter 16, for example, precise definition of R is essential.

In some theoretical work with map projections it is not necessary to
convert angular distances into their linear equivalents. It is therefore
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sufficient to derive all projections in terms of sphere of unit radius (R = 1)
and then convert the numerical values obtained by a factor which cor-
responds to the radius of the earth in millimetres reduced to the required
map scale. The method is described in detail in Chapter 8.

Angles on the earth’s surface
Determination of azimuth

From the definition of azimuth given on page 54, this is the angle
NAB = Z in the simplest case of the north-east quadrant. The value of Z
may be determined from a modified version of the cosine formula (3.06).
Using the same notation employed in (3.19)

cos Z = [cOs Y, —COS Y. . cos z]/[sin X, . sin Z] (3.22)
= [sin @, —sin @, . cos z]/[cos ¢, . sin Z] (3.23)

Alternatively, from the sine formula (3.09)
sin Z = cos ¢, . sin d4.cosec z (3.24)

Both of these equations contain terms in z. If z is not required, then the
preliminary calculation of it can be avoided. It is possible to combine
equations (3.19) and (3.22) which, after some algebraic manipulation,
results in the equation

cot Z = cos ¢, . tan ¢, cosec 84 —sin @, . cot 4 (3.25)

which is independent of z.

Convergence of meridians

It should be noted that the bearing from B to 4, denoted by the clockwise
angle NBA, is not the reciprocal of «. In other words [180°—«] # NAB,
but differs by the angle y, shown in Fig. 3.07. This leads to the interesting
and important conclusion that the azimuth of any great circle which
crosses the meridians obliquely can only be defined uniquely at the point
where it is measured. In other words, the bearing of a great circle
arc changes continuously. The reason for this is the convergence of the
meridians. On the equator the arc distance between two meridians is,
as we have seen in equation (3.18), s.. At the geographical poles the
corresponding arc distance is zero. On the equator, two meridians 4, and
A, are perpendicular to it. At the poles the same meridians intersect to
make the spherical angle 6A. The angle of convergence (or convergency)
between the meridians in any intermediate latitude may be expressed by
the angle y. The value of y varies with latitude and it can be shown that
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FIiG. 3.07 The relationship between bearing («), reverse bearing (180° —«) and
convergence of the meridians (y) on the sphere.

it varies according to
y = d4.sin @ (3.26)

For any line lying between the parallels ¢, and g, it is usual to express
the convergency of their meridians in terms of the mean latitude as

y = 04.sin[(@,+ @v)/2] 3.27

This formula is adequate for most purposes in navigation but it is too
crude for use in surveying. More precise versions are given in equations
[11.13 and 111.39 in Appendix L11, pp. 445 and 447.



CHAPTER 4

The geometry of the spheroid

Therefore if APBQ represent the figure of the earth, now no longer spherical,
but generated by the rotation of an ellipse about its lesser axis PQ; and ACQqca
a canal full of water, reaching from the pole Qg to the centre Cc and thence
rising to the Equator Ag; the weight of the water in the leg of the canal ACca
will be the weight of water in the other leg QCcq as 289 to 288, because of the
centrifugal force arising from the circular motion sustained and takes off one of
the 289 parts of the weight (in the one leg), and the weight of 288 in the other
sustains the rest....

Isaac Newton, Principia Mathematica, 1687

introduction

We now consider the definition and expression of the planes, arcs and
angles on the spheroid corresponding to those studied in Chapter 3 with
respect to the sphere. We have already seen in Chapter 1 that an ellipsoid
of rotation may be defined by the length of the major semi-axis, a, and
the flattening, f. We may also use two other combinations:

® the lengths of the two semi-axes, a and b;
® the length of the semi-major axis, a and the eccentricity, e’, to be
defined below.

It follows from Fig. 1.01 that the meridional section of the figure is an
ellipse but that the equator is represented by mean of a circle of radius
a. With the exception of the equator and the parallels of latitude there
are no circles defined by plane sections through the ellipsoid. The curve
which corresponds to any great circle on the sphere may be called a
geodesic, but there are mathematical difficulties in defining the word. We
will avoid these difficulties in the elementary exposition of this chapter
by referring only to an arc.

Spheroidal parameters

The circumference of an ellipse may be defined as the locus of points, the
sum of whose distances from two fixed points is constant and equal to

64
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2a. These two points are known as the foci of the ellipse. They lie on the
major axis and are indicated by the points F, and F; in Fig. 3.08. The
eccentricity is equal to the ratio of OF,/OW. From the right-angled
triangle F\NO

OF, = a’—b’ (4.01)
Since e = OF,/OW, it follows that the first eccentricity of the spheroid
e? = (a’—b?)/a’ (4.02)

The numerical value of e? for the earth is about 0-0067 . . ., but the more
precise determination depends upon the values of a and b for the selected
Figure of the Earth.

A number of other related parameters are also used in geodesy. These
include

® Second eccentricity,
el = (a’—b?H)/b?
® Polarradius of curvature,
c=a?b
® n
n = (a—b)/(a+b)

Obviously these parameters are closely related. We note the following
simple algebraic relationships between €2, ¢’ f, n and c:

e = 2f—f? = 4n/(1 +n)’ (4.03)
f=1—(1—e)"*=2n/(1+n) (4.04)
n = f)2—~f) = [1—(1—e2)] /[ +(1 —e?)] (4.05)

e = (A — /(1 —1)? = e¥/(1 —e?) = 4n/(1 —n?) (4.06)

— o(1=n)/(1 +n) (4.07)

These may appear in the algebraic derivation of the projections of the
spheroid and may also be used to simplify computation. A variety of
other coordinate systems are now used in geodesy, some of which will be
introduced later. A summary of many of the others may be found in a
useful paper by Soler and Hothem (1988).

Latitude on the spheroid

We have already noted in Chapter 1 that the radii of curvature at any
point on an ellipsoid must be normal to the tangent plane to the point.
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FiG. 4.01 The definition of latitude on the spheroid.

Thus, for a point P in Fig. 4.01, the normal to the tangent plane is the
line PQ. This line intersects the major axis of the ellipse at M and therefore
makes the angle PME with the plane of the equator. By contrast, the line
PO drawn to the point of intersection of the two axes makes the angle
POE with the major axis in the plane of the equator. Clearly these angles
differ, but both of them correspond in part to the definition for latitude
on the sphere. Thus the angle POE corresponds to the idea that it is the
angle measured at the centre of the earth, but the angle PME corresponds
to the idea that the angle is measured between the plane of the equator
and the radius drawn to the point. We distinguish between the two
different definitions for latitude as follows:

Geocentric latitude

Geocentric latitude is the angle, measured at the point of intersection of
the axes of the spheroid, between the plane containing the major semi-
axis and the straight line to some point on the surface of the spheroid.
This is the angle POE which is usually denoted by .

Geodetic latitude

Geodetic latitude is the angle between the major axis of the spheroid and
the normal to the tangent plane at any point on the surface of the spheroid,
measured at the point of intersection of the normal with the equatorial
plane. This is the angle PME which is denoted by ¢.

There is a relationship between these two angles which may be ex-
pressed in terms of eccentricity, but this is not of direct importance to us
in the present context apart from observing that the difference between
the two definitions varies with latitude and is greatest in latitude 45°
where it amounts to nearly 12’ of arc.
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Geodetic latitude is the more important quantity, and this is the
variable which enters into most subsequent calculations relating to the
spheroid. For most practical purposes, geographical coordinates on the
spheroid are taken to be the (¢, 4) system, where ¢ is the geodetic lati-
tude and 4 is the longitude. The definition of longitude on the spheroid
is the same as that for the sphere.

Auxiliary latitudes

In addition to geodetic and geocentric latitudes there are four further
definitions of latitude to be considered. These are used to map the sphe-
roid to an auxiliary sphere according to certain mathematical principles
which we shall come to recognise later as being special properties of
projections. Formulae for the spherical form of a given map projection
may be adapted for use with the spheroid by substitution of one of
the various auxiliary latitudes in place of geodetic latitude. Geocentric
latitude is one of these; so, too, is the reduced latitude, u, defined in
(4.33) as the starting point for calculating three-dimensional cartesian
coordinates of points on the spheroidal surface. There are three more
important possibilities which we should know about relating to the three
special properties of map projections, which we shall encounter in Chapter
5, namely conformality, equivalence and equidistance.

® Conformal latitude is used to map the spheroid conformally upon an
auxiliary sphere.

® Authalic latitude is used to map the spheroid to an auxiliary sphere
in such a way that the sphere is equal in area to that of the spheroid.

® Rectifying latitude or equidistant latitude is used to map the spheroid
upon an auxiliary sphere in such a way that correct distances along
the meridians have been preserved.

These auxiliary latitudes were derived by Adams (1921) using series in
geodetic latitude, ¢ and eccentricity e?. The most recent summary of this
work is to be found in Snyder (1987a). There is a small difference between
each of these auxiliary latitudes and geodetic latitude, which is zero at
the equator and the poles, reaching a maximum in latitude 45°. The size
of this difference varies too with the adopted Figure of the Earth. Table
4.01, which is an extract from Adams’s original work, indicates the
maximum differences obtained from the Clarke 1866 spheroid.

The reader should note some inconsistency in the description of con-
formal latitude. Adams (1921) called this isometric latitude. However,
from the time that Lee (1946) first drew attention to the inconsistency,
we have used the term orthomorphic or conformal latitude to mean this
auxiliary latitude, and retained the term isometric latitude for an entirely
different purpose; as the parameter to transform Mercator’s projection
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from the spheroid to the sphere. For the most recent study of this
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TABLE 4.01 Comparison of the difference between geodetic

latitude, @, and the five auxiliary latitudes of the spheroid for

latitude 45° where the difference is maximum. The difference is
auxiliary—geodetic.

Geocentric Reduced Conformal Authalic Rectifying

—11740".5 —-545".0 —11"40".0 —-747".0 —845"3

parameter, see Bowring (1990a).

The radii of curvature of an ellipsoid

The concept of radius applied to the ellipsoid is more complicated than
for the sphere. The first difficulty is that two radii of curvature may be
defined at any point; the second is that both of these radii vary with

latitude. The two radii at a point such as 4 are

® Meridional radius of curvature. This is the radius of curvature of the
ellipse NAE at the point 4. This quantity is usually referred to as p.
® Transverse radius of curvature. This is the radius of the curve formed
by a plane intersecting the ellipsoid at 4 which is normal to the
surface and also perpendicular to the meridian at the point. This is
a difficult concept to illustrate in a plane figure, but is represented by
the shaded plane in Fig. 1.03. The transverse radius is usually referred
toasv.

S

FiG. 4.02 The definition of the meridional radius of curvature (p) and the
transverse radius of curvature (v) for a point 4 on the surface of a spheroid.
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From these definitions it follows that both radii lie in the same straight
line. The transverse radius is represented by the line 4Q, and ends at the
point Q on the minor semi-axis in the opposite hemisphere to the point
A. The meridional radius is somewhat shorter, as depicted by 4Q".
Derivation of the formulae for the two radii of curvature is not attempted
here. The two formulae which may be obtained are:

p = [a(1 —e))]/[1 —e?.sin?p]*? (4.08)
v = a/[l —e?.sin’? ¢]"/? (4.09)
The two radii have the following properties:

whatever the latitude v > p;

at the poles p = v and both have their maximum value;

on the equator, v = a and both p and v have their minimum values;
in latitude 55° or thereabouts, p = a;

in latitude 35° or thereabouts, p = b.

Equations (4.08) and (4.09) indicate that both radii may be completely
described in terms of a, e and ¢. Since a and e are constants for any
particular Figure of the Earth, the only variable is latitude. Most national
surveys used to produce geodetic tables containing p and v, together with
several other quantities derived from them, for the figure used in that
country and for the range of latitude where their activities were con-
centrated. A few of the older textbooks and manuals also contain short-
ened versions of the tables. Today, of course, such tables are virtually
obsolete. It is so easy to calculate values for p and v by pocket calculator,
and this takes less time than was needed to look up and interpolate within
the tabulated entries. Since the determination of the radii is usually only
a minor stage in more complicated calculations, it is normally done by
subroutines to other microcomputer programs.

Arc distances on the spheroid

We deal with the two simple cases first. These are the length of an arc of
the equator and the arc of any parallel. On the ellipsoid of rotation both
are circular arcs and therefore the simpler geometry of the sphere still
applies. The only difference is that the appropriate radius of curvature
for the spheroid is used.

On the equator ¢ = 0°. Moreover the curvature at right angles to the
meridian is the curvature of the equator itself. From the properties listed
above,

s.=0A.a (4.10)
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and for the parallel of latitude, o,
S, = 0A.v.Cos @ (4.11)

Meridional arc distance

The arc of the meridian is more complicated to evaluate because the
meridional radius of curvature varies continuously with latitude. There-
fore it is necessary to determine, first, the length of a very short arc at a
point, and then add together the lengths of all these small elements at all
the points which make up the arc.

Let us assume that it is required to determine the arc s, measured from
the equator to latitude ¢,. At any point along this arc we may consider
an infinitely small part of it, corresponding to an infinitely small change
in latitude do. Within such a small arc distance it is reasonable to state
that the arc itself can be regarded as being part of the circumference of a
circle. This is shown by Fig. 4.03. Thus for the infinitely short arc we may
write (3.12) in the form

ds, = p.do 4.12)

In order to define the length of the whole curve from the equator to a
point in latitude ¢, it is now necessary to integrate the multitude of short
arcs which form the whole arc. Since the limits of the arc have already
been specified, the arc distance on the ellipsoid, m, may be written as the
integral

=@
m =J ds,, (4.13)
=0
or, from (4.12)
=@,
m =f p.do (4.14)
=0

pd¢

FI1G. 4.03 An infinitely short meridional arc element on the spheroid.
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and substituting the value for p from equation (4.08)

=@

m= J [a(1—e?))/[1 —e?.sin? p]¥*.de @.15)
p=0

after integration of this expression, one version of the equation can be

simplified to a form suitable for calculation

m=a(l—e?).{A.p—}B.sin2¢)+(C.sindp)— ...} (4.16)

where ¢, 1s expressed in radians.
In this equation the coefficients A, B, C and D are expressed in terms
of el as

A = 1+3e2/4+45¢%/64 +175¢%/256 + ... ~ 1.0051092  (4.17)
B=  3e%/4+15¢*/16+525¢%/512+ ... ~ 0.0051202  (4.18)

C= 15e*/64 4+ 105¢%/256 + . .. & 0.0000108 4.19)

The numerical values for A, B and C have been calculated for the Clarke
(1866) spheroid.

We do not expect the reader to undertake the algebraic steps which
occur between equations (4.15) and (4.16) without further assistance. This
may be found, for example, in Clark (Clendinning) (1944) and many
other textbooks on geodesy and surveying. Notwithstanding this obvious
short-cut, it is useful to indicate here the initial steps in the argument
together with the end-result, and omit most of the intervening stages.
Even this abbreviated account demonstrates the greater difficulty en-
countered in solving a problem on the ellipsoid compared with the trivial
calculation for the meridional arc on the sphere in (1.02). Moreover the
spheroidal solution is not exact. Equation (4.16) has been terminated
at the term (1/4) C.sin4¢g, but could have been extended to include
additional coefficients such as D and E. Each of the expressions for A
through C are terminated in e® but they could have been extended to
include the terms in e® and e'’. However we can see that the numerical
value for C in (4.19) is already very small, and that calculation of the
additional coefficients and terms in the series would have little effect upon
the final result.

The method described above involves expansion of the first eccentricity,
e? and is therefore sometimes called the e-series, for example by Agajelu
(1987). An alternative arrangement for terms in e? may be found in Clark
(1973) and in Snyder (1987a). Similar results can be obtained by forming
a series from the parameter e’? or n. For example, Williams (1982) makes
use of the following expressions:

m = ¥a+b)(1+n?/44+n*/64+ .. ) @—a.sin2¢+f.sinde
—7y.85in6p+d.s5sin8p—...) (4.20)
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where
a=3n/2-9n%16+3n%32— ... 4.21)
B =15n%/16—15n%/32+ ... (4.22)
7 = 35n°/48 — 105n°/256 + . .. (4.23)
6 =315n%512— ... (4.24)

Agajelu (1987) also offers this n-series in a slightly different form.

Meridional arc distance measured between two points
of known latitude

Thus far we have only examined the formulae needed to determine mer-
idional arc length from the equator to a point in latitude ¢. In many
practical calculations the meridional arc length required extends from
latitude @, to latitude ¢,. Of course this could be obtained by determining
m, and m, separately and subtracting one from the other. However, this
is clumsy compared with determining the equation for the developed
arc of the meridian between two latitudes. Various formulae have been
proposed, the most elegant being that using series in the parameter n
and used, for example, in Ordnance Survey (1950). If ¢, > ¢, and

00 = -0,

m,—m, = b{(l +n+5n%*/4+ 5n°/4).5¢ —(3n+3n°+21n*/8)
.sind@ . cos @+ (15n%/84+15n3/8) . sin 26¢
.cos 2(@,+¢,)—35n%/24 .sin 36¢ . cos 3(p, +¢,)} (4.25)

In many applications the lower latitude ¢, is that of the origin of the
projection in use. For example, solving this equation for the length of the
developed arc of the meridian used in the Ordnance Survey Transverse
Mercator projection, we put ¢, = 49°, this being the latitude of the origin
of this projection as well as being, as we have already seen, the true origin
of the National Grid.

Numerical solutions from series expansions

Some explanation about how such expressions are derived is necessary.
They are based first upon the replacement of the terms in equation
(4.15) by their integrals, and secondly, for greater ease of both analysis
and computation, by the expansion of these in series. This procedure
is well known in elementary calculus, where Taylor’s and Maclaurin’s
Theorems may be used to obtain a series corresponding to any specified
function. For example, we may convert the function sin x into a series of
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terms containing ascending powers of the variable x, expressed in radians.
Thus

sinx = x—x’/6+x%/120—x7/5040+ . .. (4.26)

This equation is useful from both the practical and algebraic points of
view. It is the method which is used to obtain the numerical values of
trigonometric functions published in tables and used by the subroutines
of digital computers to evaluate all the standard functions which are
available in a particular instrument. Inspection of equation (4.26) indi-
cates that the right-hand side of it is composed of four terms in ascending
powers of x. The numerical value in the dominator of each fraction
represents the factorial (!) of a number. For example, in the second term,
6=3'=1x2x3.

Since the numerical value of x lies within the range x =0 to
x = n/2 = 1.57.. ., the values of x°, x° etc. increase more slowly than their
respective denominators. Consequently the size of the terms on the right-
hand side of the equation decreases from left to right. Since x'/5040
< x%/120 < x*/6 the series may be said to comverge. The right-hand
side of equation (4.20) could be further extended to include terms in x’
and so on, but the effect of these terms upon the numerical values of
sin x would be negligible up to the sixth decimal place.

Snyder (1987a) has listed three types of such expressions which arise
commonly in mapping from the spheroid. We shall encounter these later.

The calculation of the length of any arc and its azimuth
on the spheroid

Since the simple meridional arc introduces such difficulties it is not sur-
prising that the determination of the length and azimuth of any arc is
even more complicated. Yet this kind of problem arises in control surveys,
either in the sort of work which extends through a big country or for
extremely precise work in a smaller area. In other words it arises in those
cases where the spheroidal assumption is mandatory. One problem is to
find the geographical coordinates of a new survey station from those of
a point already fixed, using the measured or calculated bearing and
distance to the new station. The converse problem, which is less common,
is to determine the bearing and distance between two stations from their
known geographical coordinates. In mathematical geodesy a variety of
different formulae have been described. These are usually referred to by
the name of their originator, such as Clarke’s Formula for Long Lines,
Puissant’s Formula, Rainsford’s Extension of Clarke’s Approximate For-
mula. Bomford (1962) discusses the merits and accuracies of ten such
formulae.

In the days before digital processing was easily accessible, these geodetic
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computations were a headache to the field surveyor who might need to
do the calculations with no more than an adding machine and a volume
of logarithmic functions to assist him. For this reason many short-cut
methods were developed to simplify the problem of calculation. The most
useful modifications were those originally adopted by Gauss for his Mid-
latitude Formula, and by Clarke in his celebrated formula for short and
medium-length lines. Both make use of the idea that if an auxiliary
sphere be fitted tangentially to the surface of the ellipsoid, near the middle
of an arc, or in the middle latitude between two points, these surfaces do
not depart appreciably from one another over distances of a few tens of
kilometres. Hence the computations make use of the radii of curvature
of the spheroid, but the methods of spherical trigonometry to solve the
triangles.

Arc distance defined in three-dimensional cartesian
coordinates

Nowadays the solution for the length of an arc is most likely to be
obtained through the determination of the differences between the three-
dimensional cartesian coordinates of the terminal points using the
following argument and equations. The method is based upon the deter-
mination of the straight line chord distance between the terminal points,
to which a chord-to-arc correction is applied to find the length of the
curve.

The first stage in the determination is to find the reduced or parametric
latitude, u, of each point from the equation

tanu = (b/a)tan ¢ 4.27)

This angle differs from geocentric latitude already defined because it
measures the angle to a point A’ lying on the surface of the auxiliary
sphere illustrated in Fig. 4.04. This sphere is tangential to the equator
and therefore has radius R = a.

The point 4 on the spheroidal surface may be expressed in three-
dimensional cartesian coordinates as

X, =a.cosu.cosdl
Y, =c.cosu.sindl (4.28)
Z, =b.sinu

If we express the corresponding coordinates of a point B as Xg, Yg and
Zg respectively, the coordinate differences between 4 and B may be
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FiG. 404 The parameters used to determine the three-dimensional cartesian
coordinates of a point on the surface of a spheroid as a preliminary to the
determination of the length of the arc and the bearing between two points.
Definition of the reduced or parametric latitude, u.

written
0X =X, —Xpg
Y =Y,~Yp (4.29)
0Z =72,—Z4

The exact chord distance, K, between 4 and B may now be determined
from

K?=§X?+6Y*+622

(4.30)
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FiG. 4.05 The three-dimensional coordinate system used to calculate the pos-
ition of the point 4 = (X,Y,Z) on the curved surface of the spheroid.
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It is now necessary to apply a correction D-K in order to convert from
chord into arc distance for this varies with the length and the direction
of the line. This is not an exact solution, but introduces a small amount
of approximation. The required expression is

(D-K) = K?/24R*+ 3K */640R* 4.31)

where R is the mean radius of the spheroidal arc. This has to be computed
from Euler’s Theorem

R = pv/(psin?a+vcos’a) (4.32)

where « is the bearing, or azimuth of the line from A to B. This, in turn,
has to be found from the equation

tan o = sin 64/{sin @,[cos 61~ (cos u,/cos u,)(1 —b?*/a?)]
—b?*/a’tang,cos @,} (4.33)

For lines which are less than 100 km in length the correction (D-K) is
less than 1| m (or < 0-001%); at 350 km, the correction is about 44 m
(= 0-:013%). For a line of length 1000 km the correction is of the order
of 1030 m, which is about 0-1% of the length of that line.

The inverse transformation from spatial into geographical coordinates
has been described by Bowring (1976).

The choice of radius for an auxiliary sphere

Equation (4.32) introduces once more the consideration of a suitable
value for R which, in this case, is the radius of the auxiliary sphere
used to determine the arc length. Consequently we must return to the
discussion of the types of reference figure which may be used and the
purposes for which they are needed. We have already emphasized, on p.
61, the need for a critical approach in the choice of suitable metric
dimensions for R. We have argued that since the spherical assumption
involves some approximation, the use in the general study and con-
struction of map projections of a value for R which has been calculated
to the nearest metre, represents a needless degree of accuracy.

There is also a variety of maping activities where the opposite prevails
and unjustified degrees of approximation may be involved. An example
of this is the use of equation (3.20) to determine the lengths of a great
circle arc combined with a supposedly precise value for R in order to
convert from angular into linear measure. This practice has arisen in that
rather grey area of activities which belongs to navigation, hydrographic
surveying and geodetic surveying and which characterised some of the
early offshore activities of seabed exploration together with the legal work
of defining maritime boundaries. For example, the distance measurements
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used to locate median line between Britain and Norway in the northern
North Sea were originally based upon the spherical assumption but now
have to be used as if they were geodetically precise. The present author,
in Maling (1989) has already been at pains to demonstrate the unsuit-
ability of the spherical assumption for this kind of work, and has argued
for the correct application of rigorous computations on the spheroid. We
shall find, moreover, that these are only two aspects of a larger problem
and for other purposes we must still, nevertheless, define R more accu-
rately.

Between the spheroid and the plane representation of it as a map
projection we may have recourse to an auxiliary sphere, either to facilitate
geodetic computations, as in the example described above, or in the use
of this intermediate body for methods of double-projection, this being
two-stage mapping of the spheroid, first from spheroid to sphere and
secondly from sphere to plane. This subject is examined in greater detail
in Chapter 16.

It is a property of the auxiliary sphere that it is considered to be
tangential to the spheroid at some suitable place. Many of the following
definitions depend upon this choice.

(1) The simplest choice for the radius of an auxiliary sphere is to use
one of the semi-axes of the ellipsoid, or some combination of both of
them to provide a single value. All of the following have been used

® The equatorial radius of the spheroid. This corresponds to the use
of the major semi-axis, a, so that the sphere is tangential to the
spheroid at the equator, as illustrated by Fig. 4.04.

® The combination of both semi-axes a and b. This may be either the
arithmetic mean:

R = }(a+b) (4.34)
or the geometric mean:

R = /(ab) (4.35)

® In a triaxial ellipsoid the equator must also be defined by two axes.
If, therefore, the Figure of the Earth were to be regarded as a triaxial
ellipsoid it would be necessary to take three axes into consideration,
whereas in an ellipsoid of rotation the equator is a circle so that, as
we have seen, the body is completely defined by only two axes. In
order to make approximation of the triaxial body it is therefore usual
to take twice the value of the major semi-axis to give a radius which
is either

R = (2a+b)/3 (4.36)
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which is the arithmetic mean, or
R = (2ab)'”? 4.37)
which is the geometric mean.

(2) We may use the radii of curvature of the spheroid for some reference
latitude. For example,

@ The value of p or v may be taken for the latitude 45°, this being
chosen because this latitude lies midway between the equator and the
poles and corresponds to an auxiliary sphere which intersects the
spheroid in this latitude.

® More commonly, the values for p or v are taken for the mean latitude,
¢@n, of an arc, a zone or a quadrangle formed by two meridians and
two parallels. Then we calculate the radii of curvature for this latitude
and use py or vy.

® Again we may use either the arithmetic or geometrical means of the
radii of curvature of part of the surface, using

R =(p+v)2 (4.38)

or

R = /(pv) (4.39)
respectively. The last of these is known as the ‘Gaussian Curvature’.

(3) The radius may be determined for a sphere having the same volume
as the chosen figure of the earth. This radius may be determined from the
expression

R = a(1-f/3—f?/9) (4.40)
where f is the flattening of the spheroid.

(4) The radius may be determined for a sphere having the same surface
area as that of the chosen Figure of the Earth. This is also known as the
Authalic Sphere and

R? = (a%/2m). {1+(1 —e?/2e).In[(1 +e)/(1 —e)}} (4.41)

(5) The rectifying sphere has meridional length equal to that of the
spheroid. Adams (1921) derived it as

R = a(l —n)(1 —n?)(1+9n%/4+225n*/64+ ...) (4.42)

(6) The solution derived from Euler’s Theorem, which refers to an arc
of specific length and azimuth, has already been listed in equations (4.32)
and (4.33).

The variability of R resulting from so many different definitions gives
rise to markedly different values for the spherical distance. The methods
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TABLE4.02  The values of spherical radius, R, determined
from the International Spheroid by different methods

R

Definition of spherical radius (metres)
Major semi-axis, a 6378 388
Arithmetic mean of a and b 6367650
Geometric mean of a and b 6367641
Arithmetic mean of three axes (2a +b)/3 6371229
Geometric mean of the three axes (2a.b)"? 6371221
g.mfor ¢ = 15° 6359778
p for ¢ = 45° 6367586
v for ¢ = 45° 6389135
g.mo =45° 6378351
p for @, = 60° 6383727
v for ¢, = 60° 6394529
g.m o, = 60° 6389126
Sphere of equal volume 6371221
Authalic sphere 6371228
Rectifying sphere 6367655

Range 34751

outlined above have been used to determine values of R which are based
upon the International Spheroid (1924). The results are listed in Table
4.02. The range in this table is nearly 35 km, which is too big to be ignored
even when using R to construct small-scale atlas maps.



CHAPTER 5

Some basic ideas about the mathematics of
map projections

This is why Elastoplast which stretches is a better fit than ordinary Elastoplast
for cuts on knuckles and knees.
Jeremy Gray, Ideas of Space, 1979

Introduction

A map projection may be defined as: * any systematic arrangement of
meridians and parallels portraying the curved surface of the sphere or
spheroid upon a plane. For many purposes in the present book, it will
suffice to regard the earth as a perfect sphere. This has the advantage of
being mathematically simpler to understand without losing sight of any
of the salient problems which have to be tackled. The main exceptions to
the use of the spherical assumption come in Chapters 15, 16 and 19,
where the specialised uses of projections in surveying and topographical
cartography are considered.

It was stated in Chapter 2 (p. 28) that every map projection is a
form of coordinate representation upon the plane, and that its graticule
intersections may be located by means of either cartesian or polar coor-
dinates. In other words, each point on the earth’s surface, with geo-
graphical coordinates (¢, ) may be reproduced on the plane by a point
located in either the (x, y) or (r, 6) systems of plane coodinates.

Functional relationships

We may express this idea in the generalized form of functional relation-
ships (or functions) and write

x=fi(e,4) (5.01)

y =fAe,4) (5.02)
80
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or
r=/fye,4) (5.03)

0 =fuo,H) (5.04)

These expressions are the mathematical shorthand for statements such
as ‘x is a function of latitude and longitude’, etc. The suffices f,—f, indicate
that these are different functions. Thus we may distinguish between (5.01)
and (5.02) by the statement ‘whereas x is one function of both latitude
and longitude, y is a different function of these variables’. We can further
state that in (5.01), x is the dependent variable which is a function of two
independent variables, ¢ and A.

At this stage we do not precisely specify the nature of these functions.
Each map projection has unique equations for x and y or r and 6, which
will be used to define and construct it. Appendix I, on pp. 430-441, indicates
some of the formulae which these functions represent. For the present,
however, the generalized expressions of (5.01)}(5.04) are useful for the pre-
liminary study of the subject, for they indicate certain important relation-
ships between the sphere and the plane. Moreover, they serve as a con-
venient basis for the systematic classification of all map projections.

From the statement that x and y (or r and 8) are functions of latitude
and longitude it follows that one point (¢, 4) on the earth is represented
by one point (x, y) or (r, 6) on the map. In other words there is a one-to-
one correspondence between the earth and the map. We will have to
qualify this statement later because some map projections show the same
meridian twice, because the geographical poles are represented by lines
instead of by points, or because certain parts of the earth’s surface cannot
be shown on the projection. These peculiarities arise from the simple fact
that a sphere has a continuous surface whereas a plane map must have a
boundary. The kinds of peculiarities which have been mentioned generally
occur at the edge of a map projection and they must be considered to be
exceptional, or singular points. Within the body of the majority of map
projections each point on the earth is shown only once; therefore the idea
of corresponding points holds good.

The correspondence between points on the surface of the earth and the
plane map cannot be exact. In the first place, some kind of scale change
must occur because a map of the earth at scale 1/1 is a physical impossi-
bility. Secondly, the curved surface of the earth cannot be fitted to a plane
without introducing some deformation or distortion which is equivalent
to stretching or tearing the curved surface.

Principal scale

Because a map is a small-scale representation of the earth it is necessary
to consider this part of the transformation first.
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In the everyday meaning of the word, scale may be defined as: * the
ratio of distance on a map, globe or vertical section to the actual distances
they represent. Expressed geometrically, if the map distance is 4'B’,
corresponding to the ground distance 4B, the scale of the map is the
fraction A’B’/AB, expressed as a fraction whose numerator is 1. Thus, if
40 mm on the map corresponds to 1 km on the ground, 4'B’ = 40 and
AB = 1000x 1000 = 1000000 (to bring AB into the same units as 4'B’)
and the scale 40/1 000 000 may be described by the representative fraction
1/25000.

Generating globe

From the definition of scale given above, precisely the same reasoning
may be used to describe the scale of a globe used to represent the earth.
In this case, comparison is made between the lengths of two corresponding
arcs of great circles, 4B on the earth and 4’B’ on the globe. From
equation (1.02) and the arguments presented in Chapter 3:

AB=R.z
and
A'B ' =r.z
Hence the scale of the globe may be expressed as
A’'B’/AB = (r.z)/(R .Z) (5.05)
or
1/S =r/R (5.06)

where S is the denominator of the representative fraction, r is the radius
of the globe and R is the radius of the earth. For example, a globe of
radius 212 mm will have a scale denominator

§=6371100/0-212
= 30052358 = 30000000

so that the globe evidently has scale 1/30 000 000.

We assume that generating globe is an exact replica of the earth but at
the scale indicated by (5.06). We call this the principal scale and therefore
can define it as: * the scale of a reduced or generating globe representing
the sphere or spheroid defined by the fractional relation of their respective
radii.

The concept of a generating globe of known principal scale is extremely
useful in the discussion which follows. Since a map is a small-scale
representation of the whole or part of the surface of the earth we are



Mathematics of map projections 83

accustomed to think of all matters relating to scale in terms of rep-
resentative fractions like 1/30000000. Since we must consider in detail
how the transformations from sphere to plane can be accomplished and,
in particular, investigate how and where distortion in scale may occur, it
Is inconvenient to have to think always in these terms and regard the
scale changes as, for example, between 1/30 000000 and 1/29 500 000, or
even worse, the differences between 3-3337% and 3-389 8. We therefore
sweep away this difficulty by thinking in terms of the generating globe
which is a replica of the earth at the scale of the map. Since we wish to
eliminate the use of awkward fractions altogether, we define the principal
scale as

po = 1-0 (5.07)

and evaluate distortion as some multiple of this.

It follows, moreover that the principal scale is equivalent to the
representative fraction printed in the margin of the map. Hence we have
the statement that

1/S = po = 1-0 (5.08)

Introduction to the concepts of distortion

At the manageable dimensions of a generating globe it is easy to dem-
onstrate that the curved surface of a sphere cannot be fitted to a plane.
This fundamental principle can be verified easily by anyone who experi-
ments with a globe, beach ball or similar smooth surface. If we attempt
to fit a small piece of paper —a postage stamp, for example —to the surface
of a large beach ball, it is possible to make it adhere without creating any
wrinkles or tears in the paper. This is because the piece of paper is small
compared with the ball and the deformation of the plane which is needed
to make the two surfaces fit is less than can be accommodated by the
elasticity of the paper. On the other hand, the same postage stamp
cannot be fitted to the curved surface of a table tennis ball without the
introduction of considerable folding, tearing or creasing.

An important conclusion to be derived from these simple experiments
is that if the area of the plane surface is small compared with the total
surface area of the sphere, the amount of distortion introduced is less
than occurs when the area of the plane corresponds to a larger part of
the curved surface. This is a qualitative, empirical observation similar to
that made in Chapter 1, p. 20, with reference to the use of the assumption
that the earth is a plane surface. However, it is now important for us to
learn more about these processes of distortion and, in particular, discover
how they may be expressed algebraically and used quantitatively to illus-
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trate how a particular map projection distorts the curved surface of the
globe.

Of course the experiments with a ball and postage stamp are the
converse of the object of creating a map projection, which is to make
parts of the curved fit a plane. A useful illustration, which may be
simulated by cutting orange peel and laying this flat, is to imagine that
the curved surface of a globe has been cut along certain parallels and
meridians, as shown in Fig. 5.02. If the spherical surface is cut thus it is
very nearly possible to lay it flat. However, this result is obtained only at
the expense of showing certain parallels of latitude twice, and interrupting
the continuity of the map by leaving gaps between these parallels. If it is
desirable to map the whole surface continuously, these gaps must be
closed by stretching each zone in a meridional direction until the cor-
responding parallels meet, as illustrated in Fig. 5.02. Stretching of the
map involves distortion, and comparison of Figs 5.01 and 5.02 indicates
that the amount of stretching increases progressively towards the edges
of the map. The amount of distortion may be indicated by the deformation
of the circles shown in Fig. 5.01 into the oval figures shown in Fig. 5.02.

In the creation of the continuous map illustrated by Fig. 5.02 the dis-
tortion described is linear distortion directed along the meridians. The
graphical result is that the distance between any two parallels of latitude
increases from the middle of the map towards its edges. On the other
hand, the distances between successive meridians vary only with latitude.
We have already seen that this is a property of the spherical surface.
Equation (3.17) describes it. If, however we consider the spacing between
the meridians along any particular parallel of latitude, we see that it is
almost constant and equivalent to the spacing illustrated in Fig. 5.01. This
suggests that linear distortion in this projection occurs in one direction but
not in the other. This is clearly likely to influence the representation of
both angles and areas on the map. The effect may be demonstrated by
drawing two simple diagrams, as shown in Figs 5.03 and 5.04. In Fig.
5.03 the point P has coordinates (10,10), measured in a system with origin
O. It follows that the angle YOP = 45° and the area of the square
YOXP = 100 square units. In Fig. 5.04 the scale along the ordinate has
been doubled but that along the abscissa remains unchanged. Thus
P’ =(10,20). The angle Y'OP’ = 30° and the area of the rectangle
Y'OX'P’ = 200 square units. We will call the change in angle Y'OP-
YOP the angular deformation and the change in area Y'OX'P'-YOXP
the exaggeration of area. In a map projection they are not as easily defined
as they are in a pair of plane graphs, but the essential characteristic is
clear. Both angular deformation and exaggeration of area depend upon
linear distortion and therefore they may be defined in terms of this.
Consequently it is the change which occurs in the length of any line which
is fundamentally important to the study of map projections.
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F1G. 5.03 Demonstration of the influence of linear distortion upon angular and
area representation. Stage 1, initial condition where P = (10,10).

Linear distortion

When the scale of a map is known from its representative fraction, one
might suppose that this scale is constant in three respects:

(1) That the ratio established by the representative fraction applies to
the lengths of all lines measured on the map. For example, if the scale of
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F1G. 5.04 Demonstration of the influence of linear distortion upon angular and
area representation. Stage 2, showing the result of changing the ordinate so that
P’ =(10,20).
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the map is 1/25000, we expect that a line of length 40 mm corresponds
to a ground distance of 1 km. We may further assume that a line of length
80 mm corresponds to a line of length 2 km and that a line of length 400
mm corresponds to 10 km on the ground. Hence we may assume that the
relationship established by the representative fraction is constant for
linear measurement of any distance which can be contained within the
neat lines of the map. Moreover we assume that the same relationship
will hold good for all maps of the same scale irrespective of the part of
the world which they depict.

(2) That the relationship established by the representative fraction is
constant for all parts of the map. Thus we suppose that a line of
length 40 mm corresponds to a ground distance of 1 km, whether this be
measured in the centre of the map or near one edge or corner of the sheet.

(3) That the relationship is also independent of direction. Thus, at
1/25000 scale, 40 mm represents 1 km irrespective of whether the line
to be measured lies north-south or east-west or in any intermediate
direction.

These three assumptions appear to be axiomatic in most kinds of map
use, to the extent that the majority of map or chart users apply them
without further thought. However, the assumption that scale is constant
for all distances, at all places and in all directions is not true. If it were
possible to reproduce the principal scale in all directions and everywhere
upon the plane surface of the map, then the map would be a perfect
representation of the spherical surface and therefore it would be part of
the spherical surface. Since a curved surface is not a plane it follows that
the transformations to the plane must involve variation in scale in some
or all of the three ways which have been specified.

The numerical example refers to a map of scale 1/25000 which probably
represents a good area of 100-200 square kilometres. Within this small
portion of the earth’s surface the scale changes are small; so small that
negligible errors are introduced by making the assumption that scale is
constant. The errors are much less than the uncertainty in position caused
by representing ground detail by legible lines of exaggerated width; they
are also less than the variations in paper size and shape which occurs
with changes in humidity and temperature. But it is important to realize
that linear distortion is still there, even if it is too small to be measured
or recognised by our rather crude methods.

Lines and points of zero distortion

Although it is clearly impossible to create a perfect map in which the
principal scale is preserved everywhere, it is quite easy to maintain the
principal scale along certain lines or at certain points on the map. Along
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these lines, or at these points, scale is constant and equal to the principal
scale so that no linear distortion is present. Thus we have the following
terms and their definitions:

1. * Line(s) of zero distortion are lines on a map projection along which
the principal scale is preserved and which correspond to certain great
circle or small circle arcs on the sphere.

2. * A point of zero distortion is a point on a map projection where the
principal scale is preserved.

The meanings of these definitions may be demonstrated by some well-
known experiments with a globe or ball and a sheet of paper. These are
illustrated in Figs 5.05, 5.06, 5.07, 5.08, 5.09 and 5.10. We use the paper
to create a cylinder, cone or plane. The first and second of these are
developable surfaces, these being surfaces that can be transformed into a
plane without distortion.

If the sheet of paper is wrapped round the sphere in the form of a
cylinder, it makes contact with the spherical surface along the cir-
cumference of a great circle, as illustrated in Fig. 5.05. By marking the
paper we see that the length of the line of contact on the plane sheet,
unrolled from the cylindrical form, is the same as the length of the
circumference of the great circle.

The second possibility is to wrap the sheet of paper in the form of a
cone (Fig. 5.06) so that this surface makes contact with the spherical
surface along the circumference of a small circle. Again it is obvious that
the length of the line of contact between the paper cone and the globe

Y
N~

FiG. 5.05 The tangent cylinder.
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F1G. 5.06 The tangent cone.

corresponds to the length of the circumference of the small circle. The
third possibility is to hold the paper as a plane surface so that it forms
a tangent plane to the globe (Fig. 5.07). Although it cannot now be
demonstrated that lines of finite length are represented at true scale, it
follows from the definition of a spherical angle (p. 53) that any angle
drawn on the plane at the point of contact is equal to the corresponding
spherical angle on the globe.

We may also consider three analogous cases where the surface of the
developable surface intersects the surface of the globe. These cannot be
simulated by experiment with a sheet of paper but are easy enough to
illustrate. Figure 5.08 shows the secant cylinder which intersects the sphere

T

F1G. 5.07 The tangent plane.
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F1G. 5.08 The secant cylinder.

along two arcs of small circles, AB and CD. It is easy to demonstrate
from the geometry of a sphere that since a cylinder has constant radius,
the small circles have the same radii and therefore they are equidistant
from the plane of the great circle defined by the co-axial tangent cylinder.
By reasoning analogous to that followed for the tangent cylinder, the
principal scale is preserved along the circumferences of both small circles.

The example of the secant cone is illustrated in Fig. 5.09, where it can
be seen that two small circles of different radii are defined by 4B and CD,
and each of them is represented on the cone at its correct length. In Fig.
5.10 the tangent plane has been displaced so that it now intersects the
spherical surface and the small circle 4B is traced upon this plane. It
follows from the definition of a small circle that the circumference traced
on the plane is identical with the circumference of it on the sphere.

The experiments and illustrations which depict the various ways in
which the location of lines or a point of zero distortion may be imagined
indicate that the lengths of lines should be the same as those on the
generating globe. It is less easy to demonstrate that this principle applies
also with the infinitely small circle centred on a point of zero distortion.
The main difficulty is to imagine how we can define scale at a point. We
have to reconcile the elementary concept of scale as a fraction relating
finite distances whereas the Euclidean definition of a point is that it
has position but no magnitude. To proceed further necessitates some
reconsideration of the concept of scale in terms of the differential calculus
and determine the rate at which scale may change along a line which is
infinitely short.
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FiG. 5.09 The secant cone.

Particular scales

Let us consider a map projection of part of the surface of a globe which
satisfies equations (5.01) and (5.02). In other words we define positions
on the plane in rectangular coordinates (X, y) and we know that the
positions of points plotted within this system are some function of both
latitude and longitude. Thus if ¢ changes, both x and y are altered.
Similarly if A changes both x and y are altered. Figure 5.11 represents
part of the curved surface of the generating globe and shows the spherical
quadrilateral (or quadrangle) formed by the intersection of a pair of
meridians by a pair of parallels. We assume that the geographical coor-
dinates of the point 4 are (¢, A) and that the other three points, B, C and

A e BT
i

FiG. 5.10 The secant plane.
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TABLE 5.01
Point Latitude Longitude
A © A
B @+0¢ A
C @+0¢ A+04
D © A+04

D lie to the north and east of 4. Then, denoting the difference in latitude
between the parallels as d¢p and the difference in longitude between the
meridians as 64 we may list the geographical coordinates of the four
points according to the system shown in Table 5.01. Figure 5.12 shows a
map of the corresponding points A’, B’, C’ and D’. The rectangular
coordinates of the point A4’ are (x, y) and the coordinate differences
between 4’ and C’ are 6x and Jy.

$+38¢
By A
A+ B
[
¢ ¢+89
A
X
@
D
A+3)

F1G. 5.11 A spherical quadrilateral ABCD of finite size formed by the inter-
sections of the parallels ¢ and ¢ + d¢ with the meridians A and A+ 4.

A+3X

FIG. 5.12 The plane representation A’B’'C’D’ of the spherical quadrilateral
illustrated by Fig. 5.11.
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Thus far we have regarded the spherical quadrilateral and its projection
as having finite size. In other words the quantities d¢, 64, 6x and dy can
be measured on a globe or map. Because we have specified a generalized
functional relationship, the sides and diagonal of A’B'C’D’ may be
composed of curves, and the angles between these sides may be of any
size.

Differential geometry of the sphere and plane

In order to proceed further with the analysis it is now necessary to
consider that the corresponding figures have been reduced in size until
they are infinitely small. This has two important consequences:

® the shapes of corresponding lines on both globe and map approximate
more and more closely to straight lines;

® the angles formed by the intersections of pairs of lines remain
unchanged.

It follows that the spherical quadrilateral formed originally by pairs of
meridians and parallels intersecting at right angles is transformed into a
rectilinear figure in which all four angles are still right angles. Hence in
Fig. 5.13, ABCD is a rectangle. On the map the sides and diagonals of
the figure A’B’C’D’ are transformed into straight lines, but angles such
as 0" are preserved. Figure 5.14 illustrates this transformation in enlarged
form. We regard the points 4 and 4’ as having the coordinates already
allocated to them, but denote the incremental changes in latitude, longi-

B (o]
¢+ do
a
¢
D
A A+ d)

FiG. 5.13 An infinitely small spherical quadrilateral ABCD, formed by the
intersection of the parallels ¢ and ¢ +de with the meridians 4 and A+dA.
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FiG. 5.14 The plane representation A’B’C’D’ of the infinitely small spherical
quadrilateral illustrated in Fig. 5.13.

tude, x and y as being d¢, d4, dx and dy respectively. This is the usual
notation used to indicate infinitesimally small increments. Consequently
the four points on the globe are shown in Table 5.02. From equation
(3.12) we may express the length of the element of the meridional arc
through A as

ds, = R.d¢ (5.09)

where R is the radius of the globe. v
From equation (3.17) the length of the element of the arc of the parallel
through A is

ds, = R.cos¢.dA (5.10)

Moreover, since the angles at the four corners ABCD are right angles,
we may use Pythagoras’ Theorem to find the length of the diagonal arc
element AC. Thus

ds? = ds,i+ds§ (5.11)
TABLE 5.02
Point Latitude Longitude
A 7] A
B o+do A
C o+do A+di
D @ A+di
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or
ds = (R?.dep?+R%.cos? ¢ .dAH)!/? (5.12)

On the plane, the point 4" = (x,y) and C’ = (x +dx,y+dy). In order to
aid further interpretation, we construct the lines 4'S’, B’P’, C'Q’ and
D’R’ parallel to the x-axis. We also construct the lines 4'P’, B'Q’, C'R’
and D’S’ parallel to the y-axis. At this stage it is desirable to introduce
a word of warning about the understanding of the equations which follow.
These are presented in the logical order in which they may be derived, and
they make use of the symbolic notation to be expected in mathematical
writings. However the rigorous derivation of them calls for a higher
standard of mathematical competence than is necessary in most other
parts of this book. Consequently we take further short-cuts. We do not
attempt to prove these equations algebraically, but merely present the
important results. Each of these may be interpreted in geometrical terms,
using Fig. 5.14 as the guide, and it is more important for the beginner to
understand this part of the argument than the algebraic gymnastics which
led to the results. The reader who is anxious for a rigorous mathematical
derivation of the theory is referred, for example, to Richardus and Adler
(1972). In order to demonstrate how the equations which follow have
practical application, we give an example of their use at the end of this
chapter.

Each of the lines represented in Fig. 5.14 has a geometrical significance
which may be represented symbolically using the notation of partial
differentiation. Thus A’B’ represents the arc of the meridian through 4°,
and A’D’ is the arc of the parallel through the same point. 4’C’ represents
any arc through 4" which makes the bearing o’ with the meridian through
A’. The additional construction lines represent the following variables:

® A’P’ represents the increment in y which results from an increase do
in latitude. This may be expressed symbolically by the term

(Oy/op)de

® P’B’is the increment in x which results from the same increase do
in latitude. This may be expressed symbolically by the term

(0x/09)de

® A’S’ represents the increment in x resulting from an increase d/ in
longitude. This may be expressed symbolically by the term

(9x/02)d2

® D’S’is the increment in y resulting from the same increase dA in
longitude. This may be expressed symbolically by the term

(9y/d2)dA
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From Fig. 5.14 we can see that the increment dx between A’ and C’ is
composed of the two linear elements B'P’ and Q'C’ or

dx=B'P +Q'C’
Substituting the appropriate terms corresponding to these linear elements
dx = (0x/d¢)de +(0x/04)dA (5.13)

In calculus this is known as the rotal differential of x. Similarly we can
see that the increment dy between 4" and C’ is also composed of two
linear elements A’ P’ and B'Q’. Thus

dy=A'P'+B'Q’
= (0y/0¢p)de +(dy/dA)dA (5.14)

which is the total differential of y. Both of these expressions may be
derived algebraically from the functions (5.01) and (5.02). Many elemen-
tary textbooks on the calculus demonstrate this.

From the application of Pythagoras’ Theorem to the right-angled tri-
angles in Fig. 5.14, the sides and diagonal of the figure A’B’'C’D’ may be
expressed as

A'B?=B'P*4 A'P? (5.15)
A'D?=A'S?+D'S" (5.16)
A'C*=B'P?+Q'C*+ A P*+B Q" (5.17)

= dx’+dy’ (5.18)

Substituting the right-hand sides of equations (5.13) and (5.14), we obtain
for the diagonal arc 4A’'C’ = ds’, the expression

ds'? = [(0x/0@)de + (x/0A)dA) + [(9y/d@)de + (3y/0A)dA]®  (5.19)

Gaussian fundamental quantities

Some simplification of this equation can be obtained if the following
expressions are substituted:

E = (0x/0¢)* +(dy/09)’ (5.20)
F = [(0y/09) . (dy/0A)]+[(0x/0¢) . (0x/0A)] (5.21)
G = (0x/0A)2+ (8y/04)? (5.22)

leading to the more convenient expression
ds'? = E.dg*+2F.d¢ .dA+G .dA? (5.23)
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From the equations which have been derived it is now possible to deter-
mine three scales which refer to the point A" on the map.

(1) The scale along the meridian
This is the ratio

A'B’'|/AB = h
Since
A'B?>=BP?*+A'P?
= [(@x/0¢)d o]’ +[(3y/0p)d@]?
and from (5.20)
A'B’ = JE.dg (5.24)

The arcelement AB = ds,, has already been determined in equation (5.09).
Therefore

h=(JE.do)/(R.do)
- JER (5.25)

and since we have to relate this scale to the principal scale, we put R = 1
so that

h=JE (5.26)

(2) The scale along the parallel
This is the ratio

A'D’|AD =k
Since
A'D?*=A'S*+D’'S"?
= [(0x/0A)dA)*+[(dy/oA)dA)?
and, from (5.22)
A'D’' = /G .dA (5.27)

The arc element AD = ds, has already been found in equation (5.10).
Therefore

k=(/G.dV)/(R .cose.di) (5.28)
This simplifies to
k = /G/(R.cos ) (5.29)

or, where R = 1,
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k = /Glcos ¢ (5.30)

(3) The scale along any arc through A which makes the bearing o with the
meridian through A

This is the general expression illustrated by the ratio A’C’/AC or ds’/ds,
which we will denote by u. The value for 4’C’? has been given in equation
(5.23) and that for AC in (5.12). Hence we may write

ds'/ds = [E.d@*+2F .de.dA+G.dA"}[R?.dp*+R?.cos? ¢ .dA2] "2
(5.31)

or, putting R = 1, as before
p=[E.dp*+2F.do.di+G.dA]"*/[dp*+cos’ @.dA*"? (5.32)

The scales along the meridian, the parallel or in any direction are known
as the particular scales at the point and these may now be defined as: *
the relation between an infinitesimal linear distance in any direction at any
point on a map projection and the corresponding linear distance on the
globe.

The idea of direction is contained in the angles «" and 6" on the map.
We see in Fig. 5.14 that o' is the bearing of the line 4’C’ measured at 4’
and corresponds to the bearing AC = a on the globe. The angle 8" is the
angle made at A’ by the intersection of the meridian and parallel on the
map. On the globe this is, of course, a right angle.

It can be shown that

cos® = F/[h.k.cos @] (5.33)

The angle ' may also be shown to be a function of E, F and G so that it
is also possible to express (5.32) in terms of o’. This has the form

u2 = (E/RY) cos?a+ (F/R2cos @) sin 20+ (G/R*cos? @) sin*a... (5.34)

where p, is the particular scale in the direction «’. Since E, F, and G
change continuously with both latitude and longitude, the particular
scales vary with position on the map. Since u can also be expressed in
terms of bearing, it follows that, at any given point, the particular scales
also vary with direction about that point.

It follows that any number of particular scales can be evaluated for a
point, but, in practice, only four of these are needed for the subsequent
analysis of the distortion characteristics of any map projection. These
are:

@ the particular scale along the meridian, A, from (5.26);
@ the particular scale along the parallel, k, from (5.30);
® the maximum particular scale, a, at the point;

® the minimum particular scale, b at the point.

The maximum and minimum particular scales remain to be determined.



CHAPTER 6

The ellipse of distortion

...an engineer should use mathematics as a tin-opener is used to open tins of
meat. The mathematician also uses mathematics as a tin-opener, but to open
tins of tin-openers. Sometimes he is content to indicate the bare existence of a
symbolic tin-opener without reference to a tin of anything. He is quite right to
do this in pursuit of pure knowledge; and it is our fault if we do not fully
appreciate that his objects frequently differ from ours.

M. Hotine, Empire Survey Review, 1946

Tissot’s Theorem and the principal directions

Most of the foregoing analysis had been undertaken by Gauss in the
early years of the nineteenth century. The next major advance in the
mathematical theory of map projections was made by N. A. Tissot in the
1850s. He proposed the theorem which bears his name and also developed
the concept of the ellipse of distortion which is also known as Tissot’s
Indicatrix.

Tissot’s Theorem was stated by him as follows:

Whatever the system of projection there are, at every point on one of the surfaces and, if
angles are not preserved, there are only two of them, such that the directions which
correspond to them on the one surface also intersect one another at right angles.

Tissot’s original reasoning is easy to follow. If a point 4 on the globe
represents the intersections of two arcs 4B and AC making the angle 6
[Fig. 6.01(a)] the corresponding points on the plane are A°, B’ and C’,
and the corresponding angle is §”. We assume that 6 # 0’ but that both
of them are acute angles. If the line AC is rotated in an anticlockwise
direction about 4 until it is an obtuse angle [Fig. 6.01(b)] it has, at some
stage, passed through the angle 6 = 90° during this rotation. Similarly, if
the line 4’C” is also rotated about 4’ until it is an obtuse angle, then at
some stage 6’ = 90°. Where 6 = 6’ = 90°, the two orthogonal directions
have been defined. These are called the principal directions.

100
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(a) ¢ .
c
A “a B

B

(b)
c ¢
S \
A B A" B

F1G. 6.01 The concept of principal directions. The diagrams on the left relate

to the spherical surface and those on the right to its plane representation. In (a),

0 < 90° and & < 90°. In (b) 8 > 90° and 6’ > 90°. The principal directions are
defined where BAC = B’A’C’ = 90°.

The ellipse of distortion

The next stage in the argument is the most difficult to prove rigorously
but simply. The idea is simple enough; namely that an infinitely small
circle on the surface of the globe will be transformed on the plane into
an infinitely small ellipse whose semi-axes lie along the two principal
directions. Reference to Figs 5.01 and 5.02 indicates that the idea is
plausible, so we make another massive short-cut and assume it to be
proved. The reader who insists upon a proof will find this in a number
of advanced textbooks published outside Britain, for example Reignier
(1957), Fiala (1957), Richardus and Adler (1972).

Figure 6.02 illustrates a point 4 on the globe which has geographical
coordinates (¢,, 4,). AC represents an infinitely short arc, ds, which
corresponds to the arc AC in Fig. 5! 713 and the preceding section defining
particular scales. Since scale is constant on the curved surface of the globe
and everywhere equal to the principal scale, the locus of all points such
as C traces the circumference of a circle with centre 4 and radius ds.
Since we have set the principal scale uy = 1, it is convenient to make
ds = 1.

Figure 6.03 illustrates the corresponding figure on the plane. The lines
Al and A’Il’ represent the principal directions through the point A4’
and we use these to define corresponding coordinate axes in both Figs
6.02 and 6.03. In Fig. 6.03 the line 4’C’ corresponds to the arc element
ds’ which, in Fig. 5.14, made the angle a’ with the meridian through 4"
However, it is now necessary to refer angles to one of the principal
directions so we define the angle JAC = u and I’A’C’ = u’. Because the
length of the arc element ds’ varies continuously with direction, or, in
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FiG. 6.02 The representation of an infinitely small circle upon the spherical
surface.

other words, according to u, it follows that the locus of points such as C’
trace the circumference of the ellipse. Let C = (x,y) and C’ = (x',y’),
both systems having the principal directions as axes.

FiG. 6.03 Tissot’s Indicatrix or the ellipse of distortion. The deformation of
the infinitely small circle illustrated in Fig. 6.02 into an ellipse by the trans-
formation to the plane. Compare also Figs 5.01 and 5.02.
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The lengths of the two semi-axes of the ellipse may be expressed as

a=yly (6.01)
b=x'/x (6.02)
so that
x'=b.x (6.03)
y =a.y (6.04)
Moreover
x' =ds’ .sinu (6.05)
y' =ds’.cosu’ (6.06)
x =ds.sinu = sinu (6.07)
y=ds.cosu =cosu (6.08)
Substituting from equations (6.05)-(6.08) in (6.03) and (6.04)
ds’.sinu’ = b.sinu (6.09)
ds’.cosu’' =a.cosu (6.10)

Combination of these equations leads eventually to
ds’? = a’cos?u+b’sin’u (6.11)

Two of the particular scales at 4’ refer to the scales along the meridian
and parallel. If B is the angle on the globe between the principal direction
I and the meridian A, through 4, with the corresponding angle f’ on the
map, from (6.11)

h* = a*cos? B+ b*sin? §’ (6.12)

k? = a*sin’ B’ +b?cos’ f’ (6.13)

Adding equations (6.12) and (6.13), the terms in §’ equal unity (because
sin? B’ +cos? B’ = 1), therefore

h*+k* = a’+b? (6.14)

This is the algebraic expression for the First Theorem of Apollonius, well
known in plane coordinate geometry, which states that the sum of the
squares of two conjugate diameters of an ellipse is constant.

The Second Theorem of Apollonius states that the area of the par-
allelogram formed by two conjugate semi-diameters of an ellipse is equal
to the area of the rectangle formed by the semi-axes of that ellipse. In the
present notation this may be expressed as

h.k.sin@ =a.b (6.15)
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Equations (6.14) and (6.15) are valuable to the analysis of the distortion
characteristics of any map projection, for they permit evaluation of a and
b from known values of 4, k and 0’. Thus

h*+2h . ksin® +k*=a*+2a.b+b? (6.16)
whence

atb=(h*+k>+2h.k.sin0)"? (6.17)

Area scale

The area of a small quadrilateral, such as A’B’C’D’ in Fig. 5.14, may be
defined as A’B". A’D’ .sin@’. Thus

p=h.k.sin@ (6.18)
which is the left-hand side of (6.15). Consequently we may also write
p=a.b (6.19)

The parameter p is defined in the same units as the particular scales:
therefore it is known as the area scale.

Angular deformation

From the difference between the angles « and «’, both being referred to
the same principal direction, it is possible to evaluate the alteration in
direction of the line 4’C" as follows:

tanu’ = (b/a)tanu (6.20)
and
tanu+tanu’ = tanu+(b/a)tanu (6.21)
It can be shown that
[sin (u—u')/cosu.cosu’] = [(a+ b)/a]tanu (6.22)
and
[sin (u—u")]/[cosu.cosu’] = [(a—b)/a] tanu (6.23)
Dividing (6.23) by (6.22)
sin(u—u') = [(@a—b)/(a+ b)]sin (u+u") (6.24)

This equation will have the maximum value when sin(u+u«’) = 1, cor-
responding to (u'+u) = 90°. There will be four such directions located
one in each of the four quadrants of the coordinate axes defined by the
principal directions. If an angie is composed of two such directions, so
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that each side of the angle has been deflected through the maximum
amount, we have a quantity called the maximum angular deformation, o,
at the point. It follows from (6.24) that

sin (0/2) = (a—b)/(a+b) (6.25)

and this is the formula which is most commonly used to find this par-
ameter for any point in a map projection.

Summary of the main conclusions derived in
Chapters 5 and 6

These chapters have contained some fairly difficult mathematical ideas
and unfamiliar concepts. To help the beginner to keep track of the
argument it is worth summarising the main conclusions which have so
far been obtained.

1. Itisnecessary to distinguish two kinds of scale on any map projection.
2. The principal scale, u,, is the nominal scale of the map. It can only
be preserved at all points and in all directions on the curved surface
of the globe. On the map the principal scale can only be preserved at
certain points or along certain lines.

These are known as points or lines of zero distortion.

The principal scale is allocated a numerical value of 1-0.

. The particular scales, u, at any point on a map projection are those
defined for infinitely short arcs in different directions. These are
expressed as a decimal fraction or multiple of .

6. Particular scales vary throughout the map according to position and
direction.

7. Two particular scales through any point can always be determined.
These are the particular scale along the meridian, /4 and that along
the parallel, £.

8. Tissot’s Theorem demonstrates that at every point there are two
orthogonal principal directions which are perpendicular to one
another on both the globe and map.

9. An infinitely small circle on the globe will be represented on the map
by an infinitely small ellipse, known as Tissot’s Indicatrix or the
ellipse of distortion.

10. The axes of the ellipse of distortion correspond to the two principal
directions and the maximum and minimum particular scales, a and
b at this point occur in these directions.

11. These particular scales may be evaluated if 4 and k are known,
together with the angle 6" made by the intersection of the meridian
and parallel on the map at this point.

12. From the Second Theorem of Apollonius it is possible to derive the

© o
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area scale (or exaggeration of area), p, which relates the areas of
infinitely small figures on the globe to the corresponding figures on
the map.

13. Itis also possible to evaluate the maximum angular deformation, w,
from the maximum and minimum particular scales at a point.

The special properties of map projections

Despite the fact that the principal scale can only be preserved along
certain lines or at certain points in a projection; despite the fact that the
particular scales are variables in both position and direction on the map,
it is possible to create certain special combinations of particular scale
which may be maintained through a map projection of the whole world,
excepting only at the singular points where Tissot’s theory does not apply.
These arrangements of the particular scales may be called the special
properties of a map projection (some writers call them the properties)
which may be defined as the properties of a projection which arise from
the mutual relationship between the maximum and minimum particular
scales at any point and which are preserved at all except the singular points
of a map.

The present author (Maling, 1968b) has suggested that there are about
a dozen different arrangements of the particular scales which may be
regarded as special properties, but only four of these are really important.
These are the properties of:

@ conformality,

® equivalence,

@ equidistance,

® minimum-error representation.
Conformality

A conformal map is one in which
a=>b (6.26)

at all points on the map. It follows that, if this condition can be satisfied,
the infinitely small circle on the surface of the globe will always project
as a circle on the plane. Moreover, since the maximum angular defor-
mation is determined from the relationship (a—b)/(a+b) in equation
(5.59) it follows that where a and b are equal, w = 0°. Thus a conformal
map projection has no angular deformation, or, to paraphrase part of
Tissot’s Theorem quoted on p. 100, angles are preserved. This is the
essential and important special property of all conformal projections. It
is an essential requirement for any map which is to be used for measure-
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ment of angles. Hence conformal projections are used as the bases for
navigation charts, topographical maps and military maps.

The fact that an infinitesimally small circle on the globe remains a circle
on the map implies a further property of a conformal map, namely that
the shapes of objects are also preserved. However, this statement must
be accepted only with certain reservations. The condition expressed in
equation (6.26) is not equivalent to the statement that a = b = 1. Con-
formality can be obtained only at the expense of increasing particular
scales by the same amount in all directions. This means that the area scale
increases according to the square of the particular scale. The result is that
a circle on a point of zero distortion remains a circle near the edge of the
map, but the size of it has increased considerably. Hence we uncover the
paradox that although a conformal map provides a good representation
of shapes for a small area round every point, the rapid increase in the
particular scales away from the points or lines of zero distortion make
these projections less suitable for representing the shapes of large ter-
restrial features like continents and oceans.

The alternative name for this property is orthomorphism, but the use
of this term has tended to divert attention from correct angular rep-
resentation to the much less important consideration of shape. In math-
ematics a conformal transformation is one in which every angle retains
its original size. This is precisely what we mean by (6.26); therefore we
prefer to use the adjective conformal rather than orthomorphic. However,
the reader is referred to the correspondence, Arden-Close (1944), Hotine
(1945-1946), Lee (1946), Lenox-Conyngham (1944) for different opinions
concerning this usage.

It follows that, in any projection for which w = 0°, all graticule inter-
sections are orthogonal. This must be true irrespective of the nature of
the mapped parallels and meridians which are often complicated curves.
If a conformal projection is composed of curved parallels and meridians
it is necessary to imagine two tangents, one to each line, drawn at the
graticule intersection. These two tangents are perpendicular to one
another. The converse does not necessarily apply. Thus a map projection
in which the parallels and meridians all intersect at right angles is not
necessarily a conformal projection.

Equivalence
An equal-area map is one in which
a.b=1 (6.27)
It therefore follows that
=1/b (6.28)
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b=1/a (6.29)

or the maximum and minimum particular scales are reciprocals of one
another. It follows that although the ellipses of distortion may have
considerable ellipticity, they have uniform area. Moreover, the principle
of equivalence may also be maintained for areas of finite size and an
important aspect in the derivation of equal-area map projections of
different classes has been the ability to argue that the whole or part of
the generating globe is mapped into a square, rectangle, circle, ellipse or
other geometrical figure having the same area as the required part of the
globe.

The equal-area map projections are most important in the field of
distribution mapping of statistical variables. For example, if it is required
to map population, agricultural or industrial statistics, this may be done
by plotting many symbols, such as dots, each representing a particular
number or quantity of the variate. An important aspect of interpretation
of such a map is the visual impression of density of population, agri-
cultural production or industrial output as this varies from place to place
in a country or continent. This visual impression is, of course, created by
the concentration of many such dots in some places contrasted with
sparser distribution of them elsewhere. If the base map upon which such
distributions are plotted is truly equal-area, the visual impression is likely
to be correct. If, however, the map is not equal-area, the visual impression
of density is upset by the wholly artificial crowding or dispersion of
symbols. We may also wish to measure the area occupied by some dis-
tribution, such as a category of land use, on a small-scale map. Then it
is desirable to use a map in which there is no exaggeration of area. See
Maling (1989) for an analysis of this problem, and some of the ways of
overcoming it when the ideal map is not available.

Equidistance

The third important mathematical property which may be satisfied is that
one particular scale is made equal to the principal scale throughout the
map. Usually this is the meridional scale so that for equidistance we may
write

h=10 (6.30)

thereby creating a projection in which all the parallels intersect all the
meridians at a separation corresponding to the arc distance between the
parallels on the globe. The alternative is to make £ = 1 throughout the
map. This property arises incidentally in the derivation of certain map
projections, but it is less valuable than preserving the principal scale along
great circle arcs.
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Since we have specified that one particular scale is equal to unity it
follows that equidistance is incompatible with both conformality and
equivalence. Clearly if 2 = 1 in an equidistant projection, the conditions
specified by either (6.26) or (6.27) would lead us once more to the perfect
but impossible solution.

Equidistance is a less valuable property than either conformality or
equivalence because it is seldom desirable to have a map in which dis-
tances may be measured correctly in only one direction. However, an
equidistance map is a useful compromise between the two extremes rep-
resented by conformal and equal-area maps. Thus the area-scale of an
equidistant map increases more slowly than that of a conformal map.
The maximum angular deformation of an equidistant map increases more
slowly than that of an equal-area map. Consequently equidistant map
projections are often used in atlas maps, strategic planning maps and
similar representations of large parts of the earth’s surface in which it is
not essential to preserve either of the other properties.

Minimum-error representation

We have seen that the three special properties which have been described
are mutually exclusive of one another. Minimum-error representation is
a rather different kind of property because it may be combined with some
other special property. For example a minimum-error conformal projection
of a particular class may be specified for a particular purpose. However
minimum-error representation can also be considered to be a special
property in its own right, giving rise to what may be termed an absolute
minimum-error projection. The idea is well described by the older term
balance of errors used by Airy to describe the minimum-error projection
associated with his name. We already know that a and b are the maximum
and minimum particular scales at any point. Since we specify that the
principal scale is equal to unity, it follows that the scale errors along the
principal directions through a point may be expressed respectively as

e,=1—a (6.31)
e,=1-b (6.32)

The idea implicit in any minimum-error map projection is to balance
these errors so that the sums of the squares of the scale errors throughout
the map as a whole are a minimum value. For example it is necessary to
find expressions for (r, ) which satisfy the condition that

z=f
J [(1 —a)*>+(1—b?].sinz.dz = minimum (6.33)
z=0

It is necessary to specify the limits of the area to be mapped in which
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these conditions must be satisfied. Thus (5.67) must be expressed as the
definite integral which indicates the size of the area to be mapped. In
(5.67) we have taken the simplest case of a map with a circular boundary
and point of zero distortion at the centre of this circle. We shall recognise
that later as an azimuthal projection. Then the definite integral indicates
summation of the sums of the squares of the scale errors at all points
from the centre of the map (where z = 0) to the edge of the map (where
z = B). Clearly the expression of the minimum-error conditions for many
projections is algebraically quite difficult to follow. There have been two
important works on the subject published in the past 70 years. The classic
work is that of Young (1920); the contemporary study is that by Snyder
(1985).

The practical use and interpretation of the distortion
characteristics of a map projection

In this chapter we have derived a series of algebraic expressions for the
four important particular scales at any point. The additional parameters,
p and » may be derived from these particular scales and the special
properties of any map projection are also defined in terms of the particular
scales and distortion parameters.

It is now desirable to show what value these characteristics have in
helping us to describe a particular map projection. Even more important,
they give us some clues about a logical and systematic way of choosing
which map projection is suitable for a particular purpose.

Tabular presentation of distortion characteristics

Usually the values for the particular scales are calculated for a fairly
widely spaced graticule, for example, 10° or 15° of latitude and longitude
for a world or hemispheric map. There is no reason why the information
should not be calculated for every 1°, or for that matter every 1’ or 1”
apart from the sheet volume of the output. On the other hand, if it is only
done for every 20° or 30° some salient features of the given projection
may be missed. The results of the computations may be listed in a form
such as is given in Table 6.01. This projection is illustrated by Fig.
6.04. Although we have not yet defined what we mean by a cylindrical
projection, it can be seen that the world map is represented by a rectangular
outline, and both the parallels and meridians are families of parallel
straight lines. We may conduct interpretation of Table 6.01 in the
following fashion:

(1) We look for evidence of the location of the lines or points of zero
distortion. Since the principal scale is conventionally expressed as p,
= 1-0, we look for values corresponding to this in the columns for the
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TABLE 6.01 Particular scales and distortion character-
istics for the Cylindrical equal-area projection ( Lambert)

Particular scales Maximum angular
Latitude Area scale deformation

@ k=a h=b p @

0° 1-0000 1-0000 1-0000 0°

15° 1-0335 0-9659 1-0000 3° 58
30° 1-1547 0-8660 1-0000 16° 25
45° 1-4142 0-7071 1-0000 38° 57
60° 2-0000 0-5000 1-0000 73° 44’
75° 3-8637 0-2588 1-0000 121° 57
90° el 0-0000 - 180°

particular scales. We find that both scales are equal to unity in the first
line corresponding to ¢ = 0°. We also note that p = 1-0000 and w = 0°.
This confirms that the principal scale is preserved along the equator,
which is therefore a line of zero distortion. We can also see that the
particular scales do not equal unity elsewhere. Consequently the equator
is the only line of zero distortion.

(2) We look for evidence about special properties. This must be a
relationship which is established for the whole projection. From the
preceding section it is likely to be of the form a = b, a = 1/b, h = 1-0000
or k = 1-0000. A conformal map will have w = 0° throughout, and an
equal-area map will have p = 1-0000 throughout. We find the evidence
that this is an equal-area projection from the constant value for p in
column 4 of Table 6.01. It may be argued that the use of the words equal-
area or conformal in the name of the projection should be sufficient
evidence about the special properties of it. However, this is not necessarily
s0. Some projections are commonly only referred to by personal names
or titles (Mercator’s projection, Bonne’s projection or the Twilight pro-
jection) which convey none of this information. Sometimes they are
incorrectly labelled with an adjective which does not strictly apply to
them.

(3) We look for evidence concerning the principal directions. In this
particular example the parallels and meridians form an orthogonal net-
work and therefore the principal directions coincide with the graticule.
Thus k = a and & = b. It follows that a projection of this kind is much
easier to study than one having principal directions which do not coincide
with the parallels and meridians.

(4) We look for evidence for singular points, characterized by particular
scales equal to zero or infinity. This is shown in the last line of Table 6.01
where ¢ =90°. Here a= oo, b=0-0000, p is indeterminate and
the maximum angular deformation @ = 180°. All these clues lead us to
suppose that the one-to-one correspondence of points does not apply at
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FiG. 6.04 World map based upon the normal aspect of the Cylindrical equal-

area projection (Lambert) (No. 1 in Appendix I) showing conventional rep-

resentation of Tissot’s Indicatrix for the parallels 0°, 30° and 60° (on right) and

also showing isograms for maximum angular deformation (w) for 10°, 30°, 60°
and 100° (labelling on left of map).

the geographical poles. This is confirmed in Fig. 6.04 by the representation
of the poles by means of lines which are the same length as the equator.
(5) We may study the variations in particular scale with latitude.

Graphic presentation of deformation

This is done quite simply by plotting graphs for @ and b against ¢, as
shown in Fig. 6.05. Each of the numerical values in the table have been
determined for the points at which the parallels intersect a meridian and,
in theory, these values relate to the axes of the infinitely small ellipse
located at each intersection. If the map is a continuous representation of
the spherical surface, as in the present example, and there are no gaps or
interruptions, such as are illustrated by Fig. 5.01, we are justified in
making the interpretation that particular scales vary continuously and
regularly between the points which have been plotted. For example, if
k = 1-4142 in latitude 45° and k = 2-0000 in latitude 60°, we may inter-
polate from the graph and approximate value k = 1-55 for latitude 50°.
This may be done with greater accuracy by interpolation within the table,
provided that one of the standard methods of numerical interpolation is
applied. Simple graphs showing the particular scales plotted against lati-
tude are very useful in assessing the relative merits of several different
map projections which might be chosen for a particular job. The gradient
and nature of each curve compared with others gives a useful visual
appreciation about which of several projections provides least distortion
in a particular part of a map. The same kinds of graphs can also be drawn
for variations in p and w. We shall make use of this means of comparison
in Chapters 11 and 12.

(6) We may also use spatial representation of the ellipses of distortion.
Thus, if we plot a and b to some arbitrary but convenient scale we may
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FiG. 6.05 Graphs showing the variations in particular scales with latitude for
the Cylindrical equal-area projection, illustrated by Fig. 6.04. These graphs have
been plotted from the numerical data for the particular scales in Table 6.01.

construct the ellipses corresponding to different points on the projection.
These diagrams provide a generalized picture of deformation from place
to place, as illustrated on the right-hand side of Fig. 6.04. Several points
about their interpretation should be emphasized. The first is that on the
equator the ellipse of distortion is a circle of radius 1-0 units on the
arbitrary scale which has been chosen to draw these figures. This, again,
confirms that the equator is a line of zero distortion. Secondly, the
flattening of the ellipses varies exceedingly, but all of them appear to be
of similar size. This is confirmed by the fact that we are dealing with an
equal-area projection, so that the areas of the ellipses ought to be the
same.

(7) We may plot a series of isograms indicating constant values for any
single parameter. In this example the variable selected for illustration by
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this means is the maximum angular deformation. By determining the
latitudes for which w = 10°, 30° etc. we may plot curves (or in this
example, straight lines corresponding to parallels of latitude). The pattern
of the 1sograms, which may be improved visually by using variable
shading as in many illustrations in this book, give a two-dimensional
picture of how distortion varies from place to place, rather than the one-
dimensional picture provided by a single graph. This is important in the
study of many projections.

Where the particular scales vary with both latitude and longitude, infor-
mation such as that recorded in Table 6.01 would refer to only one
meridian. Thus a table for a 15° world graticule might require up to 338
separate entries for each of the variables a, b, p and w*. This kind of
table is difficult to comprehend, and graphical representation of the
variables is practically essential. It can be done by showing ellipses at
every graticule intersection as illustrated by Fig. 6.06, but this is an
extremely laborious way of doing it unless a digital solution is sought. If
such a figure has to be drawn by hand, the dimensions and orientation
of each ellipse has to be calculated, plotted and fair-drawn. In Fig. 6.06,
although the ellipses are all of the same size and there is a line of identical
circles along the equator and central meridian, the shape and orientation
of all the other ellipses differ at every graticule intersection. At the time
when the first edition of this book was being prepared, the preparation
of Fig. 6.06 caused an immense amount of trouble; sufficient to deter us
from ever trying to produce another by hand. At about the same time,

*The actual number of entries depends upon the symmetry of the projection about
certain parallels and meridians. Some, like the cylindrical projections, are symmetrical
about the equator so that the tabulated values are valid for both hemispheres. A projection
which is symmetrical about both the equator and a central meridian only requires tabulated
values of the particular scales for 79 graticule intersections. See also p. 138.

v

F1G. 6.06 Part of the Sinusoidal projection (No. 30 in Appendix I) showing a
diagrammatric representation of ellipses of distortion at each graticule inter-
section. This is an equal-area member of the pseudocylindrical class of pro-
jections in which the meridians are sine curves. The parallels are equally spaced
along the central meridian. Note the following features of these ellipses: (1) that
the ellipses along the equator and the Greenwich Meridian are circles, indicating
that these are lines of zero distortion; (2) that all the ellipses have the same area,
indicating that this is an equal-area projection; (3) that there is an increasing
flattening of the ellipses towards the north-eastern part of the map; (4) that the
axes of the ellipses do not correspond to the directions of the meridians and
parallels, and that the divergence in orientation increases towards the north-
eastern edge of the map. This is also confirmed by the increasing obliquity of
intersection of the graticule there. Obviously the principal directions, which
are the axes of the ellipses, cannot correspond to the graticule. Compare this
means of representation with Fig. 7.04(a), p. 132, where isograms for maximum
angular deformation are shown.
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however, Richardus and Adler (1972) were obtaining graph-plotter out-
put of examples of the same technique used, in their work, to illustrate
the deformations of certain conical projections. Indeed it is the only
method which they illustrate. Similarly, Snyder and Voxland (1989) use
this method to the exclusion of all others.
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More commonly the distortion patterns are shown by means of iso-
grams and shading. Figure 6.07 illustrates such a technique applied to a
world map in which the isograms do not coincide with the graticule. An
important advantage in using these parameters to assess the distortion
characteristics and relative merits of a map projection is that the par-
ameters have already been computed for the majority of useful map
projections. For example, Reignier (1957) gives tables for most of the
better-known projections.

Some other views of Tissot’s work

Despite the evident advantages of Tissot’s method of describing the dis-
tortions which arise in the process of representing one surface upon
another, it is important to appreciate that this method has had its critics
in the past. Some writers have maintained that a method of evaluation
which is derived from the particular scales, and therefore upon infini-
tesimal areas, is unrealistic. Thus Hinks (1912, 1921a,b) was critical of
Tissot’s methods and did not attempt to use them. This is the main reason
why the methods outlined in this chapter are still seldom described in
English works on map projections, whereas they are commonplace in
every other European language. Tobler (1964) has also made certain
reservations about the validity of interpreting the distortion charac-
teristics of map projections solely in terms of the ellipse of distortion. But
critics of the method have tended to ignore the principle outlined in (5)
above, that if x and y are continuous functions of ¢ and 4, the particular
scales and derived parameters also increase or decrease continuously and
can therefore by mapped. Tobler’s published alternative method, which
involves the determination of finite errors in computed triangles of differ-
ent sizes in different parts of a map, is a more elaborate procedure which,
at the time of publication, could be tackled only by using a mainframe
computer. Moreover, the presentation of the results is tabular and stat-
istical, so that it is difficult to appreciate how distortion can vary from
one part of a projection to another. The reader who can obtain access
to the very interesting Atlas for the Selection of Map Projections, by
Ginzburg and Salmanova (1957), will appreciate that simple graphics
based upon the six variables which have been defined here can be enor-
mously helpful in deciding which projection is going to be the most useful
to serve as the framework of a new map. After all, this is the chief practical
reason for wishing to know about the spatial distribution of distortion in
a projection. The work by Synder and Voxland (1989), entitled An Album
of Map Projections, is similarly a most useful graphic guide to the
appearance of world projections. However, its practical value is somewhat
reduced by only using plots of the ellipse of distortion to illustrate how
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deformation changes from place to place on the map. We return to this
important subject in Chapters 11 and 12, where the principles of selecting
a projection are considered in detail.

Theoretically it is also possible to apply the variations in particular
scale as corrections to measurements of distance, angle and area made
from maps. But the present author must confess that he has never met
anyone from outside Russia who admitted to ever having done this.

Worked example using the equations in Chapters 5 and 6

After such a lengthy algebraic introduction to the theory of distortion it
is desirable to show how the variables may be computed to find numerical
values for the particular scales and distortion characteristics at a specific
point in a projection. The example given here is for a point on the Hammer—
Aitoff projection (Fig. 6.08) in latitude ¢ = 60°N, longitude A = 60°E.
This example has been chosen because both the meridians and parallels
are curved and do not intersect at right angles. Consequently no sim-
plification is possible such as occurs when the principal directions coincide
with the graticule. Therefore it is necessary to start by finding the numeri-
cal values for E, F and G. The formulae which follow are from Maling
(1962).

The coordinates for a point on the Hammer—Aitoff projection may be
written in the form

x = 2,/2{(cos ¢ .sin }A)/[1 +cos ¢ . cos ;4] /?} (6.34)
y = (/2.sing)/[1+cos ¢ .cos ;A" (6.35)

The first requirement is to differentiate equations (6.34) and (6.35) with
respect to ¢ and A. This is by far the most difficult stage in the solution
so we do not expect the beginner to understand the derivation of the four
following equations

dx/0p = —J2{[sin @ .sin }A(2+cos @ . cos 3A)]/[1+cos ¢ . cos 1A]*'?}
(6.36)
dy/d¢ = [cos @(2+cos @ . cos 34) +cos 3A)/[\/2(1 +cos ¢ . cos 34)*?]
(6.37)
0x/0A = [cos @ . cos SA(2+cos @ . cos 3 4) +cos’ @]/
[2(1+cos ¢ .cos32)?] (6.38)
dy/oA = [1/2**] .[sin @ .cos @ .sin 3A]/[(1 +cos @ .cos 34)**]  (6.39)

Once these equations are available, the numerical solution is not difficult
using a pocket calculator with hard-wired trigonometric functions, but it
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is obviously even easier to write a program to solve them by micro-
computer. Note that the term (1+cos ¢ .cos 31) appears in three of the
equations and the denominator (1+cos ¢ .cos 34)*? occurs in all four.
These terms only have to be calculated once for each graticule inter-
section.
Substituting for ¢ = 60°, 4 = 60° in equations (6.36)—(6.39) gives the

following numerical values:

0x/0p = —0-8685

dy/dp = 0-8584

0x/04 = 0-5373

0y/0A = 0-0446
Then, from (5.20)

E= —0-8685+0-8584 = 1-4911

and, from (5.25), the particular scale along the meridian is

h=E=12211
Similarly, from (5.22)

G = 0-5373240-0446% = 0-2907
and from (5.30) the particular scale along the parallel is
k = ,/G/cos @ = 0-5391/0-5 = 1-0783
We obtain the third fundamental quantity, F from (5.21)
F = —(0-8584 x 0-0446) — (—0-8685 x 0-5373) = —0-4284
From (5.33)
cos’ = F/(h.k .cos @)

—0-4284/0-6584
= —0-6507

it follows that sin 8" = 0-7594. From (6.17)

(a+b) = h+k+2h.ksin®’
= 4-6536
(a+b) = 21572
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Similarly
(a—b)=h+k—2h ksin@’
= 0:6540
(a—b) = 0-8087
Therefore
a+b=21572
a—b = 0-8087
2a = 2-9659
a= 14830
b=06743

It follows that a.b = 0-99999, indicating a small rounding error, but is
close enough to 1-0 to confirm that the projection is equal-area. Finally

sin w/2 = 0-8087/2-1572
w2 =22°01"
Therefore
w = 44°02’
We therefore obtain the following numerical values for the point 60°N,
60°E:
h=12211 k=10783
a = 14836 b =06743
p = 099999 w = 44°02

In order to draw satisfactory isograms for w, it would be necessary to
derive such values for at least 50 points on the map.



CHAPTER 7

The appearance, classification and naming of
map projections

Viewed in this light the projections of M. Tissot assume a new aspect, and it is
clearly necessary to study them anew, and to master his rather repellent ter-
minology, that seems so superfluously different from that of his compatriot
Germain.

A. R. Hinks, Geographical Journal, 1921

Introduction

Examination of the illustrations of different map projections which
appear in this book indicates the great variety in the shape and detailed
appearance of them. Some of the world maps are rectangular in outline,
others are bounded by ellipses or more complicated curves. Some pro-
jections have rectilinear parallels or meridians; others have various com-
binations of curved graticule lines. In this chapter we introduce some of
the terms which are commonly used to describe the appearance of map
projections. These may be used in conjunction with distortion theory to
select and describe suitable map projections for particular purposes, or
to recognise the projection used for a particular map.

If the cartographer has not done his job properly, and has failed to
indicate this information, or has described the projection in unfamiliar
terms, the critical user has to make a reasoned guess about what projection
has been used. The cartographer can communicate with the map user if
both understand the same technical terms, but confusion and mis-
interpretation result if they do not. The subject of map projections is
embarrassingly rich in words which mean the same thing. Therefore the
beginner who is already struggling to understand many new concepts is
also confronted with and confused by duplicate terms. Some of these are
synonymous, such as the words ‘autogonal’ and ‘orthomorphic’ to mean
conformal, or the use of ‘authalic’ or ‘orthembadic’ instead of equal-area.
Only two of the six words are necessary.* On the other hand, there are

*Where alternative words are given in this and subsequent chapters, the preferred term
is given in italics, and the others are placed in quotation marks.
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occasions when different words are needed to make fine but important
distinctions. The difference between the definitions for azimuth and bear-
ing given in Chapter 3, pp. 53-55 illustrates the need for more than one
word to describe angles on the spherical surface and the plane.

Modern work on terminology

Nowadays this richness of terminology ought to create fewer problems
than it did. In 1964 the International Cartographic Association estab-
lished a Commission to study the standardisation of technical terms. This
led in turn to the creation of a British Working Group of Terminology
and publication by the Royal Society of the Glossary of Technical Terms
in Cartography (Royal Society, 1966). Similar work was in progress in
other countries, and the culmination of all this work was publication of
the Multilingual Dictionary of Technical Terms in Cartography (ICA,
1973). The author assisted the UK Working Group in their deliberations
about map projections, and published a specialised multilingual glossary
of usage in the study of map projections in Maling (1968b) much of which,
in turn, was incorporated into ICA (1973). All these works indicated the
preferred usage for future English contributions to the subject, and these
words are used throughout the present book. Notwithstanding this work,
which has now been available for more than quarter of a century, we still
find anomalous usage. For example, in an otherwise first-rate intro-
duction to the subject, the Open University television programme, M203:
Maps, which was made in 1978, two common map projections are
described with names which were evidently known only to the producer
of that programme, so that the OU mathematics student learns two names
which are unknown in cartography and which are not to be found in
any atlas. The Cylindrical equal-area projection is renamed ‘Lambert
horizontal’ and the Azimuthal equidistant projection is renamed ‘the
great circle map’. Similarly, the Royal Geographical Society, which really
ought to have known better, have recently (RGS, 1989) referred to the
projection formerly used in their logo as ‘an upright projection by Sir
Henry James’. The projection attributed to Sir Henry James is well
enough known and correctly described, but the interested reader can
search in vain, in the terminological literature, for a description of the
‘upright’ version. Perhaps it is the opposite to a ‘horizontal’ projection.
In order to employ a satisfactory and succinct terminology we must
also create some sort of classification system. The total number of map
projections which can be described is infinitely great. From this popu-
lation about 400 projections have been described, though less than one-
quarter of them have been named and used. In order to distinguish
between them it is desirable to group together those map projections
which possess similar attributes, or have related characteristics, into some
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kind of ordered system. The student of the subject can visualise how
each projection is related to others; to appreciate where each belongs
within this vast collection of slightly different kinds of transformation.
Moreover, a series of classification terms is helpful in providing each map
projection with a name or title which is more explanatory than merely
calling it after the name of the author, or the title of the map, book or
atlas in which it was first used.

In this respect the problem of recognising and giving a distinctive label
to a map projection is analogous to the way of uniquely identifying the
inhabitants of a small Welsh town. In Wales the number of surnames is
limited to a handful, like Davies, Evans, Jones, Thomas, and Williams.
There are also few christian names. Thus to identify David Jones, the
baker, and distinguish him from David Jones, the policeman, and every
other David Jones living in the town, it is necessary to introduce a third,
descriptive, method of identification (‘Jones-the-bread’ or ‘Dai-book-
and-pencil’) which give apposite, poetical and frequently scandalous
descriptions of the occupation, physical peculiarities or behaviour of each
inhabitant. Just as three levels of recognition are needed in Wales, three
methods of description and classification are required to identify a map
projection. We shall call these:

Aspect Property Class

The appearance and recognition of map projections

The following projections are illustrated in this book:

Fig. page
Aitoff-Wagner, normal aspect 1.05, 8
Stereographic, transverse aspect 1.07, 15
Mollweide’s, normal aspect 6.07, 117
Plate Carrée, normal aspect 1.11, 21
Polyconic, normal aspect 5.02, 86
Cylindrical equal-area (Lambert), normal aspect 6.04, 112
Hammer—Aitoff projection, normal aspect 6.08, 119
Azimuthal equidistant, oblique aspect 7.01, 127
Cylindrical equal-area, transverse aspect 7.02, 130
Cylindrical equal-area, oblique aspect 7.03, 131
Sinusoidal, different aspects 7.04, 132
Recentred Eckert VI, normal aspect 13.05, 276
Briesmeister’s projection, oblique aspect 8.02, 158
Azimuthal equal-area, normal aspect 10.02, 201
Azimuthal equal-area, transverse aspect 10.03, 202

Azimuthal equal-area, oblique aspect 10.04, 203
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Equidistant conical with one standard parallel

(Ptolemy), normal aspect 10.07, 208
Equidistant conical with two standard parallels

(de I’Isle), normal aspect 10.08, 210
Mercator projection 10.10, 214
Bipolar oblique conformal conical projection 11.03, 231
Fisher’s modification of Fawcett’s composite

equal-area projection 13.06, 279
Kadman’s version of the hyperboloid projection 13.08, 285
Polyfocal projection 13.10, 288
Recentred sinusoidal projection 15.01, 314

The reader will find it useful to refer to these in the discussion which
follows.

This list indicates some of the methods which are commonly used to
identify individual projections. The meaning of some of the words occur-
ring in these titles will become apparent as the reader proceeds. But before
we consider the descriptive terminology and classification we must ask
the simple question: How do we recognise a particular map projection?

Diagnostic features to help recognise a projection

We offer here seven diagnostic features of a projection which ought to be
examined. We invite the reader to look at the world graticules in the list
above and make notes about the seven features as these affect each map.

(1) Is the world mapped as a continuous feature or are there breaks in
the continuity of the map?

Most of the projections in this book represent the whole world on a
continuous map, but we find exceptions in Figs 5.01, 13.05, 13.06 and
also in Fig. 13.02.

(2) What kind of geometrical figure is formed by the outline of the
world or hemispherical map?

The examples include rectangular, circular, elliptical and more com-
plicated outlines.

(3) How are the continents and oceans arranged with respect to the
outline and axes of the map?

Many of the projections illustrated provide what we might loosely call a
‘conventional’ view of the world, which is one to which we are accustomed
through frequent exposure to its outlines in atlas maps, books and news-
papers. It is the world map in which the equator and the Greenwich
Meridian form orthogonal axes and the geographical poles are located
at either end of a rectilinear central meridian on the edges of the map. If
this conventional arrangement is not apparent can you give any reason
why it is not so? Possibly some meridian other than Greenwich has been
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used as the central meridian. Possibly the geographic poles are not located
on the top and bottom edges of the map.

(4) Are the parallels and meridians rectilinear or curved?

(5) Do the parallels and meridians intersect everywhere at right angles
or do oblique graticule intersections occur in some parts of the map?

(6) Are curved parallels or meridians composed of circular or higher-
order curves? If the arcs are circular are they also concentric?

(7) Is the spacing between successive parallels and meridians uniform
or variable? If they are not uniformly equidistant does the separation
between the parallels increase or decrease from the equator towards the
poles? Does the separation between the meridians increase or decrease
from the centre of the map towards its edges?

All of these variables can help us to identify a map projection, and most
of them will be used in some way or another as the basis of classification.
The appearance is of less value in helping us to decide the special property
of a projection, for visual inspection often only provides negative
evidence. Thus we may state that a map projection with oblique graticule
intersections cannot be conformal, but this does not mean that all map
projections having orthogonal graticules are necessarily conformal. The
way in which the parallels are spaced is often helpful in making a more
positive guess about special property. Since the area on the earth enclosed
between two parallels and two meridians becomes smaller towards the
poles, a map projection with small exaggeration in area must also rep-
resent this relationship. Comparison of Figs 6.04 and 10.10 indicates that
the first of the projections meets this requirement whereas the second
does not.

The difficulty of recognition is greatly increased if only part of the
world is shown on a map which is arbitrarily bounded by the neat lines.
Figure 7.01 illustrates this principle with reference to a map of the

Fi1G. 7.01 Three different versions of the same aspect of the Azimuthal equi-
distant projection (No. 11 in Appendix I). The bottom figure shows most of the
world represented by means of an oblique aspect of the projection with the origin
in latitude 52°N, longitude 110°W. The centre figure shows a hemisphere on the
same projection with the same origin. This is the best-known way in which the
azimuthal projections are used. The top figure illustrates how only the central
portion of an azimuthal projection may also be used to depict a smaller area at
a larger scale. In this example it is to be used for an atlas map of the USSR.
Note that this kind of map may'create difficulties in identification because the
characteristic circular outline of an azimuthal projection is truncated by the neat
lines of the map. Each of these maps shows isograms for maximum angular
deformation (w). On the two smaller scale maps the isograms are at intervals of
5°, 10°, 15°, 20° and 25°. Greater amounts of angular deformation on the world
map are omitted for greater clarity. The larger scale map of the USSR shows
isograms for w at 1° intervals to 5°.
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USSR. Clearly the absence of the distinctive circular outlines of the
world or hemispheric maps make it more difficult to identify the projec-
tion upon which the largest-scale map is based.
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The fundamental properties of map projections

A further feature of many of the map projections illustrated in this book
is the representation on them of isograms for equal values of maximum
angular deformation, w, or area scale p, or particular scales, u. This
information is not normally shown on maps produced for other purposes,
but it provides an alternative method of studying the merits of different
projections. Using the methods of interpretation of the distortion charac-
teristics of any map projections, outlined in Chapter 6, pp. 112-118, we
may look again at some of the maps to study:

@ The nature of the point or line of zero distortion and the location of
it with respect to the world or hemispheric outline.

@ The location of singular points on the map and how these appear.
Usually a singular point is mapped as a line, but sometimes it is
removed infinitely far from the origin of the projection so that the
map has no real boundary.

@ The characteristic patterns formed by the isograms for w, p, or p.

We may call these the fundamental properties of the projection. Look for
similarity of pattern of different map projections (e.g. the comparison of
Fig. 6.04, p. 112 with Fig. 10.10, p. 214 shows that both have rectilinear
isograms which are parallel to the equator). Look for precisely the same
pattern appearing on maps with quite different graticules (e.g. Figs 6.04,
7.02 and 7.03, or Figs 10.02, 10.03 and 10.04).

The first comparison indicates that there are projections with related
fundamental properties through different special properties. This suggests
that either may serve as the basis for classification. The second com-
parison indicates that the fundamental properties of a projection are
independent of the graticule.

We investigate the fundamental properties of three well-known classes
of map projection through a description of them in these terms. This
introduces us to the three collective names, azimuthal, cylindrical and
conical, all of which figured in the titles of the map projections listed on
p. 124. In these descriptions we deliberately refrain from referring to the
elements of the graticule (equator, poles, parallels and meridians) because
we wish to demonstrate that the three fundamental properties are always
satisfied by all members of each class of projections, whereas the appear-
ance of the maps may be quite different.

Azimuthal projections

These are sometimes also called ‘zenithal projections’. We prefer to use
the first name, which has some meaning, and discourage use of the second,



Classification and naming of map projections 129

which has none. Some examples of azimuthal projections are illustrated
by Figs 1.07, 7.01, 10.02, 10.03 and 10.04.

These projections may be imagined as the transformation to a pro-
jection plane which is tangential to the generating globe, as illustrated in
Fig. 5.07, p. 90, or intersecting the spherical surface, as in Fig. 5.10, p.
92. We consider the first example here. There is one point of zero distortion,
corresponding to the point where the two surfaces meet. In doing this we
have by this means reconstructed the definition of a spherical angle
illustrated in Fig. 3.03, p. 54, and therefore such projections have the
common property that all angles, azimuths in the general case, are cor-
rectly represented at the common point. This indicates the reason for the
preferred use of the word azimuthal to be the collective name for such
maps.

The characteristic outline of the azimuthal map of the hemisphere (and
possibly, the whole world too) is circular, and since there is a single point
of zero distortion at the centre of the circle, the particular scales increase
radially outwards from it in all directions. Consequently the distortion
isograms are also circular and concentric from the origin. The singular
point of some azimuthal projections is the antipodal point to the origin,
which is mapped as the circumference of a circle bounding the whole
world map. There are, however, some azimuthal projections which can
only be used to map smaller portions of the sphere because the singular
point lies at the hemispheric boundary.

Cylindrical projections

Cylindrical projections are illustrated by Figs 6.04, 7.02, 7.03 and 10.10.
These projections may be imagined as the transformation to the plane if
this is wrapped round the globe in the form of a tangent cylinder, as
illustrated in Fig. 5.05, p. 89. Ignoring, for the present, the alternative
possibility of the secant cylinder (Fig. 5.08, p. 91) there is a single line of
zero distortion corresponding to the great circle of contact, and this is
always represented on the map by a straight line. Singular points occur at
90° distance from the line of zero distortion on either side of it, and these
points are mapped as straight lines which are both parallel to it and of
equal length. Consequently the characteristic outline of a world map on
a cylindrical projection is rectangular. Distortion isograms are always
rectilinear and parallel to the line of zero distortion.

Conical projections

These are also called ‘conic projections’. The first of these terms is pre-
ferred because the word ‘conic’ has a different meaning in mathematics
(the conic sections) which is totally unrelated to the cartographic usage.
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FiG. 7.02 The transverse aspect of the Cylindrical equal-area projection (show-

ing only part of the world), in which the line of zero distortion is the meridian

45°W and its antimeridian 135°E. The map showsisograms for maximum angular

deformation (w) at 10°, 30°, 60° and 100°. These are identical to the cor-
responding isograms shown in Fig. 6.04, p. 112.

Some examples of conical projections are illustrated by Figs 10.07
and 10.08. This category of projections may be imagined as the trans-
formation from the sphere to the plane through the medium of a cone
wrapped round the globe, as illustrated by Fig. 5.06, p. 90, this giving
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FiG. 7.03 The oblique aspect of the Cylindrical equal-area projection, in which

the line of zero distortion is the great circle passing through the points latitude

45°N, longitude 0°, and latitude 45°S, longitude 180°. The map shows isograms

for maximum angular deformation (w) at 10°, 30°, 60° and 120°. Their location

is identical to the corresponding isograms in Fig. 6.04, p. 112 and Fig. 7.02,
p. 130, these being referred to the rectangular outline of the world map.

rise to a single line of zero distortion corresponding to the small circle
of contact, and this is always represented on the map by a circular arc.
The outline of the hemispherical map is fan-shaped. If the projection is
extended far enough to include singular points these are also mapped as
circular arcs parallel to the line of zero distortion. The distortion isograms
on conical projections are also circular arcs concentric with the line of
zero distortion.

The aspect of a map projection

In order to test the validity of these statements the reader should study
the three different versions of the Azimuthal equal-area projection illus-
trated by Figs 10.02, 10.03 and 10.04; also the three different versions of
the Cylindrical equal-area projection in Figs 6.04, 7.02 and 7.03. Ref-
erence should also be made to Fig. 7.04, pp. 132-133, which illustrates
seven different versions of the Sinusoidal projection, a member of the
pseudocylindrical class, as yet undefined.

All three azimuthal projections have the same principal scale and are
therefore bounded by circles of equal radius. Figures 6.04 and 7.03 for
the Cylindrical equal-area projection are similarly of identical dimen-
sions, but Fig. 7.02 is shorter in length because this map does not show
the whole world. Similarly all seven versions of the Sinusoidal projection
have identical dimensions, as defined by the lengths of the equator and
central meridian in Fig. 7.05(a), which represents the axes of symmetry
for the outline of the map in all the examples illustrated.

Thus every version of each projection may be regarded as having an
identical outline. Similarly the patterns of distortion isograms are the
same for each projection. On the other hand, the appearances of the
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parallels and meridians, and therefore the continental outlines, are differ-
ent on every map.

We use the word aspect to indicate the appearance of the graticule. In
much English writing on map projections the alternative word in use is
‘case’. But the word aspect emphasises the essential ingredients of view
and appearance, whereas the word ‘case’ does not. Moreover, it has many
other kinds of unrelated usage in medicine, law, travel and grammar. In
order to use a systematic method of defining the different aspects of map
projections it is desirable to relate the appearance of the graticule to the
fundamental properties of them. We find it convenient to consider a basic
threefold subdivision into

® The Normal Aspect;
® The Transverse Aspect;
® The Oblique Aspect.

A cursory glance at Fig. 7.04 indicates that (a) is the simplest pattern of
meridians and parallels because all the parallels are straight lines. The
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F1G. 7.04 Seven different aspects of the Sinusoidal projection (after Tobler).
Figure 7.04(a) is the normal aspect of the projection (No. 30 in Appendix I).
This is an equal-area pseudocylindrical projection in which the parallels are
equidistantly spaced and the meridians are sine curves. The map shows a 15°
graticule and isograms for maximum angular deformation (w) for 10°, 30°, 50°,
70° and 100°. From the other examples, Fig. 7.05(b) represents the transverse
(Wray’s first transverse) version. Figures 7.05(c) and (f) represent the simple
oblique, in which the minor axis is occupied by the central meridian and is still
rectilinear. Figures 7.05(d), (e) and (g) are all versions of Wray’s plagal oblique
aspect,
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pattern becomes more complicated in the four examples (d) through (g).
Using the convention of the threefold classification, (a) is the normal
aspect, (b) is the transverse aspect and all the remainder are oblique
aspects of the same projection. Nevertheless there are sufficient distinctive
characteristics of the others to suggest that a single category labelled
oblique is an inadequate description of them.

The normal aspect

Inspection of each group of illustrations indicates that one of them is
geometrically simpler than the others. Thus Fig. 6.04 has a rectilinear
network of parallels and meridians, whereas Figs 7.02 and 7.03 both show
more complicated patterns of curved parallels and meridians. Moreover
in Fig. 6.04 the distortion isograms coincide with certain parallels of
latitude, whereas in both Figs 7.02 and 7.03 the isograms intersect the
graticule everywhere. In Fig. 10.02 the geographical pole is at the centre
of the map - coinciding, therefore, with the point of zero distortion. In
this aspect of an azimuthal projection the meridians are rectilinear and
the parallels are concentric circles. Moreover, the distortion isograms
coincide with certain parallels of latitude. Figures 10.03 and 10.04 indicate
more complicated relationships between the isograms and the graticule.
In Fig. 7.04(a) the longer axis of the Sinusoidal projection is represented
by the equator and the shorter axis by the central meridian. In this
particular projection the principal scale is preserved along both of these
axes, hence the asymptotic pattern of distortion isograms for w illustrated
in this map. We note that all the parallels are represented by parallel
straight lines so that this version is simpler than any of the other diagrams
7.04(b)-7.04(g). We call this the normal aspect or direct aspect of a
projection because there is a direct relationship between the fundamental
properties and the graticule, which corresponds to Lee’s (1944) dictum
that the direct aspect is always the simplest mathematically. This rule has
also been followed by Wray (1974).

The transverse aspect

We now consider the aspect of the three projections illustrated by Figs
7.02, 7.04(b) and 10.03. In the example of the Cylindrical equal-area
projection the central axis of the projection has become the bimeridian
formed by a meridian together with its antimeridian, and this is the line
of zero distortion. The singular points are the two points on the equator
which lie 90° distant from the central meridian, and these are mapped as
two equidistant parallel lines of the same length. Thus the fundamental
shape of the projection is retained, together with precisely the same
pattern of distortion isograms which appeared in the normal aspect. The
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graticule is more complicated, but we can see that it is symmetrical about
both the central meridian and the equator.

The example of the Azimuthal equal-area projection shown in Fig.
10.03 indicates that the point of zero distortion has been shifted to the
equator. This and the central meridian are represented by straight lines
which are also two axes of symmetry.

Figure 7.04(b) illustrates the corresponding member of the group of
different aspect of the Sinusoidal projection. The longer axis of the pro-
jection (what Wray calls the metaequator) is now formed by a meridian
together with its antimeridian. The equator is formed by two curves,
which can be seen, by careful comparison of the two maps Figs 7.05(a)
and (b), to correspond to the two meridians 90° from the central meridian
of the normal aspect. There are two axes of symmetry which are these
two axes of the projection.

These versions may be called the transverse aspect of each projection.
The term equatorial aspect is also used for this version of an azimuthal
projection.

The oblique aspect

The third aspect is shown in Figs 7.03, 10.04 and Fig. 7.04(c)—(g). The
large number of different versions illustrated in Fig. 7.04 indicates that
there are limitless possibilities of variation. In the Cylindrical equal-area
projection the line of zero distortion, which is still the straight line forming
the longer axis of the rectangle, corresponds to the great circle passing
through the two points in latitude 45°N, longitude 0° and latitude 45°S,
longitude 180°. The other axis of the projection is represented in part by
the Greenwich Meridian and in part by the antimeridian 180°. There are
two singular points, in latitude 45°N, longitude 180° and at 45°S, longi-
tude 0°, which, as before, are mapped as parallel straight lines to form
the two longer sides of a rectangle. The pattern of distortion isograms is
the same as for the normal and transverse aspects of the projection. The
graticule is symmetrical about only one axis, namely the central meridian.

Figure 10.04 illustrates one version of the Azimuthal equal-area pro-
jection with the origin in latitude 40°N, longitude 30°W. All the parallels
and meridians are curved with the exception of the rectilinear central
meridian which also represents the single axis of symmetry. The cor-
responding examples for the sinusoidal projection are shown by Figs
7.04(c) and (f).

Wray's additional categories of aspect

Shortly after the first edition of this book appeared, the monograph by
Wray (1974) was published. He, too, had recognised the complexities of
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the oblique aspect, and in this work he argued for the acceptance of seven
different aspects. In order to describe these adequately he had to introduce
many new terms. Thus a transverse projection may be the first transverse
[Fig. 7.04(b)], second transverse or transverse oblique, depending upon the
position of the geographical poles along the line or curve representing
the equator of the projection. A special category of plagal or scalene
oblique aspect projections caters for the skew oblique versions where
neither axis of symmetry corresponds to the graticule. Wray’s seven
aspects of Mollweide’s projections are illustrated in Fig. 7.05, and three
examples of plagal projections are illustrated in Figs 7.04(d), (e) and (g).

In Wray’s terminology these are all examples of the simple oblique
aspect because each has a rectilinear central meridian, although all other
parallels and meridians are curved. The central meridian represents the
single axis of symmetry. The only difference between Figs 7.04(c) and (f)
is the location of the origin. In (c) ¢4 = 30°N; in (f), ¢, = 60°S.

The remaining three examples of oblique aspect Sinusoidal graticules
do not have any rectilinear parallels or meridians. Consequently there is
no axis of symmetry related to the graticule.

We have described the three aspects of these map projections in detail
because we shall find that this is an extremely important concept with
considerable practical applications, not only for the design of world or
hemispherical maps, as illustrated in the figures cited, but also for maps
of individual countries, as indicated by Fig. 7.01 and other examples
described in Chapter 12. We repeat the principle that the only difference
between a map projection in its different aspects is the pattern of the
parallels and meridians, and therefore the location and appearance of
the continents and oceans. The fundamental properties of the class of
projection and the special properties of the projection itself remain
unaltered. Thus we may think of the basic outline of the world map as
being a fixed frame of reference, like a picture frame. Behind this frame
the picture of the world can be shifted or rotated so that different parts of
it occupy the central portion. Since the patterns formed by the distortion
isograms are (like cobwebs) related to the frame and not to the picture,
these do not change as the patterns of parallels and meridians, continents
and oceans are changed. It therefore follows that by careful planning of
the aspect of any map we can locate the parts of the earth which have
immediate interest in a part of the projection where distortion is small.
Conversely the unimportant parts of the world, such as Antarctica on a
world population map, may be situated where distortion is greater but

“

FiG. 7.05 Wray’s seven aspects of a map projection applied, in outline, to

Mollweide’s projection: (a) direct or normal aspect; (b) first transverse aspect;

(c) second transverse aspect; (d) transverse oblique aspect; (e) simple oblique
aspect; () equiskew aspect; (g) plagal or scale aspect. (Source: Wray, 1974.)
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does not materially influence interpretation of the map for the purpose
for which it was designed. We develop these ideas further in Chapters 11
and 12.

In the description of each aspect of the projections studied we have
drawn attention to the symmetry of the graticule about one or two axes.
This, too, has practical significance when it is necessary to compute the
coordinates of graticule intersections. A map having two axes of sym-
metry is therefore composed of four quadrants, and the coordinates of
corresponding graticule intersections differ only from one another by the
signs of the (x, y) plane coordinates. This means that such a projection
can be constructed from only half the data needed to construct a map
which is only symmetrical about one axis. In turn the skew or plagal
oblique versions, which have no axes of symmetry related to the graticule,
have to be computed in their totality, or four times as much data is
required as was needed for the first type of projection.

The classification of map projections

In order to handle the considerable data-base comprising only the map
projections which have been described, it is desirable to formulate a
system of classification which is, at the same time, collectively exhaustive
and mutually exclusive. In other words, the system must include all
possible kinds of map projection which have been or are likely to be
described. Each projection ought, ideally, to occupy a unique position
within the classification system, like every element in the periodic system
or each species within the Linnaean classifications of the plant and animal
kingdoms. No projections ought to be relegated to categories labelled
‘Miscellaneous’, ‘Conventional’ or ‘Others’, for this creates a kind of
garbage can to contain all the varieties of map projection which cannot
be conveniently accommodated elsewhere within the system. Reference
is often made to projections with ‘arbitrary properties’ (or ‘aphylactic
projections’) which usually means that these are neither conformal nor
equal-area projections. The use of such terms, and the incorporation of
such categories within a classification system, is a negative approach with
little to commend it.

Only two attempts at classification have really attempted to satisfy
these desirable criteria. The first was the so-called ‘Linnaean System’
described by Maurer (1935), and the second is the Parametric Classi-
fication of Tobler (1963). Both of these have considerable merit. Maurer’s
system is the more complicated; Tobler’s method of classification has the
great merit of being all-embracing and quite simple to understand, but it
does not go far enough. The author has therefore taken Tobler’s work as
the basis for classification, but extended it to produce an ordered hier-
archy of groups, classes and series.
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The subdivision of all map projections into five groups, A-E, is essen-
tially Tobler’s system. This makes use of different combinations of the
functional relationships between the map, described in plane rectangular
or polar coordinates and the geographic coordinates of the generating
globe. Eight such pairs of combinations may be recognised, all of which
map the spherical surface continuously. This gives rise to four possible
kinds of continuous map. The fifth group represents those composite map
projections in which there are changes in function and variation in the
fundamental properties from place to place. Some examples of these are
described in Chapter 13.

In order to simplify understanding of this system of classification we
propose that

(1) Each group, class and series is defined in terms of the normal
aspect. It could be undertaken in more general mathematical terms
but it is much easier for the beginner to comprehend the significance
of the classification system in respect to the graticule formed by geo-
graphical coordinates. Hence we exclude all variations in aspect from the
system.

(2) We define every projection in terms of the simplest, unmodified
version. Thus the modifications introduced by creating two standard
parallels or a standard circle do not enter the classification system, nor
do the transformations created by introduction of pole-lines or recentred
(interrupted) versions of a map which are described in Chapter 13. This
may be unrealistic because many of the map projections bearing indi-
vidual names are modifications of these sorts of other projections. Those
who insist that such distinctions are vitally important can easily incor-
porate yet another classification level subordinate to those used in Table
7.02, p. 148. However, the object of the classification system demon-
strated there is that it should be relatively simple. This does not mean
that detailed information concerning aspect and modification should be
omitted from the description of a projection on a map. We shall see the
importance of this in Chapter 19, when we consider the methods of
transformation which may be used after digitising source maps. In order
to make the initial subdivision of all map projections into the four groups,
A-D, we make use of the functional relationships between plane and
geographical coordinates which were introduced early in Chapter 5. An
understanding of this notation, as given in equations (5.01)5.04), pp. 80—
81, is essential. Therefore the reader who skipped that part of Chapter 5
should now refer to it. In order to explain the system in terms of the
appearance of the graticule in each of the four groups we must also be
explicit about the origins of the plane (x, y) and (r, 8) coordinate systems
and also define the orientation of the axes or initial line with respect to
parallels and meridians.
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Plane representation by cartesian coordinates

We specify that, for a map projection to be defined by plane rectangular
coordinates, the origin of the system is located on the equator at its
intersection with a selected central meridian. This may be the Greenwich
Meridian, as shown in some of the illustrations, but this is not an essential
condition. The abscissa of the plane coordinate system coincides with the
equator and the ordinate with the central meridian. It therefore follows
that x varies mainly with longitude whereas y varies mainly with latitude.
In equations (5.01) and (5.02) both x and y vary with both latitude and
longitude. This is the general case which we list below as A. However, it
may be simplified in three different ways, where either x or y or both x
and y vary with longitude or latitude only. This gives rise to the following
expression:

X =f1('1) }
y = fi(o, )f &
X =f1(‘P,'1)} X =f2('1)}
y = oo, Hf P y = fo)f
X =fl((p,'1)}
y=si@) §©

The graphical appearance for these functions is illustrated in Fig. 7.06.
Clearly (A) represents the general case expressed by (5.01) and (5.02) and
(D) is the simplest where x and y are functions of only one variable,
namely longitude and latitude respectively. Where x or y, or both coor-
dinates, vary with both latitude and longitude, each parallel of meridian
must be represented by either an inclined straight line or a curve. The
only exception to this rule are the axes of the plane coordinates where
fi(p,2) =0 or f5(p,2) =0 and both the equator and central meridians
are represented by perpendicular straight lines. Hence a function of the
sort

x=f(p,4)

indicates a curve, the exact nature and location of which is, as yet,
unspecified.

A parallel of latitude, by definition, represents the circumference of a
small circle on the globe along which ¢ is constant. Similarly a meridian
represents the great semicircle along which 4 is constant. If we specify
that x = f(4) or that y = f(¢), this means that any line depicting a con-
stant value of ¢ or 4 can only have one value for x or y. In other words,
if x = f(4) each meridian will be represented by a straight line which is
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Fig. 7.06 Diagrammatic representation of the geometrical meaning of the
four possible function relationships between geographical coordinates and plane
cartesian coordinates. (Source: Tobler, 1963.)
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parallel to the central meridian. Similarly if y = f(¢) each parallel will be
represented by a straight line which is parallel to the equator. We therefore
have four basic types of map projection which may be defined by plane
cartesian coordinates.

Group A comprises the general case where both the parallels and
meridians are composed of curves, as illustrated in Figs 1.05, 5.02 and
6.08. This group is known to most writers as the polyconic class of
projections, although we must comment that this is an unfortunate choice
of name because it is also applied to only one projection.

Group B contains projections which have rectilinear meridians which
are parallel to the central meridian, and curved parallels. This group
has few named members and contains few projections which have any
practical use in conventional cartography. The group does include certain
projections which have other kinds of use, for example as graphic aids to
the solution of spherical triangles in astronomical navigation.

Group C contains projections which have curved meridians and par-
allels composed of parallel straight lines. These are called pseudo-
cylindrical projections illustrated, for example by Figs 6.07, 7.04, 7.05,
13.05 and 15.01.

Group D is the simplest of the four categories and must comprise
projections which comprise two families of parallel straight lines. These
are the cylindrical projections already introduced in Fig. 6.04.

Plane representation by polar coordinates

We employ similar arguments to subdivide the possible varieties of map
projections which are more conveniently described in terms of plane polar
coordinates. We specify that the origin of the system is located at or near
one of the geographical poles, and that the initial line coincides with the
central meridian. Thus the radius vector, r, represents the distance from
the origin to a parallel of latitude and is therefore a measure of colatitude.
However, this is a function of latitude so we may retain the convention
that r = f(¢). The vectorial angle, 0, is related to the spherical angle
measured at the geographical pole; therefore 8 is predominantly a measure
of longitude. However, we have created some uncertainty in this speci-
fication by stating that the origin of the coordinate system is located ‘at
or near’ one of the poles. This creates further complication which means
that for each of the four possible pairs of functions there exist two
possibilities. The first is where the origin of the polar coordinates is
actually at the geographical pole; the second is where it is located at some
vertex, which is a point on the prolongation of the polar axis beyond the
spherical surface. Bearing in mind that we'have this dual interpretation,
the four pairs of functions may be written in the form:
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r=fi(o, A)}(B)

6 = f,(A)
r=fi(o, '1)} r =f1(‘0)}
6 = fi(o. )] o= 7,1
r = Fi(p) }
0 = fy(0. 1§ ©

As before, f(¢@, 1) indicates a curved parallel or meridian. Where r is a
function of latitude only the parallels are represented by concentric cir-
cular arcs. Where 6 is a function of longitude only, the meridians are
straight lines converging towards the origin of the coordinate system. The
functions represented by (A) correspond to projections in which both the
parallels and meridians are curved, and may be grouped with the cartesian
group A as polyconic projections. The intermediate functions of group
(B) have rectilinear meridians and curved parallels, which may be grouped
with the cartesian group (B) also. The two remaining groups (C) and (D)
both have r = f{¢) and therefore have parallels represented by concentric
circular arcs. If the origin is located at the geographical pole, the parallels
are represented by the circumferences of circles which have their common
centre at this point. In group (D) the meridians radiate as straight lines
from the origin, defining the azimuthal class of projections. In group (C)
the meridians are curved and are called pseudoazimuthal projections. This
is another unfamiliar class. See Arden-Close (1952) and Snyder and
Voxland (1989) for illustrations of one of the few examples of this class
which has been described. On the other hand, if the origin of the polar
coordinates is situated at some vertex, the parallels are again represented
by concentric circular arcs but cannot form a complete circumference.
The resulting shape of the projection depends upon the shape of the
meridians. In group (D) the meridians are rectilinear, giving rise to the
characteristically fan-shaped conical projections. In Group C the mer-
idians are curved, producing the bell-shaped pseudoconical projections.
We have now created four groups (A)~«(D) with combinations of func-
tions which include all possible ways in which the spherical surface can
be mapped continuously upon a plane. Within these groups there are
seven named classes, three of each in groups (C) and (D), together
with the word polyconic, which is applied to the entire group (A). This
stage of classification may be illustrated diagrammatically, as in Fig. 7.08.

Separation of the parallels

Thus far we have not specified any particular condition concerning the
spacing of the parallels; we have only stated that y is some function of
latitude. However, if the reader has studied the projections illustrated, as
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F16.7.07 Diagrammatic representation of the geometrical meaning of the four
possible functional relationships between geographical coordinates and plane
polar coodinates. (Source: Tobler, 1963.)
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_ — 1 Projections with equidistant
Equal - area projections ” spacing of parallels
% Conformal projections % Equidistant projections

FIG. 7.08 Venn diagram illustrating the relationship between Tobler’s four
groups (A)—(D), the subdivision of the groups into named classes, and indicating
the relationship of certain special properties of map projections to the system of
classification. Study of this diagram indicates, for example, that conformal map
projections are confined entirely to groups (A) and (D) and that equidistant map
projections are confined to group (D). The study will find it instructive to plot
the locations of the projections listed in Appendix I upon an enlarged copy of
this diagram.

suggested at the outset of this chapter, it will be appreciated that the
spacing can vary in three different ways:

@ the separation between the parallels decreases with increasing latitude
from the equator towards the poles;

® the separation between the parallels remains constant for all equal
increments of latitude;

@ the separation between the parallels increases with increasing latitude
from the equator towards the poles.

The first and third conditions can vary in an infinitely large number of
ways, but the second cannot change.

For the cylindrical and pseudocylindrical classes these variations may
be conveniently expressed in terms of trigonometric functions of latitude.
For example, the sine of an angle varies in such a way that the difference
between the sines of two angles close to 0° is greater than the sines of two
corresponding angles near 90°. This can be seen from the numerical
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variations to be found in the interpolation columns of a table of natural
sines in any set of trigonometric tables. Thus for the first case of decreasing
separation we may write

y =/(sino) (7.03)

and we will study the specific example of the Cylindrical equal-area
projection (Fig. 6.04) in which the parallels crowd together in high lati-
tudes. For this projection we may write

y=R.sing (7.04)

and determine numerical values for the ordinate for the condition that
R = 1. Since we have put R = 1, the values for y represent a table of
natural sines of the angle ¢. The column headed dy lists the differences
between successive values of y. This column shows that, for a difference
in latitude of 15°, the distance between the parallels ¢ = 0° and ¢ = 15°,
is 0-2588 units, but the distance between ¢ = 75° and ¢ = 90° is only
0-0341 units.
The converse case is

y =f(tan o) (7.05)

which indicates that the spacing between the parallels increases from the
equator towards the poles. Using a set of natural tangents the reader
is invited to construct the table corresponding to Table 7.01, which
demonstrates this increase. It is the ordinate for the Central perspective

TABLE 7.01  Values for the ordinate

and the difference between successive

values for y; Cylindrical equal-area
projection ( Lambert)

Latitude y Sy

0° 0-0000
0-2588

15° 0-2588
0-2412

30° 0-5000
0-2071

45° 0-7071
0-1289

60° 0-8660
0-0999

75° 09659
0-0341

90° 1-0000
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cylindrical projection which is a curiosity of little practical value. Since
tan 90° = oo it follows that the geographical poles cannot be shown on
a map because they lie infinitely far from the equator on this map.

The intermediate case is where the parallels are equidistantly spaced.
Then we may write '

y=R.c.op (7.06)

where ¢ is measured in radians and c is a constant.

Where ¢ = 1 the separation of the parallels corresponds to the arc
distance between them on a globe, because this is just another way of
expressing equation (3.10). Moreover, in certain classes of projection in
group (D) this also corresponds to making the particular scale # = | and
creating a map having the special property of equidistance. However, we
must note that equal separation of the parallels does not necessarily
ensure that the projection is equidistant. Pseudocylindrical projections
frequently have equidistantly spaced parallels [e.g. Fig. 7.05(a)] but 4 = |
along the central meridian only. All the other meridians are curved and
therefore 4 varies from point to point on the map.

We employ the three principles relating to the spacing of the parallels
in the classification. However, the sine series and tangent series cannot
be applied as descriptive terms for all classes of projections. Therefore
we use decreasing separation, increasing separation and equidistant paral-
lels, as being an all-embracing form of subdivision. In each case we mean
the change in the separation of the parallels proceeding from the equator
towards the poles.

A recent paper by Nyerges and Jankowski (1989) represents a com-
parative study of the methods of classification which have been used in
recent work. Essentially this is a comparison of Goussinsky’s method,
used by Richardus and Adler (1972); the method described here which is
unchanged from the first edition of this book and the method used by
Snyder (1987a) to classify the projections employed by the US Geological
Survey. Nyerges and Jankowski failed to recognise that there are several
gaps in the system given in Table 7.02, which have been left because there
are no particularly useful projections to be listed therein. For example,
the pseudoazimuthal projections are regarded by them as only having
one member; which is Wiechel’s projection, an equal-area member of the
category in which the spacing of the parallels increases towards the poles.
There is no a priori reason why there should be no members of the
other categories in which the parallels are equidistant or the separation
decreases. It is just that nobody has found a use for them.

Table 7.02 indicates the proposed system of classification including the
projections which have been illustrated and those which are given in
Appendix 1.
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Naming of map projections

A variety of different map projections have been mentioned in this
chapter. Some of them.are named after the supposed inventor or orig-
inator of the projection, such as Mollweide’s projection, Aitoff—Wagner
projection, Bonne's p(ojectioh, Mercator’s projection. Less commonly
projections are named after the book or atlas in which they. were first
used. The Oxford projection and The Times projection are examples of
this usage. A third group are named according to specific mathematical
features of the graticule. The Sinusoidal projection is so named because
the meridians of the normal aspect are sine curves. Many projections have
alternative names (Sanson-Flamsteed’s projection = Sinusoidal projection)
and many have no proper names.

In giving a map projection a suitable name, the following rules have
evolved:

(1) Certain names should be inviolate because of their long history of
international use. These include the names of the azimuthal projections
originally described in antiquity by Greek and other geometers, such
as Stereographic, Gnomonic and Orthographic. It further includes some
personal names used for extremely well-known projections with a long
history and considerable practical importance, for example, Mercator’s
projection, Bonne’s projection and Cassini’s projection. This system of
nomenclature becomes unworkable after the late eighteenth century with
the prolific inventiveness of J. H. Lambert, who described half a dozen
projections all of which are still important in practical cartography. Any
one of these might justifiably be called ‘Lambert’s projection’, but each
needs additional description in the title to facilitate recognition. Thus we
see the emergence of a second method of descriptive name:

(2) The great majority of projections ought to be referred to in terms
of: (a) aspect (if other than normal); (b) class; (c) special property;
(d) name of originator; (¢) nature of any modifications. Thus we may
distinguish between the Cylindrical equal-area (Lambert) and the Cylin-
drical equal-area (Behrmann) with standard parallels in 30°N and S.
Although this is a bit of a mouthful, it is a precise description of the pro-
jection, its origin and modification, all of which information may be
important in using this as a source map for further compilation and for
measurement purposes by a user of the map. Snyder (1987c) has exam-
ined the names of projections which have been used in several modern
atlases, and has commented adversely upon the lack of precise informa-
tion which is available in many of these examples.

Notwithstanding the obvious need for names which uniquely identify
individual projections, there are many alternative names in use which
complicate the process and are particularly frustrating to the beginner
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who has enough unfamiliar terms to learn without any unnecessary dupli-
cation of them. Despite the effort put into standardisation of terms during
the 1960s, new versions of old concepts still appear, as exemplified by the
two new names which have appeared in the Open University television
programme and Royal Geographical Society newsletter already
mentioned. Of these, ‘Lambert Horizontal’ is the normal aspect Cyl-
indrical equal-area projection so that use of the name Lambert is correct.
However, the word ‘horizontal’ has no special meaning in cartography,
nor, for that matter, in mathematics, which could be construed as helping
the user to identify this particular map projection and distinguish it
from all others. The name ‘great circle map’ is used for the Azimuthal
equidistant projection. In this respect it might be argued that because
the special property of equidistance combined with the fundamental
properties of the azimuthal projections allows the user to measure great
circle arc distances from the centre of the map, and because these particular
great circles are rectilinear, such measurements contain no errors which
are attributable to the projection itself. However, the specific mention
of great circles with respect to map projections normally refers to the
orthodromic special property; that all great circle arcs are represented on
the map by straight lines. This is rigorously satisfied by the Gnomonic
projection, which is also an azimuthal projection, although several other
projections approximate to the orthodromic special properties. In fact
the term Azimuthal equidistant projection serves adequately to describe
the so-called ‘great circle projection’, and Gnomonic projection has been
a good enough name for the other since about 500 Bc. In the example of
the Royal Geographical Society logo, first used in the 1920s and finally
replaced in 1989, the projection is an oblique aspect azimuthal projection
with origin on the Greenwich Meridian in latitude 30° North, which
may well be the perspective azimuthal projection attributed to Sir Henry
James and named after him.

On the use of personal names

A major problem in nomenclature is the extent to which personal names
should intrude into the scheme. We have seen that some personal names
have a long and respectable history, allowing identification of most of
the projections devised between the fourteenth and eighteenth centuries.
After that time, however, there are so many names, and sometimes so
many projections, to be ascribed to one person that the memory is strained
by the profusion of them. We have become accustomed to refer to the
six pseudocylindrical projections described by Max Eckert in 1906 in the
form Eckert I through Eckert V1. The same rule works well enough for
names line Winkel (three projections), van der Grinten (four projections)
or even Schjerning (six projections). However the total of six seems to be
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as many as memory can conveniently hold. Consequently we have diffi-
culty in remembering the characteristics of the dozen or so associated
with Ginzburg. He used a different method, distinguishing most of them
by the name of the institute where he worked and the year each graticule
was first used. For example, Ginzburg called each of the world polyconic
graticules devised by him a Polikonicheskaya proektsiya TsNIIGAiK
followed by a date. The initials TsSNIIGAIK stand for the Central Scien-
tific Research Institute in Geodesy, Air-survey and Cartography in
Moscow. Thus the Russian literature and atlases distinguish Poli-
konicheskaya proektsiya TsNIIGAIK (1939-49) from that of 1950 and
1954 as the three projections used for world maps which were called
Ginzburg (1V), Ginzburg (V) and Ginzburg (VII) respectively in Maling
(1960).

Notwithstanding the obvious objections to using personal names, they
are likely to persist simply because of the greater ease of association of
an abstract concept with an easily identified name. The easier it is to
remember, or the more alliterative the name, the more likely is this form
of identification to stick. A notorious modern example is that of Peters’
projection, which is a version of the Cylindrical equal-area projection
which was appropriated by Arno Peters in 1973 for use with a world map.
This name has stuck, evidently irremovably, to this version of the Lambert
graticule notwithstanding the fact that Peters’ name only became associ-
ated with it more than a century after Gall first described it. However the
title Gall’s Orthographic projection slips less easily from the tongue and is
more difficult to remember. Sometimes, however, it is almost impossible
to forget a name, once heard; Boggs’ Eumorphic is the classic example of
this.



CHAPTER 8

Practical construction of map projections

‘Why,’ said the Dodo, ‘the best way to explain it is to do it.”
Lewis Carroll, Alice in Wonderland

Introduction

The compilation of every map should commence with plotting some kind
of grid or graticule, for this is the geometrical framework upon which it
is based, and which determines the quantitative or positional accuracy of
everything shown upon it. At the level of map use the network of lines
forms an important frame of reference which can be used to define
position and serve as a form of control over both linear and area measure-
ments by permitting evaluation of deformation of figures having known
dimensions and areas. For example, the amount of distortion of the paper
upon which a map is printed can be determined by measuring known
distances between the grid or graticule intersections. The various forms
of geometrical control which may be employed in quantitative map use
have been described by Maling (1989).

Representation of grids and graticules on maps

At the larger map scales, greater than 1/10000, the framework used on
the map is almost invariably a grid. Nowadays most large-scale maps
have neat lines which are grid lines and the sheet numbering system is
also based upon the grid. At scales smaller than 1/1000000 only the
graticule is shown and often the neat lines are a pair of parallels and
meridians enclosing a spherical quadrilateral or quadrangle. At scales
intermediate between these extremes, corresponding to most topo-
graphical map series, both the grid and graticule are probably shown.
Where the grid and graticule both appear on the map, the draughting
specification usually calls for the representation of certain grid lines in
full. The graticule is then only depicted by small crosses at the points of
intersection of selected parallels and meridians and by subdivisions of the

152
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TABLE 8.01 Spacing of grid and graticule commonly found on
published maps at different scales. Data for large-scale and topo-
graphical scales indicate Ordnance Survey practice.

Grid separation Graticule separation

Scale (km) (degrees and minutes)
1/2500 and larger 01 —
1/10000 1-0 1’ (margin only)
1/25000 1-0 *
1/50000-1/63 360 1-0 1’ (margin only)

5’ (optional crosses)
1/250 000 10-0 1’ (margin only)

30’ (optional crosses)

1/625000 10-0 10’ (margin only)
1/1 000 000 - 1°

1’ (margin only)
1/2000 000 - 1°
1/5000 000 - 2°
1/10000 000 - 5°
1/20 000 000 - 5-10°
1/50 000 000 - 10-15°
1/100 000 000 - 10-20°
Smaller than 1/100 000000 - 15-20°

*The only graticule information on the 1/25000 OS series is a statement of
the geographical coordinates of the sheet corners.

margin round the neat lines of the map. Often these crosses are omitted
from parts of the map where they coincide with, and might confuse, other
detail.

The spacing of the grid lines and graticule depends upon the scale and
purpose of the map. Table 8.01 shows the kind of intervals which are
commonly found on land maps and in atlases. Nautical and other navi-
gation charts, which are used for precise plotting of position and direction,
frequently have closer network of parallel and meridians than are found
on maps of equivalent scale.

On a multicoloured map the graticule is generally printed in the colour
of the base plate (marginal information, settlement and boundaries) which
is either black or dark brown. The graticule is nearly always represented
by lines of gauge 0-1-0-2 mm (4-6, measured in units of one-thousandth
of one inch). On national topographical maps the grid is also often
represented in the colour of the base plate. Grid lines are usually continu-
ous. The rouletted grid in which the lines are composed of small closely
spaced dots is now almost wholly obsolete. The draughting specification
may also require emphasis of certain integer grid lines (usually at every
10 km or 100 km) by a wider gauge than the remainder. On military maps
the grid is frequently printed in some colour other than black. The use
of a different colour facilitates rapid location of grid lines with respect to
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other map detail. Moreover, the use of a distinctive colour for each grid
zone provides a means of distinguishing between two overlapping grids
where these have to be shown on the same map sheet.

Since the grid or graticule represents the mathematical framework
upon which the whole of the rest of the map is based, it follows that grid
or graticule intersections should be plotted with great accuracy, and the
component lines ought to be fair drawn with considerable care. Most of
the map accuracy specifications which have been drawn up for the pur-
poses of legal contract or guarantee refer to planimetric error as the
displacements of map detail compared with their surveyed positions, both
measured relative to the grid or graticule. For further details see Maling
(1989). The graphical work of navigation is done with reference to the
parallels and meridians on the printed chart. It follows, therefore, that
the grid or graticule of a map ought to be plotted ‘without sensible error’,
corresponding to standard error in position of +0-1 to +0-15 mm. This
is an exceedingly high standard to achieve, and it is therefore necessary
to examine the practical ways in which it may be accomplished.

Reference to the illustrations of map projections which appear in this
book indicates that certain lines are straight; others are arcs of circles,
ellipses and other conic sections. Some projections contain higher-order
curves and these may have reverse curvature or even cusps, where cur-
vature is discontinuous at a point. Only a few instruments are available
for drawing these lines. Obviously a straight-edge assists drawing straight
lines and a half-set or beam compass can be used to construct circular
arcs, but this is practically the limit to the instruments which can be used
to draw curves to a particular specification. More complicated kinds of
mechanical trammel have been designed and used to draw the other conic
sections (ellipses, parabolae and hyperbolae) but these instruments are
quite rare and they are not particularly reliable. Thus, in the absence
of a suitable computer/plotter combination which will allow automatic
plotting and drawing of the curves, it is necessary to use some kind of
template to be laid through the points representing graticule intersections
and guide the ruling pen or scribing tool. These may be flexible, splines
or flexicurves, or they may be rigid drawing aids known as French curves,
ship curves or Copenhagen curves. We will use the word ‘curves’ to mean
any of these rigid varieties. Splines and curves have to be fitted by trial
and error until part of the ruling edge passes through a succession of
plotted points. Consequently a graticule composed of curves can be drawn
only after the individual graticule intersections have been located on the
plotting sheet. Hence the first stage in constructing any map projection
is to plot the positions of the graticule intersections at the required scale.
The second stage is to draw the individual parallels and meridians through
these points. Finally, of course, the topographical detail of coastlines,
rivers, roads, railways and towns have to be transferred from the source
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maps to the new plotting sheet, fitting it within the control now offered
by grid squares or graticule quadrangles.

Location of graticule intersections

A variety of graphic and semi-graphic techniques have been used for
construction. It is necessary to emphasise that there is a considerable
difference between the wholly geometrical methods of construction
described in most of the elementary textbooks on map projections pub-
lished in the English language and the techniques which are used by
professional cartographers.

Geometrical construction

For some projections the methods of plotting can be carried out entirely
using ruler and compasses; indeed the whole geometrical construction
can be accomplished without having to make any calculations apart
from the initial determination of the scale of the intended map. The
construction of each projection is unique and therefore it must be learnt
in advance. The elementary textbooks are full of such recipes, and many
students of the subject are led to imagine that the study of map projections
comprises learning these by rote. The author believes that this approach
to the subject is wrong and it is a waste of time, for the following reasons:

® Geometrical construction tends to be progressive so that the work
proceeds ‘from the part to the whole’ without much opportunity
for checking the accuracy of the construction and is almost always
concerned with graphical enlargement. This means that inevitable
small errors of plotting introduced at the initial stages of construction
accumulate to quite large errors in the final positions of the meridians
and parallels. Elsewhere in this chapter (pp. 166-171) we examine
similar problems in the discussion of suitable methods for con-
structing a master grid when this has to be done graphically.

® Geometrical construction has to be limited to the preparation of very
small-scale maps. This is because there are few straight edges, beam
compasses and splines of length greater than 1 metre, and even quite
small-scale maps need construction arcs which are of greater radius
than this. Instruments such as beam compasses are quite imprac-
ticable, and lack precision when used to describe circular arcs of radii
in excess of 2 metres. Also some construction points may have to be
located beyond the boundary of the intended map, often a long way
from the centre of the projection. This requires a very
large plotting table and can be extremely wasteful in the consump-
tion of draughting film. For example the transverse aspect of the
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Stereographic projection, illustrated in Fig. 1.07, p. 15, can be con-
structed entirely from straight lines and circular arcs using ruler and
compasses. However, the radii of the meridians close to the central
meridian are so great that, even at a very small scale, it is imprac-
ticable to attempt to locate their centre and describe these arcs by
beam compass. There isn’t space on the table, the beam compass'is
too short and there usually isn’t sufficient plastic left in the roll to
draw such large radius arcs.

® The final and most important objection of all is that most of the
really useful map projections cannot, in any case, be constructed by
geometrical methods.

Construction by coordinates

The method to be described comprises the calculation of the plane car-
tesian coordinates of each graticule intersection, plotting these upon a
master grid and finally joining the plotted points by smooth curves to
represent the parallels and meridians. The master grid may be preprinted,
duplicated or constructed especially for the map. The coordinates may
be read from tables which have already been published. If there are no
suitable tables, numerical values have to be determined using the pro-
jection equations, for example those listed in Appendix I, pp. 430-441.
Figure 8.01 indicates the various ways in which the grid or graticule may
be plotted using traditional methods.

Construction of a map projection by plotting coordinates

Let us suppose that we wish to construct a fairly complicated map pro-
jection, for example Briesemeister’s projection, for the whole world at a
scale of 1/40000000 showing the parallels and meridians at intervals of
15°. A smaller-scale version of this map with a 20° graticule is illustrated
in Fig. 8.02 and the coordinates required for construction are given in
Appendix II on p. 442.

This projection was first described by Briesemeister (1953, 1959) and
has been used as an equal-area base for world maps in many American
Geographical Society publications such as their Atlas of Diseases, and in
many United Nations reports. It is one of many possible modifications
to the Hammer—Aitoff projection, from which it differs by having the
ratio 1:1-75 between the axes instead of 1:2 in the parent projection. It
is also only used in the simple oblique aspect with origin in latitude 45°N,
longitude 15°E. See Maling (1962) for an account of its mathematical
derivation.
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F1G.8.01 Flow diagram illustrating the methods of constructing the geometrical
framework for a map using the conventional draughting methods and without
the direct aid of computer graphics. (Source: Maling, in ICA, 1984.)

I Within the master grid
J

The required equipment and data are:

® A master grid showing a 5 mm net on a sheet of dimensionally stable
plastic of suitable dimensions.

@® Tabulated values of the rectangular coordinates for the 15° graticule
for this projection.

® A pocket calculator to convert the tabulated coordinates into the
master grid coordinates required to plot the map at the required scale.
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® Ordinary draughting instruments, including splines or curves and a
fine needle mounted in a pin vice for pricking the positions of all
points.

The procedure for plotting the intersections and drawing the graticule is
as follows:

1. Select the range of coordinates which represents the maximum extent
of the proposed map in each direction and determine the distance in
millimetres corresponding to this range.

2. Choose an origin on the master grid which will permit the whole
graticule to be plotted upon it, and number the grid lines in milli-
metres from the point chosen as origin using the familiar sign con-
vention described on p. 29.

3. Extract each pair of coordinates from the table and convert these into
millimetres in the master grid at the scale of the intended map. Repeat
this procedure for every graticule intersection to complete a list of all
coordinates converted into metric units.

4. Plot these coordinates within the master grid to locate each graticule
intersection.

5. Lay a spline or curve through the succession of plotted points cor-
responding to the single meridian or parallel and draw a smooth curve
through the points. This stage is repeated until the whole graticule has
been drawn.

We shall now examine each of these steps in detail.

The use of projection tables

In this chapter we consider only the plotting of small-scale maps of the
sphere. Consequently the tables are much simpler to use than those
prepared for topographical cartography, which are generally based upon
the equations for mapping the spheroidal surface. Such tables are briefly
mentioned in Chapter 16, pp. 360—363.

Inspection of the table of rectangular coordinates for Briesemeister’s
projection (p. 442) indicates that the range of tabulated longitude is from
the North Pole to the South Pole, but the range of tabulated longitude is
only from the central meridian to 165°W. This is because the projection
is symmetrical about the central meridian. Consequently the graticule
intersections to the west of the central meridian can be obtained from the
table by making the appropriate adjustment of the numerical value for
longitude and changing the sign of x. For example, the point ¢ = 60°N,
A = 45°E has coordinates:

X = +023933, y= +033204
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The coordinates of the corresponding point in the western hemisphere
are for ¢ = 60°N, 1 = 30°W, the difference in longitude resulting from
the fact that the central meridian is not that of Greenwich, but 15°E. The
coordinates for this point are:

x = —0-23933, y = +0-33204.

We also see from the table that the range of the coordinate values is
from x = 0-00000, y = 0-00000 for the point ¢ = 45°N, 4 = 15°E to the
following extreme values:

Northern limit of map: ¢ = 45°N, 1 = 165°W
x = 0-00000, y=1-51188
Southern limit of map: ¢ = 45°S, 4 = 15°E
x = 0-00000, y= —1-51188
Eastern limit of map: ¢ = 45°S, A = 165°W
x = 2-64579, y = 0-00000
Western limit of map: ¢ = 45°S, 4 = 165°W
X = —2-64579, y = 0-00000

ty
— 20

45°N, 1 65°W
+io

45°S,165W, 45°N, 15°E 45°S, 165°W
— L | 1 ey
-30 1.0 2.0 3.0
1.0
45°S, |5°E

—20
-y

FiG. 8.03 [Initial specification of the coordinates for the extreme points needed

to construct a world map on Briesemeister’s projection. The axes are divided in

units of earth radius, R, and the four points defining the major and minor axes

of the bounding ellipse have been plotted directly from the coordinates tabulated
in Appendix II.
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The rough draft

At this stage it is useful to make a rough plot of some of the points (e.g.
the 45° graticule intersections) on graph paper using some convenient
scale such as 100 mm = 1 tabulated unit, which corresponds to a rep-
resentative fraction of 1/63711000. This is useful to find out how the
tables have been compiled; for example to ascertain which direction is
denoted by x. Moreover, a rough plot of this sort indicates immediately
how much of the world map can be plotted from the tabulated coordinates
and how much has to be plotted using different signs for either x or y.
The diagram serves as a check against making gross errors in loca-
tion for the first few points which are plotted on the master grid. As
the work proceeds, and the pattern of points emerges, it becomes
increasingly obvious where each point has to be plotted. From the
extreme values tabulated above it can be seen that the world map will
extend 2 x 1-5118 = 3-0237 units in the direction of the ordinate, and
2x2:6458 = 5:2916 in the direction of the abscissa.

Scale conversion of the tabulated coordinates

The values of x and y are given in units of earth radius. In other words,
if we put R = 1-0 cm, the width of the map at that scale would be 5-29
cm.

In order to use the tabulated coordinates to plot a map at a required
scale it is necessary to convert from units of R into the values of r, which,
as we saw in Chapter 4, corresponds to the radius of the generating globe
whose scale is the principal scale of the map. For example, it is required
to plot Briesemeister’s projection at 1/40000 000. From equation (5.06),
p. 82:

1/40000 000 = r/6371 100
and
r=01592m= 1592 mm

This quantity is now used as a constant multiplier to convert all the
tabulated values of x and y into millimetres at the scale of plotting. Thus,

X' =r.X (8.01)
y =r.y (8.02)

which is an application of the scale transformation applied to cartesian
coordinates described in (2.15) and (2.16) on p. 39. We have already
described the (x’, y’) system in this context as the master grid coordinates.

Thus the transformed values for the four extreme points of Briese-
meister’s projection are:
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¢ A X' (mm) y (mm)
45°N 165°W 00  +2408
45°S 15°E 00  —2408
45°S 165°W +421-4 00
45°S 165°W —421-4 00

This indicates that the map requires a master grid with dimensions greater
than 0-843 m x 0-482 m in order to plot the world map at the required
scale of 1/40 000 000.

To avoid making the calculation of the constant multiplier, r, we give
these values in Table 8.02 for many of the commonly used map scales
within the range 1/5 000 000 through 1/250 000 000. In addition we include
the representative fractions for which r is an integer within the range
30 mm through 70 mm and for r = 100 mm.

Most pocket calculators have at least one store into which the appro-
priate value for r may be inserted. At the simplest level of calculation,
where it is only necessary to apply the scale conversion to existing tabu-
lated coordinates, this kind of calculator will suffice.

Construction of the master grid

We have already seen that certain classes of map projections such as the
azimuthal, conical, pseudoazimuthal and pseudoconical projections of
Groups C and D are more conveniently defined as functions of polar

TaBLE 8.02 Values for the radius of the generating
globe, r, to be used as a constant multiplier for
conversion of coordinates in projection tables to plot
the coordinates in millimetres. This table employs the
spherical assumption for R = 6371-1 km

Scale r (mm) Scale r (mm)
1/250 000000 25484 1/60 000 000 106-185
1/212366 666 30-00 1/50 000 000 127-422
1/200000 000 31-865 1/40 000 000 159-278
1/159277 500 40-00 1/30000 000 212:370
1/150000 000 42-474 1/25 000 000 254-844
1/127422 000 50-00 1/20 000 000 318-555
1/125000 000 50-969 1/15 000000 424-470
1/106 185000 60-00 1/12 500000 509-688
1/100000000 63711 1/10 000 000 637110

1/91015714 70-00 1/9 000 000 707-900
1/90 000000 70790 1/8 000 000 796-388
1/80 000000 79-939 1/7 000 000 910-157
1/70000 000 91-016 1/6 000 000 1061-850

1/63 711000 100-00 1/5 000000 1274-220
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Specially scribed Plotted from Plotted manually using
on a large master grid scale and beam
coordinatograph template Compass

Contact print from
original scribed by

coordinatograph

Printed copy

obtained from

supplier
Direct plot of graticule 1 IMASTER GRID|
points (and even lines) Graticule points and
and control using the control plotted
large coordinatograph Graticule points ond control plotted manually using scale,
as the master grid by small (table - top) coordinatograph dividers and protractors
+0.0Imm to + 0.03mm +0.immto +0.15 mm +0.2mm to + 0.32 mm

FiG. 8.04 The different methods of preparing a master grid in order to plot the
graticule of a new map and any control points referring to it. (Source: Maling,
1989.)

coordinates. However, there are no polar coordinatographs available
which compare in working range with large cartesian coordinatographs.
Consequently it would be necessary to construct a polar master grid
graphically, and this is more difficult to do than to plot a master grid in
rectangular coordinates. Hence we find that the master grid is always a
system of rectangular coordinates and even when a map projection has
been initially derived in polar coordinates, these are transformed into
rectangular coordinates for purposes of plotting. This is done with equa-
tions (2.01) and (2.02).

The plotting stage requires a sheet of dimensionally stable draughting
film (probably polyester plastic) with dimensions greater than the
maximum extent of the intended map. The preliminary drawings and
computations should be consulted for these measurements. Unless a
coordinatograph is used to plot the graticular intersections, a precise
(x’, y’) grid must be drawn or reproduced upon the plotting sheet first.
These are, as illustrated in Fig. 8.04, in preferred order of choice:

® to use a large coordinatograph as the master grid;

® to use a master grid template and small coordinatograph for plotting
individual graticule intersections;

® to reproduce the master grid from one obtained by the first method,
or, to use a preprinted precision grid printed on plastic;

® to construct the master grid graphically.

Use of a coordinatograph

In many cartographic establishments the whole of the work of the plotting
and drawing stages of constructing a map projection can be done by
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coordinatograph (Plate 1). This instrument creates the two orthogonal
axes of rectangular coordinates by means of one fixed steel beam and a
travelling steel gantry which has a moving plotting head attached to it.
Linear displacements of the gantry and the plotting head may be trans-
ferred to scales by means of lead-screws or a rack-and-pinion movement.
With the aid of verniers or micrometers attached to each movement it is
possible to read or plot coordinates to a least count of 0-1 mm on the
majority of instruments. Some of them even give scale readings to a least
count of 0-01 mm. If the fixed beam is regarded as the y-axis, values of
the ordinate may be obtained by moving the gantry along this axis to the
appropriate scale reading. Values of the abscissa are changed by moving
the plotting-head along the gantry. The precision of plotting is usually
claimed to be a standard error of about +0-05 mm on each axis.

The great advantage of using a large coordinatograph to plot a map
projection is that no preliminary constructions are required. A virgin
sheet of plastic can be mounted on the drawing table, and may be left
there until all of the graticule intersections have been plotted. Moreover,
if it is required to plot a grid composed entirely of orthogonal straight
lines, the fair drawing of the component lines can be done entirely on the
instrument, using a special pen or scribing tool which can be fitted to the
plotting head. This eliminates a great deal of slow careful work such as
the alignment of a straight edge through pairs of points, which would
otherwise be necessary if the lines were drawn by conventional methods.

The addition of servomotors and electronic control to a coordinato-
graph further extends the efficiency of the equipment, because it effec-
tively becomes a peripheral to a computer, and can plot information
automatically in either on-line or off-line mode of operation. Where the
equipment has been specifically designed as computing hardware it is
generally called a graph plotter. In addition to the obvious process of
setting the plotting head to occupy a succession of calculated coordinates
and plotting these, a variety of interpolation programs have been written
to control the movements of the plotter as it draws or scribes smooth
curves through the plotted points. Obviously this is more sophisticated
than merely joining the graticule intersections by means of straight lines
as if we were joining them by ruler. The earlier graph plotters (and some
cheap versions still in production) used to produce lines oblique to the
axes in small increments of x and y so that these had a characteristically
jagged pattern. The same can still be seen on the monitor displays of
some microcomputers using the cheaper kinds of graphic software. By
the late 1960s the increasing sophistication of both hardware and software
made possible the plotting of fine lines which appear to be free of all jagged
outlines. This made possible the production of complicated graticules and
also other types of lines such as the hyperbolae which have to be shown
on lattice charts (p. 291).
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The only objection to the use of a coordinatograph for plotting the
graticule manually is that a large format precision instrument with a
working range of about | m on each axis is expensive. Consequently not
every cartographic establishment has access to an instrument. Therefore
we must suggest some cheaper ways of obtaining the same result.

Master grid template and small coordinatograph

A master grid template (Plate 2) is a flat sheet of metal with dimensions
1 mx0-7 m or thereabouts. This sheet has been drilled with a network
of holes at uniform spacing, usually 50 mm x 50 mm or 100 mm x 100
mm. All holes are identical, and a special tool which fits them exactly is
used to mark points by pricking the surface of the plotting sheet lying
under the template. Although the equipment seems crude in comparison
with a large-format coordinatograph, the master grid is a precision instru-
ment, and those points which can be located with an accuracy equivalent
to those plotted by coordinatograph. The job of plotting grid intersections
by master grid is extremely quick, for there are no scales to be read or
set. Consequently the 70 or more points drilled in a typical template can
be transferred to the plotting sheet in no more time than it takes to set
the coordinatograph to plot half a dozen of them. The only disadvantage
of the method is that the grid points are plotted rather far apart. This
means that further subdivision of the master grid by graphical methods
may be needed before the required graticule intersection can be located
with sufficient precision. However, a careful draughtsman who is willing
to make a few additional calculations during the work of plotting ought
to be able to work within the 50 mm or 100 mm grid as precisely and
efficiently as within the 5 mm grid suggested earlier.

Plotting of graticule intersections can be done entirely with ordinary
drawing instruments, such as spring-bow dividers and a steel scale. There
is also a variety of small-size coordinatographs which can be used with
the master grid template to make it practically as efficient as a large-
format coordinatograph. The small coordinatograph usually has an oper-
ating range of 200 mm or less along each axis, and therefore corresponds
to a miniature version of the big instrument (Plate 3). It is placed upon
the surface of the plotting sheet and oriented to the points which have
already been located by master grid template. The combination of the
template and small coordinatograph is both efficient and cheap.

Use of a preprinted grid

We use a preprinted grid every time we plot on graph paper. However,
the typical sheet of graph paper is not particularly accurately printed,
and it has been reproduced upon the dimensionally unstable base of
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cartridge or detail paper. For cartographic use, as a substitute to either
of the instrumental methods, we need a precision grid reproduced on
polyester plastic. These can be bought from some of the manufacturers
of drawing office equipment, but such grids have to be tested carefully
before use (see p. 168) for there are a number of indifferent products
available. In a department where different projections have to be con-
structed fairly often, the quickest and least expensive method of producing
master grids is by photomechanical reproduction of positive copies made
from a precision grid which is kept solely for use as a master copy. This
could be scribed by coordinatograph to the department’s own speci-
fication.

Graphical construction of the master grid

In an ill-equipped drawing office, or under special working conditions,
such as at sea or when the gridded sheet must be larger than the coor-
dinatograph table, it may be necessary to construct the master grid
graphically. Although we believe that the use of a preprinted grid is the
more economical method to use in practice, we describe two methods of
making the graphical construction. This is because useful lessons can be
learnt from comparison of the two methods. One provides valuable
independent checks whereas the other does not, and this important prin-
ciple can be applied to the comparative study of other kinds of graphical
work.

Method I (Figs 8.05, 8.06 and 8.07)

1. The approximate centre of the plotting sheet is located by drawing
diagonals through the sheet corners. From the centre O, thus defined,
the axes AB and CD are drawn at right angles to one another and
approximately parallel to the edges of the plotting sheet. The con-
struction of the right angle at the centre is important, for if these
axes are not perpendicular the whole grid will turn out to be a
parallelogram and not a rectangle.

2. The distances along the axes to the edges of the grid are set upon two
beam compasses. For example, OB =04 = 5000 mm and
OC = 0D = 350-0 mm are the settings needed to plot a grid with
overall dimensions 1-0 m x 0-7 m. The use of two beam compasses
saves having to reset the measurements during subsequent stages in
the construction.

3. The beam compass with the setting OC is centred at O and the arcs
OC and OD are constructed on one axis.

4. The beam compass with setting OB is centred at O and the arcs OA
and OB are constructed on the other axis.
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FIG. 8.05 Graphical construction of a master grid by Method I. Stages 14

showing the location of the centre of the plotting sheet by drawing diagonals,

the construction of the axes 40B and COD and the location of the points A4, B,
C and D by arcs drawn from O.

+ 1+

i At S

FIG. 8.06 Graphical construction of a master grid by Method I. Stages 5-8,
showing the location of the corner points Q, R, S and T by the intersection of
arcs drawn from A4, B, C and D.
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F1G6. 8.07 Checking the accuracy of plotting and drawing a master grid though
points such as UD and V'T. Note that all grid intersections along the lines should
coincide with the ruling edge.

. The beam compass with the setting OB is centred at C to construct

the arcs CQ and CR.

The beam compass with the setting OB is centred at D to construct
the arcs DS and DT.

The beam compass with the setting OC is centred at A to construct
the arcs AQ and AT.

The beam compass with the setting OC is centred at B to construct
the arcs BR and BS. The intersections of arcs at Q, R, S and T locate
the four corners of the grid. At this stage it is desirable to check that
the length of the diagonal QS = RT. This is the necessary geometrical
requirements for a rectangle.

The grid is now subdivided as required, e.g. into 5 mm units, along
each side. This has to be done by setting the appropriate measure-
ments along the beam compass and plotting each subdivision from
the two most convenient control points of the eight (4, B, C, D, Q,
R, S, T) which have already been located. It is most undesirable to
use the drawing office methods of subdividing a line by parallel ruler,
set squares or stepping off equal subdivisions by spring-bow dividers
set to a separation of 5 mm. Each of these methods can introduce
systematic errors into the construction and, by definition, the master
grid should be sensibly free from error. See Maling in ICA (1984)
for a fuller account of the technique, and Maling (1989) for an
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investigation into the precision of the work. Location of a large
number of subdivisions by beam compass is extremely tedious.
Corresponding points along the edges of the grid are joined by ruling
straight lines between them.

The accuracy of the work may be tested by laying a straight edge
diagonally across the grid, e.g. between the points D and U, T and
V, etc. If all the grid intersections along that diagonal coincide with
the straight edge, the construction may be accepted.

The weakness of the method is that no check is made upon the quality
of the work after stage (8), when the diagonals are measured, until after
the grid has been subdivided. Since stage (9) is the most laborious part
of the whole job, much time and effort has been wasted if the grid proves
to be unacceptable.

Method Il (Figs 8.08 and 8.09)

1.

The first step is to calculate the length of the diagonal of the grid
(QS = RT) and the bearing which one diagonal ought to make with
a side of the plotting sheet. This is done by plane trigonometry. For
example, in Fig. 8.08

tan 8 = x/y (8.03)
OS = x.cosec § (8.04)
Thus, for a grid with dimensions 1000 mm x 700 mm,
tan 8 = 1000/700 = 1-42857

6 = 55°-008
0S8 = 1000 x 1-22066
= 1220-66 mm
s x T
y
8
R Q

Fic. 8.08 Graphical construction of a master grid by Method II. Stage 1,
showing the definition of the angle # and determination of the length of the
diagonal QS.
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FiG. 8.09 Graphical construction of a master grid by Method II at the com-

pletion of stage 9. This shows all the arcs needed to locate the four corner points

0, R, S'and T and the midpoints 4, B, C and D of each side. Note that the four
lines which pass through the point O all intersect at this point.

We commence construction from an arbitrarily chosen point near
one corner of the plotting sheet we decided to call the point Q. A line
corresponding to the diagonal QS is drawn from this point, making
the approximate angle 6 with the shorter side of the grid. This is to
ensure that the sides of the grid will be more or less parallel to the
edges of the plotting sheet when the construction has been completed.
With a beam compass set to the calculated length of the diagonal
and centred at Q, construct the arc @S on the diagonal which has
been drawn. This locates the point S.

With a beam compass set to the distance ST = @R, construct two
arcs in the vicinity of the two remaining corners from @ and S
respectively.

With a beam compass set to the distance QT = RS, construct two
arcs to cut those already constructed in stage (4) from Q and S
respectively. The intersection of the two pairs of arcs from Q and S
locates the points T and R.

Using the beam compass still set to the length of the diagonal, test
that QS = RT. If this comparison is exact, the four points define the
corners of a rectangular grid. If one diagonal is longer than the other,
the figure is a parallelogram and the construction must be repeated.
Join RT.

Join the four corners of the grid and bisect each side. This defines a
further four points, 4, B, C and D.

Join AB and CD. If the four lines AB, CD, QS and RT all meet at
the point O the construction is correct. Any errors in construction
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are indicated by a cocked hat, which is the triangle formed by lines
which fail to pass through the centre. This must be eliminated by
repeating the construction.

10. Subdivision of the grid is done in the same way as stage (9) of Method
L.

11. Testing of the final construction is carried out in the same way as
stage (10) of Method 1.

The advantage of Method 11 is that this contains two independent checks
upon the quality of the work before the tedious job of subdividing the
grid is attempted. This means that comparatively little time has been
wasted if the first few attempts fail to produce a grid of sufficient standard.

Drawing the graticule

We need not comment in detail about plotting within the master grid,
apart from noting that this is most easily done by linear measurements,
using a spring-bow or similar dividers and plotting each point by means
of four measurements made from each corner of the grid square in which
the point is located. Only two of these measurements are needed to locate
a point, but four are used to overcome the possibility of both gross and
systematic errors in plotting. Graticule intersections are plotted on
topographical maps by the arc and tangent method described in US Army
(1955) and Ministry of Defence (1962).

Where the draughting specification calls for parallels and meridians to
be drawn in full, and they are curved, it is necessary to use scale-assisted
draughting methods using curves or splines as the aids to draughting.
The curves representing the parallels and meridians on a map are lines
which satisfy specific mathematical functions, and these functions must
be satisfied not only at the graticule intersections which have been plotted
but at all intervening points along each curve. Hence the smooth curve
joining the plotted points has mathematical significance and it will not
suffice to draw it in any arbitrary fashion. Bearing in mind that the
standard error in location of the graticule intersections ought to be about
+0-1 mm, this suggests that considerable care must be taken in selecting
how each line passes through the points.

One important aid to construction is to plot more graticule intersections
than need to be shown on the completed map. For example, if the final
map is to show 20° parallels and meridians it is worth plotting them at
least at 10° intervals, or even for every 5° on the plotting sheet. Although
this involves a massive increase in the amount of computation and plot-
ting time required, it has additional value as an aid to any graphical
compilation work, because the closer graticule affords more and better
control in transferring map detail from one scale and projection to
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another. Of course these recommendations have been largely superseded
by the developments in computer graphics. If this work can be done by
computer on a graph plotter, the graphical difficulties disappear.

It is difficult to lay down any formal rules concerning the use of splines
and curves for completing drawing of the graticule. For illustrations of
the manipulation of the various drawing instruments and aids which may
be used, see both Maling and Kanazawa in ICA (1984). The difficulty of
this part of the work depends very much upon the complexity of the lines
which have to be drawn. Clearly a projection comprising straight lines
and circular arcs is much easier to draw than one like Briesemeister’s
projection illustrated in Fig. 8.02. However the following advice may be
useful.

Curves (Plate 4)

The procedure is to test different parts of different curves to find which
of them best suits the plotted distribution of points. It is not sufficient
to find a curve which appears to pass smoothly through two or three
intersections. The ruling edge of the curve must pass through about four
or five consecutive points in order to draw only a short part of the
required line. The reason for this is illustrated in Fig. 8.10. In order to
draw a smooth curve through the plotted points q, b, ¢, d, e, fand g it will
be necessary to fit various curves in different positions. To draw the line

Fi1G. 8.10 The alignment of a French curve through four plotted points in order
to draw the portion bc of the curve.
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it may be necessary to fit a curve to the points a, b, ¢ and d in order to
draw the portion bc; to fit it through b, ¢, d and e to draw ¢d and so on.
If a ruling edge can be found to fit the points a, b, ¢ and d in one position
(as illustrated in Fig. 8.09), followed by a setting through d, ¢, fand g in
a second position, it is likely that the two lines drawn to meet at d would
result in an unintended discontinuity at that point.

A further difficulty is that the ruling pen or scribing tool held in the
optimum position for drawing is slightly offset from the centre of the
curve. Consequently the ruling edge of the curve has to be slightly offset
from the points, so that the nib or sapphire passes through each point
correctly. Thus, in addition to trying to make the curve fit a sequence of
points, it is also desirable to imagine it tracing a line which is parallel to
that required. All this calls for considerable skill.

Splines (see Plates 5 and 6)

The draughtsman’s spline is a flexible rod about 1 m in length. Tra-
ditionally this was made of lance-wood, though nowadays a variety of
other flexible materials can be used. The rod may be square or rectangular
in section. It may taper towards the ends or towards the middle. Only
trial and error shows how much curvature can be obtained from a rod of
particular length and cross-section, and therefore how many weights will
be needed to hold it in position. The location of the ship weights is
important from the point of view of stability and continuity of drawing.
It is undesirable to have weights holding the spline in position along that
edge where the curve has to be drawn. Every time the pen approaches a
weight, drawing must be interrupted and a small gap has to be left in the
line. The interruptions have to be made good later, and accurate matching
across the gaps is exceptionally difficult. Usually it is better to have the
weights aligned on the inside (concave) surface of the spline and to draw
along its outer or convex edge, but ultimately there must be at least two
weights on the outer edge to hold the spline in position (Plate 5). Stability
in the position of the ruling edge is important, for it is obviously unsatis-
factory if the spline yields to the slight lateral pressure as the pen moves
along its side. In ink draughting this invariably causes smudging of the
freshly drawn line. In any case it reduces the accuracy of the drawing.

A different technique for anchoring the spline to the fair drawing may
be used when the work is done by scribing. Since the opaque surface of
scribe coating is unaffected by materials which would ruin an ink drawing
on paper or card, we may use modelling clay, such as Plasticene, to
replace some of the ship weights. The spline to be used for this job can
be cut from heavy-gauge plastic, for example, Cobex of thickness 1 mm,
in a strip of width 5 mm to any desired length.

This spline is temporarily held in the upright, or edge-on, position on
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the manuscript by means of ship weights. The modelling clay is packed
along the inside edge throughout its length as illustrated in Plate 6. For
large radius curves it is sufficient to use only two ship weights at the ends
of the spline; the whole of the remainder being held in position by clay.
A small radius curve or a complicated curve with reverse curvature will
need a few additional ship weights to keep the spline firmly in position.



Plate 1 Coradi coordinatograph with effective plotting dimensions 1000 mm. in both
x and y.

Plate 2 Haag-Streit Master Grid Template with effective plotting dimensions 1000x 700
mm. and holes at 100 mm. intervals.



Plate 3 Aristo small size coordinatograph for use with a Master Grid Template.

Plate 4 Scribing curved lines with the aid of a French Curve.



Plate 5 Alignment of a conventional lancewood spline held in position with ship weights.

Plate 6 Scribing curved lines with the aid of a plastic spline held in position with weights



CHAPTER 9

Computation of projection coordinates

It is unworthy of excellent men to lose hours like slaves in the labour of cal-
culation which could safely be relegated to anyone else if machines were used.
Leibnitz, 1671

introduction

Since we recommend that a map projection should be constructed by
plotting the plane coordinates of every graticule intersection, we must
assume that the necessary tables or software are already available, or
provide instruction how to produce them. Although some coordinate
tables are given in many of the standard foreign textbooks, such as
Driencourt and Laborde (1932), Reignier (1957), Wagner (1949), few of
them have ever been published in the English language. Consequently
they are much less well known than they ought to be. Space does not
allow us to provide a comprehensive collection of tables in this book,
apart from the example of Briesemeister’s projection in Appendix II. In
any case, no published set of projection tables can provide the coordinates
for every oblique aspect version of every projection. Therefore it is necess-
ary to know how to compute the appropriate coordinates.

Methods of calculating coordinates

The majority of coordinate computations which are listed in Appendix I
are not difficult to solve numerically, and can be done on a pocket
calculator. The repetitive nature of the work is particularly suitable for
tackling the problem by microcomputer rather than by hand. Considerable
economies in computing arise from exploitation of the fact that many
map projections are symmetrical about one or two axes. A 10° graticule
of the world comprises 634 graticule intersections, but it may be necessary
only to compute the coordinates of the graticule intersections in one
hemisphere (327 points), or even in one quadrant (173 points) with cor-
responding reduction in time. If, however, the intention is to plot some

175
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map detail too, even if this is only a plot of coastlines on a very small-
scale world map, the number of transformations to be computed increases
to several tens or even hundreds of thousands of points. Then the relative
economy of the method of computation becomes important.

Older methods of computation

The first edition of this book appeared in the early 1970s. At that time
digital computing was still confined to batch processing on a mainframe
computer through the medium of punched cards or paper tape. In order
to compile or run a program it was necessary to deliver a deck of cards,
or a spool of tape, to the computing centre and then await the return of
the program and data, together with any output, one or two days later,
usually to find that the processing had failed for some reason or other
and that no results had been obtained. This was at least a decade before
the term ‘user-friendliness’ was coined; indeed, at that time such a concept
would have seemed incomprehensible, for all computing systems were
distinctly unfriendly to the casual user. With hindsight it seems remark-
able that much progress was ever made. The alternative was to use the
conventional methods of the day, which were the mechanical calculator,
supported by seven- or eight-figure tables of trigonometric functions, and
using a slide rule to interpolate proportional parts between the tabulated
values. This was laborious. For example, the work done by the author
on the Hammer—Aitoff projection (Maling, 1962), was started in this
way. Even with the help of pre-printed forms, this required about 20-30
minutes to compute the coordinates for each graticule intersection. Thus
it would have required more than 300 hours of computing to produce
just one asymmetrical (skew oblique or plagal) version of it. Computation
of the distortion characteristics, involving the computations given in the
worked example on pp. 118-121 took longer, even for a network of only
50 points. The work was completed using an IBM 1620 computer. This
reduced the time needed to 15 seconds per point, 9 seconds to make the
calculations followed by a pause for 6 seconds when the machine had to
stop computing so that the results could be output by electric typewriter.
Nowadays this seems unbelievably slow. The first pocket calculators
became available in the early 1970s, about the same time that the first
edition of this book was published, but the desk-top microcomputer did
not appear in large numbers or at reasonable cost until 5 or 6 years later.
It follows that the chapter in the first edition corresponding to this now
has a distinctly old-fashioned flavour; for it deals with such subjects as
the relative merits of solving spherical triangles by logarithms and by
machine, and using the various haversine formulae rather than the stan-
dard equations of spherical trigonometry in order to remove ambiguity
in the results. Those who still need to know about these methods are
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referred to the first edition of the book; they will not find that information
here, for the data-processing revolution which has occurred in the past
15 years has swept them all away as practical applications.

Modern computing methods

The kind of computations to be described ought not to present any
difficulties to the reader who has learnt to use a ‘scientific’ pocket cal-
culator or, even better, can write simple programs for a microcomputer
using FORTRAN, BASIC, PASCAL, or one of the other fashionable
programming languages. We do not offer any program listings here. A
feature of the accelerating progress in data-processing is that new oper-
ating systems and programming languages soon render existing methods
obsolete. Many of the programs published in textbooks 10 or 15 years
ago refer to machines with operating systems which have long been
superseded. The conversion of these into a form compatible with current
systems is usually fraught with difficulty, and it is generally easier to start
anew than to attempt to revive old programs.

We should, however, bear in mind that the equations themselves may
be rewritten with profit, agreeing with the comment by Vincenty (1971)
that:

In order to utilize an electronic desk computer to the fullest extent, efficient programs

must be written for it. This, in turn, means that many existing formulas designed for

use with logarithms, rotary calculators and tables must be rewritten in a form which

suits the machine best. Many seemingly impossible programs can be written for a

relatively inexpensive desk machine if more thought is given to recasting the equations
than to actual programming.

Vincenty then proceeds to provide an example which relates to the

calculation of the radius of the rectifying sphere which has been described
by equation (4.42), p. 78, using the notation of Adams (1921), who wrote:

R = a(l1 —n)(1—n?)(1 +9/4n?+225/64n*...) 9.01)

where a is the major semi-axis of the spheroid and n = (a—b)(a+b) as
in Chapter 4. Vincenty (1971) has modified this equation so that R is
expressed as a function of the polar radius of curvature, c, instead of the
equatorial radius and the square of the second eccentricity, e’?, rather
than the first eccentricity (e?).

Substituting a = ¢(1—n)/(1+n) in (9.01), expanding and collecting
terms we obtain:

A =R/c=1-3n+21/4n*+31/4n°+657/64n* (9.02)
which can be written as
R/c = 1-1/64n(192 —n(336 —n(496 —657n))) (9.03)
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This gives the working equation in a ‘nested’ form which is very con-
venient for programming, as it does not require storing of intermediate
values.

Typical computations needed in small-scale (atlas) cartography are to
derive an oblique aspect graticule to satisfy the particular requirements
for a new map. The comparable need in large-scale (topographic) carto-
graphy usually comprises the transformation of the positions of points
from one version of one projection to a different version or a different
projection. We treat with these in Chapters 15, 16 and 19.

Change of aspect

This usually involves three different coordinate transformations which
have to be carried out consecutively for every graticule intersection.

® The transformation from geographical coordinates (¢, 1) to bearing
and distance coordinates (z, o) on the sphere.

® The transformation from bearing and distance coordinate into pro-
jection coordinates (x, y) or (r, 8) on the plane.

® The transformation from projection coordinates into master grid
coordinates (x’, y') for plotting. This part of the transformations
corresponds to scale conversion of the tabulated coordinates, described
in Chapter 8, pp. 161-162.

Diagrammatically these transformations may be written:
(9, 4) = (z,0) > (x,y) > (X, Y)
Lr,0) > (x4

An alternative is to convert latitude and longitude into three-dimensional
cartesian coordinates (X, Y, Z) on the sphere; then we rotate these axes
to obtain (X*, Y*, Z*) coordinates of each point in the new aspect. These
coordinates are converted back into spherical polar coordinates. Next
the map projection equations are applied and finally the master grid (x’,
y’) coordinates are obtained. Diagrammatically these transformations
may be written:

(0, 1) = (X,Y,Z) - (X*, Y*,Z*) > (¢", 1) > (x,y) = (X,Y')

Bearing and distance coordinates

This system of spherical polar coordinates was introduced briefly in
Chapter 3 as an alternative to geographical coordinates. From the prac-
tical point of view of constructing oblique aspect map projections they
are a valuable aid, because the use of them generally overcomes any need
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to determine and evaluate complicated algebraic expressions relating
(¢, A) to an origin (@, 4¢) of the projection and thence to the (x,y) plane
coordinates of the map. By introducing bearing and distance coordinates,
we split the transformation from the spherical surface to the plane into
two separate operations.

Consider the part of the spherical surface illustrated in Fig. 9.01. We
are accustomed to define the positions of the two points A and B by
means of their geographical coordinates, but we could also define them
by the (y, 1) coordinates of colatitude and longitude. The only difference
between this system and conventional geographical coordinates is that
colatitude () is measured from the pole in a plane containing the axis of
rotation rather than from the plane of the equator. In other words, we
use the angle NOA. The (y,4) graticule differs from the conventional
system of geographical (¢, 4) coordinates in only one respect. The numeri-
cal values assigned to parallels of colatitude increase outwards from the
geographical pole towards the equator.

Suppose, however, that we wish to refer the point B to the point A4
rather than to the pole N as shown in Fig. 9.02. We may imagine an
ordered sequence of small circles and great circles to which A4 is the pole
as being the result of shifting the entire pattern of (x, ) coordinate lines
from N to A. In this system the position of B is related to that of 4 by
means of the angular distance A0B = z, measured at the centre of the
sphere, together with another angle, such as N4 B measured between the
planes NOA and OAB. By analogy with geographical coordinates the
second angle is also represented by the spherical angle NAB. If we refer

F1G.9.01 Points 4 and B on the spherical surface and their definition by means
of colatitude and longitude (¥, A) coordinates.
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FiG. 9.02 The bearing and distance coordinates (z,«) of a point B from a pole
A.

back to the spherical triangle illustrated in Fig. 3.04 on p. 55, we find that
the angle NAB is the true bearing, a, of B from 4. Combining these two
measures to form an alternative system of coordinate reference upon the
spherical surface, we have defined the (z, @) system of bearing and distance
coordinates.

Thus we may define the position of any point on the curved surface
with respect to any other point which has been selected as the pole for
the (z, «) system. If this happens to be the geographical pole, then z = y,
and o = A so that the small circles representing z = constant become
parallels of colatitude and the circles denoting o = constant become
meridians.

The transformation from geographical coordinates into bearing and
distance coordinates is accomplished by the solution of the spherical
triangle NAB. This has already been explained in Chapter 3, and it 1s
only necessary to convert the algebraic notation into the forms which are
most commonly encountered in practice. We denote the coordinates of
the origin, 4 as (@,,4,) and those of the other point, such as B as
(¢, 4). The difference in longitude between them is 64 = 4,—A. Then by
substituting these terms in equations (3.20) and (3.24).

COSZ = Sin g . SiN @ +COS @ . COS ¢ . COs 6 A (9.04)
sino = Cos ¢ . sin dA . cosecz (9.05)

Hence the first transformation (¢, A) — (z, @) involves the numerical solu-
tion of equations (9.04) and (9.05).
Snyder (1987a) has noted that equation (9.04) is not particularly accur-
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ate in practical computation for values of z close to zero. He suggests a
rearrangement of the equation used by astronomers into the form

sin 3z = [sin?(36¢)+cos @ . cos @, . sin? (364)]"/? (9.06)

It is also possible to use a version of (9.04) which eliminates the term in
z. After some rearrangement, we have

tana = cos @, . sin 64/[cos ¢ . sin @, —sin @ .cos @, .cos 6] (9.07)

The advantage of equation (9.06) over (9.04) is that use of it avoids
inaccuracies in finding the inverse sine of an angle close to 90° or the
inverse cosine of an angle close to 0°.

Transformation from bearing and distance coordinates
to projection coordinates and master grid coordinates

In Chapters 5, 6 and 7 we have made use of the general functions to relate
the geographical coordinates of a point to its position by means of the
(x,y) or (r,6) systems. In Chapter 10 we shall derive certain map pro-
jections by analytical methods. The first of these is the Azimuthal equal-
area ( Lambert) projection, the derivation of which illustrates the use of
polar coordinates. Equations (10.19), p. 200 has the form

r=2.sin(y/2)
) } (9.08)
where 7y is the colatitude, and R = 1.

The description of bearing and distance coordinates has emphasized
that the (y, A) system is just a particular case of the (z, a) system where
the point A is at the geographical pole. It follows that where a projection
is described in terms of colatitude and longitude the transformation to
bearing and distance coordinates requires no more than substitution of
x for y and « for 4. Therefore (10.19) may also be written in the form
r =2.sin(z/2)
0=a } (9.09)
and any transverse or oblique aspect of the projection can be derived
once we known the (z, a) coordinates for each graticule intersection which
we wish to plot.

However a third stage of transformation is required before the map
can be constructed to known scale. It was emphasised in Chapter 8 that
map projections are invariably constructed on a master grid of rectangular
coordinates. Hence it is required to transform the polar coordinates of
(9.08) and (9.09) to a cartesian system.

In the normal aspect of the Azimuthal equal-area projection the geo-
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graphical pole is the origin of the (r,f) system of polar coordinates.
Therefore we make this point the origin of the (x’,y’) system of master
grid coordinates. We further specify that the Greenwich Meridian
coincides with the —y’ axis, as illustrated in Fig. 9.03. Then any point
whose polar coordinates have been expressed by (9.08) may be located
on the master grid by the equations

X’ = 2r.sin (x/2).sinl} (9.10)

y = 2r.sin(y/2).cos A
where r is the common multiplier obtained from Table 3.02, p. 162 or by
solution of equation (5.06). For example, if the point B has geographical
coordinates 60°N, 30°E and the scale of the map is 1/20 000 000, so that
r = 318-55 mm, the master grid coordinates of this point are

X’ = 2x 31855 xsin 15° x sin 30°
= 82:-45mm

y = —2x318:55 xsin 15° x cos 30°
= —142-80 mm.

The position of this point is shown in Fig. 9.03.

In the oblique aspect of the Azimuthal equal-area projection illustrated
by Fig. 9.04, p. 184, the origin of the polar coordinates is the point (¢, 1)
which we further specify as ¢, = 40°N, 1, = 0°. We make this the origin of
the master grid coordinates and further specify that the central meridian
southwards from this point coincides with the —y’ axis. Equation (9.07)
may now be transformed into

x’ = 2r.sin(z/2).sin a} 9.11)

y’ = 2r.sin(z/2).cosa

This time the point B (¢ = 60°N, 1 = 30°E) must be related to the origin
by its bearing and distance coordinates. By calculation or from tables,
we find z = 41°34°01” and a = 40°44'23”. Therefore the master grid coor-
dinates are

X’ = 2 x 318-55+sin 20°47'00" x sin 40°34'23"
= 147-54 mm

" = 2 x 31855 x sin 20°47°00” x cos 40°44'23"
= 17129 mm

The position of this point is shown in Fig. 9.04.
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F1G.9.03 The construction of a normal aspect Azimuthal equal-area projection
by master grid coordinates.

Hammer’s Tables

The (z,«) system has been the preferred method for determining the
coordinates of map projections in their transverse or oblique aspects
because tables for (z, «) coordinates were available for the century before
we have programmable pocket calculators and microcomputers. The
original tables, specifically prepared for cartographic use, were known as
Hammer’s Tables after their inventor, Professor E. Hammer. Other tables
providing solutions of spherical triangles have also been produced for
astronomical navigation and these, too, were easily adapted to carto-
graphic use although, as described in the first addition, such tables are
usually truncated for very small (< 5°) and very large (> 80°) angles,
because it is unwise to use these extreme values of altitude for astro-
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*y

147.54 mm

171.29 mm

+X

FIG. 9.04 The construction of an oblique aspect Azimuthal equal-area pro-
jection by master grid coordinates.

navigation. The first edition of this book was prepared at a time when
the use of tables was normal, and the corresponding chapter in that
edition contained much information about which tables were available
and how they were used. However, the determination of the (z, «) coor-
dinates, even using a pocket calculator, is such a small job that printed
tables have now become virtually obsolete.

Because the (z, o) transformations is particularly easy to use with the
azimuthal projections, it is the members of this class which have most
commonly been presented in their transverse and oblique aspects. Indeed,
many textbooks convey the impression that only the azimuthal class of
projections can be presented in different aspects. This supposition is
incorrect, as indicated by the illustration of different versions of the
Cylindrical equal-area, Sinusoidal and Mollweide’s projections in Chap-
ter 7. However, it is still unusual to see oblique aspect pseudocylindrical
and polyconic projections. Although it can be done, the application of
bearing and distance coordinates to some of these classes leads to some
tortuous calculations. Indeed, both Lee (1944) and Wray (1974) consider
that the (z,«) transformation is only suitable for the so-called ‘conical
projections’, which in some classification systems corresponds to the three
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Group D categories of azimuthal, conical and cylindrical projections.
This does not mean that the (z,a) transformation cannot be used for
other categories of projection. The present author used the (z, @) system
for the oblique versions of the Hammer-Aitoff projection, but thereby
created a number of difficulties which might have been circumvented by
using a more general approach.

Transformation through three-dimensional cartesian
coordinates

The alternative to this use of the (z,a) system is to consider a three-
dimensional cartesian coordinates system, with rotations about the three
axes, and the rigid-body rotation of the vector formed by the radius
joining the centre of a sphere to a point 4 on the spherical surface. The
reason why this method of defining aspect was not used earlier is not that
it was unknown; indeed, the geometry of mapping a sphere to itself was
investigated by Cayley in the 1840s. The method was not used in practice
simply because it involved some formidable computations.

Euler’s angles

In Chapter 2 we introduced the geometry of the transformation from one
grid into another, and recognized the three motions of translation, scale
change and rotation applied to the (X, Y) or (E, N) axes of plane systems.
The rotation matrix for the two-dimensional transformation was derived
in equations (2.18)—(2.34). The corresponding expressions for the rotation
of a three-dimensional cartesian system are now investigated through the
medium of the three Eulerian angles, «, § and .

The starting point is a sphere whose surface may be defined by a
geocentric three-dimensional cartesian system. The origin of the coor-
dinates is the point O, which is the centre of the earth, and it is further
specified that the Z-axis initially coincides with the earth’s axis of rotation,
so that the point Z on the spherical surface is the North Geographical
Pole. This means that the X and Y axes both lie in the plane of the
equator and that X and Y are separated by 90° in longitude. For example,
if X corresponds to the point where the Greenwich Meridian intersects
the equator, Y is the intersection of the meridian 90°E with the equator.
1t follows that the spherical triangle XYZ is trirectangular, having three
angles which are all right angles and three sides which are also of length
90°. It therefore represents one-eighth of the total spherical surface. We
need to investigate what happens if we rotate the coordinate system about
one or all the axes.
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FI16.9.05 The definition of the spherical surface by means of three-dimensional
cartesian coordinates.

Rotation o about the Z-axis

Consider the two-dimensional figure corresponding to the plane of the
equator. If we apply a rotation o about the Z-axis, this gives rise to a shift
in the positions of X and Y which now occupy the points X" and Y".

Written in full, the coordinates of the new position of the axes
X,Y',Z) are

X =X.cosa+Y .sina 9.12)
Y = —X.sina+Y.cosa (9.13)
7 =7 9.149)

Because this rotation is about the Z-axis we see that the value of Z
has no effect upon either the X — X" or the Y — Y’ transformations.
Moreover, the rotation about Z has no affect upon its own position.
Thus, in matrix notation we may write

cosa sina 0
R; = —sina cosa 0 8.15)
0 0 1
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FiG. 9.06 Definition of the Eulerian angle a.

and we may express the three equations (9.12), (9.13) and (9.14) as

X’ X
Y |=R;.|Y (9.16)
4 y4

Rotation of y about the Y'-axis

The next stage is to consider the rotation y about the Y’'-axis. From Fig.
9.07, the rotation matrix is

cosy 0 siny
Ry = 0 1 0 9.17)
—siny 0 cosy

so that
X” X/
Y’ |=Ry.|Y (9.18)
ZII Z/
X
=R2.Ry. Y (9.19)
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o4 v
F1G. 9.07 Definition of the Eulerian angle y.
The equation relating the coordinates before and after rotation is
X" cosy 0 siny\ /X’
Y| = 0 1 0 J.lY (9.20)
z —siny 0 cosy/ \Z'

Rotation of B about the X"-axis

The final stage is to consider the rotation § about the X"-axis. From Fig.
9.07 the rotation matrix is

1 0 0
Rx={0 cosB sinf (9.21)
0 —sinf cosp
so that
X* X"
y*|=Ry.|Y” 9.22)
z* VA
X
= RZRY . Rx . Y (9.23)
¥4

In the general case of defining the aspect of a map projection there may
be rotation about one, two or all three axes.
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FIG. 9.08 Definition of the Eulerian angle §.

Thus the combination of all the rotations, in the order listed is

coso.cos ff.cosy—sina.cosy
R=R;.Ry.Ry=|sina.cosf.cosy+cosa.cosy
—sinf.cosy

—cosa.cosf.siny—sina.cosy coso.sinf
—sina.cosf.siny+cosa.cosy sina.sinf| (9.24)

sinf.cosy cos fi
and so
Xagy X
Y, |=R.|Y (9.25)
Z,, z

The formulae that represent the nine elements of R are applicable for all
values of a, B, y between +180° and —180°; they relate to a specific
sequence of rotations, and will be different for another sequence. This
means that the rotations applied to determine the aspect of a map proc-
jection ought to be carried out in a definite order; that preferred uses the
alphabetical sequence, a, f, y identified by the three Eulerian angles as
employed by Wray (1974). Thus the rotation about the Z-axis is the
primary rotation and that about the Y-axis is the secondary rotation, so
that the result in equation (9.21) is the form which is required. However,
the full matrix is not required in that form.
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Wray's use of the Eulerian angles

Although Wray starts with these three Eulerian angles he changes the
notation to be more appropriate definitions for his seven different aspects.
Thus he introduces the three angles ®, A, Q, which are illustrated in Fig.
9.09. From this diagram it can be seen that the relationship between the
angles a, B, y and A, ®, Q which he calls the aspect parameters are:

o...A+180°
B...90°—®
y...—Q

It follows, moreover, that the full rotation matrix is only required for
oblique skew and plagal aspects, corresponding to Fig. 7.04(d), (¢) and
(g). In all other aspects one or other of the aspect parameters are equal
to 0°, 90° or 180°, so that the corresponding trigonometric functions are
either equal to zero or unity. If they are zero, the rotation matrix is soon
reduced to only a few simple terms. Table 9.01 records the values of the
aspect parameters for the seven examples illustrated in Fig. 7.04. The
numerical values given in the three right-hand columns refer to the exam-
ples illustrated in that figure.

It is also instructive to apply these rules to some of the examples listed
in the book. For example, Briesemeister’s projection, which was described
on p. 156, has the definition A = —165°, ® = +45°,Q = 0.

Having established the form of the aspect parameters, it is necessary

Y

F1G.9.09 The fundamental trirectangular spherical triangle employed by Wray
to define the seven aspects of a map projection. (Source: Wray, 1974.)
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TABLE 9.01 The seven aspects of map projections. values of the aspect

parameters

Aspect Major axis Minor axis Top Bottom A 1] Q
Normal Equator Central N. Pole  S. Pole - +90° -

Meridian
Simple - Central - - - +30° 0°
Oblique Meridian
First Central - Equator Equator - 0° 0°
Transverse Meridian
Transverse  Central - Equator  Equator —120° 0° 45°
Oblique Meridian
Second Central Equator  Equator Equator + 160° 0° —-90°
Transverse Meridian
Equiskew - - - - +90° +45° —-90°

to use the results to obtain a new projection. One way of doing this is to
use the dynamics concept of a rigid-body rotation of the vector OA4
through the three Eulerian angles.

First we must convert the geographical coordinates of graticule inter-
sections from their geographical coordinates into three-dimensional car-
tesian coordinates. This is done by the three following equations:

X =cos¢g.sinl (9.26)
Y =cosgp.cosd 9.27)
Z =sin¢@ (9.28)

Secondly, we apply the appropriate rotations according to equation
(9.24) we convert them into the (X*, Y*, Z*) system which has been
defined above. It is then necessary to convert back into geographical co-
ordinates and proceed with the use of the map projection equations as
if we were computing the master grid coordinates for the normal aspect.

Solution by the Cayley-Rodrigues method

The orthogonal matrix may also be formed from another set of inde-
pendent parameters, which are associated with the direction cosines of
the one axis of rotation needed to effect the transformation. This is useful
and economical in digital processing because trigonometrical functions
are not required to establish the matrix in the production of equations
such as (9.15)+9.24). The matrix is known as Rodrigues matrix, after the
mathematician who devised it in 1840, and it was known to Cayley (1843)
when he investigated the mapping of a sphere upon itself in one of the
earliest of all his papers. We therefore describe this as the Cayley—Rodri-
gues method. It had not been used in cartography until it was employed
by Barton (1976) and Arthur (1978).
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Consider the trirectangular spherical triangle XYZ which is subjected
to the rotations which we have already considered in detail. After the
third rotation the vertices have moved to the new positions, Xg, Y%, Z5.
Because this triangle still represents the positions of the three coordinate
axes, the shape and size of it is unaltered; but the position of it upon the
spherical surface has been shifted, and each of the vertices may have
moved a different amount. In this process of shifting, each of the vertices
traces the arc of a great circle, X(X5, Y,Y5 and Z,Z;. If, now, we bisect
each of these arcs and construct the perpendicular arcs to them, we find
that they define a single pole, P.

At this pole P, the spherical angle formed by the pair of secondaries
defining the shift in each vector is the angle &. Thus the spherical angles:

XPX,=¢ (9.29)
Y PY,=¢ (9.30)
ZPZy=¢ (9.31)

The next property of interest to us is that the arcs between P and the
ends of each of the great circle elements are equal. Thus

XP=XP=f (9.32)
YP=YP=¢g (9.33)
ZP=Z,P=h (9.34)

and these are the direction cosines of the axis PP’ with respect to the
(X,Y,Z) or (X', Y, Z') axes. Therefore

cos’f+cos’g+cos’h = 1 (9.35)
We may then write
p = tan }¢.cosf (9.36)
q =tan}&.cosg (9.37)
r=tani¢.cosh (9.38)

In analytical geometry the direction cosines are usually labelled /, m, n.
We assign independent parameters A, u, v corresponding to these and
form the matrix:

1+ (AP —p?=vY)  v+ul —p+3vA
R=1/A —v+3iu p4 v 1+ (=242 =v) | (9.39)
— A4Sy Adivu 1+ (= —u’+v?)

The Rodrigues Matrix is usually written in this form. See Thompson
(1969) for an account of its role in matrix algebra. Cayley introduced the
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terms in p, q and r in the same order as 4, u, v appear in (9.39), only
omitting the convention of the parentheses enclosing the matrix. Sub-
stitution of these terms and multiplying through by 1/A, where:

A=14+p*+q*+r? (9.40)
We have
X =(14+p*—q’=1)X/A+2(r+pq)Y/A+2(—q+pr)Z/A  (9.41)
Y =2(—r+qp)X/A+(1—p>—q>—r)Y/A+2(p+qr)Z/A  (9.42)
Z = 2q+rp)X/A+2(—p+1q)Y/A+(1 —p>—q®+1H)Z/A (9.43)

The amount of arithmetic involved is appreciably less than in the method
using trigonometrical functions. The subroutines used in digital com-
puters are of the form of equation (4.26), p. 73, so that the absence of
series expansions reduces the amount of arithmetic involved for the
powers and multiples of p, q and r only have to be determined once for
a particular aspect. Each of the equations (9.37)—(9.40) involves hardly
any more arithmetic than finding the sine or the cosine of a single angle
by other methods. It should be noted that the majority of the angles used
in the Cayley—Rodrigues solution are in the third or fourth quadrant,
because the point P lies on the other side of the sphere and most of them
must be obtained by subtracting latitude or longitude from 360°. Thus,
for the simple oblique projection with origin ¢, = 60°, for which, in Table
9.01, Wray assigns ® = 30°, Q = 0°, we have p = 0-0, q = —0-55735,
r = 0-0, @ = 300°. The resulting rotation matrix is:

05 0 0866
R=| o0 1 0 (9.44)
—0866 0 05

For the first transverse aspect where A = 120°, ® = 0°, Q = 45°, we
have p =00,q = —1, r = 0-0, and # = 270°. The resulting matrix is

0 0 1
R=| 0 1 0 (9.45)
-1 0 0

These examples indicate that the rotation matrix usually simplifies to an
easily remembered combination of elements. Moreover, it is constant for
any projection, varying only with aspect. Thus the matrix

J22 0 2P
R= 0o 1 0 (9.46)
—J212 0 J212



194 Coordinate Systems and Map Projections

describes the rotation of the axes for a/l simple oblique aspect projections
having ¢, = 45°.

As an example, we take the same point in Briesemeister’s projection
which we used earlier; namely ¢ = 30°N, A4 = 75°E. Since the origin
of the projection is ¢, = 45°N, A, = 15°E, the difference in longitude
04 = 60°.

This point may be converted into the three-dimensional cartesian coor-
dinates, using equations (9.22), (9.23) and (9.24). Thus X = 0-4330127,
Y = 0-75and Z = 0-5. Applying the rotations of (9.43) we find the rotated
axes are:

X* = 065974, Y* = 0-75, Z* = 0-04737.
Converting these back into spherical polar coordinates, we find:
@ =27149, V' = 48-6634

Finally we turn to the projection equations given on p. 440 and find
that

x = 0-7878, y = 0-0518.

These values correspond to the Briesemeister projection coordinates for
that point in Appendix II.



CHAPTER 10

The analytical derivation of some map
projections

Geography is not alone in the embarrassing abundance of its material; the
mammalia are only one, and not the largest, of sixteen classes of animals and
there are about 5,000 species of mammals alone; merely to read a list of their
names would waste about three lecture hours, yet with this vast unexplored field
of mammalian zoology awaiting investigation the zoology student spends about
sixty hours dissecting the rabbit—and with profit. There is something here for us
to ponder. Should we not be gaining more valuable discipline if we took much
of the routine description for granted and employed our time in dissecting the
anatomy of a map as thoroughly and exhaustively as he dissects a rabbit, and
like him, in getting down to the guts of the matter?
A. A. Miiler, Presidential Address to the
Institute of British Geographers, 1948

Introduction

Throughout this book we have been preoccupied with principles and with
practical techniques. Although we have referred to, and illustrated, a
variety of different map projections, we have not yet attempted to derive
any of the coordinate expressions needed to define and construct a par-
ticular projection. An exception might be made of the Cylindrical equal-
area projection which has been described in some detail in Chapters 5, 6
and 7. But even with this example it was taken on trust that the Cylindrical
equal-area projection satisfied the special property described in its title,
at least up to the stage of tabulating the particular scales and distortion
characteristics in Table 6.01, p. 111. Up to that stage the reader just had
to accept that this was so, simply because we had made this assertion. This
is a fundamental weakness in most descriptive studies of map projections
where the method of presentation is primarily geometrical. Almost as an
afterthought we are told that a particular projection is conformal or
equal-area, or more commonly that it has ‘arbitrary properties’. To the
beginner this means that names and properties have to be correctly
equated and committed to memory, for many of the most popular pro-
jections provide no clue in their names to any special property or where

195
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they belong in a classification system. It is therefore necessary to memorise
the facts that the Stereographic and Mercator’s projections are conformal,
that Bonne’s or Mollweide’s are equal-area; that the first is azimuthal, the
second is cylindrical, the third is pseudoconical or the fourth is pseudo-
cylindrical. To the intelligent beginner, the scientist or the engineer, it
may seem that the subject of map projections is an empirical ragbag of
unrelated facts which appear to have been collected almost accidentally,
and that there is no particular thread of continuity in the processes of
reasoning through which they have been derived.

We therefore believe that it is both: desirable and necessary to dem-
onstrate the analytical approach to the study of map projections. In other
words, we must show how it is possible to derive a map projection which
satisfies a particular property within the limitations imposed by the group
and class to which it belongs. Thus we start by stating certain initial
mathematical constraints and finish with the coordinate equations for
the map projection which satisfies them; with a table of the distortion
characteristics as well.

We do not intend to give a comprehensive analysis of all the special
properties which can be derived in every class of projection. We may
learn much about the analytical approach from the study of a few well-
known examples from Group D of the classification system.

Example |I: The azimuthal equal-area projection
(Lambert)

The first example illustrates how an azimuthal projection may be derived
which satisfies the special properties of equivalence.

We have already seen in Chapter 7 that the azimuthal class is one of
the subdivisions of Group D. Moreover it has been specified that the
azimuthal projections can be defined in terms of polar coordinates accord-
ing to the special condition that the origin of these coordinates is the only
point of zero distortion at the centre of the map. In the normal aspect
this point is the geographical pole. These conditions have the geometrical
significance of being the transformation of the spherical surface to a plane
which is tangential to it at the geographical pole, as shown in Fig. 5.07,
p. 90.

Conditions applicable to any azimuthal projection

It follows from the definition of a spherical angle in Chapter 3, p. 54, as
well as from the creation of a point of zero distortion at the origin of
polar coordinates, that any plane angle 8 at that point is equal to the
corresponding angle on the globe. At the pole this spherical angle rep-
resents longitude; therefore we may write the first of the essential equa-
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tions to define any azimuthal projection in its normal or polar aspect as
=12 (10.0D)

From the functional relationships which have been established in Chap-
ter 5 we also know that in a normal aspect azimuthal projection the
meridians are represented by straight lines and the parallels are concentric
circles with common centre at the pole. Since the parallels of latitude
must satisfy the functional relationship of Group D that r = f,(¢), and
since 0 has already been determined, it follows that the only way in which
we may derive an azimuthal projection to satisfy a special property is to
seek a suitable expression for the radius of each parallel. We may also
write

r=f(x) (10.02)

where y is the colatitude. We have made this change because it is
algebraically simpler to derive an expression for the radius vector in terms
of colatitude. Moreover this facilitates conversion from the equations
derived for the normal aspect into the general expressions needed to
construct the projection in any aspect using bearing and distance coor-
dinates.

Since the graticule intersections of the normal aspect are orthogonal,
it follows that the principal directions coincide with the graticule and
therefore the particular scales along the meridian and parallel are the
maximum and minimum particular scales at a point. Consequently we
have the alternative conditions that, either

h=aand k=5 (10.03)
or
k=aand h=5b (10.04)

The analysis of the particular scales can be made from comparison of
the infinitely small corresponding figures ABCD on the spherical surface
and A’B’C’D’ on the plane. In Chapter 5 we developed these arguments
for the general case of any map projection. Now we modify them accord-
ing to the special conditions common to any azimuthal projection. Figure
10.01(a) illustrates the portion of the spherical surface in which the two
parallels are ¢ and ¢ +de, and the meridians are 4 and 44 dA. The radii
of the parallels on the map, Fig. 10.01(b), are N4 =rand N'B =r—dr.
The vectorial angle 4’N’'D’ = d#.

The scale along the meridian through A’ is the relationship A’B’/AB
or

h= —dr/R.dg (10.05)
=dr/R.dy (10.06)
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N
=10
A x+dr
s

{a)

(b)

FiG. 10.01 An infinitely small quadrilateral, ABCD, on the spherical surface
and its plane representation 4’B’C’D’ by means of an Azimuthal projection.

Note that if we use the expression for latitude we must allocate the
negative sign to dr, because r increases as latitude decreases. In equation
(10.06) dr is positive because r increases with colatitude.

The scale along the parallel through A’ is the relationship A’D’/AD

or
k=r.d0/R.cos¢.dA (10.07)
=r.dO/R .siny.dA (10.08)
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Since we have already specified that 6 = A, we may also put df = dA
so that (10.08) simplifies to

k =r/R.siny (10.09)

We have already noted that the principal directions coincide with the
graticule. Therefore

p=h.k
= [dr/R.dy].[r/R .siny] (10.10)
and
sin(w/2) = |h—kl|/(h+k) (10.11)

to give the equation for maximum angular deformation. In equation
(10.11) we use the modulus |4 — k| to denote the positive difference between
the larger and smaller values for 4 and k which are, as yet, unspecified.
This is the same as writing & ~ k.

The special conditions for the azimuthal equal-area
projection

Equations (10.01)-(10.11) apply equally to all normal aspect azimuthal
projections. We wish to obtain an equal-area projection. From equation
(6.27) this is the condition that a.b = 1. However we have seen that in
the normal aspect azimuthal projections, 4.k = a. b; therefore we can
satisfy the property of equivalence by making the right-hand side of
equation (10.10) equal to unity, i.e.

[dr/R.dy].[r.R.siny] =1 (10.12)
or
r.dr = R%.siny.dy (10.13)
This must be solved by integration of r with respect to y, i.e.
X
£r2=R2J siny .dy (10.14)
0
From elementary calculus, the integral |sinf.d0 = —cos 8+ C, where C

is the integration constant. Therefore
r’= —2R*.cosx+C
= C—2R*.cosy (10.15)
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In the normal aspect azimuthal equal-area projection, where y = 0,r = 0,
cosy = 1-0 so that C—2R? = 0 and C = 2R? Consequently

r?=2.R*1—cosy) (10.16)
There is an algebraic manipulation in trigonometry that
1—cos @ = 2sin’(6/2)
Therefore (10.16) may be expressed in the form
r’ = 4. R%sin*(y/2) (10.17)

so that, finally,
r=2.R.sin(y/2) (10.18)

Equations (10.01) and (10.18) are the two equations needed to define the
normal aspect azimuthal equal-area projection in polar coordinates. For
a spherical earth of unit radius, these may be written in the form

r=2.sin(%/2)
=12 (10.19)
Once a value for r has been determined, this may be substituted in the
general expressions for the particular scales. Thus, replacing r in equations
(10.06) and (10.09) by the right-hand side of (10.18) we obtain
h = cosy/2 (10.20)
k =secy/2 (10.21)

TaBLE 10.01 Normal aspect Azimuthal equal-area projection
(Lambert). Table of radii of parallels, particular scales and distor-
tion characteristics of 15° increments in latitude

Particular scales Maximum angular
Latitude  Radius Area scale deformation

@ r h k p w°

0° 1-4142 0-7071 1-4142 1-0000 38°57
15° 1-2175 0-7934 1-2605 1-0000 26°17
30° 1-0000 0-8660 1-1547 1-0000 16°26°
45° 0-7654 09239 1-0824 1-0000 9°04’
60° 0-5176 0-8659 1-0353 1-0000 3°58°
75° 0-2611 09914 1-0086 1-0000 0°59°

90° 0-0000 1-0000 1-0000 1-0000 0°
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Fig. 10.02 The normal aspect of the Azimuthal equal-area projection

(Lambert) (No. 12 in Appendix I). The origin of the projection is the North

Pole. The isograms represent equal values of maximum angular deformation

() at 5°, 10°, 15°, 20°, 25° and 35°. These are identical to the isograms shown

in Figs 10.03 and 10.04, except that the 30° isogram has been omitted for greater
clarity.

Substituting these expressions in (10.11) we obtain numerical values for
w. Table 10.01 gives the results of these calculations. This table only
shows numerical values for a hemispherical map, but the projection may
be extended to show the entire world. In this case the boundary represents
the antipodal point of the origin (the South Pole in the normal aspect
with origin at the North Pole). This is a singular point which is mapped
as the circumference of a circle of radius 2R.

As demonstrated in Chapter 8, the transverse and oblique aspects of the
Azimuthal equal-area projection may be derived simply by substituting z
for 5 and o for 1 in the foregoing equations. The three aspects of the
projection are illustrated in Figs 10.02, 10.03 and 10.04.
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FiG. 10.03 The equatorial or transverse aspect of the Azimuthal equal-area

projection. The origin of the projection is on the equator in longitude 70°E. The

isograms represent equal values of maximum angular deformation (w) at 5°
intervals. These are identical to the isograms shown in Figs 10.02 and 10.04.

Example ll: The conical equidistant projection with one
standard parallel (Ptolemy) and the conical equidistant
projection with two standard parallels (de I’lsle)

From Chapter 7 we know that the conical class of projections also belongs
to Group D and, like the azimuthal projections, these may be derived in
polar coordinates. The differences between these two classes are, first, that
the origin of the polar coordinates used to define any conical projection in
its normal aspect is not the geographical pole. Secondly, a fundamental
property of all conical projections is that the line of zero distortion is one
or two arcs of small circles. In the normal aspect this is one of two
parallels of latitude, known as standard parallels.
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F16. 10.04 The oblique aspect of the Azimuthal equal-area projection. The

origin of the projection is in latitude 40°N, longitude 30°W. The isograms

represent equal values of maximum angular deformation (w) at 5° intervals.
These are identical to the isograms shown in Figs 10.02 and 10.03.

Conditions applicable to all conical projections

From the brief description of the class in Chapter 7, we already know
that the meridians of the normal aspect are represented by straight lines
which converge to the origin of the polar coordinates. This point is usually
located some distance beyond the geographical pole, as illustrated in Fig.
10.06 where it is represented by the vertex, V. This has the important
effect of altering the relationship between the vectorial angle, 0, and
longitude, so that there is a constant n < | of the form

0=n.l (10.22)

The term s is known as the constant of the cone.
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The parallels of the normal aspect conical projection are concentric
circular arcs having the common centre at the vertex. It follows that
in many, though not all, conical projections, the geographical pole is
represented by a short circular arc instead of a point. Such projections
are sometimes described as truncated conical projections to distinguish
them from those examples where the pole is a point. In all the truncated
conical projections the pole is obviously a singular point. Both of the
examples studied here belong to the truncated category.

Derivation of the particular scales for the conical projections follows
arguments similar to those already employed on pp. 197-199. Figures
10.05(a) and (b) represent the slightly different meanings of r and 6. This
time we will derive the equations in terms of latitude though, of course,
this could be done through the argument of colatitude. We note that the
conditions expressed by equations (10.03) and (10.04) still apply so that if
we can derive the particular scales along the meridian and parallel through
A’, we have also obtained the maximum and minimum particular scales.

Asin (10.05)

h= —dr/R.do (10.23)
and, as in (10.07)
k=r.do/R .coso (10.24)

However, following (10.22) we must now write df = n.dA so that the
expression for the particular scale along the parallel now becomes

k=n.r/R.cos¢ (10.25)

It is now necessary to evaluate the constant of the cone. The first condition
which defines it is that we have specified that the principal scale is pre-
served along the standard parallel. Thus, denoting the scale along the
standard parallel by k, we must fulfil the condition that

ko=r9.d0/R .cos@,.dA =1 (10.26)
where rq is the radius of the standard parallel in latitude ¢,. Therefore
df = [R.cos @y/ro). dA (10.27)
or
0 =[R.cos@y/ry]. 4 (10.28)

The second condition which defines the constant of the cone is the
geometrical requirement that the surface of a cone which is tangential to
the spherical surface must be perpendicular to the radii along the small
circle of contact. Hence in the triangle ¥ 40 illustrated in Fig. 10.06, the
angle OAV is a right angle. Therefore

AM =1, .sin @, (10.29)
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(a) N

FiG. 10.05 An infinitely small quadrilateral, ABCD, on the spherical surface
and its plane representation 4’'B’C’'D’ by means of a conical projection.

But AM corresponds to the radius of the standard parallel which on the
sphere is equal to R.cos ¢, Substituting the right-hand side of (10.29)
in (10.28)

0 =[ry.sin@yfry). 4 (10.30)
=Ssin@,.4 (10.31)

v

F1G. 10.06 The determination of the radius of the standard parallel, ry, of a
conical projection with one standard paraliel.
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Substituting this in equation (10.22)
n = sin @, (10.32)
The special conditions of the equidistant conical
projections

We wish to preserve the special property of equidistance, i.e. & = 1.
Substituting this in (10.23)

h= —dr/R.de =1

and therefore

dr= —R.d¢ (10.33)
Integration of this expression yields
r=C-R.¢ (10.34)

where C is the integration constant which may be interpreted as follows.
In equation (10.34) we put ¢ = 0. Then R. ¢ = 0 and thereforer = C. In
other words, this constant represents the radius of the equator on the
projection. If we had proceeded, as in the study of the Azimuthal equal-
area projection, to derive the Conical equidistant projection in terms of
colatitude we would have obtained as the integration constant a value
corresponding to the radius of the circular arc representing the geo-
graphical pole.

It now remains to relate the radius of any parallel to that of the standard
parallel. This may be done analytically but is also easily found from Fig.
10.06, where it can be seen that the angle AVO = MAO = AOW = ¢,;
therefore the radius, VA4 of the standard parallel is

ro = R.cot g, (10.35)

We may now express the constant C in terms of the radius of the standard
parallel. If C represents the radius of the equator

C=r¢+R.0, (10.36)
=R.cotpy+R. ¢ (10.37)

From (10.34), therefore, the radius of any parallel may be written
r=R.cotg,+R(p;—¢) (10.38)

This expression, together with (10.31) gives the polar coordinates for any
point on this projection. For R = 1, therefore, the equations defining the
Conical equidistant projection (Ptolemy) are

I = cot o+ (po—¢)

0 =singy.A (10.39)
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TABLE 10.02 Conical equidistant projection with one standard parallel
(Ptolemy). Numerical values for radii of parallels, particular scales and
distortion characteristics of the 15° graticule with standard parallel

Qo =45°
Radius of Particular scales Maximum angular
Latitude  parallel Area scale deformation

@ T h k p w

0° 1-7854 1-0000 1:2625 1:2625 13°19°
15° 1-5236 1-:0000 11153 11153 6°15
30° 1-2618 1-:0000 1-0303 1-0303 1°42
45° 1-0000 1-0000 1-:0000 1-0000 0°
60° 0-7382 1-0000 1-0440 1-0440 2°28"
75° 0-4762 1-0000 1-:3015 1-3015 15°03°
90° 0-2146 1-:0000 0 - 180°

The particular scales may be determined by substitution in the equation
for r in the general expression for the particular scale along the parallel.
Thus

h=1
k =[cos @o+(@o— @) . sin @g)/cos @ (10.40)
Because this is an equidistant projection

p=k

and the maximum angular deformation may be evaluated from the equa-
tion

sin(0/2) = (k—1)/(k+1) (10.41)

Table 10.02 gives numerical values of these parameters for the particular
case of a projection with the standard parallel in latitude 45°. This pro-
jection is often called the Simple conical projection with one standard
parallel. It is illustrated in Fig. 10.07.

The Conical equidistant profection with two standard
parallels (de I'Isle)

An important modification to any of the conical projections is to replace
the single standard parallel with two. This is equivalent to the geometrical
concept of the secant cone illustrated in Fig. 5.09, p. 92, which has the
effect of redistributing the particular scales because the principal scale is
now preserved along two parallels of latitude. This means that a greater
extent in latitude may be mapped without excessive distortion.

In order to demonstrate this important principle to the projection
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F1G. 10.07 The normal aspect of the Conical equidistant projection with one

standard parallel (Ptolemy). In this map of the northern hemisphere the standard

parallel is latitude 50°N. The isograms represent equal values of particular

scale along the parallels, and since the particular scale along the meridians is

everywhere equal to unity the numerical values for the isograms also represent
area scale (p).

which has already been described, we explain the derivation of the Conical
equidistant projection with two standard parallels (de I'Isle), which is also
known as the Simple conical projection with two standard parallels.
Since Maling (1960) has shown that there are other equidistant conical
projections, it is necessary to state for the de I'Isle projection that the two
standard parallels are located in latitudes which lie midway between the
centre of the map and its bounding parallels. Thus, if we desired to prepare
a map of the northern hemisphere with bounding parallels ¢s = 0° and
on = 90°, the central parallel, ¢, is latitude 45°N and the two standard
parallels lie in latitudes ¢, = 67°30'N and ¢, = 22°30'N.
Algebraically we may express these conditions as follows:

¢, = on—1/4@n—0s) (10.42)
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2= Qs+ 1/4(on—@5) (10.43)

Since ¢, and ¢, are standard parallels, the particular scales along them
are equal to unity. Thus

ki=k,=10 (10.44)

We may obtain an equation containing k and the two constants n and C
by combining equations (10.25) and (10.34):

k =[a(C—R.@)]/[R.cos¢] (10.45)
For the two standard parallels this may be written as:
[A(C—R.p))/[r.cos@ ] =[n(C—R.,)])/[R.cosp,] =1 (10.46)

This gives us the two solutions

C=R.¢,+[R.cos¢,/n] (10.47)
C=R.¢,+[R.cos¢,/n] (10.48)
Subtracting (10.48) from (10.47) and putting R = 1,
(91— @2) = [cos @, —cos ¢ ]/[@1— @] (10.49)
or
n = [cos@,—cos¢,)/[¢,—¢,] (10.50)

From (10.46) it can also be shown that
[C—R.@|]/[R.cosg,] =[C—R.¢,)/[R.cos g, (10.5D)

which may be solved for C as

C=1[¢p,.cos@,—@,.cos @ ]/[cosp,—cos @,] (10.52)

These new values for » and C may be used with equations (10.22) and
(10.34) to construct the de I'Isle projection and determine its distortion
characteristics. Numerical values for these are given in Table 10.03 and
the projection is illustrated in Fig. 10.08.

Example llI: Cylindrical Conformal, or Mercator's
projection

We now examine the derivation of one of the most important of all map
projections which, in the normal aspect, is the basis of most nautical
charts and in the transverse aspect is equally important for topographical
mapping. We defer examination of how the projection is used for these
purposes until Chapters 14 and 16. Here we confine our attention to the
derivation of it as the conformal member of the cylindrical class of map
projections.
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TABLE 10.03  Conical equidistant projection (de I'Isle) with two standard

parallels. Numerical values for radii of parallels, particular scales and

distortion characteristics for the 15° graticule with standard parallels
@, =67°30'N and ¢, = 22°30°N; n = 0-68907; C = 1.73346

Radius of  Particular scales Maximum angular
Latitude  paraliel Area scale deformation
® r h k p (w)
0° 17335 1-0000 1-1945 1-1945 10°10°
15° 1-4717 1-0000 1-4717 1-4717 2°47
22°30’ 1-3408 1-0000 1-0000 1-0000 0°
30° 1-2099 1-0000 0-9627 0-9627 2°11
45° 0-9481 1-0000 0-9239 0-9239 4°32
60° 0-6863 1-0000 0-9458 0-9458 3°12
67°30 0-5554 1-0000 1-0000 1-0000 0°
75° 0-4245 1-0000 1-1301 1-1301 7°0
90° 0-1627 1-0000 0 - 180°

F1G. 10.08 The normal aspect of the Conical equidistant projection with two

standard parallels. In this map of the northern hemisphere the standard parallels

occur in latitudes 35°N and 65°N. The isograms represent equal values of

particular scale along the parallels, and since the particular scales along the

meridians are everywhere equal to unity the numerical values for the isograms
also represent area scale (p).
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by A+d)
b+dd B Cc
dy
¢ Al dx Dl
¢,

S

F1G. 10.09 An infinitely small quadrilateral, 4 BCD, on the spherical surface and
its plane representation 4’B’C’D’ by means of a cylindrical projection.

Conditions applicable to all cylindrical map projections

Figure 10.09(a) illustrates the representation of an infinitely small quad-
rangle on the spherical surface, and Fig. 10.09(b) illustrates the cor-
responding figure on the plane. Using the kind of argument to which the
reader should now be accustomed, we may define the particular scale
along the meridian at A” as

h=dy/R.do (10.53)
and the particular scale along the parallel as
k =dx/(R.cos¢@.d4) (10.54)

The values of dx depend upon the spacing of the meridians on the map.
Since the normal aspect of a cylindrical projection has only one line of
zero distortion at the equator, this means that the meridians must be
correctly spaced along the equator. In other words the equation

x=R.4 (10.55)

is true for all normal aspect cylindrical projections which have not been
modified. Substituting the corresponding expression for infinitely small
increments in longitude in equation (10.54)

k =R.dA/[R.cos¢.di] (10.56)
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which simplifies to
k=1/cosp (10.57)
=secQ (10.58)
In other words, the scale along the parallel varies according to the secant
of the latitude. This, too, is common to all normal aspect cylindrical

projections.

It follows from the pattern of parallels and meridians of the normal
aspect cylindrical projection, which we remember is composed of two

families of straight lines intersecting orthogonally, that the conditions
described by equations (10.03) and (10.04) remain valid.

Conditions applicable to the Cylindrical Conformal
projection

Thus we may simplify the algebraic condition for conformality, that
a = b, with the expression
h=k (10.59)
In other words, we put
dy/R.d¢ = dx/R.cos ¢ (10.60)

and solve this equation for y.
Equation (10.60) may be written in the form

dy/dx = df/cos ¢ (10.61)
so that

y= fseC(p .do (10.62)

The solution of this integral is well known in elementary calculus. There-
fore we may write

y = Intan(n/4+¢/2)+C (10.63)

We use the convention that In = log, indicating that this is the natural
logarithm to base e. In the normal aspect cylindrical projections the origin
of the plane coordinates is located somewhere on the equator. Therefore
where ¢ = 0, y = 0 and the integration constant, C = 0. Consequently
the projection coordinates defining the Mercator projection of a sphere
of unit radius are:

Xx=4 (10.64)
y = Intan (n/4+ ¢/2)
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TaBLE 10.04  Mercator’s projection. Values for the ordinate, particular
scales and distortion characteristics for the 15° normal aspect graticule

Particular scales Maximum angular
Latitude Ordinate Area scale deformation

7] y h k ¥ °

0° 0-0000 1-0000 1-0000 1-0000 0°

15° 02649 1-0353 1-0353 1-0719 0°
30° 0-5493 1-1547 1-1547 1-3333 0°
45° 0-8814 1-4142 1-4142 2-0000 0°
60° 1-3170 2-0000 2-:0000 4-0000 0°
75° 2:0276 3-864 3-864 14-931 0°
90° 0 0 o) - -

In this case where the equator is a single line of zero distortion, the
particular scales are

h=k=secop (10.65)
p =sec’ (10.66)
w=0° (10.67)

Numerical values for these are given in Table 10.04. The projection is
illustrated in Fig. 10.10.

Because of the practical importance of this projection we must also
consider the effect of the modification caused by the introduction of a
standard parallel. This is frequently used for navigation charts which
bear such statements as ‘Scale 1/2000000 at 56°N’. If we denote this
standard parallel by @,, then the particular scale in this latitude is

ko =dx/[R.cos@,.di] =1 (10.68)
or
=x/[R.cosp,.4] =1 (10.69)
and therefore
x =R.cos¢p,.4 (10.70)
Elsewhere on the map we have
k=R.cosgpyR.cose (10.71)
so that the condition for a conformal projection must now be
dy/R.de = R.cosgy/R.cos ¢ (10.72)

From this we obtain the projection coordinates for the modified form of



Coordinate Systems and Map Projections

214

'90¢ 'd
‘80°v1 ‘€0€ "d *90°'p1 00€ "d ‘SO ‘L6T "d ‘701 ‘TST d *p0°TL ‘05T "d ‘€0°TI ‘LET "d ‘L0711 sB1 998 ‘uonoafoid s 1018d1 Jo sansadoid
13110 Jo uonjensnijl 104 *(4) 3jeds vaIe Jo sanfea jenbas yussaidas sweadost oy I, ‘uonssfoid s 101219 Jo J0adse jewiou 3y O°0l ‘OL]

s Onmow_ 3,091 Ere] 3a021 ] 3.08 3.09 3.0t 3,08 «0 >>nON;. MaOt Mo0D Ma0B  MoDOI  Mo021  MoOPE  Ma0OS aom_w o8
o | of

toree sy
, N
g KL(k %W..

Y000 02

S S e Y P M 3 i
T S 7
5009 o000 v z - 509
Py ”ﬂ N ﬂ\ﬂM
- 178 .
S A i
Se02 A FA\. 4 «D \\ / " \ 5002
°0 %Vﬂ:\vs ..mlfu..aﬂ. WP‘L 000 if}ﬂ./ // +0
%
L I N NS R B 18
RE R N N
No Ot \\.uu“\m[w M-J X r 7J N0t
7 AN S N S\ O 5 ]
MA\ - Su\\ ) 00 MNH\ o rn ; )
, ¥
No09 Jk buy\.w._ 000t @H/M fﬁf,éﬂ%..\m;”vl No09
S A . (W - Y ) R
i A Al 5 i i uin B BN T
&u m)_l(w .J\% 00002 .MV Pm .ﬁ%
w | 8]
NeO® Q foa ) co celd No08

e ) 3,094 .01 3,021 3,001 3,08 3.09 .00 3,02 o0 MoO2 Mo0P Mo09 Mo08  M.001  Mo02I MaOPi MoOI 208!



Analytical derivation of some map projections 215
Mercator’s projection
X =COS@Qq.4 (10.73)
y = cos @q.Intan[n/4 + ¢/2]

Example llIA: Derivation of Mercator's projection of the
spheroid

The third stage in our study of this important projection is to show how
the normal aspect Mercator projection can be derived for charts at scales
where the spheroidal assumption is needed. From equation (4.12), p. 70,
we already know that an infinitely short meridional arc on the spheroid
may be expressed in the form

ds, = p.de (10.74)

and from equation (4.11) we have the corresponding expression for an
infinitely short arc of the parallel

ds, =v.cos¢.di (10.75)

We substitute these expressions in equations (10.53) and (10.54) defining
the particular scales along the meridian and parallel. Thus

h=dy/p.do (10.76)
k =dx/v.cos¢e.dAi (10.77)

For the projection of the spheroid, equation (10.55) may be written in
the form

x=a.l (10.78)

where a is the major semi-axis of the spheroid and, as in equation (4.10),
p. 69, it is the radius of the equator. Therefore

k=a.dA/v.cos¢.di

=a/v.cos@ (10.79)
The condition for a conformal projection is now satisfied by the equation
dy/p.de = a/v.cos¢ (10.80)

Substituting for p and v their respective values according to equations
(4.08) and (4.09), equation (10.80) becomes

dy = a{[(1—e*)do]/[(1 —e’sin® @) cos ¢]} (10.81)
Integration of this equation leads to
y = a.Intan (n/4 + @/2)[(1 —e.sin p)/(1 +e€.sin @)]**+C (10.82)
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Here e represents the first eccentricity of the spheroid originally defined
in equation (4.02), p. 65.

As in the derivation of Mercator’s projection for the sphere, the inte-
gration constant C = 0. The part of the right-hand side of equation
(10.82)

q = Intan(n/4+ ¢/2)[(1 —e.sin @)/(1 +e.sin@)]*  (10.83)

This is the isometric latitude referred to in Chapter 4. This is so-called
because a system of (q, 4) coordinates upon the curved surface of the
spheroid subdivides it into a network of small squares. The system of
isometric coordinates thus defined may be employed to derive other
conformal projections, and is therefore extremely useful in the further
study of them.

A variety of different methods may be used to convert equation (10.82)
into a form which is convenient for practical computation. The method
commonly found in British and American works is to expand the term

[(1—e.sin @)/(1 +¢.sin @)
as a series. This leads to the equation
=a.Intan(n/4+¢@/2)—ale’.sin ¢ +(e*/3).sin’ ¢
+(e%/5).sin’ @ +(e%/7).sin" @+ ...] (10.84)

Values for the ordinate of Mercator’s projection can usually be
obtained from tables without having to calculate (10.63) for the sphere or
(10.84) for the spheroid. For use with the spherical assumption there are
numerical published tables of Meridional Parts (or Mercatorial Parts)
because these are important in marine navigation. Since the abscissa of
the Mercator projection varies only with longitude, the tables are usually
compiled in arguments of minutes of longitude at the equator, giving the
distance from the equator to any parallel ¢, in these units of measurement.
If a line to represent the equator is drawn and carefully subdivided at the
required scale of a chart, the remainder of the construction can be done by
setting compasses to the required separations given in tables of meridional
parts. Cotter (1966), and textbooks on navigation, describe the technique
in detail. Maling (1989), who deals with the special methods of correcting
measurements made on Mercator’s projection, treats also with various
methods of calculating meridional parts using modern methods. Tables
of meridional parts have been available since the sixteenth century. They
are normally parts of more complete sets of tabulated mathematical
functions which have been specially designed for ease of use in navigation.
There are at least two sets of published tables of meridional parts for the
spheroid, namely USHO (1932) and Hydrographic Department HP 470
(n.d.). Both of these are for the Clarke 1880 Figure of the Earth
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(f = 1/293-5), which is appropriate for use in African waters, so that we
must presume that, in the days before easier computing, the hydrographic
charts produced in English-speaking countries were all based upon this
reference spheroid. Today, of course, the meridional parts are so easily
determined by pocket calculator that this historical oddity no longer

matters.



CHAPTER 11

Choosing a suitable map projection-the
principles

Few people, even few cartographers, commonly know what projection is good
for what purpose and the tradeoffs involved.
P. Jankowski and T. Nyerges, The American Cartographer, 1989

Introduction

An infinite number of different map projections are theoretically possible.
It is likely that only about 400 have been described and only about half
of these have ever been constructed. Less than 50 of them have been
commonly used, and excluding those used solely in atlases, fewer than 30
have been used for all purposes.

In most branches of cartography, notably in the preparation of large-
scale maps, topographical maps and navigation charts, there is very little
possibility of exercising any choice about the kind of projection to be
used as the base for the map or chart. The most suitable projections for
these purposes have evolved to meet the needs of the specialised user.
Often, too, the specification of the projection has been adopted for use
with related map series produced by the International Civil Aviation
Organisation (ICAQ), the North Atlantic Treaty Organisation (NATO)
and others in an attempt to achieve some measure of standardisation.

In other kinds of cartographic work, especially in atlas production,
there is a greater freedom of choice in selecting a projection which is
suitable for a map of a particular country or continent and for a particular
purpose. In this chapter we investigate some of the criteria and methods
which may be used when it is possible to make this choice. Naturally this
study is concerned primarily with the design and production of small-
scale maps showing an entire country, a continent, a hemisphere or the
whole world. In later chapters we will examine the practical reasons why
only certain projections are preferred for use in navigation, surveying
and topographical cartography.

218
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Geographical and Land Information Systems

Thus far we have assumed that the projection is to be used for a con-
ventional map, this being a map which has been drawn for reproduction
on a sheet of paper. Today, however, a whole new field of cartography
has developed through the implementation of geographical information
systems (GIS). These comprise files of geographical or positional data
stored in digital form, and the manipulation of such files in much the same
way as we may use conventional maps. A land information system, or
LIS, is to be regarded as being the equivalent tool for legal, administrative
and economic decision-making and an aid for planning and development
for much smaller areas. Although we must resist the temptation to embark
upon an elaborate statement about the nature of such systems, there is
still need to comment briefly about their nature and purpose. In the early
1990s there is still more discussion about what one day may be achieved
by GIS, rather than concrete examples of what has actually been done.
Indeed, Chorley (1988) has characterised a GIS as being ‘a tool in search
of a problem’.

The salient features of a GIS may be represented diagrammatically in
Fig. 11.01. The essential concept is that the system comprises a collection
of digital files comprising positional data, all of which may be accessed
by the system to unite data from disparate sources. For example at the
level of the LIS for a municipality, the files may include information
relating to the underground services of a town; water mains, sewers, gas
pipes, electricity and telephone cables, which need to be matched with
the surface detail of streets and buildings shown on the conventional
large-scale maps, and possibly also with cadastral information relating
to land ownership or tenure. At the national, or continental, level the
GIS contains files of geology and soils, land use and vegetation maps,
climatic data and the demographic, argicultural and other economic
census returns for entire countries.

In the everyday work of surveyors, architects and planners, a well-
known technique, in use for at least a century, has been to prepare
transparent overlays to depict the different services so that these might
be superimposed one upon another to show where one service is situated
with respect to others, and might be used as a technique to control the
actions of one group, for example the water engineers, from digging a
hole which promptly damages the gas or electricity supply to an area.
This process of preparing separate transparent overlays is replaced in a
LIS by comparison of two or more files; for example, both gas and
electricity services with the surface information about streets and build-
ings without first having to draw the overlays. The analogy is so close
that the different subject files in a GIS or LIS are often referred to as
layers.
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Data source Data element

Map
Map . Topography
Map 2. Geology \
Map 3. Soils \
Census 4. Precipitation \
Field survey 5. Population \
Landsat MSS 6. Archaeology \\
Landsat MSS 7. Land cover \\
tandsat MSS —— 8. Crop type \
Landsgt MSS ———— 9. Landsat MSS 4 \
Landsat MSS 10.Landsat MSS 5 \
Il. Landsat MSS 7 \
i2.Spare \

FiG. 11.01 Diagrammatic representation of a 12-level geographical information
system. (Source: Curran, 1984.)

The subject of map projections enters the field of GIS in three ways.
First, and in common with conventional cartography, it is necessary to
decide how best to present the results of analyses, whether the output is
an ephemeral display on the screen of a monitor or in the form of a
printed map (called hard copy). Second, it may be necessary to reduce
the contents of the different layers within a system to a common coor-
dinate system before it is possible to match the data in a satisfactory
manner. Third, it may be desirable to apply checks to any quantitative
measurements made from the data contained within the system. The
kinds of cartometric measurements which may be made internally are of
distance, angle and area, which may then be combined with other data
to create indices of density, gradient etc. Depending upon the nature of
the projection used to hold the data, some form of correction ought to
be made for the projection distortions which are inherent to the system.
Some of the methods which may be applied have been described in Maling
(1989) but, at present, the application of such corrections within a GIS
is still very much in its infancy.
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The role of the zero dimension in a GIS

We use the term zero dimension to describe the effective limit of what may
be detected on a paper map with the naked eye, and which therefore
represents a practical limit to uncertainty and errors in mapping, whether
these arise from the original survey, or from the subsequent cartographic
process, the influence of the map projection and subsequent cartometric
work. We have already explained in Chapter 5 that at the larger scales,
map sheets cover a relatively small area, and although the projection
distortions are present they are too small to be measured. In other words
they are smaller than the zero dimension.

Common experience of making and using maps sets the zero dimension
at about 0-2 mm, which is the size of the finest point which is visible to
the naked eye. Most cartographic draughting is about this order of
precision, as has been described by the author in Maling (1989), although
some writers, for example Tobler (1988), use a ‘blunt pencil’ criterion
that the smallest physical mark which the cartographer can make is about
one half-millimetre in size.

When maps were drawn only for reproduction on paper, some degree
of generalisation was inevitable. Because many ground features are too
small or too narrow to represent at their true scale size on a map, they
have to be exaggerated so that these are legible and interpretable. Thus,
as illustrated in Fig. 11.02, the threshold of perception must be matched
by a threshold of separation, this being the smallest separation between
symbols which still indicates that two separate objects on the ground are
portrayed by two symbols on the map. It follows that if the threshold of
separation is larger than the separation between features at map scale a
small amount of exaggeration is introduced to the map. Because the
feature now occupies more space on the map, other neighbouring infor-
mation of lesser importance must either be deliberately shifted to a slightly
different position or must be left off the map entirely. Huge significance
lies in what the compiler of the map has regarded as being ‘of lesser
importance’. A map which has not been adequately generalised is usually
an unreadable map.

Different standards of readability have come with digital processing of
geographical information systems because of the ability of the computer
to extract data from a file without reference to what the human eye can
resolve. If the data files have been produced from large-scale maps (e.g.
1/2500 or 1/5000) the zero dimension corresponds to a much smaller
limiting ground distance than if the source maps were of scale 1/25000
or 1/50000. Moreover, the size of the zero dimension changes with the
kind of source material. For example, in the use of survey-quality aerial
photography, the resolution of the camera lens, film and the optics of the
plotter each amount to only a few micrometres. If we take the combined



222 Coordinate Systems and Map Projections
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FIG. 11.02 (a) The threshold of perception and (b) the threshold of separation

applied to map symbols. Both of these diagrams indicate that a threshold of

about 0-2 mm applies, and that this is a reasonable value to take as the zero
dimension. (Source: Rouleau, in ICA, 1984.)

effect to be about 15 um for a diapositive viewed in a stereoplotter, this
is a ten-fold improvement upon the 150 ym zero dimension of a map. In
work with remotely sensed data acquired from satellites, such as the
Landsat Thematic Mapper or SPOT HRYV imagery it is possible to work
to a zero dimension of only one pixel width. As a result the size of the
zero dimension is much reduced.

Obviously the zero dimensions of each source are carried through to
the corresponding GIS files. There is nothing magical in the digitising
processes which can convert a discrepancy of 0-2 mm into a zero dis-
placement. So, too, the small deformations due to the projections upon
which the sources were based and which were hitherto small enough to
be ignored because they could not be detected on a map. The existence
of these residual discrepancies causes difficulties in computer matching
of layers derived from different sources. This is a problem which the older
generation of architects or planners did not experience, because all the
overlays were equally crude tracings and visual interpretation of one
distribution superimposed upon another could compensate for the slivers
and slices created by small discrepancies along the boundaries. Computer
processing locates and exhibits such features with unerring skill.

For example, in describing the limitations of some of the sources
for databases with CORINE, the environmental GIS for the European
Community, Briggs and Mounsey (1989) have described the problem of
reconciling the data digitised from different sources. They have written:

Possibly the most acute problems are likely to emerge when overlaying data sets (e.g.

soils upon topography, or climate on soils). From experience to date, one of the most

common failings of users is to misunderstand the limitations which map source scale
imposes on these operations. Often, indeed, users believe that the database is inde-
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pendent of scale, due to the capability to plot or analyse data at any scale within the
scope of the hardware. In practice, however, it is clear that data obtained from small-
scale sources cannot realistically be analysed in conjunction with data derived from
large-scale sources due to the inherent differences in accuracy and spatial precision. The
only valid course is therefore to generalise the larger-scale data to be compatible with
the smaller-scale data set. Whilst this will lead to some loss of information, in reality,
of course, it is merely an admission of the relative in-built inaccuracies in the data sets.

The particular example which has created trouble in CORINE has been
reconciliation of the detail on the 1/1 000000 soils map of the EC and the
topographic base originally derived from the 1/1000000 Operational
Navigation Charts (ONC) and other positional data. In this respect Briggs
and Mounsey state that:
Although the soil map has been published as a single set of map sheets, the base maps
on which they are drawn have been derived from topographic maps with different
origins of projections, and this was ‘fudged’ in compiling the European map to ensure
that a continent-wide continuous map could be assembled. This has resulted in distortion
which, while negligible in the case of purely cartographic representation, produces
significant discrepancies when attempts are made to overlay the results on other data
sets . .. the experiences demonstrate that, even with apparently consistent datasets, con-
siderable hidden inconsistencies may exist which need correction in constructing an
operational, integrated information system. Further it demonstrates the dangers of the

application of increasingly sophisticated tools within GIS software, without some feel
for the original data, and some understanding of the nature of the results.

Since one of the sources of these discrepancies results from trying to
combine data which have been mapped on different projections it follows
that remapping of GIS sources to a single suitable projection is essential.
Rather than repeat this operation every time a particular file is required,
there is a need to choose a suitable projection to use in the GIS operating
system in just the same way as this was formerly needed in compiling a
series of thematic maps. Although the choice is likely to be one of the
projections used for many of the sources, for example the Universal
Transverse Mercator (UTM) projection (p. 357 et seq.) which is likely to
be the projection used for the topographic base, the need is present to
make this choice, or if other opinions prevail, to choose a suitable pro-
jection to be used within the GIS. This has to be done in the same way
we would have to proceed to choose a suitable projection for a new atlas
map. The nature of this requirement is considered further in Chapter 19,
p. 408.

Some factors influencing the choice of a suitable
projection

It is a fundamental principle of distortion theory that the particular scales,
and therefore exaggeration, of areas and angles increase from the origin
of the projection towards its edges. Since all projections have distortions
of one kind or another and since, on a small-scale map showing a large
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portion of the world, these distortions can be measured, it is usually
desirable to choose a projection in which distortion is tolerably small.
Thus the primary aim of a logical choice is to select a projection in which
the extreme distortions are smaller than would occur in any other projection
used to map the same area. We shall see in Chapter 13, pp. 281-289, that
sometimes the converse argument is used and a projection may be chosen
because it deliberately exaggerates some feature or some part of the map.
This may be done to assist the tourist as, for example, in the variable
scale town maps pioneered by Falk Verlag. In scientific applications
the concept is used to collapse or extend space, and thus illuminate
distributions which would otherwise be too dense or too sparse to inter-
pret if plotted on a conventional map. Common use of such techniques
dates from 1957 when Hagerstrand used the logarithmic azimuthal pro-
Jection (p. 282) to illustrate migration from a rural community in Sweden.

The amount of distortion which is likely to be encountered in a con-
ventional map depends upon the location, size and shape of the area to
be mapped. Distortion is least in the representation of a small, compact
country and greatest in maps of the whole world. The three variables -
location, size and shape—usually determine the choice of origin, aspect
and class of a suitable projection.

The purpose of the map and its intended use

The purpose of the map, especially a certain knowledge of the ways in
which it is going to be used, generally determines which special property
is important. For example, if we need a conformal map of a country, we
may study the way in which the area scale increases near the boundaries
of the country and select that conformal projection which shows the least
exaggeration of area within the parts to be mapped. If we require an
equal-area map of the country, we must carry out a similar evaluation of
the angular deformation inherent to all equivalent projections. If neither
special property is essential, examination of both area scale and angular
deformation must be made. This kind of evaluation suggests that the
concept of minimum-error representation, briefly mentioned in Chapter
6 as a special property, may be valuable in this context. Consequently we
proceed from the hypothesis that ‘the best projection for a country’ is
likely to be the minimum-error projection which also satisfies another
special property which is also deemed necessary in map use. We shall find
that the requirement for a special property is most exacting in the design
of navigation charts, and in the relationship between surveying and quan-
titative map use, but much less so for other uses. It is therefore suggested
that the expected quantitative uses of a map or chart, to measure
distances, areas and angles, arc more likely to expose the inadequacies of
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a projection than are any subjective visual methods of appraisal. There-
fore we consider desirable criteria in these terms.

The present author has shown, in Maling (1968a), Frolov and Maling
(1969) and Maling (1989), that it is reasonable to expect measurements
of distance or area made on a map to have relative precision of the order
of +1% to +2% provided that reasonable precautions have been made
in using the appropriate instruments. For many purposes other than
navigation, artillery, surveying and some engineering applications, angles
measured on maps are usually not needed with an accuracy greater than
1°. These criteria have been tentatively recommended as indicating the
tolerable amounts of deformation acceptable in the projection to be used
for a map in a national atlas, but the extent to which they can be satisfied
depends upon the location, shape and size of an individual country.

Maps of small areas or small countries

If we are required to select a suitable projection to depict a small, compact
country, and we are free to choose any point on the earth’s surface as the
origin for the projection, then the possibilites are practically limitless, or,
in other words, it matters little which projection is used. In all classes of
map projection the distortion in the vicinity of the point or line of zero
distortion is less than the zero dimension, so that it cannot be detected
by measurement on the map. In studies using conventional maps the
influence of the projection is generally ignored. This is equivalent to
selecting the projection which has been used as the base of the topographic
map. Thus a geographer or planner wishing to produce a distribution
map of part of England at a scale of 1/500 000 or larger would not be
preoccupied with the merits of which projection to use, but would plot
the new information on existing Ordnance Survey sources. Ordnance
Survey maps of scale 1/625000 and larger are all based upon a version
of the Transverse Mercator projection (pp. 354-356), which is conformal,
but the amount of exaggeration in area which is introduced by using this
rather than a truly equal-area map is trivial. The area scale on this version
of the projection nowhere exceeds the range 0-99908-1-00092 in mainland
Britain, i.e. it varies from the constant area scale of an equal-area pro-
jection by less than 0-1%. Consequently judgements about density of
distribution or measurement of area occupied by different categories of
land use, for example, are unaffected by the fact that the map projection
used is theoretically incorrect.

Maps of large countries, continents and the whole world

Just as the choice of a suitable projection is unimportant in the design of
a distribution map of mainland Britain so, too, most of the individual
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countries of western Europe can be adequately represented by using the
national projections adopted for topographical map series. A map of the
whole of western Europe can be prepared without exceeding the +2%
and 1° tolerances which have been suggested. By contrast it would be
difficult to find a projection to map the whole of Canada or the USSR in
which linear or area distortion is less than 3% or angular deformation is
less than 3-5°. For maps to represent entire continents or oceans much
larger amounts of deformation must be tolerated. For example, an equal-
area map of Asia involves the presence of maximum angular distortion
of about 15° somewhere near the edges. Equal-area maps of Africa and
North America have maximum values for w in the range 6-8°. Figure
12.01, p. 247, illustrates this for a map of North America, and Fig. 12.02
for a map of China. Equal-area maps of the hemispheres show an increase
in w to about 30°. Map projections of the whole world generally have
singular points where w = 180° and p is indeterminate, but even if these
extreme values are discounted as being inevitable and therefore unrealistic
measures of the remainder of the map, we must expect to find that angular
deformation greater than 45° or area scales in excess of 2-5 (+250%)
must be tolerated in some parts of the map. Then the real skill in selecting
a suitable projection is to arrange for the important parts of the world
map to lie where the distortions are least. This leads us to a consideration
of the intended purpose of the map and the extent or nature of the
distribution which is to be mapped.

Modified projections

The use of the word modification when applied to a map projection
suggests a wide variety of possibilities. For example, one might argue,
with a certain justification, that the change in the appearance of the
graticule with change of aspect should also be called modification. The
following four methods might reasonably be understood to represent
modification of a projection, though the author has argued, in Maling
(1968b), that it is preferable to retain the word modified to describe only
the first of these.

® modification through redistribution of the particular scales and the
creation of more than one line of zero distortion;

® modification through the introduction of special boundary con-
ditions on the edge of the map;

® transformation by repetition of part of a map projection giving rise
to a recentred or interrupted projection.

® transformation through the combination of different map projections
to give an appearance of continuity of the map.

Several of these techniques may be used in the same map, particularly
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for world maps where the problems of distortion are obviously most
pronounced.

Obstacles to choice

In contrast to those factors which must be considered to influence the
choice of a projection for a new map there are some practical obstacles
which limit freedom of choice. Most of these are owing to the cost in time
and labour of compiling, plotting and redrawing maps on projections
which differ from the sources used. We have already seen in Chapter 8
that the creation of a new map projection may involve some exceedingly
careful plotting and drawing if this has to be done manually. Yet the
completion of this stage of the work is only a preliminary to the extremely
slow job of transferring map detail within the new graticule.

Excluding the use of digital mapping methods, there is no quick or
simple optical method of transforming map detail in one step which is
comparable to the use of the process camera for changing scale. Optical
rectification, similar to the procedures used in photogrammetric mapping,
has been used in some establishments where photogrammetric rectifiers,
such as the old Zeiss SEG 1 instrument, may still be used for this purpose.
Special optical pantographs, like the Grant projector and Rost Plan
Variograph, can be obtained with tilting easels which similarly permit
partial rectification of the source map to fit the new graticule. However,
the range of these applications is quite limited, for optical rectification
cannot transform a rectilinear graticule into one comprising families of
curves, or vice-versa. Thus we cannot transform a normal aspect cyl-
indrical projection into a normal aspect conical projection, and the only
change we can make to the original rectilinear graticule is to transform the
rectangular quadrangle into a trapeziform rectilinear figure (polyhedric
projection) or to alter the ellipticity of the elliptical meridians of a
Mollweide or Hammer—Aitoff graticule. More elaborate optical-mech-
anical apparatus has occasionally been designed for specific purposes.
For example, Honick (1967) described equipment used for transforming
the graticules of aeronautical charts, and in so doing demonstrated that
an analogue solution to the problem can be rather complicated. Similarly
in the days before digital mapping it required a series of photographs of
a map mounted on a curved surface to make the source maps needed to
produce the variable scale town maps based upon the hyperboloid pro-
Jection (p. 283).

The manual work of plotting usually has to be done point by point
after drawing a close network of corresponding geometrical figures on
both source map and plotting sheet and transferring the map detail
manually with reference to these lines. In this respect it is easier to
transform from one conformal projection to another rather than to trans-
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form to equal-area or other projections. This is because a very small part
of a conformal map corresponds in shape to that part of the map being
compiled. Thus, as O. M. Miller (1941) has written,
Of the two evils, the cartographer dislikes the conformal type of projection less, because
he knows that, provided he makes the mesh of his grid small enough, detail, if properly

reduced by pantograph or photography, will fit nicely into place and can be traced
directly on the map being compiled.

Because plotting and redrawing of the detail may represent many weeks
or months of work it is not surprising that changing the projection of a
map was always commercially unpopular. The first reaction of many
cartographic editors to such a proposal was to consider whether there
was any existing material which was suitable for use for a particular map
in a new atlas. Robinson (1952) castigated the commercial map producer
who was ‘only too happy to peddie the older wares’, and it is easy to
condemn the reissue of atlas maps as exemplifying lack of initiative or
new ideas. However, the bleak commercial fact remains that the jobs
of compilation, plotting and drawing are the most expensive stages in
conventional map production, and these are essential for the production
of a new map on a different projection. It was nearly always cheaper to
revise existing fair drawings.

The digital solution is the most successful method of overcoming these
difficulties because, as described elsewhere in this book, it is possible to
transform information which has been digitised or scanned from the form
in which it is stored into the master grid coordinates and plot the map at
the required scale. Moreover, the whole of the process of compilation
and fair-drawing can be executed with a minimum of human interference.
However, the method depends entirely upon the availability of a suitable
GIS layer comprising the map detail in machine-readable form. The
acquisition of such databases by digitising is also slow and expensive.

To the pioneers of digital mapping the grand design was that of the
cartographic databank, based upon digitising the basic scale mapping,
that is the largest scale maps of each country so that the information
contained in the system would be least affected by the generalisation
which characterises smaller-scale maps.

Inevitably there were formidable practical difficulties to be overcome,
in the acquisition of such databanks; for example the time needed to
digitise the source maps and store the results in adequate and accessible
form. Attempts to create such massive collections of data soon led to the
realisation that the paper map was a far more compact way of storing
positional information than was possible in any existing computer hard-
ware and, indeed, this was true until the middle 1980s when optical
disc technology entered this field. Only now is it possible to store the
topographical map cover of a country economically in the form of CD-
ROM discs (compact disc read-only memory). Nevertheless, at present,
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and for decades to come, the available databanks are still restricted in
extent, content and utility to small-scale cover of a country.

Thus the scale-free databases, which correspond to the original data-
bank concept and are so-called because they have been created from the
largest available basic scale mapping, are still largely confined to the
English West Midlands and a few other scattered blocks of urban
mapping. According to Proctor (1986) the completion date for digital
coverage of England, Scotland and Wales by the Ordnance Survey is
2015, which is too far distant for most user needs in the 1990s.

Databases for the whole world are, of necessity, still extremely gen-
eralised; for a brief note on these see Tomlinson (1988). There are, for
example, two world databases now in the public domain, which were
originally prepared in the early 1970s by the Central Intelligence Agency.
World Database I was prepared from source maps of scale 1/12 000000,
and therefore extremely generalised. For example it was used for the
coastlines of the majority of the maps in Snyder and Voxland (1989).
World Database II was prepared from sources at scale 1/3000000 or
thereabouts. It follows that although digital methods provide a wonderful
opportunity for experiment in using other projections, the lack of avail-
ability of data will remain an obstacle to progress for some decades to
come.

The choice of origin, aspect and class of a projection

The preliminary stage in making the choice of a projection is to consider
the location of the origin. In order to avoid excessive distortion within
the area to be mapped, we locate the point or line of zero distortion near
the centre of it and orientate the lines of zero distortion to the longer axis
through the country. This choice of origin and orientation of the lines
automatically affects the aspect of the projection. The shape of the area
to be mapped influences the choice whether it should be a point or line
of zero distortion and this, in turn, determines the class of projection.
Thus all three variables are intimately related and must be considered
together.

The traditional approach to the choice of class is described in most of
the elementary textbooks by the following three rules.

@ if the country to be mapped lies in the tropics, a cylindrical projection
should be used;

@ if the country to be mapped lies in temperate latitudes, a conical
projection should be used;

@ if the map is required to show one of the polar regions, an azimuthal
projection should be used.

These rules follow logically from the fundamental properties that the
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principal scale is preserved along the equator in a normal aspect cyl-
indrical projection, along a parallel of latitude in a normal aspect conical
projection and at the geographical pole of a normal aspect azimuthal
projection. The principles have been applied to the design of most sheet
and atlas maps published since the sixteenth century; indeed they may be
regarded as being one of the classical foundations of cartographic design.
However, these should not be regarded as being inflexible rules. After all,
no mention has been made of any of the other named classes of map
projections, and these also deserve consideration in making the choice.
Moreover, strict adherence to the three principles ignores the considerable
advantages to be gained from using a map projection in any of its other
aspects. In other words, the three rules are too restricting to be rigidly
applied in modern cartography. For example, Fig. 10.02 shows that
the normal aspect Azimuthal equal-area projection is a useful base for
distribution maps of the Arctic Ocean or Antarctica, conforming to the
third rule given above. But the transverse aspect (Fig. 10.03) of the same
projection would be equally valuable as the base for a map of the Indian
Ocean and the simple oblique aspect (Fig. 10.04) of it for mapping
distributions of the North Atlantic Ocean. The use of an oblique aspect
azimuthal projection is no longer to be regarded as a novelty. Transverse
and oblique cylindrical projections are well known in large-scale and
topographical cartography, but are much less often used for atlas maps.
Much rarer are the transverse and oblique aspect conical projections.
The Bipolar obliqgue conformal conical projection, Fig. 11.03, designed
by O. M. Miller and W. Briesemeister for the American Geographical
Society in 1941, is one of the few examples of oblique aspect conical
projections which have become well known. In Chapter 12 we use this
classic study to find a projection suitable for a general reference map of
Hispanic America as an example of the combined graphical and analytical
approach to choice.

Since we are able to select any point on the earth’s surface as the origin
of a projection, we may locate this at or near the centre of the country
or continent to be shown on the map. The point of origin might be
determined by computation, for example, as the centre of gravity of the
land mass, using the standard methods of calculating this for a plane
figure shown by the outline of the country or continent on any convenient

—>

FiG. 11.03 Map of the Americas on the Bipolar Oblique Conformal Conical
projection. The isograms represent equal values of linear deformation of —3-5%,
0%, +3-5% and + 10%, corresponding to the particular scales of 0-965, 1-000,
1-035 and 1-100, respectively. Note that the graticule on the map is composed of
parallels at intervals of 4° in latitude and the meridians are shown at 6° intervals
of longitude (at intervals of 12°, north of 60° North). This graticule corresponds
to the system of sheet lines adopted for the International Map of the World
(IMW) at scale 1/1 000 000. (Source: Miller, 1941.)



Choosing a suitable projection—principles 231



232 Coordinate Systems and Map Projections

TABLE 11.01  Suggested positions for
the points of origin for maps of the

continents
®o Ao
Europe +50° +20°
Asia +40° +95°
Eurasia +40° +85°
Africa 0 +20°
North America +45° —95°
South America —20° —60°
Australia —25° +135°

map. The method will almost certainly locate the origin at a point which
does not correspond to any graticule intersection required on the finished
map. The choice has to be made whether to calculate the projection with
reference to this origin or to select the graticule intersection nearest to
this point as the origin. Using modern computing methods there is no
really great problem either way, for it is as easy with a pocket calculator
to access the sines and cosines of an angle of 57°18'25” as it is for 55°,
whereas in the days when we had to use (z, «) tables, it was necessary to
work from an origin at the nearest tabulated value for ¢,. This might
differ from the required centre by as much as 2;° in latitude and longitude.
Table 11.01 lists some of the points which might have to serve as the
origins for maps of the continents working with this 5° module.

Usually the line of zero distortion is made to coincide with the longer
axis through the country, or a pair of lines if the country is asymmetrical,
like Chile, Japan or Indonesia. For example a map of Chile may be
based upon a transverse cylindrical projection because the longer axis is
practically meridional. On the other hand, maps of Japan and Indonesia
require the use of an oblique aspect cylindrical or conical projection.
Hammer (1889) illustrated the use of oblique aspect conical projections
for Japan and South America a century ago. In Chapter 12 we shall
investigate the suitability of an oblique aspect conical projection for a
map of Latin America, although this may not be apparent at first sight.

Young's Rule for selecting class of projection

The choice to be made between the three classes of cylindrical, conical
and azimuthal projections may be conveniently described in terms of
Young’s Rule, originally stated by Young (1920) and independently dis-
covered and further extended by Ginzburg and Salmanova (1957).

The principle arises from the basic idea that a country which is approxi-
mately circular in outline is better represented by means of one of the
azimuthal projections, in which distortion increases radially in all direc-
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FiG. 11.04 The application of Young’s Rule to the choice of a suitable class of
map projection for a country with maximum extent z and minimum width 4.

tions, whereas an asymmetrical country is better mapped on a conical or
cylindrical projection with lines of zero distortion.

The rule may therefore be described in terms of an imaginary country
illustrated in Fig. 11.04. The area to be mapped has maximum angular
distance z from the centre of the country to its most distant boundary. It
can also be regarded as being bounded by two parallel arcs of small circles
which lie 6° apart. These small circles may be parallels of latitude if the
greatest extent of the country is east-west but, as implied by the orien-
tation of these lines in Fig. 11.05, this is not a necessary condition of
definition. Since we are concerned with the comparison of the particular
scales and the distortion characteristics to be derived from them, we
choose the pair of small circles which are the closest which can be fitted to
this outline irrespective of their orientation to the conventional graticule.
Note that we are going to compare the maximum radial distance, z, with
the minimum separation of parallel circles, é.

Young originally noted that if z/6 < 1-41, an azimuthal projection is
to be preferred. Conversely if /9 is greater than this critical value a conical
projection should be used. Ginzburg and Salmanova have obtained three
different critical values for z/é depending upon the special property. From
their study of the variations in particular scale in the ranges 0 <z < 25°
and 0° < d < 35°, together with the extension of the method to include
cylindrical projections, these are

Conformal projections  z/d = 1-41
Equidistant projections  z/d = 1-73
Equal-area projections  z/é = 2:00
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The following examples are instructive. In Chile the total extent in latitude
is approximately 32° but the greatest extent in longitude is only 7°. Hence
putting z = 16°, 6 = 7° we find z/6 = 2-3. This indicates that a conical or
cylindrical projection is more suitable than an azimuthal projection and,
as we have already seen, the best choice is a transverse cylindrical projec-
tion. For Australia the corresponding values are z = 19°, § = 30° and
z/6 = 0.63. This indicates a preference for an azimuthal projection, which
was the conclusion also reached by Sear (1967) in his valuable account
of the arguments used to select the projection for a general reference map
of Australia.

Choice of special property

We have already noted that the choice of special property is largely
determined by the intended purpose of the map. In atlas cartography
the special property of equivalence is especially important for mapping
statistical data. However, it would be wrong to imagine that all maps in
world, regional or national atlases are multipurpose maps for reference
purposes. Since these are not necessarily intended to demonstrate density
of distribution through clustering of dots, or for area measurement pur-
poses, there is no particular reason why they should be rigorously equi-
valent. Since conformality and equivalence are mutually exclusive special
properties, it follows that the exaggeration of area on a conformal map
tends to be large, and that the angular deformation on an equal-area map
also tends to be large. Between these two properties, which for practical
purposes may be regarded as being the two limits of choice, there are a
variety of other map projections in which neither property is satisfied,
but they do not have the large distortions which are characteristic of
conformal and equal-area maps.

We may demonstrate this by comparing area scale and maximum
angular deformation for members of the azimuthal, conical and cylindri-
cal classes of projection with the ranges 0° < z < 25° and 0° < § < 35°,
appropriate for maps of large countries. These are represented graphi-
cally in Figs 11.05, 11.06 and 11.07. From these graphs we see that,
for azimuthal projections, the area scale of the Stereographic is approxi-
mately three times greater than the corresponding values for the Azi-
muthal equidistant projection, and the maximum angular deformation
for the Azimuthal equal-area projection is appreciably greater than
that for the Azimuthal equidistant projection. In conical and cylindri-
cal projections the area scales of conformal maps are about twice as
large as the corresponding values for the equidistant projections. The
angular deformations of equal-area conical and cylindrical projections
are approximately twice as large as for the equidistant versions. This
leads us to the conclusion, already noted in Chapter 6, that the property
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Fi1G.11.05 Thedistortion characteristics of certain azimuthal projections within
the range 0° < z < 25°: (a) illustrates area scale (p) plotted against angular
distance (z); (b) illustrates maximum angular deformation (w) plotted against
angular distance (z). The diagram also shows the approximate extent of certain
countries according to the definition of z illustrated by Fig. 11.04.
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F16. 11.06 The distortion characteristics of certain conical projections within

the range 0° < 4 < 35° assuming the normal aspect and that the middle parallel

corresponds to latitude 45°: (a) illustrates area scale (p) plotted against latitude

(); (b) illustrates maximum angular deformation (w) plotted against latitude
().

of equidistance often provides a useful compromise for use in maps which
do not necessarily have to be rigorously equivalent or conformal. Hence
we may regard the equidistant projection as occupying the central position
within the continuum of all map projections listed by special property as
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FiG. 11.07 The distortion characteristics of certain cylindrical projections within

the range 0° < ¢ < 35° assuming the normal aspect and that the line of zero

distortion lies in latitude 45°: (a) illustrates area scale (p) plotted against latitude

(¢); (b) illustrates maximum angular deformation (w) plotted against latitude
(®).

illustrated in Table 11.02. There is also a close relationship between the
distortion characteristics of equidistant and minimum error projections
of the same class. This is shown in Table 11.03 by comparison of the
distortion characteristics of the Azimuthal equidistant projection and
Airy’s projection within the range 0° < z < 25°.

The mathematical theory of minimum-error representation was studied
in some detail by Young (1920), and more recently by Snyder (1985), who
both start from the same initial premise as Airy and Clarke, that the sums
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TABLE 11.02
Special property Main uses
Conformal projections 5y ) Navigation charts, topographical, mili-
tary and large-scale maps, synoptic
meteorological charts
(Projections with small angular| y | Small-scale strategic planning maps
deformation) Climatic and oceanographic distribu-
tion maps.
w p - Lo
+ — Equidistant projections F ] General reference maps
(Projections with small exaggera-
tion of area) Atlas maps
Equivalent projections 7 7 Statistical distribution maps

of the squares of the scale errors integrated throughout the area of the
required map should have a minimum value. This was indicated by
equation (6.33) on p. 109, which the reader will now appreciate is the form
of expression needed to derive a minimum-error azimuthal projection.
We further remind the reader that the concept of minimum-error is
not an exclusive special property. Thus we may create minimum-error
conformal or minimum-error equidistant projections which retain the
special property, together with the additional advantage that the sums of
square of the scale errors within the area to be mapped are less than in
the parent projection. This is generally obtained through the modification
of the parent projection by means of a suitable scale factor. We return to
this problem in the next section. Following our preoccupation throughout
this chapter with the need to reduce distortion towards the edges of a

TaBLE 11.03 Distortion characteristics (v and p) for the
azimuthal equidistant projection and Airy’s minimum-error pro-
Jection

Maximum angular deformation

Area scale (p) (w)
z Equidistant Airy’s Equidistant Airy’s
0 1-0000 1-0000 0° 0°
5 1-0013 1-0019 0°04’ 0°03'
10 1-0051 1-0077 0°17 0°13’
15 1-0115 1-0174 0°39 0°29’
20 1-0206 1-0313 1°10 0°52’

25 1-0325 1-0496 1°50 1°21
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map, together with the suggestion that many general reference maps do
not have to satisfy conformality or equivalence, it might be assumed that
the correct choice of projection which best fits a given country is always
the minimum-error projection of the selected class. Theoretically this
conclusion is generally correct, but, in practice, the use of minimum-error
projections is the exception rather than the rule. Consequently we are
able to quote only four examples of the use of them in British and
Commonwealth cartography during the twentieth century. These are:

® The Ordnance Survey Ten-Mile map (1/633600) of the British Isles
published between 1903 and 1936. This was based on Airy’s pro-
Jection.

@ The use of a version of Clarke’s minimum-error perspective azimuthal
projections as the base for the synoptic meteorological charts pub-
lished by the Meteorological Office in the Daily Weather Report. Use
of this projection was discontinued in 1955 when it was replaced
by the Azimuthal equidistant projection. In 1964 this, in turn, was
replaced by the Stereographic projection.

® Hinks’s (1942) choice of a Minimum-error conical projection
(Murdoch’s third projection) for the British Council Map of
Europe and the Near East (1/11000000) published by the Royal
Geographical Society in 1942.

® Sear’s (1967) choice of the Minimum-error azimuthal equidistant
projection for the map of Australia at 1/6 000000, published by the
Commonwealth Division of National Mapping in 1956.

There are probably two reasons why such little use has been made of
minimum-error projections. First, the mathematical theory of minimum-
error representation is difficult. Secondly, the primary source on this
subject was, until recently, a booklet which never had a wide circulation,
published nearly 70 years ago. As a result neither the theory nor the
terminology are commonly known to cartographers and map users. Thus
Airy’s projection and Murdoch’s third projection are seldom used, whereas
the Azimuthal equidistant and Conical equidistant projections occur
often in atlases. Table 11.03 has indicated that within the range of z which
is needed to map most large countries, and even some of the continents,
the differences between @ and p which exist between the little-known
Airy’s projection and the well-known Azimuthal equidistant projection
are trivial. Although the mathematically correct answer to the question:
‘What is the best map projection to use for a particular country? is
usually ‘The minimum-error projection of the most suitable class’, in
practical cartography the equidistant projection of that class will provide
a very similar map.

With the greater freedom and flexibility allowed by digital mapping
methods, the mathematical and production constraints which were such
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formidable obstacles to cartographic innovation a generation ago have
been greatly diminished. If it is possible to design and redraw new maps
and reproduce them as hard copy at little extra cost than to reproduce
those already existing, there is greater encouragement to try new methods.

Modification through redistribution of the particular
scales

In the brief accounts of the fundamental properties of the azimuthal,
cylindrical and conical projections we have referred these to the tangent
plane, cylinder or cone, but have not considered the alternative geo-
metrical concepts illustrated by Figs 5.08, 5.09 and 5.10 on pp. 91-92.
There it was shown that the effect of making the plane, cylinder or cone
intersect the spherical surface is to replace the single line of zero distortion
by two such lines, or to substitute a standard circle for the single point of
zero distortion. We now investigate the significance of these changes.

On a conical or cylindrical map projection with a single line of zero
distortion the particular scales increase outwards from this line towards
the edges of the map. This is exemplified by the numerical values for the
maximum and minimum particular scales for the equidistant conical
projections given in Tables 10.02 and 10.03, pp. 207 and 210. If the single
line of zero distortion of a conical projection is replaced by two standard
parallels the effects upon the particular scales are as follows:

1. Between the standard parallels and the edges of the map the relationship
between the maximum and minimum particular scales is similar to
that for the unmodified projection. Thus in all normal aspect cyl-
indrical equal-area projections the particular scale along the parallel
is maximum and that along the meridian is minimum.

2. The principal scale is preserved on both standard parallels.

3. Between the two standard parallels the directions of maximum and
minimum particular scales are reversed. Thus, in the de I’Isle projec-
tion, the particular scale along the meridian is maximum and that
along the parallel is minimum. The following features should be noted:

® modification should have no effect upon any special property of a
projection—thus the de I'Isle projection is also equidistant;

® modification by the introduction of two standard parallels reduces
the deformations towards the edges of the map—we see in Table
10.03 that the maximum angular deformation in latitude 75° is 7°,
whereas the corresponding value from Table 10.02 is more than
15°%;

® modification has no effect whatsoever at the singular points—for
example in all normal aspect cylindrical projections the geo-
graphical poles are singular points where distortion theory is
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invalid. Consequently the numerical values for ¢ = 90° in both
Tables 10.02 and 10.03 do no more than indicate this fact.

Precisely the same reasoning may be applied to cylindrical projections.
Modification of this sort naturally has some effect upon the appearance
of a projection. In the normal cylindrical projections the ratio between
the length of the equator and that of a meridian is changed by the choice
of standard parallel. The actual ratio depends upon the special property.

Modification of conformal projections is especially easy to apply
because the particular scales are the same in all directions. This follows
from the definition of conformality by equation (6.26) on p. 106. It is
therefore possible to transform the coordinates of points and obtain the
particular scales by using a single numerical constant or scale factor, as
a common multiplier. The numerical value of the scale factor represents
the particular scale to be preserved where the line of zero distortion is
located on the unmodified projection. The value of it is related to the
positions of the two lines of zero distortion so that a change in one results
in alteration of the other. This kind of modification is commonly used
with the varieties of conformal projection ( Transverse Mercator projection
and Lambert Conformal Conical projection) which are used in surveying
and topographical cartography, as described later in Chapters 15 and 16,
pp. 310-363.

The choice of standard parallels

Since we have established that there are advantages to be gained from
redistributing the particular scales by means of standard parallels, it is
desirable to consider how best to choose suitable standard parallels.

In equations (10.42)—(10.52) (pp. 208-209) we derived the equations for
the Conical equidistant projection (de I’Isle) with two standard parallels
and used the simple expedient in (10.42) and (10.43) of locating these
midway between the central and limiting parallels of the zone to be
mapped. This is, in fact, how the de I'Isle projection ought to be defined,
to distinguish it from Euler’s projection and the other equidistant conical
projections which may also be described if we specify that certain ratios
must be maintained between the bounding parallels and one near the
middle of the map. A detailed account of the various possibilities is
given in Maling (1960). The variations in how the relationships between
maximum and minimum particular scales may be changed give rise to
different numerical values for the constants of the projection, and there-
fore to the location of the standard parallels. This, in turn, creates a
considerable number of possibilities in choosing between different conical
projections; therefore it is desirable to see what practical guiding principles
can help to make a logical choice. In the study of the conical projections
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the underlying assumption is made, but not always recognised, that every
part of a zone to be mapped has equal importance. In other words we
assume that a country completely fills the fan-shaped outline of a conical
projection between the limiting parallels and meridians. This assumption
is clearly unrealistic if we want to produce a map of Argentina, India,
Mexico or Norway on a conical projection, because the countries are
asymmetrical, showing much variation of width of land with latitude.
Therefore the derivation of projection constants which depend only upon
scale ratios between the centres and edges of the map must be misleading.
This subject has been studied by Kavraisky, who proposed the use of a
constant to help make the choice of suitable standard parallels for conical
projections which takes the shape of the country into account. Rewriting
equations (10.42) and (10.43) (pp. 208-209) in the form

@2= on—(On—0s)/K (11.01)

and
@1 = @s+(pn—9s)/K (11.02)

the constant K may be varied according to the shape of the country to
be mapped. Kavraisky’s values for K may be listed as follows, for the
shapes indicated in Fig. 11.08:

Small extent in latitude but large extent in longitude, K = 7
Rectangular outline with longer axis north-south, K = §
Circular or elliptical outline, K = 4

Square outline, K = 3

A more sophisticated approach was used by him to derive the Conical
equidistant projection (Kavraisky IV) originally intended for a map of the
European part of the USSR. This made use of a least-squares analysis to
obtain the projection constants » and C, using the land area in every 1°
belt of latitude as a weighting factor. His method of obtaining the con-
stants has been described in detail by Maling (1960).

A somewhat different example of modification to a minimum-error
representation makes use of the establishment of geometrical conditions
round the periphery of the region to be mapped. The best-known of these
is the Chebyshev condition, originally stated as long ago as 1856, which
is the statement that a region may be best shown conformally if the sum
of the squares of the scale errors over a region is a minimum. Although
referring specifically to conformal projections it is, of course, the concept
of minimum-error representation already described. Chebyshev further
suggested, though this was not proved until later, that this results if the
region is bounded by a line of constant scale. This condition is satisfied
in the Stereographic projection, which is always bounded by a circle of
constant scale. However, later development of the theory made it possible
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FiG. 11.08 Definition of Kavraisky’s constant, K, to aid the choice of standard
parallels for conical projections to show countries having different shapes.
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to bound the map by other lines of constant scale, notably by ovals. This
has led to the description and use of several useful projections for maps
of the major continents or oceans. About 1944, Ginzburg had applied
much the same approach to the Azimuthal equal-area projection and
produced the TsNIIGAiK projection with oval isolines, which Maling
(1960) called Ginzburg I11. This projection was used for a map of the
Atlantic Ocean which has appeared in the Atlas Mira (1945), and several
later publications.

In 1953, O. M. Miller applied the Chebyshev conditions to an oblique
aspect Stereographic projection to produce the Miller prolated Stereo-
graphic projection, this having been designed for a minimum-error con-
formal map of Europe and Africa. He subsequently applied the same
technique to produce a similar map for Asia and Australasia, which also
has oval isolines. Later applications of the Chebyshev criterion to the
Stereographic projection include the description by Lee (1974) of a map
for the Pacific Ocean. It has also been used by Snyder (1984, 1987a) for
the GS-50 projection prepared for the USGS to represent all 50 states of
the USA in their correct geographical relationships without creating
undue distortion in the vicinity of Hawaii, Alaska or Florida.

Transformation of a projection by the creation of a
pole-line

At first sight it may seem that the presence of a singular point on a map
projection is inconvenient, for this means either that the map is abruptly
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terminated by a line, or that there is no real edge to the map in that part.
In the normal aspect Cylindrical equal-area projection the representation
of the geographical pole by two lines of length equal to the equator
creates a squat rectangular shape which makes it unattractive for use as
a world map. In contrast, the normal aspect Sinusoidal projection looks
better, because the geographical poles are represented by points and the
meridians converge to them.

However, a defect of the Sinusoidal projection, shared also by Moll-
weide’s projection (Fig. 6.07, p. 117) is the large amount of angular
deformation towards the edges of the map. On the Sinusoidal projection
w > 90° and on Mollweide’s projection w > 80°; this deformation 1is
clearly evident from the obliquity of graticule intersections towards the
edges of the map in high latitudes. It is easy to imagine that the sub-
stitution of a short pole-line would reduce angular deformation by making
every graticule intersection close to a right angle. This may be done by
using constants which create singular points at the geographical poles in
the normal aspect or the corresponding points in the other aspects. The
length of the pole-line is governed by the choice of constants. A common
choice is for it to be one-half the length of the equator. The shape of the
line matches the parallels in the normal aspect. Thus the pseudocylindrical
projections like the sinusoidal and Mollweide’s projections, which all
have rectilinear parallels, will also have a straight pole-line. Figure 13.05
illustrates this for the recentred version of the Eckert VI pseudocylindrical
projection, which is an equal-area projection having sinusoidal meridians.
Such a map may be called truncated or flat-polar. Other classes of pro-
jections with curved parallels may be similarly modified to have curved
pole-lines. The Aitoff-Wagner projection, illustrated in Fig. 1.05, p. 8,
shows this. We do not derive the algebraic expressions for this kind of
modification in this book, though the coordinates needed to compute
certain projections with pole-lines are given in Appendix I, pp. 432-441.
The reader who wishes to investigate the general theory of this kind of
transformation is referred to Wagner (1949, 1982).



CHAPTER 12

Choosing a suitable map projection -the
graphical and analytical methods

There is much to be said for the belief that the best way of judging a world-
projection is to look at it.
A. R. Hinks, Geographical Journal, 1934

Introduction

In Chapter 11 we saw that, for most practical purposes, the choice of a
projection for a particular map is governed by the need to keep deforma-
tion as small as possible, and that some ingenuity may be required to
accomplish this in designing a map for a particular country and purpose.
An important way of achieving this aim is to choose the origin and aspect
of a projection in such a way that the area to be mapped is located in
that part of the projection where distortion is least. The graphical and
analytical methods to be described in this chapter have largely evolved
from this idea.

Graphical methods of selection by visual comparison of
overlays

This method allows the choice of class, and often the special property of
a projection, by using the patterns of distortion isograms for different
projections plotted on transparent plastic and making visual comparisons
between them. This is really the only simple way of comparing the relative
merits of those classes of projection in which the isograms have more
complicated patterns than those for the cylindrical, conical and azimuthal
classes. The primary requirement is for the isograms for different pro-
jections to be plotted at the same principal scale, e.g. 1/20000000 for
maps of large countries or continents and about 1/100000 000 for world
maps. There is no need to show the parallels or meridians on these maps;
indeed it is less confusing if they are not plotted. However, it is important
to indicate the origin and axes to which the isograms are related, and

245
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obviously the lines of zero distortion are also useful. The overlays may
be placed singly or in groups over a rough outline sketch-map of the
country or continent drawn at the same scale. By shifting the position
and orientation of the overlay it is possible to estimate any advantage to
be gained from a change in origin or change in orientation of the lines of
zero distortion. What we are attempting to achieve by these means is the
idea contained in Chapter 7, p. 137, that the patterns of distortion pos-
sessed by a given projection remain constant however much we change
the aspect of the projection. We are therefore using the overlay as a frame
through which we can imagine how the distortion will occur, just as an
artist may compose a picture by looking at objects through a small
rectangular cardboard frame, or a photographer uses the rectangular
ground-glass screen of the camera viewfinder.

When two or more overlays for different projections are superimposed
1t is easy to compare extreme values for p or w from the isograms. Figure
12.01 illustrates such a comparison by combining the w isograms for
Bonne’s projection and for the Azimuthal equal-area projection which
have been plotted to the same principal scale and brought into coincidence
for an origin in latitude 45°N, longitude 100°W. This indicates that the
extreme values of w, encountered in Alaska and Greenland are about 5-
8° on the Azimuthal equal-area projection but greater than 15° on Bonne’s
projection. The evident conclusion is that the Azimuthal equal-area pro-
jection is to be preferred to Bonne’s projection as the base for an equal-
area map of the North American continent. The procedure is now
repeated with any other equal-area projections which are deemed to be
suitable and for which suitable overlays have been prepared. However
we have only compared the maximum values for w round the edges of
the map. Perhaps it would be more sensible to confine our attention to
the centres of each map and compare, by measurement those areas for
which @ < 1° or @ < 5° on each of the overlays. This approach has been
used by Robinson (1952, 1953) to evaluate the suitability of various world
map projections, and especially to measure the advantages which different
kinds of modification have upon them. We return to this subject in
Chapter 13, pp. 275-277.

It must be realised that the underlying map is only a rough guide. If
an overlay is to be compared with a map, the relationship between the
1sograms and the map outline is only precisely true for that aspect and
projection upon which the map was compiled. The detailed outlines of
the coastline or international boundaries are altered even if the aspect of
the projection is only slightly changed and, of course, the outlines vary
uniquely for every other projection. Consequently the visual comparison
between the map and overlay cannot be exact, and this is why we only
recommend and illustrate a rough sketch-map. The purpose of this outline
1s to indicate approximately the extent of the country or continent. Where
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FiG. 12.01 The comparison of the relative merits of Bonne’s projection and the
Azimuthal equal-area projection for a map of the North American continent.
Both of these are equal-area projections so that the best way of comparing them
is through maximum angular deformation w. The origin of both projections is
the point with latitude 45°N, 100°W. Isograms for maximum angular defor-
mation are shown for both projections at intervals of w = 5° and 10°. The
patterns refer to the isograms for Bonne’s projection. Note that the coastlines
are drawn roughly to indicate their approximate location. They do not coincide
with their positions on either of these projections accurately, and are only an
approximate guide to the extent of the area to be mapped.

two or more projections are being evaluated, the required comparison is
to be made between the distortion isograms. If these have been carefully
plotted to the same principal scale, the designer can obtain a fairly
accurate impression of the relative merits of different projections.

Figure 12.02 shows another example of comparing two projections;
namely a comparison between the Conical equidistant projection with
two standard parallels (de I'Isle) and the Azimuthal equidistant projection
for a proposed map of China.
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F16. 12.02 The comparison of the relative merits of the Azimuthal equidistant
projection (Postel) and the Conical equidistant projection (de I’Isle) for a map
of China. The origin of the Azimuthal equidistant projection is the point in
latitude 35°N, longitude 105°E, and the corresponding graticule intersection of
the Conical equidistant projection is made to coincide with this. Either area
scale (p) or maximum angular deformation (w) might be compared for these
projections. Here the isograms of maximum angular deformation at w = 1° and
2° have been plotted. The patterns refer to the isograms for the Azimuthal
equidistant projection. Note that the coastlines and frontiers are sketched
roughly to indicate their approximate location. They do not coincide with pos-
itions in either of these projections accurately, and are only an approximate
guide to the extent of the area to be mapped.

The combined analytical and graphical method of
selection

Although methods like the use of Kavraisky’s constant, K, may be valu-
able in certain kinds of choice, they only represent a partial solution to
the larger problem of deciding if modification of certain projections is
going to be helpful in producing a better map. We have to devise a
systematic method of investigation, and in seeking this we cannot do
better than extend the graphical methods already described and employ
the simple analytical techniques briefly described by Miller (1941). In order
to show how these may be applied to a specific problem we select the
example which Miller himself described, namely to find a conformal
projection suitable for a single map of Latin America. This study led
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ultimately to the description of the Bipolar oblique conformal conical
projection (Fig. 11.03, p. 231) which represents the whole of the New World
in a single map.

The choice of a conformal map for Hispanic America

In order to proceed with the analytical part of the investigation it is
necessary to specify certain limiting values of distortion which we wish
to satisfy on the map. For a conformal map we might specify that the
area scale should always lie between two limits such as 0-95 < p < 1-05,
which is equivalent to the statement that distortion of area never exceeds
+5%. Alternatively, we might specify, like Miller, that the particular
scales should lie within the range 0-965 < u < 1-035, or, in other words,
that linear distortion does not exceed +3-5%. We should note that there
is nothing magical about the choice of these numerical values for area
scale and particular scales. The choice of these is quite arbitrary, but has
to be realistic. We would not be able to produce a map for the whole of
Latin America if we specified that 0-999 < y < 1-001. On the other hand,
the investigation would not be particularly rewarding if we specified that
0-5 < p < 20, because a large number of projections would satisfy these
conditions and the selection between them would not be helped.

The area to be mapped is illustrated in Figs 12.03, 12.04 and 12.05. It
represents the whole of the continent of South America and also Central
America, extending from the northern frontier of Mexico in latitude 32°N
near the Gulf of California. A preliminary study suggests that the origin
of the projection might be located at ¢, = 0°, 1, = 72°W. Young’s rule
gives z/0 ~ 1-4, which is so close to the critical value for a conformal
projection that it is debatable whether an azimuthal, cylindrical or conical
projection is to be preferred. In his study of the subject Miller compared
modified versions of the Stereographic projection, normal aspect Mer-
cator’s projection and the Transverse Mercator projection before finding
a satisfactory solution in the choice of an oblique aspect Conformal
Conical projection. We begin by investigating the possible use of the
Stereographic and two versions of the Mercator projection without modi-
fication for both the methods, and the results are most instructive. We
investigate each of the projections in turn to determine the location of
the limiting isogram for g = 1-035 and plot the result in Fig. 12.03.

The study of the separate projections may be summarized as follows.

Transverse aspect stereographic projection

From Eppendix I, p. 433, the equation for the particular scale of the
Stereographic projection is

p=a=hb=se?.z/2
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FiG. 12.03 Graphical comparison of the isograms for particular scales on the
normal aspect Mercator projection, Transverse Mercator projection and the
Stereographic projection for a conformal map of Latin America. The same
technique is used as illustrated in Figs 12.04 and 12.05. The origin for the
Stereographic projection is the point on the equator in longitude 72°W. The line
of zero distortion for the normal aspect Mercator projection is the equator, and
that for the Transverse Mercator projection is the meridian 72°W. Thus figure
compares the regions enclosed by the isograms for particular scale u = 1-035
= +3:5%. To aid interpretation the parts of the region where this particular
scale is exceeded on the Stereographic and Transverse Mercator projections
are shaded.
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Thus if we employ a transverse aspect stereographic projection, there is
a single point of zero distortion at the origin, on the equator in longitude
72°W. Here the principal scale is equal to unity and the particular scale
increases radially outwards to the specified limit (+3-5%) where

sec? z/2 = 1-035

Solving this equation we find that z = 21°12’, so that the only part of
Latin America which can be mapped to the required specification lies
with the circle shown in Fig. 12.03.

Modified transverse stereographic projection

We specify that the lower value for the particular scale, up = 0965 = 4 is
preserved at the origin of the projection. Then the point of zero distortion
is replaced by a standard circle of angu