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PREFACE

GPS Satellite Surveying has undergone a major revision in order to keep abreast with
new developments in GNSS and yet maintain its focus on geodesy and surveying.
All chapters have been reorganized in a more logical fashion. Because the GNSS
systems have developed significantly since the last edition of the book, we have
added newmaterial on the GLONASS, Beidou, and Galileo systems, as well as on the
ongoing modernization of GPS. A separate chapter was included on recursive least
squares. Another chapter on RTK implementation was added that uses these recur-
sive least-squares algorithms to process across-receiver observation differences and is
capable of accepting observations from all GNSS systems. Examples are supported
by real data processing. A third new chapter was added on GNSS user antennas.
This chapter was prepared by an antenna expert to provide the necessary background
information and details to allow practicing engineers to select the right antenna for
a project. As to GNSS processing approaches, major new sections were added on
PPP-RTK and TCAR. Six new additional appendices were added containing in-depth
mathematical supplements for those readers who enjoy the mathematical rigor.

The original author of GPS Satellite Surveying, Alfred Leick, appreciates the con-
tributions of Lev Rapoport and Dmitry Tatarnikov andmost cordially welcomes these
very qualified individuals as co-authors. All three of us wish to thank our fami-
lies for their outstanding support throughout our professional careers. Lev Rapoport
wishes to thank Javad GNSS for permission to use their receivers Triumph-1, Delta
TRE-G3T, and Delta Duo-G2D for data collection, and Dr. Javad Ashjaee for the
opportunity to get acquaintedwithGNSS technologies and observe its history through
the eyes of a company employee. Dmitry Tatarnikov wishes to thank his colleagues
at the Moscow Technology Center of Topcon for their contributions to the research,

xv



xvi PREFACE

development, and production of antennas, and the management of Topcon Corpo-
ration for support of this work. Alfred Leick expresses his sincere appreciation to
anybody contributing to this and any of the previous revisions of GPS Satellite Sur-
veying. We appreciate Tamrah Brown’s assistance in editing the draft in such a short
period of time.
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CHAPTER 1

INTRODUCTION

Over the last decade, the development and application of GNSS (global navigation
satellite system) has been unabatedly progressing. Not only is the modernization
of the U.S. GPS (global positioning system) in full swing, the Russian GLONASS
(Global’naya Navigatsionnaya Sputnikovaya Sistema) system has undergone a
remarkable recovery since its decline in the late 1990s to be now fully operational.
The first static and kinematic surveys with the Chinese Beidou system are being
published, and the signals of the European Galileo system are being evaluated.
While many individuals might look back on the exciting times they were fortunate
to experience since the launch of the first GPS satellite in 1978, there are many more
enthusiastic individuals gearing up for an even more exciting future of surveying
and navigation with GNSS. Yes, it seems like a long time has passed since sunset
admirers on top of Mount Wachusett, seeing a GPS antenna with cables connected
to a big “machine” in a station wagon were wondering if it would “take off,” or if
you were “on their side,” or regular folks in a parking lot approaching a car with a
“GPS” license plate were wondering if you had “such a thing.”

Much has been published on the subject of GNSS, primarily about GPS because
of its long history. Admirably efficient search engines uncover enormous amounts
of resources on the Internet to make an author wonder what else is there to write
about. We took the opportunity of updating GPS Satellite Surveying to add strength
by including two additional authors, while looking at rearranging the material in
a way that reflects the maturity and permanency of the subject and de-emphasizes
the news of the day or minor things that may have gotten the early pioneers of
GPS excited.

Perhaps the most visible outcome of the rearrangement of the material for this edi-
tion is that GNSS in earnest starts only in Chapter 5, which may come as a surprise to
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the unexpected reader. However, if was determined that first presenting the geodetic
and statistical foundations for GPS Satellite Surveying would be more efficient, and
then focusing on GNSS, thus taking advantage of having the prerequisites available
and not being side-tracked by explaining essential fill-in material. Therefore, there are
two chapters devoted to least-squares estimation, followed by a chapter on geodesy.
These three chapters clearly identify the traditional clientele this book tries to serve,
i.e., those who are interested in using GNSS for high-accuracy applications. The other
chapters cover GNSS systems, GNSS positioning, RTK (real-time kinematic), tropo-
sphere and ionosphere, and GNSS user antennas. There are nine appendices.

Chapter 2, least-squares adjustment, contains enough material to easily fill a reg-
ular 3-credit-hour college course on adjustments. The focus is on estimating param-
eters that do not depend on time. The material is presented in a very general form
independently of specific applications, although the classical adjustment of a geode-
tic or surveying network comes to mind as an example. The approach to the material
is fairly unique as compared to a regular course on least squares because it starts with
the mixed model in which the observations and the parameters are implicitly related.
This general approach allows for an efficient derivation of various other adjustment
models simply by appropriate specifications of certain matrices. Similarly, the gen-
eral linear hypothesis testing is a natural part of the approach. Of particular interest
to surveying applications are the sections on minimal and inner constraints, internal
and external reliability, and blunder detection.

Chapter 3, recursive least squares, represents new material that has been added to
this fourth revision. In particular in view of RTK application where the position of
the rover changes with time, it was deemed appropriate to add a dedicated chapter
in which the estimation of time-dependent parameters is the focus. Consequently, we
changed the notation using the argument of time consistently to emphasize the time
dependency. A strength of this chapter is that it explicitly deals with patterned matri-
ces as they occur in RTK and many other applications. Apart from the term “recursive
least squares,” other terms might be “first-order partitioning regression” or “Helmert
blocking,” that express the technique applied to these patterned matrices. Although
Chapters 2 and 3 are related since there is only one least-squares method, Chapter 3
stands on its own. It also could serve easily as a text for a regular 3-credit-hour college
course.

Chapter 4 is dedicated to geodesy. It provides details on reference frames, such
as the ITRF (international terrestrial reference frame), as well as the transformation
between such frames. The geodetic datum is a key element in this chapter, which is
defined as an ellipsoid of defined location, orientation, and size and an associated
set of deflection of the vertical and geoid undulations. Establishing the datum, in
particular measuring gravity to compute geoid undulations, is traditionally done by
geodesists. The fact that here it is assumed that all this foundational material is given
indicates that geodesy is treated not as a science by itself in this book but rather as an
enabling element that supports accurate GNSS applications. As the “model for all,”
we present the three-dimensional (3D) geodetic model, which is applicable to net-
works of any size and assumes that the geodetic datum is available. In addressing the
needs of surveying, the topic of conformalmapping of the ellipsoidal surface is treated
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in great detail. This includes, as a transitional product encountered along the way,
computations on the ellipsoidal surface. It is well known that computing on the con-
formal mapping plane is limited by the area covered by the network since distortions
increase with area. Additionally, the respective computations require the geodesic
line, which is mathematically complicated, and the respective expressions are a result
of lengthy but unattractive series expansions. Clearly, an attempt is made to point out
the preference of the 3D geodetic model when there is the opportunity to do so.

Chapter 5, finally, introduces the various GNSS systems. In order to provide back-
ground information on satellite motions, the chapter begins with an elementary dis-
cussion of satellite motions, the Kepler elements that describe such motions, and the
particularly simple theory of normal orbits, i.e., motion in a central gravity field. The
disturbing forces that cause satellites to deviate from normal orbits are discussed as
well. However, the material is not presented at the level of detail needed for accurate
satellite orbit determination. We assume that orbit determination will continue to be
handled by existing expert groups and that respective products will be available either
through the broadcast navigation message or the International GNSS Service (IGS)
and other agencies in the form of precise and/or ultra-rapid ephemeris and satellite
clock data. This chapter includes new material on GPS modernization and on the
GLONASS, Galileo, and Beidou systems. In the meantime, interface control docu-
ments are available for all these GNSS systems and posted on the Internet. The reader
is advised to consult these documents and similar publications that expertly address
the space segment.

Chapter 6 discusses in detail the various GNSS positioning approaches conve-
niently in “one place.” It begins with specifying the fundamental pseudorange and
carrier phase equations. All relevant functions of these observables are then grouped
and listed without much additional explanation. These functions are all well known;
exceptions might be the triple-frequency functions. We introduce the “across” ter-
minology in order to more easily identify the specific differencing. As such, we
have the across-receiver, across-satellite, and across-time observation (single) dif-
ferences, and then the traditional double-difference and triple-difference functions.
A separate section is dedicated to operational details. That section includes every-
thing one needs to know when carrying out high-accuracy positioning with GNSS.
We especially stress the “GNSS infrastructure” that has established itself to support
users. By this, we mean the totality of GNSS services provided by government agen-
cies, user groups, universities, and above all the IGS and the (mostly) free online
computing services. IGS provides products of interest to the sophisticated high-end
GNSS user, while the computation services are of most interest to those responsible
for processing field data. This is indeed a marvelous GNSS infrastructure that is of
tremendous utility.

As to the actual GNSS positioning approaches, Chapter 6 is concerned with three
types of approaches, each having been assigned a separate section. The first section
deals with navigation solution, which uses the broadcast ephemeris, and the tradi-
tional double-differencing technique with ambiguity fixing for accurate positioning.
The double differences are formed on the basis of the base station and base satellite
concept to conveniently identify the linear dependent double differences.We note that
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the reason for the popularity of the double-difference functions is the cancelation of
common mode errors, such as receiver and satellite clock errors and hardware delays,
as well as the tropospheric and ionospheric impacts on the carrier phases in the case
of short baselines. The formation of double-difference functions is briefly contrasted
with the equivalent undifferenced approach in which only the nonbase-station and
nonbase-satellite observation contains an ambiguity parameter, while each of the
others contains an epoch-dependent parameter. The latter approach results in a
large system of equations that can be efficiently solved by exploring the pattern of
the matrices.

In the second section, we discuss PPP (precise point positioning), CORS (con-
tinuous operating reference stations), and the classical differential correction that
applies to RTK and PPP-RTK, which has been gaining popularity. In the case of
PPP, the user operates one dual-frequency receiver and uses the precise ephemeris
and satellite clock corrections to determine accurate position; the known drawback
of the technique is long station occupation times. The use of the “classical” differ-
ential pseudorange and carrier phase correction is also well established, in particular
in RTK. The differential correction essentially represents the discrepancies of the
undifferenced observations computed at the reference stations. The user receives the
differential correction of one or several reference stations and effectively forms dou-
ble differences to determine its precise position. In the case of PPP-RTK, biases are
transmitted to the user. These biases represent the difference of the satellite biases
(clock error and hardware delay) and the base station bias (clock error and hard-
ware delay). The user applies the received biases to the observations and carries
out an ambiguity-fixed solution for precise point positioning. The advantage of the
PPP-RTK approach is that the biases only primarily depend on the changes of the
base station clock. Therefore, if the base station is equipped with an atomic clock,
the variability of the transmitted biases can be reduced. Using the classical differen-
tial correction, the RTK user needs to estimate (R − 1)(S − 1) ambiguities, where R
and S denote the number of receivers (reference plus rover) and satellites involved,
whereas the PPP-RTK user only needs to estimate (S − 1) ambiguities. In the case
of PPP-RTK, some of the work is shifted to the reference network since it computes
the biases relative to the base station, whereas the differential corrections refer to the
respective reference station and not a specific base station.

In the third section, we deal with TCAR (three carrier phase ambiguity resolu-
tions). This technique is an extension of the popular dual-frequency technique of
computing the wide-lane ambiguity first and independently from the actual position
solution. In the case of TCAR, one uses triple-frequency observations to resolve the
extra-wide-lane, wide-lane, and narrow-lane ambiguities first.

Additionally, a separate section is dedicated to ambiguity fixing. First, the popular
LAMBDA (least-squares ambiguity decorrelation adjustment) technique is discussed
in detail. This is followed by material on lattice reduction. It was deemed important
to add material to see how other disciplines deal with problems similar to ambiguity
fixing in GNSS, and in doing so remaining open-minded as to other possible efficient
solutions, in particular as the number of ambiguities increases when eventually all
visible satellites of all systems are being observed.
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Chapter 7 is dedicated to RTK. Since RTK includes static positioning as a
special case, it is considered the most general approach. The technique is applicable
to short baselines and long baselines if all effects are appropriately modeled.
The chapter refers to a practical implementation of RTK algorithms that uses
the formalism of recursive least squares given in Chapter 3, uses across-receiver
differences as opposed to double differences, and is designed to include observations
from all GNSS systems. Its recipes for software implementations are intended for
specialists in geodetic software design. All examples are illustrated by way of real
data processing.

Chapter 8 deals with the troposphere and ionosphere. The material is presented in
a separate chapter in order to emphasis the major contribution of GPS in sensing the
troposphere and ionosphere and, conversely, to understand the major efforts made to
correct the observations for ionospheric and tropospheric effects in positioning. In
addition to dealing with tropospheric refraction and various models for zenith delays
and vertical angle dependencies, some material on tropospheric absorption and water
vapor radiometers has been included. The chapter ends with a brief discussion on
global ionospheric models.

Chapter 9 represents a major addition to this edition of the book. It is well known
that multipath is affecting all GNSS positioning techniques, whether based on carrier
phases or pseudoranges, since it is directly related to the ability of the user antenna
to block reflected signals. Also realizing that geodesist and surveyors typically are
not experts in antenna design, it was thought that a dedicated chapter on GNSS user
antennas would provide an important addition to the book. We maintained the termi-
nology and (mostly) also the notion that is found in the antenna expert community in
the hope that it would make it easier for GPS Satellite Surveying readers to transition
to the respective antenna literature if needed. Existing texts are often found to be too
simple to be useful or too difficult for nonspecialists to understand. As an example
of our approach, the Maxwell equations appear in the first section of the chapter but
actually are not used explicitly except as support in the appendices. However, the
majority of expressions are thoroughly derived and the respective assumptions are
clearly identified. In several instances, however, it was deemed necessary to provide
additional references for the in-depth study of the subject.

Chapter 9 is subdivided into seven sections. These sections deal with elements of
electromagnetic fields and waves, antenna pattern and gain, phase center variation,
signal propagation through a chain of circuits, and various antenna types and man-
ufacturing issues and limitations. The material of this chapter is supplemented by
six appendices which contain advanced mathematical material and proofs in com-
pact form for readers who enjoy such mathematical depth. In general, the material is
presented with sufficient depth for the reader to appreciate the possibilities and lim-
itations of antenna design, to judge the performance of antennas, and to select the
right antenna for the task at hand, in particular for high-accuracy applications.

Depending on one’s view, one might consider GPS an old or new positioning and
timing technology. Considering that the first GPS satellite was launched in 1978,
one certainly can see it as old and well-established technology. However, given that
new applications of GPS, and now we need to say GNSS, are continuously being



6 INTRODUCTION

developed, it is certainly also fair to characterize this as new technology.Whatever the
reader’s view might be, it is impossible to trace back all instances of important devel-
opments in GNSS unless, of course, one is willing to write a dedicated book on the
history of GNSS. Nevertheless, the “pioneering years” of GPS were extremely uplift-
ing as progress could be measured by leaps and bounds, and results were achieved
at a level of quality that one had not expected. We present a brief, and probably sub-
jective, review with a slant toward surveying of the major events up to the year 2000.
Today, of course, progress continues to be made, in particular as other GNSS systems
become operational; the progress is, however, now smooth and less steep.

Table 1.1 lists some of the noteworthy events up to the year 2000. GPS made
its debut in surveying and geodesy with a big bang. During the summer of 1982,
the testing of the Macrometer receiver, developed by C. C. Counselman at M.I.T.,
verified a GPS surveying accuracy of 1 to 2 parts per million (ppm) of the station
separation. Baselines were measured repeatedly using several hours of observations
to study this new surveying technique and to gain initial experience with GPS. During
1983, a first-order network densification of more than 30 stations in the Eifel region
of Germany was observed (Bock et al., 1985). This project was a joint effort by the
State Surveying Office of North Rhein-Westfalia, a private U.S. firm, and scientists
fromM.I.T. In early 1984, the geodetic network densification ofMontgomery County
(Pennsylvania) was completed. The sole guidance of this project rested with a private
GPS surveying firm (Collins and Leick, 1985). Also in 1984, GPS was used at Stan-
ford University for a high-precision GPS engineering survey to support construction
for extending the Stanford linear accelerator (SLAC). Terrestrial observations (angles
and distances) were combined with GPS vectors. The Stanford project yielded a truly
millimeter-accurate GPS network, thus demonstrating, among other things, the high
quality of the Macrometer antenna. This accuracy could be verified through com-
parison with the alignment laser at the accelerator, which reproduces a straight line
within one-tenth of a millimeter (Ruland and Leick, 1985). Therefore, by the middle
of 1984, 1 to 2 ppm GPS surveying had been demonstrated beyond any doubt. No
visibility was required between the stations, and data processing could be done on
a microcomputer. Hands-on experience was sufficient to acquire most of the skills
needed to process the data—i.e., first-order geodetic network densification suddenly
became within the capability of individual surveyors.

President Reagan offered GPS free of charge for civilian aircraft navigation in
1983, once the system became fully operational. This announcement can be viewed
as the beginning of sharing arrangements of GPS for military and civilian users.

Engelis et al. (1985) computed accurate geoid undulation differences for the Eifel
network, demonstrating how GPS results can be combined with orthometric heights,
as well as what it takes to carry out such combinations accurately. New receivers
became available—e.g., the dual-frequency P-code receiver TI-4100 from Texas
Instruments—which was developed with the support of several federal agencies.
Ladd et al. (1985) reported on a survey using codeless dual-frequency receivers
and claimed 1 ppm in all three components of a vector in as little as 15min of
observation time. Thus, the move toward rapid static surveying had begun. Around
1985, kinematic GPS became available (Remondi, 1985). Kinematic GPS refers
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TABLE 1.1 GPS Development and Performance at a Glance until 2000

1978 Launch of first GPS satellite
1982 Prototype Macrometer testing at M.I.T.

Hatch’s synergism paper
1983 Geodetic network densification (Eifel, Germany)

President Reagan offers GPS to the world “free of charge”
1984 Geodetic network densification (Montgomery County, Pennsylvania)

Engineering survey at Stanford
Remondi’s dissertation

1985 Precise geoid undulation differences for Eifel network
Codeless dual-band observations
Kinematic GPS surveying
Antenna swap for ambiguity initialization
First international symposium on precise positioning with GPS

1986 Challenger accident (January 28)
10 cm aircraft positioning

1987 JPL baseline repeatability tests to 0.2−0.04 ppm
1989 Launch of first Block II satellite

OTF solution
Wide area differential GPS (WADGPS) concepts
U.S. Coast Guard GPS Information Center (GPSIC)

1990 GEOID90 for NAD83 datum
1991 NGS ephemeris service

GIG91 experiment (January 22–February 13)
1992 IGS campaign (June 21−September 23)

Initial solutions to deal with antispoofing (AS)
Narrow correlator spacing C/A-code receiver
Attitude determination system

1993 Real-time kinematic GPS
ACSM ad hoc committee on accuracy standards
Orange County GIS/cadastral densification
Initial operational capability (IOC) on December 8
1–2 ppb baseline repeatability
LAMBDA

1994 IGS service beginning January 1
Antispoofing implementation (January 31)
RTCM recommendations on differential GPS (Version 2.1)
National Spatial Reference System Committee (NGS)
Multiple (single-frequency) receiver experiments for OTF
Proposal to monitor the earth’s atmosphere with GPS (occultations)

1995 Full operational capability (FOC) on July 17
Precise point positioning (PPP) at JPL

1996 Presidential Decision Directive, first U.S. GPS policy
1998 Vice president announces second GPS civil signal at 1227.60MHz

JPL’s automated GPS data analysis service via Internet
1999 Vice president announces GPS modernization initiative and third civil GPS signal

at 1176.45MHz
IGDG (Internet-based global differential GPS) at JPL

2000 Selective availability set to zero
GPS Joint Program Office begins modifications to IIR-M and IIF satellites



8 INTRODUCTION

to ambiguity-fixed solutions that yield centimeter (and better) relative accuracy
for a moving antenna. The only constraint on the path of the moving antenna is
visibility of the same four (at least) satellites at both receivers. Remondi introduced
the antenna swapping technique to accomplish rapid initialization of ambiguities.
Antenna swapping made kinematic positioning in surveying more efficient.

The deployment of GPS satellites came to a sudden halt due to the tragic January
28, 1986, Challenger accident. Several years passed until the Delta II launch vehicle
was modified to carry GPS satellites. However, the theoretical developments contin-
ued at full speed. They were certainly facilitated by the publication of Remondi’s
(1984) dissertation, the very successful First International Symposium on Precise
Positioning with the Global Positioning System held at the National Geodetic Survey,
and a specialty conference on GPS held by the American Society of Civil Engineers
in Nashville in 1988.

Kinematic GPS was used for decimeter positioning of airplanes relative to
receivers on the ground (Mader, 1986; Krabill and Martin, 1987). The goal of
these tests was to reduce the need for traditional and expensive ground control in
photogrammetry. These early successes not only made it clear that precise airplane
positioning would play a major role in photogrammetry, but they also highlighted
the interest in positioning other remote sensing devices carried in airplanes.

Lichten and Border (1987) reported repeatability of 2–5 parts in 108 in all three
components for static baselines. Note that 1 part in 108 corresponds to 1mm in
100 km. Such highly accurate solutions require satellite positions of about 1m
and better (we note that today’s orbit accuracy is in the range of 5 cm). Because
accurate orbits were not yet available at the time, researchers were forced to estimate
improved GPS orbits simultaneously with baseline estimation. The need for a precise
orbital service became apparent. Other limitations, such as the uncertainty in the
tropospheric delay over long baselines, also became apparent and created an interest
in exploring water vapor radiometers to measure the wet part of the troposphere
along the path of the satellite transmissions. The geophysical community requires
high baseline accuracy for obvious reasons, e.g., slow-moving crustal motions can
be detected earlier with more accurate baseline observations. However, the GPS
positioning capability of a few parts in 108 was also noticed by surveyors for its
potential to change well-established methods of spatial referencing and geodetic
network design.

Perhaps the year 1989 could be labeled the year when “modern GPS” position-
ing began in earnest. This was the year when the first production satellite, Block
II, was launched. Seeber and Wübbena (1989) discussed a kinematic technique that
used carrier phases and resolved the ambiguity “on-the-way.” This technique used
to be called on-the-fly (OTF) ambiguity resolution, meaning there is no static ini-
tialization required to resolve the ambiguities, but the technique is now considered
part of RTK. The navigation community began in 1989 to take advantage of relative
positioning, in order to eliminate errors common to co-observing receivers and make
attempts to extend the distance in relative positioning. Brown (1989) referred to it as
extended differential GPS, but it is more frequently referred to as wide area differen-
tial GPS (WADGPS). Many efforts were made to standardize real-time differential
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GPS procedures, resulting in several publications by the Radio Technical Commis-
sion for Maritime Services. The U.S. Coast Guard established the GPS Information
Center (GPSIC) to serve nonmilitary user needs for GPS information.

The introduction of the geoid model GEOID90 in reference to the NAD83
datum represented a major advancement that helped combine GPS (ellipsoidal) and
orthometric height differences and paved the way for replacing much of leveling by
GPS-determined heights. More recent geoid models are available.

During 1991 and 1992, the geodetic community embarked on major efforts to
explore the limits of GPS on a global scale. The efforts began with the GIG91 [GPS
experiment for International Earth Rotation Service (IERS) and Geodynamics] cam-
paign and continued the following year resulting in very accurate polarmotion coordi-
nates and earth rotation parameters. Geocentric coordinates were obtained that agreed
with those derived from satellite laser ranging within 10 to 15 cm, and ambiguities
could be fixed on a global scale providing daily repeatability of about 1 part in 109.
Such results are possible because of the truly global distribution of the tracking sta-
tions. The primary purpose of the IGS campaign was to prove that the scientific
community is able to produce high-accuracy orbits on an operational basis. The cam-
paign was successful beyond all expectations, confirming that the concept of IGS is
possible. The IGS service formally began January 1, 1994.

For many years, users worried about the impact of antispoofing (AS) on the prac-
tical uses of GPS. AS implies switching from the known P-code to the encrypted
Y-code, expressed by the notation P(Y). The purpose of AS is to make the P-codes
available only to authorized (military) users. The anxiety about AS was consider-
ably relieved when Hatch et al. (1992) reported on the code-aided squaring technique
to be used when AS is active. Most manufacturers developed proprietary solutions
for dealing with AS. When AS was implemented on January 31, 1994, it presented
no insurmountable hindrance to the continued use of GPS. GPS users became even
less dependent on AS with the introduction of accurate narrow correlator spacing
C/A-code receivers (van Dierendonck et al., 1992), since the C/A-code is not subject
to ASmeasures. By providing a second civil code on L2, eventually a third one on L5,
and adding new military codes, GPS modernization will make the P(Y)-code encryp-
tion a nonissue for civilian applications, and at the same time, provide enhanced
performance to civilian and military users.

Amajor milestone in the development of GPS was achieved on December 8, 1993,
when the initial operational capability (IOC) was declared when 24 satellites (Blocks
I, II, IIA) became successfully operational. The implication of IOC was that commer-
cial, national, and international civil users could henceforth rely on the availability of
the SPS (Standard Positioning Service). Full operational capability (FOC) would be
declared on July 17, 1995, when 24 satellites of the type Blocks II and IIA became
operational. Also, Teunissen (1993) introduced the least-squares ambiguity decorre-
lation adjustment (LAMBDA), which is now widely used.

The determination of attitude/orientation using GPS has drawn attention for
quite some time. Qin et al. (1992) report on a commercial product for atti-
tude determination. Talbot (1993) reports on a real-time kinematic centimeter
accuracy surveying system. Lachapelle et al. (1994) experiment with multiple
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(single-frequency) receiver configurations in order to accelerate the on-the-fly
ambiguity resolution by means of imposing length constraints and conditions
between the ambiguities. While much attention was given to monitoring the iono-
sphere with dual-frequency and single-frequency code or carrier phase observations,
Kursinski (1997) discusses the applicability of radio occultation techniques to use
GPS in a general earth’s atmospheric monitoring system (which could provide high
vertical-resolution profiles of atmospheric temperature across the globe).

The surveying community promptly responded to the opportunities and challenges
that came with GPS. The American Congress on Surveying and Mapping (ACSM)
tasked an ad hoc committee in 1993 to study the accuracy standards to be used in
the era of GPS. The committee addressed questions concerning relative and abso-
lute accuracy standards. The National Geodetic Survey (NGS) enlisted the advice of
experts regarding the shape and content of the geodetic reference frame; these efforts
eventually resulted in the continuously operating reference stations (CORS). Orange
County (California) established 2000 plus stations to support geographic information
systems (GIS) and cadastral activities. There are many other examples.

Zumberge et al. (1998a,b) report single-point positioning at the couple-of- cen-
timeters level for static receivers and at the subdecimeter level for moving receivers.
This technique became available at the Jet Propulsion Laboratory (JPL) around 1995.
The technique that requires dual-frequency observations, a precise ephemeris, and
precise clock corrections is referred to as precise point positioning (PPP). These
remarkable results were achieved with postprocessed ephemerides at a time when
selective availability (SA) was still active. Since 1998, JPL has offered automated
data processing and analysis for PPP on the Internet (Zumberge, 1998). Since 1999,
JPL has operated an Internet-based dual-frequency global differential GPS system
(IGDG). This system determines satellite orbits, satellite clock corrections, and earth
orientation parameters in real time and makes corrections available via the Internet
for real-time positioning. A website at JPL demonstrates RTK positioning at the sub-
decimeter for several receiver locations.

Finally, during 1998 and 1999, major decisions were announced regarding the
modernization of GPS. In 2000, SA was set to zero as per Presidential Directive.
When active, SA entails an intentional falsification of the satellite clock (SA-dither)
and the broadcast satellite ephemeris (SA-epsilon); when active it is effectively an
intentional denial to civilian users of the full capability of GPS.



CHAPTER 2

LEAST-SQUARES ADJUSTMENTS

Least-squares adjustment is useful for estimating parameters and carrying out
objective quality control of measurements by processing observations according to a
mathematical model and well-defined rules. The objectivity of least-squares quality
control is especially useful in surveying when depositing or exchanging observations
or verifying the internal accuracy of a survey. Least-squares solutions require
redundant observations, i.e., more observations are required than are necessary to
determine a set of unknowns exactly. This chapter contains compact but complete
derivations of least-squares algorithms. For additional in-depth study of adjustments
we recommend Grafarend (2006).

First, the statistical nature of measurements is analyzed, followed by a discussion
of stochastic and mathematical models. The mixed adjustment model is derived in
detail, and the observation equation and the condition equation models are deduced
from the mixed model through appropriate specification. The cases of observed and
weighted parameters are presented as well. A special section is devoted to mini-
mal and inner constraint solutions and to those quantities that remain invariant with
respect to a change in minimal constraints. Whenever the goal is to perform quality
control on the observations, minimal or inner constraint solutions are especially rel-
evant. Statistical testing is important for judging the quality of observations or the
outcome of an adjustment. A separate section deals with statistics in least-squares
adjustments. The chapter ends with a presentation of additional quality measures,
such as internal and external reliability and blunder detection and a brief exposition
of Kalman filtering.

In Chapter 3 the least-squares solution is treated in terms of recursive least squares.
While both chapters deal with the “same least-squares” principle, the material in
Chapter 3 is given in a form that is more suitable for application when the parameters
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change with time. Chapter 2 is more geared to applications in surveying and geodesy
when the parameters usually are not a function of time, such as a typical survey net-
work, leveling network, or a deformation or photogrammetric survey. We like to stress
that the treatment starts with the mixed model in which the observations and param-
eters are implicitly related. Other models are derived by respective specifications.

2.1 ELEMENTARY CONSIDERATIONS

Objective quality control of observations is necessary when dealing with any kind of
measurements such as angles, distances, pseudoranges, carrier phases, and the geo-
potential. It is best to separate conceptually quality control of observations and
precision or accuracy of parameters. It is unfortunate that least-squares adjustment
is often associated only with high-precision surveying, although it may be as
important to discover a 10 m blunder in a low-precision survey as a 1 cm blunder in
a high-precision survey.

Least-squares adjustment allows the combination of different types of observa-
tions (such as angles, distances, and height differences) into one solution and permits
simultaneous statistical analysis. For example, there is no need to treat traverses, inter-
sections, and resections separately. Since these geometric figures consist of angle and
distance measurements, the least-squares rules apply to all of them, regardless of the
specific arrangements of the observations or the geometric shape they represent.

Least-squares adjustment simulation is a useful tool to plan a survey and to ensure
that accuracy specifications will be met once the actual observations have been made.
Simulations allow the observation selection to be optimized when alternatives exist.
For example, should one primarily measure angles or rely on distances? Consider-
ing the available instrumentation, what is the optimal use of the equipment under the
constraints of the project? Experienced surveyors often answer these questions intu-
itively. Even in these cases, an objective verification using least-squares simulation
and the concept of internal and external reliability of networks is a welcome assurance
to those who carry responsibility for the project.

2.1.1 Statistical Nature of Surveying Measurements

Assume that a distance of 100 m is measured repeatedly with a tape that has cen-
timeter divisions. A likely outcome of these measurements could be 99.99, 100.02,
100.00, 100.01, etc. Because of the centimeter subdivision of the tape, the surveyor
is likely to record the observations to two decimal places. The result therefore is a
series of numbers ending with two decimal places. One could wrongly conclude that
this measurement process belongs to the realm of discrete statistics yielding discrete
outcomes with two decimal places. In reality, however, the series is given two decimal
places because of the centimeter division of the tape and the fact that the surveyor did
not choose to estimate the millimeters. Imagining a reading device that allows us to
read the tape to as many decimal places as desired, we readily see that the process of
measuring a distance belongs to the realm of continuous statistics. The same is true
for other types of measurements typically used in positioning. A classic textbook case
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for a discrete statistical process is the throwing of a die in which case the outcome is
limited to certain integers.

When measuring the distance, we recognize that any value xi could be obtained,
although experience tells us that values close to 100.00 are most likely. Values such
as 99.90 or 100.25 are very unlikely when measured with care. Assume that n mea-
surements have been made and that they have been grouped into bins of length Δx,
with bin i containing ni observations. Graphing the bins in a coordinate system of
relative frequency ni∕n versus xi gives the histogram. For surveying measurements,
the smoothed step function of the rectangular bins typically has a bell-like shape. The
maximum occurs around the sample mean. The larger the deviation from the mean,
the smaller the relative frequency, i.e., the probability that such a measurement will
actually be obtained. A goodness-of-fit test would normally confirm the hypothe-
sis that the observations have a normal distribution. Thus, the typical measurement
process in surveying follows the statistical law of normal distribution.

2.1.2 Observational Errors

Field observations are not perfect, and neither are the recordings and management of
observations. The measurement process suffers from several error sources. Repeated
measurements do not yield identical numerical values because of random measure-
ment errors. These errors are usually small, and the probability of a positive or a
negative error of a given magnitude is the same (equal frequency of occurrence). Ran-
dom errors are inherent in the nature of measurements and can never be completely
overcome. Random errors are dealt with in least-squares adjustment.

Systematic errors are errors that vary systematically in sign and/or magnitude.
Examples are a tape that is 10 cm too short or the failure to correct for vertical or lat-
eral refraction in angular measurement. Systematic errors are particularly dangerous
because they tend to accumulate. Adequate instrument calibration, care when observ-
ing, such as double centering, and observing under various external conditions help
avoid systematic errors. If the errors are known, the observations can be corrected
before making the adjustment; otherwise, one might attempt to model and estimate
these errors. Discovering and dealing with systematic errors requires a great deal of
experience with the data. Success is not at all guaranteed.

Blunders are usually large errors resulting from carelessness. Examples of blun-
ders are counting errors in a whole tape length, transposing digits when recording field
observations, continuing measurements after upsetting the tripod, and so on. Blun-
ders can largely be avoided through careful observation, although there can never
be absolute certainty that all blunders have been avoided or eliminated. Therefore,
an important part of least-squares adjustment is to discover and remove remaining
blunders in the observations.

2.1.3 Accuracy and Precision

Accuracy refers to the closeness of the observations (or the quantities derived from
the observations) to the true value. Precision refers to the closeness of repeated obser-
vations (or quantities derived from repeated sets of observations) to the sample mean.
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Figure 2.1.1 Accuracy and precision.

Figure 2.1.1 shows four density functions that represent four distinctly different mea-
surement processes of the same quantity. Curves 1 and 2 are symmetric with respect
to the true value xT . These measurements have a high accuracy because the sample
mean coincides or is very close to the true value. However, the shapes of both curves
are quite different. Curve 1 is tall and narrow, whereas curve 2 is short and broad.
The observations of process 1 are clustered closely around the mean (true value),
whereas the spread of observations around the mean is larger for process 2. Larger
deviations from the true value occur more frequently for process 2 than for process 1.
Thus, process 1 is more precise than process 2; however, both processes are equally
accurate. Curves 3 and 4 are symmetric with respect to the sample mean xS, which
differs from the true value xT . Both sequences have equally low accuracy, but the pre-
cision of process 3 is higher than that of process 4. The difference xT − xS is caused
by a systematic error. An increase in the number of observations does not reduce this
difference.

2.2 STOCHASTIC AND MATHEMATICAL MODELS

This chapter requires some background in statistics. Section A.5 in Appendix A
provides selected statistical material that is relevant in what follows. Of particular
importance is the law of variance–covariance propagation given in Section A.5.5.
It allows computing variances of functions of observations or variances of estimated
parameters which are also stochastic quantities.

Least-squares adjustment deals with two equally important components: the
stochastic model and the mathematical model. Both components are indispensable
and contribute to the adjustment algorithm (Figure 2.2.1). We denote the vector
of observation with �b and the number of observations by n. The observations are
random variables, thus the complete notation for the n × 1 vector of observations is
�̃b. To simplify the notation, we do not use the tilde in connection with �b. The true
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Figure 2.2.1 Elements of least-squares adjustment.

value of the observations, i.e., the mean of the population is estimated from the
sample measurements. Since each observation belongs to a different population, the
sample size is usually 1. The variances of these distributions comprise the stochastic
model. This model introduces information about the precision of the observations
(or accuracy if only random errors are present). The variance-covariance matrix 𝜮�b
expresses the stochastic model. In many cases, the observations are not correlated
and the variance-covariance matrix is diagonal. Occasionally, when so-called derived
observations are used which are the outcome of a previous adjustment, or when
linear combinations of original observations are adjusted, the variance-covariance
matrix contains off-diagonal elements. Because in surveying the observations are
normal distributed, the vector of observations has a multivariate normal distribution.
We use the notation (A.5.65)

�b ∼ N
(
�T , 𝜮�b

)
(2.2.1)

where �T is the vector mean of the population, and 𝜮�b
is the variance-covariance

matrix (A.5.54) or (A.5.63). The cofactor matrix of the observations Q�b
and the
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weight matrix P are defined by

Q�b
=

1

𝜎2
0

𝜮�b
(2.2.2)

P = Q−1
�b

= 𝜎2
0 𝜮

−1
�b

(2.2.3)

Typically we do not use a subscript to identify P as the weight matrix of the observa-
tions. The symbol 𝜎2

0 denotes the a priori variance of unit weight. It relates the weight
matrix and the inverted covariance matrix. An important capability of least-squares
adjustment is the estimation of 𝜎2

0 from observations. We denote that estimate by 𝜎̂2
0

and it is the a posteriori variance of unit weight. If the a priori and a posteriori vari-
ances of unit weight are statistically equal, the adjustment is said to be correct. More
on this fundamental statistical test and its implications will follow in later sections.
In general, the a priori variance of unit weight 𝜎2

0 is set to 1, i.e., the weight matrix
is equated with the inverse of the variance-covariance matrix of the observations.
The term variance of unit weight is derived from the fact that if the variance of an
observation equals 𝜎2

0 , then the weight for this observation equals unity. The spe-
cial cases where P equals the identify matrix, P = I, frequently allow a simple and
geometrically intuitive interpretation of the minimization.

The mathematical model expresses a simplification of existing physical reality.
It attempts to mathematically express the relations between observations and param-
eters (unknowns) such as coordinates, heights, and refraction coefficients. Least-
squares adjustment is a very general tool that can be used whenever a relationship
between observations and parameters has been established. Even though the math-
ematical model is well known for many routine applications, there are always new
cases that require a new mathematical model. Finding the right mathematical model
can be a challenge.

Much research has gone into establishing a mathematical formulation that is gen-
eral enough to deal with all types of globally distributed measurement in a unified
model. The collection of observations might include distances, angles, heights, grav-
ity anomalies, gravity gradients, geopotential differences, astronomical observations,
and GPS observations. The mathematical models become simpler if one does not deal
with all types of observations at the same time but instead uses additional external
information. See Chapter 4 for a detailed discussion on the 3D geodetic model.

A popular approach is to reduce (modify) the original observations to be compat-
ible with the mathematical model. These are the model observations. For example,
if measured vertical angles are used, the mathematical model must include refraction
parameters. On the other hand, the original measurements can be corrected for refrac-
tion using an atmospheric refraction model. The thus reduced observations refer to
a simpler model that does not require refraction parameters. The more reductions
are applied to the original observation, the less general the respective mathematical
model is. The final form of the model also depends on the purpose of the adjustment.
For example, if the objective is to study refraction, one needs refraction parameters
in the model. In surveying applications where the objective typically is to determine
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location, one prefers not to deal with refraction parameters explicitly. The relation
between observations and parameterization is central to the success of estimation
and at times requires much attention.

In the most general case, the observations and the parameters are related by an
implicit nonlinear function:

f (xa, �a) = 0 (2.2.4)

This is the mixed adjustment model. The subscript a is to be read as “adjusted.”
The symbol �a denotes then n × 1 vector of adjusted observations, and the vector xa
contains u adjusted parameters. There are r nonlinear mathematical functions in f.
Often the observations are explicitly related to the parameters, such as in

�a = f (xa) (2.2.5)

This is the observation equation model. A further variation is the absence of any
parameters as in

f(�a) = 0 (2.2.6)

This is the condition equation model.
The application usually dictates which model might be preferred. Selecting

another model might require a mathematically more involved formulation. In the
case of a leveling network, e.g., the observation equation model and the condition
equation model can be applied with equal ease.

The observation equation model has the major advantage in that each observation
adds one equation. This allows the observation equation model to be implemented
relatively easily and generally in software. One does not have to identify independent
loop closures, etc.

Figure 2.2.1 indicates some of the outcomes from the adjustment. Statistical tests
are available to verify the acceptance of the adjustment or aid in discovering and
removing blunders. The adjustment provides probability regions for the estimated
parameters and allows variance-covariance propagation to determine functions of the
estimated parameters and the respective standard deviations. Of particular interest is
the ability of the least-squares adjustment to perform internal and external reliability
analysis, in order to quantify marginally detectable blunders and to determine their
potential influence on the estimated parameters.

Statistical concepts enter the least-squares adjustment in two distinct ways. The
actual least-squares solution merely requires the existence of the variance-covariance
matrix; there is no need to specify a particular distribution for the observations. If
statistical tests are required, then the distribution of the observations must be known.
In most cases, one indeed desires to carry out some statistical testing.

2.3 MIXED MODEL

Observations or functions of observations are always random variables. Typically, a
random variable is denoted by a tilde, as is done in Section A.5. In order to simplify
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the notation, the tilde will not be used in this chapter to identify random variables.
A caret is used to identify quantities estimated by least squares, i.e., those quantities
that are a solution of a specific minimization. Caret quantities are always random
variables because they are functions of observations. To simplify the notation even
further, the caret symbol is used consistently only in connection with the parameter x.

In the mixed adjustment model, the observations and the parameters are implicitly
related. If �a denotes the vector of n adjusted observations and xa denotes u adjusted
parameters (unknowns), the nonlinear mathematical model is given by

f(�a, xa) = 0 (2.3.1)

The total number of equations in (2.3.1) is denoted by r. The stochastic model is

P = 𝜎2
0 𝜮

−1
�b

(2.3.2)

where P denotes the n × n weight matrix, and 𝜮�b
denotes the covariance matrix

of the observations. The objective is to estimate the parameters. It should be noted
that the observations are stochastic (random) variables and that the parameters are
deterministic quantities. The parameters exist, but their values are unknown. The
estimated parameters, however, will be functions of the observations and therefore
random variables.

2.3.1 Linearization

Regular least-squares formulations require that the mathematical model is linear.
Nonlinear models, therefore, must be linearized. If we let x0 denote a vector of known
approximate values of the parameters, then the parameter corrections x are

x = xa − x0 (2.3.3)

If �b denotes the vector of observations, then the residuals are defined by

v = �a − �b (2.3.4)

With (2.3.3) and (2.3.4) the mathematical model can be written as

f(�b + v, x0 + x) = 0 (2.3.5)

The nonlinear mathematical model is linearized around the known point of expansion
(�b, x0), giving

rBn nv1 + rAu ux1 + rw1 = 0 (2.3.6)

where

B =
𝜕f
𝜕�

||||x0, �b

(2.3.7)
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A =
𝜕f
𝜕x

||||x0, �b

(2.3.8)

w = f(�b, x0) (2.3.9)

See Appendix A for linearization of multivariable functions. The coefficient matri-
ces must be evaluated at the point of expansion, which consists of observations and
approximate parameters. The discrepancies w must be evaluated for the same point
of expansion. The better the approximate values x0, the smaller the parameter cor-
rections x.

2.3.2 Minimization and Solution

The least-squares estimate x̂ is based on the minimization of the function vTPv.
A solution is obtained by introducing a vector of Lagrange multipliers, k, and mini-
mizing the function

𝜙(v,k, x) = vTPv − 2kT (Bv + Ax +w) (2.3.10)

Equation (2.3.10) is a function of three variables, namely, v, k, and x. A necessary
condition for the minimum is that the partial derivatives must be zero. It can be readily
shown that this condition is also sufficient. Differentiating (2.3.10) following the rules
of Appendix A and setting the partial derivatives to zero gives

1
2
𝜕𝜙

𝜕v
= Pv̂ − BT k̂ = 0 (2.3.11)

1
2
𝜕𝜙

𝜕k
= Bv̂ + Ax̂ +w = 0 (2.3.12)

1
2
𝜕𝜙

𝜕x
= −AT k̂ = 0 (2.3.13)

The solution of (2.3.11) to (2.3.13) starts with the recognition thatP is a square matrix
and can be inverted. Thus, the expression for the residuals follows from (2.3.11):

v̂ = P−1 − BT k̂ (2.3.14)

Substituting (2.3.14) into (2.3.12), we obtain the solution for the Lagrange multiplier:

k̂ = −M−1(Ax̂ +w) (2.3.15)

with

rMr = rBn nP
−1
n nB

T
r (2.3.16)

Finally, the estimate x̂ follows from (2.3.13) and (2.3.15)

x̂ = −
(
ATM−1A

)−1ATM−1w (2.3.17)
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The estimates x̂ and v̂ are independent of the a priori variance of unit weight. The
first step is to compute the parameters x̂ from (2.3.17), then the Lagrange multipliers
k̂ from (2.3.15), followed by the residuals v̂ (2.3.14). The adjusted parameters and
adjusted observations follow from (2.3.3) and (2.3.4).

The caret symbol in v̂, k̂, and x̂ indicates that all three estimated values follow
from minimizing vTPv. However, as stated earlier, the caret is only used consistently
for the estimated parameters x̂ in order to simplify the notation.

2.3.3 Cofactor Matrices

Equation (2.3.9) shows that w is a random variable because it is a function of the
observation �b. With (2.3.2), the law of variance-covariance propagation (A.5.61),
and the use of B in (2.3.7), the cofactor matrix Qw becomes

Qw = BP−1BT = M (2.3.18)

From (2.3.18) and (2.3.17) it follows that

Qx =
(
ATM−1A

)−1
(2.3.19)

Combining (2.3.14) through (2.3.17) the expression for the residuals becomes

v =
[
P−1BTM−1A

(
ATM−1A

)−1 ATM−1 − P−1BTM−1
]
w (2.3.20)

It follows from the law of variance propagation (A.5.61) and (2.3.18) that

Qv = P−1BTM−1
[
M − A

(
ATM−1A

)−1 AT
]
M−1BP−1 (2.3.21)

The adjusted observations are

�a = �b + v

= �b +
[
P−1BTM−1A

(
ATM−1A

)−1ATM−1 − P−1BTM−1
]
w (2.3.22)

Because

𝜕�a

𝜕�b
= I + P−1BTM−1A

(
ATM−1A

)−1ATM−1B − P−1BTM−1B (2.3.23)

it follows that
Q�a

= Q�b
−Qv (2.3.24)

where the inverse of P has been replaced by Q�b
according to (2.2.3).
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2.3.4 A Posteriori Variance of Unit Weight

The minimum of vTPv follows from (2.3.14), (2.3.15), and (2.3.17) as

vTPv = wT
[
M−1 −M−1A

(
ATM−1A

)−1ATM−1
]
w (2.3.25)

The expected value of this random variable is

E
(
vTPv

)
= E

(
TrvTPv

)
= E

{
Tr
[
wT

(
M−1 −M−1A

(
ATM−1A

)−1ATM−1)w]}
= E

{
Tr
[(
M−1 −M−1A

(
ATM−1A

)−1ATM−1)wwT
]}

= Tr
{[

M−1 −M−1A
(
ATM−1A

)−1ATM−1
]
E
(
wwT

)}
(2.3.26)

The trace (Tr) of a matrix equals the sum of its diagonal elements. In the first part of
(2.3.26), the property that the trace of a 1 × 1 matrix equals the matrix element itself
is used. Next, the matrix products are switched, leaving the trace invariant. In the last
part of the equation, the expectation operator and the trace are switched. The expected
value E

(
wwT

)
can be readily computed. Per definition, the expected value of the

residuals
E(v) = 0 (2.3.27)

is zero because the residuals represent random errors for which positive and negative
errors of the same magnitude occur with the same probability. It follows from (2.3.6)
that

E(w) = −Ax (2.3.28)

Note that x in (2.3.28) or (2.3.6) is not a random variable. In this expression, x simply
denotes the vector of unknown parameters that have fixed values, even though the
values are not known. The estimate x̂ is a random variable because it is a function
of the observations. By using (A.5.53) for the definition of the covariance matrix
(2.3.18) and using (2.3.28), it follows that

E
(
wwT

)
= 𝜮w + E(w)E(w)T

= 𝜎2
0M + AxxTAT (2.3.29)

Substituting (2.3.29) into (2.3.26) yields the expected value for vTPv:

E
(
vTPv

)
= 𝜎2

0 Tr
{

rIr −M−1A
(
ATM−1A

)−1AT
}

= 𝜎2
0 (r − u) (2.3.30)
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The difference r − u is called the degree of freedom and equals the number of
redundant equations in the model (2.3.1). Strictly, the degree of freedom is r − R(A)
because the second matrix in (2.3.30) is idempotent. The symbol R(A) denotes the
rank of the matrix A. The a posteriori variance of unit weight is computed from

𝜎̂2
0 =

v̂T Pv̂
r − u

(2.3.31)

Using (2.3.30), we see that
E
(
𝜎̂2

0

)
= 𝜎2

0 (2.3.32)

The expected value of the a posteriori variance of unit weight equals the a priori
variance of unit weight.

Finally, the estimated covariance matrices are

𝜮x = 𝜎̂2
0 Qx (2.3.33)

𝜮v = 𝜎̂2
0 Qv (2.3.34)

𝜮�a
= 𝜎̂2

0 Q�a
(2.3.35)

With equation (2.3.24) it follows that

𝜮�a
= 𝜮�b

−𝜮v (2.3.36)

Because the diagonal elements of all three covariance matrices in (2.3.36) are posi-
tive, it follows that the variances of the adjusted observations are smaller than those of
the original observations. The difference is a function of the geometry of the adjust-
ment, as implied by the covariance matrix 𝜮v.

2.3.5 Iterations

Because the mathematical model is generally nonlinear, the least-squares solution
must be iterated. Recall that (2.3.1) is true only for (�a, xa). Since neither of these
quantities is known before the adjustment, the initial point of expansion is chosen as
(�b, x0). For the i th iteration, the linearized model can be written

Bx0i, �0i
vi + Ax0i, �0i

xi +wx0i, �0i
= 0 (2.3.37)

where the point of expansion (�0i, x0i) represents the previous solution. The symbols
�ai and xai denote the adjusted observations and adjusted parameters for the current
(i th) solution. They are computed from

vi = �ai − �0i (2.3.38)

xi = xai − x0i (2.3.39)
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once the least-squares solution of (2.3.37) has been obtained. The iteration starts with
�01 = �b and x01 = x0. If the adjustment converges properly, then both vi and xi con-
verge to zero, or, stated differently, �ai and xai converge toward �a and xa, respectively.
The quantity vi does not equal the residuals. The residuals express the random dif-
ference between the adjusted observations and the original observations according to
(2.3.4). Defining

vi = �ai − �b (2.3.40)

it follows from (2.3.38) that

vi = vi + (�b − �0i) (2.3.41)

Substituting this expression into (2.3.37) gives

Bx0i, �0i
vi + Ax0i, �0i

xi +wx0i, �0i
+ Bx0i, �0i

(�b − �0i) = 0 (2.3.42)

The formulation (2.3.42) assures that the vector vi converges toward the vector of
residuals v. The last term in (2.3.42) will be zero for the first iteration when �0i = �b.
The iteration has converged if |||vTPvi − vTPvi−1

||| < 𝜀 (2.3.43)

where 𝜀 is a small positive number.

2.4 SEQUENTIAL MIXED MODEL

Assume that observations are made in two groups, with the second group consisting
of one or several observations. Both groups have a common set of parameters. The
two mixed adjustment models can be written as

f1(�1a, xa) = 0

f2(�2a, xa) = 0 (2.4.1)

Both sets of observations should be uncorrelated, and the a priori variance of unit
weight should be the same for both groups, i.e.,

P =

[
P1 0
0 P2

]
= 𝜎2

0

[
𝜮

−1
1 0
0 𝜮

−1
2

]
(2.4.2)

The number of observations in �1a and �2a are n1 and n2, respectively; and r1 and r2
are the number of equations in the models f1 and f2, respectively. The linearization
of (2.4.1) yields

B1v1 + A1x +w1 = 0 (2.4.3)

B2v2 + A2x +w2 = 0 (2.4.4)
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where

B1 =
𝜕f1
𝜕�1

||||�1b,x0

A1 =
𝜕f1
𝜕x

||||�1b,x0

w1 = f1(�1b, x0)

B2 =
𝜕f2
𝜕�2

||||�2b,x0

A2 =
𝜕f2
𝜕x

||||�2b,x0

w2 = f2(�2b, x0) (2.4.5)

The function to be minimized is

𝜙(v1, v2, k1, k2, x) = vT
1P1v1 + vT

2P2v2 − 2kT
1 (B1v1 + A1x +w1)

−2kT
2 (B2v2 + A2x +w2) (2.4.6)

The solution is obtained by setting the partial derivatives of (2.4.6) to zero,

1
2
𝜕𝜙

𝜕v1
= P1v1 − BT

1 k1 = 0 (2.4.7)

1
2
𝜕𝜙

𝜕v2
= P2v2 − BT

2k2 = 0 (2.4.8)

1
2
𝜕𝜙

𝜕x
= −AT

1k1 − AT
2 k2 = 0 (2.4.9)

1
2
𝜕𝜙

𝜕k1
= B1v1 + A1x̂ +w1 = 0 (2.4.10)

1
2
𝜕𝜙

𝜕k2
= B2v2 + A2x̂ +w2 = 0 (2.4.11)

and solving for v1, v2, k1, k2, and x. Equations (2.4.7) and (2.4.8) give the
residuals

v1 = P−1
1 BT

1 k1 (2.4.12)

v2 = P−1
2 BT

2 k2 (2.4.13)

Combining (2.4.12) and (2.4.10) yields

M1k1 + A1x̂ +w1 = 0 (2.4.14)

where
M1 = B1P

−1
1 BT

1 (2.4.15)

is an r1 × r1 symmetric matrix. The Lagrange multiplier becomes

k1 = −M−1
1 A1x̂ −M−1

1 w1 (2.4.16)
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Equations (2.4.9) and (2.4.11) become, after combination with (2.4.16) and
(2.4.13),

AT
1M

−1
1 A1x̂ + AT

1M
−1
1 w1 − AT

2k2 = 0 (2.4.17)

B2P
−1
2 BT

2k2 + A2x̂ +w2 = 0 (2.4.18)

By using
M2 = B2P

−1
2 BT

2 (2.4.19)

we can write equations (2.4.17) and (2.4.18) in matrix form:[
AT

1M
−1
1 A1 AT

2
A2 −M2

] [
x̂

−k2

]
=

[
−AT

1M
−1
1 w1

−w2

]
(2.4.20)

Equation (2.4.20) shows how the normal matrix of the first group must be augmented
in order to find the solution of both groups. The whole matrix can be inverted in one
step to give the solution for x̂ and k2. Alternatively, one can compute the inverse using
the matrix partitioning techniques of Section A.3.5, giving

x̂ = −Q11A
T
1 M

−1
1 w1 −Q12w2 (2.4.21)

k2 = Q21A
T
1M

−1
1 w1 −Q22w2 (2.4.22)

Setting

N1 = AT
1M

−1
1 A1 (2.4.23)

N2 = AT
2M

−1
2 A2 (2.4.24)

then using (A.3.53),

Qx ≡ Q11 = (N1 +N2)
−1 = N−1

1 −N−1
1 AT

2

[
M2 + A2N

−1
1 AT

2

]−1A2N
−1
1 (2.4.25)

Q12 = QT
21 = N−1

1 AT
2

[
M2 + A2N

−1
1 AT

2

]−1
(2.4.26)

Q22 = −
[
M2 + A2N

−1
1 AT

2

]−1
(2.4.27)

Substituting Q11 and Q12 into (2.4.21) gives the sequential solution for the param-
eters. We denote the solution of the first group by an asterisk and the contribution of
the second group by Δ. In that notation, the estimated parameters of the first group
are denoted by x̂∗, which is simplified to x∗. Thus,

x̂ = x∗ + Δx (2.4.28)

Comparing (2.4.21) and (2.3.17) the sequential solution becomes

x∗ = −N−1
1 AT

1 M
−1
1 w1 (2.4.29)
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and
Δx = −N−1

1 AT
2

[
M2 + A2N

−1
1 AT

2

]−1
(A2x

∗ +w2) (2.4.30)

Similarly, the expression for the Lagrange multiplier k2 is

k2 = −
[
M2 + A2N

−1
1 AT

2

]−1
(A2x

∗ +w2) (2.4.31)

A different form for the solution of the augmented system (2.4.20) is obtained by
using alternative relations of the matrix partitioning inverse expressions (A.3.45) to
(A.3.52). It follows readily that

x̂ = −(N1 +N2)
−1(AT

1M
−1
1 w1 + AT

2M
−1
2 w2

)
= −(N1 +N2)

−1(− N1x
∗ + AT

2M
−1
2 w2

)
= x∗ − (N1 + N2)

−1(N2x
∗ + AT

2M
−1
2 w2

)
(2.4.32)

The procedure implied by the first line in (2.4.32) is called the method of adding
normal equations. The contributions of the new observations are simply added
appropriately.

The cofactor matrix Qx of the parameters can be written in sequential form as

Qx = Qx∗ −Qx∗A
T
2

[
M2 + A2Qx∗A

T
2

]−1
A2Qx∗

= Qx∗ + ΔQx (2.4.33)

where Qx∗ is the cofactor matrix of the first group of observations and equals N−1
1 .

The contribution of the second group of observations to the cofactor matrix is

ΔQx = −Qx∗A
T
2

[
M2 + A2Qx∗A

T
2

]−1
A2Qx∗ (2.4.34)

The change ΔQx can be computed without having the actual observations of the sec-
ond group. This is relevant in simulation studies.

The computation of vTPv proceeds as usual

vTPv = vT
1P1v1 + vT

2P2v2

= −kT
1w1 − kT

2w2 (2.4.35)

The second part of (2.4.35) follows from (2.4.9) to (2.4.13). Using (2.4.16) for k1,
(2.4.28) for x̂, (2.4.30) for Δx, and (2.4.31) for k2, then the sequential solution
becomes

vTPv = vTPv∗ + ΔvTPv

= vTPv∗ + (A2x
∗ +w2)

T
[
M2 + A2N

−1
1 AT

2

]−1
(A2x

∗ +w2) (2.4.36)

with vTPv∗ being obtained from (2.3.25) for the first group only.
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The a posteriori variance of unit weight is computed in the usual way:

𝜎2
0 =

vTPv
r1 + r2 − u

(2.4.37)

where r1 and r2 are the number of equations in (2.4.1). The letter u denotes, again,
the number of parameters.

The second set of observations contributes to all residuals. From (2.4.12), (2.4.16),
and (2.4.28) we obtain

v1 = v∗1 + Δv1

= −P−1
1 BT

1M
−1
1 (A1x

∗ +w1) − P−1
1 BT

1M
−1
1 A1Δx (2.4.38)

The expression for v2 follows from (2.4.13) and (2.4.31),

v2 = −P−1
2 BT

2T (A2x
∗ +w2) (2.4.39)

where
T =

(
M2 + A2N

−1
1 AT

2

)−1
(2.4.40)

The cofactor matrices for the residuals follow, again, from the law of variance-
covariance propagation. The residuals v1 are a function of w1 and w2, according to
(2.4.38). Substituting the expressions for x∗ and Δx, we obtain from (2.4.38)

𝜕v1

𝜕w1
= −P−1

1 BT
1M

−1
1

(
I − A1N

−1
1 AT

1M
−1
1 + A1N

−1
1 AT

2TA2N
−1
1 AT

1M
−1
1

)
(2.4.41)

𝜕v1

𝜕w2
= −P−1

1 BT
1M

−1
1 A1N

−1
1 AT

2T (2.4.42)

Applying the law of covariance propagation to w1 and w2 of (2.4.5) and knowing
that the observations are uncorrelated gives

Qw1,w2
=

[
M1 0
0 M2

]
(2.4.43)

By using the partial derivatives (2.4.41) and (2.4.42), expression (2.4.43), and the law
of variance-covariance propagation, we obtain, after some algebraic computations,
the cofactor matrices:

Qv1
= Qv∗

1
+ ΔQv1

(2.4.44)

where

Qv∗
1
= P−1

1 BT
1M

−1
1

(
P−1

1 BT
1

)T
−
(
P−1

1 BT
1M

−1
1 A1

)
N−1

1

(
P−1

1 BT
1M

−1
1 A1

)T
(2.4.45)

ΔQv1
=
(
P−1

1 BT
1M

−1
1 A1N

−1
1 AT

2

)
T
(
P−1

1 BT
1M

−1
1 A1N

−1
1 AT

2

)T
(2.4.46)
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The partial derivatives of v2 with respect to w1 and w2 follow from (2.4.39),

𝜕v2

𝜕w1
= P−1

2 BT
2 TA2N

−1
1 AT

1 M−1
1 (2.4.47)

𝜕v2

𝜕w2
= −P−1

2 BT
2T (2.4.48)

By using, again, the law of variance–covariance propagation and (2.4.43), we obtain
the cofactor for v2:

Qv2
= P−1

2 BT
2 TB2P

−1
2 (2.4.49)

The estimated variance–covariance matrix is

𝜮̂v2
= 𝜎̂2

0Qv2
(2.4.50)

The variance–covariance matrix of the adjusted observations is, as usual,

𝜮�a
= 𝜮�b

−𝜮v (2.4.51)

As for iterations, one has to make sure that all groups are evaluated for the same
approximate parameters. If the first system is iterated, the approximate coordinates
for the last iteration must be used as expansion points for the second group. Because
there are no observations common to both groups, the iteration with respect to the
observations can be done individually for each group.

Occasionally, it is desirable to remove a set of observations from an existing
solution. Consider again the uncorrelated case in which the set of observations to
be removed is not correlated with the other sets. The procedure is readily seen from
(2.4.32), which shows how normal equations are added. When observations are
removed, the respective parts of the normal matrix and the right-hand term must be
subtracted. Equation (2.4.32) becomes

x̂ = −
(
AT

1M
−1
1 A1 − AT

2M
−1
2 A2

)−1(AT
1 M

−1
1 w1 − AT

2 M
−1
2 w2

)
= −

[
AT

1M
−1
1 A1 + AT

2

(
−M−1

2

)
A2

]−1[
AT

1 M
−1
1 w1 + AT

2

(
−M−1

2

)
w2

]
(2.4.52)

One only has to use a negative weight matrix of the group of observations that is
being removed, because

−M2 = B2

(
− P−1

2

)
BT

2 (2.4.53)

Observations can be removed sequentially following (2.4.30).
The sequential solution can be used in quite a general manner. One can add or

remove any number of groups sequentially. A group may consist of a single observa-
tion. Given the solution for i − 1 groups, some of the relevant expressions that include
all i groups of observations are

x̂i = x̂i−1 + Δx̂i (2.4.54)

Δx̂i = −Qi−1A
T
i

(
Mi + AiQi−1A

T
i

)−1
(Aix̂i−1 +wi) (2.4.55)
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vTPvi = vTPvi−1 + ΔvTPvi (2.4.56)

ΔvTPvi = (Aix̂i−1 +wi)
T
(
Mi + AiQi−1A

T
i

)−1
(Aix̂i−1 +wi) (2.4.57)

Qi = Qi−1 −Qi−1A
T
i

(
Mi + AiQi−1A

T
i

)−1AiQi−1 (2.4.58)

Every sequential solution is equivalent to a one-step adjustment that contains the
same observations. The sequential solution requires the inverse of the normal matrix.
Because computing the inverse of the normal matrix requires many more compu-
tations than merely solving the system of normal equations, one might sometimes
prefer to use the one-step solution instead of the sequential approach.

2.5 MODEL SPECIFICATIONS

The mixed model and the sequential mixed model are the base models from which
other solutions can be conveniently derived by appropriate specifications. All of the
following models can, of course, be derived separately and independently, i.e., one
starts with a minimization of the type (2.3.10), applies partial differentiation, and
solves the equations. We first specify the popular observation equation model and
then the condition equation model. We then use the sequential solutions and specify a
number of very useful specialized cases such as observation equations with observed
parameters or observation equations with condition on the parameter.

2.5.1 Observation Equation Model

Often there is an explicit relationship between the observations and the parameters,
such as

�a = f(xa) (2.5.1)

This is the observation equation model. Comparing both mathematical models (2.3.1)
and (2.5.1), and taking the definition of the matrix B (2.3.7) into account, we see that
the observation equation model follows from the mixed model using the specification

B ≡ −I (2.5.2)

� ≡ w = f(x0) − �b = �0 − �b (2.5.3)

It is customary to denote the discrepancy by � instead of w when dealing with the
observation equation model. The symbol �0 equals the value of the observations as
computed from the approximate parameters x0. The point of expansion for the lin-
earization is x0; the observation vector is not involved in the iteration because of the
explicit form of (2.5.1). The linearized observation equations model is

nv1 = nAu ux1 + n�1 (2.5.4)

These equations are called the observation equations. There is one equation for each
observation in (2.5.4).
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2.5.2 Condition Equation Model

If the observations are related by a nonlinear function without parameters, we speak
of the condition equation model. It is written as

f(�a) = 0 (2.5.5)

By comparing this with the mixed model (2.3.1), and applying the definition of the A
matrix (2.3.8) we see that the condition equation model follows upon the specification

A = 0 (2.5.6)

The linear equations

rBn nv1 + rw1 = 0 (2.5.7)

are called the condition equations. The iteration for the model (2.5.7) is analogous to a
mixed model with the added simplification that there is no A matrix and no parameter
vector x.

The significance of these three models (observation, condition, and mixed) is that a
specific adjustment problem can often be formulated more easily in one of the models.
Clearly, that model should be chosen. There are situations in which it is equally easy
to use any of the models. A typical example is the adjustment of a level network.
Most of the time, however, the observation equation model is preferred, because the
simple rule “one observation, one equation” is suitable for setting up general software.
Table 2.5.1 lists the important expressions for all three models.

2.5.3 Mixed Model with Observation Equations

The algorithms developed in the previous section can be used to incorporate exte-
rior information about parameters. This includes weighted functions of parameters,
weighted individual parameters, and conditions on parameters. These model exten-
sions make it possible to incorporate new types of observations that directly refer
to the parameters, to specify parameters in order to avoid singularity of the normal
equations, or to incorporate the results of prior adjustments. For example, evaluating
conditions between the parameters is the basis for hypothesis testing. These cases
are obtained by specifying the coefficient matrices A and B of the mixed model. For
example, the mixed models (2.4.1) can be specified as

f1(�1a, xa) = 0

�2a = f2(xa)
(2.5.8)

The linearized form is

B1v1 + A1x +w1 = 0 (2.5.9)

v2 = A2x + �2 (2.5.10)

The specifications are B2 = −I and �2 = w2.
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2.5.4 Sequential Observation Equation Model

For the observation equation model we obtain

�1a = f1(xa)

�2a = f2(xa)
(2.5.11)

with the linearized form being

v1 = A1x + �1 (2.5.12)

v2 = A2x + �2 (2.5.13)

The stochastic model is given by the matrices P1 and P2. With proper choice of the
elements of A2 and P2, it is possible to introduce a variety of relations about the
parameters.

As a first case, consider nonlinear functions of parameters. The design matrix A2
contains the partial derivatives, and �2b contains the observed value of the function.
This is the case of weighted functions of parameters. Examples are the area or volume
of geometric figures as computed from coordinates, angles in geodetic networks,
and differences between parameters (coordinates). Each function contributes one
equation to (2.5.10) or (2.5.13). The respective expressions are listed in Table 2.5.2
and require no further discussion.

As a second case, consider information about individual parameters. This is a spe-
cial case of the general method discussed above. Each row of A2 contains a zero
with the exception of one position, which contains a 1. The number of rows in the
A2 matrix corresponds to the number of weighted parameters. The expressions of
Table 2.5.2 are still valid for this case. If information enters into the adjustment in
this manner, one speaks of the method of weighted parameters.

2.5.5 Observation Equation Model with Observed Parameters

Consider the case when all parameters are observed and weighted. The specifications
for the elements of (2.5.13) are as follows:

�2a = xa (2.5.14)

�2b = xb (2.5.15)

A2 = I (2.5.16)

�2 = f2(x0) − �2b = x0 − xb (2.5.17)

The symbols xb and x0 denote the observed parameters and approximate parame-
ters. During the iterations, x0 converges toward the solution, whereas xb remains
unchanged just as does the vector �2b. Another special case occurs when the vec-
tor �2 is zero, which implies that the current values for the approximate parameters
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TABLE 2.5.3 Observed Parameters for the case
of Observation Equation Model

�1a = f1(xa) �2a = xa P =

[
P1 0
0 P2

]
v1 = A1x + �1 v2 = x + �2 �2 = x0 − xb

N1 = AT
1P1A1 N2 = P2

u1 = AT
1P1�1 u2 = P2�2

x̂ = −(N1 + P2)
−1(u1 + P2�2)

Qx = (N1 + P2)
−1

serve as observations of the parameters. This can generally be done if the intent is to
define the coordinate system by assigning weights to the current approximate param-
eters. Table 2.5.3 summarizes the solution for weighted parameters for observation
equations. The parameters are weighted simply by adding the respective weights to
the diagonal elements of the normal matrix. The parameters not weighted have a zero
in the respective diagonal elements of P2. This is a convenient way of weighting a
subset of parameters. Parameters can be fixed by assigning a large weight. Often the
specification P2 = I and �2b = 0, or xb = x0, is used as a way to stabilize an ill condi-
tioned system of equations. In the context of least squares this means that the current
point of expansion is equally weighted.

It is not necessary that the second group of observations represent the observed
parameters. Table 2.5.4 shows the case in which the first group consists of the
observed parameters. This approach has the unique feature that all observations
can be added to the adjustment in a sequential manner; the first solution is not
redundant since it is based solely on the values of the observed parameters. It is
important, once again, to distinguish the roles of the observed parameters xb and the
approximations x0. Because in most cases the P1 matrix will be diagonal, no matrix
inverse computation is required. The size of the matrix T (Table 2.5.2) equals the
number of observations in the second group. Thus, if one observation is added at a
time, only a 1 × 1 matrix must be inverted. The residuals can be computed directly
from the mathematical model as desired.

2.5.6 Mixed Model with Conditions

A third case pertains to the role of the weight matrix of the parameters. The weight
matrix expresses the quality of the information known about the observed parameters.
For the adjustment to be meaningful, one must make every attempt to obtain a weight
matrix that truly reflects the quality of the additional information. Low weights, or,
equivalently, large variances, imply low precision. Even low-weighted parameters
can have, occasionally, a positive effect on the quality of the least-squares solution. If
the parameters or functions of the parameters are introduced with an infinitely large
weight, one speaks of conditions between parameters. The only specifications for
implementing conditions are

P−1
2 = 0 (2.5.18)
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TABLE 2.5.4 Sequential Solution without
Inverting the Normal Matrix. Case: Observation
Equation Model

�1a = xa

�2a = f2a(xa)
P =

[
P1 0
0 P2

]
v1 = x + �1

�1 = x0 − xb

v2 = A2x + �2

N1 = P1 N2 = AT
2P2A2

u1 = P1�1 u2 = AT
2P2�2

x̂1 = −(x0 − xb)

Q1 = P−1
1

vTPv1 = 0

x̂i = x̂i−1 + Δx̂i−1

vTPvi = vTPvi−1 + ΔvTPvi−1

Qi = Qi−1 + ΔQi−1

T =
(
P−1

i + AiQi−1A
T
i

)−1

Δxi−1 = −Qi−1A
T
i T(Aix̂i−1 + �i)

ΔvTPvi−1 = (Aix̂i−1 + �i)
TT(Aix̂i−1 + �i)

ΔQi−1 = −Qi−1A
T
i TAiQi−1

and

P2 = ∞ (2.5.19)

The respective mathematical models are

f1(�1a, xa) = 0

g(xa) = 0
(2.5.20)

with
B1v1 + A1x +w1 = 0 (2.5.21)

A2x + �2 = 0 (2.5.22)

2.5.7 Observation Equation Model with Conditions

Similar to the previous case we have for the observation equation model,

�1a = f(xa)

g(xa) = 0
(2.5.23)

with v1 = A1x + �1 (2.5.24)

A2x + �2 = 0 (2.5.25)
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Table 2.5.5 contains the expression of the sequential solution with conditions
between parameters. If (2.5.19) is used to impose the conditions, the largest numbers
that can still be represented in the computer should be used. In most situations,
it will be readily clear what constitutes a large weight; the weight must simply
be large enough so that the respective observations or parameters do not change
during the adjustment. For sequential solution, the solution of the first group must
exist. Conditions cannot be imposed sequentially to eliminate a singularity in the
first group, e.g., conditions should not be used sequentially to define the coordinate
system. A one-step solution is given by (2.4.32).

The a posteriori variance of unit weight is always computed from the final set
of residuals. The degree of freedom increases by 1 for every observed parameter
function, weighted parameter, or condition. In nonlinear adjustments the linearized
condition must always be evaluated for the current point of expansion, i.e., the point
of expansion of the last iteration.

The expressions in Table 2.5.2 and Table 2.5.5 are almost identical. The only dif-
ference is that the matrix T contains the matrix M2 in Table 2.5.2.

2.6 MINIMAL AND INNER CONSTRAINTS

This section deals with the implementation of minimal and inner constraints to the
observation equation model. The symbol r denotes the rank of the design matrix,
R
(

nAu

)
= R

(
ATPA

)
= r ≤ u. Note that the use of the symbol r in this context is

entirely different from its use in the mixed model, where r denotes the number of
equations. The rank deficiency of u − r is generally caused by a lack of coordinate
system definition. For example, a network of distances is invariant with respect to
translation and rotation, a network of angles is invariant with respect to translation,
rotation, and scaling, and a level network (consisting of measured height differences)
is invariant with respect to a translation in the vertical. The rank deficiency is dealt
with by specifying u − r conditions of the parameters. Much of the theory of inner
and minimal constraint solution is discussed by Pope (1971). The main reason for
dealing with minimal and inner constraint solutions is that this type of adjustment is
important for the quality control of observations. Inner constraint solutions have the
additional advantage that the standard ellipses (ellipsoids) represent the geometry as
implied by the A and P matrices.

The formulation of the least-squares adjustment for the observation equation
model in the presence of a rank deficiency is

nv1 = nAu xB + n�1 (2.6.1)

P = 𝜎2
0 𝜮

−1
�b

(2.6.2)

u−rBu xB = 0 (2.6.3)

The subscript B indicates that the solution of the parameters x depends on the special
condition implied by the B matrix in (2.6.3). This is the observation equation model
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with conditions between the parameters that was treated in Section 2.5. The one-step
solution is given by (2.4.20),[

ATPA BT

B 0

] [
x̂B

−k̂2

]
=

[
−ATP�

0

]
(2.6.4)

The matrix on the left side of (2.6.4) is a nonsingular matrix if the conditions (2.6.3)
are linearly independent, i.e., the (u − r) × u matrix B has full row rank, and the rows
are linear-independent of the rows of the design matrix A. A general expression for
the inverse is obtained from[

ATPA BT

B 0

] [
QB ST

S R

]
=

[
I 0
0 I

]
(2.6.5)

This matrix equation gives the following four equations of submatrices:

ATPAQB + BTS = I (2.6.6)

ATPAST + BTR = 0 (2.6.7)

BQB = 0 (2.6.8)

BST = I (2.6.9)

The solution of these equations requires the introduction of the (u − r) × u matrix E,
whose rows span the null space of the design matrix A or the null space of the normal
matrix. There is a matrix E such that(

AT PA
)
ET = 0 (2.6.10)

or
AET = 0 or EAT = 0 (2.6.11)

Because the rows of B are linearly independent of the rows of A, the (u − r) × (u − r)
matrix BET has full rank and thus can be inverted. Multiplying (2.6.6) by E from the
left and using (2.6.11), we get

S =
(
EBT)−1E (2.6.12)

This expression also satisfies (2.6.9). Substituting S into (2.6.7) gives

ATPAET(BET)−1
+ BTR = 0 (2.6.13)

Because of (2.6.10), this expression becomes

BTR = 0 (2.6.14)
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Because B has full rank, it follows that the matrix R = 0. Thus,[
ATPA BT

B 0

]−1

=

[
QB ET(BET)−1(

EBT)−1 E 0

]
(2.6.15)

Substituting expression (2.6.12) for S into (2.6.6) gives the nonsymmetric matrix

TB ≡ ATPAQB = I − BT(EBT)−1 E (2.6.16)

This expression is modified with the help of (2.6.8), (2.6.10), and (2.6.16),(
ATPA + BTB

)[
QB + ET(BET)−1 (EBT)−1E

]
= I (2.6.17)

It can be solved for QB:

QB =
(
ATPA + BTB

)−1
− ET (EBT BET)−1 E (2.6.18)

The least-squares solution of x̂B subject to condition (2.6.3) is, according to (2.6.4),
(2.6.5), and (2.6.15),

x̂B = −QBA
TP� (2.6.19)

The cofactor matrix of the parameters follows from the law of variance-covariance
propagation

QxB
= QBA

TPAQB = QB (2.6.20)

The latter part of (2.6.20) follows from (2.6.16) upon multiplying from the left by QB

and using (2.6.8). Multiplying (2.6.16) from the right by ATPA and using (2.6.11)
gives

ATPA = ATPAQBA
TPA (2.6.21)

The relation implied in (2.6.20) is

QBA
TPAQB = QB (2.6.22)

There are u − r conditions required to solve the least-squares problem, i.e., the
minimal number of conditions is equal to the rank defect of the design (or normal)
matrix. Any solution derived in this manner is called a minimal constraint solution.
There are obviously many different sets of minimal constraints possible for the same
adjustment. The only prerequisite on the B matrix is that it have full row rank and
that its rows be linearly independent of A. Assume that

CxC = 0 (2.6.23)

is an alternative set of conditions. The solution x̂C follows from the expressions given
by simply replacing the matrix B by C. The pertinent expressions are

x̂C = −QCA
T P� (2.6.24)

QC =
(
ATPA +CTC

)−1
− ET(ECT CET)−1E (2.6.25)
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TC ≡ ATPAQC = I − CT (ECT)−1 E (2.6.26)

ATPAQCA
TPA = ATPA (2.6.27)

QCA
T PAQC = QC (2.6.28)

The solutions pertaining to the various alternative sets of conditions are all related.
In particular,

x̂B = TT
B x̂C (2.6.29)

QB = TT
BQCTB (2.6.30)

x̂C = TT
C x̂B (2.6.31)

QC = TT
C QBTC (2.6.32)

Equations (2.6.29) to (2.6.32) constitute the transformation of minimal control, i.e.,
they relate the adjusted parameters and the covariance matrix for different mini-
mal constraints. These transformation expressions are readily proven. For example,
by using (2.6.24), (2.6.16), (2.6.26), and (2.6.11), we obtain

TT
Bx̂C = −TT

B QCA
T P�

= −QBA
T PAQCA

T P�

= −QB

[
I −CT(ECT)−1E

]
ATP�

= −QBA
TP�

= x̂B (2.6.33)

With (2.6.26), (2.6.21), and (2.6.28), it follows that

TT
CQBTC = QCA

TPAQBA
T PAQC

= QCA
T PAQC

= QC (2.6.34)

Instead of using the general condition (2.6.23), we can use the condition

ExP = 0 (2.6.35)

The rows of E are linearly independent of A because of (2.6.11). Thus, replacing the
matrix C by E in (2.6.24) through (2.6.32) gives this special solution:

x̂P = −QPA
TP� (2.6.36)

QP =
(
ATPA + ETE

)−1
− ET (EET EET)−1E (2.6.37)
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TP ≡ AT PAQP = I − ET (EET)−1 E (2.6.38)

ATPAQPA
TPA = ATPA (2.6.39)

QPA
TPAQP = QP (2.6.40)

x̂B = TT
Bx̂P (2.6.41)

QB = TT
BQPTB (2.6.42)

x̂P = TT
Px̂B (2.6.43)

QP = TT
PQBTP (2.6.44)

The solution (2.6.36) is called the inner constraint solution. The matrix TP in (2.6.38)
is symmetric. The matrix QP is a generalized inverse, called the pseudoinverse of the
normal matrix; the following notation is used:

QP = N+ =
(
AT PA

)+
(2.6.45)

The pseudoinverse of the normal matrix is computed from available algorithms
of generalized matrix inverses or, equivalently, by finding the E matrix and using
equation (2.6.37). For typical applications in surveying, the matrix E can be readily
identified. Because of (2.6.11) the solution (2.6.36) can also be written as

x̂P = −
(
ATPA + ET E

)−1AT P� (2.6.46)

Note that the covariance matrix of the adjusted parameters is

𝜮x = 𝜎̂2
0QB,C,P (2.6.47)

depending on whether constraint (2.6.3), (2.6.23), or (2.6.35) is used.
The inner constraint solution is yet another minimal constraint solution, although it

has some special features. It can be shown that among all possible minimal constraint
solutions, the inner constraint solution also minimizes the sum of the squares of the
parameters, i.e.,

xTx = minimum (2.6.48)

This property can be used to obtain a geometric interpretation of the inner constraints.
For example, it can be shown that the approximate parameters x0 and the adjusted
parameters x̂P can be related by a similarity transformation whose least-squares esti-
mates of translation and rotation are zero. For inner constraint solutions, the standard
ellipses show the geometry of the network and are not affected by the definition of the
coordinate system. It can also be shown that the trace of QP is the smallest compared
to the trace of the other cofactor matrices. All minimal constraint solutions yield the
same adjusted observations, a posteriori variance of unit weight, covariance matrices
for residuals, and the same values for estimable functions of the parameters and their
variances. The next section presents a further explanation of quantities invariant with
respect to changes in minimal constraints.
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2.7 STATISTICS IN LEAST-SQUARES ADJUSTMENT

If the observations have a multivariate normal distribution as in (2.2.1) and the weight
matrix P is the inverse of the variances-covariance matrix as in (2.2.3), we can carry
out an adjustment and make objective statements about the data. We first develop the
fundamental chi-squared test. Because this test is of such importance, the derivations
are given in detail. Next, another test is developed for testing the sequential solution
and applied to the testing of a general linear hypothesis. Ellipses of standard deviation,
also called error ellipses for short, are very popular in surveying to express positioning
accuracy. Therefore, these probability regions are derived and detailed geometric and
statistical interpretation is provided.

2.7.1 Fundamental Test

The derivation of the distribution is based on the assumption that the observations
have a multivariate normal distribution. The dimension of the distribution equals the
number of observations. In the subsequent derivations the observation equation model
is used. However, these statistical derivations could just as well have been carried out
with the mixed model.

The observation equations are
v = Ax + �0 − �b

= Ax + � (2.7.1)

A first assumption is that the residuals are randomly distributed, i.e., the probabil-
ity for a positive or negative residual of the equal magnitude is the same. From this
assumption it follows that

E(v) = 0 (2.7.2)

Because x and �0 are constant vectors, it further follows that the mean and variance-
covariance matrix, respectively, are

E(�b) = �0 + Ax (2.7.3)

E
(
vvT

)
= E

{[
�b − E(�b)

][
�b − E(�b)

]T}
= 𝜮�b

= 𝜎2
0P

−1 (2.7.4)

The second basic assumption refers to the type of distribution of the observations.
It is assumed that the distribution is multivariate normal. Using the mean (2.7.3) and
the covariance matrix (2.7.4), the n-dimensional multivariate normal distribution of
�b is written as

�b ∼ Nn

(
�0 + Ax,𝜮�b

)
(2.7.5)

Alternative expressions are

� ∼ Nn

(
− Ax,𝜮�b

)
(2.7.6)

v ∼ Nn

(
0,𝜮�b

)
= Nn

(
0, 𝜎2

0 P
−1) (2.7.7)
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By applying two orthogonal transformations we can conveniently derive vTPv.
If 𝜮�b

happens to be nondiagonal, one can always find observations that are stochas-
tically independent and have a unit variate normal distribution. As discussed in
Appendix A, for a positive definite matrix P there exists a nonsingular matrix D
such that

D = E𝜦−1∕2 (2.7.8)

DTP−1 D = I (2.7.9)

DTv = DTAx +DT� (2.7.10)

v = Ax + � (2.7.11)

� = DT�0 −DT�b = �0 − �b (2.7.12)

E(v) = DTE(v) = 0 (2.7.13)

𝜮v = 𝜎2
0D

TP−1D = 𝜎2
0 I (2.7.14)

v ∼ Nn

(
0, 𝜎2

0 I
)

(2.7.15)

The columns of the orthogonal matrixE consist of the normalized eigenvectors ofP−1;
𝜦 is a diagonal matrix having the eigenvalues of P−1 at the diagonal. The quadratic
form vTPv remains invariant under this transformation because

R ≡ vTPv = vT
𝜦

1∕2ETPE𝜦1∕2v = vT
𝜦

1∕2
𝜦

−1
𝜦

1∕2v = vTv (2.7.16)

If the covariance matrix𝜮�b
has a rank defect, then one could use matrix F of (A.3.17)

for the transformation. The dimension of the transformed observations �b equals the
rank of the covariance matrix.

In the next step, the parameters are transformed to a new set that is stochastically
independent. To keep the generality, let the matrix A in (2.7.11) have less than full
column rank, i.e., R(A) = r < u. Let the matrix F be an n × r matrix whose columns
constitute an orthonormal basis for the column space of A. One such choice for the

columns of F may be to take the normalized eigenvectors of AA
T

. Let G be an
n × (n − r) matrix, such that [F G] is orthogonal and such that the columns of G
constitute an orthonormal basis to the n − r-dimensional null space of AA

T
. Such a

matrix always exists. There is no need to compute this matrix explicitly. With these
specifications we obtain[

FT

GT

] [
F G

]
=

[
FTF FTG
GTF GTG

]
=

[
rIr 0
0 n−rIn−r

]
(2.7.17)[

F G
] [
F G

]T
= FFT +GGT = I (2.7.18)

A
T
G = 0 (2.7.19)

GTA = 0 (2.7.20)
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The required transformation is[
FT

GT

]
v =

[
FT

GT

]
Ax +

[
FT

GT

]
� (2.7.21)

or, equivalently, [
FT v
GT v

]
=

[
FT Ax

0

]
+

[
FT �

GT �

]
(2.7.22)

Labeling the newly transformed observations by z, i.e.,

z =

[
z1
z2

]
=

[
FT �

GT �

]
(2.7.23)

we can write (2.7.22) as

vz =

[
vz1

vz2

]
=

[
FT Ax

0

]
+

[
z1
z2

]
(2.7.24)

There are r random variables in z1 and n − r random variables in z2. The quadratic
form again remains invariant under the orthogonal transformation, since

vT
z vz = vT (FFT +GGT) v

= vTv = R (2.7.25)

according to (2.7.18). The actual quadratic form is obtained from (2.7.24),

R = vT
z vz =

(
FT Ax + z1

)T (FT Ax + z1

)
+ zT

2z2 (2.7.26)

The least-squares solution requires that R be minimized by variation of the parame-
ters. Generally, equating partial derivatives with respect to x to zero and solving the
resulting equations gives the minimum. The special form of (2.7.26) permits a much
simpler approach. The expressions on the right side of equation (2.7.26) consist of the
sum of two positive terms (sum of squares). Because only the first term is a function
of the parameters x, the minimum is achieved if the first term is zero, i.e.,

−rF
T
n nAu ux̂1 = z1 (2.7.27)

Note that the caret identifies the estimated parameters. Consequently, the estimate of
the quadratic form is

R̂ = zT
2 z2 (2.7.28)

Because there are r < u equations for the u parameters in (2.7.27), there always
exists a solution for x̂. The simplest approach is to equate u − r parameters to zero.
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This would be identical to having these u − r parameters treated as constants in the
adjustment. They could be left out when setting up the design matrix and, thus, the
singularity problem would be avoided altogether. Equation (2.7.27) can be solved
subject to u − r general conditions between the parameters. The resulting solution
is a minimal constraint solution. If the particular condition (2.6.35) is applied, one
obtains the inner constraint solution. If A has no rank defect, then the system (2.7.27)
consists of u equations for u unknowns.

The estimate for the quadratic form (2.7.28) does not depend on the parameters
x and, thus, is invariant with respect to the selection of the minimal constraints for
finding the least-square estimate of x. Moreover, the residuals themselves are inde-
pendent of the minimal constraints. Substituting the solution (2.7.27) into (2.7.22)
gives [

FT

GT

]
v̂ =

[
0

GT �

]
(2.7.29)

Since the matrix [F G] is orthonormal, the expression for the residuals becomes

v̂ =
[
F G

] [ 0
GT �

]
= GGT� (2.7.30)

Thus, the residuals are independent of the specific solution for x̂. The matrix G
depends only on the structure of the design matrixA. By applying the law of variance-
covariance propagation to (2.7.30), we clearly see that the covariance matrix of the
adjusted residuals, and thus the covariance matrix of the adjusted observations, does
not depend on the specific set of minimal constraints. Note that the transformation
(2.7.10) does not invalidate these statements since the D matrix is not related to the
parameters.

Returning to the derivation of the distribution of vTPv, we find from (2.7.23) that

E(z) =
[
−FT Ax

0

]
(2.7.31)

using (2.7.20) and the fact that E(�) = −Ax according to (2.7.11). Making use of
(2.7.15) the covariance matrix is

𝜮z = 𝜎2
0

[
FT

GT

]
I
[
F G

]
= 𝜎2

0

[
FTF FTG
GTF GTG

]
= 𝜎2

0

[
I 0
0 I

]
(2.7.32)

Since a linear transformation of a random variable with multivariate normal distri-
bution results in another multivariate normal distribution according to (A.5.68), it
follows that z is distributed as

z ∼ Nn

([
−FTAx

0

]
, 𝜎2

0

[
rIr 0
0 n−rIn−r

])
(2.7.33)
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The random variables z1 and z2 are stochastically independent, as are the individual
components. From equation (A.5.71) it follows that

z2 ∼ Nn−r

(
0, 𝜎2

0 I
)

(2.7.34)

Thus

z2i ∼ n
(
0, 𝜎2

0

)
(2.7.35)

z2i

𝜎0
∼ n(0, 1) (2.7.36)

are unit variate normal distributed. As listed in Appendix A.5.2, the square of a stan-
dardized normal distributed variable has a chi-square distribution with one degree of
freedom. In addition, the sum of chi-square distributed variables is also a chi-square
distribution with a degree of freedom equal to the sum of the individual degrees of
freedom. Using these functions of random variables, it follows that vTPv

R̂

𝜎2
0

=
zT

2z2

𝜎2
0

=
n−r∑
i=1

z2
2i

𝜎2
0

∼ 𝜒2
n−r (2.7.37)

has a chi-square distribution with n − r degrees of freedom.
Combining the result of (2.7.37) with the expression for the a posteriori variance

of unit weight of Table 2.5.1, we obtain the formulation for a fundamental statistical
test in least-squares estimation:

vTPv
𝜎2

0

=
𝜎̂2

0

𝜎2
0

(n − r) ∼ 𝜒2
n−r (2.7.38)

Note that n − r is the degree of freedom of the adjustment. If there is no rank defi-
ciency in the design matrix, the degree of freedom is n − u. Based on the statistics
(2.7.38), the test can be performed to find out whether the adjustment is distorted.
The formulation of the hypothesis is as follows:

H0 ∶ 𝜎2
0 = 𝜎̂2

0 (2.7.39)

H1 ∶ 𝜎2
0 ≠ 𝜎̂2

0 (2.7.40)

The zero hypothesis states that the a priori variance of unit weight statistically equals
the a posteriori variance of unit weight. Recall that the a posteriori variance of unit
weight is a random variable; the adjustment makes a sample value available for this
quantity on the basis of the observations (the samples). Both variances of unit weight
do not have to be numerically equal but they should be statistically equal in the sense
of (2.3.32). If the zero hypothesis is accepted, the adjustment is judged to be correct.
If the numerical value

𝜒2 =
𝜎̂2

0

𝜎2
0

(n − r) =
vTPv
𝜎2

0

(2.7.41)
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TABLE 2.7.1 Selected Values for Chi-Square

Degree of
Freedom (DF)

Probability 𝛼

0.975 0.950 0.050 0.025

1 0.00 0.00 3.84 5.02
5 0.83 1.15 11.07 12.83
10 3.25 3.94 18.31 20.48
20 9.59 10.85 31.41 34.17
50 32.36 34.76 67.50 71.42
100 74.22 77.93 124.34 129.56

is such that
𝜒2 < 𝜒2

n−r,1−𝛼∕2 (2.7.42)

𝜒2 > 𝜒2
n−r,𝛼∕2 (2.7.43)

then the zero hypothesis is rejected. The significance level 𝛼, i.e., the probability of a
type-I error, or the probability of rejecting the zero hypothesis even though it is true,
is generally fixed to 0.05. Here the significance level is the sum of the probabilities
in both tails. Table 2.7.1 lists selected values from the chi-square distribution 𝜒2

n−r,𝛼 .
Rejection of the zero hypothesis is taken to indicate that something is wrong with
the adjustment. The cause for rejection remains to be clarified. Figure 2.7.1 shows
the limits for the a posteriori variance of unit weight as a function of the degree of
freedom given the significance level 𝛼 = 0.05.

Figure 2.7.1 Limits on the a posteriori variance of unit weight. The figure refers to
𝛼 = 0.05.
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The probability 𝛽 of the type-II error, i.e., the probability of rejecting the alterna-
tive hypothesis and accepting the zero hypothesis even though the alternative hypoth-
esis is true, is generally not computed. Type-II errors are considered in Section 2.8.2
in regards to reliability and in Section 6.5.3 in regards to discernibility of estimated
ambiguity sets.

2.7.2 Testing Sequential Least Squares

The test statistics for testing groups of observations is based on vTPv∗ and the change
ΔvTPv. According to Table 2.5.2 we have

ΔvTPv = (A2x
∗ + �2)

TT(A2x
∗ + �2)

= zT
3Tz3 (2.7.44)

The new random variable z3 is a function of observations �1 and �2. Applying the
laws of propagation of mean and variance, one finds

E(z3) = A2E(x∗) + E(�2) = A2x − A2x = 0 (2.7.45)

𝜮z3
= T−1 (2.7.46)

z3 ∼ N
(
0, 𝜎2

0 T
−1) (2.7.47)

Carrying out the orthonormal transformation yields a random vector whose compo-
nents are stochastically independent and normally distributed. By standardizing these
distributions and summing the squares of these random variables, it follows that

ΔvTPv
𝜎2

0

=
zT

3Tz3

𝜎2
0

∼ 𝜒2
n2

(2.7.48)

has a chi-square distribution with n2 degrees of freedom, where n2 equals the num-
ber of observations in the second group. The random variables (2.7.48) and (2.7.38)
are stochastically independent. To prove this, consider the new random variable z =
[z1 z2 z3]

T , which is a linear function of the random variables � (first group) and
�2, according to equations (2.7.10), (2.7.23), and (2.7.44). By using the covariance
matrix (2.4.2) and applying variance-covariance propagation, we find that the covari-
ances between the zi are zero. Because the distribution of the z is multivariate normal,
it follows that the random variables zi are stochastically independent. Since ΔvTPv
is a function of z3 only, it follows that vTPv in (2.7.38), which is only a function of
z2, and ΔvTPv in (2.7.48) are stochastically independent. Thus, it is permissible to
form the following ratio of random variables:

ΔvTPv(n1 − r)

vTPv∗(n2)
∼ Fn2, n1−r (2.7.49)

which has an F distribution.
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TABLE 2.7.2 Selected Values for F

n1

n2 1 2 3 4

5 6.61 5.79 5.41 5.19
10 4.96 4.10 3.71 3.48
20 4.35 3.49 3.10 2.87
60 4.00 3.15 2.76 2.53
120 3.92 3.07 2.68 2.45
∞ 3.84 3.00 2.60 2.37

Thus the fundamental test in sequential adjustment is based on the F distribution.
The zero hypothesis states that the second group of observations does not distort
the adjustment, or that there is no indication that something is wrong with the second
group of observations. The alternative hypothesis states that there is an indication that
the second group of observations contains errors. The zero hypothesis is rejected, and
the alternative hypothesis is accepted if

F < Fn2, n1−r, 1−𝛼∕2 (2.7.50)

F > Fn2, n1−r, 𝛼∕2 (2.7.51)

Table 2.7.2 lists selected values from the F distribution as a function of the degrees
of freedom and probability. The tabulation refers to the parameters as specified in
Fn1, n2, 0.05.

2.7.3 General Linear Hypothesis

The general linear hypothesis deals with linear conditions between parameters. Non-
linear conditions are first linearized. The basic idea is to test the change ΔvTPv for its
statistical significance. Any of the three adjustment models can be used to carry out
the general linear hypothesis test. For the observation equation model with additional
conditions between the parameters, one has

v1 = A1x + �1 (2.7.52)

H0 ∶ A2x + �2 = 0 (2.7.53)

Equation (2.7.53) expresses the zero hypothesis H0. The solution of the combined
adjustment is found in Table 2.5.5. Adjusting (2.7.52) alone results in vTPv∗, which
has a chi-square distribution with n − r degrees of freedom according to (2.7.48). The
change ΔvTPv resulting from the condition (2.7.53) is

ΔvTPv = (A2x
∗ + �2)

T T(A2x
∗ + �2) (2.7.54)
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The expression in (2.7.54) differs from (2.7.44) in two respects. First, the matrix T
differs, i.e., the matrix T in (2.7.54) does not contain the P2 matrix. Second, the quan-
tity �2 is not a random variable. These differences, however, do not matter in the proof
of stochastic independence of vTPv∗ and ΔvTPv. Analogously to (2.7.44), we can
express the change ΔvTPv in (2.7.54) as a function of a new random variable z3. The
proof for stochastic independence follows the same lines of thought as given before
(for the case of additional observations). Thus, just as (2.7.49) is the basis for testing
two groups of observations, the basic test for the general linear hypothesis (2.7.53) is

ΔvTPv(n1 − r)

vTPv∗ n2
∼ Fn2, n1−r (2.7.55)

A small ΔvTPv implies that the null hypothesis (2.7.53) is acceptable, i.e., the con-
ditions are in agreement with the observations. The conditions do not impose any
distortions on the adjustment. The rejection criterion is based on the one-tail test at
the upper end of the distribution. Thus, reject H0 at a 100𝛼% significance level if

F > Fn2, n1−r,𝛼 (2.7.56)

The general formulation of the null hypothesis in (2.7.53) makes it possible to
test any hypothesis on the parameters, so long as the hypothesis can be expressed
in a mathematical equation. Nonlinear hypotheses must first be linearized. Simple
hypotheses could be used to test whether an individual parameter has a certain numer-
ical value, whether two parameters are equal, whether the distance between two sta-
tions has a certain length, whether an angle has a certain size, etc. For example,
consider the hypothesis

H0 ∶ x − xT = 0 (2.7.57)

H1 ∶ x − xT ≠ 0 (2.7.58)

The zero hypothesis states that the parameters equal a certain (true) value xT . From
(2.7.53) it follows that A2 = I and �2 = −xT . Using these specifications we can use
T = N in (2.7.54), and the statistic (2.7.55) becomes

(x̂∗ − xT )
TN(x̂∗ − xT )

𝜎̂2
0 r

∼ Fr, n1−r, 𝛼 (2.7.59)

where the a posteriori variance of unit weight (first group only) has been substituted
for vTPv∗. Once the adjustment of the first group (2.7.52) is completed, the values
for the adjusted parameters and the a posteriori variance of unit weight are entered
in (2.7.59), and the fraction is computed and compared with the F value (taking the
proper degrees of freedom and the desired significance level into account). Rejection
or acceptance of the zero hypothesis follows rule (2.7.56).

Note that one of the degrees of freedom in (2.7.59) is r = R(N) < u, instead of u,
which equals the number of parameters, even though equation (2.7.57) expresses u
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conditions. Because of the possible rank defect of the normal matrix N, the distri-
bution of ΔvTPv in (2.7.54) is a chi-square distribution with r degrees of freedom.
Consider the derivation leading to (2.7.48). The u components of z3 are transformed
to r stochastically independent unit variate normal distributions that are then squared
and summed to yield the distribution ofΔvTPv. The interpretation is that (2.7.57) rep-
resents one hypothesis on all parameters x, and not u hypotheses on the u components
on x.

Expression (2.7.59) can be used to define the r-dimensional confidence region.
Replace the particular xT by the unknown parameter x, and drop the asterisk; then

P

[(
x̂ − x

)T N(x̂ − x)

𝜎̂2
0 r

≤ Fr, n1−r, 𝛼

]
= ∫

Fr, n1−r, 𝛼

0
Fr, n1−rdF = 1 − 𝛼 (2.7.60)

The probability region described by the expression on the left side of
equation (2.7.60) is an R(N)-dimensional ellipsoid. The probability region is
an ellipsoid because the normal matrix N is positive definite or, at least, semipositive
definite. If one identifies the center of the ellipsoid with x̂, then there is (1 − 𝛼)
probability that the unknown point x lies within the ellipsoid. The orientation and
the size of this ellipsoid are a function of the eigenvectors and eigenvalues of the
normal matrix, the rank of the normal matrix, and the degree of freedom. Consider
the orthonormal transformation

z = FT (x − x̂) (2.7.61)

with F as specified in (A.3.17) and containing the normalized eigenvectors of N, then

FTNF = 𝜦 (2.7.62)

with 𝜦 containing the r eigenvalues of N, and

(x̂ − x)TN(x̂ − x) = zT
𝜦z =

r∑
i=1

z2
i 𝜆i =

r∑
i=1

z2
i(

1∕
√
𝜆i

)2
(2.7.63)

Combining equations (2.7.60) and (2.7.63), we can write the r-dimensional ellipsoid,
or the r-dimensional confidence region, in the principal axes form:

P
⎡⎢⎢⎣

z2
1(

𝜎̂0

√
r Fr, n−r, 𝛼∕𝜆1

)2
+ · · · +

z2
r(

𝜎̂0

√
r Fr, n−r, 𝛼∕𝜆r

)2
≤ 1

⎤⎥⎥⎦ = 1 − 𝛼 (2.7.64)

The confidence region is centered at x̂. Whenever the zero hypothesis H0 of (2.7.57)
is accepted, the point xT falls within the confidence region. The probability that the
ellipsoid contains the true parameters xT is 1 − 𝛼. For these reasons, one naturally
would like the ellipsoid to be small. Equation (2.7.64) shows that the semimajor axes
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are proportional to the inverse of the eigenvalues of the normal matrix. It is exactly this
relationship that makes us choose the eigenvalues of N as large as possible, provided
that we have a choice through appropriate network design variation. As an eigenvalue
approaches zero, the respective axis of the confidence ellipsoid approaches infinity;
this is an undesirable situation, both from a statistical point of view and because of
the numerical difficulties encountered during the inversion of the normal matrix.

2.7.4 Ellipses as Confidence Regions

Confidence ellipses are statements of precision. They are frequently used in con-
nection with two-dimensional networks in order to make the directional precision
of station location visible. Ellipses of confidence follow by limiting the hypothesis
(2.7.57) to two parameters, i.e., the Cartesian coordinates of a station. Of course, in a
three-dimensional network one can compute three-dimensional ellipsoids or several
ellipses, e.g., one for the horizontal and others for the vertical. Confidence ellipses
or ellipsoids are not limited to the specific application of networks. However, in net-
works the confidence regions can be referenced with respect to the coordinate system
of the network and thus can provide an integrated view of the geometry of the confi-
dence regions and the network.

Consider the following hypothesis:

H0 ∶ xi − xi,T = 0 (2.7.65)

where the notation
xi =

[
x1 x2

]T
(2.7.66)

is used. The symbols x1 and x2 denote the Cartesian coordinates of a two-dimensional
network station Pi. The test of this hypothesis follows the outline given in the previous
section. The A2 matrix is of size 2 × u because there are two separate equations in the
hypothesis and u components in x. The elements of A2 are zero except those elements
of rows 1 and 2, which correspond to the respective positions of x1 and x2 in x. With
these specifications it follows that

Qi = A2N
−1AT

2 =

[
qx1

qx1, x2

qx2, x1
qx2

]
(2.7.67)

where Qi contains the respective elements of the inverse of the normal matrix. With
these specifications T = Q−1

i and expression (2.7.55) becomes

1

2𝜎̂2
0

(x̂i − xi,T )
TQ−1

i (x̂i − xi,T ) ∼ F2, n−r (2.7.68)

Given the significance level 𝛼, the hypothesis test can be carried out. The two-
dimensional confidence region is

P

[(
x̂i − xi

)TQ−1
i

(
x̂i − xi

)
2𝜎̂2

0

≤ F2, n−r, 𝛼

]
= ∫

F2, n−r, 𝛼

0
F2,n−r dF = 1 − 𝛼 (2.7.69)
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The size of the confidence ellipses defined by (2.7.69) depends on the degree of free-
dom of the adjustment and the significance level. The ellipses are centered at the
adjusted position and delimit the (1 − 𝛼) probability area for the true position. The
principal axis form of (2.7.69) is obtained through orthogonal transformation. Let Ri
denote the matrix whose rows are the orthonormal eigenvectors of Qi, then

RT
i Q

−1
i Ri = 𝜦

−1
i (2.7.70)

according to (A.3.16). The matrix𝜦i is diagonal and contains the eigenvalues 𝜆Q
i and

𝜆
Q
2 of Q1. With

zi = RT
i (x̂i − xi) (2.7.71)

Expression (2.7.69) becomes

P

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎣

z2
1(

𝜎̂0

√
𝜆

Q
1 2F2,n−r,𝛼

)2
+

z2
2(

𝜎̂0

√
𝜆

Q
2 2F2,n−r,𝛼

)2

⎤⎥⎥⎥⎥⎦
≤ 1

⎫⎪⎪⎬⎪⎪⎭
= ∫

F2,n−r,𝛼

0
F2,n−r dF = 1 − 𝛼 (2.7.72)

For F2,n−r,𝛼 = 1∕2, the ellipse is called the standard ellipse or the error ellipse. Thus,
the probability enclosed by the standard ellipse is a function of the degree of freedom
n − r and is computed as follows:

P(standard ellipse) = ∫
1∕2

0
F2,n−r dF (2.7.73)

The magnification factor,
√

2F2, n−r, 𝛼 , as a function of the probability and the degree
of freedom, is shown in Table 2.7.3. The table shows immediately that a small degree
of freedom requires a large magnification factor to obtain, e.g., 95% probability.
It is seen that in the range of small degrees of freedom, an increase in the degree
of freedom rapidly decreases the magnification factor, whereas with a large degree
of freedom, any additional observations cause only a minor reduction of the mag-
nification factor. After a degree of freedom of about 8 or 10, the decrease in the
magnification factor slows down noticeably. Thus, based on the speed of decreasing
magnification factor, a degree of 10 appears optimal, considering the expense of addi-
tional observations and the little gain derived from them in the statistical sense. For a
degree of freedom of 10, the magnification factor is about 3 to cover 95% probability.

The hypothesis (2.7.65) can readily be generalized to three dimensions encom-
passing the Cartesian coordinates of a three-dimensional network station. The
magnification factor of the respective standard ellipsoid is

√
3F3, n−r, 𝛼 for it to con-

tain (1 − 𝛼) probability. Similarly, the standard deviation of an individual coordinate
is converted to a (1 − 𝛼) probability confidence interval by multiplication with
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TABLE 2.7.3 Magnification Factor for Standard Ellipses

Probability 1− 𝛼

n − r 95% 98% 99%

1 20.00 50.00 100.00
2 6.16 9.90 14.10
3 4.37 6.14 7.85
4 3.73 4.93 6.00
5 3.40 4.35 5.15
6 3.21 4.01 4.67
8 2.99 3.64 4.16
10 2.86 3.44 3.89
12 2.79 3.32 3.72
15 2.71 3.20 3.57
20 2.64 3.09 3.42
30 2.58 2.99 3.28
50 2.52 2.91 3.18
100 2.49 2.85 3.11
∞ 2.45 2.80 3.03

√
F1,n−r,𝛼 . These magnification factors are shown in Figure 2.7.2 for 𝛼 = 0.05. For

higher degrees of freedom, the magnification factors converge toward the respective
chi-square values because of the relationship r Fr,∞ = 𝜒2

r .
For drawing the confidence ellipse at station Pi, we need the rotation angle 𝜑

between the (xi) and (zi) coordinate systems as well as the semimajor and semiminor
axis of the ellipse. Let (yi) denote the translated (xi) coordinate system through the
adjusted point x̂i; then (2.7.71) becomes

zi = RT
i yi (2.7.74)

The eigenvectors of Qi determine the directions of the semiaxes, and the eigenval-
ues determine their lengths. Rather than computing the vectors explicitly, we choose
to compute the rotation angle 𝜑 by comparing coefficients from quadratic forms.
Figure 2.7.3 shows the rotational relation

zi =

[
cos 𝜑 sin 𝜑

− sin 𝜑 cos 𝜑

]
yi (2.7.75)

and (2.7.70) and (2.7.74) give the two quadratic forms

yT
i Qi yi = zT

i 𝛬i zi (2.7.76)
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Figure 2.7.2 Magnification factors for confidence regions. The values refer to 𝛼 = 0.05.

Figure 2.7.3 Rotation of the principal axis
coordinate system.

y1
z1

y2

z2

xi

φ

We substitute (2.7.75) into the right-hand side of (2.7.76) and the matrix elements
of Qi of (2.7.67) into the left-hand side and compare the coefficient of y1 y2 on both
sides, giving

sin 2𝜑 =
2qx1, x2

𝜆
Q
1 − 𝜆Q

2

(2.7.77)

The eigenvalues follow directly from the characteristic equation

|Qi − 𝜆
QI| = |||||qx1

− 𝜆Q qx1, x2

qx1, x2
qx2

− 𝜆Q

||||| = (
qx1

− 𝜆Q
)(

qx2
− 𝜆Q

)
− q2

x1, x2
= 0 (2.7.78)



56 LEAST-SQUARES ADJUSTMENTS

Figure 2.7.4 Defining elements of standard
ellipse.

xi

y1

y2

z1

z2

φ

The solution of the quadratic equation is

𝜆
Q
1 =

qx1
+ qx2

2
+

1
2

W (2.7.79)

𝜆
Q
2 =

qx1
+ qx2

2
−

1
2

W (2.7.80)

W =
√

(qx1
− qx2

)2 + 4q2
x1, x2

(2.7.81)

sin 2𝜑 =
2qx1, x2

W
(2.7.82)

cos 2𝜑 =
qx1

− qx2

W
(2.7.83)

The terms sin 2𝜑 and cos 2𝜑 determine the quadrant of 𝜑.
Figure 2.7.4 shows the defining elements of the standard ellipse. Recall

equation (2.7.72) regarding the interpretation of the standard ellipses as a confidence
region. In any adjustment, any two parameters can comprise xi, regardless of the
geometric meaning of the parameters. Examples are the intercept and slope in the
fitting of a straight line or ambiguity parameters in the case of GPS carrier phase
solutions. The components xi can always be interpreted as Cartesian coordinates for
drawing the standard ellipse and thus can give a graphical display of the covariance.
In surveying networks, the vectors xi contain coordinates of stations in a well-defined
coordinate system. If xi represents latitude and longitude or northing and casting,
the horizontal standard ellipse is computed. If xi contains the vertical coordinate and
easting, then the standard ellipse in the prime vertical is obtained.

Because the shape of the standard ellipses and ellipsoids depends on the geometry
of the network through the design matrix and the weight matrix, the geometric inter-
pretation is enhanced if the network and the standard ellipses are displayed together.
Occasionally, users prefer to compute coordinate differences and their covariance
matrix and plot relative standard ellipses.

2.7.5 Properties of Standard Ellipses

The positional error p of a station is directly related to the standard ellipse, as seen
in Figure 2.7.5. The positional error is the standard deviation of a station in a certain
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direction, say 𝜓 . It is identical with the standard deviation of the distance to a known
(fixed) station along the same direction 𝜓 , as computed from the linearized distance
equation and variance-covariance propagation. The linear function is

r = z1 cos 𝜓 + z2 sin 𝜓 (2.7.84)

Because of equations (2.7.70) and (2.7.71), the distribution of the random variable zi
is multivariate normal with[

z1
z2

]
∼ N

([
0
0

]
, 𝜎̂2

0

[
𝜆

Q
1 0
0 𝜆

Q
2

])
= N

([
0
0

]
,

[
a2 0
0 b2

])
(2.7.85)

The variance of the random variable r follows from the law of variance-covariance
propagation:

𝜎2
r = a2 cos2𝜓 + b2 sin2 𝜓 (2.7.86)

The variance (2.7.86) is geometrically related to the standard ellipse. Let the ellipse
be projected onto the direction 𝜓 . The point of tangency is denoted by P0. Because
the equation of the ellipse is

z2
1

a2
+

z2
2

b2
= 1 (2.7.87)

the slope of the tangent is

dz1

dz2
= −

z2a2

z1b2
= − tan 𝜓 (2.7.88)

See Figure 2.7.5 regarding the relation of the slope of the tangent and the angle 𝜓 .
The second part of (2.7.88) yields

z01

a2
sin 𝜓 −

z02

b2
cos 𝜓 = 0 (2.7.89)

Figure 2.7.5 Position error.

z2

z1

P0(z1,z2)

p 180 – ψ
ψ
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This equation relates the coordinates of the point of tangency P0 to the slope of the
tangent. The length p of the projection of the ellipse is according to the figure,

p = z01 cos 𝜓 + z02 sin 𝜓 (2.7.90)

Next, equation (2.7.89) is squared and then multiplied with a2b2, and the result is
added to the square of (2.7.90), giving

p2 = a2 cos2 𝜓 + b2 sin2 𝜓 (2.7.91)

By comparing this expression with (2.7.86), it follows that 𝜎̂r = p, i.e., the stan-
dard deviation in a certain direction is equal to the projection of the standard ellipse
onto that direction. Therefore, the standard ellipse is not a standard deviation curve.
Figure 2.7.6 shows the continuous standard deviation curve. We see that for narrow
ellipses there are only small segments of the standard deviations that are close to the
length of the semiminor axis. The standard deviation increases rapidly as the direc-
tion 𝜓 moves away from the minor axis. Therefore, an extremely narrow ellipse is
not desirable if the overall accuracy for the station position is important.

As a by-product of the property discussed, we see that the standard deviations of
the parameter x1 and x2

𝜎̂x1
= 𝜎̂0

√
qx1

(2.7.92)

𝜎̂x2
= 𝜎̂0

√
qx2

(2.7.93)

are the projections of the ellipse in the directions of the x1 and x2 axes. This is shown
in Figure 2.7.7. Equations (2.7.92) and (2.7.93) follow from the fact that the diago-
nal elements of the covariance matrix are the variances of the respective parameters.

Figure 2.7.6 Standard deviation curve.
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z1

y2

z2

y1

φ

Figure 2.7.7 Characteristics of the standard deviation ellipse.

Equation (2.7.91) confirms for 𝜓 = 0 and 𝜓 = 90∘ that the axes a and b equal the
maximum and minimum standard deviations, respectively. The rectangle formed by
the semisides 𝜎̂x1

and 𝜎̂x2
encloses the ellipse. This rectangle can be used as an approx-

imation for the ellipses. The diagonal itself is sometimes referred to as the mean
position error 𝜎̂,

𝜎̂ =
√
𝜎̂2

x1
+ 𝜎̂2

x2
= 𝜎̂0

√
qx1

+ qx2
(2.7.94)

The points of contact between the ellipse and the rectangle in Figure 2.7.7 are
functions of the correlation coefficients. For these points, the tangent on the ellipse is
either horizontal or vertical in the (yi) coordinate system. The equation of the ellipse
in the (y) system is, according to (2.7.69),

[
y1 y2

] [ qx1
qx1, x2

qx1, x2
qx2

]−1 [
y1
y2

]
= 𝜎̂2

0 (2.7.95)

By replacing the matrix by its inverse, the expression becomes

[
y1 y2

] [ qx2
−qx1, x2

−qx1, x2
qx1

] [
y1
y2

]
=
(
qx1

qx2
− q2

x1, x2

)
𝜎̂2

0 (2.7.96)
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Evaluating the left-hand side and dividing both sides by qx1
qx2

gives

y2
1

qx1

+
y2

2

qx2

−
2y1y2qx1, x2

qx1
qx2

= constant (2.7.97)

from which it follows that

dy1

dy2
=

(
2y2∕qx2

)
−
(
2y1𝜌x1, x2

∕
√

qx1
qx2

)(
2y2𝜌x1, x2

∕
√

qx1
qx2

)
−
(
2y1∕qx1

) (2.7.98)

Consider the tangent for which the slope is infinity. The equation of this tangent line is

y2 = 𝜎̂0
√

qx2
(2.7.99)

Substituting this expression into the denominator of (2.7.98) and equating it to zero
gives

𝜎̂0
√

qx2
𝜌x1, x2√

qx1
qx2

=
y1

qx1

(2.7.100)

which yields the y1 coordinate for the point of tangency:

y1 = 𝜎̂0
√

qx1
𝜌x1, x2

= 𝜎̂x1
𝜌x1, x2

(2.7.101)

The equation for the horizontal tangent is

y1 = 𝜎̂0
√

qx1
(2.7.102)

It follows from the numerator of (2.7.98) that

y2 = 𝜎̂0
√

qx2
𝜌x1, x2

= 𝜎̂x2
𝜌x1, x2

(2.7.103)

Figure 2.7.7 shows that the standard ellipse becomes narrower the higher the correla-
tion. For correlation plus or minus 1 (linear dependence), the ellipse degenerates into
the diagonal of the rectangle. The ellipse becomes a circle if a = b, or 𝜎x1

= 𝜎x2
, and

𝜌x1, x2
= 0.

2.7.6 Other Measures of Precision

In surveying and geodesy, the most popular measure of precision is the standard
deviation. The confidence regions are usually expressed in terms of ellipses and
ellipsoids of standard deviation. These figures are often scaled to contain 95%
probability or higher. Because GPS is a popular tool for both surveying and
navigation, several of the measures of precision used in navigation are becoming
increasingly popular in surveying. Examples include the dilution of precision (DOP)
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numbers. The DOPs are discussed in detail in Section 6.3.2. Other single-number
measures refer to circular or spherical confidence regions for which the eigenvalues
of the cofactor matrix have the same magnitude. In these cases, the standard devia-
tions of the coordinates and the semiaxes are of the same size. See equation (2.7.72).
When the standard deviations are not equal, these measures become a function of
the ratio of the semiaxes. The derivation of the following measures and additional
interpretation are given in Greenwalt and Shultz (1962).

The radius of a circle that contains 50% probability is called the circular error
probable (CEP). This function is usually approximated by segments of straight lines.
The expression

CEP = 0.5887
(
𝜎̂x1

+ 𝜎̂x2

)
(2.7.104)

is, strictly speaking, valid in the region 𝜎min∕𝜎max ≥ 0.2, but it is the function used
most often. The 90% probability region

CMAS = 1.8227 × CEP (2.7.105)

is called the circular map accuracy standard. The mean position error (2.7.94) is also
called the mean square positional error (MSPE), or the distance root mean square
(DRMS), i.e.,

DRMS =
√
𝜎̂2

x1
+ 𝜎̂2

x2
(2.7.106)

This measure contains 64 to 77% probability. The related measure

2 DRMS = 2 × DRMS (2.7.107)

contains about 95 to 98% probability.
The three-dimensional equivalent of CEP is the spherical error probable (SEP),

defined as
SEP = 0.5127

(
𝜎̂x1

+ 𝜎̂x2
+ 𝜎̂x3

)
(2.7.108)

Expression (2.7.108) is, strictly speaking, valid in the region 𝜎min∕𝜎max ≥ 0.35. The
corresponding 90% probability region,

SAS = 1.626 × SEP (2.7.109)

is called the spherical accuracy standard (SAS). The mean radial spherical error
(MRSE) is defined as

MRSE =
√
𝜎̂2

x1
+ 𝜎̂2

x2
+ 𝜎̂2

x3
(2.7.110)

and contains about 61% probability.
These measures of precision are sometimes used to capture the achieved or antic-

ipated precision conveniently using single numbers. However, the geometry of the
adjustment seldom produces covariance matrices that yield circular distribution. Con-
sequently, the probability levels contained in these measures of precision inevitably
are a function of the correlations between the parameters.
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2.8 RELIABILITY

Small residuals are not necessarily an indication of a quality adjustment. Equally
important is the knowledge that all blunders in the data have been identified and
removed and that remaining small blunders in the observations do not adversely
impact the adjusted parameters. Reliability refers to the controllability of observa-
tions, i.e., the ability to detect blunders and to estimate the effects that undetected
blunders may have on a solution. The theory outlined here follows that of Baarda
(1967, 1968) and Kok (1984).

2.8.1 Redundancy Numbers

Following the expressions in Table 2.5.1 the residuals for the observation equation
model are

v = QvP� (2.8.1)

with a cofactor matrix for the residuals

Qv = P−1 − AN−1AT (2.8.2)

Compute the trace

Tr(QvP) = Tr
(
I − AN−1ATP

)
= n − Tr

(
N−1ATPA

)
= n − u (2.8.3)

A more general expression is obtained by noting that the matrix AN−1ATP is idem-
potent. The trace of an idempotent matrix equals the rank of that matrix. Thus,

Tr
(
AN−1ATP

)
= R

(
ATPA

)
= R(A) = r ≤ u (2.8.4)

Thus, from equations (2.8.3) and (2.8.4)

Tr (QvP) = Tr (QPv) = n − R(A) (2.8.5)

By denoting the diagonal element of the matrix QvP by ri, we can write

n∑
i=1

ri = n − R(A) (2.8.6)

The sum of the diagonal elements of QvP equals the degree of freedom. The element
ri is called the redundancy number for the observation i. It is the contribution of the
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i th observation to the degree of freedom. If the weight matrix P is diagonal, this is
usually the case when original observations are adjusted, then

ri = qipi (2.8.7)

where qi is the diagonal element of the cofactor matrix Qv, and pi denotes the weight
of the i th observation. Equation (2.8.2) implies the inequality

0 ≤ qi ≤ 1
pi

(2.8.8)

Multiplying by pi gives the bounds for the redundancy numbers,

0 ≤ ri ≤ 1 (2.8.9)

Considering the general relation

Q�a
= Q�b

−Qv (2.8.10)

given in Table 2.5.1 and the specification (2.8.7) for the redundancy number ri as
the diagonal element of QvP, it follows that if the redundancy number is close to 1,
then the variance of the residuals is close to the variance of the observations, and the
variance of the adjusted observations is close to zero. If the redundancy number is
close to zero, then the variance of the residuals is close to zero, and the variance of
the adjusted observations is close to the variance of the observations.

Intuitively, it is expected that the variance of the residuals and the variance of
the observations are close; for this case, the noise in the residuals equals that of the
observations, and the adjusted observations are determined with high precision. Thus
the case of ri close to 1 is preferred, and it is said that the gain of the adjustment is high.
If ri is close to zero, one expects the noise in the residuals to be small. Thus, small
residuals as compared to the expected noise of the observations are not necessarily
desirable. Because the inequality (2.8.9) is a result of the geometry as represented
by the design matrix A, small residuals can be an indication of a weak part of the
network.

Because the weight matrix P is considered diagonal, i.e.,

pi =
𝜎2

0

𝜎2
i

(2.8.11)

it follows that

𝜎̂vi
= 𝜎̂0

√
qi = 𝜎̂0

√
ri

pi
= 𝜎̂0

√√√√ ri𝜎
2
i

𝜎2
0

=
𝜎̂0

𝜎0
𝜎i

√
ri (2.8.12)
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From (2.8.6) it follows that the average redundancy number is

rav =
n − R(A)

n
(2.8.13)

The higher the degree of freedom, the closer the average redundancy number is to 1.
However, as seen from Table 2.7.3, the gain, in terms of probability enclosed by the
standard ellipses, reduces noticeably after a certain degree of freedom.

2.8.2 Controlling Type-II Error for a Single Blunder

Baarda’s (1967) development of the concept of reliability of networks is based on
un-Studentized hypothesis tests, which means that the a priori variance of unit weight
is assumed to be known. Consequently, the a priori variance of unit weight (not the a
posteriori variance of unit weight) is used in this section. The alternative hypothesis
Ha specifies that the observations contain one blunder, that the blunder be located at
observation i, and that its magnitude is ∇i. Thus the adjusted residuals for the case of
the alternative hypothesis are

v̂|Ha = v̂ −QvPei∇i (2.8.14)

where
ei =

[
0 · · · 0 1 0 · · · 0

]T
(2.8.15)

denotes an n × 1 vector containing 1 in position i and zero elsewhere. The expected
value and the covariance matrix are

E(v̂|Ha) = −QvPei∇i (2.8.16)

𝜮v|Ha
= 𝜮̂v = 𝜎2

0Qv (2.8.17)

It follows from (A.5.65) that

v̂|Ha ∼ N
(
−QvPei∇i, 𝜎

2
0Qv

)
(2.8.18)

Since P is a diagonal matrix, the individual residuals are distributed as

v̂i|Ha ∼ n
(
− qipi∇i, 𝜎

2
0 qi

)
(2.8.19)

according to (A.5.71). Standardizing gives

wa|Ha =
v̂i|Ha

𝜎0
√

qi

∼ n

(
−qipi∇i

𝜎0
√

qi

, 1

)

= n

(
−
√

qipi∇i

𝜎0
, 1

)
(2.8.20)
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or

Ha ∶ wa =
v̂i|Ha

𝜎vi

∼ n

(
−∇ipi

√
qi

𝜎0
, 1

)
(2.8.21)

The zero hypothesis, which states that there is no blunder, is

H0 ∶ w0 =
v̂i |H0

𝜎vi

∼ n(0, 1) (2.8.22)

The noncentrality parameter in (2.8.21), i.e., the mean of the noncentral normal dis-
tribution, is denoted by 𝛿i and is

𝛿i =
−∇i pi

√
qi

𝜎0
=

−∇i
√

ri

𝜎i
(2.8.23)

The parameter 𝛿i is a translation parameter of the normal distribution. The situation
is shown in Figure 2.8.1. The probability of committing an error of the first kind, i.e.,
of accepting the alternative hypothesis, equals the significance level 𝛼 of the test

P(|w0 | ≤ t𝛼∕2) = ∫
t𝛼∕2

−t𝛼∕2

n(0, 1) dx = 1 − 𝛼 (2.8.24)

or

P(|w0 | ≥ t𝛼∕2) = ∫
t1−𝛼∕2

−∞
n(0, 1) dx + ∫

∞

t𝛼∕2

n(0, 1) dx = 𝛼 (2.8.25)

In 100 𝛼% of the cases, the observations are rejected and remeasurement or inves-
tigations for error sources are performed, even though the observations are correct

Figure 2.8.1 Defining the noncentrality.
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(they do not contain a blunder). From Figure 2.8.1 it is seen that the probability 𝛽i of
a type-II error, i.e., the probability of rejecting the alternative hypothesis (and accept-
ing the zero hypothesis) even though the alternative hypothesis is correct, depends
on the noncentrality factor 𝛿i. Because the blunder ∇i is not known, the noncentral-
ity factor is not known either. As a practical matter one can proceed in the reverse:
one can assume an acceptable probability 𝛽0 for the error of the second kind and
compute the respective noncentrality parameter 𝛿0. This parameter in turn is used
to compute the lower limit for the blunder, which can still be detected. The figure
shows that

P(|w𝛼 | ≤ t𝛼∕2) = ∫
ta∕2

−ta∕2

n(𝛿i, 1)dx ≥ 𝛽0 (2.8.26)

If
𝛿i ≤ 𝛿0 (2.8.27)

Substituting equation (2.8.23) into (2.8.27) gives the limit for the marginally
detectable blunder, given the probability levels 𝛼 and 𝛽0:

|∇0i | ≥ 𝛿0√
ri

𝜎i (2.8.28)

Equations (2.8.26) and (2.8.28) state that in 100(1 − 𝛽0)% of the cases, blunders
greater than those given in (2.8.28) are detected. In 100𝛽0% of the cases, blunders
greater than those given in (2.8.28) remain undetected. The larger the redundancy
number, the smaller is the marginally detectable blunder (for the same 𝛿0 and 𝜎i).
It is important to recognize that the marginally detectable blunders (2.8.28) are based
on adopted probabilities of type-I and type-II errors for the normal distribution.
The probability levels 𝛼 and 𝛽0 refer to the one-dimensional test (2.8.22) of the
individual residual vi, with the noncentrality being 𝛿0. The assumption is that only
one blunder at a time is present. The geometry is shown in Figure 2.8.1. It is readily
clear that there is a simple functional relationship 𝛿0 = 𝛿n(𝛼, 𝛽0) between two normal
distributions. Table 2.8.1 contains selected probability levels and the respective
𝛿0 values.

TABLE 2.8.1 Selected Probability Levels in Reliability

𝛼 𝛽0 𝛿0

0.05 0.20 2.80
0.025 0.20 3.1
0.001 0.20 4.12
0.05 0.10 3.24
0.025 0.10 3.52
0.001 0.10 4.57
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The chi-square test (2.7.38) of the a posteriori variance of unit weight 𝜎̂2
0 is

also sensitive to the blunder ∇i. In fact, the blunder will cause a noncentrality of
𝛿i for the chi-square distribution of the alternative hypothesis. One can choose
the probabilities 𝛼chi and 𝛽chi for this multidimensional chi-square test such that
𝛿0 = 𝛿chi (𝛼chi, 𝛽chi, n − u). The factor 𝛿0 depends on the degree of freedom because
the chi-square distribution depends on it. Baarda’s B method suggests equal trace-
ability of errors through one-dimensional tests of individual residuals, vi, and the
multidimensional test of the a posteriori variance of unit weight 𝜎̂2

0 . This is achieved
by requiring that the one-dimensional test and the multidimensional test have the
same type-II error, i.e., 𝛽0 = 𝛽chi. Under this condition there exists a relationship
between the probability of type-II error, the significance levels, and the degree
of freedom expressed symbolically by 𝛿0 = 𝛿n(𝛼, 𝛽0) = 𝛿chi(𝛼chi, 𝛽0, n − r). The B
method assures equal traceability but implies different significance levels for the
one-dimensional and multidimensional tests. For details see Baarda (1968, p. 25).
In practical applications one chooses the factor 𝛿0 on the basis of a reasonable value
for 𝛼 and 𝛿0 from Table 2.8.1.

2.8.3 Internal Reliability

Even though the one-dimensional test assumes that only one blunder exists in a
set of observations, the limit (2.8.28) is usually computed for all observations. The
marginally detectable errors, computed for all observations, are viewed as a measure
of the capability of the network to detect blunders with probability (1 − 𝛽0). They
constitute the internal reliability of the network. Because the marginally detectable
errors (2.8.28) do not depend on the observations or on the residuals, they can be
computed as soon as the configuration of the network and the stochastic model are
known. If the limits (2.8.28) are of about the same size, the observations are equally
well checked, and the internal reliability is said to be consistent. The emphasis is
then on the variability of the marginally detectable blunders rather than on their
magnitude. A typical value is 𝛿0 = 4.

2.8.4 Absorption

According to (2.8.1) the residuals in the presence of one blunder are

v = QvP(� − ei∇i) (2.8.29)

The impact on the residual of observation i is

∇vi = −ri∇i (2.8.30)

Equation (2.8.30) is used to estimate the blunders that might cause large residuals.
Solving for ∇i gives

∇i = −
∇vi

ri
≈ −

v∗i + ∇vi

ri
≈ −

vi

ri
(2.8.31)
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because v∗i ≪ ∇vi, where v∗i denotes the residual without the effect of the blunder.
The computation (2.8.31) provides only estimates of possible blunders. Because the
matrix QvP is not a diagonal matrix, a specific blunder has an impact on all residuals.
If several blunders are present, their effects overlap and one blunder can mask others;
a blunder may cause rejection of a good observation.

Equation (2.8.30) demonstrates that the residuals in least-squares adjustments
are not robust with respect to blunders in the sense that the effect of a blunder on
the residuals is smaller than the blunder itself, because r varies between 0 and 1.
The absorption, i.e., the portion of the blunder that propagates into the estimated
parameters and falsifies the solution, is

Ai = (1 − ri)∇i (2.8.32)

The factor (1 − ri) is called the absorption number. The larger the redundancy num-
ber, the less is a blunder absorbed, i.e., the less falsification. If ri = 1, the observa-
tion is called fully controlled, because the residual completely reflects the blunder.
A zero redundancy implies uncontrolled observations in that a blunder enters into the
solution with its full size. Observations with small redundancy numbers might have
small residuals and instill false security in the analyst. Substituting ∇i from (2.8.31)
expresses the absorption as a function of the residuals:

Ai = −
1 − ri

ri
vi (2.8.33)

The residuals can be looked on as the visible parts of errors. The factor in (2.8.33) is
required to compute the invisible part from the residuals.

2.8.5 External Reliability

A good and homogeneous internal reliability does not automatically guarantee reli-
able coordinates. What are the effects of undetectable blunders on the parameters?
In deformation analysis, where changes in parameters between adjustments of differ-
ent epochs indicate existing deformations, it is particularly important that the impact
of blunders on the parameters be minimal. The influence of each of the marginally
detectable errors on the parameters of the adjustment or on functions of the parame-
ters is called external reliability. The estimated parameters in the presence of a blunder
are, for the observation equation model,

x̂ = −N−1ATP(� − ei∇i) (2.8.34)

The effect of the blunder in observation i is

∇x = N−1ATPei∇i (2.8.35)
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The shifts ∇x are sometimes called local external reliability. The blunder affects all
parameters. The impact of the marginally detectable blunder ∇0i is

∇x0i = N−1ATPei∇0i (2.8.36)

Because there are n observations, one can compute n vectors (2.8.36), showing the
impact of each marginal detectable blunder on the parameters. Graphical representa-
tions of these effects can be very helpful in the analysis. The problem with (2.8.36) is
that the effect on the coordinates depends on the definition (minimal constraints) of
the coordinate system. Baarda (1968) suggested the following alternative expression:

𝜆2
0i =

∇xT
0i N∇x0i

𝜎2
0

(2.8.37)

By substituting (2.8.36) and (2.8.28), we can write this equation as

𝜆2
0i =

∇0ie
T
i PAN

−1ATPei∇0i

𝜎2
0

=
∇2

0ie
T
i P(I −QvP)ei

𝜎2
0

=
∇2

0ipi(1 − ri)

𝜎2
0

(2.8.38)

or

𝜆2
0i =

1 − ri

ri
𝛿2

0 (2.8.39)

The values 𝜆0i are a measure of global external reliability. There is one such value for
each observation. If the 𝜆0i are the same order of magnitude, the network is homoge-
neous with respect to external reliability. If ri is small, the external reliability factor
becomes large and the global falsification caused by a blunder can be significant.
It follows that very small redundancy numbers are not desirable. The global exter-
nal reliability number (2.8.39) and the absorption number (2.8.33) have the same
dependency on the redundancy numbers.

2.8.6 Correlated Cases

The derivations for detectable blunders, internal reliability, absorption, and external
reliability assume uncorrelated observations for which the covariance matrix 𝜮�b

is
diagonal. Correlated observations are decorrelated by the transformation (2.7.10).
It can be readily verified that the redundancy numbers for the decorrelated observa-
tions � are

ri =
(
QvP

)
ii
=
(
I −DT AN−1AT D

)
ii

(2.8.40)

In many applications, the covariance matrix 𝜮�b
is of block-diagonal form. For

example, for GPS vector observations, this matrix consists of 3 × 3 full block-
diagonal matrices if the correlations between the vectors are neglected. In this case,
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the matrix D is also block-diagonal and the redundancy numbers can be computed
vector by vector from (2.8.40). The sum of the redundancy numbers for the three
vector components varies between 0 and 3. Since, in general, the matrix D has a
full rank, the degree of freedom (n − r) of the adjustment does not change. Once
the redundancy numbers ri are available, the marginal detectable blunders ∇0i,
the absorption numbers Ai and other reliability values can be computed for the
decorrelated observations. These quantities, in turn, can be transformed back into
the physical observation space by premultiplication with the matrix

(
DT)−1

.

2.9 BLUNDER DETECTION

Errors (blunders) made during the recording of field observations, data transfer, the
computation, etc., can be costly and time-consuming to find and eliminate. Blunder
detection can be carried out before the adjustment or as part of the adjustment. Before
the adjustment, the discrepancies (angle and/or distance of simple figures such as tri-
angles and traverses) are analyzed. A priori blunder detection is helpful in detecting
extra-large blunders caused by, e.g., erroneous station numbering. Blunder detection
in conjunction with the adjustment is based on the analysis of the residuals. The
problem with using least-squares adjustments when blunders are present is that the
adjustments tend to hide (reduce) their impact and distribute their effects more or less
throughout the entire network [see (2.8.29) and (2.8.30), noting that the redundancy
number varies between zero and 1]. The prerequisite for any blunder-detection pro-
cedure is the availability of a set of redundant observations. Only observations with
redundancy numbers greater than zero can be controlled.

It is important to understand that if a residual does not pass a statistical test, this
does not mean that there is a blunder in that observation. The observation is merely
flagged so that it can be examined and a decision about its retention or rejection can
be made. Blind rejection is never recommended. A blunder in one observation usually
affects the residuals in other observations. Therefore, the tests will often flag other
observations in addition to the ones containing blunders. If one or more observations
are flagged, the search begins to determine if there is a blunder.

The first step is to check the field notes to confirm that no error occurred during the
transfer of the observations to the computer file, and that all observations are reason-
able “at face value.” If a blunder is not located, the network should be broken down
into smaller networks, and each one should be adjusted separately. At the extreme,
the entire network may be broken down into triangles or other simple geometric enti-
ties, such as traverses, and adjusted separately. Alternatively, the observations can be
added sequentially, one at a time, until the blunder is found. This procedure starts with
weights assigned to all parameters. The observations are then added sequentially. The
sum of the normalized residuals squared is then inspected for unusually large vari-
ations. When searching for blunders, the coordinate system should be defined by
minimal constraints.

Blunder detection in conjunction with the adjustment takes advantage of the
total redundancy and the strength provided by the overall geometry of the network,
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and thus is more sensitive to smaller blunders. Only if the existence of a blunder is
indicated does action need to be taken to locate the blunder. The flagged observations
are the best hint where to look for errors and thus avoid unnecessary and disorganized
searching of the whole observation data set.

2.9.1 Tau Test

The 𝜏 test was introduced by Pope (1976). The test belongs to the group of Studen-
tized tests, which make use of the a posteriori variance of unit weight as estimated
from the observations. The test statistic is

𝜏i =
vi

𝜎̂vi

=
𝜎0vi

𝜎̂0𝜎i
√

ri

∼ 𝜏n−r (2.9.1)

The symbol 𝜏n−r denotes the 𝜏 distribution with n − r degrees of freedom. It is related
to Student’s t by

𝜏n−r =

√
n − r tn−r−1√

n − r − 1 + t2
n−r−1

(2.9.2)

For an infinite degree of freedom the 𝜏 distribution converges toward the Student
distribution or the standardized normal distribution, i.e., 𝜏∞ = t∞ = n(0, 1).

Pope’s blunder rejection procedure tests the hypothesis vi ∼ n(0, 𝜎̂vi
∕ 𝜎̂0). The

hypothesis is rejected, i.e., the observation is flagged for further investigation and
possibly rejection, if |𝜏i| ≥ c (2.9.3)

The critical value c is based on a preselected significance level. For large systems,
the redundancy numbers are often replaced by the average value according to
equation (2.8.13), in order to reduce computation time; thus

𝜏i =
𝜎0

𝜎̂0

vi

𝜎i

√
(n − r)∕n

(2.9.4)

could be used instead of (2.9.1).

2.9.2 Data Snooping

Baarda’s data snooping applies to the testing of individual residuals as well. The
theory assumes that only one blunder be present in the set of observations. Applying
a series of one-dimensional tests, i.e., testing consecutively all residuals, is called
a data snooping strategy. Baarda’s test belongs to the group of un-Studentized tests
which assume that the a priori variance of unit weight is known. The zero hypothesis
(2.8.22) is written as

ni =
vi

𝜎0
√

qi

∼ n(0, 1) (2.9.5)



72 LEAST-SQUARES ADJUSTMENTS

At a significant level of 5%, the critical value is 1.96. The critical value for this test is
not a function of the number of observations in the adjustment. The statistic (2.9.5)
uses the a priori value 𝜎0 and not the a posteriori estimate 𝜎̂0.

Both the 𝜏 and the data snooping procedures work best for iterative solutions.
At each iteration step, the observation with the largest blunder should be removed.
Since least-squares attempts to distribute blunders, several correct observations might
receive large residuals and might be flagged mistakenly.

2.9.3 Changing Weights of Observations

This method, although not based on rigorous statistical theory, is an automated
method whereby blunders are detected and their effects on the adjustment minimized
(or even eliminated). The advantage that this method has, compared to previous
methods, is that it locates and potentially eliminates the blunders automatically.
The method examines the residuals per iteration. If the magnitude of a residual is
outside a defined range, the weight of the corresponding observation is reduced. The
process of reweighting and readjusting continues until the solution converges, i.e.,
no weights are being changed. The criteria for judging the residuals and choice for
the reweighting function are somewhat arbitrary. For example, a simple strategy for
selection of the new weights at iteration k + 1 could be

pk+1,i = pk,i

{
e−|vk,i|∕3𝜎i if |vk,i| > 3𝜎i

1 if |vk,i| ≤ 3𝜎i

(2.9.6)

where 𝜎i denotes the standard deviation of observation i.
The method works efficiently for networks with high redundancy. If the initial

approximate parameters are inaccurate, it is possible that correct observations are
deweighted after the first iteration because the nonlinearity of the adjustment can
cause large residuals. To avoid unnecessary rejection and reweighting, one might not
change the weights during the first iteration. Proper use of this method requires some
experience. All observations whose weights are changed must be investigated, and
the cause for the deweighting must be established.

2.10 EXAMPLES

In the following, we use plane two-dimensional networks to demonstrate the geom-
etry of adjustments. As mentioned above, the geometry of a least-squares adjust-
ment is the result of the combined effects of the stochastic model (weight matrix
P—representing the quality of the observations) and the mathematical model (design
matrix A—representing the geometry of the network and the spatial distribution of
the observations). For the purpose of these examples, it is not necessary to be con-
cerned about the physical realization of two-dimensional networks. The experienced
reader might think of such networks as being located on the conformal mapping plane
and that all model observations have been computed accordingly.
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We will use the observation equation model summarized in Table 2.5.1. Assume
there is a set of n observations, such as distances and angles that determine the points
of a network. For a two-dimensional network of s stations, there could be as many
as u = 2s unknown coordinates. Let the parameter vector xa consist of coordinates
only, i.e., we do not parameterize refraction, centering errors, etc. To be specific, xa
contains only coordinates that are to be estimated. Coordinates of known stations are
constants and not included in xa. The mathematical mode �a = f(xa) is very simple
in this case. The n components of f will contain the functions:

dij =
√

(xi − xj)2 + (yi − yj)2 (2.10.1)

𝛼jik = tan−1 xk − xi

yk − yi
− tan−1

xj − xi

yj − yi
(2.10.2)

In these expressions the subscripts i, j, and k identify the network points. The notation
𝛼jik implies that the angle is measured at station i, from j to k in a clockwise sense.
The ordering of the components in f does not matter, as long as the same order is
maintained with respect to the rows of A and diagonal elements of P.

Although the f(xa) have been expressed in terms of xa, the components typically
depend only on a subset of the coordinates. The relevant partial derivatives in a row
of A are for distances and angles:{

−
(
yk − yi

)
dik

,
−(xk − xi)

dik
,

yk − yi

dik
,

xk − xi

dik

}
(2.10.3){

xi − xj

d2
ij

,−
yi − yj

d2
ij

,
xk − xj

d2
kj

−
xi − xj

d2
ij

,

−
yk − yj

d2
kj

+
yi − yj

d2
ij

,−
xk − xj

d2
kj

,
yk − yj

d2
kj

}
(2.10.4)

Other elements are zero. The column location for these partials depends on the
sequence in xa. In general, if 𝛼 is the 𝛼 th component of �b and 𝛽 the 𝛽 th component
of xa, then the element a𝛼,𝛽 of A is

a𝛼,𝛽 =
𝜕�𝛼
𝜕x𝛽

(2.10.5)

The partial derivatives and the discrepancy �0 must be evaluated for the approximate
coordinates x0.

Example 1: This example demonstrates the impact of changes in the stochastic
model. Figure 2.10.1 shows a traverse connecting two known stations. Three
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Figure 2.10.1 Impact of changing the stochastic model.

solutions are given. In all cases, the distances are of the same length and observed
with the same accuracy. The angle observations are 180∘ and measured with the
same accuracy but are changed by a common factor for each solution. If we declare
the solutions with the smallest ellipses in Figure 2.10.1 as the base solutions with
observational standard deviation of 𝜎a, then the other solutions use 2𝜎a and 4𝜎a,
respectively. The shape of the ellipses elongates as the standard deviation of the
angles increases.

Example 2: This example demonstrates the impact of changing network geometry
using a resection. Four known stations lie exactly on an imaginary circle with radius
r. The coordinates of the new station are determined by angle measurements, i.e., no
distances are involved. For the first solution, the unknown station is located at the
center of the circle. In subsequent solutions its location moves to 0.5r, 0.9r, 1.1r, and
1.5r from the center while retaining the same standard deviation for the angle obser-
vations in each case. Figure 2.10.2 shows that the ellipses become more elongated
the closer the unknown station moves to the circle. The solution is singular if the new
station is located exactly on the circle.

Example 3: Three cases are given that demonstrate how different definitions of the
coordinate system affect the ellipses of standard deviation. All cases refer to the same
plane network using the same observed angles and distances and the same respec-
tive standard deviations of the observations. A plane network that contains angle
and distance observations requires three minimal constraints. Simply holding three
coordinates fixed imposes such minimal constraints. The particular coordinates are
constants and are not included in the parameter vector xa, and, consequently, there are
no columns in the A matrix that pertain to these three coordinates. Inner constraints
offer another possibility of defining the coordinate system.

Figure 2.10.3 shows the results of two different minimal constraints. The coor-
dinates of station 2 are fixed in both cases. In the first case, we hold one of the
coordinates of station 1 fixed. This results in a degenerated ellipse (straight line) at
station 1 and a regular ellipse at station 3. In the second case, we hold one of the coor-
dinates of station 3 fixed. The result is a degenerated ellipse at station 3 and a regular
ellipse at station 1. The ellipses of standard deviation change significantly due to the
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Figure 2.10.2 Impact of changing network geometry.

Figure 2.10.3 Changing minimal constraints.

change in minimal constraints. Clearly, if one were to specify the quality of a sur-
vey in terms of ellipses of standard deviation, one must also consider the underlying
minimal constraints. The figure also shows that the adjusted coordinates for stations
1 and 3 differ in both cases, although the internal shape of the adjusted network 1-2-3
is the same.

The inner constraint solution, which is a special case of the minimal constraint
solutions, has the property that no individual coordinates need to be held fixed.
All coordinates become adjustable; for s stations of a plane network, the vector xa
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Figure 2.10.4 Inner constraint solution.

contains 2s coordinate parameters. The ellipses reflect the geometry of the network,
the distribution of the observations, and their standard deviations. Section 2.6
contains the theory of inner constraints. The elements for drawing the ellipses are
taken from the cofactor matrix (2.6.37) and equation (2.6.46) gives the adjusted
parameters. A first step is to find a matrix E that fulfills AET = 0 according to
(2.6.11). The number of rows of E equals the rank defect of A. For trilateration
networks with distances and angles we have

E =
⎡⎢⎢⎣
· · · 1 0 · · · 1 0 · · ·
· · · 0 1 · · · 0 1 · · ·
· · · −yi xi · · · −yk xk · · ·

⎤⎥⎥⎦ (2.10.6)

Four constraints are required for triangulation networks that contain only angle obser-
vations. In addition to fixing translation and rotation, triangulation networks also
require scaling information. The E matrix for such networks is

E =

⎡⎢⎢⎢⎣
· · · 1 0 · · · 1 0 · · · 1 0 · · ·
· · · 0 1 · · · 0 1 · · · 0 1 · · ·
· · · −yi xi · · · −yj xj · · · −yk xj · · ·
· · · xi yi · · · xj yj · · · xk yk · · ·

⎤⎥⎥⎥⎦ (2.10.7)

The inner constraint solution is shown in Figure 2.10.4. Every station has an ellipse.
The minimal constraint solutions and the inner constraint solution give the same esti-
mates for residuals, a posteriori variance of unit weight, and redundancy numbers.
While the estimated parameters (station coordinates) and their covariance matrix dif-
fer for these solutions, the same result is obtained when using these quantities in
covariance propagation to compute other observables and their standard deviations.
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Figure 2.10.5 Weighting approximate coordinates to define the coordinate system.

Example 4: Weighting all approximate coordinates can also provide the coordinate
system definition. Table 2.5.3 contains expressions that include a priori weights on the
parameters. If the purpose of the adjustment is to control the quality of the observa-
tions, it is important that the weights of the approximate coordinate are small enough
to allow observations to adjust freely. For example, if the approximate coordinates
are accurate to 1 m, one can use a standard deviation of, say, 1 to 2 m, or even larger.
Ideally, of course, the weight should reflect our knowledge of the approximate coor-
dinates by using meaningful standard deviation. One may prefer to use large standard
deviations just to make sure that the internal geometry of the network solution is not
affected.

Figure 2.10.5 shows all ellipses for the case when each approximate station coor-
dinate is assigned a standard deviation of 10 m. The ellipse at each network point is
approximately circular. The size of the ellipses is in the range of the a priori coordi-
nate standard deviations. The ellipses in the figure imply a scale factor of 106 when
compared to those in Figures 2.10.3 and 2.10.4, which roughly corresponds to the
ratio of the variances of the approximate coordinates over the average variance of the
observations.

The weighted parameter approach is also a convenient way of imposing minimal
constraints. Only a subset of three approximate coordinates needs to be weighted in
the case of a plane angle and distance network.

2.11 KALMAN FILTERING

Least-squares solutions are often applied to surveying networks whose network
points refer to monuments that are fixed to the ground. When using the sequential
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least-squares approach (2.4.54) to (2.4.58), the parameters x are typically treated as
a time invariant. The subscript i in these expressions identifies the set of additional
observations added to the previous solution that contains the sets 1 ≤ i ≤ i − 1. Each
set of observations merely updates x, resulting in a more accurate determination of
the fixed monuments.

We generalize the sequential least-squares formulation by allowing the parame-
ter vector x to change with time. For example, the vector x might now contain the
three-dimensional coordinates of a moving receiver, the coordinates of satellites, tro-
pospheric delay of signals, or other time-varying parameters. We assume that the
dynamic model between parameters of adjacent epochs follows the system of linear
equations

xk(−) = 𝛷k−1 xk−1 +wk (2.11.1)

We have used the subscript k, instead of i, to emphasize that it now indicates the
epoch. The matrix 𝛷k−1 is called the parameter transition matrix. The random vector
wk is the system process noise and is distributed as wk ∼ N(0,Qwk

). The notation (−)
indicates the predicted value. Thus,

x̂k(−) = 𝛷k−1x̂k−1 +wk (2.11.2)

x̂k(−) is the predicted parameter vector at epoch k, based on the estimated parameter
x̂k−1(−) from the previous epoch and the dynamic model. The solution that generated
x̂k−1 also generated the respective cofactor matrix Qk−1. The observation equations
for epoch k are given in the familiar form

vk = Akxk + �k (2.11.3)

with vk ∼ N0,Q�k
).

The first step in arriving at the Kalman filter formulation is to apply variance-
covariance propagation to (2.11.1) to predict the parameter cofactor matrix at the
next epoch,

Qk(−) = 𝛷k−1Qk−1𝛷
T
k−1 +Qwk

(2.11.4)

Expression (2.11.4) assumes that the random variables �k and wk are uncorrelated.
The various observation sets �k are also uncorrelated, as implied by (2.4.2). The sec-
ond step involves updating the predicted parameters x̂k(−), based on the observations
�k. Following the sequential least-squares formulation (2.4.54) to (2.4.58), we obtain

Tk =
[
Q�k

+ AkQk (−)A
T
k

]−1
(2.11.5)

x̂k = x̂k(−) − Kk [Akx̂k(−) + �k] (2.11.6)

Qk = [I − KkAk]Qk(−) (2.11.7)

vTPvk = vT Pvk−1 + [Akx̂k(−) + �k]
T Tk[Akx̂k(−) + �k] (2.11.8)



KALMAN FILTERING 79

where the matrix
Kk = Qk(−)A

T
k Tk (2.11.9)

is called the Kalman gain matrix.
If the parameter xk+1 depends only on the past (previous) solution xk, we speak of

a first-order Markov process. If noise wk has a normal distribution, we talk about a
first-order Gauss-Markov process,

xk+1 = 𝜑xk + wk (2.11.10)

with wk ∼ n
(
0, qwk

)
. In many applications a useful choice for 𝜑 is

𝜑 = e−T∕𝜏 (2.11.11)

which implies that the variable x is exponentially correlated, i.e., the autocorrelation
function is decreasing exponentially (Gelb, 1974, p. 81). The symbol 𝜏 denotes the
correlation time, and T denotes the time difference between epochs k + 1 and k. The
variance of the process noise for correlation time 𝜏 is

qwk
= E(wkwk) =

𝜏

2

[
1 − e−2T∕𝜏

]
qk (2.11.12)

with qk being the variance of the process noise (Gelb, 1974, p. 82). The quantities
(𝜏, qk) could be initially determined from data by fitting a sample mean and sample
autocorrelation function.

As 𝜏 approaches zero, then 𝜑 = 0. This describes the pure white noise model with
no correlation from epoch to epoch. In that case x can be thought of as a random
constant, which is a nondynamic quantity.

As 𝜏 approaches infinity, we obtain the pure random walk. Applying l’Hôspital
rule for computing the limit or using series expansion, we obtain 𝜑 = 1 and qwk

=
Tqk. The random noises wk are uncorrelated.

In general, both the dynamic model (2.11.1) and the observation model (2.11.3)
are nonlinear. The extended Kalman filter formulation (Gelb, 1974, p. 187) applies
to this general case. The reader is urged to consult that reference or other specialized
literature for additional details on Kalman filtering.





CHAPTER 3

RECURSIVE LEAST SQUARES

In many applications of least-squares adjustments the measurements are taken
sequentially at discrete epochs in time. Five arrangements are addressed in this
chapter: The first case deals with estimation of static parameters. A static parameter
represents a time-invariant quantity. In sequential estimation, each new measurement
improves the previous estimate of the static parameters. Other cases include param-
eters that depend on time. Two types of time-dependent parameters are considered.
First, we consider time-varying parameters that are not constrained by a dynamic
model. They can vary arbitrarily and take independent values at two adjacent epochs.
Parameters of the other type represent sequential states of a discrete dynamic process
that is subject to a dynamic model. The dynamic model can be of linear or nonlinear
functional relationship connecting two sequential states representing parameters at
two adjacent time instances. The sequential measurements and estimated parameters
are used to update the sequential estimates. For example, in some applications the
physical nature of the problem imposes dynamic constraints on the rover coordinates.
Another example is across-receiver difference ionospheric delays. Since they do
not completely vanish for long baselines, the residual ionospheric delays are slow
time-varying parameters that can be constrained by a dynamic model.

The second case discussed in this chapter refers to the mixed problem of estimat-
ing both static and arbitrary varying parameters. For example, in real-time kinematics
processing of short baselines the carrier phase ambiguities are constant parameters,
whereas the time-varying parameters are the rover coordinates which can vary arbi-
trarily. The third case introduces a dynamic dependence between discrete time epochs
of time-varying parameters. The fourth case combines the first and third cases by deal-
ing with a dynamic system that connects sequential states and contains time-invariant
parameters. The fifth model is the most general one in that it contains all the features

81
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of the fourth model but, in addition, also includes time-varying parameters that are
not constrained by a dynamic model. In real-time kinematic processing the most
general case includes estimation of static ambiguity parameters, arbitrarily varying
across-receiver clock shift, residual ionosphere subject to certain dynamic model, and
corrections to the rover position that can be either arbitrarily varying, or subject to a
dynamic model.

For each of the five models the batch solutions and real-time sequential solutions
are provided. The derivationsmake use of partial minimization of quadratic forms and
of the Cholesky decomposition. Appendix A provides details on both techniques.

The focus of adjustment in Chapter 2 is on static parameters and respective models
such as the observation equation model, the mixed model, and the condition equation
model. Therefore, the first case relates directly to the observation equation model
and the sequential solution discussed in the previous chapter. However, this chapter
is exclusively devoted to formulating recursive least squares where time-dependent
parameters play the major role. New notation, which shows the time argument explic-
itly, reflects this focus on time. Additionally, not every matrix or vector is represented
by bold letters, as is done in Chapter 2. Only those vectors and matrices that pertain
to all sequential time instances are in bold.

3.1 STATIC PARAMETER

Let y be a real-valued parameter to be estimated. It is subject to the linear measure-
ment model

W(t)y = b(t) (3.1.1)

where t denotes the sequential time instant or the epoch. The matrixW(t) has dimen-
sions m(t) × n, so the real-valued vector y is n-dimensional, i.e., y ∈ Rn, and b(t) ∈
Rm(t). Let y∗ be the true value of the parameter and b∗(t) be the true value of the
observables, then both obviously satisfying the identity

W(t)y∗ = b∗(t) (3.1.2)

An additive noise with zero mean value and known covariance matrix disturbs the
observables vector in such a way that

b(t) = b∗(t) + 𝜀(t) E(𝜀(t)) = 0 E(𝜀(t)𝜀∗(t)) = C(t), (3.1.3)

where E(⋅) denotes the mathematic expectation, and the covariance matrix of the
observations C(t) is positive definite and allows the Cholesky decomposition

C(t) = LC(t)L
T
C(t) (3.1.4)

with the lower triangle matrix LC(t). Note that two forms of the Cholesky decom-

positions are possible: C = LCL
T
C and C = LCDL

T
C. In the last case the low triangle
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matrix LC has unit diagonal entries and the matrix D = diag(d1, d2,… , dn) is diag-
onal with positive diagonal entries. Obviously LC = LCD

1∕2 and the form (3.1.4) of
the Cholesky decomposition implies the square root calculations. Either of two forms
can be used depending on which one is more convenient.

We assume that the measurements are sequentially accumulated for time instances
t = 1,… , t′ where t′ is the finite time of the accumulation period. The least-squares
principle as applied in Chapter 2 minimizes the weighted sum of squares:

I(y, t′) =
t′∑
t=1

(W(t)y − b(t))TC−1(t)(W(t)y − b(t)) → min (3.1.5)

The matrix inverse C−1(t) exists since the covariance matrix C(t) is positive defi-
nite. Taking (3.1.4) into account, the value I(y, t′) in the equivalent form is

I(y, t′) =
t′∑
k=1

(
L−1C(t)W(t)y − L−1C(t)b(t)

)T(
L−1C(t)W(t)y − L−1C(t)b(t)

)
(3.1.6)

After introduction of notations

W(t) = L−1C(t)W(t) b(t) = L−1C(t)b(t) (3.1.7)

rewrite the last expression in the form

I(y, t′) =
t′∑
t=1

(
W (t) y − b(t)

)T(
W (t) y − b(t)

)
(3.1.8)

We now give the problem (3.1.8) a slightly different interpretation. Let M(t′) =
m(1) + · · · + m(t′) be the total number of all accumulated measurements and let
W(t′) be the M(t′) × n matrix composed of matrices W(t), t = 1,… , t′ as shown
below,

W(t′) =

⎡⎢⎢⎢⎢⎣
W (1)
W(2)
⋮

W(t′)

⎤⎥⎥⎥⎥⎦
(3.1.9)

Similarly, the vector b(t′) ∈ RM(t′) is composed of the vectors of accumulated
measurements,

b(t′) =

⎡⎢⎢⎢⎢⎣
b (1)
b(2)
⋮

b(t′)

⎤⎥⎥⎥⎥⎦
(3.1.10)
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The minimization problem (3.1.8) is now equivalent to the following problem:

I(y, t′) =
(
W(t′)y − b(t′)

)T(W(t′)y − b(t′)
)
→ min (3.1.11)

Assume that the matrixW(t′) has full column rank,

rank
(
W(t′)

)
= n (3.1.12)

A necessary but not sufficient condition of (3.1.12) is M(t′) ≥ n. Once the condition
(3.1.12) holds for a certain time instant t′, it will remain valid for larger values t′′ > t′.
We call (3.1.12) the observability condition as it guarantees that the parameter y can
be estimated from the observables accumulated up to the time instant t′. The best
estimate of y is defined as solution to the problem (3.1.11) which is

y(t′) =
(
W

T
(t′)W(t′)

)−1WT
(t′)b(t′) (3.1.13)

In application of geodesy and real-time navigation, measurements are not all taken
at the same time. Instead, they are taken epoch by epoch in an incremental manner.
According to this measurement mode, we may want to obtain the best approxima-
tion (3.1.13) also epoch by epoch, successively refining the estimate due to better
averaging of measurement errors. We have

y(t′ + 1) =
(
W

T
(t′ + 1)W(t′ + 1)

)−1WT
(t′ + 1)b(t′ + 1)

=
(
W

T
(t′)W(t′) +W

T
(t′ + 1)W(t′ + 1)

)−1
×
(
W

T
(t′)b(t′) +W

T
(t′ + 1)b(t′ + 1)

)
(3.1.14)

Let us denote

D(t′) = W
T
(t′)W(t′) =

t′∑
t=1

WT (t)C−1(t)W(t) (3.1.15)

Then according to (3.1.14), and taking into account (3.1.15), one obtains
the expression

y(t′ + 1) = D−1(t′ + 1)
(
W

T
(t′)b(t′) +W

T
(t′ + 1)b(t′ + 1)

)
= D−1(t′ + 1)

(
D(t′)y(t′) +W

T
(t′ + 1)b(t′ + 1)

)
= D−1(t′ + 1)

(
D(t′ + 1)y(t′) −W

T
(t′ + 1)W(t′ + 1)y(t′)

+W
T
(t′ + 1)b(t′ + 1)

)
= y(t′) + D−1(t′ + 1)W

T
(t′ + 1)(b(t′ + 1) −W(t′ + 1)y(t′)) (3.1.16)

The expression (3.1.16) takes the form of sequentially updating the estimate y(t′). It is
also called “incremental update” as the estimate y(t′) is incremented by a correction in
(3.1.16). The first term y(t′) is called projection to the next time instant. It means that
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the first guess for the next estimate y(t′ + 1) is that it coincides with the previous esti-
mate y(t′) until newmeasurements are available. The second term is called correction.
It linearly depends on the disagreement of the previous estimate y(t′) with new mea-
surement model: b(t′ + 1) −W(t′ + 1)y(t′) = 0. This disagreement is called residual
r(t′ + 1) = b(t′ + 1) −W(t′ + 1)y(t′). So, in order to calculate the next estimate of the
parameter, we have to calculate the residual vector and update the previous estimate
of the parameter with the residual premultiplied by the matrix D−1(t′ + 1)W(t′ + 1):

r(t′ + 1) = b(t′ + 1) −W(t′ + 1)y(t′)
r(t′ + 1) = L−1C(t′+1)r(t

′ + 1)

D(t′ + 1) = D(t′) +W
T
(t′ + 1)W(t′ + 1)

y(t′ + 1) = y(t′) +D−1(t′ + 1)W(t′ + 1)r(t′ + 1)

(3.1.17)

The algorithm (3.1.17) starts with initial data

y(0) = 0 D(0) = 0 (3.1.18)

Here, and further below, the symbol 0 denotes the zero vector or the zero matrix of
the appropriate dimensions.

Let us present the recursive scheme (3.1.17) in a more computationally effective
form. The linear systems with a symmetric positive definite matrix

Dy = b D = DT D > 0 (3.1.19)

can be rewritten using the Cholesky decomposition LLTy = b; see expressions
(A.3.54) and (A.3.55) of Appendix A. The system with factorized matrix is further
equivalent to two systems, (A.3.66) and (A.3.67), presented below for convenience

Lz = b (3.1.20)

LTy = z (3.1.21)

Forward and backward solution runs, explained in Appendix A, solve the linear sys-
tems (3.1.20) and (3.1.21), respectively. They are denoted by linear operators,

z = FLb (3.1.22)

and
y = BLz (3.1.23)

respectively. Forward and backward runs are equivalent to calculations z = L−1b and
y = (LT )−1z, respectively. Forward and backward runs can be applied to matrices,
assuming that they are applied to all matrix columns sequentially.

Note again, that when writing the expression z = L−1b, we usually do not have
in mind the explicit calculation of the matrix inverse. Instead, we are interested in
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TABLE 3.1.1 Algorithm 1: Estimating Static Parameters

Compute the residual vector r(t + 1) = b(t + 1) −W(t + 1)y(t)

Cholesky decomposition of the matrix
C(t + 1) and forward substitution
calculations

C(t + 1) = LC(t+1)L
T
C(t+1)

r(t + 1) = FLC(t+1)
r(t + 1)

W(t + 1) = FLC(t+1)
W(t + 1)

Update the matrix D(t + 1) and its
Cholesky decomposition

D(t + 1) = D(t) +W
T
(t + 1)W(t + 1)

D(t + 1) = LD(t+1)L
T
D(t+1)

Optimal estimate y(t + 1) = y(t) + BLD(t+1)

(
FLD(t+1)

W
T
(t + 1)r(t + 1)

)
the solution of the system Lz = b, which is given by an explicit formula z = FLb,
provided that the matrix L is a lower triangular.

Thus far we have used the symbol t′ to denote the last time instant. Expressions
(3.1.17) relate the optimal estimate corresponding to the time instant t′ + 1 to the
previous optimal estimate and the newmeasurement. In what follows we use the sym-
bol t to denote the last time instant when describing sequential recursive numerical
schemes. We complete the description of the incremental least squares by summariz-
ing the steps of the algorithm. Being initialized with x(0) = 0, D(0) = 0, and t = 0,
the algorithm proceeds as listed in Table 3.1.1.

Let us present the normal system update step in the more convenient form by
describing how to directly calculate the Cholesky decomposition of the matrix
D(t + 1) given D(t) = LD(t)L

T
D(t):

D(t + 1) = D(t) +W
T
(t + 1)W(t + 1)

= LD(t)
(
I + L−1D(t)W

T
(t + 1)W(t + 1)

(
LTD(t)

)−1)
LTD(t)

= LD(t)
(
I + ŴT (t + 1)Ŵ(t + 1)

)
LTD(t) (3.1.24)

where
ŴT (t + 1) = FLD(t)

W
T
(t + 1) (3.1.25)

Let E = I + ŴT (t + 1)Ŵ(t + 1) and LE be its Cholesky factor

LEL
T
E = E (3.1.26)

Then it follows from (3.1.25) that

LD(t+1) = LD(t)LE (3.1.27)

The calculations (3.1.24) can now be replaced by the following steps:

a. ŴT (t + 1) = FLD(t)
W

T
(t + 1)

b. E = I + ŴT (t + 1)Ŵ(t + 1)
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c. LEL
T
E = E

d. LD(t+1) = LD(t)LE

This concludes the description of Algorithm 1. The multiplicative representation
(3.1.27) of the Cholesky factor update improves the numerical stability in the case
of an ill–conditioned matrix D(t′). The observability condition (3.1.12) guarantees
nonsingularity of the matrix. The matrix can be either nonsingular or singular,
while the conditioning number can be considered a continuous measure of singu-
larity. The greater the conditioning number, the closer the matrix is to singularity.
Ill-conditioning can occur at early epochs. Note that the observability concept
originates from control theory, where it means possibility to recover the system state
from the observed measurements.

3.2 STATIC PARAMETERS AND ARBITRARY TIME-VARYING
VARIABLES

Let x(t) and y be parameters to be estimated with dimensions n(t) and n, respectively.
Let the parameters be subject to the linear measurement model

J(t)x(t) +W(t)y = b(t) (3.2.1)

for sequential time instances t = 1,… , t′. Let the matrices J(t) andW(t) have dimen-
sions m(t) × n(t) and m(t) × n, respectively. Note that the parameters x(t) are time
dependent, while y is time invariant. Each model contains correspondent parameters
x(t) and y. The parameter y is common for all models. Define

J(t) = L−1C(t)J(t) (3.2.2)

along with (3.1.7), and define the M(t′) × (N(t′) + n) matrix J(t′) and the M(t′)-
dimensional vector b(t′)

J(t′) =

⎡⎢⎢⎢⎢⎢⎣

J (1) 0 · · · 0 W(1)

0 J(2) · · · 0 W(2)

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · J(t′) W(t′)

⎤⎥⎥⎥⎥⎥⎦
(3.2.3)

b(t′) =

⎡⎢⎢⎢⎢⎢⎣

b (1)

b(2)

⋮

b(t′)

⎤⎥⎥⎥⎥⎥⎦
(3.2.4)
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where M(t′) =
t′∑
t=1

m(t) and N(t′) =
t′∑
t=1

n(t).

Let us consider the least-squares solution,

I(x(1),… , x(t′), y, t′)

=
t′∑
t=1

(J(t)x(t) +W(t)y − b(t))TC−1(t)(J(t)x(t) +W(t)y − b(t)) → min (3.2.5)

which is equivalent to the problem

I(x(1),… , x(t′), y, t′)

=
t′∑
t=1

(
J(t)x(t) +W(t)y − b(t)

)T(
J(t)x(t) +W(t)y − b(t)

)
→ min (3.2.6)

for the same reason why (3.1.5) is equivalent to (3.1.8). Let

X(t′) =
⎛⎜⎜⎝
x (1)
⋮

x(t′)

⎞⎟⎟⎠ (3.2.7)

Z(t′) =

(
X(t′)
y

)
(3.2.8)

be the N(t′)-dimensional vector of the variables x(1),… , x(t′) and N(t′) +
n-dimensional vector of the variables x(1),… , x(t′), y, respectively. The problem
(3.2.6) is in turn equivalent to the problem

I(Z(t′), t′) =
(
J(t′)Z(t′) − b(t′)

)T(J(t′)Z(t′) − b(t′)
)
→ min (3.2.9)

Let us denote

D(t′) = J
T
(t′)J(t′)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J
T
(1) J(1) 0 · · · 0 J

T
(1)W(1)

0 J
T
(2)J(2) · · · 0 J

T
(2)W(2)

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · J
T
(t′)J(t′) J

T
(t′)W(t′)

W
T
(1)J(1) W

T
(2)J(2) · · · W

T
(t′)J(t′)

t′∑
t=1

W
T
(t)W(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2.10)
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R(t′) = J
T
(t′)b(t′) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J
T
(1) b(1)

J
T
(2)b(2)

⋮

J
T
(t′)b(t′)

t′∑
t=1

W
T
(t)b(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2.11)

then the solution to problem (3.2.9) satisfies the linear equation

D(t′)Z(t′) = R(t′) (3.2.12)

which has the solution
Z(t′) = D

−1
(t′)R(t′) (3.2.13)

Let
D(t′) = LD(t′)L

T
D(t′) (3.2.14)

be the Cholesky decomposition, where matrix LD(t′) is the (N(t′) + n) × (N(t′) + n)
low triangle matrix.

Let us present the problem (3.2.9) in the form I(X(t′), y, t′) → min and note that

min
X(t′),y

I(X(t′), y, t′) = min
y

(
min
X(t′)

I(X(t′), y, t′)

)
.
= min

y
I(y, t′) (3.2.15)

See Section A.3.7 of Appendix A for details on partial minimization of quadratic
forms. Given fixed y, the internal minimum in (3.2.15) can be split into a sequence
of independent minimization problems:

I(x(t)) =
(
J (t) x(t) +W(t)y − b(t)

)T(
J(t)x(t) +W(t)y − b(t)

)
→ min

x(t)
(3.2.16)

each having the solution

x(y, t) =
(
J
T
(t)J(t)

)−1
J
T
(t)
(
b (t) −W(t)y

)
(3.2.17)

which can also be seen from (3.2.10), (3.2.11), and (3.2.12) after substituting the fixed

vector y into (3.2.12), taking the term J
T
(t)W(t)y to the right-hand side of (3.2.12),

and solving the resulting block-diagonal linear system:
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⎡⎢⎢⎢⎢⎢⎢⎣

J
T
(1) J(1) 0 … 0

0 J
T
(2)J(2) … 0

⋮ ⋮ ⋱ ⋮

0 0 · · · J
T
(t′)J(t′)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

x (1)

x(2)

⋮

x(t′)

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

J
T
(1) b(1) − J

T
(1)W(1)y

J
T
(2)b(2) − J

T
(2)W(2)y

⋮

J
T
(t′)b(t′) − J

T
(t′)W(t′)y

⎤⎥⎥⎥⎥⎥⎥⎦
(3.2.18)

which is split into t′ separated linear systems. Substituting (3.2.17) into (3.2.15) we
arrive at the following problem:

min
y

I(y, t′) =
t′∑
t=1

(
J(t)

(
J
T
(t)J(t)

)−1
J
T
(t)(b(t) −W(t)y) +W(t)y − b(t)

)T

×
(
J(t)

(
J
T
(t)J(t)

)−1
J
T
(t)
(
b(t) −W(t)y

)
+W(t)y − b(t)

)
=

t′∑
t=1

(
b(t) −W(t)y

)T(
I − J(t)

(
J
T
(t) J(t)

)−1
J
T
(t)
)T

×
(
I − J(t)

(
J
T
(t)J(t)

)−1
J
T
(t)
)(

b(t) −W(t)y
)

(3.2.19)

The matrix 𝛱(t) = I − J(t)
(
J
T
(t) J(t)

)−1
J
T
(t) is symmetric and idempotent

since 𝛱2(t) = 𝛱(t). It is the matrix of orthogonal projection on the orthogonal
complement to the space spanned on the columns of the matrix J(t). Actually,

𝛱(t)J(t) = J(t) − J(t)
(
J
T
(t) J(t)

)−1
J
T
(t)J(t) = 0 which means the columns of the

matrix J(t) are mapped to 0. On the other hand, every vector h orthogonal to J(t)

is mapped to itself: 𝛱(t)h = h − J(t)
(
J
T
(t) J(t)

)−1
J
T
(t)h = h. The matrix 𝛱(t) is

singular. Taking the idempotent property into consideration, the last expression for
I(y, t′) takes the form

I(y, t′) =
t′∑
t=1

(
b (t) −W(t)y

)T
𝛱(t)

(
b (t) −W(t)y

)
(3.2.20)

and the problem I(y, t′) → min has the solution

y(t′) =
(
D̂(t′)

)−1R̂(t′) (3.2.21)

where

D̂(t′) =
t′∑
t=1

W(t)T𝛱(t)W(t) (3.2.22)

and

R̂(t′) =
t′∑
t=1

W(t)T𝛱(t)b(t) (3.2.23)
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The matrix D̂(t′) is supposed to be nonsingular in (3.2.21). For the case t′ = 1 we
have D̂(1) = W(1)T𝛱(1)W(1) and the matrix D̂(1) is singular due to the singularity
of the matrix 𝛱(1). The necessary conditions for nonsingularity of D̂(t′) are t′ > 1
and

W(1)T𝛱(1)W(1) ≠ W(t)T𝛱(t)W(t) (3.2.24)

for at least one value t. Conditions (3.2.24) are necessary since their violation
leads to the singularity of D̂(t′). Actually, t′ = 1 leads to the singularity of D̂(t′)
as shown above. Further, if W(1)T𝛱(1)W(1) = W(t)T𝛱(t)W(t) for all t, then
D̂(t′) = t′W(1)T𝛱(1)W(1) which is singular. On the other hand, conditions (3.2.24)
are not sufficient in the general case.

Nonsingularity of the matrix D̂(t′) will be called observability of the system
{J(1),W(1),… , J(t′),W(t′)}. It guarantees that the parameter y can be estimated
from the system (3.2.1) for t = 1,… , t′. In order to recover parameters x(t) we

need also nonsingularity of the matrices J
T
(t)J(t). The observability condition is

met if a sufficient number of linearly independent measurements are available. For
example, for the problem of carrier phase ambiguity estimation and resolution along
with estimation of the time-varying (kinematic) position x(t) using carrier phase
observations only, observability is met if the number of satellites is greater or equal
to 4 and at least two sets of measurements are received, i.e., t′ ≥ 2. On the other
hand, observability is met at the single epoch if pseudorange observations are used
along with carrier phases. Conditions (3.2.24) will be met because the movement
of satellites ensures that the directional cosine matrix J(t) changes in time. On the
other hand, if there are only two measurements, which are separated in time by
just one second, the matrices J(1) and J(2) “almost” coincide. This means that the
matrix D̂(t′) is “nearly” singular or, actually it is ill-conditioned. As time increases
the satellite constellation changes and the computed direction cosine matrices will
change, eventually leading to an improved conditioning number. Accumulation of a
larger number of time-varying independent measurements leads to improvement of
observability.

Now let us give a practical way to compute the matrix 𝛱(t). First, compute the

Cholesky decomposition of the matrix J
T
(t)J(t),

J
T
(t)J(t) = LJ(t)L

T
J(t)

(3.2.25)

where LJ(t) is n × n lower triangular, then compute J̃T (t) = FJ(t)J
T
(t). Finally compute

𝛱(t) = I − J̃(t)J̃T (t). The updated vector y(t′ + 1) in the recursive form using (3.2.21)
and (3.2.23) is

y(t′ + 1) = (D̂(t′ + 1))−1R̂(t′ + 1)

= (D̂(t′ + 1))−1
(
R̂(t′) +W(t′ + 1)T𝛱(t′ + 1)b(t′ + 1)

)
= (D̂(t′ + 1))−1

(
D̂(t′)y(t′) +W(t′ + 1)T𝛱(t′ + 1)b(t′ + 1)

)
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= (D̂(t′ + 1))−1(D̂(t′ + 1)y(t′) −W(t′ + 1)T𝛱(t′ + 1)W(t′ + 1)y(t′)

+W(t′ + 1)T𝛱(t′ + 1)b(t′ + 1))

= y(t′) + (D̂(t′ + 1))−1W(t′ + 1)T𝛱(t′ + 1)
(
b(t′ + 1) −W(t′ + 1)y(t′)

)
(3.2.26)

The algorithm starts with y(0) = 0, D̂(0) = 0, t = 0. A complete description of the
incremental least squares is summarized in Table 3.2.1.

Let us now look at the recursive algorithm for estimation of vectors y(t + 1),
x(t + 1) from a slightly different point of view. Note that the data can be processed
postmission after accumulating a complete data set. The batch least-squares adjust-
ment leads to a large linear system with a sparse matrix showing a specific pattern.
Applying the sparse matrix decomposition technique we will prove that the recursive
estimate (3.2.26) can be obtained as Cholesky decomposition of the incrementally
updated large-scale matrix of the linear system and incrementally performed forward
solution, followed by only a single step backward solution. By performing the full

TABLE 3.2.1 Algorithm 2: Estimating Static Parameters and Arbitrary Time-Varying
Variables

Cholesky decomposition of the
covariance matrix and forward
substitution calculations

C(t + 1) = LC(t+1)L
T
C(t+1)

b(t + 1) = FLC(t+1)
b(t + 1)

W(t + 1) = FLC(t+1)
W(t + 1)

J(t + 1) = FLC(t+1)
J(t + 1)

Cholesky decomposition of the

matrix J
T
(t + 1)J(t + 1) and

forward substitution
calculations

J
T
(t + 1)J(t + 1) = LJ(t+1)L

T

J(t+1)

J̃T (t + 1) = FL
J(t+1)

J
T
(t + 1)

Projection matrix 𝛱(t + 1) = I − J̃(t + 1)J̃T (t + 1)

Update the matrix D̂(t) D̂(t + 1) = D̂(t) +W(t + 1)T𝛱(t + 1)W(t + 1)

Cholesky decomposition of D̂(t) D̂(t + 1) = LD̂(t+1)L
T
D̂(t+1)

Residual vector r(t + 1) = b(t + 1) −W(t + 1)y(t)

Update the estimate y(t + 1)
y(t + 1) = y(t)

+ BLD̂(t+1)

(
FLD̂(t+1)

W(t′ + 1)T𝛱(t′ + 1)r(t + 1)
)

Second residual vector r′(t + 1) = b(t + 1) −W(t + 1)y(t + 1)

Compute estimate x(t + 1) x(t + 1) = BL
J(t+1)

J̃T (t + 1)r′(t + 1)
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backward solution we can improve the estimates x(t) using future observables b(t′)
corresponding to t′ > t, which is possible in batch processing. This construction
allows for a deeper understanding of the recursive least squares and its connection
to batch least squares.

Let us present the matrix D(t′) in the expression (3.2.10) in the form

D(t′) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J
T
(1) J(1) 0 · · · 0 J

T
(1)W(1)

0 J
T
(2)J(2) · · · 0 J

T
(2)W(2)

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · J
T
(t′)J(t′) J

T
(t′)W(t′)

W
T
(1)J(1) W

T
(2)J(2) · · · W

T
(t′)J(t′)

t′∑
t=1

W
T
(t)W(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

J
T
(1) J(1) 0 · · · 0 J

T
(1)W(1)

0
⋮
0

W
T
(1)J(1)

C

⎤⎥⎥⎥⎥⎥⎥⎦
(3.2.27)

and apply formulas (A.3.59) to (A.3.61). We have

L(t′) =

⎡⎢⎢⎢⎢⎢⎢⎣

LJ(1) 0 · · · 0 0

0
⋮
0

W
T
(1)J(1)

(
LT
J(1)

)−1 M

⎤⎥⎥⎥⎥⎥⎥⎦
(3.2.28)

where M is the lower triangular matrix of the Cholesky decomposition of the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J
T
(2) J(2) 0 · · · 0 J

T
(2)W(2)

0 J
T
(3)J(3) · · · 0 J

T
(3)W(3)

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · J
T
(t′)J(t′) J

T
(t′)W(t′)

W
T
(2)J(2) W

T
(3)J(3) · · · W

T
(t′)J(t′)

t′∑
t=1

W
T
(t)W(t) −W

T
(1)J(1)

×
(
J
T
(1)J(1)

)−1
J
T
(1)W(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2.29)
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Sequential application of formulas (A.3.59) to (A.3.61) by induction finally gives the
following representation:

L(t′) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

LJ(1) 0 · · · 0 0
0 LJ(2) · · · 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 · · · LJ(t′) 0

W
T
(1)J(1)

×
(
LT
J(1)

)−1 W
T
(2)J(2)

×
(
LT
J(2)

)−1 · · ·
W

T
(t′)

×J(t′)
(
LT
J(t′)

)−1 L̂(t′)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.2.30)

where L̂(t′) is a Cholesky factor of the matrix

t′∑
t=1

(
W

T
(t)W(t) −W

T
(t)J(t)

(
J
T
(t)J(t)

)−1
J
T
(t)W(t)

)
(3.2.31)

which is equal to D̂(t′) according to (3.2.22). Now, according to the expressions
(3.2.13) and (3.2.14) we have

Z(t′) =

⎛⎜⎜⎜⎝
x (1)
⋮

x(t′)
y(t′)

⎞⎟⎟⎟⎠ = BL(t′)(FL(t′)R(t
′)) (3.2.32)

Let us first calculate V(t′) = FL(t′)R(t
′). We have V(t′) = (vT (1),… , vT (t′),wT (t′))T .

Taking into account the structure of the matrix (3.2.30), sequentially calculate

v(t) = (LJ(t))
−1J

T
(t)b(t) (3.2.33)

for t = 1,… , t′. The last equation of the system L(t′)V(t′) = R(t′) gives

t′∑
t=1

W
T
(t)J(t)

(
LT
J(t)

)−1
v(t) + L̂(t′)w(t′) =

t′∑
t=1

W
T
(t)b(t) (3.2.34)

resulting in

w(t′) = (L̂(t′))−1
⎛⎜⎜⎝

t′∑
t=1

W
T
(t) b(t) −W

T
(t)J(t)

(
LT
J(t)

)−1
v(t)

⎞⎟⎟⎠
= (L̂(t′))−1

⎛⎜⎜⎝
t′∑
t=1

W
T
(t) b(t) −W

T
(t)J(t)

(
LT
J(t)

)−1(
LJ(t)

)−1
J
T
(t)b(t)

⎞⎟⎟⎠
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= (L̂(t′))−1
t′∑
t=1

W
T
(t)(I − J(t)

(
LT
J(t)

)−1
(LJ(t))

−1J
T
(t))b(t)

= (L̂(t′))−1
t′∑
t=1

W
T
(t)𝛱(t)b(t) (3.2.35)

Then calculate the backward solution Z(t′) = BL(t′)V(t
′). Taking into account the

structure of the matrix (3.2.30), one obtains

y(t′) = (L̂T (t′))−1w(t′)

= (L̂T (t′))−1(L̂(t′))−1
t′∑
t=1

W
T
(t)𝛱(t)b(t)

= (L̂T (t′))−1(L̂(t′))−1
⎛⎜⎜⎝
t′−1∑
t=1

W
T
(t)𝛱(t)b(t) +W

T
(t′)𝛱(t′)b(t′)

⎞⎟⎟⎠
= (L̂T (t′))−1(L̂(t′))−1(D̂(t′ − 1)y(t′ − 1) +W

T
(t′)𝛱(t′)b(t′))

= (L̂T (t′))−1(L̂(t′))−1(D̂(t′)y(t′ − 1)

−W
T
(t′)𝛱(t′)W(t′)y(t′ − 1) +W

T
(t′)𝛱(t′)b(t′))

= y(t′ − 1) + (L̂T (t′))−1(L̂(t′))−1W
T
(t′)𝛱(t′)(b(t′) −W(t′)y(t′ − 1)) (3.2.36)

and

x(t) =
(
LT
J(t)

)−1
(v(t) − (LJ(t))

−1J
T
(t)W(t)y(t′))

=
(
LT
J(t)

)−1 (
(LJ(t))

−1J
T
(t)b(t) − (LJ(t))

−1J
T
(t)W(t)y(t′)

)
= BL

J(t)

(
FL

J(t)
J
T
(t)(b(t) −W(t)y(t′))

)
(3.2.37)

with t = 1,… , t′. The previous two expressions coincide with (3.2.26) and (3.2.17)
obtained earlier.

What is the major difference between (3.2.37) and (3.2.17)? In Equation (3.2.37)
we used the estimate y(t′)which is available after all t′ measurements are received. In
other words, we calculate the estimate x(t) for t < t′ based on measurements received
after the time instant t. That is possible only in the case of offline or postsession pro-
cessing. In applications to satellite surveying this means that the surveyor collects raw
data in the field as long as needed, based on experience of about how long the mea-
surement session should be under certain conditions. Then, during the postsession
processing in the office, the surveyor can assume that all data is available simulta-
neously. This assumption makes it possible to establish an explicit dependence of
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earlier estimates on the later received data without breaking the causal link. In con-
trast, when working in real time, we can rely only on measurements received at time
instances t = 1,… , t′ when calculating the estimate x(t′). For this reason the esti-
mate x(t + 1) in Algorithm 2 depends on the earlier obtained estimate y(t + 1). In
other words, real-time operation dictates the following calculation order:

y(1), x(1), y(2), x(2),… , y(t), x(t),… (3.2.38)

while postsession processing mode suggests both calculation schemes: the scheme
(3.2.38) and the scheme

y(t′), x(1), x(2),… , x(t′) (3.2.39)

In this sectionwe derived the recursive least-squares algorithm allowing the update
of estimates of the static parameter and parameters arbitrarily varying in time. Using
the Cholesky decomposition of sparse matrices, we established a connection between
recursive processing and batch processing.

3.3 DYNAMIC CONSTRAINTS

In the previous section, the measurement model (3.2.1) contained time-varying vari-
ables x(t) which were independent of each other for different values t. In this section
we considered the more complex case of dynamic dependency of the variable x(t) on
the variable x(t − 1).

Consider the discrete dynamic system

x(t) = F(t)x(t − 1) + 𝜉(t) (3.3.1)

with the n-dimensional state vector x(t) and the m(t)-dimensional observation vector
b(t), connected to the state by the linear relationship

b(t) = H(t)x(t) + 𝜀(t) (3.3.2)

The matrices F(t) and H(t) have dimensions n × n and m(t) × n, respectively. The
stochastic processes {𝜀(t)} and {𝜉(t)} are zero centered, stationary, independent of
each other, and have covariance matrices

E
(
𝜉(t)𝜉T (t)

)
= Q, E

(
𝜀(t)𝜀T (t)

)
= R (3.3.3)

Also, E(𝜉(t)𝜉T (s)) = 0 and E(𝜀(t)𝜀T (s)) = 0 for the case when t ≠ s. In order to com-
plete description, define the initial data

x(0) = x0 + 𝜂 (3.3.4)

which is supposed to be known up to the random vector 𝜂, which is independent of
the vectors {𝜀(t)} and {𝜉(t)}, and has the covariance matrix

E
(
𝜂(t)𝜂T (t)

)
= C (3.3.5)
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Assuming the above specifications, it is assumed that the motion of the system is in
accordance with (3.3.1), where the random vector 𝜉(t) describes the uncertainty of
the model, which differs from the real system just for this vector. In other words, a
random vector describes the inaccuracy of our knowledge of the real system. Being
aware of the limitations of such a description, we continue finding a solution only for
applications where this assumption is justified.

Output of the system (3.3.2) is considered as a measurement of a physical quantity
b(t), linearly dependent on the state x(t), and measured subject to the random mea-
surement error 𝜀(t). The estimation problem is to recover the trajectory of the system
{x(t)} based on the results of successive measurements {b(t)} using the description
(3.3.1) to (3.3.5).

The least-squares problem is constructed as a minimization of the quadratic func-
tion of variables {x(t),… , x(t′)} as follows:

I(x(0), x(1),… , x(t′), t′) =
t′∑
t=1

(x(t) − F(t)x(t − 1))TQ−1(x(t) − F(t)x(t − 1))

+
t′∑
t=1

(b(t) − H(t)x(t))TR−1(b(t) − H(t)x(t))

+ (x(0) − x0)
TC−1(x(0) − x0) (3.3.6)

The measurements are collected at time instants t = 1,… , t′. This criterion is the
weighted sum of squared residuals of relations (3.3.1), (3.3.2), and (3.3.4). Weighing
using the positive definite inverses to the covariance matrices allows taking into
account the variance of the entries of the uncertainty vectors as well as correlations
between them. This particular weighing uses the inverse of covariance matrices,
while other weighing is also possible. Matrices Q, R, and C are supposed to be
positive definite. The estimate {x(t)}, t = 1,… , t′ giving the least value to the
criterion (3.3.6), is considered the best estimate,

Imin = min
x(0),x(1),···,x(t′)

I(x(0), x(1), · · · , x(t′), t′) (3.3.7)

In order to reflect the fact that each of the vectors x̂(t) of the best estimate
depends on all measurements vectors b(1),… , b(t′), we will be using the notation
x̂(t, b(1),… , b(t′)). Sometimes the notation expressing dependency on b(1),… , b(t′)
will be omitted if this does not lead to misunderstandings.

In applications to real-time estimation, it is necessary to obtain the best estimate
of the state as soon as measurements become available. In this case, the state x(t)
is estimated based on the measurements b(1),… , b(t), while the next state x(t + 1)
is estimated based on one more measurement b(1),… , b(t + 1). Let us denote for
the sake of brevity x∗(t) = x̂(t, b(1),… , b(t)). Using the next measurement b(t + 1)
allows for obtaining the next estimate x∗(t + 1) and, if necessary, allows for increasing
accuracy of earlier obtained estimate x∗(t) because, generally,

x∗(t) = x̂(t, b(1),… , b(t)) ≠ x̂(t, b(1),… , b(t), b(t + 1)) (3.3.8)
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In order to obtain sequential estimates x∗(t) based on sequential measurements
b(1),… , b(t) one can solve problems like (3.3.7) for t′ = t. However, it is possible
to obtain subsequent estimates x∗(t + 1) based on previously obtained estimate x∗(t)
and a “new” measurement b(t + 1).

Further, it is possible to consider the least-squares problem of the form similar to
(3.3.6). The difference is that least-squares approach is more general in that it allows
a weight matrices that is not necessarily an inverse of a covariance matrix and is
arbitrary nonnegative definite with no statistical meaning:

Ĩ(x(0), x(1),… , x(t′), t′) =
t′∑
t=1

(x(t) − F(t)x(t − 1))TWx(t)(x(t) − F(t)x(t − 1))

+
t′∑
t=1

(b(t) − H(t)x(t))TWy(t)
(
b (t) − H(t)x(t)

)
+ (x(0) − x0)

TW0(t)(x(0) − x0) (3.3.9)

The only restriction on the choice of the matrices Wx(t), Wy(t), W0 is that the
problem (3.3.9) has a unique solution. The solution of (3.3.9) will be understood as
a solution having the lowest Euclidean norm.

In the following we use the dynamic programming approach and derive the recur-
sive relations for Bellman functions (Bellman and Kalaba,1966). In optimal control
theory, the Bellman functions describe the dependence of the optimal value of the cost
function on the initial state of the dynamic process. Assume that we start the dynamic
process with the state x(0) = x′ and apply the optimal control strategy. The cost
function subject to minimization takes its minimum value denoted by v(x′) because
this value depends on the initial state. Another choice x(0) = x′′ gives another opti-
mal value v(x′′). Thus, we introduce a conditional minimum since the optimal value
depends on the initial state. The Bellman functions explicitly express this dependency.
Bellman showed that optimization of a discrete dynamic process can be stated in the
recursive form. The relationship that connects values of the Bellman function in two
sequential time instances is called the Bellman equation.

Let us denote ‖z‖2W = zTWz and rewrite the problem formulation (3.3.7) in the
form

Imin = min
x(t′)

[
min

x(0),x(1),…,x(t′−1)
I(x(0), x(1),… , x(t′), t′)

]

= min
x(t′)

⎡⎢⎢⎣ min
x(0),x(1),…,x(t′−1)

⎛⎜⎜⎝
t′∑
t=1

‖x (t) − F(t)x(t − 1)‖2
Q−1

+
t′∑
t=1

‖b (t) − H(t)x(t)‖2
R−1

+ ‖x(0) − x0‖2C−1

⎞⎟⎟⎠
⎤⎥⎥⎦ (3.3.10)
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Denoting the expression in square brackets by

v(t′, x(t′)) = min
x(0),x(1),…,x(t′−1)

⎛⎜⎜⎝
t′∑
t=1

‖x (t) − F(t)x(t − 1)‖2
Q−1

+
t′∑
t=1

‖b (t) − H(t)x(t)‖2
R−1

+ ‖x(0) − x0‖2C−1

⎞⎟⎟⎠ (3.3.11)

the problem (3.3.10) can be written in the form

Imin = min
xt′

v(t′, x(t′)) (3.3.12)

Note that the last term ‖b(t′) − H(t′)x(t′)‖2
R−1

in the second sum of (3.3.11) depends
on t′ and the variable x(t′) and does not depend on the variables x(0), x(1),… , x(t′ − 1)
for which theminimum is taken. Therefore, the expression (3.3.11) can be rewritten as

v(t′, x(t′)) = min
x(0),x(1),···,x(t′−1)

⎛⎜⎜⎝
t′∑
t=1

‖x (t) − F(t)x(t − 1)‖2
Q−1

+
t′−1∑
t=1

‖b (t) − H(t)x(t)‖2
R−1

+ ‖x(0) − x0‖2C−1

⎞⎟⎟⎠
+ ‖b(t′) − H(t′)x(t′)‖2

R−1
(3.3.13)

The problem (3.3.13) is similar to problem (3.3.7) but contains one variable x(t′)
less in definition of the minimum. Another difference of (3.3.13) compared to (3.3.7)
is that the problem (3.3.13) defines the relative minimum, which depends on the vari-
able x(t′). Aiming to apply mathematical induction, consider minimization over the
variable x(t′ − 1) in (3.3.13) as a separate operation,

min
x(0),x(1),…,x(t′−1)

⎛⎜⎜⎝
t′∑
t=1

‖x (t) − F(t)x(t − 1)‖2
Q−1

+
t′−1∑
t=1

‖b (t) − H(t)x(t)‖2
R−1

+ ‖x(0) − x0‖2C−1

⎞⎟⎟⎠
= min

x(t′−1)

⎡⎢⎢⎣ min
x(0),x(1),…,x(t′−2)

⎛⎜⎜⎝
t′∑
k=1

‖x (t) − F(t)x(t − 1)‖2
Q−1

+
t′−1∑
t=1

‖b (t) − H(t)x(t)‖2
R−1

+ ‖x(0) − x0‖2C−1

⎞⎟⎟⎠
⎤⎥⎥⎦
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= min
x(t′−1)

⎡⎢⎢⎣ min
x(0),x(1),···,x(t′−2)

⎛⎜⎜⎝
t′−1∑
t=1

‖x (t) − F(t)x(t − 1)‖2
Q−1 +

t′−1∑
t=1

‖b (t) − H(t)x(t)‖2
R−1

+ ‖‖x (0) − x0‖‖2C−1

⎞⎟⎟⎠ + ‖x(t′) − F(t′)x(t′ − 1)‖2
Q−1

⎤⎥⎥⎦ (3.3.14)

Again, denote the internal minimum in the expression (3.3.14) as

v(t′ − 1, x(t′ − 1)) = min
x(0),x(1),…,x(t′−2)

⎛⎜⎜⎝
t′−1∑
t=1

‖x (t) − F(t)x(t − 1)‖2
Q−1

+
t′−1∑
t=1

‖b (t) − H(t)x(t)‖2
R−1

+ ‖x(0) − x0‖2C−1

⎞⎟⎟⎠ (3.3.15)

then rewrite (3.3.13), taking into account expressions (3.3.14) and (3.3.15), in the
form

v(t′, x(t′)) = min
x(t′−1)

(
v(t′ − 1, x(t′ − 1)) + ‖x(t′) − F(t′)x(t′ − 1)‖2

Q−1

)
+ ‖b(t′ − 1) − H(t′)x(t′)‖2

R−1
(3.3.16)

Continuing the transformation of taking the minimum over the set of variables
x(0), x(1),… , x(t′ − 2) in expression (3.3.15) into the operation of taking the suc-
cessive minima, we obtain by induction a sequence of functions, called conditional
optimum Bellman functions, in accordance with the following recursive relations:

v(0, x(0)) = ‖x(0) − x0‖2C−1

v(1, x(1)) = min
x(0)

(
v(0, x(0)) + ‖x(1) − F(1)x(0)‖2

Q−1

)
+ ‖b(1) − H(1)x(1)‖2

R−1

· · ·

v(t, x(t)) = min
x(t−1)

(
v(t − 1, x(t − 1)) + ‖x(t) − F(t)x(t − 1)‖2

Q−1

)
+ ‖b(t) − H(t)x(t)‖2

R−1

· · ·

v(t′, x(t′)) = min
x(t′−1)

(
v(t′ − 1, x(t′ − 1)) + ‖x(t′) − F(t′)x(t′ − 1)‖2

Q−1

)
+ ‖b(t′) − H(t′)x(t′)‖2

R−1
(3.3.17)
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Along with the definition of the function v(t, x(t)), the value x(t − 1, x(t)), which
minimizes the function v(t − 1, x(t − 1)) + ‖x(t) − F(t)x(t − 1)‖2

Q−1 over the variable
x(t − 1) under fixed value of the vector x(t), is defined. These estimates are called
conditionally optimal since they are defined under condition that x(t) is fixed. In
order to find a complete set of optimal estimates x̂(0), x̂(1),… , x̂(t′), one needs
to find a minimum of v(t′, x(t′)), achieved at the point x̂(t′), and use the recursive
relations

x̂(t − 1) = x(t − 1, x̂(t)) t = t′, t′ − 1,… , 1 (3.3.18)

These recursive relations allow for sequential definition of the optimal estimate in
reverse order, starting with x̂(t′). We summarize the above construction in the follow-
ing statement:

Statement 3.3.1. The solution of the optimal estimation problem (3.3.7) is equiva-
lent to minimizing the function v(t′, x(t′)) in the variable x(t′), resulting in the optimal
estimate x̂(t′). This function is defined by the recursive relations (3.3.17). The remain-
ing components of the sequence x̂(t′ − 1), x̂(t′ − 2),… , x̂(0) of optimal estimates are
obtained recursively in accordance with relations (3.3.18).

The above describes batch measurement processing, which is applied after receiv-
ing a complete set of measurements b(1),… , b(t′). In this case, as has been men-
tioned, all the components of the sequence {x̂(t)} depend on the full set of mea-
surements: x̂(t) = x̂(t, b(1),… , b(t′)). The processing is called batch processing as
opposed to real-time processing in which case themeasurements are obtained sequen-
tially. An estimate of the component of the sequence of state vectors should also be
obtained sequentially in real time, starting with x∗(1) (obviously, x∗(0) = x(0)) and
the total number of measurements (end time instant) is unknown in advance. There-
fore, a practical interest consists in obtaining of recursive relations for computing
the next estimate x∗(t) using the previous one x∗(t − 1), and not vice versa. After
receiving a new measurement b(t) and an estimate x∗(t) = x̂(t, b(1),… , b(t)), one can
specify earlier obtained estimates x∗(t − 1), x∗(t − 2), · · · using the relations (3.3.18)
obtaining x̂(t − 1), x̂(t − 2),…, but usually this does make much practical sense.

Inductive application of the expression (A.3.38) of Section A.3.4 to expressions
(3.3.17) proves the following statement:

Statement 3.3.2. The functions v(t, x) are quadratic in their arguments. Condition-
ally optimal estimates x(t − 1, x(t)) are linearly dependent on x(t).

When working in real time, the optimal estimate x∗(t) must be obtained immedi-
ately after a measurement b(t) is received. Having a measurement b(t), one can use
the tth step of the recursive scheme (3.3.17) for construction of the function v(t, x(t)).
The measurement b(t) will be the last one among the measurements available at the
tth step. The optimal estimate x∗(t) of the vector x(t) is calculated on the base of
measurements b(1),… , b(t). Setting t′ = t in the expression (3.3.12), one obtains that
x∗(t)minimizes the function v(t, x(t))which is quadratic according to Statement 3.3.2.
Further, according to the expression (A.3.38) we have
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v(t, x(t)) = (x(t) − x∗(t))TD(t)(x(t) − x∗(t)) (3.3.19)

where D(t) is a positive definite matrix. Specifically, the equation (3.3.19) is correct
up to the constant value, which does not affect the argument of the minimum.

Our goal now is construction of the computational scheme for the recursive cal-
culation of matrix D(t) based on matrix D(t − 1), and the vector of optimal estimate
x∗(t) on the basis of vector x∗(t − 1) for all t = 1, 2,…, starting with

D(0) = C−1 and x∗(0) = x0 (3.3.20)

In the initial data conditions formulation (3.3.20), we took into account that

v(0, x(0)) = (x(0) − x0)
TC−1(x(0) − x0) (3.3.21)

Therefore, assuming that the function

v(t − 1, x(t − 1)) = (x(t − 1) − x∗(t − 1))TD(t − 1)(x(t − 1) − x∗(t − 1)) (3.3.22)

is known, obtain the expressions for function (3.3.19). Consider the function of the
variable x(t − 1) subject to minimization in (3.3.17), and denote it by q(x(t − 1)), then

q(x(t − 1)) = v(t − 1, x(t − 1)) + ‖x(t) − F(t)x(t − 1)‖2
Q−1

= (x(t − 1) − x∗(t − 1))TD(t − 1)(x(t − 1) − x∗(t − 1))

+ ‖x(t) − F(t)x(t − 1)‖2
Q−1 (3.3.23)

Expanding the parentheses in the last expression and selecting the quadratic and linear
parts, with respect to the variable x(t − 1), one obtains

q(x(t − 1)) = xT (t − 1)(D(t − 1) + FT (t)Q−1F(t))x(t − 1)

− 2xT (t − 1)(D(t − 1)x∗(t − 1) + FT (t)Q−1x(t))

+ xT (t)Q−1x(t) + c (3.3.24)

where the scalar c = x∗T (t − 1)D(t − 1)x∗(t − 1) does not affect the minimization
result in the variable x(t − 1). Now given the vector x(t), the argument of theminimum
of the function q(x(t − 1)) is defined by the expression

x(t − 1, x(t)) = (D(t − 1) + FT (t)Q−1F(t))−1(D(t − 1)x∗(t − 1) + FT (t)Q−1x(t))
(3.3.25)
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Substituting (3.3.25) into (3.3.24) and taking into account (3.3.17), we obtain

v(t, x(t)) = q(x(t − 1, x(t))) + ‖b(t) − H(t)x(t)‖2
R−1

= −(D(t − 1)x∗(t − 1) + FT (t)Q−1x(t))T (D(t − 1) + FT (t)Q−1F(t))−1

× (D(t − 1)x∗(t − 1) + FT (t)Q−1x(t)) + ‖b(t) − H(t)x(t)‖2
R−1

+ xT (t)Q−1x(t) + c (3.3.26)

Further, selecting quadratic and linear parts with respect to the variable x(t) in the last
expression, obtain

v(t, x(t)) = xT (t)
[
Q−1 − Q−1F (t) (D(t − 1) + FT (t)Q−1F(t))−1FT (t)Q−1

+HT (t)R−1H(t)
]
x(t)

− 2xT (t)
[
Q−1F (t) (D(t − 1) + FT (t)Q−1F(t))−1D(t − 1)x∗(t − 1)

+HT (t)R−1b(t)
]
+ c (3.3.27)

where the constant c, which is different from those in the expression (3.3.24), does
not affect further calculations and can be omitted. It follows from expression (3.3.27)
that

D(t) = Q−1 − Q−1F(t)(D(t − 1) + FT (t)Q−1F(t))−1FT (t)Q−1 + HT (t)R−1H(t)
(3.3.28)

The function v(t, x(t)) achieves its minimum at the point

x∗(t) = D−1(t)
[
Q−1F(t)(D(t − 1) + FT (t)Q−1F(t))−1D(t − 1)x∗(t − 1)

+HT (t)R−1b(t)
]

(3.3.29)

Expressions (3.3.28) and (3.3.29) complete a description of the recursive scheme for
updating the matrix D(t) and the vector of the optimal estimate x∗(t), starting with
initial data D(0) = C−1, x(0) = x(0).

In the following we present these equations in the more convenient form. Let us
denote

D(t) = Q−1 − Q−1F(t)(D(t − 1) + FT (t)Q−1F(t))−1FT (t)Q−1 (3.3.30)

and
x(t) = F(t)x∗(t − 1) (3.3.31)

and transform the expression for the matrix

Q−1F(t)(D(t − 1) + FT (t)Q−1F(t))−1D(t − 1)
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in (3.3.29):

Q−1F(t)(D(t − 1) + FT (t)Q−1F(t))−1D(t − 1)

= Q−1F(t) − Q−1F(t) + Q−1F(t)(D(t − 1) + FT (t)Q−1F(t))−1D(t − 1)

= Q−1F(t) − Q−1F(t)
[
I − (D(t − 1) + FT (t)Q−1F(t))−1D(t − 1)

]
= Q−1F(t) − Q−1F(t)(D(t − 1) + FT (t)Q−1F(t))−1

× (D(t − 1) + FT (t)Q−1F(t) − D(t − 1))

= Q−1F(t) − Q−1F(t)(D(t − 1) + FT (t)Q−1F(t))−1FT (t)Q−1F(t) = D(t)F(t)
(3.3.32)

Then, as follows from expressions (3.3.28)–(3.3.31), we obtain

D(t) = D(t) + HT (t)R−1H(t) (3.3.33)
and

x∗(t) = D−1(t)
[
D(t)F(t)x∗(t − 1) + HT (t)R−1b(t)

]
= D−1(t)

[
D(t)x(t) + HT (t)R−1b(t)

]
= D−1(t)

[
(D(t) − HT (t)R−1H(t))x(t) + HT (t)R−1b(t)

]
(3.3.34)

Expanding parentheses in the last expression, we arrive at the final expression

x∗(t) = x(t) + D−1(t)HT (t)R−1(b(t) − H(t)x(t)) (3.3.35)

Expressions (3.3.30), (3.3.31), (3.3.33), and (3.3.35) give a more compact repre-
sentation of the recursive estimation scheme. Each tth step of the recursive scheme
can be presented as projection (or extrapolation) and correction (or update). Expres-
sions (3.3.30) and (3.3.31) define projection; expressions (3.3.33) and (3.3.35) define
correction. The last expression (3.3.35) is a sum of projected estimate x(t) and cor-
rection calculated based on the residual (or disagreement vector) between the new
measurement b(t) and the projected or expected measurement H(t)x(t).

Now, look at the expression (3.3.28) and recall expressions (A.3.59) to (A.3.61)
for block-wise Cholesky decomposition. Let us construct the 2n × 2n matrix

G(t) =

[
D (t − 1) + FT (t)Q−1F(t) −FT (t)Q−1

−Q−1F(t) Q−1 + HT (t)R−1H(t)

]
(3.3.36)

and apply Cholesky decomposition to it:

G(t) =

[
L (t) 0
K(t) M(t)

] [
LT (t) KT (t)

0 MT (t)

]
(3.3.37)
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where the matrices L(t) andM(t) are lower triangle and the matrixK(t) is dense. From
(3.3.37) it directly follows that

D(t − 1) + FT (t)Q−1Fk = L(t)LT (t)
L(t)KT (t) = −FT (t)Q−1

Q−1 + HT (t)R−1H(t) − K(t)KT (t) = M(t)MT (t)
(3.3.38)

or

D(t − 1) + FT (t)Q−1F(t) = L(t)LT (t)

KT (t) = −FL(t)(F
T (t)Q−1)

Q−1 + HT (t)R−1H(t) − FT (t)Q−1(D(t − 1) + FT (t)Q−1F(t))−1Q−1F(t)

= M(t)MT (t) (3.3.39)

where FL(t) is the forward run operator defined in (3.1.22). It follows from the last
expression that

D(t) = M(t)MT (t) (3.3.40)

which is an alternative form for updating the matrix D(t). In other words, first the
matrix G(t) is calculated and decomposed according to (3.3.37), then the matrix
D(t) is calculated according to the last expression. Now, look at either expression
(3.3.29) or (3.3.35), both being equivalent. Taking into account (3.3.39), they can be
presented as

x∗(t) = (MT (t))−1(M(t))−1

×
[
Q−1F(t)(LT (t))−1(L(t))−1D(t − 1)x∗(t − 1) + HT (t)R−1b(t)

]
= BM(t)(FM(t)(−K(t)FL(t)(D(t − 1)x∗(t − 1)) + HT (t)R−1b(t))) (3.3.41)

and
x∗(t) = x(t) + (MT (t))−1(M(t))−1HT (t)R−1(b(t) − H(t)x(t))

= x(t) + BM(t)

(
FM(t)(H

T (t)R−1(b(t) − H(t)x(t)))
)

(3.3.42)

respectively.
For the sake of simplicity suppose that the covariance matrices Q and R do not

depend on t and are decomposed by Cholesky as

Q = LQL
T
Q R = LRL

T
R (3.3.43)

Note that FT (t)Q−1F(t) =
(
FLQ

F(t)
)TFLQ

F(t). Similar identities hold for other terms
including R−1.
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TABLE 3.3.1 Algorithm 3: Dynamic Constraints

Extend the n × n symmetric
matrix D(t) to 2n × 2n
adding zero matrix blocks

D̂(t) =
⎡⎢⎢⎣
D (t) 0

0 0

⎤⎥⎥⎦
Perform forward substitution
calculations with Cholesky
factors LQ and LR

F(t + 1) = FLQ
F(t + 1)

H(t + 1) = FLR
H(t + 1)

b(t + 1) = FLR
b(t + 1)

Q−1 = BLQ
FLQ

(I)

Compute the updating matrix Δ(t + 1) =
⎡⎢⎢⎣
F
T
(t + 1)F(t + 1) −(BLQ

F(t + 1))T

−BLQ
F(t + 1) Q−1 + H

T
(t + 1)H(t + 1)

⎤⎥⎥⎦
Compute the 2n × 2n extended
matrix

G(t + 1) = D̂(t) + Δ(t + 1)

=
⎡⎢⎢⎣
D (t) + FT (t + 1)F(t + 1) −(BLQ

(F(t + 1)))T

−BLQ
(F(t + 1)) Q−1 + HT (t + 1)H(t + 1)

⎤⎥⎥⎦
Cholesky decomposition of
G(t + 1)

G(t + 1) =
⎡⎢⎢⎣
L (t + 1) 0

K(t + 1) M(t + 1)

⎤⎥⎥⎦
⎡⎢⎢⎣
LT (t + 1) KT (t + 1)

0 MT (t + 1)

⎤⎥⎥⎦
Updated matrix D(t + 1) D(t + 1) = M(t + 1)MT (t + 1)

Projected estimate x(t + 1) = F(t + 1)x∗(t)

Residual r(t + 1) = b(t + 1) − H(t + 1)x(t + 1)

Updated estimate x∗(t + 1) = x(t + 1) + BM(t+1)

(
FM(t+1)(H

T
(t + 1)r(t + 1))

)

Let us present the matrix update scheme D(t) → D(t + 1) in a more visually clear
form, dividing it into steps presented in Algorithm 3. Starting with D(0) = C−1,

x∗(0) = x0, and t = 0, the algorithm proceeds as described in Table 3.3.1.
When working not in real time, then after the last t′th measurement is received

and the last optimal estimated x∗(t′) = x̂(t′) is obtained, one can make the “backward
run” using expression (3.3.25) for t = t′,… , 1. The factorized representation of that
expression is

x̂(t) = (LT (t + 1))−1(L(t + 1))−1
[
D(t)x∗(t) + FT (t + 1)Q−1x̂(t + 1)

]
(3.3.44)

It is assumed that vectors x∗(t + 1) and matrices L(t + 1) and D(t) are calculated and
stored in the memory during the “forward run”.

Let us make some remarks about solvability of the problem (3.3.6) and (3.3.7).
When formulating the problem of optimal estimation, the existence of a unique
solution was implicitly assumed. It means that the quadratic part of the functional
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I(x(0), x(1),… , x(t′), t′) has a positive definite matrix. Positive semidefiniteness
obviously follows from expression (3.3.6). The positive definiteness requirement
imposes additional conditions on the matrices F(t),H(t), and D(0). Positive defi-
niteness of the quadratic part of I(x(0), x(1),… , x(t′), t′) is equivalent to positive
definiteness of all matrices D(t) of the quadratic parts of the Bellman functions.
Direct verification of positive definiteness of those matrices when executing the
recursive estimation scheme also means checking the solvability of the estimation
problem. A more careful analysis shows that the matrix G(1) is positive definite
if the matrix D(0) is positive definite, which is positive definite due to the con-
dition D(0) = C−1 since the matrix C is positive definite. Positive definiteness of
G(1) implies positive definiteness of the matrix D(1). Inductively continuing, one
comes to the conclusion about positive definiteness of all matrices D(t). Thus, the
solvability of problem (3.3.7) for finite t′ is a consequence of the positive definite
choice of the initial condition D(0). However, the conditionality of the matrix of the
quadratic function I(x(0), x(1),… , x(t′), t′) could worsen as t′ increases. This would
mean a “consequent loss” of the property of positive definiteness of the matrix
G(t) as t increases. Preservation of positive definiteness of G(t) means so called
“observability” of the system (3.3.1) with respect to the output (3.3.2). Observability
analysis of the system (3.3.1) with respect to the output (3.3.2) in the time-varying
case, when the matrices F(t) and H(t) are dependent on t, can only be numerically
performed. Observability analysis is reduced to the estimation of the conditionality
of matrices D(t) as they are sequentially calculated.

Now we will derive the recursive estimate x∗(t + 1) assuming that the whole set
of measurements b(1),… , b(t′) is available simultaneously and applying the batch
processing. Consider the optimal estimation problem with respect to all variables
x(0), x(1),… , x(t′) simultaneously. Then, using the Cholesky decomposition of the
large sparse matrix, obtain the same recursive estimation equations.

Represent the quadratic function (3.3.6) in the form (A.3.36) and denote

Xt′ =
⎛⎜⎜⎝
x (1)
⋮

x(t′)

⎞⎟⎟⎠ (3.3.45)

Then, the solution of the problem (3.3.7) has the form

X̂t′ = (x̂(0, b(1),… , b(t′))T , x̂(1, b(1),… , b(t′))T ,… , x̂(t′, b(1),… , b(t′))T )T

(3.3.46)
and satisfies the system of linear equations

At′X = −lt
′ ≡ rt

′
(3.3.47)

with a matrix At′ and the right-hand side schematically drawn in Figure 3.3.1.
The superscript t′ will be omitted if it does not lead to misunderstanding. The

matrix A has a block tridiagonal structure. It is called also a “band-like” matrix as
the nonzero entries are grouped into a band located around a diagonal, forming a
narrow band of awidth 3n comparingwith total dimension t′n of thematrix when t′ ≫
3. The right hand side vector has form (C−1x(0),HT (1)R−1b(1),… ,HT (t′)R−1b(t′)).
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Figure 3.3.1 Schematic structure of the linear system (3.3.47).

The Cholesky decomposition of a band-like matrix preserves the band-like pattern of
the lower triangle part of the matrix A. Define

A = LLT (3.3.48)

where the lower triangle matrix L has the form shown in Figure 3.3.2. Now
sequentially apply formulas (A.3.59) to (A.3.61) to the decomposition (3.3.48).
The off-diagonal block entries are expressed as −Q−1F(t)(LT (t))−1 due to the
expression (A.3.60) and expressions −Q−1F(t) for off-diagonal blocks of the matrix
in Figure 3.3.1.

Let L(t) be the block-diagonal entries of this matrix. In the following we prove that
these are exactly the same matrices as described in the lower triangle representation
(3.3.37) of matrixG(t) defined in (3.3.36). Furthermore, as it follows from the expres-
sion for the first diagonal block of the matrix A, we have C−1 + FT (1)Q−1F(1) =
D(0) + FT (1)Q−1F(1) = L(1)LT (1), which corresponds to the expression (3.3.37) for
t = 1.

For the second diagonal block entry of the matrix A we have

Q−1 + HT (1)R−1H(1) + FT (2)Q−1F(2)

= Q−1F(1)(LT (1))−1(L(1))−1FT (1)Q−1 + L(2)LT (2)

= Q−1F(1)(D(0) + FT (1)Q−1F(1))−1FT (1)Q−1 + L(2)LT (2) (3.3.49)
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Figure 3.3.2 Band-like structure of the matrix in the Cholesky decomposition (3.3.48).

which together with (3.3.28) gives

L(2)LT (2) = D(1) + FT (2)Q−1F(2) (3.3.50)

This expression corresponds to (3.3.39) for t = 2. Continuing until t = t′, we obtain
that lower triangle matrices L(t), defined earlier in (3.3.37) and used in the recursive
scheme (3.3.39), are exactly diagonal block entries of the lower triangle matrix L in
the decomposition (3.3.48). Next we find the expression for the last t′ + 1 th diagonal
block entry of the matrix L. We have

Q−1 + HT (t′)R−1H(t′)

= Q−1F(t′)(D(t′ − 1) + FT (t′)Q−1F(t′))−1FT (t′)Q−1 +M(t′)MT (t′) (3.3.51)

which gives
M(t′)MT (t′) = D(t′) (3.3.52)

Therefore, the last diagonal block entry of the matrix L is the lower diagonal block
of the Cholesky decomposition (3.3.37). We have proven the following:

Statement 3.3.3. The recursive scheme (3.3.37), (3.3.40) for calculation of
matrices L(t), t = 1,… , t′, M(t′) is equivalent to Cholesky decomposition (3.3.48)
of matrix A of the quadratic function (3.3.6).
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Let us now apply the forward and backward run formulas (A.3.66), and (A.3.67)
to solve the system (3.3.47),

LZ = r
LTX = Z

(3.3.53)

Let us take the vector Z as Z = (zT (0), zT (1),… , zT (t′))T and the right-hand side vec-
tor r as r = (rT (0), rT (1),… , rT (t′))T . Taking into account the structure of the matrix
L shown in Figure 3.3.2, and applying block-wise forward run, we can present the
solution of the first half of the system (3.3.53) with respect to Z in the form

z(0) = (L(1))−1r(0)

z(1) = (L(2))−1(r(1) + Q−1F(1)(LT (1))−1z(0))

· · ·

z(t′ − 1) = (L(t′))−1(r(t′ − 1) + Q−1F(t′ − 1)(LT (t′ − 1))−1z(t′ − 2))

z(t′) = (M(t′))−1(r(t′) + Q−1F(t′)(LT (t′))−1z(t′ − 1)) (3.3.54)

Then, applying the block-wise backward substitution, the solution of the second half
of the system (3.3.53) with respect to X becomes

x̂(t′) = (MT (t′))−1z(t′)

x̂(t′ − 1) = (LT (t′))−1(z(t′ − 1) + (L(t′))−1FT (t′)Q−1x̂(t′))

· · ·

x̂(0) = (LT (1))−1(z(0) + (L(1))−1FT (1)Q−1x̂(1)) (3.3.55)

The sequential application of expressions (3.3.54) and (3.3.55) gives the optimal esti-
mate x̂(t′), t = 0, 1,… , t′. Moreover, it was established earlier that x̂(t′) = x∗(t′). If
we are interested only in the estimate x∗(t′), then it is sufficient to make only one
first step of the backward run after the forward run (3.3.54) has been carried out,
i.e., x∗(t′) = (MT (t′))−1z(t′). Consider two problems of (3.3.7) formulated with t′ − 1
and t′ measurements. Let At′−1 and At′ be correspondent matrices. Let the Cholesky
decomposition

At′−1 = Lt
′−1(Lt

′−1)T (3.3.56)

be already calculated. Then, for calculation of the decomposition

At′ = Lt
′
(Lt

′
)T (3.3.57)

it is sufficient to calculate the block entries L(t′),K(t′), andM(t′) of the decomposition
(3.3.48) (see Figure 3.3.2); the superscript t′ is omitted because all other block entries
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of matrices L ≡ Lt
′
and Lt

′−1 coincide. In order to calculate the block L(t′) let us use
the decomposition

L(t′)LT (t′) = D(t′ − 1) + FT (t′)Q−1F(t′)

= Mt′−1(t′ − 1)(Mt′−1(t′ − 1))T + FT (t′)Q−1F(t′) (3.3.58)

Then we obtain
K(t′) = −Q−1F(t′)(LT (t′))−1 (3.3.59)

For calculating the matrixM(t′) we use the identity for the last lower diagonal block
of identity (3.3.48):

M(t′)M(t′)T + Q−1F(t′)
(
L(t′)LT (t′)

)−1
FT (t′)Q−1 = Q−1 + HT (t′)R−1H(t′)

(3.3.60)
The Cholesky decomposition

M(t′)MT (t′) = Q−1 + HT (t′)R−1H(t′) − K(t′)KT (t′) (3.3.61)

completes the calculations.
Now, we establish the connections between estimates x∗(t′) and x∗(t′ − 1) which

were calculated at the first step of the recursive schemes (3.3.55) when solving prob-
lem (3.3.7) for measurements collected at time instants 1,… , t′, and solving problem
(3.3.7) for measurements collected at time instants 1,… , t′ − 1. Also, we need to
establish connections with the recursive scheme (3.3.41). Let z∗(t′ − 1) and z∗(t′) be
vectors calculated at the last step (step t′ − 1 in the case of t′ − 1 measurements and
step t′ in the case of t′ measurements) of the scheme (3.3.54). It follows from the first
expression of (3.3.55) that

x∗(t′) = (Mt′ (t′)T )−1z∗(t′)

x∗(t′ − 1) = (Mt′−1(t′ − 1)T )−1z∗(t′ − 1)
(3.3.62)

We take note of the fact that according to (3.3.54) the vector z(t′ − 1), obtained
at step t′ − 1 of the numerical scheme for the case of t′ measurements, is connected
with z∗(t′ − 1) by the relationship

z(t′ − 1) = (L(t′))−1Mt′−1(t′ − 1)z∗(t′ − 1) (3.3.63)

Combination of (3.3.62) and (3.3.63) and the first expression of (3.3.55) gives

x∗(t′) = (MT (t′))−1(M(t′))−1(HT (t′)R−1b(t′) + Q−1F(t′)(LT (t′))−1z(t′ − 1))

= (MT (t′))−1(M(t′))−1(HT (t′)R−1b(t′)

+ Q−1F(t′)(LT (t′))−1(L(t′))−1Mt′−1(t′ − 1)z∗(t′ − 1))
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= (MT (t′))−1(M(t′))−1(HT (t′)R−1b(t′)

+ Q−1F(t′)(LT (t′))−1(L(t′))−1Mt′−1(t′ − 1)Mt′−1(t′ − 1)Tx∗(t′ − 1))

= (MT (t′))−1(M(t′))−1(HT (t′)R−1b(t′) − K(t′)(L(t′))−1D(t′ − 1)x∗(t′ − 1))
(3.3.64)

which coincides with (3.3.41) for t = t′. Therefore, we came to the following impor-
tant statement:

Statement 3.3.4. Sequential computation of block entries of the Cholesky decom-
positions of the large-scale sparse matrix of the problem (3.3.6) and (3.3.7) gives the
same results and the same formulas (3.3.41) (or (3.3.42)) and (3.3.40) as obtained
for the recursive optimal estimation when using the Bellman functions approach.

In this section we derived the recursive least-squares algorithm to estimate
parameters subject to dynamic constraints. Using the Cholesky decomposition for
the band-like matrix, we established a connection between recursive processing
and batch processing. We proved that the recursive Algorithm 3 can be obtained
as Cholesky decomposition of a continuously increasing band-like matrix and
continuously performed forward solution, followed by only a single step backward
solution. Performing the full backward solution is equivalent to batch processing.

3.4 STATIC PARAMETERS AND DYNAMIC CONSTRAINTS

The estimation problem is generalized by combining the cases described in Sections
3.2 and 3.3. We consider the dynamic system (3.3.1), which connects two sequential
state vectors x(t) = F(t)x(t − 1) + 𝜉(t), and an extension of the measurement model
(3.3.2),

b(t) = H(t)x(t) +W(t)y + 𝜀(t) (3.4.1)

The extended model incorporates time-varying parameter x(t) and a time-invariant
p-dimensional parameter y. The matrix W(t) has dimensions m(t) by p. Actually, we
can formally assume a “very slow” dynamics for parameter y, and write dynamics
equations as

y(t) = y(t − 1) + 𝜉′(t) (3.4.2)

where the error 𝜉′(t) is zero. The last requirement can be taken into account in the
form E(𝜉′(t)𝜉′(t)T ) → 0, i.e., its covariance matrix must take smallest possible value
but not destroy the computational stability. However, this approach meets obvious
objections when implementing in practice. The numerical scheme described in the
previous section assumes the inverse of the covariance matrix, which is not invertible
in this case. We can write

E

(
𝜉 (t) 𝜉T (t) 𝜉(t)𝜉′T (t)
𝜉′(t)𝜉T (t) 𝜉′(t)𝜉′T (t)

)
=

(
Q 0
0 0

)
(3.4.3)
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A possible solution would be the introduction of small error 𝜉′(t) with “near zero”
covariance matrix. However, instead of introducing this kind of modification and
dealing with the necessity to prove correctness and convergence as diagonal entries
tend to zero, we derive a special form of the estimation algorithm for the problems
(3.3.1) and (3.4.1). We consider the parameter y as constant, not “slow varying.” The
uncertainty of the initial data is described by conditions (3.3.4) and (3.3.5). The esti-
mation problem consists of recovering the trajectory {x(t)} and the constant vector
y using sequential measurements {b(t)} and models (3.3.1), and (3.4.1) and specifi-
cations (3.3.3) to (3.3.5). Least-squares criterion minimizes the quadratic function of
the variables x(t), t = 0,… , t′ and y defined by the expression

I
(
x(0), x(1),… , x(t′), y, t′

)
=

t′∑
t=1

‖‖x(t) − F(t)x(t − 1)‖‖2Q−1 +
t′∑
t=1

‖‖b(t) − H(t)x(t) −W(t)y‖‖2R−1
‖‖x(0) − x0‖‖2C−1 (3.4.4)

where t′ is the number of accumulated measurements. That is, the weighted sum of
squared residuals of the relationships (3.3.1), (3.4.1), and (3.3.4) is minimized. The
best estimation {x̂(t, b(1),… , b(t′))}, t = 0,… , t′, and ŷ(b(1),… , b(t′)) minimizes
the criterion (3.4.4), solving the problem

Imin = min
x(0),x(1),…,x(t′),y

I(x(0), x(1),… , x(t′), y, t′) (3.4.5)

which generalizes the early considered problems (3.1.5) and (3.3.7).
Notation identifying dependency of the optimal estimate on the measurements

(b(1),… , b(t′)) will be omitted if it does not lead to misunderstanding. As done in
the previous section, denote x∗(t) = x̂(t, b(1),… , b(t)) and y∗(t) = ŷ(b(1),… , b(t)).
Let us derive the recursive relationships for obtaining estimates x∗(t) and y∗(t) on
the base of earlier obtained estimates x∗(t − 1), y∗(t − 1), and the measurement b(t).
Rewrite the problem (3.4.5) in the equivalent form

Imin = min
y
[ min
x(0),x(1),…,x(t′)

I(x(0), x(1),… , x(t′), y, t′)] (3.4.6)

and consider y fixed, the internal minimization problem in (3.4.6) over the variables
x(0), x(1),… , x(t′), t′ is

Imin(y) = min
x(0),x(1),…,x(t′)

I(x(0), x(1),… , x(t′), y, t′) (3.4.7)

Changing the order of minimization operations in the last expression, one arrives at
the following equivalent formulation of problem (3.4.7):

Imin(y) = min
x(t′)

[
min

x(0),x(1),…,x(t′−1)
I(x(0), x(1),… , x(t′), y, t′)

]
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= min
x(t′)

⎡⎢⎢⎣ min
x(0),x(1),…,x(t′−1)

⎛⎜⎜⎝
t′∑
t=1

‖‖‖x (t) − F(t)x(t − 1)‖‖‖2Q−1

+
t′∑
t=1

‖‖‖b (t) − H(t)x(t) −W(t)y‖‖‖2R−1 + ‖‖‖x (0) − x0
‖‖‖2C−1

⎞⎟⎟⎠
⎤⎥⎥⎦ (3.4.8)

Then denote

v(t, x(t′), y) = min
x(0),x(1),…,x(t′−1)

⎛⎜⎜⎝
t′∑
t=1

‖‖‖x (t) − F(t)x(t − 1)‖‖‖2Q−1

+
t′∑
t=1

‖‖‖b (t) − H(t)x(t) −W(t)y‖‖‖2R−1 + ‖‖‖x (0) − x0
‖‖‖2C−1

⎞⎟⎟⎠ (3.4.9)

and problem (3.4.8) takes the following form:

Imin(y) = min
x(t′)

v(t′, x(t′), y) (3.4.10)

The last term ‖b(t′) − H(t′)x(t′) −W(t′)y‖2
R−1

in the second summation operation
of expression (3.4.9) does not depend on the variables x(0),… , x(t′ − 1) and, there-
fore, the expression can be rewritten as

v(t′, x(t′), y) = min
x(0),x(1),…,x(t′−1)

⎛⎜⎜⎝
t′∑
t=1

‖‖‖x (t) − F(t)x(t − 1)‖‖‖2Q−1

+
t′−1∑
t=1

‖‖‖b (t) − H(t)x(t) −W(t)y‖‖‖2R−1 + ‖‖‖x(0) − x0
‖‖‖2C−1

⎞⎟⎟⎠‖‖‖b(t′) − H(t′)x(t′) −W(t′)y‖‖‖2R−1 (3.4.11)

Repeating the reasoning of the previous section, one arrives at the sequence of the
Bellman functions, all of which also depend on the variable y (excluding v(0, x(0)),
which depending only on x(0)),

v(0, x(0)) = ‖x(0) − x0‖2C−1

v(1, x(1), y) = min
x(0)

(
v(0, x(t)) + ‖x(1) − F(1)x(0)‖2

Q−1

)
+ ‖b(1) − H(1)x(1) −W(1)y‖2

R−1

v(2, x(2), y) = min
x(1)

(
v(1, x(1), y) + ‖x(2) − F(2)x(1)‖2

Q−1

)
+ ‖b(2) − H(2)x(2) −W(2)y‖2

R−1

· · ·
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v(t, x(t), y) = min
x(t−1)

(
v(t − 1, x(t − 1), y) + ‖x(t) − F(t)x(t − 1)‖2

Q−1

)
+ ‖b(t) − H(t)x(t) −W(t)y‖2

R−1

· · ·

v(t′, x(t′), y) = min
x(t′−1)

(
v(t′ − 1, x(t′ − 1), y) + ‖x(t′) − F(t′)x(t′ − 1)‖2

Q−1

)
+ ‖b(t′) − H(t′)x(t′) −W(t′)y‖2

R−1
(3.4.12)

The value of the estimate x(t − 1), which minimizes the first term of the function
v(t, x(t), y), given the variables x(t) and y, is denoted by x(t − 1, x(t), y) and called the
conditionally optimal estimate. In order to find the whole set of optimal estimates
x̂(0), x̂(1),… , x̂(t′), ŷ one needs to find the minimum of the function v(t′, x(t′), y)
reached at the point x̂(t′), ŷ, and exploit the recursive expressions

x̂(t − 1) = x(t − 1, x̂(t), ŷ) t = t′, t′ − 1, · · · , 1 (3.4.13)

These relationships allow for sequentially obtaining the components of the optimal
estimate in the reverse order. Note again that the first function v(t′, x(t′), y) is mini-
mized over two variables x(t′) and y, resulting in the estimates x̂(t′) and ŷ. The optimal
estimate ŷ is then substituted into all expressions (3.4.13). The following statement
summarizes the construction described above:

Statement 3.4.1. The solution of the optimal estimation problem (3.4.5) is equiva-
lent to minimization of the function v(t′, x(t′), y) over the variables x(t′), y resulting in
optimal estimates x̂(t′), ŷ. The function v(t′, x(t′), y) is obtained using recursive rela-
tionships (3.4.12). All other components of the sequence x̂(t′ − 1), x̂(t′ − 2),… , x̂(0)
of optimal estimates are obtained according to relationships (3.4.13).

What is described above is “batch processing” applied to the whole set of mea-
surements b(1),… , b(t′) after they have been received. When working in real time,
optimal estimate of the sequence of state vectors must be obtained sequentially as the
measurements become available, and the total number of measurements t′ is unknown
beforehand. Therefore, of practical importance are recursive relationships for calcu-
lation of the next estimate x∗(t), y∗(t) using the previous estimate x∗(t′ − 1), y∗(t′ − 1)
and the measurement b(t). After the measurement b(t) has been received and the
new estimate x∗(t′), y∗(t′ − 1) has been calculated, earlier obtained estimates x(t −
1), x(t − 2),… , x(0) can be updated using the “backward run” relationships (3.4.13).
However, that cannot be carried out when working in real time. Only some lim-
ited backward run depth T is available. In other words, the components x(t), x(t −
1),… , x(t − T + 1) are updated. This way of recursive processing can be considered
as “partial” batch processing of depth T and can be performed in real time.

The depth T is a constant. If T = 1, then we have the conventional recursive pro-
cessing. If T is not constant and T ≡ t, then we have a batch processing implemented
as a forward run (calculation of Bellman functions (3.4.12)) and a backward run
(3.4.13).

Nowwe can derive the numerical scheme for recursive processing. Inductive appli-
cation of the expression (A.3.38) to relationships (3.4.12) gives the following result:
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Statement 3.4.2. The Bellman functions v(t, x(t), y), defined by relationships
(3.4.12) are quadratic functions of their variables. Conditionally optimal estimates
x(t − 1, x(t), y) are linearly dependent on x(t) and y.

In real-time operations, the optimal estimate x∗(t), y∗ must be obtained right after
receiving the measurement b(t). Having the measurement b(t), one can use the tth

step of the recursive scheme (3.4.12) for constructing the function v(t, x(t), y). The
measurement b(t) is the last one received up to time instant t. We are looking for
the optimal estimate for x(t) and y at the tth step having available measurements
b(1),… , b(t). Setting t′ = t in expression (3.4.10), we see that the optimal estimate
x∗(t), y∗ minimizes the function v(t, x(t), y)which is quadratic due to Statement 3.4.2.
According to expression (A.3.38) we have

v(t, x(t), y) =

(
x (t) − x∗(t)
y − y∗(t)

)T [
Dxx (t) Dxy(t)
Dyx(t) Dyy(t)

](
x (t) − x∗(t)
y − y∗(t)

)
(3.4.14)

where the matrix

D(t) =
[
Dxx (t) Dxy(t)
Dyx(t) Dyy(t)

]
(3.4.15)

is symmetric (Dyx(t) = Dxy(t)T ) and positive definite. The equality (3.4.14) is valid
up to a constant not affecting the minimum point.

Our goal now is to derive a numerical scheme for calculating the matrix D(t) and
the optimal estimate x∗(t), y∗(t), based on the matrixD(t − 1), the estimates x∗(t − 1),
y∗(t − 1), and the measurement vector b(t). The initial conditions are

D(0) =
[
C−1 0
0 0

]
(3.4.16)

x∗(0) = x0 (3.4.17)

y∗(0) = 0 (3.4.18)

The matrix D(0) is not positive definite which does not contradict our construction
since it will not be inversed. Assuming that we know the function

v(t − 1, x(t − 1), y) =

(
x (t − 1) − x∗(t − 1)

y − y∗(t − 1)

)T [
Dxx (t − 1) Dxy(t − 1)
Dyx(t − 1) Dyy(t − 1)

]
×

(
x (t − 1) − x∗(t − 1)

y − y∗(t − 1)

)
(3.4.19)

we now derive expressions for the function (3.4.14). Consider the function of vari-
ables x(t − 1), x(t), y, which is subject to minimization over the variable x(t − 1) in
expression (3.4.12), and denote it by q(x(t − 1), x(t), y):

q(x(t − 1), x(t), y) = v(t − 1, x(t − 1), y) + ‖x(t) − F(t)x(t − 1)‖2
Q−1

=

(
x (t − 1) − x∗(t − 1)

y − y∗(t − 1)

)T [
Dxx (t − 1) Dxy(t − 1)
Dyx(t − 1) Dyy(t − 1)

]
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×

(
x (t − 1) − x∗(t − 1)

y − y∗(t − 1)

)
+ ‖x(t) − F(t)x(t − 1)‖2

Q−1

=
⎛⎜⎜⎝
x (t − 1)

0
y

⎞⎟⎟⎠
T ⎡⎢⎢⎣

Dxx (t − 1) 0 Dxy(t − 1)
0 0 0

Dyx(t − 1) 0 Dyy(t − 1)

⎤⎥⎥⎦
⎛⎜⎜⎝
x (t − 1)

0
y

⎞⎟⎟⎠
− 2

⎛⎜⎜⎝
x (t − 1)

0
y

⎞⎟⎟⎠
T ⎡⎢⎢⎣

Dxx (t − 1) 0 Dxy(t − 1)
0 0 0

Dyx(t − 1) 0 Dyy(t − 1)

⎤⎥⎥⎦
⎛⎜⎜⎝
x∗ (t − 1)

0
y∗(t − 1)

⎞⎟⎟⎠
+
⎛⎜⎜⎝
x (t − 1)
x(t)
0

⎞⎟⎟⎠
T ⎡⎢⎢⎣

FT (t)Q−1F(t) −FT (t)Q−1 0
−Q−1F(t) Q−1 0

0 0 0

⎤⎥⎥⎦
⎛⎜⎜⎝
x (t − 1)
x(t)
0

⎞⎟⎟⎠ + c

(3.4.20)

Making use of the expression (A.3.83) for the function of partial minimum, we obtain
the expression for the function

min
x(t−1)

q(x(t − 1), x(t), y)

=

(
x (t)
y

)T {[
Q−1 0

0 Dyy (t − 1)

]
−

(
−Q−1F (t)

Dxy(t − 1)T

)
(Dxx(t − 1) + FT (t)Q−1F(t))−1

×
(
−FT (t)Q−1 Dxy(t − 1)

)}(
x (t)
y

)
+ 2

(
x (t)
y

)T {
−

(
0

Dxy(t − 1)Tx∗(t − 1) +Dyy(t − 1)y∗(t − 1)

)
+

(
−Q−1F (t)

Dxy(t − 1)T

)
(Dxx(t − 1) + FT (t)Q−1F(t))−1

×
(
Dxx (t − 1) x∗(t − 1) +Dxy(t − 1)y∗(t − 1)

)}
(3.4.21)

and finally, according to expression (3.4.12),

v(t, x(t), y) =

(
x (t)
y

)T {[
Q−1 0

0 Dyy (t − 1)

]
−

(
−Q−1F (t)

Dxy(t − 1)T

)
(Dxx

k−1 + FT (t)Q−1F(t))−1

×
(
−FT (t)Q−1 Dxy(t − 1)

)}(x (t)
y

)
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+

(
x (t)
y

)T [HT (t)R−1H(t) HT (t)R−1W(t)

WT (t)R−1H(t) WT (t)R−1W(t)

](
x (t)
y

)
+ 2

(
x (t)
y

)T {
−

(
0

Dxy(t − 1)Tx∗(t − 1) + Dyy(t − 1)y∗(t − 1)

)
+

(
−Q−1F (t)

Dyy(t − 1)T

)
(Dxx(t − 1) + FT (t)Q−1F(t))−1

×
(
Dxx (t − 1) x∗(t − 1) +Dxy(t − 1)y∗(t − 1)

)}
− 2

(
x (t)
y

)T (HT (t)R−1b(t)

WT (t)R−1b(t)

)
(3.4.22)

In expression (3.4.22) the linear and quadratic parts of the vector variable (x(t), y) are
now extracted. According to (3.4.22) and (3.4.14) we have

D(t) =

⎡⎢⎢⎢⎣
Q−1 − Q−1F (t) D̃

−1
(t − 1)FT (t)Q−1 Q−1F(t)D̃

−1
(t − 1)Dxy(t − 1)

Dxy(t − 1)TD̃
−1
(t − 1)FT (t)Q−1 Dyy(t − 1) −Dxy(t − 1)T

×D̃
−1
(t − 1)Dxy(t − 1)

⎤⎥⎥⎥⎦
+

[
HT (t)R−1H(t) HT (t)R−1W(t)

WT (t)R−1H(t) WT (t)R−1W(t)

]
(3.4.23)

where
D̃(t − 1) = Dxx(t − 1) + FT (t)Q−1F(t) (3.4.24)

and (
x∗ (t)
y∗(t)

)
= D−1(t)Y(t) (3.4.25)

and

Y(t) =

⎛⎜⎜⎜⎝
Q−1F (t) D̃

−1
(t − 1)(Dxx(t − 1)x∗(t − 1) +Dxy(t − 1)y∗(t − 1))

+HT (t)R−1b(t)

Yy(t)

⎞⎟⎟⎟⎠ ,
Yy(t) = Dxy(t − 1)Tx∗(t − 1) +Dxy(t − 1)y∗(t − 1)

−Dxy(t − 1)TD̃
−1
(t − 1)(Dxx(t − 1)x∗(t − 1) +Dxy(t − 1)y∗(t − 1))

+WT (t)R−1b(t) (3.4.26)
Let

D(t) =

⎡⎢⎢⎢⎣
Q−1 − Q−1F (t) D̃

−1
(t − 1)FT (t)Q−1 Q−1F(t)D̃

−1
(t − 1)Dxy(t − 1)

Dxy(t − 1)TD̃
−1
(t − 1)FT (t)Q−1 Dyy(t − 1) −Dxy(t − 1)T

× D̃
−1
(t − 1)Dxy(t − 1)

⎤⎥⎥⎥⎦
≡
[
D

xx
(t) D

xy
(t)

D
yx
(t) D

yy
(t)

]
(3.4.27)
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and
x(t) = F(t)x∗(t − 1) (3.4.28)

then the expression (3.4.23) takes the form

D(t) = D(t) +
[
HT (t)R−1H(t) HT (t)R−1W(t)

WT (t)R−1H(t) WT (t)R−1W(t)

]
(3.4.29)

Transform terms in the expressions (3.4.26) as

Q−1F(t)D̃
−1
(t − 1)Dxx(t − 1)x∗(t − 1)

=
[
Q−1F(t) − Q−1F(t) + Q−1F(t)(Dxx(t − 1) + FT (t)Q−1F(t))−1Dxx(t − 1)

]
× x∗(t − 1)

=
[
Q−1F(t) − Q−1F(t) + Q−1F(t)(Dxx(t − 1) + FT (t)Q−1F(t))−1

× (Dxx(t − 1) + FT (t)Q−1F(t) − FT (t)Q−1F(t))
]
x∗(t − 1)

= Q−1F(t) − Q−1F(t)(Dxx(t − 1) + FT (t)Q−1F(t))−1FT (t)Q−1F(t)x∗(t − 1)

= D
xx
(t)F(t)x∗(t − 1) (3.4.30)

where expression for D
xx
(t) is taken from (3.4.27), and

Dxy(t − 1)T −Dxy(t − 1)TD̃
−1
(t − 1)Dxx(t − 1)

= Dxy(t − 1)TD̃
−1
(t − 1)(D̃(t − 1) −Dxx(t − 1))

= Dxy(t − 1)TD̃
−1
(t − 1)FT (t)Q−1F(t) = D

xy
(t − 1)T (3.4.31)

Now Equation (3.4.25) can be rewritten as(
x∗ (t)
y∗(t)

)
= D−1(t)

[
D (t)

(
x (t)

y∗(t − 1)

)
+

(
HT (t)R−1b(t)
WT (t)R−1b(t)

)]
= D−1(t)

{
D (t)

(
x (t)

y∗(t − 1)

)
−

[
HT (t)R−1H(t) HT (t)R−1W(t)

WT (t)R−1H(t) WT (t)R−1W(t)

]
×

(
x (t)

y∗(t − 1)

)
+

(
HT (t)R−1b(t)
WT (t)R−1b(t)

)}
=

(
x (t)

y∗(t − 1)

)
+D−1(t)

{
−

[
HT (t)R−1H(t) HT (t)R−1W(t)

WT (t)R−1H(t) WT (t)R−1W(t)

]
×

(
x (t)

y∗(t − 1)

)
+

(
HT (t)R−1b(t)
WT (t)R−1b(t)

)}
(3.4.32)
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and finally(
x∗ (t)
y∗(t)

)
=

(
x (t)

y∗(t − 1)

)
+D−1(t)

(
HT (t)R−1

WT (t)R−1

)
(b(t) − H(t)x(t) −W(t)y∗(t − 1))

(3.4.33)
Formulas (3.4.27)–(3.4.29), and (3.4.33) provide the full description of the recursive
estimation scheme.

In order to present expressions (3.4.23) [or (3.4.27) and (3.4.29)] in a conve-
nient and numerically stable form we will use the matrix decomposition technique
described in the previous subsections. Consider the (2n + p) × (2n + p) matrix

G(t) =

⎡⎢⎢⎢⎢⎣
Dxx (t − 1) + FT (t)Q−1F(t) −FT (t)Q−1 Dxy(t − 1)

−Q−1F(t) Q−1 + HT (t)R−1H(t) HT (t)R−1W(t)

Dxy(t − 1)T WT (t)R−1H(t) Dyy(t − 1)
+WT (t)R−1W(t)

⎤⎥⎥⎥⎥⎦
(3.4.34)

Divide it into blocks according to (A.3.39) where

N11 = Dxx(t − 1) + FT (t)Q−1F(t)

N12 =
(
−FT (t)Q−1 Dxy(t − 1)

)
(3.4.35)

N22 =

(
Q−1 + HT (t)R−1H(t) HT (t)R−1W(t)

WT (t)R−1H(t) Dyy(t − 1) +WT (t)R−1W(t)

)
and calculate its Cholesky decomposition

G(t) =

[
L (t) 0
K(t) M(t)

] [
LT (t) KT (t)
0 MT (t)

]
(3.4.36)

It follows from (A.3.59) to (A.3.61) and (3.4.35) that

L(t)LT (t) = D̃(t) = Dxx(t − 1) + FT (t)Q−1F(t)

K(t) =

(
−Q−1F (t)
Dxy(t − 1)T

)
(LT (t))−1

(3.4.37)

and
D(t) = M(t)MT (t) (3.4.38)

Let us now look at the expression (3.4.33). Taking into account (3.4.38) we have(
x∗ (t)
y∗(t)

)
=

(
x (t)

y∗(t − 1)

)
+ (MT (t))−1M−1(t)

(
HT (t)R−1

WT (t)R−1

)
× (b(t) − H(t)x(t) −W(t)y∗(t − 1)) (3.4.39)

Expressions (3.4.34), (3.4.36), (3.4.28), and (3.4.39) give full description of the recur-
sive estimation scheme of the parameters (x∗(t), y∗(t)) in the decomposed form.
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For the sake of simplicity suppose that the covariance matrices Q and R do not
depend on t and are decomposed by Cholesky as

Q = LQL
T
Q R = LRL

T
R (3.4.40)

and also note that FT (t)Q−1F(t) = (FLQ
F(t))TFLQ

F(t). Similar identities hold for
other terms, including R−1. Let us present the estimate update and the matrix
update scheme D(t − 1) → D(t) in more visual form in Algorithm 4, described in
Table 3.4.1. Starting with D(0) = C−1, x∗(0) = x0, and y∗(0) = 0, proceed from one
row to the next. Then, the recursive update of the optimal estimate is calculated
according to the formulas (3.4.28) and (3.4.39).

Now let us return to considering the same problem (3.4.5) but for batch pro-
cessing. Consider the quadratic function (3.4.4) and present it in the form (A.3.36).
Let us present the set of vectors x(0), x(1),… , x(t′), y in the form of the (t′ + 1)n +
p-dimensional vector

X =

⎛⎜⎜⎜⎝
x (0)
⋮

x(t′)
y

⎞⎟⎟⎟⎠ (3.4.41)

Then the solution to the problem (3.4.5) satisfies the linear system

AX = r (3.4.42)

which is schematically shown in Figure 3.4.1. The matrix A has the block band-wise
structure with a “bordering.” The right-hand side vector r has the form

r =
⎛⎜⎜⎝C−1x0,H

T (1)R−1b(1),… ,HT (t′)R−1b(t′),
t′∑
t=1

WT (t)R−1b(t)
⎞⎟⎟⎠
T

(3.4.43)

The location of nonzero block entries of the matrix A and their content is shown
in the Figure 3.4.1. The factors of the Cholesky decomposition of matrix A have the
pattern that occupies the lower diagonal part of the matrix (Figure 3.4.2). As was
done in the Section 3.3, one can show that sequential calculation of the block entries
of the Cholesky decomposition of the large matrix A gives the same formulas for the
recursive estimation scheme as (3.4.25), (3.4.26), (3.4.34), and (3.4.38).

Statement 3.4.3. The sequential computation of block entries of the Cholesky
decompositions of the large sparse matrix of problems (3.4.4) and (3.4.5) gives
the same results and the same formulas (3.4.25), (3.4.26) and (3.4.34), (3.4.38)
as were obtained for the recursive optimal estimation using the Bellman functions
approach.

In this section, we derived the recursive least-squares algorithm allowing estima-
tion of parameters subject to dynamic constraint along with static parameters.
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Figure 3.4.1 Schematic structure of the band-like linear system (3.4.42).

Figure 3.4.2 Band-like structure of the matrix in the Cholesky decomposition.
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3.5 STATIC PARAMETER, PARAMETERS SUBJECT TO DYNAMIC
CONSTRAINTS, AND ARBITRARY TIME-VARYING PARAMETERS

This section combines the results obtained in Sections 3.3 and 3.4. We consider
again the dynamic system (3.3.1) connecting two sequential state vectors: x(t) =
F(t)x(t − 1) + 𝜉(t) and extend the measurement model (3.4.1) to include arbitrary
time-varying parameter z(t)

b(t) = H(t)x(t) + J(t)z(t) +W(t)y + 𝜀(t) (3.5.1)

The model (3.5.1) connects the time-varying n-dimensional parameter x(t), which
satisfy the dynamic constraints (3.3.1), the arbitrary varying r(t)-dimensional param-
eter z(t), and the constant time-invariant p-dimensional parameter y. The matrixW(t)
has dimensions m(t) by p. Let matrices H(t) and J(t) have dimensions m(t) × n and
m(t) × r(t), respectively. The problem setup is completed by adding initial conditions
(3.3.4) and (3.3.5).

We present results omitting intermediate constructions that are similar to those of
Sections 3.2 and 3.4. For the sake of simplicity suppose that the covariance matrices
Q and R do not depend on k and are factorized by Cholesky as

Q = LQL
T
Q R = LRL

T
R (3.5.2)

and note that FT (t)Q−1F(t) =
(
FLQ

F(t)
)TFLQ

F(t). Similar identities hold for other
terms, including R−1. Starting with initial conditions

D(0) =
[
C−1 0
0 0

]
(3.5.3)

x∗(0) = x0 y∗(0) = 0 (3.5.4)

the algorithm proceeds as described in Table 3.5.1.
This completes the description of the algorithms and the chapter. We provided five

algorithms for the following estimation problems:

1) Algorithm 1 solves the problem of estimating static parameters. It applies to the
processing of across-receiver, across-satellite pseudorange and carrier phase observ-
ables in the case of stationary antenna positions. The estimated parameters include
corrections to the antenna positions and the double differenced carrier phase ambi-
guities.

2) Algorithm 2 estimates arbitrary varying parameters and static parameters. It
applies to the processing of across-receiver observables for stationary or kinematic
processing situations. The across-receiver carrier phase ambiguities are static param-
eters. Across-receiver clock differences are considered arbitrarily varying parameters
taking independent values at adjacent epochs. The position corrections can be con-
sidered static parameters or arbitrarily varying parameters for stationary or kinematic
cases, respectively.
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3) Dynamic parameters estimation is not explicitly used when processing GNSS
observables, but the description of this case gives a basis for further considerations
of the fourth and fifth cases. On the other hand, Algorithm 3 pertains to the prob-
lem of integration of GNSS measurements and inertial measurements, which is not
addressed in this book.

4) Estimation of static parameters and parameters subject to dynamic con-
straints is handled by Algorithm 4. It applies to processing the across-receiver,
across-satellite observables for long baselines. The residual ionosphere is subject to
the dynamic model, while ambiguities and corrections to the stationary position are
static parameters.

5) Fifth case is the most general one and covers all previously considered cases of
static, dynamic, and arbitrarily varying parameters. Algorithm 5 applies to processing
the across-receiver or across-receiver, across-satellite observables for stationary or
kinematic positioning for short or long base lines, with or without dynamic model
applied to the corrections of the kinematic position.

In this chapter we established a connection between the recursive and batch pro-
cessing. We showed that all recursive algorithms, working in real time can be consid-
ered as continuously operating Cholesky decompositions of large matrices involved
into batch processing. To be specific, the Cholesky decomposition and the forward
solution run continuously. Only a single step backward solution is performed when
operating in real time. On the other hand, several steps of the backward solution can
be performed if the depth of memory allows it. Finally, by performing the whole
backward solution we complete the batch processing. Consideration of these algo-
rithms helps in better understanding the connection between real-time recursive and
postmission batch processing.



CHAPTER 4

GEODESY

Geodesy is the theoretical and practical framework for utilizing GNSS vector obser-
vations and classical terrestrial observations such as angles and distances. While
geodesy has much theoretical and mathematical depth, we limit this chapter to oper-
ational aspects of geodesy as needed to process GNSS observations and classical
terrestrial observations. Not to exclude fundamentals, we first discuss the interna-
tional terrestrial and celestial reference frames and then turn to the geodetic datum.
The 3D geodetic model plays a pivotal role in the subsequent discussion, followed
by the more historical 2D ellipsoidal model, and, last but not least, the popular 3D
conformal mapping models.

The precise definition of reference frames becomes more important as the accu-
racy of geodetic space techniques increases. There are three types of frames we are
concerned with—the earth-fixed international terrestrial reference frame (ITRF), the
geocentric space-fixed international celestial reference frame (ICRF), and the geode-
tic datum. Specialized literature considers the ITRF and ICRF as an implementa-
tion of theoretical constructions such as the international terrestrial reference system
(ITRS) and the geocentric celestial reference system (GCRS). In this chapter, we
do not make such a distinction. Given the demand of modern geodetic measurement
techniques on precise definitions of reference frames, it is certainly not an understate-
ment to say that the definition and maintenance of such frames has become a science
in itself, in particular in connection with properties of the deformable earth. Current
solutions have evolved over many years. The literature is rich in contributions that
document the interdisciplinary approach and depth needed to arrive at solutions.

The International Earth Rotation Service (IERS) is responsible for establishing
and maintaining the ITRF and ICRF frames, whereas typically a national geodetic
agency is responsible for establishing and maintaining the nation’s geodetic datum.
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The IERS relies on the cooperation of many research groups and agencies to accom-
plish its tasks. Examples of key participants are the U.S. Naval Observatory, the U.S.
National Geodetic Survey, the International GNSS Service (IGS), the International
Astronomical Union (IAU), and the International Union of Geodesy and Geophysics
(IUGG). Our recommended authoritative publications on the broad topic of reference
frames and time are Petit and Luzum (2010) and Kaplan (2005). The first addresses
IERS Conventions 2010 and is published as IERS Technical Note 36. Its 11 chapters
address all aspects of reference frames in great detail. The same wealth of informa-
tion and depth is found in the other reference, which is the U.S. Naval Observatory
Circular No. 179. These publications are available on the Internet. The reader is also
encouraged to visit the homepages of the various organizations and groups mentioned
above as they are highly recommended resources of additional information about the
topics of geodesy, reference frames, and time.

Accurate positioning within the ITRF and ICRF frames requires a number of
complex phenomena to be taken into account, such as polar motion, plate tectonic
movements, solid earth tides, ocean loading displacements, and precession and nuta-
tions. Since there are multiple reference frames, one needs to be able to transform
one reference frame to the other. Since much authoritative software is readily avail-
able at the homepages of the agencies and organizations mentioned above, we only
discuss mathematical expressions to the extent needed for a conceptual presentation
of the topic.

The geodetic datum makes the products of space geodesy accessible to practicing
surveyors. While most scientists prefer to work with geocentric Cartesian coordi-
nates, it is easier to interpret results in terms of ellipsoidal coordinates such as geode-
tic latitude, longitude, and height. Consequently, the issues of locating the origin of
the ellipsoid and its orientation arise, as well as the need to separate ellipsoidal heights
from orthometric heights and geoid undulations. The preferred choice is to use geo-
centric ellipsoids whose origin and orientation coincides with the ITRF. The location
and orientation of the ellipsoid, its size and shape, as well as the respective sets of
geoid undulations and deflection of the vertical are all part of the definition of a datum.

In order to understand the fundamental role of the geoid, we need to briefly look
at the dependency of observations on gravity. GNSS observations such as pseudo-
ranges and carrier phases depend only indirectly on gravity. For example, once the
orbit of the satellites has been computed and the ephemeris is available, there is no
need to further consider gravity. To make the GNSS even easier to use, the various
GNSS systems broadcast the ephemeris in a well-defined, earth-centered earth-fixed
(ECEF) coordinate system, such as the ITRF. Astronomic latitude, longitude, and
azimuth determinations with a theodolite using star observations, on the contrary,
refer to the instantaneous rotation axis, the instantaneous terrestrial equator of the
earth, and the local astronomic horizon (the plane perpendicular to the local plumb
line). For applications where accuracy really matters, it is typically the responsibil-
ity of the user to apply the necessary reductions or corrections to obtain positions
in an ECEF coordinate system. Even vertical and horizontal angles as measured by
surveyors with a theodolite or total station refer to the plumb line and the local astro-
nomic horizon. Another type of observation that depends on the plumb line is leveling.
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To deal with these types of observations that depend on the direction of gravity, we
need to ultimately link the geoid and the ellipsoid. The goal is to reduce observations
that depend on the direction of gravity to model observations that refer to the ellip-
soid by applying geoid undulation and deflection of the vertical corrections. These
“connecting elements” are part of the definition of the datum. For a modern datum
these elements are readily available; for example, check out the website of the U.S.
National Geodetic Survey for the case of NAD83.

After reducing the observations for the general impact of gravity (and polar motion
if applicable), one obtains the model observations of the 3D geodetic model. This
model is the simplest, most versatile model for dealing with observations such as
angles, distance, and GNSS vectors. The 3D model will be presented in the form of
various parameterizations and applied to GNSS vector observations. We start out with
the minimal or inner constraint solution for vector networks, and then we generalize
the approach by combining GNSS networks and geodetic networks by also estimating
a differential scale and three rotation parameters. Several examples are presented.
Cases are chosen from the early days of GPS satellite surveying to demonstrate the
high accuracy achieved even when the GPS system was under construction.

Many surveyors prefer to work with “plane” coordinates. In order to arrive at
model observations to which the laws of plane trigonometry are applicable, two addi-
tional reductions must be made. The 3D model observations are further reduced
to ellipsoidal surface observations (2D ellipsoidal model observations). The latter
observations refer to angles between geodesic lines and the length of geodesic lines.
As an intermediary solution we briefly discuss adjustments on the ellipsoidal sur-
face. The ellipsoidal surface observations are then further reduced to the conformal
mapping plane (2D conformal model observations). The conformal mapping model
observations represent the angle between straight lines on the conformal mapping
plane and the straight line distances between mapped points. We discuss the Trans-
verse Mercator (TM) and the Lambert Conformal (LC) mapping in detail, as well as
respective adjustments of plane networks on the conformal mapping plane.

4.1 INTERNATIONAL TERRESTRIAL REFERENCE FRAME

A conventional terrestrial reference system (CTRS) must allow the combination
of products of space geodesy, such as coordinates and orientation parameters
of the deformable earth, into a unified data set. Such a reference system should
(a) be geocentric (whole earth, including oceans and atmosphere), (b) incorporate
corrections or procedures stemming from the relativistic theory of gravitation,
(c) maintain consistency in orientation with earlier definitions, and (d) have no
residual global rotation with respect to the crust as viewed over time. The practical
realization of such a system is the ITRF. Such a realization is generally referred to
as earth-centered earth-fixed (ECEF) coordinate system. To appreciate the demand
placed on a modern reference system, consider the fact that geodetic space techniques
can provide daily estimates of the center of mass at centimeter-level accuracy and
millimeter crustal motion determinations on a global scale. As mentioned above,
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the authoritative literature on international terrestrial and celestial reference frames
are Petit and Luzum (2010, Chapter 4) and Kaplan (2005). The IERS (International
Earth Rotation and Reference System Service) is responsible for the realizations of
the ITRF (www.iers.org). This section deals only with the major phenomena such
as polar motion, plate tectonic motions, solid earth tides, and ocean loading that
cause variations of coordinates in the terrestrial reference frame. We also discuss
transformations between terrestrial reference systems.

4.1.1 Polar Motion

The intersection of the earth’s instantaneous rotation axis and the crust moves in time
relative to the crust. This motion is called polar motion. Figure 4.1.1 shows polar
motion for the time period 2001–2003. The motion is somewhat periodic. There is
a major constituent of about 434 days, called the Chandler period. The amplitude
varies but does not seem to exceed 10 m. Several of the polar motion features can
be explained satisfactorily from a geophysical model of the earth; however, the fine
structures in polar motion are still subject to research.

To avoid variations in latitude and longitude of about 10 m due to polar motion, we
want to define a conventional terrestrial pole (CTP) that is fixed relative to the crust.
Originally, indeed, such a pole was defined as the center of the figure of polar motion

Figure 4.1.1 Polar motion, 2001–2003. The solid line represents the mean pole displace-
ment, 1900–2000 [Courtesy of the International Earth Orientation Service (IERS), Paris
Observatory].

http://www.iers.org
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for the years 1900–1905. This definition, however, required several refinements as
the observation techniques improved over the years. The instantaneous rotation axis
is referenced to the CTP by the polar motion coordinates (xp, yp). The origin of the
polar motion coordinate system is at the CTP, the x axis is along the conventional zero
meridian, and the y axis is positive along the 270∘ meridian. As the figure indicates,
there appears to be “polar wander” (gradual shifting of the center of the figure of
somewhat periodic motions away from the CTP). The IERS website contains addi-
tional graphics on polar motion, plus data files for users.

The CTP is aligned with the direction of the third axis of the ITRF. The definition
of an ITRF becomes increasingly complicated because plate tectonic motions cause
observation stations to drift, and there are other temporal variations affecting coor-
dinates of a so-called “crust-fixed” coordinate system. As the tectonic plates move,
the fixed station coordinates of a global network become inconsistent with each other
over time. The solution is to define the reference frame by a consistent set of coor-
dinates and velocities for globally distributed stations at a specific epoch. The center
of mass of the earth is the natural choice for the origin of the ITRF because satellite
dynamics are sensitive to the center of mass (whole earth plus oceans and atmo-
sphere). As indicated above, the IERS maintains the ITRF using extraterrestrial data
from various sources, such as GNSS, very long baseline interferometry (VLBI), and
satellite laser ranging (SLR). Because the motions of the deformable earth are com-
plex, there is a need to identify the sites that are part of a particular ITRF definition.
Because of continued progress in data reduction techniques, the IERS computes ITRF
updates as needed. These solutions are designated by adding the year, e.g., ITRF96,
ITRF97, ITRF00, and ITRF2008.

The ITRF-type of reference frame is also called an ECEF frame, as already men-
tioned above. We denote an ECEF frame by (x) and the coordinate triplet by (x, y, z).
The z of the frame is the origin of the polar motion coordinate system. The x and y
axes define the terrestrial equatorial plane. In order to maintain continuity with older
realizations, the x axis lies in what may be loosely called the Greenwich meridian.

Historically speaking, the International Latitude Service (ILS) was created in
1895, shortly after polar motion had been verified observationally. It was the first
international group using globally distributed stations to monitor a reference frame.
This service evolved into the International Polar Motion Service (IPMS) in 1962.
The IERS was established in 1987 as a single international authority that, henceforth,
uses modern geodetic space techniques to establish and maintain reference frames.
GNSS systems are major contributors to the definition and maintenance of the
terrestrial reference frame, largely a result of strong international cooperation with
the IGS (International GNSS Service, see Section 6.2.7.1). The IGS began routine
operations in 1994 by providing GPS orbits, tracking data, and offering other data
products in support of geodetic and geophysical research.

4.1.2 Tectonic Plate Motion

Figure 4.1.2 shows tectonic plate motions. Even this simple overview of motions
over the global map makes clear that they are significant and should be appropriately
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Figure 4.1.2 Observed motions of globally distributed stations.
Velocities for each site were determined from more than 11 years of GPS observations prior
to 2000. Results are shown in the ITRF00 reference frame with no net rotation of the crust.
The rigid plate motion is clearly visible and describes roughly 80% of observed motion. The
remaining 20% is nonrigid motion located in plate boundary zones and is associated with
seismic and volcanic activity. The most visible plate boundary zone on the map is southern
California (Courtesy of Mike Heflin, JPL).

taken into account when processing GNSS observations and producing coordinates.
At the JPL website, http://sideshow.jpl.nasa.gov/post/series.html, the latest update of
these motions can be seen. Also available at the site are time series of coordinates for
more than 2000 stations. The figure also indicates boundaries of major tectonic plates.
The rotations of these plates can be approximated by geophysical models based on
geological observations. DeMets et al. (1990) published their basic NUVEL-1 model,
which was subjected to a no-net rotation constraint by Argus and Gordon (1991) in
their model NNR-NUVEL-1, which in turn was further improved by DeMets et al.
(1994) in model NNR-NUVEL-1A. Additional improvements to the model (that also
include more plates) are found in DeMets et al. (2010). The smooth motions of these
major plates can be combined with actual observed motions at selected stations to
create a general station motion function.

http://sideshow.jpl.nasa.gov/mbh/series.html
http://sideshow.jpl.nasa.gov/post/series.html
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4.1.3 Solid Earth Tides

Tides are caused by the temporal variation of the gravitational attraction of the sun
and the moon on the earth due to orbital motion. While the ocean tides are very much
influenced by the coastal outlines and the shape of the near-coastal ocean floor, the
solid earth tides are accurately computable from relatively simple earth models. Their
periodicities can be directly derived from the motion of the celestial bodies, similar
to nutation. The solid earth tides generate periodic site displacement of stations that
depend on latitude. The tidal variation can be as much as 30 cm in the vertical and 5 cm
in the horizontal. Petit and Luzum (2010, Chapter 7) list the following expression:

Δx =
3∑

j=2

GMj

GME

||rE||4||rj||3
{

h2e
(3

2
(rj ⋅ e)

2 −
1
2

)
+ 3l2(rj ⋅ e)[rj − (rj ⋅ e) e]

}
(4.1.1)

In this expression, GME is the gravitational constant of the earth, GMj is the grav-
itational constant for the moon (j = 2) and the sun (j = 3), e is the unit vector of
the station in the geocentric coordinate system (x), and r denotes the unit vector of
the celestial body; h2 and l2 are the nominal degree 2 Love and Shida numbers that
describe elastic properties of the earth model. Equation (4.1.1) gives the solid earth
tides accurate to at least 5 mm. Additional expressions concerning higher-order terms
or expressions for the permanent tide are found in the reference cited above.

4.1.4 Ocean Loading

Ocean loading refers to the deformation of the seafloor and coastal land as a result
of redistribution of ocean water during the ocean tides. The earth’s crust yields under
the weight of the tidal water. Petit and Luzum (2010, Chapter 7) list the following
expression for the site displacement components Δc (where the c refers to the radial,
west, and south component) at a particular site at time t,

Δc =
∑

j

fjAcj cos(𝜔jt + 𝜒 j + uj −𝛷cj) (4.1.2)

The summation over j represents 11 tidal waves traditionally designated as semidi-
urnal M2, S2, N2, and K2, the diurnal K1, O1, and P1, and the long-periodic Mf , Mm,
and Ssa. The symbols 𝜔j and 𝜒 j denote the angular velocities and the fundamental
astronomic arguments at time t = 0h. The fundamental argument 𝜒 j reflects the posi-
tion of the sun and the moon, and fj and uj depend on the longitude of the lunar node.
The station-specific amplitudes Acj and phases𝛷cj can be computed using ocean tide
models and coastal outline data. The IERS makes these values available for most
ITRF reference stations. Typically the M2 loading deformations are the largest. The
total vertical motion can reach 10 cm while the horizontal motion is 2 cm or less. Free
ocean tide loading values for individual locations are provided by the Onsala Space
Observatory at http://holt.oso.chalmers.se/loading/.

http://holt.oso.chalmers.se/loading
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4.1.5 Relating of Nearly Aligned Frames

The transformation of three-dimensional coordinate systems has been given much
attention ever since geodetic satellite techniques made it possible to relate local
national datums and geocentric datums. Some of the pertinent work from that
early era is Veis (1960), Molodenskii et al. (1962), Badekas (1969), Vaniček and
Wells (1974), Leick and van Gelder (1975), and Soler and van Gelder (1987). We
assume that the Cartesian coordinates of points on the earth’s surface are available
in two systems. Historically speaking, this was not necessarily the case. Often it was
difficult to obtain the Cartesian coordinates in the local geodetic datum because the
geoid undulations (see Section 4.3.3) with respect to the local datum were not be
accurately known. We first deal with the seven-parameter similarity transformation.

Figure 4.1.3 shows the coordinate system (x) = (x, y, z), which is related to the
coordinate system (u) = (u, v, w) by the translation vector t = [Δx Δy Δz]T

between the origins of the two coordinate systems and the small rotations (𝜀, 𝜓, 𝜔)
around the (u, v, w) axes, respectively. The transformation equation expressed in
the (x) coordinate system can be seen here:

t + (1 + s) Ru − x = 0 (4.1.3)

where s denotes the differential scale factor between both systems andR is the product
of three consecutive orthogonal rotations around the axes of (u):

R = R3(𝜔)R2(𝜓)R1(𝜀) (4.1.4)

The symbol Ri denotes the rotation matrix for a rotation around axis i (see Appendix
A.2). The angles (𝜀, 𝜓, 𝜔) are positive for counterclockwise rotations about the
respective (u, v, w) axes, as viewed from the end of the positive axis. For nearly
aligned coordinate systems these rotation angles are small, allowing the following
simplification:

R = I +Q = I +
⎡⎢⎢⎣

0 𝜔 −𝜓
−𝜔 0 𝜀

𝜓 −𝜀 0

⎤⎥⎥⎦ (4.1.5)

Figure 4.1.3 Differential transformation between
Cartesian coordinate systems.
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implying R−1 = RT within the same accuracy. Combining (4.1.3) and (4.1.5) gives
the linearized form

t + u + su +Qu − x = 0 (4.1.6)

For the purpose of distinguishing various approaches, we call this transformation
model 1. The seven transformation parameters (Δx, Δy, Δz, s, 𝜀, 𝜓, 𝜔) can be esti-
mated by least squares. Both sets of Cartesian coordinates u and x are observations.
In general, equation (4.1.6) represents a mixed adjustment model f(�a, xa) = 0 (see
Chapter 2 for an additional explanation of the mixed adjustment model). Each station
contributes three equations to (4.1.3).

A variation of (4.1.3), called model 2, is

t + u0 + (1 + s) R (u − u0) − x = 0 (4.1.7)

whereu0 is a vector in the system (u) to a point located somewhere within the network
that is to be transformed. A likely choice for u0 might be the centroid. All other
notations are the same as in (4.1.3). If one follows the same procedure as described
for the previous model, i.e., omitting second-order terms in scale and rotation and
their products, then (4.1.7) becomes

t + u + s (u − u0) +Q (u − u0) − x = 0 (4.1.8)

The third model, model 3, uses the same rotation point u0 as model 2, but the rota-
tions are about the axes (n, e, u) of the local geodetic coordinate system at u0. This
model thus refers to the local geodetic horizon coordinate system and to ellipsoidal
latitude, longitude, and height. Please see Section 4.4 for details on these elements
if needed. The n axis is tangent to the geodetic meridian, but the positive direction
is toward the south; the e axis is perpendicular to the meridian plane and is positive
eastward. The u axis is along the ellipsoidal normal with its positive direction upward,
forming a right-handed system with n and e. Similar to (4.1.7), one obtains

t + u0 + (1 + s)M (u − u0) − x = 0 (4.1.9)

If (𝜂, 𝜉, 𝛼) denote positive rotations about the (n, e, u) axes and if (𝜑0, 𝜆0, h0) are
the geodetic coordinates for the point of rotation u0, it can be verified that the M
matrix is

M = RT
3 (𝜆0)R

T
2 (90 − 𝜑0)R3(𝛼)R2(𝜉)R1(𝜂)R2(90 − 𝜑0)R3(𝜆0) (4.1.10)

Since the rotation angles (𝜂, 𝜉, 𝛼) are differentially small, the matrix M simplifies to

M(𝜆0, 𝜑0, 𝜂, 𝜉, 𝛼) = 𝛼M𝛼 + 𝜉M𝜉 + 𝜂M𝜂 + I (4.1.11)

where

M𝛼 =
⎡⎢⎢⎣

0 sin𝜑0 − cos𝜑0 sin 𝜆0
− sin𝜑0 0 cos𝜑0 cos 𝜆0

cos𝜑0 sin 𝜆0 − cos𝜑0 cos 𝜆0 0

⎤⎥⎥⎦ (4.1.12)
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M𝜉 =
⎡⎢⎢⎣

0 0 − cos 𝜆0
0 0 − sin 𝜆0

cos 𝜆0 sin 𝜆0 0

⎤⎥⎥⎦ (4.1.13)

M𝜂 =
⎡⎢⎢⎣

0 − cos𝜑0 − sin𝜑0 sin 𝜆0
cos𝜑0 0 sin𝜑0 cos 𝜆0

sin𝜑0 sin 𝜆0 − sin𝜑0 cos 𝜆0 0

⎤⎥⎥⎦ (4.1.14)

If, again, second-order terms in scale and rotations and their products are neglected,
the model (4.1.9) becomes

t + u + s (u − u0) + (1 + s)(M − I)(u − u0) − x = 0 (4.1.15)

Models 2 and 3 differ in that the rotations in model 3 are around the local geodetic
coordinate axes at u0. The rotations (𝜂, 𝜉, 𝛼) are (𝜀, 𝜓, 𝜔) are related as follows:

⎡⎢⎢⎣
𝜂

𝜉

𝛼

⎤⎥⎥⎦ = R2(90 − 𝜑0)R3(𝜆0)
⎡⎢⎢⎣
𝜀

𝜓

𝜔

⎤⎥⎥⎦ (4.1.16)

Models 1 and 2 use the same rotation angles. The translations for models 1 and 2 are
related as

t2 = t1 − u0 + (1 + s)R u0 (4.1.17)

according to (4.1.3) and (4.1.7). Only t1, i.e., the translation vector of the origin as
estimated from model 1, corresponds to the geometric vector between the origins of
the coordinate systems (x) and (u). The translational component of model 2, t2, is a
function of u0, as shown in (4.1.17). Because models 2 and 3 use the same u0, both
yield identical translational components. It is not necessary that all seven parame-
ters always be estimated. In small areas it might be sufficient to estimate only the
translation components.

4.1.6 ITRF and NAD83

Model 1 discussed above can readily be applied to transforming to ECEF coordinate
systems, which we simply call ITRFyy and ITRFzz. Following (4.1.3) and (4.1.5),
the transformation is given by

xt, ITRFzz = tt + (1 + st)(I −Q(𝜀t))xt, ITRFyy (4.1.18)

The vector tt points to the origin of ITRFyy, i.e., it is the shift between the two frames,
where 𝜺t = [𝜀x 𝜀y 𝜀z]

T denotes three differential counterclockwise rotations around
the axes of the ITRFyy frame to establish parallelism with the ITRFzz frame. The
symbol st denotes the differential scale change. Let t0 denote the epoch of the refer-
ence frame, then
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tt = tt0
+

.
t(t − t0)

𝜺t = 𝜺t0
+

.
𝜺(t − t0) mmasr

st = st0
+

.
s(t − t0)

(4.1.19)

where tt0
, 𝜺t0

, st0
,

.
t,

.
𝜺, and

.
s are 14. transformation parameters and mmasr =

4.84813681 ⋅ 10−9 is a factor for converting milliarc seconds (mas) to radians. The
time rates of the translations, the rotations, and the differential scale are assumed to
be constant. If we further assume that the coordinate velocities are constant for the
same frame, then

xt, IRTFyy = xt0, IRTFyy + (t − t0)vt0, IRTFyy (4.1.20)

updates the coordinates from reference epoch t0 to epoch t. Note that all quanti-
ties in (4.1.18) refer to the same epoch t. Soler and Marshall (2002) give a more
general form that allows the reference epochs on the left and right to be different,
respectively.

Equation (4.1.20) readily indicates the difficulties inherent in performing accurate
transformation when the coordinates are subject to various changes. For example, the
coordinates and their velocities v can abruptly or gradually change due to coseismic
motions, and they can also nonlinearly change due to postseismic motions over a
time scale from days to decades. Because continuous crustal motion makes station
coordinates a function of time, and because of new observations and refinements in
processing algorithms and modeling, it is desirable to update the reference frames
occasionally. For example, modeling of solar radiation pressure, tropospheric delay,
satellite phase center, and ocean loading are the subject of continuous research and
refinement.

Table 4.1.1 summarizes transformation parameters between the various ITRF ref-
erence systems and the NAD83 (CORS96) system. The latter reference system covers
CONUS, is accessed primarily by the U.S. surveying community, and is also the
datum of the State Plane Coordinate Systems (Section C.4.4). Details on the method-
ology and the execution of the major readjustment resulting in the first realization of
NAD83 are given in Schwarz and Wade (1990). Two things should be pointed out
in this table. The first one is that column 6 is the sum of columns 1 to 5. This is a
result of the linearization of the transformation expressions and of neglecting higher
order terms of small quantities. The second one is to notice that the origin of NAD83
(CORS96) is offset from the center of mass by (0.99, −1.90, −0.53) meters in Carte-
sian coordinates. Typically, Department of Defense’s (DOD’s) publications on the
World Geodetic System 1984 (WGS84) contain a complete listing of transformation
parameters for all known local and national datums.

Continuing with focus on NAD83, the HTDP (horizontal time-dependent posi-
tioning) program, which is available for the National Geodetic Survey and online, is
an example of a geodetic-quality transformation program that takes known motions,
such as rigid plate tectonic motions and a large number of earthquake-related
coseismic and postseismic motions within a certain area of coverage, into account
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TABLE 4.1.1 Example of 14 Parameter Transformation between Frames

From
To

ITRF2008
ITRF2005

ITRF2005
ITRF2000

ITRF2000
ITRF97

ITRF97
ITRF96

ITRF96
NAD83

ITRF2008
NAD83

tx(t0) −0.0029 0.0007 0.0067 −0.00207 0.9910 0.99343
ty(t0) −0.0009 −0.0011 0.0061 −0.00021 −1.9072 −1.90331
tz(t0) −0.0047 −0.0004 −0.0185 0.00995 −0.5129 −0.52655

𝜀x(t0) 0.000 0.000 0.000 0.12467 25.79 25.91467
𝜀y(t0) 0.000 0.000 0.000 −0.22355 9.65 9.42645
𝜀z(t0) 0.000 0.000 0.000 −0.06065 11.66 11.59935
s(t0) 0.94 0.16 1.55 −0.93496 0.00 1.71504

.
tx 0.0003 −0.0002 0.0000 0.00069 0.0000 0.00079
.
ty 0.0000 0.0001 −0.0006 −0.00010 0.0000 −0.00060
.
tz 0.0000 −0.0018 −0.0014 0.00186 0.0000 −0.00134

.
𝜀x 0.000 0.000 0.000 0.01347 0.0532 0.06667
.
𝜀y 0.000 0.000 0.000 −0.01514 −0.7423 −0.75744
.
𝜀z 0.000 0.000 −0.020 0.00027 −0.0316 −0.05133
.
s 0.00 0.08 0.01 −0.19201 0.00 −0.10201

Source: Pearson and Snay (2013).
aThe units are t [m],

.
t [m∕yr], 𝜀 [mas],

.
𝜀 [mas∕yr], s [ppb], and

.
s [ppb∕yr].The epoch is t0 = 1997.00.

NAD83 is abbreviation for NAD83(CORS96).

(Pearson and Snay, 2013, HTDP User’s Guide). This program recognizes currently
about 30 different frames. Here are a few examples not listed in Table 4.1.1. The
IGS reprocessed observations from the ITRF2008 network stations but used better
antenna calibration data, calling it IGS08. While the resulting coordinates slightly
differ, the 14 transformation parameters to go from IGS08 to ITFR2008 are zero.
NAD83 (2011) results from processing old and more recent GPS observation using
the latest models for systematic errors, better refraction modeling, and so on. The
processing took place within the IGS08 frame, and then the result was transformed
to NAD83 (CORS96) using the ITRF2008 to NAD83 (CORS96) parameters
listed in Table 4.1.1. Thus, the transformation between NAD83 (CORS96) and
NAD83 (2011) is the identity function. For areas beyond CONUS, there is NAD83
(PA11), the Pacific tectonic plate frame, and NAD83 (MA11), the Mariana tectonic
plate frame.

HTDP can carry out several important computations for all frames and any epoch,
including:

1. Horizontal crustal velocities. Input: position coordinates and their reference
frame. Output: velocity expressed in the same reference frame.
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2. Crustal displacement. Input: position coordinates and their reference frame, and
times t1 and t2. Output: displacement during the time t1 to t2, expressed in the
same frame.

3. Updating of position coordinates. Input: reference frame, coordinates and their
reference epoch t1, reference epoch t2 for which the coordinate values are
requested. Output: coordinates at epoch t2.

4. Transforming coordinates from one reference frame to another. Input: start-
ing reference frame, coordinates and their reference epoch t1, desired reference
frame and reference time t2. Output: coordinates in desired reference frame at
epoch t2.

5. Transforming velocities from one reference frame to another. Input: velocity
vector and its reference frame, desired reference frame. Output: velocity vector
in desired reference frame.

4.2 INTERNATIONAL CELESTIAL REFERENCE SYSTEM

Historically, the equator, ecliptic, and pole of the rotation of the earth defined the
celestial reference frame. The present-day international celestial reference frame
(ICRF) is defined by the stable positions of extragalactic radio sources observed
by very long baseline interferometry (VLBI), and is maintained by the IERS.
Again, historically, we identify the directions of the instantaneous rotation axis
as the celestial ephemeris pole (CEP) and the normal of the ecliptic as the north
ecliptic pole (NEP). The CEP has recently obtained a companion called the celestial
intermediary pole (CIP), as will be explained below.

The angle between directions of both poles, or the obliquity, is about 23.5∘,
which, by virtue of geometry, is also the angle between the instantaneous equator
and the ecliptic. As shown in Figure 4.2.1, the rotation axis can be visualized as
moving on a rippled cone whose axis coincides with the NEP. Mathematically,
the complete motion is split into a smooth long-periodic motion called lunisolar
precession and periodic motions called nutations. Precession and nutation therefore
refer to the motion of the earth’s instantaneous rotation axis in space. A more
differentiated definition in connection with the CIP is provided below. It takes about
26,000 years for the rotation axis to complete one motion around the cone. One
may view the nutations as ripples on the circular cone. The longest nutation has a
period of 18.6 years and also happens to have the largest amplitude of about 20′′.
The cause for nutation is the ever-changing gravitational attraction of sun, moon,
earth, and planets. Newton’s law of gravitation states that the gravitational force
between two bodies is proportional to their masses and inversely proportional to the
square of their separation. Because of the orbital motions of the earth and the moon,
the earth-sun and earth-moon distances change continuously and periodically. As a
result, the nutations are periodic in time and reflect the periodic motions of the earth
and moon. There are also small planetary precessions stemming from a motion of
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Figure 4.2.1 Lunisolar precession and nutation. The spatial motion of the CEP is param-
eterized in terms of precession and nutation.

the ecliptic. Nonrigidity effects of the earth on the nutations can be observed with
today’s high-precision measurement systems. A spherical earth with homogeneous
density distribution would neither precess nor nutate.

Because the rotation axis moves in space, the coordinates of stars or extragalac-
tic radio sources change with time due to the motion of the coordinate system. An
international celestial reference frame (ICRF) has been defined for the fundamental
epoch

J2000.0 ≡ January 1, 2000, 12h TT (4.2.1)

The letter “J” in J2000.0 indicates “Julian.” We treat the subject of time in greater
detail below. Let it suffice to simply state that TT represents terrestrial time, which is
realized by the international atomic time (TAI) as

TT = TAI + 32s.184 (4.2.2)

We denote the respective coordinate system at this initial epoch J2000.0 by (X). The Z
axis coincides with the pole. The X axis lies in the equatorial plane and points toward
the vernal equinox. In reality, in order to maintain consistency the precise definition
of the first axis takes earlier definitions into consideration that were based on funda-
mental star catalogues. Because the ICRF is defined at a specific epoch J2000.0, the
directions of the axis of X are stable in space per the definition.

Consider two widely separated VLBI antennas on the surface of the earth that are
observing signals from a quasar. Because of the great distance to quasars, their direc-
tion is the same to any observer regardless where the observer is located on the earth’s
surface or where the earth happens to be in its orbit around the sun. VLBI observa-
tions allow one to relate the orientation of the baseline, and therefore the orientation
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of the earth, to the inertial directions to the quasars. Any variation in the earth’s daily
rotation, polar motion, or deficiencies in the adopted mathematical model of nuta-
tions, can be detected. The current ICRF solution includes about 600 extragalactic
radio sources. The details of VLBI are not discussed here but left to the specialized
literature. Let it be mentioned, though, that VLBI and GPS techniques have some
similarities. In fact, the early developments in accurate GPS baseline determination
very much benefited from existing experiences with VLBI.

4.2.1 Transforming Terrestrial and Celestial Frames

GNSS users typically do not get explicitly involved with transformations between
the ITRF and the ICRF described in this section because the satellite ephemeris is
generally provided in an ECEF reference frame such as the ITRF, or is provided in the
form of the broadcast ephemeris message from which satellite positions can readily
be extracted in an ECEF frame. However, those in the field of orbital determination
need to know about the ICRF because the motions of the satellites are described in an
inertial frame and, therefore, need to appropriately apply earth orientation parameters.

Because of increasing measurement accuracy of all major geodetic measurement
systems such as GPS, VLBI, and SLR, more accurate values for several nutation
coefficients have been determined, including nutations with periods shorter than two
days. Furthermore, it was recognized that GAST (Greenwich apparent sidereal time)
does not strictly represent the earth sidereal rotation angle since it depends on the
changing nutation in right ascension. However, it was important that a new measure
for the earth rotation angle be developed that is independent of nutation, in particular
since some of the current nutation coefficients might still be subject to change in the
future, and that therefore a new approach for transforming between ITRF and ICRF
was needed.

The latest algorithm for transforming ITRF to ICRF and vice versa is given in
Petit and Luzum (2010, Chapter 5) and Kaplan (2005). These documents also provide
useful background information, including a listing of the various IAU (International
Astronomical Union) resolutions that laid the framework for the new procedures.
Typically, when using expressions for precession and nutation, the computation load
is high because long trigonometric time series need to be evaluated, care must be
taken to use a sufficient number of terms, and all parameters must be properly identi-
fied and dealt with. The IAU maintains a SOFA (Standards of Fundamental Astron-
omy) service that maintains an authoritative set of algorithms and procedures and
makes respective software available (http://www.iausofa.org). Because any user is
very likely to take advantage of such free and authoritative software, and because all
mathematical expressions are also available in the above references, we only provide
some selected expressions as needed to understand the underlying model concepts.

As a result of implementing the IAU 2000/2006 resolutions, the definition of the
new pole, now called CIP (celestial intermediary pole), excludes nutations with a
period of less than two days (Figure 4.2.2). In view of including only a subset of
nutations, the new pole is called an intermediary pole. The plane perpendicular to the
direction of the thus defined CIP is called the intermediary CIP equatorial plane. On

http://www.iausofa.org
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Figure 4.2.2 Conventional separation of nutation and polar motion. The units are cycles
per sidereal day.

this equatorial plane/equator, there are two longitude origins, the CIO (celestial inter-
mediary origin) and the TIO (terrestrial intermediary origin). The geocentric angle
between the CIO and the TIO at a given time t is the ERA (earth rotation angle). The
ERA is a rigorous measure of the sidereal rotation of the earth and is not affected by
precession and nutation. The CIO is analogous to the equinox, which is the legacy
reference point for sidereal time, but it is not affected by precession and nutation
either.

For readers who are familiar with the old procedure and terminology, some clar-
ification might be needed. The acronym CIO was used in the past to identify the
conventional international origin of polar motion, which, loosely speaking, is defined
as the mean pole position of the instantaneous rotation axis with respect to the curst
for the period of about 1900 and 1905. Per definition, the z axis (semiminor axis of
the ellipsoid, Section 4.3.2) of the geodetic coordinate systems was aligned to this
direction during most of the past century until it was replaced by the BIH (Bureau
International de l’Heure) conventional terrestrial pole (CTP) of 1984.0. Today, the
z axis of the ITRF approximates this direction and is defined by the set of adopted
station coordinates and epoch.

Once again, to benefit readers who are familiar with the old methods of trans-
forming between ITRF and ICRF using Greenwich apparent sidereal time (GAST),
the apparent equator, and the equinox, two identical algorithms have been designed.
They are referred to as CIO-based transformation and equinox-based transformation.

The CIO-based coordinate transformation from the ITRF to the ICRF at time t can
be stated as follows:

X = Q(t) R(t)W(t)x (4.2.3)

W(t) = R3(−s′)R2(xp)R1(yp) (4.2.4)

R(t) = R3(−ERA) (4.2.5)

Q(t) = R3(−E)R2(−d)R3(E)R3(s) (4.2.6)
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The matrix Ri denotes a rotation around axis i (Appendix A). The symbols xp, yp
denote the polar coordinates of the CIP, i.e., the pole whose definition excludes nuta-
tions with a period smaller than 2 days. The quantity s′ represents a small additional
rotation that becomes necessary because of the new definition. As stated above, the
ERA (earth rotation angle) is the angle between CIO and TIO and represents a rigor-
ous measure of the sidereal rotation of the earth. The symbols E and d are functions
of precession and nutation, and s represents another rotation similar to s′. Looking at
(4.2.3) to (4.2.6), we see that the desired separation has taken place: the matrix Q(t)
depends only on precession and nutation, and R(t) depends only on the rotation of
the earth.

The complete expression or polar motion, i.e., the coordinates of the CIP with
respect to the ITRF z axis, is the sum of three parts (Petit and Luzum, 2010, Chapter 5,
equation 5.11):

(xp, yp) = (x, y)IERS + (Δx,Δy)ocean tides + (Δx,Δy)librations (4.2.7)

The coordinates (x, y)IERS are the ones published and distributed by IERS. The
(Δx,Δy)ocean tides term represents the diurnal and semidiurnal variation of pole coor-
dinates due to ocean tides, and (Δx,Δy)librations represents the variation of pole coor-
dinates due to those nutations having a period of less than 2 days that are not part of
the IAU 2000 nutation model (and the definition of the CIP). Again, the SOFA ser-
vice provides software to compute the latter two types of pole variations as a function
of time.

The equinox-based transformation can be written as

X = B ⋅ P(t) N(t)R3(GAST)W(t)x (4.2.8)

Here, the matrix B represents a series of small but constant rotations, P(t) and N(t)
are the precession and nutation matrices, respectively, and R3(GAST) is a rotation
around the third axis by the GAST angle. Once again, the SOFA service provides
software to compute all transformation matrices as a function of time.

It should be noted that the transformations (4.2.3) and (4.2.8) are identical. If the
respective transformation matrices in each expression were combined into one matrix,
then the elements of the two matrices would be identical. Consistent with these trans-
formations, expression (4.2.7) applies to computing the pole coordinates of the CIP
relative to the ITRF. If X is used to compute right ascension and declination, one
speaks of intermediary right ascension and intermediary declination.

In order to contrast the above new transformation procedures with the old
equinox-based transformation in which all nutation terms were used in the definition
of the ICRF pole, we summarize the latter briefly and provide at the same time
additional insight on some of the parameters used. It starts with (McCarthy, 1996,
p. 21; Mueller, 1969, p. 65)

X = P(t)N(t) R3(−GAST) R̆(t)x (4.2.9)
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where

R̆(t) = R1(yp)R2(xp) (4.2.10)

P(t) = R3(𝜁 )R2(−𝜃)R3(z) (4.2.11)

N(t) = R1(−𝜀)R3(Δ𝜓)R1(𝜀 + Δ𝜀) (4.2.12)

with

𝜁 = 2306′′.2181t + 0′′.30188t2 + 0′′.017998t3 (4.2.13)

z = 2306′′.2181t + 1′′.09468t2 + 0′′.018203t3 (4.2.14)

𝜃 = 2004′′.3109t − 0′′.42665t2 − 0′′.041833t3 (4.2.15)

Δ𝜓 = −17′′.1996 sin(𝛺) + 0′′.2062 sin(2𝛺)

− 1′′.3187 sin(2F − 2D + 2𝛺) + · · · + d𝜓 (4.2.16)

Δ𝜀 = 9′′.2025 cos(𝛺) − 0′′.0895 cos(2𝛺)

+ 0′′.5736 cos(2F − 2D + 2𝛺) + · · · + d𝜀 (4.2.17)

𝜀 = 84381′′.448 − 46′′.8150t − 0′′.00059t2 + 0′′.001813t3 (4.2.18)

where t is the time since J2000.0, expressed in Julian centuries of 36,525 days. The
arguments of the trigonometric terms in (4.2.16) and (4.2.17) are simple functions
of the fundamental periodic elements l, l′, F, D, and 𝛺, resulting in nutation peri-
ods that vary from 18.6 years to about 5 days (recall that this refers to the old set
of nutations). Of particular interest is 𝛺, which appears as a trigonometric argument
in the first term of these equations. The largest nutation, which also has the longest
period (18.6 years), is a function of𝛺 only, which represents the rotation of the lunar
orbital plane around the ecliptic pole. This old set of nutations contains already more
than 100 entries. The amplitudes of the nutations are based on geophysical models of
the earth. However, because model imperfections became noticeable as the observa-
tion accuracy increased, the so-called celestial pole offsets d𝜓 and d𝜀 were added to
(4.2.16) and (4.2.17). Eventually these newly determined offsets became part of the
IAU nutation model now in use.

The element𝛺 also describes the 18.6-year tidal period. Since tides and nutations
are caused by the same gravitational attraction, it is actually possible to transform the
mathematical series of nutations into the corresponding series of tides. Therefore, the
solid earth tide expression (4.1.1) could be developed into a series of sine and cosine
terms with arguments being simple functions of the fundamental periodic elements.
The expressions for the fundamental periodic elements are as follows:

l = Mean Anomaly of the Moon

= 134∘.96340251 + 1717915923′′.2178t + 31′′.8792t2 + 0′′.051635t3 + · · ·
(4.2.19)
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l′ = Mean Anomaly of the Sun

= 357∘.52910918 + 12596581′′.0481t − 0′′.5532t2 − 0′′.000136t3 + · · ·
(4.2.20)

F = L −𝛺

= 93∘.27209062 + 1739527262′′.8478t − 12′′.7512t2 − 0′′.001037t3 + · · ·
(4.2.21)

D = Mean Elongation of the Moon from the Sun

= 297∘.85019547 + 1602961601′′.2090t − 6′′.3706t2 + 0′′.006593t3 + · · ·
(4.2.22)

𝛺 = Mean Longitude of the Ascending Node of the Moon

= 125∘.04455501 − 6962890′′.2665t + 7′′.4722t2 + 0′′.007702t3 + · · ·
(4.2.23)

The symbol L denotes the mean longitude of the moon. In these equations, the time
t is again measured in Julian centuries of 36,525 days since J2000.0,

t =
(TT − J2000.0)[days]

36, 525
(4.2.24)

Since the Julian date (JD) of the fundamental epoch is

JD(J2000.0) = 2, 451, 545.0 TT (4.2.25)

the time t can be computed as

t =
JD + TT[h]∕24 − 2, 451, 545.0

36, 525
(4.2.26)

The Julian date is a convenient counter for mean solar days. Conversion of any Gre-
gorian calendar date (Y = year, M = month, D = day) to JD is accomplished by the
following (van Flandern and Pulkkinen, 1979):

JD = 367 × Y − 7 × [Y + (M + 9)∕12]∕4 + 275 × M∕9 + D + 1, 721, 014 (4.2.27)

for Greenwich noon. This expression is valid for dates since March 1900. The expres-
sion is read as a Fortran-type statement; division by integers implies truncation of the
quotients (no decimals are carried). Note that D is an integer.

In order to compute the GAST needed in (4.2.9), we must have universal time
(UT1). The latter time is obtained from the UTC (coordinate universal time) of
the epoch of observation and the UT1-UTC correction. UTC and UT1 will be
discussed below. Suffice to say that the correction UT1-UTC is a by-product of
the observations and is available from IERS publications. GAST can be computed
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in three steps. First, we compute Greenwich mean sidereal time (GMST) at the
epoch 0hUT1,

GMST0hUT1 = 6h41m50s.54841 + 8640184s.812866Tu + 0s.093104T2
u

− 6s.2 × 10−6T3
u (4.2.28)

where Tu = du∕36525 and du is the number of days elapsed since January 1, 2000,
12hUT1 (taking on values ±0.5, ±1.5, etc.). In the second step, we add the difference
in sidereal time that corresponds to UT1 hours of mean time,

GMST = GMST0hUT1 + r[(UT1 − UTC) + UTC] (4.2.29)

r = 1.002737909350795 + 5.9006 × 10−11Tu − 5.9 × 10−15T2
u (4.2.30)

In step three, we apply the nutation to convert the mean sidereal time to apparent
sidereal time,

GAST = GMST + Δ𝜓 cos 𝜀 + 0′′.00264 sin𝛺 + 0′′.000063 sin 2𝛺 (4.2.31)

Equation (4.2.31) clearly shows that GAST is not a rigorous linear measure of the
earth rotation angle. The term Δ𝜓cos𝜀 and the last two terms are nonlinear functions
of time. Obtaining a measure for the earth’s sidereal rotation that does not depend
on the nutations (which might still be subject to improvements in the future), was
therefore a major objective of the new definition of the CIP and the introduction of
the ERA.

The true celestial coordinate system (X), whose third axis coincides with instanta-
neous rotation axis and the X and Y axes span the true celestial equator, follows from

X = R3(−GAST)R1(yp)R2(xp)x (4.2.32)

The intermediary coordinate system (x̆),

x̆ = R1(yp)R2(xp)x (4.2.33)

is not completely crust-fixed, because the third axis moves with polar motion. (x̆) is
sometimes referred to as the instantaneous terrestrial coordinate system.

Using (X), the apparent right ascension and declination are computed from the
expression

𝛼 = tan −1 Y
X

(4.2.34)

𝛿 = tan −1 Z√
X2 + Y2

(4.2.35)

with 0∘ ≤ 𝛼 < 360∘. Applying (4.2.34) and (4.2.35) to (x) gives the spherical longi-
tude 𝜆 and latitude 𝜙, respectively. Whereas the zero right ascension is at the vernal
equinox and zero longitude is at the reference meridian, both increase counterclock-
wise when viewed from the third axis.
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4.2.2 Time Systems

Twenty-four hours of GAST represents the time for two consecutive transits of the
same meridian over the vernal equinox. Unfortunately, these “twenty-four” hours are
not suitable to define a constant time interval because of the nonlinear dependencies
seen in (4.2.31). The vernal equinox reference direction moves along the apparent
celestial equator by the time-varying amount Δ𝜓 cos 𝜀. In addition, the earth’s daily
rotation varies. This rate variation can affect the length of day by about 1 ms, corre-
sponding to a length of 0.45 m on the equator; therefore, a more constant time scale
is needed.

Let us look how one could conceptually compute UT1-UTC and, as such, UT1 if
UTC is known. Assume that a geodetic space technique with a mathematical model
relating the observations � and parameters

� = f (X, x, GAST , xp, yp) (4.2.36)

Avoiding the details of such solutions, one can readily imagine different types of
solutions, depending on which parameters are unknown and the type of observa-
tions available. For simplicity, let X (space object position) and x (observing station
position) be known, and the observations � be taken at known UTC epochs. Then,
given sufficient observational strength, it is conceptually possible to solve (4.2.36)
for GAST and polar motion xp, yp. We could then compute GMST from (4.2.31) and
substitute it into (4.2.29). The latter expression can be solved for the correction

ΔUT1 = UT1 − UTC (4.2.37)

A brief review on time might be in order. UTC is related to TAI as established
by atomic clocks. Briefly, at the 13th General Conference of Weights and Measures
(CGPM) in Paris in 1967, the definition of the atomic second, also called the inter-
national system (SI) second, was defined as the duration of 9,192,631,770 periods
of the radiation corresponding to the state-energy transition between two hyperfine
levels of the ground state of the cesium-133 atom. This definition made the atomic
second agree with the length of the ephemeris time (ET) second, to the extent that
measurement allowed. ET was the most stable time available around 1960 but is no
longer in use. ET was derived from orbital positions of the earth around the sun. Its
second was defined as a fraction of the year 1900. Because of the complicated gravi-
tational interactions between the earth and the moon, the potential loss of energy due
to tidal frictions, etc., the realization of ET was difficult. Its stability eventually did
not meet the demands of emerging measurement capabilities. It served as an interim
time system. Prior to ET, time was defined in terms of the earth rotation, the so-called
earth rotational time scales such as GMST. The rotational time scales were even less
constant because of the earth’s rotational variations. The rotational time scales and ET
were much less stable than atomic time. It takes a good cesium clock 20 to 30 million
years to gain or lose one second. Today’s modern atomic clocks perform even better.
Under the same environmental conditions, atomic transitions are identical from atom
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to atom and do not change their properties. Clocks based on such transitions should
generate the same time. The interested reader is referred to the literature for current
atomic clock performance and technology.

TAI is based on the SI second; its epoch is such that ET − TAI = 32s.184 on Jan-
uary 1, 1977. Because TAI is an atomic time scale, its epochs are related to state
transitions of atoms and not to the rotation of the earth. Even though atoms are suit-
able to define an extremely constant time scale, it could, in principle, happen that in
the distant future we would have noon, i.e., lunchtime at midnight TAI, just to exag-
gerate the point that an atomic clock is essentially a machine that is not sensitive to
the earth rotation. The hybrid time scale UTC avoids a possible divergence described
above and is highly stable at the same time. This is accomplished by using the SI
second as scale and changing the epoch labeling such that

|ΔUT1| < 0s.9 (4.2.38)

So, UTC follows UT1. One-second adjustments are made on either June 30 or
December 31 if a change is warranted. The IERS determines the need for a leap
second and announces any forthcoming step adjustment. Figure 4.2.3 shows the
history of leap second adjustments. There is an ongoing discussion in the scientific
community about possible advantages of discontinuing to make leap second adjust-
ments. UT1-UTC shows annual and semiannual variations, as well as variations due
to zonal tides.

Simple graphics shows that the mean solar day is longer than the sidereal day by
about 24h∕365 ≈ 4m. The accurate ratio of universal day over sidereal day is given
in (4.2.30). UTC is the civilian time system that is broadcast on TV, on radio, and by
other time services.

Figure 4.2.3 Leap second adjustments. [Data from IERS (2002)].
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The five corrections (UT1-UTC, polar motion xp and yp, and the celestial pole
offsets d𝜓 and d𝜀), are called the earth orientation parameters (EOP). The IERS mon-
itors and publishes these values. Modern space techniques allow these parameters to
be determined with centimeter accuracy. Visit the IERS homepage at www.IERS.org
to see ample graphical displays of the EOP parameters as a function of time.

Various laboratories and agencies operate several atomic clocks and produce their
own independent atomic time. For example, the time scale of the U.S. Naval Observa-
tory is called UTC (USNO), and the National Institute of Standards and Technology
(NIST) produces the UTC (NIST) scale. The IERS, which uses input from 200 plus
clocks and 60 plus different laboratories scattered around the world, computes TAI.
UTC and TAI differ only by the integer leap seconds. TAI is not adjusted, but UTC
is adjusted for leap seconds as discussed above.

The GPS satellites follow GPS time (GPST). This time scale is steered to be within
one microsecond (1 μ sec) of UTC (USNO). The initial epoch of GPST is 0hUTC
January 6, 1980. Since that epoch, GPST has not been adjusted to account for leap
seconds. It follows that GPST − TAI = −19s, i.e., equal to the offset of TAI and UTC
at the initial GPST epoch. The GPS control center synchronizes the clocks of the
various space vehicles to GPST.

Finally, the Julian day date (JD) used in (4.2.27) is but a convenient continuous
counter of mean solar days from the beginning of the year 4713 b.c. By tradition, the
Julian day date begins at Greenwich noon 12hUT1. As such, the JD has nothing to
do with the Julian calendar that was created by Julius Caesar. It provided for the leap
year rule that declared a leap year of 366 days if the year’s numerical designation is
divisible by 4. This rule was later supplemented in the Gregorian calendar by speci-
fying that the centuries that are not divisible by 400 are not leap years. Accordingly,
the year 2000 was a leap year but the year 2100 will not be. The Gregorian calendar
reform also included that the day following October 4 (Julian calendar), 1582, was
labeled October 15 (Gregorian calendar). The proceedings of the conference to com-
memorate the 400th anniversary of the Gregorian calendar (Coyne et al., 1983) give
background information on the Gregorian calendar. The astronomic justification for
the leap year rules stems from the fact that the tropical year consists of 365d.24219879
mean solar days. The tropical year equals the time it takes the mean (fictitious) sun
to make two consecutive passages over the mean vernal equinox.

4.3 DATUM

The complete definition of a geodetic datum includes the size and shape of the ellip-
soid, its location and orientation, and its relation to the geoid by means of geoid
undulations and deflection of the vertical. The datum currently used in the United
States is NAD83, which was identified above as not being strictly a geocentric datum
and is being kept that way for practical reasons. In the discussion below we briefly
introduce the geoid and the ellipsoid. A discussion of geoid undulations and deflection
of the vertical follows, with emphasis on how to use these elements to reduce obser-
vations to the ellipsoidal normal and the geodetic horizon. Finally, the 3D geodetic

http://www.IERS.org
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model is introduced as a general and unified model that deals with observations in all
three dimensions and is also, mathematically speaking, the simplest of all.

4.3.1 Geoid

The geoid is a fundamental physical reference surface to which all observations refer
if they depend on gravity. Because its shape is a result of the mass distribution inside
the earth, the geoid is not only of interest to the measurement specialist but also to
scientists who study the interior of the earth. Consider two point masses m1 and m2,
separated by a distance s. According to Newton’s law of gravitation, they attract each
other with the force

F =
k2m1m2

s2
(4.3.1)

where k2 is the universal gravitational constant. The attraction between the point
masses is symmetric and opposite in direction. As a matter of convenience, we con-
sider one mass to be the “attracting” mass and the other to be the “attracted” mass.
Furthermore, we assign to the attracted mass the unit mass (m2 = 1) and denote the
attracting mass with m. The force equation then becomes

F =
k2m
s2

(4.3.2)

and we speak about the force between an attracting mass and a unit mass as being
attracted. Introducing an arbitrary coordinate system as seen in Figure 4.3.1, we
decompose the force vector into Cartesian components. Thus,

F =
⎡⎢⎢⎣
Fx
Fy
Fz

⎤⎥⎥⎦ = −F
⎡⎢⎢⎣
cos 𝛼
cos 𝛽
cos 𝛾

⎤⎥⎥⎦ = −
k2m
s2

⎡⎢⎢⎢⎢⎣
x−𝜉

s
y−𝜂

s
z−𝜁

s

⎤⎥⎥⎥⎥⎦
(4.3.3)

z

y

x

P( ) x –

y –

z –

P(x,y,z)
–F

Figure 4.3.1 Components of the gravity vector.
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where
s =
√
(x − 𝜉)2 + (y − 𝜂)2 + (z − 𝜁 )2 (4.3.4)

The negative sign in the decomposition indicates the convention that the force vector
points from the attracted mass toward the attracting mass. The coordinates (x, y, z)
identify the location of the attracted mass in the specified coordinate system, and
(𝜉, 𝜂, 𝜁 ) denotes the location of the attracting mass. The expression

V =
k2m

s
(4.3.5)

is called the potential of gravitation. It is a measure of the amount of work required to
transport the unit mass from its initial position, a distance s from the attracting mass,
to infinity. Integrating the force equation (4.3.2) gives

V = ∫
∞

s
F ds = ∫

∞

s

k2m
s2

ds = −
k2m

s

||||
∞

s
=

k2m
s

(4.3.6)

In vector notation, the potential of gravitation V and the gravitational force vector F
are related by

Fx =
𝜕V
𝜕x

= k2m
𝜕

𝜕x

(1
s

)
= −

k2m
s2

𝜕s
𝜕x

= −
k2m
s2

x − 𝜉
s

(4.3.7)

Similar expressions can be written for Fy and Fz. Thus, the gradient V is

grad V ≡
[
𝜕V
𝜕x
𝜕V
𝜕y
𝜕V
𝜕z

]T
= [Fx Fy Fz]

T (4.3.8)

From (4.3.5), it is apparent that the gravitational potential is only a function of the
separation of the masses and is independent of any coordinate system used to describe
the position of the attracting mass and the direction of the force vector F. The grav-
itational potential, however, completely characterizes the gravitational force at any
point by means of (4.3.8).

Because the potential is a scalar, the potential at a point is the sum of the individual
potentials,

V =
∑

Vi =
∑ k2mi

si
(4.3.9)

Considering a solid body M rather than individual masses, a volume integral replaces
the discrete summation over the body,

V(x, y, z) = k2∫ ∫ ∫M

dm
s

= k2∫ ∫ ∫v

𝜌dv
s

(4.3.10)

where 𝜌 denotes a density that varies throughout the body and v denotes the mass
volume.
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When deriving (4.3.10), we assumed that the body was at rest. In the case of the
earth, we must consider the rotation of the earth. Let the vector f denote the centrifugal
force acting on the unit mass. If the angular velocity of the earth’s rotation is 𝜔, then
the centrifugal force vector can be written

f = 𝜔2p = [𝜔2x 𝜔2y 0]T (4.3.11)

The centrifugal force acts parallel to the equatorial plane and is directed away from
the axis of rotation. The vector p is the distance from the rotation axis. Using the
definition of the potential and having the z axis coincide with the rotation axis, we
obtain the centrifugal potential

𝛷 = 1∕2𝜔
2(x2 + y2) (4.3.12)

Equation (4.3.12) can be verified by taking the gradient to get (4.3.11). Note again that
the centrifugal potential is a function only of the distance from the rotation axis and
is not affected by a particular coordinate system definition. The potential of gravity
W is the sum of the gravitational and centrifugal potentials

W(x, y, z) = V +𝛷 = k2∫ ∫ ∫v

𝜌 dv
s

+
1
2
𝜔2(x2 + y2) (4.3.13)

The gravity force vector g is the gradient of the gravity potential

g(x, y, z) = grad W =

[
𝜕W
𝜕x

𝜕W
𝜕y

𝜕W
𝜕z

]T
(4.3.14)

and represents the total force acting at a point as a result of the gravitational and cen-
trifugal forces. The magnitude ||g|| = g is called gravity. It is traditionally measured
in units of gals where 1 gal = 1 cm∕ sec 2. The gravity increases as one moves from
the equator to the poles because of the decrease in centrifugal force. Approximate
values for gravity are gequator ≅ 978 gal and gpoles ≅ 983 gal. The units of gravity are
those of acceleration, implying the equivalence of force per unit mass and accel-
eration. Because of this, the gravity vector g is often termed gravity acceleration.
The direction of g at a point and the direction of the plumb line or the vertical
are the same.

Surfaces on which W(x, y, z) is a constant are called equipotential surfaces, or
level surfaces. These surfaces can principally be determined by evaluating (4.3.13)
if the density distribution and angular velocity are known. Of course, the density
distribution of the earth is not precisely known. Physical geodesy deals with theories
that allow estimation of the equipotential surface without explicit knowledge of the
density distribution. The geoid is defined to be a specific equipotential surface having
gravity potential

W(x, y, z) = W0 (4.3.15)

In practice, this equipotential surface is chosen such that on the average it coincides
with the global ocean surface. This is a purely arbitrary specification chosen for ease
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Figure 4.3.2 Equipotential surfaces and the gravity force vector.

of physical interpretation. The geoid is per definition an equipotential surface, not
some ideal ocean surface.

There is an important relationship between the direction of the gravity force and
equipotential surfaces, demonstrated by Figure 4.3.2. The total differential of the
gravity potential at a point is

dW =
𝜕W
𝜕x

dx +
𝜕W
𝜕y

dy +
𝜕W
𝜕z

dz

= [grad W]T ⋅ dx = g ⋅ dx (4.3.16)

The quantity dW is the change in potential between two differentially separated points
P(x, y, z) and P′(x + dx, y + dy, z + dz). If the vector dx is chosen such that P and
P′ occupy the same equipotential surface, then dW = 0 and

g ⋅ dx = 0 (4.3.17)

Expression (4.3.17) implies that the direction of the gravity force vector at a point is
normal or perpendicular to the equipotential surface passing through the point.

The shapes of equipotential surfaces, which are related to the mass distribution
within the earth through (4.3.13), have no simple analytic expressions. The plumb
lines are normal to the equipotential surfaces and are space curves with finite radii
of curvature and torsion. The distance along a plumb line from the geoid to a point
is called the orthometric height H. The orthometric height is often misidentified as
the “height above sea level.” Possibly, confusion stems from the specification that the
geoid closely approximates the global ocean surface.
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Consider a differential line element dx along the plumb line ||dx|| = dH. By
noting that H is reckoned positive upward and g points downward, we can rewrite
(4.3.16) as

dW = g ⋅ dx

= g dH cos(g, dx) = g dH cos(180∘) = −g dH (4.3.18)

This expression relates the change in potential to a change in the orthometric height.
This equation is central in the development of the theory of geometric leveling.
Writing (4.3.18) as

g = −
dW
dH

(4.3.19)

it is obvious that the gravity g cannot be constant on the same equipotential surface
because the equipotential surfaces are neither regular nor concentric with respect to
the center of mass of the earth. This is illustrated in Figure 4.3.3, which shows two
differentially separate equipotential surfaces. It is observed that

g1 = −
dW
dH1

≠ g2 = −
dW
dH2

(4.3.20)

The astronomic latitude, longitude, and azimuth refer to the plumb line at the
observing station. Figure 4.3.4 shows an equipotential surface through a surface point

Figure 4.3.3 Gravity on the equipotential surface.

Figure 4.3.4 Astronomic latitude.
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P and the instantaneous rotation axis and equator. The astronomic normal at point
P, also called the local vertical, is identical to the direction of the gravity force at
that point, which in turn is tangent to the plumb line. The astronomic latitude 𝛷 at
P is the angle subtended on the instantaneous equator by the astronomic normal.
The astronomic normal and the parallel line to the instantaneous rotation axis span
the astronomic meridian plane at point P. Note that the instantaneous rotation axis
and the astronomic normal may or may not intersect. The astronomic longitude 𝛬
is the angle subtended in the instantaneous equatorial plane between this astronomic
meridian and a reference meridian, nominally the Greenwich meridian.

The geopotential number C is simply the algebraic difference between the poten-
tials at the geoid and point P

C = W0 − W (4.3.21)

From (4.3.18) it follows that

W = W0 − ∫
H

0
g dH (4.3.22)

or

C = W0 − W = ∫
H

0
g dH (4.3.23)

or

H = −∫
W

W0

dW
g

= ∫
C

0

dC
g

(4.3.24)

Equation (4.3.23) shows how combining gravity observations and leveling yields
potential differences. The increment dH is obtained from spirit leveling, and the grav-
ity g is measured along the leveling path. Consider a leveling loop as an example.
Because one returns to the same point when leveling a loop, i.e., one returns to the
same equipotential surface, equation (4.3.23) implies that the integral (or the sum) of
the products g dH adds up to zero. Because g varies along the loop, the sum over the
leveled differences dH does not necessarily add up to zero.

The difference between the orthometric heights and the leveled heights is called
the orthometric correction. Expressions for computing the orthometric correction
from gravity are available in the specialized geodetic literature. An excellent
introduction to height systems is found in Heiskanen and Moritz (1967, Chapter 4).
Guidelines for accurate leveling are available from the NGS (Schomaker and Berry,
1981).

4.3.2 Ellipsoid of Rotation

The ellipsoid of rotation, called here simply the ellipsoid, is a relatively simple mathe-
matical figure that closely approximates the actual geoid. When using an ellipsoid for
geodetic purposes, we need to specify its shape, location, and orientation with respect
to the earth. The size and shape of the ellipsoid are defined by two parameters: the
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semimajor axis a and the flattening f . The flattening is related to the semiminor axis
b by

f =
a − b

a
(4.3.25)

Appendix B contains the details of the mathematics of the ellipsoid and common val-
ues for a and b. The orientation and location of the ellipsoid often depend on when and
how it was established. In the presatellite era, the goal often was to establish a local
ellipsoid that best fit the geoid in a well-defined region, i.e., the area of a nation-state.
The third axis, of course, always pointed toward the North Pole and the first axis
in the direction of the Greenwich meridian. Using local ellipsoids as a reference
does have the advantage that some of the reductions (geoid undulation, deflection
of the vertical) can possibly be neglected, which is an important consideration when
the geoid is not accurately known. With today’s advanced geodetic satellite tech-
niques, in particular GPS, and accurate knowledge of the geoid, one prefers so-called
global ellipsoids that fit the geoid globally (whose center of figure is at the center of
mass, and whose axes coincide with the ITRF). The relationship between the Carte-
sian coordinates (x) = (x, y, z) and the geodetic coordinates (𝜑) = (𝜑, 𝜆, h) is given
according to (B.1.9 to B.1.11),

x = (N + h) cos𝜑 cos 𝜆 (4.3.26)

y = (N + h) cos𝜑 sin 𝜆 (4.3.27)

z = [N(1 − e2) + h] sin𝜑 (4.3.28)

where the auxiliary quantities N and e are

N =
a√

1 − e2 sin 2𝜑
(4.3.29)

e2 = 2f − f 2 (4.3.30)

The transformation from (x) to (𝜑) is given in Appendix B. It is typically performed
iteratively.

4.3.3 Geoid Undulations and Deflections of the Vertical

One approach to estimate the geoid undulation is by measuring gravity or gravity
gradients at the surface of the earth. At least in principle, any observable that is a func-
tion of the gravity field can contribute to the determination of the geoid. Low-earth
orbiting satellites have successfully been used to determine the large structure of the
geoid. Satellite-to-satellite tracking is being used to determine the temporal variations
of the gravity field, and thus the geoid. The reader may want to check gravity mod-
els derived from the Gravity Recovery and Climate Experiment (GRACE) mission
which was launched in early 2002. Recent earth gravity solutions show high res-
olution of geoid features because more observations have become available and the
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observations have a better global coverage to allow estimation of higher degree spher-
ical harmonic coefficients. Pavlis et al. (2012) discuss one of the latest earth gravity
models, the EGM2008, which uses a spherical harmonic expansion up to degree and
order 2219 to represent the gravity field.

Actually, the gravity field or functions of the gravity field are typically expressed
in terms of a spherical harmonic expansion. For example, the geoid undulation N
could be expressed in the form (Lemoine et al., 1998, pp. 5−11),

N =
GM
𝛾r

∞∑
n=2

(a
r

)n n∑
m=0

(Cnm cos m𝜆 + Snm sin m𝜆)Pnm(cos 𝜃) (4.3.31)

In this equation, the following notations are used:

N Geoid undulation. There should not be cause for confusion using the
same symbol for the geoid undulation (4.3.31) and the radius of
curvature of the prime vertical (4.3.29); both notations are traditional
in the geodetic literature.

𝜑, 𝜆 Latitude and longitude of station; 𝜃 = 90 − 𝜑 is the colatitude.
Cnm, Snm Normalized spherical harmonic coefficients (geopotential coefficients),

of degree n and order m.
Pnm Associated Legendre functions.
r Geocentric distance of the station.
GM Product of the gravitational constant and the mass of the earth. GM is

identical to k2M used elsewhere in this book. Unfortunately, the
symbolism is not unique in the literature. We retain the symbols
typically used within the respective context.

𝛾 Normal gravity. Details are given below.
a Semimajor axis of the ellipsoid.

Figure 4.3.5 shows a map of a global geoid. Although this map is dated, it still repre-
sents the global features of the geoid accurately. The geoid undulation and deflections
of the vertical are related by differentiation, such as (Heiskanen and Moritz, 1967,
p. 112)

𝜉 = −
1
r
𝜕N
𝜕𝜃

(4.3.32)

𝜂 = −
1

r sin 𝜃
𝜕N
𝜕𝜆

(4.3.33)

Differentiating (4.3.31) gives

𝜉 = −
GM
𝛾r2

∞∑
n=2

(a
r

)n n∑
m=0

(Cnm cos m𝜆 + Snm sin m𝜆)
d Pnm(cos 𝜃)

d𝜃
(4.3.34)

𝜂 = −
GM

𝛾r2 sin 𝜃

∞∑
n=2

(a
r

)n n∑
m=0

m(−Cnm sin m𝜆 + Snm cos m𝜆)Pnm(cos 𝜃) (4.3.35)
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Figure 4.3.5 Geoid undulations of the EGM96 gravity field model computed relative to the GRS80 ellipsoid. The units are in meters [Courtesy
German Geodetic Research Institute (DGFI), Munich].
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Geoid undulations computed from expressions like (4.3.31) refer to a geocentric ellip-
soid with semimajor axis a. In order to obtain the geoid undulations and deflection
of the vertical for a nongeocentric ellipsoid, say the NAD83 datum, additional trans-
formations are needed (Soler et al., 2014). Typically, free software is available to
compute geoid undulations and deflection of the vertical for a specific datum.

The ellipsoid of rotation provides a simple and adequate model for the geometric
shape of the earth. It is the reference for geometric computations in two and three
dimensions, as discussed in the next sections. Assigning a gravitational field to the
ellipsoid that approximates the actual gravitational field of the earth extends the func-
tionality of the ellipsoid.

Merely a few specifications are needed to fix the gravity and gravitational potential
for an ellipsoid, then called a normal ellipsoid. We need to assign an appropriate mass
for the ellipsoid and assume that the ellipsoid rotates with the earth. Furthermore,
by means of mathematical conditions, the surface of the ellipsoid is defined to be an
equipotential surface of its own gravity field. Therefore, the plumb lines of this gravity
field intersect the ellipsoid perpendicularly. Because of this property, this gravity field
is called the normal gravity field, and the ellipsoid itself is sometimes also referred
to as the level ellipsoid.

It can be shown that the normal gravity potential U is completely specified by four
defining constants, which are symbolically expressed by

U = f (a, J2, GM, 𝜔) (4.3.36)

In addition to a and GM, which have already been introduced above, we need the
dynamical form factor J2 and the angular velocity of the earth 𝜔. The dynamic form
factor is a function of the principal moments of inertia of the earth (polar and equa-
torial moment of inertia) and is functionally related to the flattening of the ellipsoid.
One important definition of the four constants in (4.3.36) comprises the Geodetic
Reference System of 1980 (GRS80). The defining constants are listed in Table 4.3.1.
A full documentation of this reference system is available in Moritz (1984).

The normal gravitational potential does not depend on the longitude and is given
by a series of zonal spherical harmonics:

V =
GM

r

[
1 −

∞∑
n=1

J2n

(a
r

)2n
P2n(cos 𝜃)

]
(4.3.37)

TABLE 4.3.1 Constants for GRS80

Defining Constants Derived Constants

a = 6378137 m b = 6356752.3141 m
GM = 3986005 × 108 m3∕s2 1∕f = 298.257222101
J2 = 108263 × 10−8 m = 0.00344978600308
𝜔 = 7292115 × 10−11 rad∕s 𝛾e = 9.7803267715 m∕s2

𝛾p = 9.8321863685 m∕s2
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Note that the subscript 2n is to be read “2 times n.” P2n denotes Legendre polyno-
mials. The coefficients J2n are a function of J2 that can be readily computed. Several
useful expressions can be derived from (4.3.37). For example, the normal gravity,
defined as the magnitude of the gradient of the normal gravity field (normal gravita-
tional potential plus centrifugal potential), is given by Somigliana’s closed formula
(Heiskanen and Moritz, 1967, p. 70),

𝛾 =
a𝛾e cos 2𝜑 + b𝛾p sin 2𝜑√

a2 cos 2𝜑 + b2 sin 2𝜑
(4.3.38)

The normal gravity at height h above the ellipsoid is given by (Heiskanen and Moritz,
1967, p. 79)

𝛾h − 𝛾 = −
2𝛾e

a

[
1 + f + m +

(
−3f +

5
2

m
)

sin 2 𝜑
]

h +
3𝛾e

a2
h2 (4.3.39)

Equations (4.3.38) and (4.3.39) are often useful approximations of the actual gravity.
The value for the auxiliary quantity m in (4.3.39) is given in Table 4.3.1. The normal
gravity values for the poles and the equator, 𝛾p and 𝛾e are also listed in that table.

4.3.4 Reductions to the Ellipsoid

The primary purpose of this section is to introduce the deflection of the deflection
corrections (reduction) and the relation between orthometric and ellipsoidal heights
and geoid undulations. The objective is to apply these corrections to convert observed
terrestrial angles (azimuths) to angles (azimuths) between normal planes of the ellip-
soid, which can then serve as model observations in the three-dimensional geode-
tic model discussed below. Although precise astronomical latitude, longitude, and
azimuth observations are generally no longer a part of the surveyor’s tools because
of the wide use of GNSS applications, for the sake of completeness some very brief
remarks about these “old” techniques are in order.

We already stressed in connection with Figure 4.3.4 that the astronomical latitude
refers to the tangent of the instantaneous plumb line and the direction of the instan-
taneous rotation axis, i.e., the CEP or CIP. By the way, the distinction between the
latter two poles is not necessary when it comes to astronomical position determination
because of the lack of accuracy of the observation technique. Nevertheless, at least
for what used to be called first-order astronomic position determination, the polar
motion correction should be considered. The respective correction can certainly be
found in old textbooks, e.g., Mueller (1969, p. 87). Applying spherical trigonometry
we obtain

𝛷CTP = 𝛷 + yp sin𝛬 − xp cos𝛬
𝛬CTP = 𝛷 − (yp cos𝛬 + xp sin𝛬) tan𝛷
ACTP = A − (yp cos𝛬 + xp sin𝛬)∕ cos𝛷

(4.3.40)
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The observed latitude, longitude, and azimuth are (𝛷, 𝛬, A), and the polar motion
coordinates are (xp, yp). The reduced astronomic quantities (𝛷CTP, 𝛬CTP, ACTP) are
those values which one would have observed if the instantaneous pole CEP (CIP) had
coincided with the CTP (ITRF) at the instant of observations.

Now we consider the condition that the semiminor axis of the ellipsoid and the
direction of the CTP should be parallel. This condition will show a relationship
between the reduced astronomic quantities (𝛷CTP, 𝛬CTP, ACTP) and the correspond-
ing ellipsoidal or geodetic quantities (𝜑, 𝜆, 𝛼), and as such the reductions we are
looking for. The geometric relationships are shown in Figures 4.3.6 and 4.3.7. Both
figures are not drawn to scale in order to show small angles. The bottom part of
Figure 4.3.6 shows the ellipsoid and the ellipsoidal normal passing through a surface
point P1 and intersecting a unit sphere centered at P1 at point Ze. The line labeled
“equipotential surface” through P1 should indeed indicate the equipotential surface
at P1; the line P1 − Za is normal to the equipotential surface. The points Za, Ze, CTP,

Figure 4.3.6 Astronomic and ellipsoidal normal on a topocentric sphere of direction.
The astronomic normal is perpendicular to the equipotential surface at P1. The ellipsoidal nor-
mal passes through P1.
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Figure 4.3.7 Deflection of the vertical components.

and T are located on the unit sphere. The line P1 − CTP is parallel to the semiminor
axis of the ellipsoid. The symbols have the following meaning:

Za Astronomic zenith (sensed by instruments)
CTP Position of the conventional terrestrial pole (z axis of ITRF)
Ze Ellipsoidal zenith
T Target point (intersection P1 − P2 with sphere)
𝜗′ Observed zenith angle
𝛷CTP, 𝛬CTP Reduced astronomic latitude and longitude
ACTP Reduced astronomic azimuth of T and surface point P2
𝜑, 𝜆 Ellipsoidal (geodetic) latitude and longitude
𝛼 Ellipsoidal (geodetic) azimuth of T and surface point P2
𝜗 Ellipsoidal (geodetic) zenith angle
𝜃 Total deflection of the vertical (not colatitude, same symbol)
𝜀 Deflection of the vertical in the direction of azimuth
𝜉, 𝜂 Deflection of the vertical components along the meridian and the

prime vertical

The azimuths ACTP and 𝛼 are angles between normal planes defined by the astronomic
and ellipsoidal normal at P1, respectively. The intersections of these planes with the
unit sphere are great circles. By applying spherical trigonometry to the various trian-
gles in Figure 4.3.7, we eventually derive the following relations:

ACTP − 𝛼 = (𝛬CTP − 𝜆) sin𝜑 + (𝜉 sin 𝛼 − 𝜂 cos 𝛼) cot 𝜗 (4.3.41)

𝜉 = 𝛷CTP − 𝜑 (4.3.42)

𝜂 = (𝛬CTP − 𝜆) cos𝜑 (4.3.43)

𝜗 = 𝜗′ + 𝜉 cos 𝛼 + 𝜂 sin 𝛼 (4.3.44)
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These are indeed classical equations whose derivations can be found in most of the
geodetic literature, e.g., Heiskanen and Moritz (1967, p. 186). They are also given in
Leick (2002). Equation (4.3.41) is called the Laplace equation. It relates the reduced
astronomic azimuth and the geodetic azimuths of the target point. The deflection of
the vertical, or total deflection of the vertical, is the angle between the directions of
the plumb line and the ellipsoidal normal at the same point, i.e., the angle Za − Ze.
Equations (4.3.42) and (4.3.43) define the deflection of the vertical components. By
convention, the deflection of the vertical is decomposed into two components, one
along the meridian and one along the prime vertical (orthogonal to the meridian).
The deflection components depend directly on the shape of the geoid in the region.
Because the deflections of the vertical are merely another manifestation of the irreg-
ularity of the gravity field, they are mathematically related to the geoid undulation.
See equations (4.3.34) and (4.3.35). Equation (4.3.44) relates the ellipsoidal and the
observed zenith angle (refraction not considered).

Several observations are made. First, equations (4.3.41) to (4.3.43) relate reduced
astronomic latitude, longitude, and azimuth to the respective ellipsoidal latitude, lon-
gitude, and azimuth by means of the deflection of the vertical. Second, the reduction
of a horizontal angle due to deflection of the vertical equals the difference of (4.3.41)
as applied to both intersecting line segments of the angle. If the zenith angles to
the target points are close to 90∘, then the corrections are small and can possibly
be neglected. This is the reason why deflection of the vertical corrections to angles
in surveying can generally be ignored. Third, historically, equation (4.3.41) was used
as a condition between the reduced astronomic azimuth and the computed geodetic
azimuth to control systematic errors in a network. This can be better accomplished
now with GPS. Fourth, if surveyors were to compare the orientation of a GPS vector
with the astronomic azimuth derived from solar or Polaris observations, they must
expect a discrepancy indicated by (4.3.41). Fifth, if a surveyor were to stake out in
the field an azimuth computed from coordinates, the Laplace correction would have
to be considered. Sixth, finally, the last term in the Laplace equation (4.3.41) can
usually be dropped because of zenith angles close to 90∘.

Equations (4.3.42) and (4.3.43) also show how to specify a local ellipsoid that
is tangent to the geoid at some centrally located station called the initial point, and
whose semiminor axis is still parallel to the CTP. If we specify that at the initial point
the reduced astronomic latitude, longitude, and azimuth equal the ellipsoidal latitude,
longitude, and azimuth, respectively, then we ensure parallelism of the semimajor axis
and the direction of the CTP; the geoid normal and the ellipsoidal normal coincide
at that initial point. If, in addition, we set the undulation to zero, then the ellipsoid
touches the geoid tangentially at the initial point. Thus the local ellipsoid will have
at the initial point

𝜑 = 𝛷CTP (4.3.45)

𝜆 = 𝛬CTP (4.3.46)

𝛼 = ACTP (4.3.47)

N = 0 (4.3.48)
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Figure 4.3.8 Geoid undulation, orthometric, and ellipsoidal heights.

Another important quantity linking the ellipsoid and the geoids is the geoid undu-
lation. The relationship between the ellipsoidal height h, the orthometric height H,
and the geoid undulation N, is

h = H + N (4.3.49)

where N is the geoid undulation with respect to the specific ellipsoid. As shown in
Figure 4.3.8 the geoid undulation refers to a datum having a well-defined location,
orientation, and size of its reference ellipsoid. Once again, the geoid undulation N is
computable from expressions like (4.3.31) and is entirely different in meaning from
the radius of curvature (4.3.29), so that the traditional use of N for both quantities
does not cause confusion.

In regards to quality control of observations, the local ellipsoid can serve as a
convenient computation reference in 3-dimensional geodetic adjustments (see next
section) in case of small networks, such as local and regional surveys. In these cases,
it is not at all necessary to determine the size and shape of a best-fitting local ellipsoid.
It is sufficient to adopt the size and shape of any of the current geocentric ellipsoids.
Because the deflections of the vertical will be small in the region around the initial
point, they can be neglected. Any of the network stations can serve as an initial point
and its coordinates do not even have to be accurately known. Similar considerations
are valued in regards to the geoid undulations, which are also small because the local
ellipsoid is tangent to the geoid at the initial point. For the quality control purpose
of observations, the azimuth in (4.3.47) can be freely chosen in such cases, which is
yet another convenience. Therefore, the 3D geodetic model is attractive for a quick
quality control minimal constraint adjustment to see if the set of observations are
consistent, i.e., free of blunders.

4.4 3D GEODETIC MODEL

Once the angular observations have been corrected for the deflection of the vertical, it
is a simple matter to develop the mathematics for the 3D geodetic model. The reduced
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observations, i.e., the observables of the 3D geodetic model, are the geodetic azimuth
𝛼, the geodetic horizontal angle 𝛿, the geodetic vertical angle 𝛽 (or the geodetic zenith
angle 𝜗), and the slant distance s. Geometrically speaking, these observables refer to
the geodetic horizon and the ellipsoidal normal. The reduced horizontal angle is an
angle between two normal planes, defined by the target points and the ellipsoidal
normal at the observing station. The geodetic vertical angle is the angle between the
geodetic horizon and the line of sight to the target.

We assume that the vertical angle has been corrected for atmospheric refraction.
The model can be readily extended to include refraction parameters if needed. Thanks
to the availability of GNSS systems, we no longer depend on vertical angle observa-
tions to support the vertical dimension. The primary purpose of vertical angles in most
cases is to support the vertical dimension when adjusting slant distances (because
slant distances contribute primarily horizontal information, at least in flat terrain).

Figure 4.4.1 shows the local geodetic coordinate system (w) = (n, e, u), which
plays a central role in the development of the mathematical model. The axes n and e
span the local geodetic horizon (plane perpendicular to the ellipsoidal normal through
the point P1 on the surface of the earth). The n axis points north, the e axis points east,
and the u axis coincides with the ellipsoidal normal (with the positive end outward
of the ellipsoid). The spatial orientation of the local geodetic coordinate system is
completely specified by the geodetic latitude 𝜑 and the geodetic longitude 𝜆. Recall
that the z axis coincides with the direction of the CTP.

Figure 4.4.2 shows the geodetic azimuth and vertical angle (or zenith angle)
between points P1 and P2 in relation to the local geodetic coordinate system. One
should keep in mind that the symbol h still denotes the geodetic height of a point
above the ellipsoid, whereas the u coordinate refers to the height of the second
station P2 above the local geodetic horizon of P1. It follows that

n = s cos 𝛽 cos 𝛼 (4.4.1)

e = s cos 𝛽 sin 𝛼 (4.4.2)

u = s sin 𝛽 (4.4.3)

x

y

z

λ

φ

P1(φ,λ,h)

n

e

u

tangent
h

Figure 4.4.1 The local geodetic coordinate
system.
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Figure 4.4.2 3D model observations. P1
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The inverses of (4.4.1) to (4.4.3) are

𝛼 = tan −1
( e

n

)
(4.4.4)

𝛽 = 90∘ − 𝜗 = sin −1
(u

s

)
(4.4.5)

s =
√

n2 + e2 + u2 (4.4.6)

The relationship between the local geodetic coordinate system and the geocentric
Cartesian system (x) is illustrated in Figure 4.4.1:

⎡⎢⎢⎣
n
−e
u

⎤⎥⎥⎦ = R2 (𝜑 − 90∘) R3 (𝜆 − 180∘)
⎡⎢⎢⎣
Δx
Δy
Δz

⎤⎥⎥⎦ (4.4.7)

where R2 and R3 denote the rotation matrices given in Appendix A, and

ΔX ≡
⎡⎢⎢⎣
Δx
Δy
Δz

⎤⎥⎥⎦ =
⎡⎢⎢⎣
x2 − x1
y2 − y1
z2 − z1

⎤⎥⎥⎦ (4.4.8)

Subscripts will be used when needed to clarify the use of symbols. For example,
the differencing operation Δ in (4.4.7) implies Δx ≡ Δx12 = x2 − x1. The same con-
vention is followed for other differences. A more complete notation for the local
geodetic coordinates is (n1, e1, u1) instead of (n, e, u), to emphasize that these com-
ponents refer to the geodetic horizon at P1. Similarly, a more unambiguous notation is
(𝛼12, 𝛽12, 𝜗12) instead of just (𝛼, 𝛽, 𝜗) or even (𝛼1, 𝛽1, 𝜗1), to emphasize that these
observables are taken at station P1 to P2. For the slant distance, the subscripts do not
matter because s = s1 = s12 = s21.

Changing the sign of e in (4.4.7) and combining the rotation matrices R2 and R3
one obtains

w = R(𝜑, 𝜆)Δx (4.4.9)

with

R =
⎡⎢⎢⎣
− sin𝜑 cos 𝜆 − sin𝜑 sin 𝜆 cos𝜑

− sin 𝜆 cos 𝜆 0
cos𝜑 cos 𝜆 cos𝜑 sin 𝜆 sin𝜑

⎤⎥⎥⎦ (4.4.10)
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Substituting (4.4.9) and (4.4.10) into (4.4.4) to (4.4.6) gives expressions for the
geodetic observables as functions of the geocentric Cartesian coordinate differences
and the geodetic position of P1:

𝛼1 = tan −1

(
− sin 𝜆1 Δx + cos 𝜆1 Δy

− sin𝜑1 cos 𝜆1 Δx − sin𝜑1 sin 𝜆1 Δy + cos𝜑1 Δz

)
(4.4.11)

𝛽1 = sin−1

(
cos𝜑1 cos 𝜆1 Δx + cos𝜑1 sin 𝜆1 Δy + sin𝜑1 Δz√

Δx2 + Δy2 + Δz2

)
(4.4.12)

s =
√
Δx2 + Δy2 + Δz2 (4.4.13)

Equations (4.4.11) to (4.4.13) are the backbone of the 3D geodetic model. Other
observations such as horizontal angles, heights, and height differences—even GPS
vectors—can be readily implemented. Equation (4.4.12) assumes that the vertical
angle has been corrected for refraction. One should take note of how little mathemat-
ics is required to derive these equations. Differential geometry is not required, and
neither is the geodesic line.

4.4.1 Partial Derivatives

Because (4.4.11) to (4.4.13) expressed the geodetic observables explicitly as a func-
tion of the coordinates, the observation equation adjustment model �a = f(xa) can be
readily used. The 3D nonlinear model has the general form

𝛼1 = 𝛼(x1, y1, z1, x2, y2, z2) (4.4.14)

𝛽1 = 𝛽(x1, y1, z1, x2, y2, z2) (4.4.15)

s = s(x1, y1, z1, x2, y2, z2) (4.4.16)

The observables and parameters are {𝛼1, 𝛽1, s} and {x1, y1, z1, x2, y2, z2}, respec-
tively. To find the elements of the design matrix, we require the partial derivatives
with respect to the parameters. The general form is

⎡⎢⎢⎣
d𝛼1
d𝛽1
ds

⎤⎥⎥⎦ =
⎡⎢⎢⎣
g11 g12 g13 g14 g15 g16
g21 g22 g23 ∶ g24 g25 g26
g31 g32 g33 g34 g35 g36

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

dx1
dy1
dz1
· · ·
dx2
dy2
dz2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= [G1 ∶ G2]

⎡⎢⎢⎣
dx1
· · ·
dx2

⎤⎥⎥⎦ (4.4.17)

with dxi = [dxi dyi dzi]
T . The partial derivatives are listed in Table 4.4.1. This par-

ticular form of the partial derivatives follows from Wolf (1963), after some additional
algebraic manipulations.



170 GEODESY

TABLE 4.4.1 Partial Derivatives with Respect to Cartesian Coordinates

g11 =
𝜕𝛼1

𝜕x1

= −g14 =
− sin𝜑1 cos 𝜆1 sin 𝛼1 + sin 𝜆1 cos 𝛼1

s cos 𝛽1

(a)

g12 =
𝜕𝛼1

𝜕y1

= −g15 =
− sin𝜑1 sin 𝜆1 sin 𝛼1 − cos 𝜆1 cos 𝛼1

s cos 𝛽1

(b)

g13 =
𝜕𝛼1

𝜕z1

= −g16 =
cos𝜑1 sin 𝛼1

s cos 𝛽1

(c)

g21 =
𝜕𝛽1

𝜕x1

= −g24 =
−s cos𝜑1 cos 𝜆1 + sin 𝛽1 Δx

s2 cos 𝛽1

(d)

g22 =
𝜕𝛽1

𝜕y1

= −g25 =
−s cos𝜑1 sin 𝜆1 + sin 𝛽1 Δx

s2 cos 𝛽1

(e)

g23 =
𝜕𝛽1

𝜕z1

= −g26 =
−s sin𝜑1 + sin 𝛽1 Δz

s2 cos 𝛽1

(f)

g31 =
𝜕s
𝜕x1

= −g34 =
−Δx

s
(g)

g32 =
𝜕s
𝜕y1

= −g35 =
−Δy

s
(h)

g33 =
𝜕s
𝜕z1

= −g36 =
−Δz

s
(i)

4.4.2 Reparameterization

Often the geodetic latitude, longitude, and height are preferred as parameters instead
of the Cartesian components of (x). One reason for such a reparameterization is
that humans can visualize changes more readily in latitude, longitude, and height
than changes in geocentric coordinates. The required transformation is given
by (B.1.16).

dx =
⎡⎢⎢⎣
− (M + h) cos 𝜆 sin𝜑 −(N + h) cos𝜑 sin 𝜆 cos𝜑 cos 𝜆
−(M + h) sin 𝜆 sin𝜑 (N + h) cos𝜑 cos 𝜆 cos𝜑 sin 𝜆

(M + h) cos𝜑 0 sin𝜑

⎤⎥⎥⎦
⎡⎢⎢⎣
d𝜑
d𝜆
dh

⎤⎥⎥⎦
= J
⎡⎢⎢⎣
d𝜑
d𝜆
dh

⎤⎥⎥⎦ (4.4.18)

The expressions for the radius of curvatures M and N are given in (B.1.7) and
(B.1.6). The matrix J must be evaluated for the geodetic latitude and longitude of
the point under consideration; thus, J1(𝜑1, 𝜆1, h1) and J2(𝜑2, 𝜆2, h2) denote the
transformation matrices for points P1 and P2, respectively. Substituting (4.4.18) into
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(4.4.17), we obtain the parameterization in terms of geodetic latitude, longitude,
and height:

⎡⎢⎢⎣
d𝛼1
d𝛽1
ds

⎤⎥⎥⎦ =
[
G1J1 ∶ G2J2

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

d𝜑1
d𝜆1
dh1
· · ·
d𝜑2
d𝜆2
dh2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.4.19)

To achieve a parameterization that is even easier to interpret, we transform the
differential changes in geodetic latitude and longitude parameters (d𝜑, d𝜆) into cor-
responding changes (dn, de) in the local geodetic horizon. Keeping the geometric
interpretation of the radii of curvatures M and N as detailed in Appendix B, one can
further deduce that

dw =
⎡⎢⎢⎣
M + h 0 0

0 (N + h) cos𝜑 0
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
d𝜑
d𝜆
dh

⎤⎥⎥⎦ = H(𝜑, h)
⎡⎢⎢⎣
d𝜑
d𝜆
dh

⎤⎥⎥⎦ (4.4.20)

The components dw = [dn de du]T intuitively are related to the “horizontal” and
“vertical,” and because their units are length, the standard deviations of the parame-
ters can be readily visualized. The matrix H is evaluated for the station under consid-
eration. The final parameterization becomes

⎡⎢⎢⎣
d𝛼1
d𝛽1
ds

⎤⎥⎥⎦ = A
⎡⎢⎢⎣
dw1
· · ·

dw2

⎤⎥⎥⎦ (4.4.21)

with

A =
[
G1J1H

−1
1 ∶ G2J2H

−1
2

]
=
⎡⎢⎢⎣
a11 a12 a13 a14 a15 a16
a21 a22 a23 ∶ a24 a25 a26
a31 a32 a33 a34 a35 a36

⎤⎥⎥⎦ (4.4.22)

The partial derivatives are listed in Table 4.4.2 (Wolf, 1963; Heiskanen and Moritz,
1967; Vincenty, 1979). Some of the partial derivatives have been expressed in terms
of the back azimuth 𝛼2 ≡ 𝛼21 and the back vertical angle 𝛽2 ≡ 𝛽21, meaning azimuth
and vertical angle from station 2 to station 1. Early work on the 3D geodetic model
is found in Bruns (1878).

4.4.3 Implementation Considerations

The 3D geodetic model is easy to derive since only partial differentiation is required; it
is also easy to implement in software. Normally, the observations will be uncorrelated
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TABLE 4.4.2 Partial Derivatives with Respect to Local Geodetic Coordinates

a11 =
𝜕𝛼1

𝜕n1

=
sin 𝛼1

s cos 𝛽11

(a) a12 =
𝜕𝛼1

𝜕e1

= −
cos 𝛼1

s cos 𝛽1

(b)

a13 =
𝜕𝛼1

𝜕u1

= 0 (c)

a14 =
𝜕𝛼1

𝜕n2

= −
sin 𝛼1

s cos 𝛽1

[cos(𝜑2 − 𝜑1) + sin𝜑2 sin(𝜆2 − 𝜆1) cot 𝛼1] (d)

a15 =
𝜕𝛼1

𝜕e2

=
cos 𝛼1

s cos 𝛽1

[cos(𝜆2 − 𝜆1) − sin𝜑1 sin(𝜆2 − 𝜆1) tan 𝛼1] (e)

a16 =
𝜕𝛼1

𝜕u2

=
cos 𝛼1 cos𝜑2

s cos 𝛽1

[sin(𝜆2 − 𝜆1) + (sin𝜑1 cos(𝜆2 − 𝜆1) − cos𝜑1 tan𝜑2) tan 𝛼1] (f)

a21 =
𝜕𝛽1

𝜕n1

=
sin 𝛽1 cos 𝛼1

s
(g) a22 =

𝜕𝛽1

𝜕e1

=
sin 𝛽1 sin 𝛼1

s
(h)

a23 =
𝜕𝛽1

𝜕u1

= −
cos 𝛽1

s
(i)

a24 =
𝜕𝛽1

𝜕n2

=
− cos𝜑1 sin𝜑2 cos(𝜆2 − 𝜆1) + sin𝜑1 sin𝜑2 + sin 𝛽1 cos 𝛽2 cos 𝛼2

s cos 𝛽1
(j)

a25 =
𝜕𝛽1

𝜕e2

=
− cos𝜑1 sin(𝜆2 − 𝜆1) + sin 𝛽1 cos 𝛽2 sin 𝛼2

s cos 𝛽1
(k)

a26 =
𝜕𝛽1

𝜕u2

=
sin 𝛽1 sin 𝛽2 + sin𝜑1 sin𝜑2 + cos𝜑1 cos𝜑2 cos(𝜆2 − 𝜆1)

s cos 𝛽1
(l)

a31 =
𝜕s
𝜕n1

= − cos 𝛽1 cos 𝛼1 (m) a32 =
𝜕s
𝜕e1

= − cos 𝛽1 cos 𝛼1 (n)

a33 =
𝜕s
𝜕u1

= − sin 𝛽1 (o) a34 =
𝜕s
𝜕n2

= − cos 𝛽2 cos 𝛼2 (p)

a35 =
𝜕s
𝜕e2

= − cos 𝛽2 sin 𝛼2 (q) a36 =
𝜕s
𝜕u2

= − sin 𝛽2 (r)

and their contribution to the normal equations can be added one by one. The following
are some useful things to keep in mind when using this model:

• Point of Expansion: As in any nonlinear adjustment, the partial derivatives
must be evaluated at the current point of expansion (adjusted positions of the
previous iteration). This applies to coordinates, azimuths, and angles used to
express the mathematical functions of the partial derivatives.

• Reduction to the Mark: An advantage of the 3D geodetic model is that the
observations do not have to be reduced to the marks on the ground. When
computing �0 from (4.4.11) to (4.4.13), use h + Δh instead of h for the station
heights. The symbol Δh denotes the height of the instrument or that of the
target above the mark on the ground. �b always denotes the measured value,
i.e., the geodetic observable that is not further reduced. After completion of
the adjustment, the adjusted observations �a, with respect to the marks on
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the ground, can be computed from the adjusted positions using h in (4.4.11)
to (4.4.13).

• Minimal Constraints: The (𝜑) or (w) parameterizations are particularly
useful for introducing height observations, height difference observations, or
minimal constraints by fixing or weighting individual coordinates. The set of
minimal constraints depends on the type of observations available within the
network. One choice for the minimal constraints might be to fix the coordinates
(𝜑, 𝜆, h) of one station (translation), and the azimuth or the longitude or
latitude of another station (rotation in azimuth). One always must make sure
that the vertical component of the 3D network is determined by objections
observations or, e.g., by height constraints.

• Transforming Postadjustment Results: If the adjustment happens to have
been carried out with the (x) parameterization, and it is, subsequently, deemed
necessary to transform the result into (𝜑) or (w) coordinates, then the transfor-
mations (4.4.18) and (4.4.20) can be used, for example:

dw = R dx (4.4.23)
where

R = H J−1 (4.4.24)

according to (4.4.10), (4.4.18), and (4.4.20). The law of variance-covariance
propagation provides the 3 × 3 covariance submatrices,

𝜮(w) = R 𝜮(x)R
T (4.4.25)

𝜮(𝜑, 𝜆, h) = J−1
𝜮(x) (J−1)T (4.4.26)

• Leveled Height Differences: If geoid undulation differences are available,
the leveled height differences can be corrected for the undulation differences
to yield ellipsoidal height differences. The respective elements of the design
matrix are 1 and −1. The accuracy of incorporating leveling data in this manner
is limited by our ability to compute accurate undulation differences.

• Refraction: If vertical angles are observed for the purpose of providing an
accurate vertical dimension, it may be necessary to estimate vertical refraction
parameters. If this is done, we must be careful to avoid overparameterization by
introducing too many refraction parameters that could potentially absorb other
systematic effects not caused by refraction and/or result in an ill-conditioned
solution. However, it may be sufficient to correct the observations for refraction
using a standard model for the atmosphere.

In view of GPS capability, the importance of high-precision vertical angle
measurement is diminishing. The primary purpose of vertical angles is to give
sufficient height information to process the slant distances. Therefore, the types
of observations most likely to be used by the modern surveyors are horizontal
angles, slant distances, and GPS vectors.
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• Horizontal Angles: Horizontal angles, of course, are simply the difference of
two azimuths. Using the 2-1-3 subscript notation to identify an angle measured
at station 1 from station 2 to station 3, in a clockwise sense the mathematical
model for the geodetic angle 𝛿213 is

𝛿213 = tan−1

(
− sin 𝜆1 Δx12 + cos 𝜆1 Δy12

− sin𝜑1 cos 𝜆1 Δx12 − sin𝜑1 sin 𝜆1 Δy12 + cos𝜑1 Δz12

)
−tan−1

(
− sin 𝜆1 Δx13 + cos 𝜆1 Δy13

− sin𝜑1 cos 𝜆1 Δx13 − sin𝜑1 sin 𝜆1 Δy13 + cos𝜑1 Δz13

)
(4.4.27)

The partial derivatives can be readily obtained from the coefficients a2i listed
in Table 4.4.2 by applying them to both line segments of the angles and then
subtracting.

• Height-Controlled 3D Adjustment: If the observations contain little or no ver-
tical information, i.e., if zenith angles and leveling data are not available, it is
still possible to adjust the network in three dimensions. The height parameters
h can be weighted using reasonable estimates for their a priori variances. This
is the so-called height-controlled three-dimensional adjustment.

A priori weights can also be assigned to the geodetic latitude and longitude or to the
local geodetic coordinates n and e. Weighting of parameters is a convenient method
for incorporating existing information about control stations into the adjustment.

4.4.4 GPS Vector Networks

Two receivers observing GNSS satellites provide the accurate vector between the sta-
tions, expressed in the reference frame of the ephemeris. One can, of course, assume
known coordinates for one station and simply add the vector to get the coordinates
of the other stations. The drawback of this simplified approach is that there is abso-
lutely no quality control. As surveyors would certainly agree, it is easy to mistakenly
set up the instrument over the wrong point; occasionally, a station is marked on the
ground by several flags, and each of them might have a distinct but different mean-
ing. Also, the GNSS might have provided an undetected biased solution by fixing
the wrong integer ambiguity due to poor satellite visibility condition and too short
of a station occupation time. Although processing software has become reliable to
flag such biased solutions, problems can occasionally go undetected. Therefore, it is
good practice to explore the redundancy of network observations to carry out objec-
tive quality control on GNSS vectors, as is done for terrestrial observations such as
angles and distances.

The carrier phase processing for two receivers gives not only the vector between
the stations but also the 3 × 3 covariance matrix of the coordinate differences. The
covariance matrix of all vector observations is block-diagonal, with 3 × 3 submatrices
along the diagonal. In the case of session solutions where R receivers observe the same
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satellites simultaneously, the results are (R − 1) independent vectors, and a 3(R − 1) ×
3(R − 1) covariance matrix. The covariance matrix is still block-diagonal, but the size
of the nonzero diagonal matrices is a function of R.

As mentioned above, a GNSS survey that has determined the relative locations of
a cluster of stations should be subjected to a minimal or inner constraint adjustment
for purposes of quality control. The network should not contain unconnected vectors
whose endpoints are not tied to other parts of the network. At the network level, the
quality of the derived vector observations can be assessed, the geometric strength
of the overall network can be analyzed, internal and external reliability can be com-
puted, and blunders may be discoverable and removable. For example, a blunder in
an antenna height will not be discovered when processing a single baseline, but it
will be noticeable in the network solution if stations are reoccupied independently.
Covariance propagation for computing distances, angles, or other functions of the
coordinates should be done, as usual, with the minimal or inner constraint solution.

The mathematical model is the standard observation equation model,

�a = f(xa) (4.4.28)

where �a contains the adjusted observations and xa denotes the adjusted station coor-
dinates. The mathematical model is linear if the parameterization of receiver positions
is in terms of Cartesian coordinates. In this case, the vector observation between sta-
tions k and m is modeled simply as

⎡⎢⎢⎣
Δxkm
Δykm
Δzkm

⎤⎥⎥⎦ =
⎡⎢⎢⎣
xk − xm
yk − ym
zk − zm

⎤⎥⎥⎦ (4.4.29)

The relevant portion of the design matrix A for the model (4.4.29) is

Akm =

xk yk zk xm ym zm⎡⎢⎢⎣
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

⎤⎥⎥⎦ (4.4.30)

The design matrix looks like one for a leveling network. The coefficients are either
1, −1, or 0. Each vector contributes three rows. Because vector observations contain
information about the orientation and scale, one only needs to fix the translational
location of the polyhedron. Minimal constraints for fixing the origin can be imposed
by simply deleting the three coordinate parameters of one station, holding coordinates
of that particular station effectively fixed.

Inner constraints must fulfill the condition

Ex = 0 (4.4.31)

according to (2.6.35), or, what amounts to the same condition

ETA = 0 (4.4.32)
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It can be readily verified that

E = [3I3 3I3 3I3 · · ·] (4.4.33)

fulfills these conditions. The matrix E consists of a row of 3 × 3 identity matrices.
There are as many identity matrices as there are stations in the network. The inner
constraint solution uses the pseudoinverse (2.6.37)

N+ = (ATPA + ETE)−1 − ET (EETEET )−1E (4.4.34)

of the normal matrix. If one sets the approximate coordinates to zero, which can be
done since the mathematical model is linear, then the origin of the coordinate system
is at the centroid of the cluster of stations. For nonzero approximate coordinates,
the coordinates of the centroid remain invariant, i.e., the values are the same whether
computed from the approximate coordinates or the adjusted coordinates. The standard
ellipsoid reflects the true geometry of the network and the satellite constellation. See
Chapter 2 for a discussion on which quantities are variant or invariant with respect to
different choices of minimal constraints.

The GNSS-determined coordinates refer to the coordinate system of the satel-
lite positions (ephemeris). The broadcast ephemeris coordinate system is given in
WGS84, and the precise ephemeris is in ITRF. The latest realizations of these frames
agree at the centimeter level.

The primary result of a typical GNSS survey is best viewed as a polyhedron of sta-
tions whose relative positions have been accurately determined (to the centimeter or
even the millimeter level), but the translational position of the polyhedron is typically
known only at the meter level (point positioning with pseudoranges). The orientation
of the polyhedron is implied by the vector observations. The Cartesian coordinates
(or coordinate differences) of the GNSS survey can, of course, be converted to geode-
tic latitude, longitude, and height. If geoid undulations are available, the orthometric
heights (height differences) can be readily computed. The variance-covariance com-
ponents of the adjusted parameters can be transformed to the local geodetic system
for ease of interpretation using (4.4.25).

4.4.5 Transforming Terrestrial and Vector Networks

We make use of models 2 or 3 of Section 4.1.5 to transform nearly aligned coordinate
systems by estimating a scale and three rotation parameters. Assume that a network
of terrestrial observations is available that include horizontal angles, slant distances,
zenith angles, leveled height differences, and geoid undulations. Assume further that
the relative positions of some of these network stations have been determined by
GNSS vectors. As a first step one could carry out separate minimal or inner constraint
solutions for the terrestrial observations and the GPS vectors, as a matter of quality
control. When combining both sets of observations in one adjustment, the definition
of the coordinate systems might become important. Let us consider the case when
coordinates of some stations are known in the “local datum” (u) and that (u) does not
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coincide with (x), i.e., the coordinate system of the GNSS vectors. Let it be further
required that if the adjusted coordinates should be expressed in (u), i.e., the existing
local datum, then the following model

�1a = f1(xa) (4.4.35)

�2a = f2(s, 𝜂, 𝜉, 𝛼, xa) (4.4.36)

might be applicable. The model (4.4.35) pertains to the terrestrial observations,
denoted here as the �1 set. As a special case, these observations could consist of
merely the known local station coordinates which would then be treated as observed
parameters by the adjustment. Actually, if no terrestrial observations are available
and only the coordinates of local stations are known, then the mathematical model
(4.4.36) suffices. The GPS vector observations, i.e., the coordinate differences
obtained from carrier phase processing, are represented by �2. To clarify the notation
again, we note that xa (adjustment notation) refers to the station coordinates in the
geodetic system (u). The respective adjustment models are discussed in Chapter 2.

The additional parameters in (4.4.36) are the differential scale s and three rotation
angles 𝜂, 𝜉, 𝛼. The rotation angles are small since the geodetic coordinate systems (u)
and (x) are nearly aligned. Because GNSS yields the coordinate differences, there is
no need to include a translation parameter t. Clearly, if �1 in (4.4.35) does not contain
terrestrial observations at all, the known station coordinates in the (u) system can be
treated as observed parameters and thus allow estimation of scale and rotation param-
eters relative to these known coordinates. This is a simple method to incorporate the
GNSS vector observations into the existing local network.

The mathematical model (4.4.36) follows directly from the transformation expres-
sion (4.1.9). Applying this expression to the coordinate differences for stations k and
m yields

(1 + s)M(𝜆0, 𝜑0, 𝜂, 𝜉, 𝛼) (uk − um) − (xk − xm) = 0 (4.4.37)

The coordinate differences
xkm = xk − xm (4.4.38)

represent the observed GPS vector between stations k and m. Thus, the mathematical
model (4.4.36) can be written as

xkm = (1 + s)M(𝜆0, 𝜑0, 𝜂, 𝜉, 𝛼) (uk − um) (4.4.39)

After substituting (4.1.11) into (4.4.39), we readily obtain the partial derivatives of the
design matrix. Table 4.4.3 lists the partial derivatives with respect to the station coor-
dinates for (a) Cartesian parameterization, (b) parameterization in terms of geodetic
latitude, longitude, and height, and (c) parameterization in terms of the local geode-
tic coordinate systems. The transformation matrices J and H referred to in the table
are those of (4.4.18) and (4.4.20). Table 4.4.4 contains the partial derivatives of the
transformation parameters.
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TABLE 4.4.3 Design Submatrix for Stations Occupied with Receivers

Parameterization Station m Station k

(u, v, w) (1 + s) M −(1 + s) M
(𝜑, 𝜆, h) (1 + s) MJ(𝜑m, 𝜆m) −(1 + s) MJ(𝜑k, 𝜆k)
(n, e, u) (1 + s) MJ(𝜑m, 𝜆m)H

−1(𝜑m) −(1 + s) MJ(𝜑k, 𝜆k)H
−1(𝜑k)

TABLE 4.4.4 Design Submatrix for the Transformation
Parameters

s 𝜂 𝜉 𝛼

um − uk M𝜂 (um − uk) M𝜉 (um − uk) M𝛼 (um − uk)

4.4.6 GPS Network Examples

The following examples are included because they document some of the first appli-
cations of GPS, demonstrating an amazing accuracy that many doubted could be
achieved with satellite techniques, possibly because of prior exposure to the ear-
lier TRANSIT (the Navy navigation satellite system). Also, in those early days of
GPS satellite surveying there was no “GPS infrastructure” available to support GPS
applications, no experience existed for incorporating highly accurate 3-dimensional
vectors into existing geodetic networks, and the existing geodetic datums were nei-
ther geocentric nor were their axes parallel to the GPS reference system at the time. In
many cases there were no geoid undulations available to convert orthometric heights
to ellipsoidal heights.

In the following examples, only independent vectors between stations are con-
sidered, which means that if three receivers observe simultaneously, only two vectors
are used. The stochastic model does not include the mathematical correlation between
simultaneously observed vectors, although it should be used if available. The covari-
ance information came directly from baseline processing and does not accommodate
small uncertainties in eccentricity, i.e., inaccurate setting up of the antenna over the
mark. Only single-frequency carrier phases were available at the time the observa-
tions were made.

4.4.6.1 Montgomery County Geodetic Network During the Montgomery
County (Pennsylvania) geodetic network densification, the window of satellite visi-
bility was about 5 hours, just long enough to allow two sessions with the then state-of-
the-art static technique (Collins and Leick, 1985). The network (Figure 4.4.3) was
freely designed, taking advantage of the insensitivity of GPS to the shape of the
network (as compared to the many rules of classical triangulation and trilater-
ation). The longest baseline observed was about 42 km. Six horizontal stations
with known geodetic latitude and longitude and seven vertical stations with
known orthometric height were available for tying the GPS survey to the existing
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Figure 4.4.3 Existing geodetic control and independent baselines.

geodetic networks. Accurate geoid information was, of course, not available at
the time.

Figure 4.4.4 shows two intersections of the ellipsoid of standard deviation for the
inner constraint least-squares solution. The top set of ellipses shows the horizontal
intersection (i.e., the ellipses of standard deviation in the geodetic horizon), and the
bottom set of ellipses shows the vertical intersection in the east-west direction. The
figure also shows the daily satellite visibility plot for the time and area of the project.
The dots in that figure represent the directions of the semimajor axis of the ellipsoids
of standard deviation for each station. These directions tend to be located around the
center of the satellite constellation. The standard ellipses show a systematic orien-
tation in both the horizontal and the vertical planes. This dependency of the shape
of the ellipses with the satellite constellation enters into the adjustment through the
3 × 3 correlation matrices. With a better distribution of the satellites over the hemi-
sphere, the alignments seen in Figure 4.4.4 for the horizontal ellipses would not occur.
Because satellites are observed above the horizon, the ellipses will still be stretched
along the vertical.

The coordinates of the polyhedron of stations are given in the coordinate system
of the broadcast ephemeris; at the time of the Montgomery County survey, this was
WGS72 (today this would be WGS84 or the latest ITRF). A minimal constraint was
specified by equating the geodetic latitude and longitude to the astronomic latitude
and longitude of station 29 and equating the ellipsoidal height and the orthometric
height. The ellipsoid defined in that manner is tangent to the geoid at station 29. By
comparing the resulting ellipsoidal heights with known orthometric heights at the
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Figure 4.4.4 Inner constraint solution, ellipses of standard deviation and satellite visi-
bility plot.
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vertical stations, we can construct a geoid undulation map (with respect to the thus
defined ellipsoid). The geoid undulations at other stations can be interpolated to give
orthometric height using the basic relation H = h − N.

The method described above can be generalized by not using the geodetic positions
instead of the astronomic position for station 29 to define minimal constraints. The
thus defined local ellipsoid is not tangent to the geoid at station 29. The undulations
with respect to such an ellipsoid are shown in Figure 4.4.5.

Alternatively, one can estimate the topocentric rotations (𝜂, 𝜉, 𝛼) and a scale factor
implied by model 3 of (4.4.39). There are seven minimal constraints required in this
case, e.g., the geodetic latitude and longitude for two stations and the geodetic heights
for three stations distributed well over the network. If one were to use orthometric
heights for these three stations instead, the angles (𝜉, 𝜂) would reflect the average
deflection of the vertical angles. Using orthometric heights would force the ellipsoid
to coincide locally with the geoid (as defined or implied by the orthometric heights
at the vertical stations). The rotation in azimuth 𝛼 is determined by the azimuthal
difference between the two stations held fixed and the GPS vector between the same
stations. The scale factor is also determined by the two stations held fixed; it contains
the possible scale error of the existing geodetic network and the effect of a constant
but unknown undulation (i.e., geoid undulations with respect to the ellipsoid of the
existing geodetic network).

Simple geometric interpolation of geoid undulations has its limits, of course. For
example, any error in a given orthometric height will result inevitably in an erroneous

Figure 4.4.5 Geoid undulations with respect to the local ellipsoid. Units are in
centimeters.
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geoid feature. As a result, the orthometric heights computed from the interpolated
geoid undulations will be in error. Depending on the size of the survey area and the
“smoothness” of the geoid in that region, such erroneous geoid features might or
might not be discovered from data analysis. These difficulties can be avoided if an
accurate geoid model is available.

4.4.6.2 SLC Engineering Survey A GPS survey was carried out in 1984 to
support construction of the Stanford linear collider (SLC), with the objective of
achieving millimeter relative positional accuracy by combining GPS vectors with
terrestrial observations (Ruland and Leick, 1985). Because the network was only
4 km long, the broadcast ephemeris errors as well as the impact of the troposphere
and ionosphere canceled. The position accuracy in such small networks is limited
by the carrier phase measurement accuracy, the phase center variation of the
receiver antenna, and the multipath. The Macrometer antenna was used, which
was known for its good multipath rejection property and accurate definition of the
phase center.

The network is shown in Figure 4.4.6. Stations 1, 10, 19, and 42 are along the
2-mile linear accelerator (linac); the remaining stations of the “loop” were to be deter-
mined with respect to these linac stations. The disadvantageous configuration of this
network, in regard to terrestrial observations such as angles and distances, is obvious.
In order to improve this configuration, one would have to add stations adjacent to the
linac; this would have been costly because of local topography and ongoing construc-
tion. Such a “degenerate” network configuration is acceptable for GPS positioning
because the accuracy of positioning depends primarily on the satellite configuration
and not on the shape of the network. Figure 4.4.7 shows the horizontal ellipses of
standard deviation and the satellite visibility plot for the inner constraint vector solu-
tion. The dark spot on the visibility plot represents the directions of the semimajor
axes of the standard ellipsoids.

This project offered an external standard for comparison. For the frequent realign-
ment of the linear accelerator, the linac laser alignment system had been installed.
This system is capable of determining positions perpendicular to the axis of the linac
to better than ±0.1 mm over the total length of 3050 m. A comparison of the linac sta-
tions 1, 10, 19, and 42, as determined from the GPS vector solution with respect to the

Figure 4.4.6 The SLC network configuration.
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Figure 4.4.7 Horizontal standard ellipses for GPS inner constraint solution and visibil-
ity plot.

linac alignment system, was done by means of a transformation. The discrepancies
did not exceed ±1 mm for any of the four linac stations.

4.4.6.3 Orange County Densification The Orange County GPS survey con-
sisted of more than 7000 vectors linking 2000 plus stations at about a 0.5-mile spac-
ing. This survey was a major network densification carried out with GPS using several
crews operating at the same time. It was considered important to use adjustment
techniques to detect and remove blunders that could have resulted from misidenti-
fying stations or from not centering the antenna correctly. As to adjustment quality
control capabilities, detected outliers are the prime candidates for in-depth studies
and analysis to identify the cause for the outlier and then take corrective action.
Redundancy number and internal reliability plots appear useful to identify weak por-
tions of the network (which may result from a deweighting of observations during
automated blunder detection). The variance-covariance matrices of the vector obser-
vations resulting from individual baseline processing are the determining factor that
shapes most of the functions. The analysis begins with graphing the variances of these
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Figure 4.4.8 A priori precision of length of baseline (Permission by ASCE).

baselines, followed by various graphs related to the minimal constraint network solu-
tion. Other aspects of the solutions are given in Leick and Emmons (1994).

A priori Stochastic Information: The study begins with using the diagonal ele-
ments of the 3 × 3 variance-covariance matrices of the estimated vectors of the phase
processing step to compute the simple function

𝜎k =
√
𝜎2

k1 + 𝜎
2
k2 + 𝜎

2
k3 (4.4.40)

where k identifies the vector. Other simple functions, such as the trace of the variance-
covariance matrix, can be used as well. Figure 4.4.8 displays 𝜎k as a function of the
length of the vectors. For longer lines, there appears to be a weak length dependency
of about 1:200,000. Several of the shorter baselines show larger-than-expected val-
ues. While it is not necessarily detrimental to include vectors with large variances in
an adjustment, they are unlikely to contribute to the strength of the network solu-
tion. Analyzing the averages of 𝜎k for all vectors of a particular station is useful
in discovering stations that might be connected exclusively by low-precision vector
observations.

Variance Factor: As to the minimal constraint network solution, Figures 4.4.9
and 4.4.10 show the square root of the estimated variance factor fk for each vector k.
The factor is computed as

fk =

√
vT

k vk

Rk
(4.4.41)

with
Rk = rk1 + rk2 + rk3 0 ≤ Rk ≤ 3 (4.4.42)
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Figure 4.4.9 Variance factor versus length of baseline (Permission by ASCE).

Figure 4.4.10 Variance factor versus precision of baseline (Permission by ASCE).

where vk denote the decorrelated residuals and rk1, rk2, and rk3 are the redundancy
numbers of the decorrelated vector components [see equation (2.8.40) regarding the
decorrelation of vector observations]. The estimates of fk are plotted in the Figures
4.4.9 and 4.4.10 as a function of the baseline length and a priori statistics 𝜎k (4.4.40).
The figures shows that the largest factors are associated with the shortest baselines
or with lines having small 𝜎k (which tend to be the shortest baselines). For short
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Figure 4.4.11 Applied scale factors (Permission by ASCE).

baselines the centering errors of the antenna and the separation of the electronic and
geometric center of the antenna are important; neither is reflected by the stochastic
model of the baselines.

The scale factors fk in Figure 4.4.11 are computed following the procedure of
automatically deweighting observations as discussed in Section 2.9.3 (i.e., if the ratio
of residual and standard deviation is beyond a threshold value, the scaling factor is
computed from an empirical rule and the residuals). All components of the vector are
multiplied with the same factor (the largest of three). These scale factors shown in
the graph were actually applied.

Redundancy Numbers: The vector redundancy number Rk in (4.4.42) varies
between zero and 3. Values close to 3 indicate maximum contribution to the redun-
dancy and minimum contribution to the solution, i.e., the observation is literally
redundant. Such observations contribute little, if anything at all, to the adjustment
because other usually much more accurate observations determine the solution.
A redundancy of zero indicates an uncontrolled observation, which occurs, e.g.,
if a station is determined by one observation only. A small redundancy number
implies little contribution to the redundancy but a big contribution to the solution.
Such observations “overpower” other observations and usually have small residuals.
As a consequence of their strength, blunders in these observations might not be
discovered.

The ordered redundancy numbers in Figure 4.4.12 exhibit a distinctly sharp
decrease for the smallest values. Inspection of the data indicates that such very small
redundancies occur whenever there is only one good vector observation left to a
particular station, while the other vectors to that station have been deweighted by
scaling the variance-covariance matrices as part of the automatic blunder detection
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Figure 4.4.12 Ordered vector redundancy (Permission by ASCE).

procedure. Typically, the scaled vectors have a high redundancy number, indicating
their diminished contribution. The only remaining unscaled observation contributes
the most; therefore, the respective residuals are very small, usually in the millimeter
range. Consequently, a danger of automated blunder detection and deweighting is
that parts of the network might become uncontrolled.

Figure 4.4.13 indicates that long vectors have large redundancy numbers. The
shapes in this figure suggest that it might be possible to identify vectors that can
be deleted from the adjustment without affecting the strength of the solution. The
steep slope suggests that the assembly of short baselines determines the shape of the
network. Mixing short and long baselines is useful only if long baselines have been
determined with accuracy comparable to that of shorter lines. This can be accom-
plished through longer observation times, using dual-frequency observations, and
processing with a precise ephemeris.

Internal Reliability: Internal reliability values are shown in Figure 4.4.14. These
values are a function of the internal reliability vector components

Ik =
√

I2
k1 + I2

k2 + I2
k3 (4.4.43)

The internal reliability components are computed according to (2.8.28) for the decor-
related vector observations and are then transformed back to the physical observation
space. The values plotted use the factor 𝛿0 = 4.12. There is essentially a linear rela-
tionship between internal reliability and the quality of the observations as expressed
by 𝜎k. The slope essentially equals 𝛿0. The outliers in this figure are associated with



188 GEODESY

Figure 4.4.13 Vector redundancy versus length of baseline (Permission by ASCE).

Figure 4.4.14 Internal reliability versus precision of baseline (Permission by ASCE).

small 𝜎k and pertain to a group of “single vectors” that result when the other vectors
to the same station have been deweighted. The linear relationship makes it possible
to identify the outliers for further inspection and analysis. Furthermore, this linear
relationship nicely confirms that internal reliability is not a function of the shape of
the GPS network.
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Figure 4.4.15 Computed blunders versus residuals (Permission by ASCE).

Blunders and Absorption: Figure 4.4.15 shows blunders as predicted by the
respective residuals. As detailed in (2.8.31), a relationship exists between computed
blunders, residuals, and redundancies. The figure shows the blunder function

Bk =
√

B2
k1 + B2

k2 + B2
k3 (4.4.44)

versus the residual function

vk =
√

v2
k1 + v2

k2 + v2
k3 (4.4.45)

The computed blunder and the residuals refer to the physical observation space. This
relationship appears to be primarily linear with slope 1:1 (at least for the larger resid-
uals). The outliers seen for small residuals refer to the group of observations with
smallest redundancy numbers.

Figure 4.4.16 shows absorption versus redundancy. Absorption specifies that part
of a blunder is absorbed in the solution, i.e., absorption indicates falsification of the
solution. The values

Ak = −vk + Bk (4.4.46)

are plotted. As expected, the observations with lowest redundancy tend to absorb
the most. In an extreme case, the absorption is infinite for zero redundancy and zero
for a redundancy of 3 (vector observations). Clearly, very small redundancies reflect
insensitivity to blunders, which is not desirable.
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Figure 4.4.16 Absorption versus redundancy (Permission by ASCE).

In summary, as is the case for terrestrial observation, it is not sufficient to limit
quality control to residuals and normalized residuals. It is equally important that
the quality of the network be presented in terms of redundancy and reliability mea-
sures. These functions are, among other things, useful in judging the consequences
of deweighting, in particular for large networks when those consequences are not
always readily apparent.

4.5 ELLIPSOIDAL MODEL

Computations on either the ellipsoidal surface or the conformal map are inherently
two dimensional. The stations are parameterized in terms of geodetic latitude and
longitude or conformal mapping coordinates. The third dimension, the height, does
not appear explicitly as a parameter but has been “used up” during the reduction of
the spatial observations to the ellipsoidal surface. Networks on the ellipsoidal sur-
face or the conformal map have historically been labeled “horizontal networks” and
treated separately from a one-dimensional “vertical network.” Such a separation was
justified at a time when the measurement tools could readily be separated into those
that measured primarily “horizontal information” and those that yielded primarily
“vertical information.” GNSS breaks this separation because it provides accurate
three-dimensional positions.

Because two-dimensional geodetic models have a long tradition of having been
the backbone of geodetic computations prior to the introduction of geodetic space
techniques, the respective solutions belong to the most classical of all geodetic
theories and are documented accordingly in the literature. Unfortunately, many of
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the references on this subject are out of print. We summarize the Gauss midlatitude
solution, the transverse Mercator mapping, and Lambert conformal mapping in
Appendices B and C. Supporting material from differential geometry is also provided
in order to appreciate the “roots and flavor” of the mathematics involved. Additional
derivations are available in Leick (2002), which was prepared to support lectures on
the subject. The following literature has been found helpful: Dozier (1980), Heck
(1987), Kneissl (1959), Grossman (1976), Hristow (1955), Lambert (1772), Lee
(1976), Snyder (1982), and Thomas (1952). Publication of many of these “classical”
references has been discontinued.

The ellipsoidal and conformal mapping expressions are generally given in the
form of mathematical series that are a result of multiple truncations at various steps
during the development. These truncations affect the computational accuracy of the
expressions and their applicability to areas of a certain size. The expressions given
here are sufficiently accurate for typical applications in surveying and geodesy. Some
terms may even be negligible when applied over small areas. For unusual applications
covering large areas, one might have to use more accurate expressions found in the
specialized literature. In all cases, however, given today’s powerful computers, one
should not be overly concerned about a few unnecessary algebraic operations.

There are only two types of observations that apply to computations on a surface:
azimuth (angle) and distance. The reductions, partial derivatives, and other quantities
that apply to angles can again be conveniently obtained by differencing the respective
expressions for azimuths.

Computations on the ellipsoid and the conformal mapping plane became popular
when K. F. Gauss significantly advanced the field of differential geometry and least
squares. Gauss used his many talents to develop geodetic computations on the ellip-
soidal surface and on the conformal map. The problem presented itself to Gauss when
he was asked to observe and compute a geodetic network in northern Germany. Since
the curvature of the ellipsoid changes with latitude, the mathematics of computing on
the ellipsoidal surface becomes mathematically cumbersome. For the conformal map-
ping approach, even more mathematical developments are needed. Both approaches
require a new element that has not been discussed thus far, the geodesic (the shortest
distance between two points on a surface). Developing expressions for the geodesic
on the ellipsoidal surface and its image on the map requires advanced mathematical
skills, primarily series expansions.

This section contains the mathematical formulations needed to carry out compu-
tations on the ellipsoidal surface. We introduce the geodesic line and reduce the 3D
geodetic observations to geodesic azimuth and distance. The direct and inverse solu-
tions are based on the Gauss midlatitude expressions. Finally, the partial derivatives
are given that allow a network adjustment on the ellipsoid.

4.5.1 Reduction of Observations

The geodetic azimuth 𝛼 of Section 4.4 is the angle between two normal planes that
have the ellipsoidal normal in common; the geodetic horizontal angle 𝛿 is defined
similarly. These 3D model observations follow from the original observation after
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a correction is made for the deflection of the vertical. Spatial distances can be used
directly in the 3D model presented in Section 4.5. However, angles and distances must
be reduced further in order to obtain model observables on the ellipsoidal surface with
respect to the geodesic.

4.5.1.1 Angular Reduction to Geodesic Figure 4.5.1 shows the reduction
of azimuth. The geodetic azimuth, 𝛼, is shown in the figure as the azimuth of the
normal plane defined by the ellipsoidal normal of P1 and the space point P2. See also
Figure 4.3.7. The representatives of these space points are located on their respective
ellipsoidal normals on the surface of the ellipsoid and are denoted by P′

1 and P′
2.

The dotted line P′
1 to P′′

2 denotes the intersection of the normal plane containing
P2 with the ellipsoid. The azimuth of the normal section defined by the ellipsoidal
normal at P1 and the surface point P′

2 is 𝛼′. The angular difference (𝛼′ − 𝛼) is the
reduction in azimuth due to the height of P2; the expression is given in Table 4.5.1.
The height of the observing station P1 does not affect the reduction because 𝛼 is the
angle between planes.

The need for another angular reduction follows from Figure 4.5.2. Assume that two
ellipsoidal surface points P1 and P2 (labeled P′

1 and P′
2 in Figure 4.5.1) are located at

different latitudes. Line 1 is the normal section from P1 to P2 and line 2 indicates the
normal section from P2 to P1. It can be readily seen that these two normal sections do

P1

ellipsoidal
normal through

P1

ellipsoidal
normal through

P2

P2

P1′
P2′

P2″
α′– α α′

α

Figure 4.5.1 Normal section azimuth versus height of target.
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TABLE 4.5.1 Reducing Geodetic Azimuth to Geodesic Azimuth

(𝛼′1 − 𝛼1)[arcs] = 0.108 cos 2 𝜑1 sin 2𝛼1 h2 [km] (a)

(⌢𝛼1 − 𝛼
′
1)[arcs] = −0.028 cos2 𝜑1 sin 2𝛼1

(⌢s[km]

100

)2

(b)

Δ𝛼[arcs] = 0.108 cos 2 𝜑1 sin 2𝛼1h2 [km] − 0.028 cos 2 𝜑1 sin 2𝛼1

(⌢s[km]

100

)2

(c)

Figure 4.5.2 Normal sections on the ellipsoid.

not coincide because the curvature of the ellipsoidal meridian changes with latitude.
The question is, which of these two normal sections should be adopted for the compu-
tations? Introducing the geodesic, which connects these two points in a unique way,
solves this dilemma. There is only one geodesic from P1 to P2. Figure 4.5.3 shows the
approximate geometric relationship between the normal sections and the geodesic.
The angular reduction (⌢𝛼 − 𝛼′) is required to get the azimuth ⌢𝛼 of the geodesic. The
expression is listed in Table 4.5.1 (note that approximate values for azimuth 𝛼 and
length ⌢s of the geodesic are sufficient to evaluate the expressions on the right-hand
side of Table 4.5.1).

4.5.1.2 Distance Reduction to Geodesic The slant distance s (not to be con-
fused with the scale correction of Section 4.1.6 which uses the same symbol) must be
reduced to the length of a geodesic ⌢s. Figure 4.5.4 shows an ellipsoidal section along
the line of sight. The expression for the lengths ⌢s of the geodesic is typically based
on a spherical approximation of the ellipsoidal arc. At this level of approximation,
there is no need to distinguish between the lengths of the geodesic and the length of
the normal section. The radius R, which is evaluated according to Euler’s equation
(B.1.8) for the center of the line, provides the radius of curvature of the spherical
arc. The expressions in Table 4.5.2 relate the slant distance s to the lengths of the
geodesic ⌢s.
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Figure 4.5.3 Normal section azimuth versus geodesic azimuth.

Figure 4.5.4 Slant distance versus geodesic.

TABLE 4.5.2 Reducing Slant Distance to Geodesic

1
R

=
cos 2 𝛼

M
+

sin 2 𝛼

N
(d)

𝜇 =

√√√√√ s2 − Δh2(
1 +

h1

R

) (
1 +

h2

R

) (e)

⌢s = R𝜓 = 2R sin −1
( 𝜇

2R

)
(f)
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One should note that computing the length of the geodesic requires knowledge of
the ellipsoidal heights. Using orthometric heights might introduce errors in distance
reduction. The height difference Δh = h2 − h1 in expression (e) of Table 4.5.2 must
be accurately known for lines with a large slope. Differentiating expression (f) gives
the approximate relation

d⌢s ≈ −
Δh
⌢s dΔh (4.5.1)

where dΔh represents the error in the height difference. Surveyors often reduce the
slant distance in the field to the local geodetic horizon using the elevation angle that is
measured together with the slant distance. For observations reduced in such a manner,
Δh is small (although not zero), but there is now a corresponding accuracy require-
ment for the measured elevation angle.

If both stations are located at about the same height h1 ≈ h2 ≈ hm, one obtains
from (f)

s − ⌢s
s

=
hm

R
(4.5.2)

This equation relates the relative error in distance reduction to the mean height of the
line. Table 4.5.3 shows that 6 m in height error causes a 1 ppm error in the reduction.
This accuracy is routinely achieved with GPS.

Since modern electronic distance measurement instruments are very accurate, it is
desirable to apply the height corrections consistently. It is good to remember the rule
of thumb that a 6 m error in height of the line causes a relative change in distance
of 1 ppm. We recognize that geodetic heights are required, not orthometric heights.
Since geoid undulations can be as large as 100 m, it is clear that they must be taken
into account for high-precision surveying.

4.5.2 Direct and Inverse Solutions on the Ellipsoid

The reductions discussed above produce the geodesic observables, i.e., the geodesic
azimuths ⌢𝛼, the geodesic distance ⌢s, and the angle between geodesics

⌢
𝛿. At the heart

of computations on the ellipsoidal surface are the so-called direct and inverse prob-
lems, which are summarized in Table 4.5.4. For the direct problem, the geodetic

TABLE 4.5.3 Relative
Distance Error

hm[m] hm∕R

6.37 1:1000000
63.7 1:100000
100 1:64000
500 1:13000
637 1:10000
1000 1:6300
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TABLE 4.5.4 Direct and Inverse Solutions on the
Ellipsoid

Direct Solution Inverse Solution

P1(𝜑1, 𝜆1),
⌢𝛼12,

⌢s12

↓
(𝜑2, 𝜆2,

⌢𝛼21)

P1(𝜑1, 𝜆1), P2 (𝜑2, 𝜆2)
↓

(⌢𝛼21,
⌢s12,

⌢𝛼21)

latitude and longitude of one station, say, P1(𝜑1, 𝜆1), and the geodesic azimuth ⌢𝛼12
and geodesic distance ⌢s12 to another point P2 are given; the geodetic latitude and
longitude of station P2(𝜑2, 𝜆2), and the back azimuth ⌢𝛼21 must be computed. For the
inverse problem, the geodetic latitudes and longitudes of P1(𝜑1, 𝜆1) and P2(𝜑2, 𝜆2)
are given, and the forward and back azimuth and the length of the geodesic are
required. Note that ⌢s12 = ⌢s21 but ⌢𝛼12 ≠ ⌢a21 ± 180∘. There are many solutions avail-
able in the literature for the direct and inverse problems. Some of these solutions are
valid for geodesics that go all around the ellipsoid. We use the Gauss midlatitude
(GML) functions given in Table B.2.1 and use Table 4.5.4. Since the GML functions
are a result of series developments, they are subject to truncation errors in respec-
tive series expansions. The GML solution satisfies typical geodetic applications. In
the unlikely case that they are not sufficient because long lines are involved, one can
always replace them with other solutions that are valid for long geodesics.

4.5.3 Network Adjustment on the Ellipsoid

The geodesic azimuths, geodesic distances, and the angles between geodesics form
a network of stations on the ellipsoidal surface that can be adjusted using standard
least-squares techniques. The ellipsoidal network contains no explicit height infor-
mation, which was used during the transition of the 3D geodetic observables to the
geodesic observables on the ellipsoid. Conceptually, this is expressed by {𝜑, 𝜆, h} →
{𝜑, 𝜆} and {𝛼, 𝛿, 𝛽, s, Δh, ΔN} → {⌢𝛼, ⌢

𝛿, ⌢s}. The geodetic height h is no longer
a parameter, and geodesic observables do not include quantities that directly corre-
spond to the geodetic vertical angle, the geodetic height difference Δh, or the geoid
undulation difference ΔN.

Least-squares techniques are discussed in detail in Chapter 2. For discussion in
this section, we use the observation equation model

v = Ax + (�0 − �b) (4.5.3)

In the familiar adjustment notation the symbol v denotes the residuals, A is the design
matrix, and x represents the corrections to the approximate parameters x0. The sym-
bol �b denotes the observations, in this case the geodesic observables, and �0 repre-
sents the observables as computed from the approximate parameters

x0 = [· · · 𝜑i,0 𝜆i, 0 · · ·]T (4.5.4)
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using the GML functions. If we further use the (2-1-3) subscript notation to denote
the angle measured at station 1 from station 2 to station 3 in a clockwise sense, then
the geodesic observables can be expressed as

⌢𝛼12, b = 𝛼12, b + Δ𝛼12 (4.5.5)
⌢
𝛿213, b = 𝛿213, b + Δ𝛼13 − Δ𝛼12 (4.5.6)

⌢s12 = s (s12, R, h1, h2) (4.5.7)

In order to make the interpretation of the coordinate (parameter) shifts easier, it is
advantageous to reparameterize the parameters to northing (dni = Mi d𝜑i) and east-
ing (dei = Ni cos𝜑id𝜆i). Using the partial derivatives in Table B.2.2, the observation
equations for the geodesic observables become

v⌢𝛼 =
sin ⌢𝛼12, 0
⌢s12, 0

dn1 +
cos ⌢𝛼21, 0

⌢s12, 0
de1 +

sin ⌢𝛼21, 0
⌢s12,0

dn2 −
cos ⌢𝛼21,0
⌢s12, 0

de2 + (⌢𝛼12, 0 −
⌢𝛼12, b)

(4.5.8)

v⌢
𝛿
=

(
sin ⌢𝛼13, 0
⌢s13, 0

−
sin ⌢𝛼12, 0
⌢s12, 0

)
dn1 +

(
cos ⌢𝛼31, 0

⌢s13, 0
−

cos ⌢𝛼21, 0
⌢s12, 0

)
de1

−
sin ⌢𝛼21, 0
⌢s12, 0

dn2 +
cos ⌢𝛼21, 0

⌢s12, 0
de2

+
sin ⌢𝛼31, 0
⌢s13, 0

dn3 −
cos ⌢𝛼31, 0

⌢s13, 0
de3 + (

⌢
𝛿213, 0 −

⌢
𝛿213, b) (4.5.9)

v⌢s = − cos ⌢𝛼12, 0 dn1 + sin ⌢𝛼21, 0 de1 − cos ⌢𝛼21, 0 dn2 − sin ⌢𝛼21, 0 de2 + (⌢s21, 0 −
⌢s12, b)

(4.5.10)

The quantities (⌢𝛼0,
⌢
𝛽0,

⌢s0) are computed by the inverse solution. The GLM functions
are particularly suitable for this purpose because the inverse solution is noniterative.
The results of the adjustment of the ellipsoidal network are the adjusted observations
(⌢𝛼a,

⌢
𝛽a,

⌢sa) and the adjusted coordinates

xa = [· · · 𝜑i, a 𝜆i, a · · ·]T (4.5.11)

The partial derivatives (4.5.8) to (4.5.10) are also a result of series expansion and
are, therefore, approximations and subject to truncation errors. The partial derivatives
and the GML functions must have the same level of accuracy.

4.6 CONFORMAL MAPPING MODEL

If the goal is to map the ellipsoid onto a plane in order to display the ellipsoidal surface
on the computer screen or to assemble overlays of spatial data, any mapping from the
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ellipsoid to the plane may be used. In conformal mapping, we map the ellipsoidal
surface conformally onto a plane. The conformal property preserves angles. Recall
that an angle between two curves, say, two geodesics on the ellipsoid, is defined as the
angle between the tangents on these curves. Therefore, conformal mapping preserves
the angle between the tangents of curves on the ellipsoid and the respective mapped
images. The conformal property makes conformal maps useful for computations in
surveying because the directional elements between the ellipsoid and the map have a
known relationship.

Users who prefer to work with plane mapping coordinates rather than geodetic
latitude and longitude can still use the 3D adjustment procedures developed earlier
in this chapter. The given mapping coordinates can be transformed to the ellipsoidal
and then used, together with heights, in the 3D geodetic adjustment. The adjusted
geodetic positions can subsequently be mapped to the conformal plane.

4.6.1 Reduction of Observations

Let (x, y) denote the Cartesian coordinate system in the mapping plane, and
P1(x1, y1) and P2(x2, y2) be the images of corresponding points on the ellipsoid.
Reduction of ellipsoidal surface observations to the conformal mapping plane means
converting geodesic observations (⌢s, ⌢𝛼) to the corresponding observables (d, t) on
the mapping plane. The symbol d denotes the length of the straight line connecting
the mapped points P1 and P2, and t is the grid azimuth of this straight line. This
reduction is accomplished by means of the mapping elements (𝛾, Δt, Δs), which
can be identified in Figure 4.6.1.

A couple of notes might be in order. First, consider the geodesic on the ellipsoid
between P1 and P2 to be mapped point by point; the result is the mapped geodesic as
shown in the figure. This image is a smooth but mathematically complicated curve.
Second, the length ⌢s of the geodesic on the ellipsoid is not equal to the length s of
the mapped geodesic. The latter does not enter any of the equations below and never
needs to be computed explicitly. Third, the straight line between the images P1 and P2
is called the rectilinear chord. Fourth, the mapping plane should not be confused with

Figure 4.6.1 Mapping elements.
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the local astronomic or geodetic horizon. The mapping plane is simply the result of
mapping the ellipsoidal surface conformally into a plane. One can generate many such
mapping planes for the same ellipsoidal surface area. They all would be conformal
mappings.

Like any other curve on the ellipsoid, the ellipsoidal meridian can be mapped. Its
image may or may not be a straight line. In order to be general, the figure shows a
curved mapped meridian and its tangent. The angle between the y axis and the mapped
meridian is the meridian convergence 𝛾 . It is one of the three mapping elements and is
generally counted positive in the counterclockwise sense. Because of the conformal
property, the geodetic azimuth of the geodesic is preserved during the mapping, and
it must be equal to the angle between the tangents on the mapped meridian and the
mapped geodesic as shown.

The symbols T and t denote the grid azimuth of the mapped geodesic and the
rectilinear chord, respectively. The second mapping element, Δt = T − t,

Δt = ⌢𝛼 − 𝛾 − t (4.6.1)

is called the arc-to-chord correction. It is related to the azimuth ⌢𝛼 of the geodesic
on the ellipsoid, the grid azimuth t of the rectilinear chord, and the meridian conver-
gence 𝛾 .

The third mapping element, called the map distance reduction Δs = ⌢s − d, is the
difference in the length of the geodesic on the ellipsoid and the rectilinear chord.
Typically, one is not explicitly interested in the length of the projected geodesic s, but
actually needs the length of the rectilinear chord d. Since there is no specification in
conformal mapping as to the preservation of the lengths, the line scale factor

kL =
d
⌢s (4.6.2)

can be arranged to express the third mapping element as

Δs = ⌢s(1 − kL) (4.6.3)

The line scale factor kL is a ratio of two finite values. It is not unity but is expected
to vary with the length of the line and its location within the mapping plane. The line
scale factor should not be confused with the point scale factor k, which is the ratio of
two differential line elements. See equation (C.2.12).

Let us compute the angle between two chords and two geodesics. The angle
between rectilinear chords on the map at station i can be written as

𝛿i = ti, i+1 − ti, i−1 + 2𝜋 = Ti, i+1 − Δti, i+1 − (Ti, i−1 − Δti, i−1) + 2𝜋 (4.6.4)

This relation follows from plane geometry. The angle between the geodesics on either
the ellipsoid or their respective mapped images is

⌢
𝛿i =

⌢𝛼i, i+1 −
⌢𝛼i, i−1 + 2𝜋 = Ti, i+1 + 𝛾i − (Ti, i−1 + 𝛾i) + 2𝜋 = Ti, i+1 − Ti, i−1 + 2𝜋

(4.6.5)
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TABLE 4.6.1 Explicit Functions for Δt and Δs in Terms of
Mapping Coordinates

TM∶ Δt1 =
(x2 + 2x1) (y2 − y1)

6k2
0R2

1

LC∶ Δt1 =
(2y1 + y2) (x1 − x2)

6k2
0R2

0

1
kL

≡ ⌢s
d
=

1
6

(
1
k1

+
4
km

+
1
k2

)
Δs = ⌢s(1 − kL)

The difference
Δ𝛿i ≡ ⌢

𝛿i − 𝛿i = Δti, i+1 − Δti, i−1 (4.6.6)

is the angular arc-to-chord reduction. Equations (4.6.4) to (4.6.6) do not depend on
the meridian convergence.

The expressions for the meridian convergence are given in Appendix C for the
TM and LC mapping. The expressions for Δt and Δs are listed in Table 4.6.1 as a
function of the mapping coordinates. Similar expressions are also available in terms
of geodetic latitude and longitude. However, such alternative expressions are really
not needed since one can always compute the latitudes and longitudes. The point scale
factor k serves merely as an auxiliary quantity to express kL in a compact form from
which Δs can be computed. The subscripts of k indicate the point of evaluation. In the
case of m, k is evaluated at the midpoint [(𝜑1 + 𝜑2)∕2, (𝜆1 + 𝜆2)∕2]. It goes without
saying that the expressions in the table are a result of extensive series development
and respective truncations. More accurate expressions are available in the literature.

Even though the term “map distortion” has many definitions, one associates a small
Δt and Δs with small distortions, meaning that the respective reductions in angle and
distance are small and perhaps even negligible. It is important to note that the mapping
elements change in size and sign with the location of the line and its orientation. In
order to keep Δt and Δs small, we limit the area represented in a single mapping plane
in size, thus the need for several mappings to cover large regions of the globe. In addi-
tion, the mapping elements are functions of elements specified by the designer of the
map, e.g., the factor k0, the location of the central meridian, or the standard parallel.

4.6.2 Angular Excess

The angular reduction can be readily related to the ellipsoidal angular excess. The sum
of the interior angles of a polygon of rectilinear chords on the map (Figure 4.6.2) is∑

i

𝛿i = (n − 2) × 180∘ (4.6.7)

as follows from plane geometry. The sum of the interior angles of the corresponding
polygon on the ellipsoid consisting of geodesics is∑

i

⌢
𝛿i = (n − 2) × 180∘ + 𝜀 (4.6.8)



CONFORMAL MAPPING MODEL 201

map

Pi + 1

Pi + 1

Pi

δi

Figure 4.6.2 Angle on the map.

where 𝜀 denotes the ellipsoidal angular excess. It follows from (4.6.6) to (4.6.8) that

𝜀 =
∑

i

Δti, i+1 −
∑

i

Δti, i−1 (4.6.9)

The angular excess can therefore be computed from either the sum of interior angles
between geodesics (4.6.8), or from the sum of angular arc-to-chord reductions (4.6.9),
or by expression (B.2.44), which uses the Gauss curvature.

4.6.3 Direct and Inverse Solutions on the Map

Having the grid azimuth t and the length of the rectilinear chord d or the angle 𝛿
between rectilinear chords, the rules of plane trigonometry apply in a straightforward
manner. In case the geodetic latitude and longitude are given, one can use the mapping
equations to compute the map coordinates first. Thus, given P1(x1, y1), the direct
solution on the map is

x2 = x1 + d12 sin t12

y2 = y1 + d12 cos t12

(4.6.10)

and given P1(x1, y1) and P2(x2, y2), the inverse solution on the map is

d12 =
√

(x2 − x1)2 + (y2 − y1)2

t12 = tan
x2 − x1

y2 − y1

(4.6.11)

4.6.4 Network Adjustment on the Map

The fact that plane trigonometry can be used makes network adjustments and compu-
tations on the conformal plane especially attractive. The observed geodesic azimuth,
angle, and distance (⌢𝛼, ⌢

𝛿, ⌢s) are first corrected by (Δt, Δ𝛿, Δs) to obtain the respec-
tive observables on the map. In regards to adjustments, the current point of expansion
(approximate coordinates) should be used for all computations at a specific iteration.
At any time during the computations, one may use geodetic latitude and longitude or
mapping coordinates as is convenient, since both sets are accurately related by the
mapping equations.
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Two approaches can be followed. Both require computation of the meridian con-
vergence 𝛾 . The scheme shown in (4.6.12) suggests using the GML function to com-
pute the azimuth ⌢𝛼12 and length ⌢s12 and then computing the mapping elements Δt12
according to (4.6.1) and Δs12 by differencing the length of the geodesic line and the
rectilinear chord. Alternatively, we may also compute the line scale factor kL and com-
pute the mapping elements directly from the expressions in Table 4.6.1. Appendix C
provides the respective expressions for 𝛾 and kL, either as a function of latitude and
longitude or in terms of mapping coordinates. Omitting for simplicity the subscript
zero to indicate the point of expansion, we can write

{P1(𝜑1, 𝜆1, x1, y1), P2(𝜑2, 𝜆2, x2, y2)}

↓

{⌢s12,
⌢𝛼12, 𝛾1, d12, t12}

↓

Δt12 = ⌢𝛼12 − 𝛾1 − t12

Δs12 = ⌢s12 − d12

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.6.12)

Using again the (2-1-3) subscript notation for angles and standard adjustment nota-
tion otherwise, the mapping observables t12, b, 𝛿213, b, and d12, b are

t12, b = ⌢𝛼12, b − 𝛾1 − Δt12 (4.6.13)

𝛿213, b =
⌢
𝛿213, b − Δt13 + Δt12 (4.6.14)

d12, b = ⌢s12, b − Δs12 (4.6.15)

and the observation equations become

vt =
sin t12

d12

dy1 −
cos t12

d12

dx1 −
sin t12

d12

dy2 +
cos t12

d12

dx2 + (t12 − t12, b) (4.6.16)

v
𝛿
=

(
sin t13

d13

−
sin t12

d12

)
dy1 −

(
cos t13

d13

−
cos t12

d12

)
dx1 +

sin t12

d12

dy2

−
cos t12

d12
dx2 −

sin t13

d13

dy3 +
cos t13

d13

dx3 + (𝛿213 − 𝛿213, b) (4.6.17)

vd = − cos t12dy1 − sin t12 dx1 + cos t12 dy2 + (d12 − d12, b) (4.6.18)

Just to be sure that there are no misunderstandings about the term plane, let us
review what created the situation that allows us to use plane trigonometry. The confor-
mal mapping model builds upon the 3D geodetic and 2D ellipsoidal models as visual-
ized by the transition of parameters {𝜑, 𝜆, h} → {𝜑, 𝜆} → {x, y} and observables
{𝛼, 𝛿, 𝛽, s, Δh, ΔN} → {⌢𝛼, ⌢

𝛿, ⌢s} → {t, 𝛿, d}. The height parameter and the
vertical observations are not present in the conformal mapping model.
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4.6.5 Similarity Revisited

In Appendix C, we state that interpreting the conformal property as a similarity
transformation between infinitesimally small figures is permissible. It is difficult
to understand such a statement because one typically does not think in terms of
infinitesimally small figures. We shed some light on this statement by transforming
two clusters of points that were generated with different conformal mappings and
look at the discrepancies. For example, if the discrepancies exceed a specified limit,
then a similarity transformation cannot be used to transform between both clusters
of points.

We construct a simple experiment to demonstrate the similarity transformation.
Let there be n equally spaced points on a geodesic circle on the ellipsoid whose center
is located at 𝜑0 = 45∘ and at the central meridian. These points are mapped with the
transverse Mercator and Lambert conformal mapping functions using k0 = 1. These
two sets of map coordinates are input to a least-squares solution that estimates the
parameters of a similarity transformation, i.e., two translations, one scale factor, and
one rotation angle. The coordinate residuals vxi

and vyi
for station i are used to com-

pute the station discrepancy di = (v2
xi
+ v2

xi
)1∕2. We use the average of the di over all

the points as a measure of fit. The radius of the geodesic circle is incremented from
10 to 100 km for the solutions shown in Figure 4.6.3. The figure shows an optimal
situation because the circle is centered at the origin of the Lambert conformal map-
ping and at the central meridian of the Mercator mapping at the same latitude. With
k0 = 1, the area around the center of the circle has the least distortion and the similar-
ity model fits relatively well. The 1 m average is reached just beyond a 50 km radius.
Both lines overlap in the figure.

Figure 4.6.4 shows discrepancies for different locations of the geodesic circle
within the mapping area while the radius remains constant at 10 km. For line 1 (LC),
the standard parallel of the Lambert conformal mapping shifts from 45∘ to 46∘ while
the center of the geodesic circle remains at latitude 45∘. In the case of line 2 (TM),
the center of the geodesic circle moves from 0∘ (central meridian) to 1∘ in longitude,
while also maintaining a latitude of 45∘. The lines in the figure diverge, indicating

Figure 4.6.3 Similarity transformation of two mapped geodesic circles as a function of
radius.
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Figure 4.6.4 Similarity transformation of two mapped geodesic circles as a function of
location.

that the distortions for both mapping are different and are a function of where the
points are located on the mapping plane.

4.7 SUMMARY

This chapter presented a brief summary of geodesy. Some readers might consider
it impossible to treat geodesy in just one chapter out of fear for an incomplete or
superficial treatment of the subject. In line with the overall objectives of this book, the
focus was on operational aspects of geodesy, avoiding long mathematical treatment
and instead referring to resources that are publically available on the Internet.

We began with a discussion of the fundamental ITRF and ICRF reference frames.
In particular, we explained the definition of the new ICRF pole, called CIP, and
provided two ways of transforming between ITRF and ICRF. Our operational view
assumes that a geodetic datum is in place, i.e., the locations and orientation of the
ellipsoid is known and the geoid undulations and deflection of the vertical are also
available for that datum. As an example we referred to the NAD83.

The 3G geodetic model, the ellipsoidal model, and the conformal mapping model
are a central part of this chapter. Table 4.7.1 provides a summary of notation used to
identify the various model observables. Figure 4.7.1 gives a summary of the type of
reductions required to generate the respective model observations. The right column
of boxes represents the reductions to be applied to the observations before the adjust-
ment. The left column of boxes are reductions to be added to the adjusted, but now
quality-controlled model observations, in order to obtain quality-controlled observa-
tions on the surface of earth that can be staked out or otherwise used by the surveyor
in physical space. Clearly, the respective corrections on the left and right side of the
figure are of the same magnitude but have the opposite sign.

The 3D model was identified to be, mathematically speaking, the simplest and yet
most versatile model because it is applicable to a network of any size and can deal
with 3-dimensional observations. It was further pointed out that the deflections of
the vertical corrections largely cancel for angle observations but need to be applied
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TABLE 4.7.1 Summary of Model Notation

3D Model 2D Ellipsoidal Conformal Map

𝛼 geodetic azimuth ⌢𝛼 geodesic azimuth

𝛽 geodetic vertical angle
𝜗 geodetic zenith angle

𝛿 geodetic horizontal angle
between normal sections

⌢
𝛿 geodesic angle between

geodesics
𝛿 map angle between chords

t grid north
T geodesic north
𝛾 meridian convergence

s slant distance ⌢s geodesic length s length of mapped geodesic
d length of chord

conformal
mapping plane

model

ellipsoidal
surface
model

3D geodetic
model

polar motion
and

deflection
correction

reduction
to

ellipsoid

reduction
to

mapping
plane

mapping plane
to

ellipsoid

ellipsoid
to
3D

deflection
of the
vertical

controlled
observations

original
observations

Figure 4.7.1 Three model loops.

when accurate azimuth observations are involved. This model allows the integration
of classical terrestrial observations and GNSS vector observations without any further
reduction.

The other models are the 2-dimensional ellipsoidal surface and conformal map-
ping models. It was pointed out that any height information is used to reduce the 3D
observations to the ellipsoidal surface and that, consequently, no height parameters
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are included in 2D network adjustments. The ellipsoidal model is only of historical
interest in terms of network adjustments. However, this model is conceptually needed
to derive the conformal mapping model. After all, only 2D quantities from the ellip-
soidal surface can be mapped onto the 2D conformal mapping plane. Both 2D mod-
els are limited according to the size of the network. The ellipsoidal model requires
the geodesic line, and the respective expressions are a result of series expansions
and therefore suffer from truncation errors. The conformal mapping model not only
requires all of the geodesic line formalism but it also needs the conformality condi-
tion. The respective expressions also suffer from truncation errors that limit the size
and shape of the networks, but most of all can show large-scale distortions in certain
parts of the mapped area.

This chapter did not address physical geodesy in any significant detail. Physical
geodesy deals with those aspects that involve gravity directly. One could say that the
products of physical geodesy are geoid undulations and deflection of the vertical. But,
because of our operational approach, we simply assumed that these elements would
be available as part of the datum.

Also, leveling was not presented in detail. This technique depends on the direc-
tion of the plumb line. For example, much material could be added on the topic of
loop closure for orthometric heights. The lack of depth by which the vertical com-
ponent (leveling) was presented in this chapter is again justified on the basis of the
operational approach. It is assumed that sufficiently accurate geoid undulations are
available to convert orthometric heights to ellipsoidal heights, and that ellipsoidal
height produced by GNSS can be easily converted to orthometric heights. Readers
involved in high-accuracy vertical applications that require first-order leveling are
advised to contact their national surveying agencies for information on the respective
procedures and computation techniques.



CHAPTER 5

SATELLITE SYSTEMS

The satellite motions are introduced by means of normal orbits and the Kepler laws.
It follows a summary on the major orbital perturbation of these simple mathematical
motions. The first satellite system presented is the global positioning system (GPS).
We briefly review the status of the signal transmissions as of the year 2014, including
signal structure and navigation message. A section on the modernization of GPS
starts with a brief exposure to binary offset carrier modulation, followed by remarks
on the new codes L2C, L5, M, and L1C. The GLONASS system is discussed next
with emphasis on the broadcast navigation message and brief remarks on GLONASS
modernization. The other forthcoming systems, the European Galileo, the Japanese
QZSS, and the Chinese Beidou are highlighted next. The details on each satellite
system are available in various documents provided by the respective authorities on
the Internet. Consider the following references: SPS (2008), IS-GPS-200G (2012),
IS-GPS-705C (2012), IS-GPS-800C (2012), GLONASS (2008), Galileo (2010),
QZSS (2013), and Beidou (2013).

We do not address signal processing that takes place inside the receiver. The inter-
ested reader is referred to specialized texts such as Kaplan (1996), Parkinson et al.
(1996), Tsui (2005), Misra and Enge (2006), and Borre et al. (2007).

5.1 MOTION OF SATELLITES

The orbital motion of a satellite is a result of the earth’s gravitational attraction, as
well as a number of other forces acting on the satellite. The attraction of the sun and
the moon and the pressure on the satellite caused by impacting solar radiation par-
ticles are examples of such forces. For high-orbiting satellites, the atmospheric drag

207
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is negligible. Mathematically, the equations of motion for satellites are differential
equations that are solved by numerical integration over time. The integration begins
with initial conditions, such as the position and velocity of the satellite at some ini-
tial epoch. The computed (predicted) satellite positions can be compared with actual
observations. Possible discrepancies are useful to improve the modeled force func-
tions, the accuracy of computed satellite positions, or the estimated positions of the
observer.

5.1.1 Kepler Elements

Six Kepler elements are often used to describe the position of satellites in space. To
simplify attempts to study satellite motions, we study so-called normal orbits. For
normal orbits, the satellites move in an orbital plane that is fixed in space; the actual
path of the satellite in the orbital plane is an ellipse in the mathematically strict sense.
One focal point of the orbital ellipse is at the center of the earth. The conditions
leading to such a simple orbital motion are as follows:

1. The earth is treated as a point mass, or, equivalently, as a sphere with spherically
symmetric density distribution. The gravitational field of such a body is radially
symmetric; i.e., the plumb lines are all straight lines and point toward the center
of the sphere.

2. The mass of the satellite is negligible compared to the mass of the earth.

3. The motion of the satellite takes place in a vacuum; i.e., there is no atmospheric
drag acting on the satellite and no solar radiation pressure.

4. No sun, moon, or other celestial body exerts a gravitational attraction on the
satellite.

The orbital plane of a satellite moving under such conditions is shown in Figure 5.1.1.
The ellipse denotes the path of the satellite. The shape of the ellipse is determined by
the semimajor axis a and the semiminor axis b. The symbol e denotes the eccentricity

orbital path

q2

q1

circle

satellite

apogee perigeeF

E f

ae

r
b

S

ξ

S′

a

η

Figure 5.1.1 Coordinate systems in the orbital plane.
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of the ellipse. The ellipse is enclosed by an auxiliary circle with radius a. The principal
axes of the ellipse form the coordinate system (𝜉, 𝜂). S denotes the current position
of the satellite; the line SS′ is in the orbital plane and is parallel to the 𝜂 axis. The
coordinate system (q1, q2) is located in the orbital plane, with origin at the focal point
F of the ellipse that coincides with the center of the earth. The third axis q3, not shown
in the figure, completes the right-handed coordinate system. The geocentric distance
from the center of the earth to the satellite is denoted by r. The orbital locations closest
to and farthest from the focal point are called the perigee and apogee, respectively.
The true anomaly f and the eccentric anomaly E are measured counterclockwise, as
shown in Figure 5.1.1.

The orbital plane is shown in Figure 5.1.2 with respect to the true celestial coordi-
nate system. The center of the sphere of directions is located at the focal point F. The
X axis is in the direction of the vernal equinox, the Z axis coincides with the celes-
tial ephemeris pole, and Y is located at the equator, thus completing the right-handed
coordinate system. The intersection of the orbital plane with the equator is called the
nodal line. The point at which the satellite ascends the equator is the ascending node.
The right ascension of the ascending node is denoted by 𝛺. The line of apsides con-
nects the focal point F and the perigee. The angle subtended by the nodal line and
the line of apsides is called the argument of perigee 𝜔. The true anomaly f and the
argument of perigee 𝜔 lie in the orbital plane. Finally, the angle between the orbital
plane and the equator is the inclination i. The figure shows that (𝛺, i) determines the
position of the orbital plane in the true celestial system, (𝛺,𝜔, i) the orbital ellipse in
space, and (a, e, f ) the position of the satellite within the orbital plane.

orbital plane nodal line

ascending node

satellite

line of apsides
r

Y

X

f

i

F

q3

Z = CEP

Ω
ω

Figure 5.1.2 Orbital plane on the sphere of direction.
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The six Kepler elements are {𝛺,𝜔, i, a, e, f }. The true anomaly f is the only Kepler
element that is a function of time in the case of normal orbits; the remaining five
Kepler elements are constant. For actual satellite orbits, which are not subject to the
conditions of normal orbits, all Kepler elements are a function of time. They are called
osculating Kepler elements.

5.1.2 Normal Orbital Theory

Normal orbits are particularly useful for understanding and visualizing the spatial
motions of satellites. The solutions of the respective equations of motions can be
given by simple, analytical expressions. Since normal orbits are a function of the
central portion of the earth’s gravitational field (which is by far the largest force acting
on the satellite), normal orbits are indeed usable for orbital predictions over short
periods of time when low accuracy is sufficient. Thus, one of the popular uses of
normal orbits is for the construction of satellite visibility charts.

The normal motion of satellites is determined by Newton’s law of gravitation,

F =
k2mM

r2
(5.1.1)

In (5.1.1), M and m denote the mass of the earth and the satellite, respectively, k2 is
the universal constant of gravitation, r is the geocentric distance to the satellite, and
F is the gravitational force between the two bodies. This force can also be written as

F = ma (5.1.2)

where a in this instance denotes the acceleration experienced by the satellite. Com-
bining (5.1.1) and (5.1.2) gives

a =
k2M
r2

(5.1.3)

This equation can be written in vector form as

r̈ = −k2M
r
r3

= −𝜇
r
r3

(5.1.4)

where
𝜇 = k2M (5.1.5)

is the earth’s gravitational constant. Including the earth’s atmosphere, it has the value
𝜇 = 3, 986, 005 × 108m3s−2. The vector r is directed from the central body (earth) to
the satellite. The sign has been chosen such that the acceleration is directed toward
the earth. The colinearity of the acceleration and the position vector as in (5.1.4) is a
characteristic of central gravity fields. A particle released from rest would fall along
a straight line toward the earth (straight plumb line).

Equation (5.1.4) is valid for the motion with respect to an inertial origin. In general,
one is interested in determining the motion of the satellite with respect to the earth.
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The modified equation of motion for accomplishing this is given by Escobal (1965,
p. 37) as

r̈ = −k2(M + m)
r
r3

(5.1.6)

Because m ≪ M, the second term is often neglected and (5.1.6) becomes (5.1.4).
Figure 5.1.2 gives the position of the satellite in the (q) orbital plane coordinate

system q = [q1 q2 q3]
T as

q = r
⎡⎢⎢⎣
cos f
sin f

0

⎤⎥⎥⎦ (5.1.7)

Because the geocentric distance and the true anomaly are functions of time, the
derivative with respect to time, denoted by a dot, is

q̇ = ṙ
⎡⎢⎢⎣
cos f
sin f

0

⎤⎥⎥⎦ + r ḟ
⎡⎢⎢⎣
− sin f
cos f

0

⎤⎥⎥⎦ (5.1.8)

The second derivatives with respect to time are

q̈ = r̈
⎡⎢⎢⎣
cos f
sin f

0

⎤⎥⎥⎦ + 2ṙ ḟ
⎡⎢⎢⎣
− sin f
cos f

0

⎤⎥⎥⎦ + r f̈
⎡⎢⎢⎣
− sin f
cos f

0

⎤⎥⎥⎦ − r(ḟ )2
⎡⎢⎢⎣
cos f
sin f

0

⎤⎥⎥⎦ (5.1.9)

The second derivative is written according to (5.1.4) and (5.1.7) as

r̈ =
−𝜇

r2

⎡⎢⎢⎣
cos f
sin f

0

⎤⎥⎥⎦ (5.1.10)

Evaluating (5.1.9) and (5.1.10) at f = 0 (perigee) and substituting (5.1.10) for the
left-hand side of (5.1.9) gives

r̈ − r(ḟ )2 =
−𝜇

r2
(5.1.11)

r f̈ + 2ṙ ḟ = 0 (5.1.12)

Equation (5.1.12) is developed further by multiplying with r and integrating

∫ (r2 f̈ + 2r ṙ ḟ ) dt = C (5.1.13)

The result of the integration is

r2 ḟ + 2r2 ḟ = C (5.1.14)
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as can be readily verified through differentiation. Combining both terms yields

r2 ḟ = h (5.1.15)

where h is a new constant. Equation (5.1.15) is identified as an angular momentum
equation, implying that the angular momentum for the orbiting satellite is conserved.

In order to integrate (5.1.11), we define a new variable:

u ≡ 1
r

(5.1.16)

By using equation (5.1.15) for dt∕df , the differential of (5.1.16) becomes

du
df

=
du
dr

dr
dt

dt
df

= −
ṙ
h

(5.1.17)

Differentiating again gives

d2u
df 2

=
d
dt

(
−

ṙ
h

) dt
df

= −
r̈

u2h2
(5.1.18)

or

r̈ = −h2u2 d2u
df 2

(5.1.19)

By substituting (5.1.19) in (5.1.11), substituting ḟ from (5.1.15) in (5.1.11), and
replacing r by u according to (5.1.16), equation (5.1.11) becomes

d2u
df 2

+ u =
𝜇

h2
(5.1.20)

which can readily be integrated as

1
r
≡ u = C cos f +

𝜇

h2
(5.1.21)

where C is a constant.
Equation (5.1.21) is the equation of an ellipse. This is verified by writing the

equation for the orbital ellipse in Figure 5.1.1 in the principal axis form:

𝜉2

a2
+
𝜂2

b2
= 1 (5.1.22)

where
𝜉 = ae + r cos f 𝜂 = r sin f b2 = a2(1 − e2) (5.1.23)

The expression for b is valid for any ellipse. Substituting (5.1.23) into (5.1.22) and
solving the resulting second-order equation for r gives

1
r
=

1
a(1 − e2)

+
e

a(1 − e2)
cos f (5.1.24)
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with
C =

e
a(1 − e2)

h =
√
𝜇a(1 − e2) (5.1.25)

the identity between the expression for the ellipse (5.1.24) and equation (5.1.21) is
established. Thus, the motion of a satellite under the condition of a normal orbit is
an ellipse. This is the content of Kepler’s first law. The focus of the ellipse is at the
center of mass.

Kepler’s second law states that the geocentric vector r sweeps equal
areas during equal times. Because the area swept for the differential angle
df is

d A =
1
2

r2 df (5.1.26)

it follows from (5.1.15) and (5.1.25) that

dA
dt

=
1
2

√
𝜇a(1 − e2) (5.1.27)

which is a constant.
The derivation of Kepler’s third law requires the introduction of the eccentric

anomaly E. From Figure 5.1.1 we see that

q1 = 𝜉 − ae = a(cos E − e) (5.1.28)

where
𝜉 = a cos E (5.1.29)

The second coordinate follows from (5.1.22):

q2 ≡ 𝜂 =

√(
1 −

𝜉2

a2

)
b2 (5.1.30)

Substitute (5.1.29) in (5.1.30), then

q2 ≡ 𝜂 = b sin E (5.1.31)

With (5.1.28), (5.1.31), and b from (5.1.23), the geocentric satellite distance
becomes

r =
√

q2
1 + q2

2 = a(1 − e cos E) (5.1.32)

Differentiating equations (5.1.32) and (5.1.24) gives

dr = ae sin E d E (5.1.33)

dr =
r2e

a (1 − e2)
sin f d f (5.1.34)
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Equating (5.1.34) and (5.1.33), using 𝜂 and b from (5.1.23), (5.1.31), and (5.1.7), and
multiplying the resulting equation by r gives

r b d E = r2 df (5.1.35)

Substituting b from (5.1.23) and (5.1.32) for r, replacing d f by dt using (5.1.15),
using h from (5.1.25), and then integrating, we obtain

∫
E

E=0
(1 − e cos E) d E = ∫

t

t0

√
𝜇

a3
d t (5.1.36)

Integrating both sides gives

E − e sin E = M (5.1.37)

M = n(t − t0) (5.1.38)

n =

√
𝜇

a3
(5.1.39)

Equation (5.1.39) is Kepler’s third law. Equation (5.1.37) is called the Kepler
equation. The symbol n denotes the mean motion, M is the mean anomaly, and t0
denotes the time of perigee passage of the satellite. The mean anomaly M should not
be confused with the same symbol used for the mass of the central body in (5.1.1).
Let P denote the orbital period, i.e., the time required for one complete revolution,
then

P =
2𝜋
n

(5.1.40)

The mean motion n equals the average angular velocity of the satellite.
Equation (5.1.39) shows that the semimajor axis completely determines the
mean motion and thus the period of the orbit.

With the Kepler laws in place, one can identify alternative sets of Kepler ele-
ments, such as {𝛺,𝜔, i, a, e,M} or {𝛺,𝜔, i, a, e,E}. Often the orbit is not specified
by the Kepler elements but by the vector r = [X Y Z]T = X and the velocity
ṙ = [Ẋ Ẏ Ż]T = Ẋ, expressed in the true celestial coordinate system (X).
Figure 5.1.2 shows that

q = R3(𝜔) R1(i) R3(𝛺) X = RqX (𝛺, i, 𝜔) X (5.1.41)

where Ri denotes a rotation around axis i. The inverse transformation is

X = R−1
qX (𝛺, i, 𝜔) q (5.1.42)

Differentiating (5.1.42) gives

Ẋ = R−1
qX (𝛺, i, 𝜔)q̇ (5.1.43)
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Note that the elements of RqX are constants, because the orbital ellipse does not
change its position in space. Using b from (5.1.23), (5.1.28), and (5.1.31), it follows
that

q =
⎡⎢⎢⎣

a (cos E − e)

a
√

1 − e2 sin E
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
r cos f
r sin f

0

⎤⎥⎥⎦ (5.1.44)

The velocity becomes

q̇ =
na

1 − e cos E

⎡⎢⎢⎣
− sin E√

1 − e2 cos E
0

⎤⎥⎥⎦ = na√
1 − e2

⎡⎢⎢⎣
− sin f

e + cos f
0

⎤⎥⎥⎦ (5.1.45)

The first part of (5.1.45) follows from (5.1.36), and the second part can be ver-
ified using known relations between the anomalies E and f . Equations (5.1.42)
to (5.1.45) transform the Kepler elements into Cartesian coordinates and their
velocities (X, Ẋ).

The transformation from (X, Ẋ) to Kepler elements starts with the computation of
the magnitude and direction of the angular momentum vector

h = X × Ẋ = [hX hY hZ]
T (5.1.46)

which is the vector form of (5.1.15). The various components of h are shown in
Figure 5.1.3. The right ascension of the ascending node and the inclination of the
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y

x

i

i

p2

p1

p3 = q3

hz

hx

–hy

h

Z = CEP

ΩΩ
ω + f

Figure 5.1.3 Angular momentum vector and Kepler elements. The angular momentum
vector is orthogonal to the orbital plane.
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orbital plane are, according to this figure,

𝛺 = tan −1

(
hX

−hY

)
i = tan −1

⎛⎜⎜⎜⎝
√

h2
X + h2

Y

hZ

⎞⎟⎟⎟⎠ (5.1.47)

By defining the auxiliary coordinate system (p) such that the p1 axis is along the
nodal line, p3 is along the angular momentum vector, and p2 completes a right-handed
coordinate system, we obtain

p = R1(i)R3(𝛺)X (5.1.48)

The sum of the argument of perigee and the true anomaly becomes

𝜔 + f = tan −1

(
p2

p1

)
(5.1.49)

Thus far, the orbital plane and the orientation of the orbital ellipse have been deter-
mined. The shape and size of the ellipse depend on the velocity of the satellite. The
velocity, geocentric distance, and the magnitude of the angular momentum are

v = ‖Ẋ‖ r = ‖X‖ h = ‖h‖ (5.1.50)

The velocity expressed in the (q) coordinate system can be written as follows using
(5.1.24), (5.1.39), and (5.1.45):

v2 = q̇2
1 + q̇2

2

=
n2a2

1 − e2
(sin 2f + e2 + 2e cos f + cos 2 f )

=
𝜇

a(1 − e2)
[2 + 2e cos f − (1 − e2)]

= 𝜇
(2

r
−

1
a

)
(5.1.51)

Equation (5.1.51) yields the expression for the semimajor axis

a =
r

2 − rv2∕𝜇
(5.1.52)

With h from (5.1.25), it follows that

e =

(
1 −

h2

𝜇a

)1∕2

(5.1.53)
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and (5.1.32), (5.1.44), and (5.1.45) give an expression for the eccentric anomaly

cos E =
a − r
a e

sin E =
q ⋅ q̇

e
√
𝜇a

(5.1.54)

These equations determine the quadrant of the eccentric anomaly. Having E, the true
anomaly follows from (5.1.44)

f = tan −1

√
1 − e2 sin E
cos E − e

(5.1.55)

Finally, Kepler’s equation yields the mean anomaly

M = E − e sin E (5.1.56)

Equations (5.1.47) to (5.1.56) comprise the transformation from (X, Ẋ) to the Kepler
elements.

Table 5.1.1 depicts six examples of trajectories for which the orbital eccentric-
ity is zero, e = 0. The satellite position x in the earth-centered earth-fixed (ECEF)
coordinate system can be readily computed from X by applying (4.2.32). We can
then compute spherical latitude and longitude (𝜙, 𝜆) and the trajectories of the satel-
lites on the sphere. For reasons of convenience, we express the mean motion of the
satellites in revolutions per day, n = n∕𝜔. The longitude difference between consec-
utive equatorial crossings can then be computed from

Δ𝜆 = 𝜋
(

1 −
1
n

)
(5.1.57)

Table 5.1.1 also lists the change in longitude of the trajectory over a 24 h period,
denoted by 𝛿 𝜆. The number in parentheses in the graphs indicates the number of
days plotted. In all cases the inclination is i = 65∘. The maximum and minimum of
the trajectories occur at a latitude of i and −i, respectively.

Case 1, specified by n = 2, applies to GPS because the satellite orbits twice per
(sidereal) day. Case 2 has been constructed such that the trajectories intersect the
equator at 90∘. In case 3, the point at which the trajectory touches, having common
vertical tangent, and the point of either maximum or minimum have the same lon-
gitude. The mean motion must be computed from a nonlinear equation, but n > 1 is
valid. In case 4, the satellite completes one orbital revolution in exactly one (sidereal)
day. Case 5 represents a retrograde motion with n < 1 but with the same properties as
case 3. In case 6, the common tangent at the extrema is vertical. The interested reader
may verify that

𝜆 = tan −1

(
cos i

sin𝜙√
sin 2 i − sin 2 𝜙

)
−

1
n

sin −1

(
sin𝜙
sin i

)
(5.1.58)
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and
d𝜑
d𝜆

=
cos𝜙

√
sin 2i − sin 2 𝜙

n cos i − cos 2 𝜙
n (5.1.59)

is valid for all cases.

5.1.3 Satellite Visibility and Topocentric Motion

The topocentric motion of a satellite as seen by an observer on the surface of the earth
can be computed from existing expressions. Let XS denote the geocentric position
of the satellite in the celestial coordinate system (X). These positions could have
been obtained from (5.1.42), in the case of normal motion or from the integration of
perturbed orbits discussed below. The position XS can then be readily transformed
to crust-fixed coordinate system (x), giving xS by applying (4.2.32). If we further
assume that the position of the observer on the ground in the crust-fixed coordinate
system is xP, then the topocentric coordinate difference

Δx = xS − xP (5.1.60)

can be substituted into Equations (4.4.11) to (4.4.13) to obtain the topocentric geode-
tic azimuth, elevation, and distance of the satellite. The geodetic latitude and longi-
tude in these expressions can be computed from xP, if necessary. For low-accuracy
applications such as the creation of visibility charts it is sufficient to use spherical
approximations.

5.1.4 Perturbed Satellite Motion

The accurate determination of satellite positions must consider various disturbing
forces. Disturbing forces are all forces causing the satellite to deviate from the simple
normal orbit. The disturbances result primarily from the nonsphericity of the gravi-
tational potential, the attraction of the sun and the moon, the solar radiation pressure,
and other smaller forces acting on the satellites. For example, albedo is a force due to
electromagnetic radiation reflected by the earth. There could be thermal reradiation
forces caused by anisotropic radiation from the surface of the spacecraft. Additional
forces, such as residual atmospheric drag, affect satellites closer to the earth.

Several of the disturbing forces are computable; others, in particular the smaller
forces, require detailed modeling and are still subject to ongoing research. Knowing
the accurate location of the satellites and being able to treat satellite position coordi-
nates as known quantities is important in surveying. Most scientific applications of
GNSS demand the highest orbital accuracy, almost at the centimeter level. However,
even surveying benefits from such accurate orbits, e.g., in precise point positioning
with one receiver. See Section 6.6.1 for additional details on this technique. One of
the goals of the International GNSS Service (IGS) and its contributing agencies and
research groups is to refine orbital computation and modeling in order to make the
most accurate satellite ephemeris available to users. In this section, we provide only
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an introductory exposition of orbital determination. The details are found in the lit-
erature, going all the way back to the days of the first artificial satellites.

The equations of motion are expressed in an inertial (celestial) coordinate system,
corresponding to the epoch of the initial conditions. The initial conditions are either
(X, Ẋ) or the Kepler elements at a specified epoch. Because of the disturbing forces,
all Kepler elements are functions of time. The transformation given above can be used
to transform the initial conditions from (X, Ẋ) to Kepler elements and vice versa. The
equations of motion, as expressed in Cartesian coordinates, are

dX
dt

= Ẋ (5.1.61)

dẊ
dt

= −
𝜇X‖X‖3

+ Ẍg + Ẍs + Ẍm + ẌSRP + · · · (5.1.62)

These are six first-order differential equations. The symbol 𝜇 denotes the geocen-
tric gravitational constant (5.1.5). The first term in (5.1.62) represents the acceleration
of the central gravity field that generates the normal orbits discussed in the previous
section. Compare (5.1.62) with (5.1.4). The remaining accelerations are discussed
briefly below. The simplest way to solve (5.1.61) and (5.1.62) is to carry out a simul-
taneous numerical integration. Most of the high-quality engineering or mathematical
software packages have such integration routines available. Kaula (1966) expresses
the equations of motion and the disturbing potential in terms of Kepler elements.
Kaula (1962) gives similar expressions for the disturbing functions of the sun and
the moon.

5.1.4.1 Gravitational Field of the Earth The acceleration of the noncentral
portion of the gravity field of the earth is given by

Ẍg =
[
𝜕R
𝜕X

𝜕R
𝜕Y

𝜕R
𝜕Z

]T
(5.1.63)

The disturbing potential R is

R =
∞∑

n=2

n∑
m=0

𝜇an
e

rn+1
Pnm (cos 𝜃) [Cnm cos m𝜆 + Snm sin m𝜆] (5.1.64)

with

Pnm (cos 𝜃) =
(1 − cos 2 𝜃)m∕2

2nn!
d(n+m)

d(cos 𝜃)(n+m)
(cos 2 𝜃 − 1)n (5.1.65)

Pn =
√

2n + 1 Pn (5.1.66)

Pnm =

(
(n + m)!

2(2n + 1) (n − m)!

)−1∕2

Pnm (5.1.67)
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Equation (5.1.64) expresses the disturbing potential (as used in satellite orbital com-
putations) in terms of a spherical harmonic expansion. The symbol ae denotes the
mean earth radius, r is the geocentric distance to the satellite, and 𝜃 and 𝜆 are the
spherical co-latitude and longitude of the satellite position in the earth-fixed coordi-
nate system, i.e., x = x(r, 𝜃, 𝜆). The positions in the celestial system (X) follow from
(4.2.32). Pnm denotes the associated Legendre functions, which are known mathe-
matical functions of latitude. Cnm and Snm are the spherical harmonic coefficients of
degree n and order m. The bar indicates fully normalized potential coefficients. Note
that the summation in (5.1.64) starts at n = 2. The term n = 0 equals the central com-
ponent of the gravitational field. It can be shown that the coefficients for n = 1 are
zero for coordinate systems whose origin is at the center of mass. Equation (5.1.64)
shows that the disturbing potential decreases exponentially with the power of n. The
high-order coefficients represent the detailed structure of the disturbing potential, and,
as such, the fine structure of the gravity field of the earth. Only the coefficients of
lower degree and order, say, up to degree and order 36, are significant for satellite
orbital computations. The higher the altitude of the satellite, the less the impact of
higher-order coefficients on orbital disturbances.

The largest coefficient in (5.1.64) is C20. This coefficient represents the effect of
the flattening of the earth on the gravitational field. Its magnitude is about 1000 times
larger than any other spherical harmonic coefficient.

Useful insight into the orbital disturbance of the flattening of the earth is obtained
by considering only the effect C20. An analytical expression is obtained if one
expresses the equations of motion (5.1.61) and (5.1.62) in terms of Kepler elements.
The actual derivation of such equations is beyond the scope of this book. The reader
is referred to Kaula (1966). Mueller (1964) offers the following result:

𝜔̇ = −
( 𝜇

a3

)1∕2
(

ae

a
(
1 − e2

))2
3
2

J2 (1 + cos 2i − 1.5 sin 2 i) (5.1.68)

𝛺̇ = −

(
𝜇

a3

)1∕2
(

ae

a
(
1 − e2

))2
3
2

J2 cos i (5.1.69)
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Figure 5.1.4 Impact of the earth’s flattening on the motion of the perigee and the nodal
line. The data refer to a = 26, 600 km.
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In these equations we have made the substitution C20 = −J2

√
5. The variations of

the argument of perigee and the right ascension of the ascending node are shown in
Figure 5.1.4 as a function of the inclination. At the critical inclination of approxi-
mately 63.5∘ the perigee motion is stationary. The perigee and the node regress if
i > 63.5∘. This orbital plane rotation is zero for polar orbits i = 90∘. Equation (5.1.69)
is also useful for understanding the connection between the earth flattening and pre-
cession and the 18.6-year nutation/tidal period.

5.1.4.2 Acceleration due to the Sun and the Moon The lunar and solar
accelerations on the satellites are (Escobal, 1965, p. 37)

Ẍm =
𝜇mm

me

(
Xm − X‖Xm − X‖3

−
Xm‖Xm‖3

)
(5.1.70)

Ẍs =
𝜇ms

me

(
Xs − X‖Xs − X‖3

−
Xs‖Xs‖3

)
(5.1.71)

The commonly used values for the mass ratios are mm∕me = 0.0123002 and
ms∕me = 332, 946. Mathematical expressions for the geocentric positions of the
moon Xm and the sun Xs are given, for example, in van Flandern and Pulkkinen
(1979).

5.1.4.3 Solar Radiation Pressure Solar radiation pressure (SRP) is a result
of the impact of light photons emitted from the sun on the satellite’s surface. The
basic parameters of the SRP are the effective area (surface normal to the incident
radiation), the surface reflectivity, the thermal state of the surface, the luminosity of
the sun, and the distance to the sun. Computing SRP requires the evaluation of sur-
face integrals over the illuminated regions, taking shadow into account. Even if these
regions are known, the evaluation of the surface integrals can still be difficult because
of the complex shape of the satellite. The ROCK4 and ROCK42 models represent
early attempts to take most of these complex relations and properties into consider-
ation for GPS Block I, Block II, and Block IIa satellites, respectively (Fliegel et al.,
1985; Fliegel and Gallini, 1989). Fliegel et al. (1992) describe an SRP force model
for geodetic applications. Springer et al. (1999) report on SRP model parameter esti-
mation on a satellite-by-satellite basis, as part of orbital determinations from heavily
overdetermined global networks. Ziebart et al. (2002) discuss a pixel array method
in connection with finite analysis, in order to even better delineate the illuminated
satellite surfaces and surface temperature distribution.

One of the earliest and simplest SRP models uses merely two parameters. Con-
sider the body-fixed coordinate system of Figure 5.1.5. The z′ axis is aligned with
the antenna and points toward the center of the earth. The satellite finds this direction
and remains locked to it with the help of an earth limb sensor. The x′ axis is positive
toward the half plane that contains the sun. The y′ axis completes the right-handed
coordinate system and points along the solar panel axis. The satellites are always
oriented such that the y′ axis remains perpendicular to the earth-satellite-sun plane.
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e

y′

z′

x′

Figure 5.1.5 The satellite body-fixed coordinate system.

The only motion of the spacecraft in this body-fixed frame is the rotation of the solar
panels around the y′ axis to make the surface of the solar panels perpendicular to the
direction of the sun. The direction of the sun is denoted by e in the figure.

In reference to this body-fixed coordinate system, a simple SRP model formula-
tion is

ẌSRP = −p
Xsun − X‖Xsun − X‖ + Y

Xsun × X‖Xsun × X‖ (5.1.72)

The symbol p denotes the SRP in the direction of the sun. With the sign convention of
(5.1.72), p should be positive. The other parameter is called the Y bias. The reasons
for its existence could be structural misalignments, thermal phenomena, or possibly
misalignment of the solar panels with the direction of the solar photon flux. The fact
that a Y bias exists demonstrates the complexity of accurate solar radiation pressure
modeling.

Table 5.1.2 shows the effects of the various perturbations over the period of one
day. The table shows the difference between two integrations, one containing the
specific orbital perturbation and the others turned off. It is found that SRP orbital dis-
turbance reaches close to 100 m in a day. This is very significant, considering that the
goal is centimeter orbital accuracy. Over a period of 1 to 2 weeks, the SRP disturbance
can grow to over 1 km.

5.1.4.4 Eclipse Transits and Yaw Maneuvers Orbital determination is
further complicated when satellites travel through the earth shadow region (eclipse),
which occurs twice per year when the sun is in or near the orbital plane. See
Figures 5.1.6 and 5.1.7 for a graphical presentation. The umbra is that portion of
the shadow cone that no light from the sun can reach. The penumbra is the region
of partial shadowing; it surrounds the umbra cone. While the satellite transits
through the shadow regions, the solar radiation force acting on the satellite is either
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TABLE 5.1.2 Effect of Perturbations on GPS Satellites over One Daya

Perturbation Radial Along Cross Total

Earth flattening 1335 12902 6101 14334
Moon 191 1317 361 1379
Sun 83 649 145 670
C2,2, S2,2 32 175 9 178
SRP 29 87 3 92
Cn,m, Sn,m 6 46 4 46
(n,m = 3… 8)

Source: Springer et al. (1999).
aThe units are in meters.

Figure 5.1.6 Biannual eclipse periods.

zero (umbra) or changing (penumbra). These changes in force must be taken into
consideration in precise orbital computations. In addition, the thermal reradiation
forces change as the temperature of the satellite drops. GPS satellites move through
the shadow regions in less than 60 min, twice per day.

The shadow regions cause an additional problem for precise orbit determination.
The solar panels are orientated toward the sun by the attitude control system (ACS)
solar sensors that are mounted on the solar panels. The condition that the z′ axis
continuously points toward the center of the earth and the solar panels are continu-
ously normal to the satellite-sun direction, the satellite must yaw, i.e., rotate around
the z′ axis, in addition to rotating the antennas around the y′ axis. While the satellite
passes through the shadow region, the ACS solar sensors do not receive sunlight
and, therefore, cannot maintain the exact alignment of the solar panels. The satellite
starts yawing in a somewhat unpredictable way. Errors in yaw cause errors in GPS
observations in two ways. First, the range correction from the center of the satellite
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satellite path

umbra

penumbra

Figure 5.1.7 Earth shadow regions.

antenna to the satellite’s center of mass becomes uncertain. Second, there is an
additional but unknown windup error. See Section 6.2.4 for more information on the
windup error.

Bar-Sever (1996) has investigated the GPS yaw attitude problem and the compen-
sation method in detail. During shadow, the output of the solar sensors is essentially
zero and the ACS is driven by the noise of the system. Even a small amount of noise
can trigger a significant yaw change. As a corrective action, a small bias signal is
added to the signals of the solar sensors, which amounts to a yaw of about 0.5∘. As a
result, during the time when the sun can be observed, the yaw will be in error by that
amount. During eclipse times, the biased noise will yaw the satellite in the direction
of the bias, thus avoiding larger and erratic yaw motions. When the satellite leaves
the shadow region, the solar sensors provide the information to determine the correct
yaw angle. The yaw maneuvers carried out by the satellite from the time it enters the
shadow region to the time it leaves it are collectively called “the midnight maneu-
vers.” When the satellite is on the sun-earth axis and between the sun and the earth,
the ACS encounters a singularity because any yaw angle represents an optimal orien-
tation of the solar panels for this particular geometry. Any maneuvers that deal with
this situation are called “the noon maneuver.”

5.2 GLOBAL POSITIONING SYSTEM

Satellite-based positioning has been pursued since the 1960s. An early and very suc-
cessful satellite positioning system was the Navy navigation satellite system (TRAN-
SIT). Since its release for commercial use in 1967, the TRANSIT positioning system
was often used to determine widely spaced networks covering large regions—even the
globe. It was instrumental in establishing modern geocentric datums and in connect-
ing various national datums to a geocentric reference frame. The TRANSIT satellites
were orbiting in a polar plane at about 1100 km altitude. The TRANSIT satellites
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were affected more by gravity field variations than the much higher-orbiting GPS
satellites. In addition, their transmissions at 150 and 400 MHz were more suscep-
tible to ionospheric delays and disturbances than the higher GPS frequencies. The
TRANSIT system was discontinued at the end of 1996.

5.2.1 General Description

The Navigation Satellite Timing and Ranging (NAVSTAR) GPS provides position-
ing and timing 24 hours per day, anywhere in the world, and under any weather
conditions. The U.S. government operates GPS. It is a dual-use system, with its pri-
mary purpose being to meet military needs for positioning and timing. Over the past
decades, the number of civilian applications has increased seemingly endlessly, and
this trend is continuing.

In short, the buildup of the satellite constellation began with the series Block
I satellites. These were concept validation satellites that did not have selective
availability (SA) or antispoofing (AS) capability. They were launched into three 63∘

inclined orbital planes. Their positions within the planes were such that optimal
observing geometry was achieved over certain military proving grounds in the
continental United States. Eleven Block I satellites were launched between 1978
and 1985 (with one launch failure). Their average lifetime was 8 to 9 years. They
were designed to provide 3 to 4 days of positioning service without contact with the
ground control center. The launch of the second generation of GPS satellites, called
Block II, began in February 1989. In addition to radiation-hardened electronics,
these operational satellites had full SA/AS capability and carried a navigation
data message that was valid for 14 days. Additional modifications resulted in the
satellite called Block IIA. These satellites can provide about 6 weeks of positioning
service without contact from the control segment. Twenty-eight Block II/IIA
satellites were launched between 1989 and 1997 into six planes, 55∘ inclined. The
first third-generation GPS satellite, called Block IIR (R for replenishment), was
successfully launched in 1997. These satellites have the capability to determine their
orbits autonomously through UHF cross-link ranging and to generate their own
navigation message by onboard processing. They are able to measure ranges between
themselves and transmit observations to other satellites as well as to ground control.
In recent years, GPS has undergone a major modernization. Most importantly, the
GPS satellites are transmitting more signals that allow a better delineation of military
and civilian uses, and thus increase the performance of GPS even more. Table 5.2.1
shows the current and expected progression of the modernization.

The U.S. government’s current policy is to make GPS available in two services.
The precise positioning service (PPS) is available to the military and other autho-
rized users. The standard positioning service (SPS) is available to anyone. See SPS
(2008) for a detailed documentation of this service. Without going into detail, let it
suffice to say that PPS users have access to the encrypted P(Y)-codes (and M-codes
starting with Block II R-M) on the L1 and L2 carriers, while SPS users can observe
the public codes L1 C/A, L1C, L2C, L5. The encryption of the P-codes began Jan-
uary 31, 1994. SPS positioning capability was degraded by SA measures, which
entailed an intentional dither of the satellite clocks and falsification of the navigation
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TABLE 5.2.1 Legacy and Modernization of GPS Signals.

Signal
I, IIA, IIR
1978–2004

IIR-M
2005–2009

IIF
Since 2010

GPS III
Expected in 2015

L1 C/A X X X X
L1 P(Y) X X X X
L1M X X X
L2C X X X
L2 P(Y) X X X X
L2 M X X X
L5 X X
L1C X

message. In keeping with the policy, SA was implemented on March 25, 1990, on all
Block II satellites. The level of degradation was reduced in September 1990 dur-
ing the Gulf conflict but was reactivated to its full level on July 1, 1991, until it
was discontinued on May 1, 2000. Starting with the Block II R-M, new military
signals, L1M and L2M are available. Providing comparable or better performance
than L1P(Y) and L2P(Y), the new military signals coexist with them and do not
interfere with old user equipment. Careful shaping of the spectrum, based on the spe-
cially designed M-code, prevents leakage of new signal power into the spectra of old
military signals.

Over time, both satellite and receiver technologies have improved significantly.
Whereas older receivers could observe the P(Y)-code more accurately than the
C/A-codes, this distinction has all but disappeared with modem receiver technology.
Dual-frequency P(Y)-code users have the advantage of being able to correct the
effect of the ionosphere on the signals. However, this simple classification of PPS
and SPS by no means characterizes how GPS is used today. Researchers have
devised various patented procedures that make it possible to observe or utilize the
encrypted P(Y)-codes effectively, and in doing so, make dual-frequency observations
available, at least to high-end receivers. In certain surveying applications where
the primary quantity of interest is the vector between nearby stations, intentional
degradation of SA could be overcome by differencing the observations between
stations and satellites. However, positioning with GPS works much better without
SA. Starting with the Block II R-M, dual-frequency observables are available
due to the new civil L2C code. The Block II F satellites (total number is four
at the beginning of 2014) start transmission of the third civil L5 signal, allow-
ing the development of triple carrier techniques for standalone and differential
positioning.

The six orbital planes of GPS are spaced evenly in right ascension and are
inclined by 55∘ with respect to the equator. Because of the flattening of the earth,
the nodal regression is about −0.04187∘ per day; an annual orbital adjustment keeps
the orbits close to their nominal location. Each orbital plane contains four satellites;
however, to optimize global satellite visibility, the satellites are not evenly spaced
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within the orbital plane. The orbits are nominally circular, with a semimajor axis of
about 26,660 km. Using Kepler’s third law (5.1.39), one obtains an orbital period
of slightly less than 12 h. The satellites will complete two orbital revolutions in
one sidereal day. This means the satellites will rise about 4 min earlier each day.
Because the orbital period is an exact multiple of the period of the earth’s rotation,
the satellite trajectory on the earth (i.e., the trace of the geocentric satellite vector on
the earth’s surface) repeats itself each sidereal day.

Because of their high altitude, the GPS satellites can be viewed simultaneously
over large portions of the earth. Usually the satellites are observed only above a
certain altitude angle, called the mask angle. Typical values for the mask angle are
10 to 15∘. At a low elevation angle, the tropospheric effects on the signal can be
especially severe and difficult to model accurately. Let 𝜀 denote the mask angle, and
let 𝛼 denote the geocentric angle of visibility for a spherical earth, then one can find
the relation (𝜀 = 0∘, 𝛼 = 152∘), (𝜀 = 5∘, 𝛼 = 142∘), (𝜀 = 10∘, 𝛼 = 132∘). The viewing
angle from the satellite to the limb of the earth is about 27∘.

5.2.2 Satellite Transmissions at 2014

The IS-GPS-200G (2012) is the authoritative source for details on the GPS signal
structures, usage of these signals, and other information broadcasts by the satellites.
All satellite transmissions are coherently derived from the fundamental frequency of
10.23 MHz, made available by onboard atomic clocks. This is also true for the new
signals discussed further below. Multiplying the fundamental frequency by 154 gives
the frequency for the L1 carrier, f1 = 1575.42 MHz, multiplying by 120 gives the
frequency of the L2 carrier, f2 = 1227.60 MHz, and multiplying by 115 gives the fre-
quency f5 = 1176.45 MHz. The chipping (code) rate of the P(Y)-code is that of the
fundamental frequency, i.e., 10.23 MHz, whereas the chipping rate of the C/A-code
is 1.023 MHz (one-tenth of the fundamental frequency). The navigation message
(telemetry) is modulated on both the L1 and the L2 carriers at a chipping rate of
50 bps. It is different for modern signals as will be discussed later. It contains infor-
mation on the ephemerides of the satellites, GPS time, clock behavior, and system
status messages.

Onboard atomic clocks define the space vehicle time. Each satellite operates on its
own time system, i.e., all satellite transmissions such as the C/A-code, the P(Y)-codes,
and the navigation message are initiated by satellite time. The data in the navigation
message, however, are relative to GPS time. Time is maintained by the control seg-
ment and follows UTC(USNO) within specified limits. GPS time is a continuous time
scale and is not adjusted for leap seconds. The last common epoch between GPS time
and UTC(USNO) was midnight January 5–6, 1980. The navigation message contains
the necessary corrections to convert space vehicle time to GPS time. The largest unit
of GPS time is one week, defined as 604,800 sec. Additional details on the satellite
clock correction are given in Section 6.2.2.1.

The atomic clocks in the satellites are affected by both special relativity (the satel-
lite’s velocity) and general relativity (the difference in the gravitational potential at the
satellite’s position relative to the potential at the earth’s surface). Jorgensen (1986)
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gives a discussion in lay terms of these effects and identifies two distinct parts in
the relativity correction. The predominant portion is common to all satellites and
is independent of the orbital eccentricity. The respective relative frequency offset is
Δf ∕ f = −4.4647 × 10−10. This offset corresponds to an increase in time of 38.3 μs
per day; the clocks in orbit appear to run faster. The apparent change in frequency is
Δ f = 0.0045674 Hz at the fundamental frequency of 10.23 MHz. The frequency is
corrected by adjusting the frequency of the satellite clocks in the factory before launch
to 10.22999999543 MHz. The second portion of the relativistic effect is proportional
to the eccentricity of the satellite’s orbit. For exact circular orbits, this correction is
zero. For GPS orbits with an eccentricity of 0.02 this effect can be as large as 45 ns,
corresponding to a ranging error of about 14 m. This relativistic effect can be com-
puted from a simple mathematical expression that is a function of the semimajor axis,
the eccentricity, and the eccentric anomaly (see Section 6.2.2). In relative positioning
as typically carried out in surveying, the relativistic effects cancel for all practical
purposes.

The precision P(Y)-code is used for military navigation. It is a pseudorandom noise
(PRN) code which itself is the modulo-2 sum of two other pseudorandom codes. The
P(Y)-code does not repeat itself for 37 weeks. Thus, it is possible to assign weekly
portions of this code to the various satellites. As a result, all satellites can transmit
on the same carrier frequency and yet can be distinguished because of the mutually
exclusive code sequences being transmitted. All codes are initialized once per GPS
week at midnight from Saturday to Sunday, thus creating, in effect, the GPS week
as a major unit of time. The L1 and L2 carriers are both modulated with the same
P(Y)-code.

The period of the coarse/acquisition (C/A) code is merely 1 ms and consists of
1023 bits. Each satellite transmits a different set of C/A-codes. These codes are cur-
rently transmitted only on L1. The C/A-codes belong to the family of Gold codes,
which characteristically have low cross-correlation between all members. This prop-
erty makes it possible to rapidly distinguish among the signals received simultane-
ously from different satellites.

One of the satellite identification systems makes use of the PRN weekly number.
For example, if one refers to satellite PRN 13, one refers to the satellite that transmits
the thirteenth weekly portion of the PRN-code. The short version of PRN 13 is SV
13 (SV=space vehicle). Another identification system uses the space vehicle launch
number (SVN). For example, the identification of PRN 13 in terms of launch number
is NAVSTAR 9, or SVN 9.

5.2.2.1 Signal Structure In electronics, modulation is used for transferring a
low-frequency information signal to the radio frequency harmonic wave, which is
capable of traveling through space. The wave is called “carrier” because it is used
as a media for carrying information. The carrier is modulated by several codes and
the navigation (data) message. There are several commonly used digital modulation
methods: amplitude shift keying (ASK), frequency shift keying (FSK), and phase
shift keying (PSK). The PSK is distinguished further as binary PSK (BPSK), quadra-
ture PSK (QPSK or 4-PSK), 8-PSK, and binary offset carrier modulation (BOC).
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Figure 5.2.1 Digital modulation methods.

More complex modulation schemes referred to as quadrature amplitude modulation
(QAM), which combine ASK and PSK, are used in telecommunication. For example
16-QAM is represented by the constellation of 16 points on the complex plain, which
means different amplitudes and different phase shifts.

GPS uses BPSK, QPSK, and BOC. Figure 5.2.1 briefly demonstrates some of the
BPSK principles involved. The figure shows an arbitrary digital data stream consist-
ing of binary digits 0 and 1. These binary digits are also called chips, bits, codes,
or pulses. In the case of GPS, the digital data stream contains the navigation mes-
sage or the pseudorandom sequences of the codes. The code sequences look random
but actually follow a mathematical formula. ASK corresponds to an on/off operation.
The digit 1 might represent turning the carrier on and 0 might mean turning it off.
FSK implies transmission on one or the other frequency. The transmitting oscillator
is required to switch back and forth between two distinct frequencies. In the case of
PSK, the same carrier frequency is used, but the phase changes abruptly. With BPSK,
the phase shifts 0∘ and 180∘.

Figure 5.2.2 shows two data streams. The sequence (a) could represent the navi-
gation data chipped rate of 50 bits per seconds (bps), and (b) could be the C/A-code
or the P(Y)-code chipped at the 1.023 MHz or 10.23 MHz, respectively. The times of
bit transition are aligned. The navigation message and the code streams have signif-
icantly different chipping rates. A chipping rate of 50 bps implies 50 opportunities
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Figure 5.2.2 Modulo-2 addition of binary data streams.

per second for the digital stream to change from 1 to 0 and vice versa. Within the
time of a telemetry chip there are 31,508,400 L1 cycles, 20,460 C/A-code chips, and
204,600 P(Y)-code chips. Looking at this in the distance domain, one telemetry chip
is 5950 km long, whereas the lengths of the C/A and P(Y)-codes are 293 and 29.3 m,
respectively. Thus, the P(Y)-code can change the carrier by 180∘ every 29.3 m, the
C/A-code every 293 m, and the telemetry every 5950 km.

One of the tasks to be accomplished is reading the navigation message at the
receiver. We need this information to compute the positions of the satellites. To
accomplish this, the data streams (a) and (b) in Figure 5.2.2 are modulo-2 added
before transmission at the satellite. Modulo-2 addition follows the rules

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0 (5.2.1)

The result is labeled (c). The figure also shows the phase history of the transmitted
carrier. Whenever a binary 1 occurs in the 50 bps navigation data stream, the
modulo-2 addition inverts 20,460 adjacent digits of the C/A-code. A binary 1
becomes 0 and vice versa. A binary 0 leaves the next 20,460 C/A-codes unchanged.
Let the receiver reproduce the original code sequence that is shifted in time to match
the transmitted code. We can then modulo-2 add the receiver-generated code with the
received phase-modulated carrier. The sum is the demodulated 50 bps telemetry data
stream.

The BPSK modulation of the harmonic wave is more conveniently expressed as
multiplication. If we represent the binary signal by 1 and −1 instead of 0 and 1, the
BPSK modulation converts into a product with the harmonic wave. Conversion of the
binary {0, 1} signal b, following the modulo-2 addition rule (5.2.1), into the {1,−1}
signal s, following the multiplication rule 1 ⋅ 1 = 1, 1 ⋅ (−1) = −1, (−1) ⋅ 1 = −1, and
(−1) ⋅ (−1) = 1, is expressed as

s = ei𝜋b (5.2.2)
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Here i is an imaginary unit and the complex exponent is defined as eix = cos x +
i sin x. The last expression results in ei𝜋0 = 1, ei𝜋1 = −1, and

ei𝜋(b1⊕b2) = ei𝜋b1 ei𝜋b2 (5.2.3)

The last identity states that sequential application of BPSK modulation is equivalent
to the product of the modulating codes. In what follows we assume that the conversion
(5.2.2) has already been done and two sequential BPSK modulations are expressed
as multiplication.

The modulo-2 addition method must be generalized because the L1 carrier is mod-
ulated by three data streams: the navigation data, the C/A-codes, and P(Y)-codes.
Thus, the task of superimposing both code streams and the navigation data stream
arises. Two sequential superimpositions are not unique, because the C/A-code and
the P(Y)-code have identical bit transition epochs (although their length is different).
The solution is called quadrature phase shift keying (QPSK). The carrier is split into
two parts, the inphase component (I) and the quadrature component (Q). The latter is
shifted by 90∘. Each component is then binary phase modulated, the inphase compo-
nent is modulated by the P(Y)-code, and the quadrature component is modulated by
the C/A-code. Therefore, the C/A-code signal carrier lags the P(Y)-code carrier by
90∘. For the L1 and L2 carriers we have

Sp
1(t) = APPp(t)Dp(t) cos(2𝜋 f1t) + ACGp(t)Dp(t) sin(2𝜋 f1t) (5.2.4)

Sp
2(t) = BPPp(t)Dp(t) cos(2𝜋 f2t) (5.2.5)

In these equations, the superscript p identifies the PRN number of the satellite, AP,AC,
and BP are the amplitudes (power) of P(Y)-codes and C/A-code, Pp(t) is the pseudo-
random P(Y)-code, Gp(t) is the C/A-code (Gold code), and Dp(t) is the telemetry
or navigation data stream. The products Pp(t)Dp(t) and Gp(t)Dp(t) imply modulo-2
addition as suggested by (5.2.3).

In order to explain in greater detail how QPSK relates to (5.2.4), recall the complex
expression for the harmonic signal

A cos 2𝜋ft = Re(Aei2𝜋ft) (5.2.6)

The BPSK modulation of (5.2.6) by the signal (5.2.2) can be expressed as

As(t) cos 2𝜋ft = ARe(ei𝜋b(t)ei2𝜋ft) = ARe(ei2𝜋ft+i𝜋b(t)) (5.2.7)

Now rewrite (5.2.4) as

Sp
1(t) = APRe(ei2𝜋f1t+i𝜋bp

P
(t)) + ACRe(ei2𝜋f1t+i𝜋∕2+i𝜋bp

G
(t)) (5.2.8)

where Pp(t)Dp(t) = ei𝜋bp
P
(t) and Gp(t)Dp(t) = ei𝜋bp

G
(t). Further,

Sp
1(t) = Re

[
ei2𝜋f1t

(
APei𝜋bp

P
(t) + ACei𝜋bp

G
(t)+i𝜋∕2)] (5.2.9)



GLOBAL POSITIONING SYSTEM 233

Assume that AC = AP = A for the sake of simplicity, and consider the expression
Aei𝜋bp

P
(t) + Aei𝜋bp

G
(t)+i𝜋∕2 in the internal parentheses of (5.2.9). Denote

Q
(
bp

P(t), b
p
G(t)

)
= ei𝜋bp

P
(t) + ei𝜋bp

G
(t)+i𝜋∕2 (5.2.10)

taking values as shown in Table 5.2.2. The complex valued multiplier Q(bp
P(t), b

p
G(t))

can be considered as a QPSK modulation operator. Application of two 𝜋∕2-shifted
BPSK modulations is equivalent to one QPSK operator multiplying (modulating) the
carrier wave

Sp
1(t) = ARe

{
Q
(
bp

P(t), b
p
G(t)

)
ei2𝜋f1t

}
(5.2.11)

Figure 5.2.3 shows the symbols constellation, which the BPSK operator B(b) = ei𝜋b

and QPSK operator Q(b1, b2) occupy on the complex plane.
The P(Y)-code by itself is a modulo-2 sum of two pseudorandom data streams

X1(t) and X2(t − pT) as follows:

Pp(t) = X1(t)X2(t − pT) (5.2.12)

0 ≤ p ≤ 36 (5.2.13)

1
T

= 10.23 MHz (5.2.14)

Expression (5.2.12) defines the code according to the PRN number p. Using (5.2.13),
one can define 37 mutually exclusive P(Y)-code sequences. At the beginning of the
GPS week, the P(Y)-codes are reset. Similarly, the C/A-codes are the modulo-2 sum
of two 1023 pseudorandom bit codes as follows:

Gp(t) = G1(t)G2 [t − Np(10T)] (5.2.15)

TABLE 5.2.2 QPSK Modulation Operator Q
(
bp

P, b
p
G

)
.

bp
P = 0 bp

P = 1

bp
G = 0 1 + i −1 + i

bp
G = 1 1 − i −1 − i

Figure 5.2.3 B(b) and Q(b1,b2) constellations on the complex plane.
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Gp(t) is 1023 bits long or has a 1 ms duration at a 1.023 Mbps bit rate. The Gp(t) chip
is 10 times as long as the X1 chip. The G2-code is selectively delayed by an integer
number of chips, expressed by the integer Np, to produce 36 unique Gold codes, one
for each of the 36 different P(Y)-codes.

The actual generation of the codes X1, X2, G1, and G2 is accomplished by a feed-
back shift register (FBSR). Such devices can generate a large variety of pseudo-
random codes. These codes look random over a certain interval, but the feedback
mechanism causes the codes to repeat after some time. Figure 5.2.4 shows a very
simple register. A block represents a stage register whose content is in either a one or
zero state. When the clock pulse is input to the register, each block has its state shifted
one block to the right. In this particular example, the output of the last two stages is
modulo-2 added, and the result is fed back into the first stage and modulo-2 added to
the old state to create the new state. The successive states of the individual blocks,
as the FBSR is stepped through a complete cycle, are shown in Table 5.2.3. The ele-
ments of the column represent the state of each block, and the successive columns
represent the behavior of the shift register as the succession of timing pulses cause it
to shift from state to state. In this example, the initial state is (0001). For n blocks,
2n − 1 states are possible before repetition occurs. The output corresponds to the state
of the last block and would represent the PRN code, if it were generated by such a
four-stage FBSR.

The shift registers used in GPS code generation are much more complex. They
have many more feedback loops and many more blocks in the sequence. The
P(Y)-code is derived from two 12-stage shift registers, X1(t) and X2(t), having
15,345,000 and 15,345,037 stages (chips), respectively. Both registers continuously

Figure 5.2.4 Simple FBSR.

TABLE 5.2.3 Output of FBSR.

x1 0 1 0 0 · · · 1 0 0 0
x2 0 0 1 0 · · · 1 1 0 0
x3 0 0 0 1 · · · 1 1 1 0
x4 1 0 0 0 · · · 1 1 1 1
Output 1 0 0 0 · · · 1 1 1 1
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recycle. The modulo-2 sum of both registers has the length of 15,345,000 times
15,345,037 chips. At the chipping rate of 10.23 MHz, it takes 266.4 days to complete
the whole P(Y)-code cycle. It takes 1.5 s for the X1 register to go through one cycle.
The X1 cycles (epochs) are known as the Z count.

The bandwidth terminology is often used in connection with pseudorandom noise
modulation. Let T denote the duration of the chip (rectangular pulse), so then the
bandwidth is inverse proportional to T . Therefore, shorter chips (pulses) require
greater bandwidth and vice versa. If we subject the rectangular pulse function to a
Fourier transform, we obtain the well-known sinc (sine-cardinal) function

S(Δf , fc) =
1
fc

(
sin

(
𝜋 Δf ∕ fc

)
𝜋 Δf ∕ fc

)2

(5.2.16)

The symbol Δ f is the difference with respect to the carrier frequency L1 or L2. The
code frequency 10.23 MHz or 1.023 MHz, respectively, is denoted by fc. The factor
1∕ fc serves as a normalizing (unit area) scalar. The top panel of Figure 5.2.5 shows
the power spectral density (5.2.16) for the C/A- and P(Y)-codes expressed in watts
per hertz (W/Hz). This symmetric function is zero at multiples of the code rate fc. The
first lobe stretches over the bandwidth, covering the range of ± fc with respect to the
center frequency. The spectral portion signal beyond one bandwidth is filtered out at
the satellite and is not transmitted. Power ratios in electronics and in connection with
signals and antennas are expressed in terms of decibels (dB) on a logarithmic scale.
See Section 9.1.7 for additional detail on the dB scale. The power ratio in terms of
decibel units is defined as

g[dB] = 10 log 10
P2

P1
(5.2.17)

Absolute power can be expressed with respect to a unit power P1. For example, the
units dBW or dBm imply P1 = 1 W or P1 = 1 mW, respectively. Frequently, the rela-
tion

g[dB] = 20 log 10
V2

V1
(5.2.18)

is seen. In (5.2.18), the symbols V1 and V2 denote voltages. Both decibel expres-
sions are related by the fact that the square of voltage divided by resistance
equals power. The bottom panel of Figure 5.2.5 shows the power spectral density
(5.2.16) for the C/A- and P(Y)-codes, expressed in decibels relative to watt per
hertz (dBW/Hz).

The power of the received GPS signals on the ground is lower than the background
noise (thermal noise). The specifications call for a minimum power at the user on
the earth of −160 dBW for the C/A-code, −163 dBW for the P(Y)-code on L1, and
−166 dBW for the P(Y)-code on L2. To track the signal, the receiver correlates the
incoming signal by a locally generated replica of the code and accumulates results
over certain time. This correlation and accumulation process results in a signal that
is well above the noise level.



236 SATELLITE SYSTEMS

Figure 5.2.5 Power spectral densities of C/A (dashed line) and P(Y) codes (solid line).
Top panel is in W/Hz and bottom panel is in dBW/Hz.
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5.2.2.2 Navigation Message The Master Control Station, located near
Colorado Springs, uses data from a network of monitoring stations around the
world to monitor the satellite transmissions continuously, compute the broadcast
ephemerides, calibrate the satellite clocks, and periodically update the navigation
message. This “control segment” ensures that the SPS and PPS are available as
specified in SPS (2008).

The satellites transmit a navigation message that contains, among other things,
orbital data for computing the positions of all satellites. A complete message consists
of 25 frames, each containing 1500 bits. Each frame is subdivided into five 300-bit
subframes, and each subframe consists of 10 words of 30 bits each. At the 50 bps rate
it takes 6 seconds to transmit a subframe, 30 sec to complete a frame, and 12.5 min for
one complete transmission of the navigation message. The subframes 1, 2, and 3 are
transmitted with each frame. Subframes 4 and 5 are each subcommutated 25 times.
The 25 versions of subframes 4 and 5 are referred to as pages 1 through 25. Thus,
each of these pages repeats every 12.5 min.

Each subframe begins with the telemetry word (TLM) and the handover word
(HOW). The TLM begins with a preamble and otherwise contains only information
that is needed by the authorized user. The HOW is a truncation of the GPS time
of week (TOW). HOW, when multiplied by 4, gives the X1 count at the start of the
following subframe. As soon as a receiver has locked to the C/A-code, the HOW
word is extracted and is used to identify the X1 count at the start of the following
subframe. In this way, the receiver knows exactly which part of the long P(Y)-code is
being transmitted. P(Y)-code tracking can then readily begin, thus the term handover
word. To lock rapidly to the P(Y)-code, the HOW is included on each subframe (see
Figure 5.2.6).

Since military missions might require the jamming of L1, there is a need for equip-
ment capable of acquiring the P(Y)-code directly without the C/A-code by authorized

Figure 5.2.6 HOW versus X𝟏 epochs.
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users. Such functionality is provided to authorized users of receivers equipped with
selective availability antispoofing modules (SAASM). All new military receivers
deployed after the end of September 2006 must use SAASM. SAASM does not
provide any additional antijam capability, because it uses exactly the same signal in
space as current GPS signals (power and modulation). The antijam capabilities will
be provided by the M-code, which is a part of GPS modernization available in the
Block II R-M.

GPS time is directly related to the X1 counts of the P(Y)-code. The Z count is a
29-bit number that contains several pieces of timing information. It can be used to
extract the HOW, which relates to the X1 count as discussed above, and the TOW,
which represents the number of seconds since the beginning of the GPS week. A
full week has 403,199 X1 counts. The Z count gives the current GPS week number
(modulo-1024). The beginning of the GPS week is offset from midnight UTC by
the accumulated number of leap seconds since January 5–6, 1980, the beginning of
GPS time.

Subframe 1 contains the GPS week number, space vehicle accuracy and health
status, satellite clock correction terms af 0, af 1, af 2 and the clock reference time toc
(Section 5.3.1), the differential group delay, TGD, and the issue of date clock (IODC)
term. The latter term is the issue number of the clock data set and can be used to
detect any change in the correction parameters. The messages are updated usually
every 4 h.

Subframes 2 and 3 contain the ephemeris parameters for the transmitting satellite.
The various elements are listed in Table 5.2.4. These elements are a result of
least-squares fitting of the predicted ephemeris over a well-specified interval of
time. The issue of the data ephemeris (IODE) term allows users to detect changes
in the ephemeris parameters. For each upload, the control center assigns a new
number. The IODE is given in both subframes. During the time of an upload, both

TABLE 5.2.4 Elements of Subframes 2 and 3.

M0 Mean anomaly at reference time
Δn Mean motion difference from computed value
e Eccentricity√

a Square root of the semimajor axis
𝛺0 Longitude of ascending node of orbit plane at beginning of week
i0 Inclination angle at reference time
𝜔 Argument of perigee
𝛺̇ Rate of right ascension
IDOT Rate of inclination angle
Cuc,Cus,Crc,Crs,Cic,Cis Amplitude of second-order harmonic perturbations
toe Ephemeris reference time
IODE Issue of data (ephemeris)
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IODEs will have different values. Users should download ephemeris data only
when both IODEs have the same value. The broadcast elements are used with
the algorithm of Table 5.2.5. The results are coordinates of the phase center of
the space vehicle’s antennas in the World Geodetic System of 1984 (WGS84).
The latter is an ECEF coordinate system that is very closely aligned with the
international terrestrial reference frame (ITRF). There is no need for an explicit polar
motion rotation, since the respective rotations are incorporated in the representation
parameters. However, when computing the topocentric distance, the user must
account for the rotation of the earth during the signal travel time from satellite
to receiver.

Subframes 4 and 5 contain special messages, ionospheric correction terms,
coefficients to convert GPS time to universal time coordinated (UTC), and almanac
data on pages 2–5 and 7–10 (subframe 4) and 1–24 (subframe 5). The ionospheric
terms are the eight coefficients {𝛼n, 𝛽n} referenced in Table 8.4.3. For accurate
computation of UTC from GPS time, the message provides a constant offset term,
a linear polynomial term, the reference time tot, and the current value of the leap
second. The almanac provides data to compute the positions of satellites other
than the transmitting satellite. It is a reduced-precision subset of the clock and
ephemeris parameters of subframes 1 to 3. For each satellite, the almanac contains
the following: toa, 𝛿i, af 0, af 1, e, 𝛺̇, a

1∕2, 𝛺0, 𝜔 and M0. The almanac reference time
is toa. The correction to the inclination 𝛿i is given with respect to the fixed value
i0 = 0.30 semicircles (= 54∘). The clock polynomial coefficients af 0 and af 1 are
used to convert space vehicle (SV) time to GPS time, following equation (6.2.4). The
remaining elements of the almanac are identical to those listed in Table 5.2.4. The
algorithm of Table 5.2.4 applies, using zero for all elements that are not included in
the almanac and replacing the reference time toe by toa.

The mean anomaly, the longitude of the ascending node, the inclination, and UTC
(if desired) are formulated as polynomials in time; the time argument is GPS time.
The polynomial coefficients are, of course, a function of the epoch of expansion. The
respective epochs are toc, toe, toa, and tot.

The navigation message contains other information, such as the user range error
(URE). This measure equals the projection of the ephemeris curve fit errors onto the
user range and includes effects of satellite timing errors.

5.2.3 GPS Modernization Comprising Block IIM, Block IIF, and
Block III

GPS modernization becomes possible because of advances in technology in the
satellite and the receiver. The additional signals transmitted by modernized satellites
improve the antijamming capability, increase protection against antispoofing, shorten
the time to first fix, and provide a civilian “safety of life” signal (L5) within the
protected Aeronautical Radio Navigation Service (ARNS) frequency band. The
new L2C signals increase signal robustness and resistance to interference and
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TABLE 5.2.5 GPS Broadcast Ephemeris Algorithm.

𝜇 = 3.986005 × 1014 m3∕s2 Gravitational constant for WGS84

𝛺̇e = 7.2921151467 × 10−5 rad∕s Earth’s rotation rate for WGS84

a =
(√

a
)2

Semimajor axis

n0 =

√
𝜇

a3
Computed mean motion—rad/s

tk = t − t∗oe Time from ephemeris reference epoch

n = n0 + Δn Corrected mean motion

Mk = M0 + ntk Mean anomaly

Mk = Ek − e sin Ek Kepler’s equation for eccentric anomaly

fk = tan −1

(√
1 − e2 sin Ek

cos Ek − e

)
True anomaly

Ek = cos −1

(
e + cos fk

1 + e cos fk

)
Eccentricity anomaly

𝜙k = fk + 𝜔 Argument of latitude

𝛿uk = Cus sin 2𝜙k + Cuc cos 2𝜙k

𝛿rk = Crc cos 2𝜙k + Crs sin 2𝜙k

𝛿ik = Cic cos 2𝜙k + Cis sin 2𝜙k

⎫⎪⎬⎪⎭ Second harmonic perturbations

uk = 𝜙k + 𝛿uk Corrected argument of latitude

rk = a (1 − e cos Ek) + 𝛿rk Corrected radius

ik = i0 + 𝛿ik + (IDOT) tk Corrected inclination

r′k = rk cos uk

y′k = rk sin uk

}
Positions in orbital plane

𝛺k = 𝛺0 + (𝛺̇ − 𝛺̇e) tk − 𝛺̇etoe Corrected longitude of ascending node

xk = x′k cos𝛺k − y′k cos ik sin𝛺k

yk = x′k sin𝛺k + y′k cos ik cos𝛺k

zk = y′k sin ik

⎫⎪⎬⎪⎭ Earth-fixed coordinates

Note: t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed
of light). Furthermore, tk shall be the actual total time difference between the time t and the epoch time toe,
and must account for beginning or end of week crossovers. That is, if tk is greater than 302,400, subtract
604,800 from tk. If tk is less than −302, 400 seconds, add 604,800 seconds to tk .
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allow longer integration times in the receiver to reduce tracking noise and increase
accuracy. The second civil frequency will eliminate the need to use inefficient squar-
ing, cross correlation, or other patented techniques currently used by civilians in
connection with L2. Once the GPS modernization is completed, the dual-frequency
or triple-frequency receivers are expected to be in common use and affordable to the
mass market.

At the same time, L1 and L2 are modulated with new military codes called the
M-codes. Although added to L1 and L2, they are spectrally separated from the civilian
codes and the old P(Y)-codes because they use more sophisticated binary modulation
called binary offset carrier (BOC) modulation. There is no military code planned
on L5.

The new L2C signal is described in IS-GPS-200G (2012), details on L5 signal are
found in IS-GPS-705C (2012), and a description of L1C is in IS-GPS-800C (2012).
For additional material, see Fontana et al. (2001a,b), Barker et al. (2000), and Pozzbon
et al. (2011).

5.2.3.1 Introducing Binary Offset Carrier (BOC) Modulation For con-
ventional rectangular spreading codes [which are the basis of the P(Y)-codes], the
C/A-code heritage signals, and the new L2C and L5 codes, the frequency bandwidth
is inversely proportional to the length of the chip. Modulating with faster chipping
rates to improve or add additional signals might be impractical because of frequency
bandwidth limitations. More advanced modulations have been studied recently that
better share existing frequency allocations with each other and with heritage sig-
nals by increasing spectral separation, and thus preserve the spectrum. Betz (2002)
describes binary-valued modulations, also referred to as binary offset carrier (BOC).
Block IIR-M and IIF satellites will transmit a new military M-code signal on L1 and
L2 that uses BOC. It is also used in Galileo and QZSS.

Definition of BOC is based on two frequencies, fc denoting the chipping (code) rate
and fs denoting the subcarrier frequency. Both carriers are multiples of 1.023 MHz,
fs = 𝛼 × 1.023 MHz, fc = 𝛽 × 1.023 MHz, and the designation BOC(𝛼, 𝛽) is used as
abbreviation. The complex envelope (i.e., the complex signal modulating the radio
frequency carrier) of BOC(𝛼, 𝛽) is expressed in Betz (2002) as

s(t) = ei𝜑0
∑

k

ak𝜇nTs
(t − knTs − t0)cTs

(t − t0) (5.2.19)

where {ak} is the data-modulated spreading code, which is binary for the binary
modulation case, cTs

(t) is the subcarrier — a periodic function with period 2Ts, and
𝜇nTs

(t) is a “spreading symbol” — a rectangular pulse lasting from 0 to nTs. Then n
is the number of half-periods of the subcarrier during which the spreading code value
remains the same, and the following relationships hold:

fc =
1

nTs
=

2
n

fs n =
2𝛼
𝛽

(5.2.20)
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The normalized power spectral density of the BOC modulation is written as
(Betz, 2002)

g(fs, fc,Δf ) =

⎧⎪⎪⎨⎪⎪⎩
fc

(
tan(𝜋 Δf ∕2fs) cos(𝜋 Δ f ∕ fc)

𝜋 Δf

)2

if n is odd

fc

(
tan(𝜋 Δ f ∕2 fs) sin(𝜋 Δ f ∕ fc)

𝜋 Δf

)2

if n is even

(5.2.21)

For example, the modulation BOC(10, 5) uses the subcarrier frequency and the
spreading code rate of 10.23 and 5.115 MHz, respectively. Furthermore, the value
n = 1 corresponds to the case of BPSK. For example, BOC(5,10) is BPSK(10), i.e.,
the BPSK modulation with 10.23 MHz spreading rate which is used for P(Y)-code.
The modulation BOC(0.5, 1) is a BPSK(1) used for L1 C/A, having 1.023 MHz
spreading rate.

A characteristic difference between the BOC and the conventional rectangular
spreading code modulation is seen in the power spectral densities of Figure 5.2.7. The
densities for BOC, in this case BOC(10,5), are maximum at the nulls of the P(Y)-codes.
Such a property is important for increasing the spectral separation of modulations.
The sum of the number of mainlobes and sidelobes between the mainlobes is equal
to n, i.e., twice the ratio of the subcarrier frequency to the code rate (5.2.20). As in
conventional BPSK the zero crossings of each mainlobe are spaced by twice the code

Figure 5.2.7 Spectra of signals, available in the L1 frequency band.
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rate, while the zero crossings of each sidelobe are spaced at the code rate. For example,
with n = 5 the BOC(5,2) modulations have three sidelobes between two mainlobes;
with n = 10 the BOC(5,1) modulations have eight sidelobes between two mainlobes.
In the case of n = 1 we have BOC( fc∕2, fc) and equations (5.2.21) and (5.2.16) giving
the same power spectral density, as already noted.

5.2.3.2 Civil L2C Codes It is the first civilian-use signal to be transmitted on
a frequency other than L1, used for the C/A signal. The new L2 is shared between
civil and military signals. To increase GPS performance for civilian users, the new
space vehicles IIR-M and IIF have two additional civil ranging codes, L2CM (civil
moderate length) and L2CL (civil long). As is the case for L1, the new L2 carrier
consists of two BPSK modulated carrier components that are inphase quadrature with
each other. The inphase carrier continues to be BPSK modulated by the bit train that
is the modulo-2 sum of the military P(Y)-code and the legacy navigation data Dp(t).
There are three options available for BPSK modulating the quadrature carrier (also
called the L2C carrier or the new L2 civil signal):

1. Chip-by-chip time multiplex combinations of bit trains consisting of the
modulo-2 sum of the L2CM code and a new navigation message structure
DC(t). The resultant bit trains are then combined with the L2CL code and used
to modulate the L2 quadrature carrier. The IIR-M space vehicles will have the
option of using the old navigation message Dp(t) instead of DC(t).

2. Modulo-2 sum of the legacy C/A-code and legacy navigation data Dp(t).

3. C/A-code with no navigation data.

The options are selectable by a ground command. The chipping rate for L2CM and
L2CL is 511.5 kbps. L2CM is 10,230 chips long and lasts 20 ms, whereas L2CL
has 767,250 chips and lasts 1500 ms. L2CL is 75 times longer than L2CM. DC(t)
is the new navigation data message and has the same structure as the one adopted for
the new L5 civil signal. It is both more compact and more flexible than the legacy
message.

The spectra of signals available on the L2 band [L2C, L2 P(Y), and L2 M-code]
look the same as shown in Figure 5.2.7, excluding the TMBOC signal available only
on L1 as L1C. Note that the spectra of signals are shown zero centered which cor-
respond to the base-band representation, only reflecting the modulation. The actual
spectra reflecting their allocation in the radio-frequency (RF) signal are shifted from
zero to L1 or L2, depending on signals.

5.2.3.3 Civil L5 Code The carrier frequency of L5 is 1176.45 MHz, which is
the new third frequency. It is a civilian safety of life signal, and the frequency band
is protected by the International Telecommunication Union (ITU) for aeronautical
radionavigation service.

As is the case for L1, two L5 carriers are inphase quadrature and each is
BPSK(10) modulated separately by bit trains. The bit train of the inphase component
is a modulo-2 sum of PRN codes and navigation data. The quadraphase code is a
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separate PRN code but has no navigation data. The chipping rate of the codes is
10.23 MHz. Each code is a modulo-2 sum of two subsequences, whose lengths are
8190 and 8191 chips that recycle to generate 10,230 chip codes. The navigation
data is encoded by the error correcting code, which improves availability of the
navigation data. The bandwidth of the L5 code is 24 MHz. Wider bandwidth provides
a higher accuracy of ranging. It also has higher transmitting power than L1 and L2,
approximately 3 dB.

5.2.3.4 M-Code One of the underlying objectives behind the GPS moderniza-
tion is the development of a new military signal, protecting military use of GPS by
the United States and its allies and preventing unauthorized use of GPS. On the other
hand, the peaceful use of the civil radionavigation service must be preserved.

The new military M-codes uses BOC(10,5), which means the subcarrier frequency
and the spreading code rate will be 10.23 and 5.115 MHz, respectively, as well as
quadrature phase modulated, i.e., they share the same carrier with the civilian signals.
The idea of spectrum separation preserving the legacy signals [civilian L1 C/A and
militaryL1/L2 P(Y)] and new signals (L1C and L2C), is illustrated in Figure 5.2.7.

5.2.3.5 Civil L1C Code The prospective L1C code occupying the L1 band will
be transmitted by Block III satellites. It is designed in such a way that it has very little
impact on the military M-code. The time-multiplexed BOC (TMBOC) combining
BOC(1,1) and BOC(6,1) used for L1C signal, has the spectral density estimated as

gL1C(Δf ) =
10
11

gBOC(1,1)(Δf ) +
1
11

gBOC(6,1)(Δf ) (5.2.22)

where gBOC(1,1)(Δf ) and gBOC(6,1)(Δf ) are defined by (5.2.21) for fs = 1.023 MHz,
fc = 1.023 MHz, fs = 6.138 MHz, fc = 1.023 MHz, respectively. It is shown in
Figure 5.2.7 by the dashed line.

There are many sources of detailed description of this signal, see Macchi-Gernot
et al. (2010), for example, while the full description can be found in the IS-GPS-800C
(2012) document. The signal is composed of two channels: a pilot channel (denoted
by L1Cp) and a data channel (denoted L1CD) transmitted inphase quadrature. The
pilot channel combines a spreading code and an overlay, or secondary code, denoted
by L1CO. The overlay code is generated using FBSR. It is transmitted at 100 bits/s
and contains 1800 bits, thus lasting 18 seconds. The overlay code is unique for each
PRN. The data channel includes a spreading code and a navigation message. The
spreading codes of the pilot and data channels are time synchronized. The spreading
codes are broadcasted at the same chipping rate as L1 C/A, that is, 1.023 Mchips/s.
On both the pilot and data channels, the spreading codes have a period of 10 ms,
and therefore contain 10,230 chips. The L1C spreading codes are generated using a
modified Weil code. We refer the reader to the Chapter 3.2.2.1.1 of the IS-GPS-800C
(2012) for more detail about the Weil code.

The modulation on L1CD (data channel) is a BOC(1,1). Its two main lobes are
centered at ±1.023 MHz relative to the central frequency (see dashed line plot in
Figure 5.2.7) Therefore, a bandwidth of 4.092 MHz is needed to transmit most of
its power. The modulation on L1Cp is a TMBOC, which consists of 29/33 chips
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modulated using a BOC(1,1) and others using a BOC(6,1). When BOC(6,1) is used,
the number of chips (and correspondingly the chipping rate) is increased by a fac-
tor of six compared to the BOC(1,1), for a time interval equivalent to one chip of
the original ranging code. This increased chipping rate has the effect of requiring an
increased sampling frequency to extract all the information, because the minimum
necessary bandwidth is 14.322 MHz; please look at the third side lobes of the dashed
line in Figure 5.2.7.

The L1C navigation message is transmitted on the data channel at 100 symbols per
second. The low-density parity-check code (LDPC) with the 1

2
code rate is used to

encode the navigation data. LDPC is one of the error correction codes, see Gallager
(1963). Code rate is defined as the ratio between the number of bits necessary to trans-
mit the information and the total number of bits. Encoding aims to improve reliability
and antierror protection. Therefore, despite the fact that the message is broadcasted
at twice the chipping rate than on L1 C/A, effectively the navigation message rate is
the same 50 symbols per second due to the 1

2
code rate.

5.3 GLONASS

The Russian GLONASS (Global’naya Navigatsionnaya Sputnikovaya Sistema)
global navigation satellite system traces its beginnings to 1982, when its first satellite
was launched. The time line of the space segment is shown in Figure 5.3.1 by a

Figure 5.3.1 Operational satellites for GPS, GLONASS, Galileo, and Beidou systems by
years. Data from various Internet documents.
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dotted line. The number of GPS satellites is shown by a black line for comparison.
For technical information about GLONASS, see the interface control document
GLONASS (2008). Additional details on the system and its use, plus many references
to relevant publications on the subject, are available in Roßbach (2001), Zinoviev
(2005), and other papers published in proceedings at various scientific meetings.

Like GPS, GLONASS was intended to encompass at least 24 satellites. The nom-
inal orbits of the satellites are in 3 orbital planes separated by 120∘; the satellites
are equally spaced within each plane with nominal inclination of 64.8∘. The nominal
orbits are circular with each radius being about 25,500 km. This translates into an
orbital period of about 11 h and 15 min.

A major difference between GLONASS and GPS is that each GLONASS satellite
transmits at its own carrier frequency. Let p denote the channel number that is specific
to the satellite, then

f p
1 = 1602 + 0.5625p MHz (5.3.1)

f p
2 = 1246 + 0.4375p MHz (5.3.2)

with
f p
1

f p
2

=
9
7

(5.3.3)

The original GLONASS signal structure used 1 ≤ p ≤ 24, covering a frequency
range in L1 from 1602.5625 to 1615.5 MHz. However, receivers have an interfer-
ence problem in the presence of mobile-satellite terminals that operate at the 1610 to
1621 MHz range. To avoid such interference, it has been suggested that the channel
numbers will be limited to −7 ≤ p ≤ 6 and that satellites located in antipodal slots
of the same orbital plane may transmit at the same frequency (GLONASS, 2008).
Currently, the L1 frequency covers the range from 1598.0625 to 1605.375 MHz and
L2 frequency covers the range from 1242.9375 to 1248.625 MHz.

The L1 and L2 frequencies are coherently derived from common onboard
frequency standard running at 5.0 MHz. In order to account for relativistic effects,
this value is adjusted to 4.99999999782 MHz. As is the case with GPS, there are
C/A-codes on L1 and P-codes on L1 and L2, although the code structures differ.
The satellite clocks are steered according to UTC(SU), where SU stands for Russia
(former Soviet Union). The GLONASS satellite clocks, therefore, are adjusted for
leap seconds.

Two different types of signals are transmitted by GLONASS satellites: Standard
precision (ST) and high precision (W) in both the L1 and L2 bands. The GLONASS
standard accuracy signal, also known as C/A-code, has a clock rate of 0.511 MHz and
is designed for use by civil users. The high accuracy signal (P-code) has a clock rate
of 5.11 MHz and is modulated by a special code that is only available to authorized
users.

The GLONASS broadcast navigation message contains satellite positions and
velocities in the PZ90 ECEF geodetic system and accelerations due to luni-solar
attraction at epoch t0. These data are updated every 30 min and serve as initial
conditions for orbital integration. The satellite ephemeris at the epoch tb with
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|tb − t0 | ≤ 15 min is calculated by numerical integration of the differential equations
of motion (5.1.62). Because the integration time is short, it is sufficient to consider
a simplified force model for the acceleration of the gravitational field of the earth.
Since the gravitational potential of the earth is in first approximation rotationally
symmetric, the contributions of the tesseral harmonics m ≠ 0 are neglected in
(5.1.64). Since C20 ≫ Cn0 for n > 2, we neglect the higher-order zonal harmonics.
With these simplifications the disturbing potential (5.1.64) becomes

R =
𝜇a2

e

r3
C20P2(cos 𝜃) =

𝜇a2
e

r3
J2P2(cos 𝜃)

=
𝜇a2

e

r3
J2

(3
2

cos 2 𝜃 −
1
2

)
(5.3.4)

In expression (5.3.4), we switched from the fully normalized spherical harmonic coef-
ficients to regular ones and substituted the expression for the Legendre polynomial
P2(cos 𝜃). Since Z = r cos 𝜃, equation (5.3.4) can be rewritten as

R =
𝜇a2

e

r3
J2

(
3
2

Z2

r2
−

1
2

)
(5.3.5)

Recognizing that r = (X2 + Y2 + Z2)1∕2, we can readily differentiate and compute
the acceleration Ẍg as per (5.1.63),

Ẍ = −
𝜇

r3
X −

3
2

J2
𝜇a2

e

r5
X

(
1 − 5

Z2

r2

)
+ Ẍs+m (5.3.6)

Ÿ = −
𝜇

r3
Y −

3
2

J2
𝜇a2

e

r5
Y

(
1 − 5

Z2

r2

)
+ Ÿs+m (5.3.7)

Z̈ = −
𝜇

r3
Z −

3
2

J2
𝜇a2

e

r5
Z

(
1 − 5

Z2

r2

)
+ Z̈s+m (5.3.8)

These equations are valid in the inertial system (X) and could be integrated. The
PZ90 reference system, however, is ECEF and rotates with the earth. It is possible to
rewrite these equations in the ECEF system (x). Since the integration interval is only
±15 min, we can neglect the change in precession, nutation, and polar motion and
only take the rotation of the earth around the z axis into consideration. The final form
of the satellite equation of motion then becomes

ẍ = −
𝜇

r3
x −

3
2

J2
𝜇a2

e

r5
x

(
1 − 5

z2

r2

)
+ 𝜔2

3x + 2𝜔3ẏ + ẍs+m (5.3.9)

ÿ = −
𝜇

r3
y −

3
2

J2
𝜇a2

e

r5
y

(
1 − 5

z2

r2

)
+ 𝜔2

3y + 2𝜔3ẋ + ÿs+m (5.3.10)

z̈ = −
𝜇

r3
z −

3
2

J2
𝜇a2

e

r5
z

(
1 − 5

z2

r2

)
+ z̈s+m (5.3.11)
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Note that (ẍ, ÿ, z̈)s+m are the accelerations of the sun and the moon given in the
PZ90 frame. These values are assumed constant when integrating over the ±15
min interval. In order to maintain consistency, the values for 𝜇, ae, J2, and 𝜔3
should be adopted from GLONASS (2008). This document recommends a four-step
Runge-Kutta method for integration.

Various international observation campaigns have been conducted to establish
accurate transformation parameters between WGS84 and PZ90, with respect to the
ITRF. Efforts are continuing to include the precise GLONASS ephemeris into the
IGS products.

The GLONASS program is also undergoing modernization. The new series of
satellites are called GLONASS-M. GLONASS-M satellites have better onboard clock
stability and a civil code (also called L2C) available at the L2 frequency band. Starting
with GLONASS-K1, the first code division multiple access (CDMA) signal becomes
available at the frequency band L3 = 1201 MHz. GLONASS-K2, planned for launch
starting in 2014, will provide CDMA codes on L1, L2, and L3 bands.

GLONASS satellites have been used successfully for accurate baseline determina-
tion since the mid-1990s (Leick et al., 1995). The additional difficulties encountered
in baseline processing because of the GLONASS satellites transmitting on different
carrier frequencies will be discussed in Chapter 7.

5.4 GALILEO

Galileo, the European global navigation satellite system, is designed to provide a
highly accurate, guaranteed, and global positioning service under civilian control that
is funded by civilian European institutions. It is interoperable with other global satel-
lite navigation systems. The full constellation is expected to consist of 27 operational
and 3 spare space vehicles, located in 3 orbital planes with inclination of 56∘, and
nominal circular orbits with a semimajor axis of about 29,600 km.

On March 26, 2002, the European Council agreed on the launch of the Euro-
pean Civil Satellite Navigation Program, called Galileo. Basic approaches and critical
algorithms were tested by 2003. Two initial satellites, called GIOVE (Galileo In-Orbit
Validation Elements) were launched in 2005. They were built for the European Space
Agency (ESA) for testing Galileo technology in orbit and eventually to become two
satellites of the full Galileo constellation. Four additional satellites were launched by
2012. The full constellation of 30 satellites is planned for completion by 2020. The
number of Galileo satellites by years is shown in Figure 5.3.1 by a dual solid line.

It can be seen from Figure 5.4.1 that the Galileo E5A signals share the frequency
band with GPS L5. The adjacent region is reserved for Galileo E5B. At the World
Radio Conference (WRC) 2000 in Istanbul, Turkey, several decisions were made
that deal with the increasing demand for frequency space. For example, the WRC
expanded the bottom end of one of the radio navigation satellite services (RNSS)
bands to between 1164 and 1260 MHz, putting E5A, E5B, and L5 under RNSS
protection. Galileo has also been assigned the range 1260 to 1300 MHz, labeled
E6, at the lower L-band region. At the upper L-band, the band labeled El has been
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Figure 5.4.1 Allocation of GPS, GLONASS, Galileo, Compass (Beidou), QZSS,
IRNSS, and SBAS frequency bands. The S-band (2492.028 MHz) IRNSS signal is not
presented.

reserved for Galileo and is centered at the GPS L1 band. Using BOC modulation
techniques, the Galileo signal has been constructed to have maximum spectral
density at both sides of the E1 band, but covering the whole El band.

In order to make Galileo and GPS compatible, i.e., allow for the use of common
receiver components, the carrier frequency for Galileo E1 is 1575.42 MHz, which is
the same as GPS L1. Similarly, E5A and L5 use 1176.45 MHz as the common carrier
frequency. The modulation (inphase and quadraphase) codes and chipping rate for
the various carriers are summarized in Table 5.4.1

TABLE 5.4.1 Galileo Signal Parameters.

Signal
Carrier
Frequency (MHz)

Receiver
Reference
Bandwidth (MHz)

Ranging Code
Chip rate
(Mchip/s) Modulation

E1 1575.420 24.552 2.046 BOC(2,2)
E6 1278.750 40.920 5.115 BOC(10,5), BPSK(5)
E5 1191.795 51.150 AltBOC(15,10)
E5a 1176.450 20.460 10.23
E5b 1207.140 20.460 10.23
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The Galileo E5 signal employs a constant envelope alternate binary offset carrier
(AltBOC) modulation. The subcarrier waveforms are chosen in such a way that a
constant envelope at the transmitter is obtained. The result of this AltBOC modula-
tion is a split spectrum around the center frequency, as shown in Figure 5.4.1. Each
sideband comprises two pseudorandom codes modulated onto the orthogonal com-
ponents. The inphase components E5AI and E5BI carry the data modulation. The
quadrature components E5AQ and E5BQ are pilot signals. While being two parts of
the E5 signal, the E5A and E5B signals can be processed independently by the user
receiver as though they were two separate QPSK signals with a carrier frequency of
1176.45 and 1207.14 MHz, respectively.

Galileo employs the same ephemerides structure as used by GPS. The user algo-
rithm for ephemeris determination is identical to one used for GPS (see Table 5.2.5).
The convolutional code with the code rate 1

2
is used to increase reliability of the

navigation data transmission.

5.5 QZSS

The Japanese quasi zenith satellite system (QZSS) constellation consists of quasi-
zenith satellites orbiting the earth. The constellation buildup started in September
2010 with the launch of the first satellite Michibiki. It achieved full functionality in
late 2011. During the initial phase of technical verification and application demonstra-
tion, the goal was to demonstrate that combining GPS and QZSS would significantly
improve positioning availability in urban canyon areas of Tokyo.

The government of Japan decided in 2011 to accelerate the QZSS deployment
to reach a four-satellite constellation by 2020, while aiming at a final seven-satellite
constellation. In March 2013, the Japanese Cabinet Office formally announced a large
contract award to Mitsubishi to build one geostationary satellite and two additional
quasi-zenith satellites. The three satellites are scheduled to be launched before 2018.
In addition, another contract was also signed with a special-purpose company (led
by NEC and supported by Mitsubishi UFJ Lease & Finance and Mitsubishi Electric
Corporation) to fund the design and construction of the ground control system, as
well as its verification and maintenance for a period of 15 years.

Three satellites are planned to be placed in highly elliptical orbit (HEO). The
perigee altitude is about 32,000 km and the apogee altitude is about 40,000 km, and
all of them will pass over the same “figure-8” ground as shown in Figure 5.5.1. The
system is designed so that at least one satellite out of three is always near zenith
over Japan. Given its orbit, each satellite appears almost overhead most of the time
(i.e., more than 12 h a day with an elevation above 70∘). This gives rise to the term
“quasi-zenith” for which the system is named. The design life of the quasi-zenith
satellites is 10 years. Table 5.5.1 lists the signals planned for QZSS.

The signals L1-C/A, L1C, L2C, and L5 are designed to be compatible with
existing GNSS receivers, in order to increase availability of both standalone and
high-precision carrier phase differential position services. For example, they allow
forming across-satellite, across-receiver mixed GPS-QZSS and Galileo-QZSS
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Figure 5.5.1 The QZSS ground track.

TABLE 5.5.1 QZSS Signal Parameters.

Signal

Carrier
Frequency
(MHz)

Receiver
Reference
Bandwidth (MHz)
(approximate)

Ranging Code
Chip rate
(Mchip/s) Modulation

L1 C/A 1575.42 24 1.023 BPSK(1)
L1C 1575.42 24 1.023 BOC(1,1)
L1-SAIF 1575.42 24 1.023 BPSK(1)
L2C 1227.60 24 1.023 BPSK(1)
LEX 1278.75 42 5.115 BPSK(5)
L5 1176.45 24 10.23 BPSK(10)
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differences. Experiments with receivers by Javad GNSS show successful resolution
of corresponding mixed double difference ambiguities (Rapoport, private commu-
nication). In other words, QZSS can be considered an extension of GPS for point
and high-precision services. The signal L1-SAIF (submeter-class augmentation with
integrity function) is intended to provide submeter augmentation and interoperability
with GPS and SBAS (satellite based augmentation system). The LEX signal is the
QZSS L-band experimental signal for high-precision service at the 3 cm level. It is
compatible with the Galileo E6 signal.

The multi-constellation GNSS interoperable signals L1 C/A, L1C, L2C, and L5
are to be provided free of charge. Compatibility is a mandatory requirement for the
QZSS system (working in the same frequency bands as other GNSS systems without
harmful interference). For GPS performance enhancement signals, a charging policy
for L1-SAIF and LEX signals is under consideration.

Compared to standalone GPS, the system combining GPS and QZSS will improve
positioning performance via correction data provided through submeter enhancement
signals L1-SAIF and LEX. The ephemeris algorithm is basically the same as used for
GPS and described in Table 5.2.4. Detailed descriptions can be found in QZSS (2013).
To increase reliability of the navigation data transmission, the LDPC code with the 1

2
code rate is used.

5.6 BEIDOU

The Chinese Compass Navigation Satellite System (CNSS), also called Beidou-2,
is a satellite navigation system that will also be capable of providing positioning,
navigation, and timing services to users on a continuous worldwide basis. Since
beginning the upgrade in 1997 from a regional navigation system to a global system
and achieving formal approval by the government to develop and deploy Beidou-2
in 2004, the system is expected to provide global navigation services by 2020, sim-
ilar to GPS, GLONASS, or Galileo. The Beidou satellite constellation consists of
geostationary earth orbit (GEO), inclined geosynchronous satellite orbit (IGSO), and
medium-earth orbit (MEO) satellites.

When fully deployed, the space constellation will include 5 GEOs, 27 MEOs, and
3 IGSOs. The GEO satellites are operating at an altitude of 35,786 km and positioned
at 58.75∘E, 80∘E, 110.5∘E, 140∘E, and 160∘E. The MEO satellites are operating at
orbital altitude of 21,528 km with an orbital inclination of 55∘. The IGSO satellites
are at orbital altitude of 35,786 km with an inclination of 55∘ to the equatorial plane.

As of December 2011, the Beidou system provides initial operational service for
positioning navigation and timing services for the Asia-Pacific region with a con-
stellation of 10 satellites (5 GEOs and 5 IGSOs). During 2012, 5 additional satellites
(1 GEO satellite and 4 MEO satellites) were launched, increasing the number of satel-
lites of the constellation to 14. The number of launched Beidou satellites by years is
shown in Figure 5.3.1 by a double dashed line.

The Beidou signals are transmitted in three frequency bands: B1, B2 (which
equals to E5B of Galileo), and B3. Parameters of the signals are summarized in
Table 5.6.1. For MEO and IGSO satellites, the ephemeris calculation algorithm is
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TABLE 5.6.1 Beidou Signal Parameters.

Signal

Carrier
Frequency
(MHz)

Receiver
Reference
Bandwidth (MHz)
(approximate)

Ranging Code
Chip rate
(Mchip/s) Modulation

B1 1561.098 4 2.046 BPSK(2)
B2 1207.14 24 10.23 BPSK(10)
B3 1268.52 24 10.23 BPSK(10)

the same as is used for GPS and is described in Table 5.2.4, and the only differ-
ence is in using the CGCS2000 constants: 𝜇 = 3.986004418 × 1014 m3∕s2 for the
earth universal gravitational constant and 𝛺̇e = 7.2921150 × 10−5 rad∕s for the earth
rotation rate.

For the GEO satellites, the two last steps of calculation differ from those described
in Table 5.2.4 as follows (Beidou, 2013, p. 34):

𝛺k = 𝛺0 + 𝛺̇ tk − 𝛺̇etoe (5.6.1)

xGk = x′k cos𝛺k − y′k cos ik sin𝛺k

yGk = x′k sin𝛺k − y′k cos ik cos𝛺k (5.6.2)

zGk = y′k sin ik⎛⎜⎜⎝
xk
yk
zk

⎞⎟⎟⎠ = R3(𝛺̇etk)R1

(
−
𝜋

36

) ⎛⎜⎜⎝
xGk
yGk
zGk

⎞⎟⎟⎠ (5.6.3)

where matrices R1(𝜑) and R3(𝜑) are described in Appendix A.2.
The Beidou reference system is the China Geodetic Coordinate System 2000

(CGCS2000), which is aligned to the ITRS. Beidou has already gained much
attention from the geodetic and surveying community as a source for additional
observations, but also because it is a mixed constellation consisting of geosta-
tionary, inclined geosynchronous, and medium orbits. Shi et al. (2013) processed
dual-frequency phase observation of June 2011, at the time the constellation included
3 GEOs and 3 IGSOs, for precise relative positioning. Montenbruck et al. (2013)
used a March 2012 triple-frequency data set to provide an initial assessment of
the satellite system regarding satellite clock performance, precise absolute posi-
tioning, and baseline determination. Tang et al. (2014) evaluated epoch-by-epoch
processing of triple-frequency observations to investigate previously suggested
optimal triple-frequency processing strategies, such as TCAR (three-frequency
carrier ambiguity resolution), for baselines ranging from 2.5 m to 43 km. The impli-
cations of using a GPS-type of broadcast ephemeris format for the geostationary
and geosynchronous orbits was investigated by Du et al. (2014), who suggest an
18-element GEO broadcast.
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5.7 IRNSS

In May 2006, the Indian government approved development of the Indian Regional
Navigation Satellite System. The major objective was to have complete Indian control
over the space segment, ground segment, and user receivers. Seven satellites will
eventually complete the space segment of the IRNSS. Three of them will be GEOs
located at 32.5∘, 83∘, and 131.5∘ east longitude. Four of them will be IGSO in an
orbital plane with 29∘ inclination. Two IGSO satellites will cross the equator at 55∘

east and two at 111.75∘ east. The IGSO satellites will have a “figure-8” ground track.
Because of low latitudes, a coverage with low-inclination satellites is optimal. The
constellation provides continuous radio visibility with the Indian control stations.

Seven satellites with the prefix “IRNSS-1” form the space segment of the IRNSS.
The first satellite, IRNSS-1A, was launched on July 1, 2013. It operates in L5
band (1176.45 MHz) and S band (2492.028 MHz). The second satellite IRNSS-1B
was launched on April 4, 2014, and placed in IGSO. In 2014, two more satellites,
IRNSS-1C and IRNSS-1D, will be launched. Three more satellites are planned for
launch at the beginning of 2015. Thus, by the middle of 2015, India is expected to
have the full IRNSS system installed.

IRNSS signals will provide two types of services: standard positioning ser-
vice (SPS) and restricted service (RS). Both SPS and RS will be carried on L5
(1176.45 MHz) and S band (2492.08 = 243.6 × 10.23 MHz). The SPS signal will
be modulated by a BPSK(1) signal. The RS signal will use BOC(5,2) modulation.
An additional BOC pilot signal will be provided for the RS service (called an RS-P
signal), in order to improve acquisition and performance. Therefore, each of the
L5 and S bands will carry three signals: SPS, RS, and RS-P. The user receiver can
operate in single- and/or dual-frequency mode. Since an IRNSS interface control
document (ICD) has not yet been publicly released, we refer to the research paper by
Majithiya et al. (2011) for more detail. Thoelert et al. (2014) recorded and analyzed
the spectrum and modulated chip sequences of the signals transmitted by the first
IRNSS satellite using a 30 m high-gain antenna.

The IRNSS system is expected to provide absolute position accuracy of better than
10 m over India and better than 20 m in the Indian Ocean and territories surrounding
India, up to 1500 km beyond its boundary.

5.8 SBAS: WAAS, EGNOS, GAGAN, MSAS, AND SDCM

The U.S. Federal Aviation Administration (FAA) has developed the wide area aug-
mentation system (WAAS) to improve accuracy, integrity, and availability of GPS,
mainly for air navigation applications. A ground segment consists of a network of
wide area reference stations (WRS) located in the United States (including Alaska
and Hawaii), Canada, Mexico, and Puerto Rico. These ground stations monitor the
GPS signals and send information to wide area master stations (WMS) using a com-
munications network. The WMS generate sets of fast and slow corrections. The fast
corrections are useful for compensation of rapidly changing errors that affect the
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positions and clocks of GPS satellites. The slow corrections deal with long-term
ephemeris and clock errors, as well as ionospheric delay parameters. Once these
corrections have been generated, the WMSs send them to ground uplink stations
for transmission to the satellites of the WAAS space segment. The latter modulate
the correction on a GPS L1 carrier together with a C/A-code and then transmit to
the user. The corrections, therefore, are used in a one-way (satellite to user) manner
and can be applied instantly by any receiver inside the WAAS broadcast coverage
area. The space segment consists of multiple, multipurpose geostationary commu-
nication satellites. Because the transmissions of the SBAS space segment contain a
ranging code on L1, they effectively increase the number of satellites available for
positioning.

WAAS is one of several satellite-based augmentation systems (SBAS). Europe and
Asia are operating or developing their own SBAS: the European Geostationary Navi-
gation Overlay Service (EGNOS), the Indian GPS Aided Geo Augmented Navigation
(GAGAN), the Japanese Multifunctional Satellite Augmentation System (MSAS),
and the Russian System for Differential Correction and Monitoring (SDCM).

The SBAS satellites enable the users to produce code and carrier phase obser-
vations. Eventually, SBAS will be a dual-frequency system. An SBAS L5 interface
control document is under development and already circulating in the form of a draft.
The signal structure of L1 and L5 SBAS is very similar to those of GPS, but there are
differences. The GPS L5 signal is designed with two channels, I and Q. The modu-
lation method is BPSK(10) in both channels with 10,230 code length. The I channel
is the data channel and the Q channel is data free. The WAAS L5 signal has only one
data channel. Another difference, of course, is the space segment. The SBAS sig-
nals are broadcasted from multi functional geostationary satellites and not dedicated
navigation satellites. As a result, the space-borne clock errors and orbital errors are
greater than those of GPS. However, combining GPS L1/L5, SBAS L1/L5 (providing
integrity data for GPS), and Galileo E1/E5 observations in dual-band receivers will
enable robust high-precision positioning.

The SDCM system consists of three GEO satellites, Luch-5A, Luch-5B, and
Luch-5V, which transmit at GPS L1 frequency band, while serving to improve
GLONASS operation; see SDCM (2012).





CHAPTER 6

GNSS POSITIONING APPROACHES

New GNSS positioning and timing techniques continue to be developed and refined.
Whereas during the formative years the progress of GPS positioning was measured
by leaps and bounds at a breathtaking speed, the current developments are more
incremental in nature but, nevertheless, lead to noticeable refinements that result in
shortening of observation time, increase in accuracy, and increase in reliability. The
incremental improvements are due to the modernization of GPS, the repopulation of
the GLONASS satellite system, and the new Beidou, Galileo, and QZSS satellite sys-
tems. Equally important to continued improvement of GNSS positioning is the dedi-
cated efforts by many scientists and engineers to complete a GNSS infrastructure for
data collection, evaluation, and user service. Examples include the IGS (International
GNSS Service), which provides various intermediary products, antenna calibration
services, services that provide accurate information about the ionosphere and tropo-
sphere, and also processing services that accept user observations and deliver final
coordinates in any desired coordinate system.

The first section summarizes undifferenced pseudorange and carrier phase func-
tions between a single station and single satellite. This includes the triple-frequency
functions. This is followed by functions that include two stations. These are the sin-
gle differences, consisting of the across-receiver functions, across-satellite functions,
and across-time functions, followed by the traditional double-difference and triple-
difference functions.

The second section addresses operational details such as satellite clock correc-
tions, timing group delay, and intersignal corrections, cycle slips, phase windup cor-
rection, multipath, and phase center offset and phase center variation. The section
concludes with a discussion on the various services available to the user, in particular
the IGS.

257
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Section 6.3 deals with the navigation solution. It produces position and time
for a single user using pseudorange observations and the broadcast ephemeris.
We discuss the DOP (dilution of precision) factors and Bancroft’s closed-
form navigation solution is presented.

Section 6.4 deals with well-established techniques in surveying and geodesy, i.e.,
baseline determination using carrier phase observations to determine relative posi-
tioning between stations. The focus is on double differencing, although we briefly
talk about the equivalent undifferenced formulation. Although the ambiguity func-
tion technique does not seem to command the popularity of double differencing, it
will be discussed next. The section concludes with initial remarks about GLONASS
carrier phase processing.

Section 6.5 is dedicated to double-difference ambiguity fixing. It begins with look-
ing at the problem as a classical least-squares solution with conditions. The popular
LAMBDA (least-squares ambiguity decorrelation adjustment) approach for decorre-
lating the ambiguity parameters is presented in detail, although key references are
cited to document various statistical properties of the technique. Because ambigu-
ity fixing plays such a central role in accurate baseline determination, we widen the
scope of techniques and talk about lattice reduction in general.

Section 6.6 focuses on the support of networks for precise positioning. First the
traditional PPP (precise point positioning) is presented, which makes implicit use
of a global network, followed by the traditional use of CORS (continuing operating
reference stations) networks, which are typically at the national level.We then present
the differential correction, which contains ancillary data from a reference station and
is transmitted to the user. The main part of this section is on PPP-RTK and the content
of the various network corrections it uses. PPP-RTK has received a lot of attention in
recent years.

The last section deals with triple-frequency solutions. These types of solutions
are becoming relevant as more satellites of the various GNSS systems transmit on
three or more frequencies. The focus is on the extra capability provided by the third
frequency as compared to “classical” dual-frequency approaches.

6.1 OBSERVABLES

Pseudoranges and carrier phases are the basic GNSS observations (observables) used
for positioning and timing. Carrier phases are always required for accurate surveying
at the centimeter level. Obtaining these measurements involves advanced techniques
in electronics and digital signal processing. We discuss the pseudorange and carrier
phase equations in the form needed to process the observations as downloaded from
the receiver. The internal processing of the receiver that produces the pseudorange
or carrier phase observables starting satellite signals registered at the antenna is not
discussed. The reader is, instead, asked to consult the respective specialized literature
on internal receiver processing.

We begin with the derivation of the pseudorange and carrier phase equations
and express them in terms of various parameters. These basic observables are then
combined into various linear functions. For example, there are functions that do
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not contain first-order ionospheric terms, functions that are independent of the
receiver location, and functions that do not depend on either ionosphere or receiver
location. Other functions difference simultaneous observations across receivers,
across satellites, or across receivers and satellites. The latter are popularly known as
double differences. The triple difference, which is an across-time double difference,
is also given. In view of modern GNSS systems, we include, of course, relevant
triple-frequency functions.

All functions are provided essentially in the form of a list, thus allowing us to
bundle all relevant functions into one location in the book. Onlyminimal explanations
are provided for the functions since they are well known. However, each function
is given explicitly in terms of the original observables, making verification of the
function easy by simply substituting the original observable expressions.

We begin with explaining a consistent notation that makes it easy to follow the
text. The notational elements are summarized first. Consider the following special
functions:

𝛾ij =
f 2i
f 2j

(6.1.1)

𝜆ij =
c

fi − fj
(6.1.2)

The subscripts are integers used to identify the satellite frequency f . Note that in this
particular case, there is no comma between the subscripts i and j on the left side of
the equations, and the sequence of the subscripts in 𝛾ij indicates the particular ratio
of respective frequencies squared. Similarly, 𝜆ij denotes a wavelength of frequency
fi − fj.

In contrast to the use of double subscripts without comma for the special cases
above, it can also indicate a differencing operation as in

(•)ij = (•)(i) − (•)j (6.1.3)

An example is Pij = Pi − Pj, which can generally be read as the difference of two
pseudorange observations. Only for the specific cases of (6.1.1) and (6.1.2) do the
double subscripts without comma not indicate differencing.

Occasionally it is advantageous to indicate the specific station and satellite to
which an observation refers. This is done with the pk notation, as in Pp

k,1. Here, the
subscript k identifies the station and superscript p identifies the satellite. The numer-
ical value after the comma indicates the frequency. Thus, Pp

k,1 is the f1 pseudorange
at station k to satellite p. This notation can be generalized by adding another comma
and subscript. For example, the notation Ipk,1,P identifies the ionospheric delay of the
f1 pseudorange form receiver k to satellite p. Applying the pk notation to (6.1.3) gives
the across-receiver difference

(•)pkm = (•)pk − (•)pm (6.1.4)

which is the difference of simultaneous observations taken at station k andm to satel-
lite p. Other examples that include the frequency identifier are Pp

km,1 = Pp
k,1 − Pp

m,1
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and Pp
km,2 = Pp

k,2 − Pp
m,2. Applying the same differencing notation to superscripts, we

obtain the across-satellite difference,

(•)pqk = (•)pk − (•)qk (6.1.5)

in which case simultaneous observations taken at station k to satellites p and q are
differenced. An example is Ppq

k,1 = Pp
k,1 − Pq

k,1. The across-time difference is

Δ(•)pk = (•)pk(t2) − (•)pk(t1) (6.1.6)

The differencing operator Δ indicates differencing over time, and t1 and t2 indicate
the specific time epochs. Examples areΔPp

k = Pp
k(t2) − Pp

k(t1) and ΔP
pq
k,1 = Ppq

k,1(t2) −
Ppq
k,1(t1). The latter example indicates the across-time and the across-satellite differ-

ence of the f1 pseudorange. The popular double difference is

(•)pqkm = (•)pkm − (•)qkm = (•)pqk − (•)pqm (6.1.7)

It is an across-receiver and across-satellite difference, or an across-satellite and
across-receiver difference. An example is Ppq

km,1 = Pq
km,1 − Pq

km,1 = Ppq
k,1 − Ppq

m,1, or
the double-differenced ionospheric delay of the f1 pseudoranges, I

pq
km,1,P. Finally, the

triple difference is
Δ(•)pqkm = (•)pqkm(t2) − (•)pqkm(t1) (6.1.8)

which is the across-time double difference.
A complete description of the pseudoranges and carrier phase observables and

their functions requires relations that relate the ionospheric delay of the pseudorange
and ionospheric carrier phase advance for signals traveling through the ionosphere.
The details of the ionosphere and troposphere are presented in Chapter 8. It is suffi-
cient to consider the following relations:

Ij,P = 𝛾1jI1,P =
f 21
f 2j
I1,P (6.1.9)

Ij,𝜑 =
√
𝛾1j I1,𝜑 =

f1
fj
I1,𝜑 (6.1.10)

Ii,𝛷 = 𝜆iIi,𝜑 =
c
fi
Ii,𝜑 (6.1.11)

Ii,P = −Ii,𝛷 (6.1.12)

Equation (6.1.9) relates the ionospheric delays for pseudorange of frequencies f1 and
fj. The factor 𝛾1j is given in (6.1.1). Equations (6.1.10) and (6.1.11) show the respec-
tive relations for the ionospheric advance of the carrier phase. The meaning of the
subscripts 𝜑 and 𝛷 is given below when the carrier phase equation is derived. It
suffices to know that 𝜑 expresses the carrier phase in radians and 𝛷 represents the
scaled carrier phase in units of meters. The factor 𝜆i denotes the carrier wavelength of
frequency fi. Equation (6.1.12) states that the ionospheric effect on the pseudorange
and scaled carrier phase have the same magnitude but have opposite signs.
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The basic equations for pseudoranges and carrier phases are given next. We briefly
mention how to correct the pseudorange observations for the timing information such
as satellite clock errors, timing group delay, and intersignal correction, all of which
are available from the broadcast navigation message.

6.1.1 Undifferenced Functions

The basic equations for pseudoranges and carrier phases are derived first. As was
mentioned above, the basic observables are developed from the user’s point of view.
This means that any internal receiver software processing to convert satellite signals
registered by the receiver antenna to usable outcomes, i.e., pseudoranges and carrier
phases, is not discussed.

6.1.1.1 Pseudoranges Let t denote the system time, such as GPST (GPS time).
GPS time is steered by the satellite operators to remain within one microsecond or
better of UTC(USNO) time, except for a leap second offset. Temporarily, the nominal
receiver time is denoted by t and the atomic clock time of a satellite by t. These are
the time values the “hands” of a receiver or space vehicle clock would show. The
nominal times equal the true times plus small corrections. At any instant in time, we
have t(t) = t + dt and t(t) = t + dt. The implied sign convention is that the receiver
clock error equals the amount by which the receiver clock advances the true time and,
similarly, the satellite clock error equals the amount by which the satellite clock time
advances relative to the system time. Further, let 𝜏 be the transit time of a signal, or the
travel time in a vacuum for a specific code to travel from the instant of transmission
at the satellite to the instant of reception by the receiver. The signal is recorded at the
receiver at the nominal time t(t), and transmitted at the nominal satellite time t(t − 𝜏).
The pseudorange is then

P(t) = c[t(t) − t(t − 𝜏)] (6.1.13)

where c denotes the velocity of light. Replacing the nominal times by the system time
and the respective clock corrections, we obtain

P(t) = c[t + dt − (t − 𝜏 + dt(t − 𝜏)] = c𝜏 + cdt − cdt(t − 𝜏)

= 𝜌(t, t − 𝜏) + cdt − cdt (6.1.14)

In this expression, we have replaced the satellite clock error dt(t − 𝜏) at the instant
t − 𝜏 by the satellite clock error dt(t) at instant t. This approximation is sufficiently
accurate because of the high stability of the satellite clock and considering that 𝜏 is
about 0.075 sec for GPS-like orbits. The vacuum distance c𝜏 is denoted by 𝜌(t, t − 𝜏)
and is henceforth called the topocentric satellite distance.

The derivation of (6.1.14) applies to a vacuum. This equation must be supple-
mented with additional terms and further specified in order to arrive at a usable
pseudorange equation. Since the signal travels through the ionosphere, which acts
as a dispersive medium at GPS frequency causing a signal delay, it is necessary to
introduce a frequency identifier. We use a subscript to identify the frequency. The tro-
posphere acts as a nondispersive medium in this particular frequency range and also
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causes a signal delay. Because it is a nondispersive medium, a subscript to identify
the frequency is not needed for the tropospheric delay. Other effects to be considered
are delays caused by receiver antenna and internal receiver electronic/hardware
components, and multipath. Using a numerical subscript to identify the carrier
frequency, a more complete expression for the pseudorange observation can be
written as

P1(t) = 𝜌(t, t − 𝜏) + cdt − cdt

− c(ΔtSV − TGD + ISC1,P) + I1,P + T − (d1,P − D1,P)

− (a1,P + A1,P) +M1,P + 𝜀1,P (6.1.15)

The term ΔtSV represents a satellite clock correction as determined by the satellite
control center that accounts for the difference of space vehicle time and GPS system
time, TGD is the time group delay, and ISC1,P is called the intersignal correction.
The latter two corrections, of course, refer to signal delays within the satellite and
satellite antenna. All three corrections are available to the user via the navigation
message, thus making it possible for the user to correct the observed pseudoranges.
These terms are presented in the notation as used in the basic reference IS-GPS-200G
(2012). The values ΔtSV and TGD are available per satellite, and ISC1,P is given per
satellite frequency and code. Additional detail about these terms is found in Section
6.2.2.2. In view of correcting the observations byΔtSV the satellite clock correction dt
assumes conceptually the role of a residual correction, i.e., anything not taken care of
byΔtSV will go into dt. The ionospheric and tropospheric delays are identified by I1,P
and T , respectively. Other relevant terms are the receiver and satellite hardware code
delays d1,P and D1,P, the receiver and satellite antenna code center offsets a1,P and
A1,P, the multipath M1,P, and the random measurement noise 𝜀1,P. These additional
terms and their implications, as well as the degree of cancellation when differencing,
are discussed in detail below and in other chapters.

For subsequent discussions, it is convenient to assume that the pseudorange obser-
vations have been corrected for the known values ΔtSV, TGD, and ISC1,P, and there-
fore, these terms do not have to be explicitly listed any longer on the right side of
the equation. Similarly, we assume that the receiver antenna and satellite antenna
code phase center offsets are either negligible or known from antenna calibrations
and the observed pseudorange can, therefore, be corrected. Also, in order keep the
notation to a minimum, we do not introduce new symbols for the corrected pseudor-
ange observations. Thus, we obtain the pseudorange equation in the form commonly
given

P1(t) = 𝜌(t, t − 𝜏) + cdt − cdt + I1,P + T + 𝛿1,P + 𝜀1,P (6.1.16)

𝛿1,P = −d1,P + D1,P +M1,P (6.1.17)

The term 𝛿1,P combines the receiver and satellite hardware code delays and the multi-
path.

The pseudorange equation for the second frequency follows from (6.1.15) or
(6.1.16) by changing the subscripts to 2,
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P2(t) = 𝜌(t, t − 𝜏) + cdt + cdt + I2,P + T + 𝛿2,P + 𝜀2,P (6.1.18)

𝛿2,P = −d2,P + D2,P +M2,P (6.1.19)

Two important differences should be noted. First, whereas the time group delay for
the first frequency is TGD in (6.1.15), the P2(t) pseudorange observation is corrected
for 𝛾12TGD, whereby the ratio 𝛾12 is given in (6.1.1). The details for this change are
discussed in Section 6.2.2.1. Of course, the intersignal correction ISC2,P is applied
instead of ISC1,P. The other important difference is the ionospheric term I2,P. It is
related to the first frequency ionospheric term I1,P in (6.1.9). The tropospheric delay
term does not change because the troposphere is a nondispersive medium. Finally,
the lumped parameter 𝛿2,P combines the receiver and satellite hardware code delays
and multipath for the second frequency.

Recall that dt represents the remaining satellite clock error not accounted for by
the ΔtSV correction. Similarly, D1,P and D2,P denote the remaining satellite hardware
code delays not accounted for by TGD, ISC1,P, and ISC2,P.

6.1.1.2 Carrier Phases The carrier phase observation, measured at the receiver
at nominal time t, is the fractional carrier phase which was transmitted 𝜏 seconds
earlier at the satellite and has traveled the topocentric geometric distance 𝜌(t, t − 𝜏).
Considering the carrier phase observation of the first frequency, its expression for a
vacuum is

𝜑1(t) = 𝜑(t) − 𝜑(t − 𝜏) + N1 (6.1.20)

A major difference compared to the respective pseudorange expression is the pres-
ence of the integer ambiguity term N1. It can be viewed as an initial integer constant
that does not change with time unless a cycle slip occurs. If a cycle slip occurs, the
observed carrier phase series continues with a different integer ambiguity value. We
say that themeasurement𝜑(t) is ambiguouswith respect to the integer constant. Occa-
sionally it is seen thatN1 is added to the left side of the equation. Since it is an arbitrary
constant, it does not matter whether the ambiguity parameter is placed on the left or
right side, only the sign changes, which is immaterial.

Equation (6.1.20) is developed further by recognizing that the derivative of a phase
with respect to time equals the frequency. Since the satellite clocks are very stable,
this derivative can be assumed constant for a short period of time, and we can write

𝜑(t − 𝜏 + dt + ΔtSV) = 𝜑(t) − f1𝜏 + f1 dt + f1ΔtSV (6.1.21)

giving the carrier phase equation in the form

𝜑1(t) = 𝜑(t + dt) − 𝜑(t − 𝜏 + dt + ΔtSV) + N1

= 𝜑(t) + f1 dt − 𝜑(t) + f1 𝜏 − f1 dt − f1ΔtSV + N1

=
𝜌(t, t − 𝜏)
𝜆1

+ f1 dt − f1 dt − f1ΔtSV + N1 (6.1.22)

Note the use of ΔtSV in this expression. Applying this known satellite clock cor-
rection causes dt to again assume the role of a residual satellite clock correction.
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The topocentric distance is introduced because f1 = c∕𝜆1, where 𝜆1 is the wavelength
of the first frequency. We now add the hardware delays, the antenna offset terms, and
the multipath. Equation (6.1.22) becomes

𝜑1(t) =
𝜌(t, t − 𝜏)
𝜆1

+ f1 dt − f1(dt + ΔtSV) + N1

+ I1,𝜑 +
T
𝜆1

− (d1,𝜑 −D1,𝜑) − (w1,𝜑 −W1,𝜑) − (a1,𝜑 −A1,𝜑) +M1,𝜑 + 𝜀1,𝜑

(6.1.23)

The subscript 𝜑 is used to indicate that the terms refer to the carrier phase and are
expressed units of radians. The ionospheric term is denoted by I1,𝜑. Because the tro-
posphere is a nondispersive medium, the tropospheric delay is the same for carrier
phases and pseudoranges. The receiver and satellite hardware phase delays are d1,𝜑
and D1,𝜑. The symbols wk,𝜑 and Wk,𝜑 denote the antenna phase windup angle at the
receiver and satellite, respectively. The phase windup angles are a consequence of the
circular polarization of the transmissions. Details on the windup angle can be found
in Section 6.2.4 and Chapter 9. It is shown there that the phase windup angle tends to
cancel in baseline determination using double differences; this technique is discussed
further in this chapter. In certain applications the windup angles might be allowed to
be absorbed by the hardware delay terms. Finally, a1,𝜑 and A1,𝜑 denote the phase cen-
ter offsets at the receiver antenna and satellite antenna, respectively. In the following,
we assume again that these quantities are known from antenna calibration and that
the observations have been corrected accordingly. The standard form of the carrier
phase observation equation becomes

𝜑1(t) = 𝜆
−1
1 𝜌(t, t − 𝜏) + N1 + f1 dt − f1 dt − 𝜆

−1
1 I1,P + 𝜆

−1
1 T + 𝛿1,𝜑 + 𝜀1,𝜑 (6.1.24)

𝛿1,𝜑 = −(d1,𝜑 + w1,𝜑) + (D1,𝜑 +W1,𝜑) +M1,𝜑 (6.1.25)

Note that the impact of the ionosphere on the carrier phase observation has been
parameterized in terms of the pseudorange ionospheric delay I1,p. As a matter of stan-
dardization, we generally prefer to express the ionospheric delay or advance using
I1,P. Both ionospheric terms are related by (6.1.11). Both ionospheric terms have
opposite signs but the same magnitude when scaled to units of meters. Therefore,
the carrier phase advances as the signals travel through the ionosphere. More details
on the impact of the ionosphere on GPS signals is found in Chapter 8. Finally, the
equation for the carrier phase of the second frequency follows readily by changing
subscript 1 to 2.

We notice that both standard forms (6.1.16) and (6.1.24) make use of a lumped
parameter that combines the hardware delay and the multipath terms and, in the case
of the carrier phase equation, also the windup terms. This specific lumping of terms is
for convenience. Later, we will see that the hardware delays cancel in certain obser-
vation differences, whereas the multipath will never completely cancel. The windup
corrections will also be dealt with in more detail later. The time t serves as common
time reference for code and phase measurements. The time error varies with each
epoch, whereas the hardware delays typically show little variation over time. As to
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terminology, the hardware delays d1,𝜑 and D1,𝜑 are often referred to as uncalibrated
phase delays (UPDs), consisting of receiver UPD and satellite UPD. Similarly, one
speaks of uncalibrated code delays (UCDs) when referring to d1,P and D1,P.

Scaled carrier phase function: In many situations it is convenient to refer to the
scaled carrier phase equation by multiplying (6.1.24) by the wavelength,

𝛷1(t) ≡ 𝜆1𝜑 = 𝜌(t, t − 𝜏) + 𝜆1N1 + cdt − cdt − I1,P + T + 𝛿1,𝛷 + 𝜀1,𝛷 (6.1.26)

𝛿1,𝛷 ≡ 𝜆−11 𝛿1,𝜑 = −(d1,𝛷 + w1,𝛷) + (D1,𝛷 +W1,𝛷) +M1,𝛷 (6.1.27)

The scaled phase𝛷1(t) is in units of meters. Similarly, the lumped parameter is scaled.
The scaling is indicated by the subscript 𝛷.

Observables with station and satellite subscript and superscript notation: In
the above derivations, we used underbar and overbar to indicate the receiver and satel-
lite clock errors, respectively. No station or satellite identifier was used with the other
terms. In many situations, it might be desirable or even necessary to identify the spe-
cific station and satellite to which an observation refers. We use a subscript letter
to indicate the receiver and a superscript letter to identify the satellite as mentioned
above when explaining the general notation. Recall that the subscript is separated by
a comma from the frequency identification number, and the latter is separated again
by a comma from the observation-type identifier (if present). Because this notation
is used extensively throughout the book, we summarize the basic observables in this
expanded notation:

Pp
k,1(t) = 𝜌

p
k + cdtk − cdtp + Ipk,1,P + Tp

k + 𝛿
p
k,1,P + 𝜀

p
k,1,P (6.1.28)

𝛿
p
k,1,P = −dk,1,P + Dp

1,P +Mp
k,1,P (6.1.29)

𝜑
p
k,1(t) = 𝜆

−1
1 𝜌

p
k + Np

k,1 + f1 dtk − f1 dt
p − 𝜆−11 Ipk,1,P + 𝜆

−1
1 Tp

k + 𝛿
p
k,1,𝜑 + 𝜀

p
k,1,𝜑

(6.1.30)

𝛿
p
k,1,𝜑 = −(dk,1,𝜑 + wk,1,𝜑) +

(
Dp
1,𝜑 +Wp

1,𝜑

)
+Mp

k,1,𝜑 (6.1.31)

𝛷
p
k,1(t) ≡ 𝜆1𝜑p

k = 𝜌
p
k + 𝜆1N

p
k,1 + cdtk − cdtp − Ipk,1,P + Tp

k + 𝛿
p
k,1,𝛷 + 𝜀pk,1,𝛷 (6.1.32)

𝛿
p
k,1,𝛷 ≡ 𝜆1𝛿pk,1,𝜑 = −(dk,1,𝛷 + wk,1,𝛷) +

(
Dp
1,𝛷 +Wp

𝛷

)
+Mp

k,1,𝛷 (6.1.33)

Note that the underbar and overbar are no longer needed in this notation. Certainly,
this subscript notation may appear as a distraction when the identification of specific
stations and satellites is not required. In such a case, we may use the simpler underbar
and overbar notation.

The next subsections contain a summary of popular functions of the basic observ-
ables. The expressions are grouped according to the terms present, starting with range
plus ionosphere, ionospheric free, ionosphere, andmultipath. Another group has been
added for convenience. It contains several expressions in which the ambiguity terms
have been moved to the left side. These so-called ambiguity-corrected functions are
convenient when ambiguities have been resolved in prior computations. The last
subsection contains new notations for triple-frequency observations. All expressions
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given below can readily be verified by substituting the basic observables (6.1.16),
(6.1.24), or (6.1.26). The expressions are listed as a summary without additional
explanations. Whenever an expression is used later, the necessary explanations will
then be provided. Each expression is given a name for easy referencing.

6.1.1.3 Range plus Ionosphere

RI2(𝜑1, 𝜑2) ≡ 𝜑1 − 𝜑2

= 𝜆−112 𝜌 + N12 + (f1 − f2)dt − (f1 − f2)dt

−
(
1 −

√
𝛾12

)
I1,𝜑 + 𝜆

−1
12 T + 𝛿RI2 + 𝜀RI2 (6.1.34)

RI3(𝜑1, 𝜑2) ≡ 𝜑1 + 𝜑2

=
f1 + f2

c
𝜌 + N1 + N2 + (f1 + f2)(dt − dt)

−
(
1 −

√
𝛾12

)
I1, 𝜑 +

f1 + f2
c

T + 𝛿RI3 + 𝜀RI3 (6.1.35)

RI4(𝛷1, 𝛷2) ≡ f1
f1 − f2

𝛷1 −
f2

f1 − f2
𝛷2

= 𝜌 + 𝜆12N12 + cdt − cdt +
√
𝛾12I1,P + T + 𝛿RI4 + 𝜀RI4 (6.1.36)

RI5(P1,P2) ≡ f1
f1 + f2

P1 +
f2

f1 + f2
P2

= 𝜌 + cdt − cdt +
√
𝛾12I1,P + T + 𝛿RI5 + 𝜀RI5 (6.1.37)

6.1.1.4 Ionospheric-Free Functions

R1(P1,P2) ≡ PIF12 ≡ f 21
f 21 − f 22

P1 −
f 22

f 21 − f 22
P2

= 𝜌 + cdt − cdt + T + 𝛿R1 + 𝜀R1 (6.1.38)

R2(𝛷1, 𝛷2) ≡ 𝛷IF12 ≡ f 21
f 21 − f 22

𝛷1 −
f 22

f 21 − f 22
𝛷2

= 𝜌 + cdt − cdt + c
f1 − f2
f 21 − f 22

N1 + c
f2

f 21 − f 22
N12 + T + 𝛿R2 + 𝜀R2

(6.1.39)

R2(𝛷1, 𝛷2, GPS) ≡ 𝜌 + cdt − cdt +
2cf0

f 21 − f 22
(17N1 + 60N12) + T + 𝛿R2 + 𝜀R2

= 𝜌 + cdt − cdt + 𝜆𝛷IF12N𝛷IF12 + T + 𝛿R2 + 𝜀R2 (6.1.40)

For GPS we have f1 = 154f0, f2 = 120f0, and f0 = 10.23 MHz.
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R3(𝜑1, 𝜑2) ≡ f 21
f 21 − f 22

𝜑1 −
f1 f2

f 21 − f 22
𝜑2

= 𝜆−11 𝜌 + f1 dt − f1 dt +
f 21 − f1 f2

f 21 − f 22
N1 +

f1 f2
f 21 − f 22

N12 + 𝜆
−1
1 T + 𝛿R3 + 𝜀R3

(6.1.41)

6.1.1.5 Ionospheric Functions

I1(𝛷1, P1) ≡ P1 −𝛷1 = 2I1,P − 𝜆1N1 + 𝛿I1 + 𝜀I1 (6.1.42)

I2(𝜑1, 𝜑2, P1) ≡ 𝜑1 − 𝜑2 − 𝜆
−1
12 P1 = N12 −

(
1 −

√
𝛾12

)
𝜆−112 I1,P + 𝛿I2 + 𝜀I2

(6.1.43)

I3(𝜑1, 𝜑2) ≡ 𝜑1 −
√
𝛾12𝜑2 = N1 −

√
𝛾12N2 − (1 − 𝛾12)I1, 𝜑 + 𝛿I3 + 𝜀I3

(6.1.44)

I4(𝛷1, 𝛷2) ≡ 𝛷1 −𝛷2 = 𝜆1N1 − 𝜆2N2 − (1 − 𝛾12)I1,P + 𝛿I4 + 𝜀I4 (6.1.45)

I5(P1, P2) ≡ P1 − P2 = (1 − 𝛾12)I1,P + 𝛿I5 + 𝜀I5 (6.1.46)

I6(𝛷1, 𝛷2, 𝛷3) ≡ RI4(𝛷1, 𝛷3) − RI4(𝛷1, 𝛷2)

≡
(

f1
f1 − f3

−
f1

f1 − f2

)
𝛷1 +

f2
f1 − f2

𝛷2 −
f3

f1 − f3
𝛷3

= 𝜆13N13 − 𝜆12N12 +
f1( f2 − f3)

f2f3
I1,P + 𝛿I6 + 𝜀I6 (6.1.47)

6.1.1.6 Multipath Functions

M1(𝛷1, 𝛷2, P1, P2) ≡ HMW12 ≡ RI4 − RI5

≡ f1
f1 − f2

𝛷1 −
f2

f1 − f2
𝛷2 −

f1
f1 + f2

P1 −
f2

f1 + f2
P2

= 𝜆12N12 + 𝛿M1 + 𝜀M1 (6.1.48)

M2(𝛷1, 𝛷2, P1, P2) ≡ AIF12 ≡ R2 − R1

≡ f 21
f 21 − f 22

𝛷1 −
f 22

f 21 − f 22
𝛷2 −

f 21
f 21 − f 22

P1 +
f 22

f 21 − f 22
P2

= c
f1 − f2
f 21 − f 22

N1 + c
f2

f 21 − f 22
N12 + 𝛿M2 + 𝜀M2 (6.1.49)
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M3(𝛷1, 𝛷2, P1) ≡ P1 +

(
2

1 − 𝛾12
− 1

)
𝛷1 −

2
1 − 𝛾12

𝛷2

= −𝜆1N1 +
2

1 − 𝛾12
(𝜆1N1 − 𝜆2N2) + 𝛿M3 + 𝜀M3 (6.1.50)

M4(𝛷1, 𝛷2, P2) ≡ P2 −

(
2𝛾12

1 − 𝛾12
+ 1

)
𝛷2 +

2𝛾12
1 − 𝛾12

𝛷1

= −𝜆2N2 +
2𝛾12

1 − 𝛾12
(𝜆1N1 − 𝜆2N2) + 𝛿M4 + 𝜀M4 (6.1.51)

M5(𝛷1, 𝛷2, 𝛷3) ≡ (
𝜆23 − 𝜆

2
2

)
𝛷1 +

(
𝜆21 − 𝜆

2
3

)
𝛷2 +

(
𝜆22 − 𝜆

2
1

)
𝛷3

=
(
𝜆23 − 𝜆

2
2

)
𝜆1N1 +

(
𝜆21 − 𝜆

2
3

)
𝜆2N2 +

(
𝜆22 − 𝜆

2
1

)
𝜆3N3

+ 𝛿M5 + 𝜀M5 (6.1.52)

M6(𝛷1, 𝛷2, 𝛷3) ≡ R2(𝛷1, 𝛷2) − R2(𝛷1, 𝛷3)

≡
(

f 21
f 21 − f 22

−
f 21

f 21 − f 23

)
𝛷1 −

f 22
f 21 − f 22

𝛷2 +
f 23

f 21 − f 23
𝛷3

= c

(
f1 − f2
f 21 − f 22

−
f1 − f3
f 21 − f 23

)
N1 + c

f2
f 21 − f 22

N12

− c
f3

f 21 − f 23
N13 + 𝛿M6 + 𝜀M6 (6.1.53)

M7(P1, P2, P3) ≡ (
𝜆23 − 𝜆

2
2

)
P1 +

(
𝜆21 − 𝜆

2
3

)
P2 +

(
𝜆22 − 𝜆

2
1

)
P3 = 𝛿M7 + 𝜀M7

(6.1.54)

6.1.1.7 Ambiguity-Corrected Functions

AC1(𝜑1, 𝜑2) ≡ (𝜑12 − N12)𝜆12 = 𝜌 + cdt − cdt +
√
𝜆12I1,P

+ T + 𝛿AC1 + 𝜀AC1 (6.1.55)

AC2(𝜑1, 𝜑2) ≡
(
1 −

𝜆12
𝜆1

)
𝜑1 +

𝜆12
𝜆1
𝜑2 + N12

𝜆12
𝜆1

= N1 +
(√
𝛾12 − 1

) I1,P
𝜆1

+ 𝛿AC2 + 𝜀AC2 (6.1.56)

AC3(𝜑1, 𝜑2, 𝜑3) ≡ AC1(𝜑1, 𝜑2) − AC1(𝜑1, 𝜑3)

≡ (𝜆12 − 𝜆13)𝜑1 − 𝜆12𝜑2 + 𝜆13𝜑3 − N12𝜆12 + N13𝜆13

=
(√
𝛾12 −

√
𝛾13

)
I1,P + 𝛿AC3 + 𝜀AC3 (6.1.57)
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AC4(𝜑1, 𝜑2, 𝜑3) ≡ f1AC1(𝜑1, 𝜑2) − f3AC1(𝜑2, 𝜑3)

f1 − f3

≡ 𝜆13
[
𝜆12
𝜆1
𝜑1 −

(
𝜆12
𝜆1

+
𝜆23
𝜆3

)
𝜑2 +

𝜆23
𝜆3
𝜑3 −

𝜆12
𝜆1

N12 +
𝜆23
𝜆3

N23

]
= 𝜌 + cdt − cdt + T + 𝛿AC4 + 𝜀AC4 (6.1.58)

The functions summarized above are expressed explicitly in terms of orig-
inal pseudorange and carrier phase observations. This makes it convenient to
determine the lumped parameter for a specific function or even apply variance
propagation. For a function (•), the lumped term 𝛿(•) and the function measure-
ment noise 𝜀(•) are obtained by applying the respective functions. For example,
if (•) = a𝛷1 + b𝛷2, then 𝛿• = a𝛿1,𝛷 + b𝛿2,𝛷 and 𝜀• = a𝜀1,𝛷 + b𝜀2,𝛷. Similarly,
one obtains the hardware delays d• = ad1,𝛷 + bd2,𝛷, D• = aD1,𝛷 + bD2,𝛷, and
the multipath M• = aM1,𝛷 + bM2,𝛷. If one assumes for the sake of approximate
estimation that the standard deviations for all carrier phases and pseudoranges across
the frequencies are, respectively, the same, and that they are uncorrelated, the law
of variance propagation (A.5.61) provides the standard deviation of the function as
𝜎• =

√
a2 + b2𝜎𝛷 and 𝜎• =

√
a2 + b2𝜎P if (•) = aP1 + bP2. Similar expressions

are obtained for mixed functions of pseudoranges and carrier phases or when the
function contains more than two observables.

The various dual-frequency functions listed above trace their origins back to the
beginning of GPS. They were introduced during the time of rapid development of
GPS in the late 1970s and early 1980, with apparently no authorship attributed to
them in the literature. An exception is function (6.1.48), whose origin is generally
acknowledged to go back to Hatch (1982), Melbourne (1985), and Wübbena (1985).
We will refer to this function simply as the HMW function. This function combines
pseudoranges and carrier phases of two frequencies. If it is necessary to clarify to
which specific frequencies an application refers, we identify the frequencies by num-
bers. For example, HMW12 would imply the first and second frequency observations
as used in (6.1.48). We are not aware of a triple-frequency function that is attributed
to a specific author. However, a nice summary of triple-frequency functions is given
in Simsky (2006), which we recommend for additional reading.

6.1.1.8 Triple-Frequency Subscript Notation When dealing with triple-
frequency observations, it is often convenient to use a more general notation. Let
i, j, and k be constants; then the triple-frequency carrier phase and pseudorange
functions can be written as

𝜑(i, j, k) ≡ i𝜑1 + j𝜑2 + k𝜑3 (6.1.59)

𝛷(i, j, k) ≡ i f1𝛷1 + j f2𝛷2 + k f3𝛷3

i f1 + j f2 + k f3
≡ c

i f1 + j f2 + k f3
𝜑(i, j k) (6.1.60)
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P(i, j, k) ≡ i f1P1 + j f2P2 + k f3P3

i f1 + j f2 + k f3
(6.1.61)

where the numerical subscripts identify the frequencies. In addition, we identify the
following primary

f(i, j, k) = i f1 + j f2 + k f3
𝜆(i, j, k) =

c
f(i, j, k)

N(i, j, k) = i N1 + j N2 + k N3

⎫⎪⎬⎪⎭ (6.1.62)

and secondary

𝛽(i, j, k) =
f 21 (i∕f1 + j∕f2 + k∕f3)

f(i, j, k)

𝜇2
(i, j, k)

=
(i f1)

2 + (j f2)
2 + (k f3)

2

f 2
(i, j, k)

𝜈(i, j, k) =
|i| f1 + |j| f2 + |k| f3

f(i, j, k)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(6.1.63)

functions. An even more general linear function can be formed that would include the
observation of four frequencies or even combine (6.1.60) and (6.1.61) into one general
linear function of pseudoranges and carrier phases. Here we prefer the notation that
includes only three frequencies and keeps the carrier phase and pseudorange func-
tions separate. In this notation, the expressions for the carrier phase and pseudorange
functions become

𝜑(i, j, k) =
𝜌

𝜆(i, j, k)
+ N(i, j, k) + f(i, j, k) dt − f(i, j, k) dt −

𝛽(i, j, k)I1,p
𝜆(i, j, k)

+
T

𝜆(i, j, k)

+ 𝛿(i, j, k),𝜑 + 𝜀(i, j, k),𝜑 (6.1.64)

𝛷(i, j, k) = a1𝛷1 + a2𝛷2 + a3𝛷3

= 𝜌 + 𝜆(i, j, k)N(i, j, k) + cdt − cdt − 𝛽(i, j, k)I1,P + T + 𝛿(i, j, k),𝛷 + 𝜀(i, j, k),𝛷
(6.1.65)

P(i, j, k) = b1P1 + b2P2 + b3P3

= 𝜌 + cdt − cdt + 𝛽(i, j, k)I1,P + T + 𝛿(i, j, k),P + 𝜀(i, j, k),P (6.1.66)

The constants am and bm, with m = 1, · · · , 3, can be those of (6.1.60) and (6.1.61).
If the factors i, j, and k are integers, then the linear phase combinations preserve
the integer nature of the ambiguity as seen from (6.1.62). If a1 + a2 + a3 = 1 and
b1 + b2 + b3 = 1, then the geometric terms and clock error terms are not scaled, i.e.,
remain unchanged compared to the equations for the original observations. This is
the case in (6.1.65) and (6.1.66).

In regard to the secondary functions (6.1.63), 𝛽(i, j, k) is called the ionospheric
scale factor. For the special case of 𝛽(i, j, k) = 0, the ionospheric-free functions are
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obtained as seen from (6.1.65) and (6.1.66). For the special case that 𝜎𝛷m
= 𝜎𝛷 and

𝜎Pm = 𝜎P, with m = 1, · · · , 3 and uncorrelated observations, 𝜇2
(i, j, k)

is called the
variance factor because

𝜎2
𝛷(i, j, k)

= 𝜇2(i, j, k)𝜎
2
𝛷

𝜎2P(i, j, k)
= 𝜇2(i, j, k)𝜎

2
P (6.1.67)

Assuming that each scaled carrier phase observation has approximately the same
multipath M𝛷m

= M𝛷 with m = 1, · · · , 3, and making a similar assumption for the
pseudorange multipath, then 𝜈(i, j, k) is the multipath factor such that

M𝛷max
≤ 𝜈(i, j, k)M𝛷

MPmax
≤ 𝜈(i, j, k)MP (6.1.68)

represents the upper limit for the multipath of the respective function. This superposi-
tion ofmultipath assumes not only that themultipath for each of the three observations
is the same but also that the absolute values of the components are added.

As an example of the application of the triple-frequency notation, consider the
HMW function (6.1.48), which can be written as HMW12 = 𝛷(1,−1,0) − P(1,1,0) or
HMW13 = 𝛷(1,0,−1) − P(1,0,1).

6.1.2 Single Differences

Let two receivers observe the same satellites at the same nominal times. One can
then compute three types of differences among the observations. One difference is
the across-receiver difference, obtained when the observations of two stations and the
same satellites are differenced. Another difference, called the across-satellite differ-
ence, results from differencing observations from the same station and different satel-
lites. The third difference, called across-time difference, is the difference of observa-
tions from the same station and the same satellite at different epochs. Even if the
observations to a particular satellite are taken at the receivers at exactly the same
time, thus being truly simultaneous observations, the respective signals have left
the satellite at slightly different times because the respective topocentric satellite
distances differ.

6.1.2.1 Across-Receiver Functions The notation (6.1.4) is used to identify
the stations and the satellite to form the across-receiver difference. Note that the dou-
ble subscripts not separated by a comma indicate differencing across the stations.
Applying (6.1.16), (6.1.24), and (6.1.26), the across-receiver functions are

Pp
km,1 = 𝜌

p
km + cdtkm + Ipkm,1,P + Tp

km − dkm,1,P +Mp
km,1,P + 𝜀

p
km,1,P (6.1.69)

𝜑
p
km,1 =

f1
c
𝜌
p
km + Np

km,1 + f1 dtkm − 𝜆−11 Ipkm,1,P +
f1
c
Tp
km − dkm,1,𝜑 +Mp

km,1,𝜑 + 𝜀
p
km,1,𝜑

(6.1.70)
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𝛷
p
km,1≡ 𝜆1𝜑p

km,1 = 𝜌
p
km + 𝜆1N

p
km,1 + cdtkm − Ipkm,1,P + Tp

km − dkm,1,𝛷 +Mp
km,1,𝛷 + 𝜀km,1,𝛷

(6.1.71)

𝜎(•p
km

) =
√
2𝜎(•) (6.1.72)

An important feature of this difference is that the satellite clock error dtp and
the satellite hardware delay Dp

1,𝜑 cancel. This cancellation occurs because the
satellite clock is very stable, making the satellite clock errors the same for these
near-simultaneous transmissions. Similarly, the satellite hardware delays can readily
be viewed as constant over such a short time period. The windup angles listed in
(6.1.25) and (6.1.27) have been omitted in these expressions and will also be omitted
in subsequent expressions for reasons of simplicity. The variance propagation
expressed by (6.1.72) assumes that the variances of the respective observations
are the same at both stations. This variance propagation expression is not always
given explicitly below because it can readily be obtained by applying the respective
function of the original observations as needed.

Equally important is noting the terms that do not cancel in the differencing. These
are the across-receiver differences of station clock errors, the ionospheric and tropo-
spheric delays, the receiver hardware delays, and multipath. It is noted that in relative
positioning over short distances, the tropospheric and ionospheric effects are, respec-
tively, almost the same at each station due to high spatial correlation and, therefore,
largely cancel in the differencing. This cancelation is important as it makes relative
positioning over short distances very efficient and practicable in surveying.

6.1.2.2 Across-Satellite Functions Using the notation in (6.1.5), with super-
scripts indicating the differencing, the across-satellite differences become

Ppq
k,1 =

f1
c
𝜌
pq
k + cdtpq + Ipqk,1,P + Tpq

k + Dpq
1,P +Mpq

k,1,P + 𝜀
pq
k,1,P (6.1.73)

𝜑
pq
k,1 =

f1
c
𝜌
pq
k + Npq

k + f1 dt
pq + Ipqk,1,𝜑 +

f1
c
Tpq
k + Dpq

1,𝜑 +Mpq
k,1,𝜑 + 𝜀

pq
k,1,𝜑 (6.1.74)

𝛷
pq
k,1 = 𝜌

pq
k + 𝜆1N

pq
k + cdtpq − Ipqk,1,P + Tpq

k +pq
k,1,𝛷 +𝜀pqk,1,𝛷 (6.1.75)

It is readily seen that the single difference receiver clock error dtk and receiver hard-
ware delay dk cancel.

6.1.2.3 Across-Time Functions Differencing across time is indicated by the
Δ symbol, following the notation in (6.1.6). The relevant functions are

ΔPp
k,1 = Δ𝜌pk + cΔdtk − cΔdtp + ΔIpk,1,P + ΔTp

k + ΔMp
k,1,P + Δ𝜀pk,1,P (6.1.76)

Δ𝜑p
k,1 =

f1
c
Δ𝜌pk + f1Δdtk − f1Δdtp −

f1
c
ΔIpk,1,P +

f1
c
ΔTp

k + ΔMp
k,1,𝜑 + Δ𝜀pk,1,𝜑

(6.1.77)

Δ𝛷p
k,1 = Δ𝜌pk + cΔdtk − cΔdtp − ΔIpk,1,P + ΔTp

k + ΔMp
k,1,𝛷 + Δ𝜀pk,1,𝛷 (6.1.78)
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ΔI1pk,1 = 2ΔIpk,1,P + ΔMp
k,1,P + ΔMp

k,1,𝛷 + Δ𝜀pk,1,I1 (6.1.79)

Δ𝜑3 =
𝜆1
𝜆3

(
𝜆23 − 𝜆

2
2

𝜆21 − 𝜆
2
2

)
Δ𝜑1 −

𝜆2
𝜆3

(
𝜆23 − 𝜆

2
1

𝜆21 − 𝜆
2
2

)
Δ𝜑2 + ΔM3,𝜑 + Δ𝜀3,𝜑 (6.1.80)

For differencing over long time intervals, the clock errors might not cancel. In
the expressions above, however, we have assumed that the hardware delays are
sufficiently stable to cancel. We have further assumed that no cycle slip occurred
between the two epochs, therefore the ambiguity cancels. These functions primarily
reflect the change of the topocentric satellite distance over time and are often
referred to as delta ranges. Equation (6.1.79) represents the time difference of the
ionospheric function (6.1.42). One can readily imagine the benefits to be derived
from possibly being able to model the ionospheric change ΔI1pk,1 when the time
difference is small. An example might be cycle slip fixing. Likewise, some combi-
nations of single-difference functions have certain benefits. For example, applying
across-receiver and across-time differencing yields a model that is free of satellite
clock errors and depends on changes of receiver clocks, ionosphere, and troposphere.

Function (6.1.80) is a triple-frequency function, expressing the phase difference of
the third frequency as a function of the phase differences of the first and second fre-
quencies. In order to simplify the notation, we omitted the subscript and superscripts
to identify the station and satellite, respectively.

6.1.3 Double Differences

A double difference can be formed when two receivers observe two satellites simulta-
neously, or at least near simultaneously. One can either difference two across-receiver
differences or two across-satellite differences. In the notation of (6.1.7), the double
differences of the basic observables are

Ppq
km,1 = 𝜌

pq
km +

f1
c
Ipqkm,1,P + Tpq

km +Mpq
km,1,P + 𝜀

pq
km,1,P (6.1.81)

𝜑
pq
km,1 =

f1
c
𝜌
pq
km + Npq

km,1 −
f1
c
Ipqkm,1,P +

f1
c
Tpq
km +Mpq

km,1,𝜑 + 𝜀
pq
km,1,𝜑 (6.1.82)

𝛷
pq
km,1 = 𝜌

pq
km + 𝜆1N

pq
km,1 − Ipqkm,1,P + Tpq

km +Mpq
km,1,𝛷 + 𝜀pqkm,1,𝛷 (6.1.83)

𝜎(•pq
km

) = 2𝜎(•) (6.1.84)

The most important feature of the double-difference observation is the cancellation
of receiver clock errors, satellite clock errors, receiver hardware delays, and satellite
hardware delays. This almost “perfect” cancellation of unwanted errors and delays
has made the double-difference observation so popular among users. In addition,
since double differencing implies across-receiver differencing, the ionospheric and
tropospheric effects on the observations largely cancel in relative positioning over
short distances. Unfortunately, since the multipath is a function of the geometry
between receiver, satellite, and reflector surface, it does not cancel.
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The double-difference integer ambiguity Npq
km,1 plays an important role in accurate

relative positioning. Estimating the ambiguity together with other parameters as a real
number is called the float solution. If thus estimated double-differenced ambiguities
can be successfully constrained to integers, one obtains the fixed solution. Because
of residual model errors such as residual ionosphere and troposphere, the estimated
ambiguities will, at best, be close to integers. Successfully imposing integer con-
straints adds strength to the solution because the number of parameters is reduced
and the correlations between parameters reduce as well. The art of accurate relative
positioning is inextricably related to successfully fixing the ambiguities. Much effort
has gone into extending the baseline length over which ambiguities can be fixed. At
the same time, much research has been carried out to develop algorithms that allow
the ambiguities to be fixed for short observation spans and short baselines. Being able
to relatively easily impose integer constraints on the estimated ambiguities is a major
strength of the double differencing approach.

All of the above functions can readily be applied to observations of the second
frequency by replacing the subscript 1 by 2. For example, in the across-frequency
double difference functions

𝛷
pq
km,12 ≡ 𝛷pq

km,1 −𝛷
pq
km,2 = 𝜆1N

pq
km,1 − 𝜆2N

pq
km,2 − (1 − 𝛾12)I

pq
km,1,P +Mpq

km,12,𝛷 + 𝜀pqkm,12,𝛷
(6.1.85)

𝛷
pq
km,13 ≡ 𝛷pq

km,1 −𝛷
pq
km,3 = 𝜆1N

pq
km,1 − 𝜆3N

pq
km,3 − (1 − 𝛾13)I

pq
km,1,P +Mpq

km,13,𝛷 + 𝜀pqkm,13,𝛷
(6.1.86)

the topocentric satellite distances and tropospheric delays cancel. The triple-
frequency observations provide three more double-differenced functions. Applying
the double-difference operation to (6.1.52), (6.1.57), and (6.1.58) gives

M5pqkm ≡ (
𝜆23 − 𝜆

2
2

)
𝛷

pq
km,1 +

(
𝜆21 − 𝜆

2
3

)
𝛷

pq
km,2 +

(
𝜆22 − 𝜆

2
1

)
𝛷

pq
km,3

=
(
𝜆23 − 𝜆

2
2

)
𝜆1N

pq
km,1 +

(
𝜆21 − 𝜆

2
3

)
𝜆2N

pq
km,2 +

(
𝜆22 − 𝜆

2
1

)
𝜆3N

pq
km,3

+Mpq
km,M5 + 𝜀

pq
km,M5 (6.1.87)

AC3pqkm ≡ (𝜆12 − 𝜆13)𝜑
pq
km,1 − 𝜆12𝜑

pq
km,2 + 𝜆13𝜑

pq
km,3 − Npq

km,12𝜆12 + Npq
km,13𝜆13

=
(√
𝛾12 −

√
𝛾13

)
Ipqkm,1,P +Mpq

km,AC3 + 𝜀
pq
km,AC3 (6.1.88)

AC4pqkm ≡ 𝜆13
[
𝜆12
𝜆1
𝜑
pq
km,1 −

(
𝜆12
𝜆1

+
𝜆23
𝜆3

)
𝜑
pq
km,2 +

𝜆23
𝜆3
𝜑
pq
km,3

−
𝜆12
𝜆1

Npq
km,12 +

𝜆23

𝜆3
Npq
km,23

]
= 𝜌pqkm, +Mpq

km,AC4 + 𝜀
pq
km,AC4 (6.1.89)

Apart frommultipath, these functions depend on the ambiguities only, the ionosphere
and ambiguities, or the topocentric satellite distance and ambiguities.
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6.1.4 Triple Differences

The triple difference (6.1.8) is the difference of two double differences over time:

ΔPpq
km,1 ≡ Δ𝜌pqkm + ΔIpqkm,1,P + ΔTpq

km + ΔMpq
km,1,P + Δ𝜀pqkm,1,P (6.1.90)

Δ𝜑pq
km,1 =

f1
c
Δ𝜌pqkm + ΔIpqkm,1,𝜑 +

f

c
ΔTpq

km + ΔMpq
km,1,𝜑 + Δ𝜀pqkm,1,𝜑 (6.1.91)

Δ𝛷pq
km,1 = Δ𝜌pqkm − ΔIpqkm,1,P + ΔTpq

km + ΔMpq
km,1,𝛷 + Δ𝜀pqkm,1,𝛷 (6.1.92)

𝜎(Δ•pq
km

) =
√
8𝜎(•) (6.1.93)

The initial integer ambiguity cancels in triple differencing. Because of this cancela-
tion property, the triple-difference observable is probably the easiest observable to
process. Often, the triple-difference solution serves as a preprocessor to get good ini-
tial positions for a subsequent double-difference solution. The triple differences have
another advantage in that cycle slips are mapped as individual outliers in the residuals.
Individual outliers can usually be detected and removed.

6.2 OPERATIONAL DETAILS

Whether one develops and improves positioning algorithms, uses GNSS to support
research activities, or runs commercially available receivers in engineering applica-
tions, there are a number of operational details that one should know. It also helps
to know that a lot of what might be called the GNSS infrastructure is in place and
ready to be tapped. We begin with some topics of interest to developers of processing
techniques and then talk about services that are mostly free of charge and available
to the common user.

We briefly address the issue of computing the topocentric satellite distance the
GNSS signal travels from the time of emission at the satellite to reception at the user
receiver antenna. Detailed information is given on the timing group delay, satellite
clock correction, and intersignal corrections, all three of which are transmitted by the
navigation message. We then briefly discuss cycle slips in the carrier phase observ-
able, the phase windup correction resulting from the right-circular polarized nature
of the signals, and the “ever-present” multipath. Our discussion on service begins
with relative and absolute antenna calibration provided specifically by the National
Geodetic Service, and continues with a discussion of the International GNSS Service,
its products, and online computing series.

6.2.1 Computing the Topocentric Range

The pseudorange equation (6.1.28) and the carrier phase equation (6.1.30) require
computation of the topocentric distance 𝜌pk . There are two equivalent solutions avail-
able. In Section 7.3, the change of the topocentric distance during the travel time of
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the signal is computed explicitly. Here we present an iterative solution. In the inertial
coordinate system (X), the topocentric distance is expressed by

𝜌
p
k = ‖Xk(tk) − Xp(tp)‖ (6.2.1)

In this coordinate system, the receiver coordinates are a function of time due to
the earth’s rotation. If the receiver antenna and satellite ephemeris are given in the
terrestrial coordinate system, we must take the earth’s rotation into account when
computing the topocentric satellite distance. If 𝜏 denotes the travel time for the signal,
then the earth rotates during that time by

𝜃 = 𝛺̇e(tk − tp) = 𝛺̇e𝜏 (6.2.2)

where 𝛺̇e, is the earth rotation rate. Neglecting polar motion, the topocentric distance
becomes

𝜌
p
k = ‖xk − R3(𝜃)x

p(tp)‖ (6.2.3)

where R3 is the orthonormal rotation matrix. Since 𝜃 is a function of 𝜏,
equation (6.2.3) must be iterated. An initial estimate of the travel time is
𝜏1 = 0.075 sec. Then compute 𝜃1 from (6.2.2) and use this value in (6.2.3) to
obtain the initial value 𝜌1 for the distance. For the second iteration, use 𝜏2 = 𝜌1∕c in
(6.2.2) to get 𝜃2. Continue the iteration until convergence is achieved. Typically, a
couple of iterations are sufficient.

6.2.2 Satellite Timing Considerations

There are three timing elements that are or will be transmitted with the GPS broad-
cast navigation message. They are the satellite clock correction ΔtSV, the timing
group delay TGD, and the intersignal correction (ISC). The ISC was introduced
as part of the modernization of GPS signals and is related to the legacy timing
group delay. Therefore, all three timing elements are discussed in detail. Recom-
mended references are Hegarty et al. (2005), Tetewsky et al. (2009), and Feess
et al. (2013).

The control segment maintains GPS time (GPST) to within 1μsec of UTC (USNO)
according to the Interface Control Document (IS-GPS-200G, 2012), excluding the
occasional UTC leap-second jumps. The current full second offset is readily available
from various data services, if needed, allowing the user to convert between GPST and
UTC (USNO). Since the satellite transmissions are steered by the nominal time of the
individual satellite (satellite time), one needs to know the differences between GPS
time and the individual satellite time. In the notation and sign convention as used by
the interface control document, the time correction to the nominal space vehicle time
tSV is

ΔtSV = af0 + af1(tSV − toc) + af2(tSV − toc)
2 + ΔtR (6.2.4)
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with
tGPS = tSV − ΔtSV (6.2.5)

and
ΔtR = −

2
c2

√
a𝜇 e sin E = −

2
c2
X ⋅ Ẋ (6.2.6)

ΔtR[𝜇 sec] ≈ −2e sin E (6.2.7)

The polynomial coefficients are transmitted in units of sec, sec/sec, and sec ∕sec2;
the clock data reference time toc is also broadcast in seconds in subframe 1 of the
navigation message. The value of tSV must account for the beginning or end-of week
crossovers. That is, if (tSV − toc) is greater than 302,400, subtract 604,800 from tSV. If
(tSV − toc) is less than −302, 400, add 604,800 to tSV. The symbol ΔtR is a small rel-
ativistic clock correction caused by the orbital eccentricity e. The symbol 𝜇 denotes
the gravitational constant, a is the semimajor axis of the orbit, and E is the eccen-
tric anomaly. See Chapter 5, equation (5.1.54), for details on these elements. The
approximation (6.2.7) follows by taking a ≈ 26, 600km.

A major topic of this subsection is the intersignal corrections (ISC). Such correc-
tions will be available for the modernized GPS signals L1CA, L1P(Y), L1M, L2C,
L2P(Y), L2M, L5I, and L5Q, and transmitted with the new navigation message to
allow users to correct the observation. In order to provide full flexibility when deal-
ing with the modernized signal, we will adhere in this subsection to the notation used
in Tetewsky et al. (2009). This means that the third civil frequency will be referred
to as L5. It also means that the pseudorange on L1 is denoted by P1,PY . A numeri-
cal subscript is again used before the comma to identify the frequency, and the code
identification is given after the comma. Omitting the windup terms, the pseudoranges
(6.1.16) and (6.1.18) can be written in this new notation as

P′
1,PY = 𝜌 + cdt − cdt − c(ΔtSV − T1,PY ) + I1,PY + T − d1,PY + D1,PY +M1,PY

(6.2.8)

P′
2,PY = 𝜌 + cdt − cdt − c(ΔtSV − T2,PY ) + 𝛾12I1,PY + T − d2,PY + D2,PY +M2,PY

(6.2.9)

We only need to focus on some of these terms in the context of this section. The satel-
lite clock correction is denoted by ΔtSV; dt is viewed again as the residual satellite
clock error and can be omitted. The satellite hardware code delay of the L1 P-code
is now denoted by T1,PY . This delay is the difference in time from the instant of sig-
nal generation by the satellite clock to the signal departure at the satellite antenna.
The delay, therefore, includes the time it needs to pass through the various electronic
components of the satellite including the path through the antenna. The delay is a
function of frequency and code type. Having introduced the hardware delay T1,PY ,
the term D1,PY is viewed as residual hardware delay and can be omitted. The same is
true for the L2 P-code parameters T2,PY versusD2,PY . A prime is added to the pseudo-
range symbols on the left side to indicate that observations are raw, i.e., they have not
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been corrected for ΔtSV and the hardware delays T1,PY and T2,PY . Any pseudorange
equations for any frequency and code can be written in the form (6.2.8) or (6.2.9).

6.2.2.1 Satellite Clock Correction and Timing Group Delay The satel-
lite clock correction ΔtSV has traditionally been computed by the GPS operator on
the basis of the ionospheric-free L1P(Y) and L2P(Y) pseudorange function. For this
purpose, we combine the linear dependent terms dt and ΔtSV, i.e., we simply omit
the former. Recall that from the user’s perspective, the satellite clock error ΔtSV is
considered known and dt represents a residual satellite clock error. Furthermore, the
user is expected to correct the observations forΔtSV. The GPS operators, on the other
hand, need to determine the actual clock correction ΔtSV and there is, consequently,
no place for another clock term such as dt. Also, the GPS operator uses the raw obser-
vations when attempting to determine ΔtSV. The mathematical model for the clock
correction is the second-order polynomial

ΔtSV = a0 + a1(t − t0) + a2(t − t0)
2 (6.2.10)

where t0 is the reference time and a0, a1, and a2 are the parameters to be determined
for a specific satellite, indicated by the subscript SV.

In this new notation, the ionospheric-free function (6.1.38) readily follows form
(6.2.8) and (6.2.9):

P′
2,PY − 𝛾12P

′
1,PY

1 − 𝛾12
− 𝜌 = cdt − c

[
ΔtSV +

1
1 − 𝛾12

(
T2,PY − 𝛾12T1,PY

)]
+ T − d1,PY ,2,PY +M1,PY , 2,PY (6.2.11)

The topocentric satellite distance 𝜌 has been moved to the left side, assuming that
the receivers are located at known stations. The subscript of the receiver hardware
delay d and multipathM refer to the specific choice of the ionospheric-free function.
The unknown satellite hardware delay term T2,PY − 𝛾12T1,PY is considered constant
over the time span t − t0. As a result, the constant a0 in (6.2.10) and the hardware
delay term are linear dependent. We combine both terms into a new parameter but
label it again a0 for simplicity to avoid introducing another temporary symbol. This
reparameterization can alternatively be accomplished by imposing the condition

T2,PY = 𝛾12T1,PY (6.2.12)

The ionospheric-free function can thus be written as

P′
2,PY − 𝛾12P

′
1,PY

1 − 𝛾12
− 𝜌 = cdt − c

[
a0 + a1(t − t0) + a2(t − t0)

2]
+ T − d1,PY , 2,PY +M1,PY , 2,PY (6.2.13)

The receiver clock error, possibly the vertical tropospheric delay, and the polynomial
coefficients a0, a1, and a2 per satellite can now be estimated.
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Condition (6.2.12) can be arranged as T1,PY = (T1,PY − T2,PY )∕(1 − 𝛾12). The
satellite manufacturer initially measures the difference T1,PY − T2,PY in the lab-
oratory for each satellite. These measured values may be updated to reflect the
actual in-orbit delay difference for each satellite (IS-GPS-200G, 2012, Section
20.3.3.3.3.2). The scaled measured difference is traditionally denoted by TGD and
simply referred to as the timing group delay, i.e., TGD ≡ (T1,PY − T2,PY )∕(1 − 𝛾12).
With this understanding we can define

TGD ≡ T1,PY (6.2.14)
and write (6.2.12) as

T2,PY = 𝛾12TGD (6.2.15)

Using this legacy TGD notation leads to the familiar form of the pseudorange
equations:

P′
1,PY = 𝜌 + cdt − cdt − c(ΔtSV − TGD) + I1,PY + T − d1,PY +M1,PY (6.2.16)

P′
2,PY = 𝜌 + cdt − cdt − c(ΔtSV − 𝛾12TGD) + 𝛾12I1,PY + T − d2,PY +M2,PY

(6.2.17)

The results of this traditional L1/L2 P-code dual-frequency calibration as discussed
briefly above are the common clock error, one per satellite and common to all signals
of that satellite, and one TGD per satellite. Implicitly, the satellite hardware delay for
L2, T2,PY = 𝛾12TGD, is expressed as a scaled value of the timing group delay.

6.2.2.2 Intersignal Correction The modern version of the pseudorange
equation incorporates the ISC, which is the difference of the satellite hardware code
delays of the respective codes used in the ionospheric-free functions. Using (6.2.12)
and (6.2.14), the ISC for the pseudoranges involved in (6.2.11) becomes

ISC2,PY = T1,PY − T2,PY = (1 − 𝛾12)T1,PY = (1 − 𝛾12)TGD (6.2.18)

The subscript of the intersignal function indicates that the ISC refers to the hard-
ware code delay of L2P(Y) relative to L1P(Y). Substituting (6.2.18) into (6.2.17),
the modernized form becomes

P′
2,PY = 𝜌 + cdt − cdt − c(ΔtSV − TGD + ISC2,PY ) + 𝛾12I1,PY + T − d2,PY +M2,PY

(6.2.19)
The hardware delays are expressed in terms of the unscaled legacy group delay and the
respective ISC. This form can readily be generalized to other pseudoranges. Consider,
for example, the L5 inphase pseudorange L5I:

P′
5,I = 𝜌 + cdt − cdt − c(ΔtSV − T5,I) + 𝛾15I1,PY + T − d5,I +M5,I

= 𝜌 + cdt − cdt − c(ΔtSV − TGD + ISC5,I) + 𝛾15I1,P + T − d5,I +M5,I
(6.2.20)

with ISC5,I = TGD − T5,I . The general form is

P′
i,x = 𝜌 + cdt − cdt − c(ΔtSV − TGD + ISCi,x) + 𝛾1iI1,P + T − d(i,x),p +M(i,x),p

(6.2.21)
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with
ISCi,x = TGD − Ti,x (6.2.22)

Equation (6.2.21) applies to all pseudoranges and codes, even to the L1 pseudorange
(6.2.16), since ISC1,PY = 0.

The information for computing the satellite clock correction ΔtSV and TGD has
traditionally been included in the navigation message and transmitted by the user. In
the modernized arrangement, the ISC will also be transmitted so that the user can
correct the observations for the common satellite clock correction and the known
delays:

Pi,x ≡ P′
i,x + c(ΔtSV − TGD + ISCi,x) = 𝜌 + cdt − cdt + 𝛾1iI1,P + T − di,x +Mi,x

(6.2.23)

Δti,x = ΔtSV − TGD + ISCi,x (6.2.24)

P′′
i,x ≡ P′

i,x + cΔtSV = 𝜌 + cdt − cdt − cTGD − c ⋅ ISCi,x + 𝛾1iI1,P + T − di,x +Mi,x

(6.2.25)

In (6.2.23) all three corrections were applied to the observation. The symbol Δti,x in
(6.2.24) denotes the known total clock error that is specific to frequency and code.
In (6.2.25), only a partial correction is carried out that includes the common clock
correction.

Ionospheric-Free and Ionospheric Functions:The ionospheric-free function for
the fully corrected pseudoranges is obtained in the familiar form

Pj,y − 𝛾ijPi,x

1 − 𝛾ij
= 𝜌 + cdt − cdt + T − di,x,j,y +Mi,x,j,y (6.2.26)

It can readily be verified that the ionospheric delay cancels since 𝛾ij𝛾1i = 𝛾1j. Using
partially corrected observations as defined in (6.2.25), the ionospheric-free function
looks like this:

P′′
j,y − 𝛾ijP

′′
i,x + c ⋅ ISCj,y − 𝛾ij ⋅ c ⋅ ISCi,x

1 − 𝛾ij
− cTGD = 𝜌 + cdt − cdt

+ T − di,x,j,y +Mi,x,j,y (6.2.27)

These general expressions are valid for all frequencies and code types. In the event
that L1P(Y) is used, note that ISC1,PY = 0.

Using the partially corrected function (6.2.25), and omitting for simplicity themul-
tipath terms, the ionospheric function can be written as

I1,PY =
P′′
j,x − P′′

j,y

𝛾1i − 𝛾1j
+ c ⋅

ISCi,x − ISCj,y

𝛾1i − 𝛾1j
+

di,x − dj,y
𝛾1i − 𝛾1j

(6.2.28)
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I1,PY =
P′′
1,PY − P′′

2,PY

1 − 𝛾12
− c ⋅

ISC2,PY

1 − 𝛾12
=

P′′
1,PY − P′′

2,PY

1 − 𝛾12
− TGD +

d1,PY − d2,PY
1 − 𝛾12

=
P′′
1,PY − P′

2,PY

1 − 𝛾12
−

(T1,PY − T2,PY ) − (d1,PY − d2,PY )

1 − 𝛾12
(6.2.29)

Equation (6.2.29) represents the popular case that uses P′′
1,PY and P′′

2,PY pseudor-
anges. It follows from the general form by using ISC1,PY = 0 and 𝛾11 = 1. The last
term represents the receiver and satellite hardware delays for P1Y and P2Y codes.
When estimating the ionosphere or the TEC (total electronic content) a Kalman filter
usually also estimates the difference in hardware delays. Also, ultimately, one might
need to consider variations in the hardware delays due to large diurnal and seasonal
temperature changes.

Estimating the ISCs: The intersignal delay for the L1 CA-code follows directly
by applying (6.2.23) and (6.2.25) to the P1-code and L1CA pseudoranges, respec-
tively, and differencing both equations, and knowing that ISC1,PY = 0,

ISC2,CA = P′′
1,PY − P′′

2,CA + (d1,PY − d2,CA) (6.2.30)

Similarly, applying (6.2.25) to L2C and using (6.2.15) yields

ISC2,C = P′′
1,PY − P′′

2,C + (1 − 𝜆12)TGD (6.2.31)

Applying the ionospheric function (6.2.28) to P1,PY and P5,Q to compute I1,PY , then
substituting (6.2.29) for I1,PY , and then making use of (6.2.18), gives

ISC5,Q =
(
P′′
1,PY − P′′

5,Q

)
−

1 − 𝛾15
1 − 𝛾12

(
P′′
1,PY − P′′

2,PY

)
+ (1 − 𝛾15)TGD

+ (d1,PY − d5,Q) −
1 − 𝛾15
1 − 𝛾12

(d1,PY − d2,PY ) (6.2.32)

Similar operations lead to the ISC for L5I,

ISC5,I = P′′
1,PY − P′′

5,I −
1 − 𝛾15
1 − 𝛾12

(
P′′
1,PY − P′′

2,PY

)
+ (1 − 𝛾15)TGD

+ (d1,PY − d5,I) −
1 − 𝛾15
1 − 𝛾12

(d1,PY − d2,PY ) (6.2.33)

All ISCs have been expressed as a function of known timing group delay TGD and
are all relative to the common reference L1P(Y). See Feess et al. (2013) for a data
example.
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6.2.3 Cycle Slips

A cycle slip is a sudden jump in the carrier phase observable by an integer number
of cycles. The fractional portion of the phase is not affected by this discontinuity in
the observation sequence. Cycle slips are caused by the loss of lock of the phase lock
loops. Loss of lock may occur briefly between two epochs or may last several minutes
or more if the satellite signals cannot reach the antenna. If receiver software would
not attempt to correct for cycle slips, it would be a characteristic of a cycle slip that all
observations after the cycle slip would be shifted by the same integer. This situation
is demonstrated in Table 6.2.1, where a cycle slip is assumed to have occurred at
receiver k while observing satellite q between the epochs i − 1 and i. The cycle slip
is denoted by Δ. Because the double differences are a function of observations at one
epoch, all double differences starting with epoch i are offset by the amount Δ. Only
one of the triple differences is affected by the cycle slip, because triple differences are
differences over time. For each additional slip there is one additional triple-difference
outlier and one additional step in the double-difference sequence. A cycle slip may
be limited to just one cycle or could be millions of cycles.

This simple relation can break down if the receiver software attempts to fix the slips
internally. Assume the receiver successfully corrects for a slip immediately following
the epoch of occurrence. The result is one outlier (not a step function) for double
differences and two outliers for the triple differences.

There is probably no best method for cycle slip removal, leaving lots of space for
optimization and innovation. For example, in the case of simple static applications,
one could fit polynomials, generate and analyze higher-order differences, visually
inspect the observation sequences using graphical tools, or introduce new ambiguity
parameters to be estimated whenever a slip might have occurred. The latter option is
very attractive in kinematic positioning.

It is best to inspect the discrepancies rather than the actual observations. The
observed double and triple differences show a large time variation that depends on
the length of the baseline and the satellites selected. These variations can mask small
slips. The discrepancies are the difference between the computed observations and
the actual observed values. If good approximate station coordinates are used, the dis-
crepancies are rather flat and allow even small slips to be detected.

For static positioning, one could begin with the triple-difference solution. The
affected triple-difference observations can be treated as observations with blunders

TABLE 6.2.1 Effect of Cycle Slips on Carrier Phase Differences.

Carrier Phase Double Difference Triple Difference

𝜑
p
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q
k(i + 2) + Δ 𝜑

q
m(i + 2) 𝜑

pq
km(i + 2) − Δ
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and dealt with using the blunder detection techniques provided in Chapter 2. A simple
method is to change the weights of those triple-difference observations that have par-
ticularly large residuals. Once the least-squares solution has converged, the residuals
will indicate the size of the cycle slips. Not only is triple-difference processing a robust
technique for cycle slip detection, it also provides good station coordinates, which,
in turn, can be used as approximations in a subsequent double-difference solution.

Before computing the double-difference solution, the double-difference observa-
tions should be corrected for cycle slips identified from the triple-difference solution.
If only two receivers observe, it is not possible to identify the specific undifferenced
phase sequence where the cycle slip occurred from analysis of the double difference.
Consider the double differences

𝜑
1p
12 =

(
𝜑1
1 − 𝜑

1
2

)
−

(
𝜑
p
1 − 𝜑

p
2

)
(6.2.34)

for stations 1 and 2 and satellites 1 and p. The superscript p denoting the satellites
varies from 2 to S, the total number of satellites. Equation (6.2.34) shows that
a cycle slips in 𝜑1

1 or 𝜑1
2 will affect all double differences for all satellites and

cannot be separately identified. The slips Δ1
1 and −Δ1

2 cause the same jump in the
double-difference observation. The same is true for slips in the phase from station 1
to satellite p and station 2 to satellite p. However, a slip in the latter phase sequences
affects only the double differences containing satellite p. Other double-difference
sequences are not affected.

For a session network, the double-difference observation is

𝜑
1p
1m =

(
𝜑1
1 − 𝜑

1
m

)
−

(
𝜑
p
1 − 𝜑

p
m

)
(6.2.35)

The superscript p goes from 2 to S, and the subscript m runs from 2 to R. It is read-
ily seen that a cycle slip in 𝜑1

1 affects all double-difference observations, an error
in 𝜑1

m affects all double differences pertaining to the baseline 1 to m, an error in 𝜑p
1

affects all double differences containing satellite p, and an error in 𝜑p
m affects only

one series of double differences, namely, the one that contains station m and satel-
lite p. Thus, by analyzing the distribution of a blunder in all double differences at
the same epoch, we can identify the undifferenced phase observation sequence that
contains the blunder. This identification gets more complicated if several slips occur
at the same epoch. In session network processing, it is always necessary to carry out
cross checks. The same cycle slip must be verified in all relevant double differences
before it can be declared an actual cycle slip. Whenever a cycle slip occurs in the
undifferenced phase observations from the base station or to the base satellite, the
cycle slip enters several double-difference sequences. In classical double-difference
processing, it is not necessary that the undifferenced phase observations be corrected;
it is sufficient to limit the correction to the double-difference phase observations if
the final position computation is based on double differences. It is also possible to
use the geometry-free functions of the observables to detect cycle slips.

6.2.4 Phase Windup Correction

One must go back to the electromagnetic nature of GPS transmissions in order
to understand this correction, as has been done in Chapter 9. In short, the GPS
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Figure 6.2.1 Antenna rotation test with Javad dual-frequency receiver having two
antennae and single oscillator. Data source: Rapoport.

carrier waves are right circularly polarized (RCP). The electromagnetic wave may
be visualized as a rotating electric vector field that propagates from the satellite
antenna to the receiver antenna. The vector rotates 360∘ every spatial wavelength
or every temporal cycle of the wave. The observed carrier phase can be viewed as
the geometric angle between the instantaneous electric field vector at the receiving
antenna and some reference direction on the antenna. As the receiving antenna
rotates in azimuth, this measured phase changes. The same is true if the transmitting
antenna changes its orientation with respect to the receiver antenna. Since the phase
is measured in the plane of the receiving antenna, its value depends on the direction
of the line of sight to the satellite, in addition to the orientation of the antenna.

Figure 6.2.1 shows the results of a simple test to demonstrate RCP of GPS signals.
Two antennas, about 5m apart, were connected to the same receiver and oscillator
and observations were recorded once per second. One of the antennas was rotated
360∘ in azimuth four times clockwise (as viewed looking down on the antenna), with
1 minute between the rotations, and then four times rotated counterclockwise, again
with 1 minute between the rotations. The carrier phase observations were differenced
and a linear trend was removed to account for the phase biases and a differential rate
(caused by the separation of the antennas). The figure shows the change in the single
differences for both L1 and L2. Each complete antenna rotation in azimuth causes a
change of one wavelength.

An introductory discussion of the carrier phase windup correction for rotating GPS
antennas is found in Tetewsky and Mullen (1997). Wu et al. (1993) derived the phase
windup correction expressions for a crossed dipole antenna, but their results are appli-
cable to cases that are more general. Following their derivations, at a given instant the
windup correction is expressed as a function of the directions of the dipoles and of
the line of sight to the satellite.

Let x̂ and ŷ denote the unit vectors in the direction of the two-dipole elements in
the receiving antenna in which the signal from the y-dipole element is delayed by
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90∘ relative to that from the x-dipole element. k is the unit vector pointing from the
satellite to the receiver. We consider a similar definition for x̂′ and ŷ′ at the satellite,
i.e., the current in the y′-dipole lags that in the x′- dipole by 90∘. They define the effec-
tive dipole that represents the resultant of a crossed dipole antenna for the receiver
and the transmitter, respectively,

d = x̂ − k(k ⋅ x̂) + k × ŷ (6.2.36)

d′ = x̂′ − k(k ⋅ x̂′) − k × ŷ′ (6.2.37)

The windup correction is (Wu et al., 1993, p. 95)

𝛿𝜑 = sign [k ⋅ (d′ × d)]cos−1
(

d′ ⋅ d‖d′‖ ‖d‖
)

(6.2.38)

At a given instant in time, the windup correction 𝛿𝜑 cannot be separated from the
undifferenced ambiguities, nor is it absorbed by the receiver clock error because it
is a function of the receiver and the satellite. In practical applications, it is therefore
sufficient to interpret x̂ and ŷ as unit vectors along northing and easting and x̂′ and ŷ′

as unit vectors in the satellite body coordinate system. Any additional windup error
resulting from this redefinition of the coordinate system will also be absorbed by the
undifferenced ambiguities. Taken over time, however, the values of 𝛿𝜑 reflect the
change in orientation of the receiver and satellite antennas.

The value of the windup correction for across-receiver and double differences
has an interesting connection to spherical trigonometry. Consider a spherical tri-
angle whose vertices are given by the latitudes and longitudes of the receivers k
and m, and the satellite. In addition, we assume that GPS transmitting antennas are
pointing toward the center of the earth and that the ground receiver antennas are point-
ing upward. This assumption is usually met in the real world. It can be shown that
the across-receiver difference windup correction 𝛿𝜑p

km = 𝛿𝜑p
k − 𝛿𝜑

p
m is equal to the

spherical excess if the satellite appears on the left as viewed from station k to sta-
tion m, and it equals the negative spherical excess if the satellite appears to the right.
The double-differencing windup correction 𝛿𝜑pq

km equals the spherical excess of the
respective quadrilateral. The sign of the correction depends on the orientation of the
satellite with respect to the baseline. For details, refer to Wu et al. (1993).

The windup correction is negligible for short baselines because the spherical
excess of the respective triangles is small. Neglecting the windup correction might
cause problems when fixing the double-difference ambiguities, in particular for
longer lines. The float ambiguities absorb the constant part of the windup correction.
The variation of the windup correction over time might not be negligible in float
solutions of long baselines. Additional remarks about dealing with the windup
corrections are provided in Chapter 7.

There is no windup-type correction for the pseudoranges. Consider the simple case
of a rotating antenna that is at a constant distance from the transmitting source and
the antenna plane perpendicular to the direction of the transmitting source. Although
the measured phase would change due to the rotation of the antenna, the pseudorange
will not change because the distance is constant.
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6.2.5 Multipath

Once the satellite signals reach the earth’s surface, ideally they enter the antenna
directly. However, objects in the receiver’s vicinity may reflect some signals before
they enter the antenna, causing unwanted signatures in pseudorange and carrier phase
observations. Although the direct and reflected signals have a common emission time
at the satellite, the reflected signals are always delayed relative to the line-of-sight
signals because they travel longer paths. The amplitude (voltage) of the reflected
signal is always reduced because of attenuation. The attenuation depends on the
properties of the reflector material, the incident angle of the reflection, and the polar-
ization. In general, reflections with a very low incident angle have little attenuation. In
addition, the impact of multipath on the GPS observables depends on the sensitivity
of the antenna in terms of sensing signals from different directions, and the receiver’s
internal processing to mitigate multipath effects. Multipath is still one of the domi-
nating, if not the dominant, sources of error in GPS positioning. Chapter 9 provides
an in-depth treatment of the relationship of antenna properties and multipath effects.

Signals can be reflected at the satellite (satellite multipath) or in the surround-
ings of the receiver (receiver multipath). Satellite multipath is likely to cancel in the
single-difference observables for short baselines. Reflective objects for receivers on
the ground can be the earth’s surface itself (ground and water), buildings, trees, hills,
etc. Rooftops are known to be bad multipath environments because there are often
many vents and other reflective objects within the antenna’s field of view.

The impact of multipath on the carrier phases can be demonstrated using a planar
vertical reflection surface at distance d from the antenna (Georgiadou and Kleusberg,
1988; Bishop et al., 1985). The geometry is shown in Figure 6.2.2. We write the direct
line-of-sight carrier phase observable for receiver k and satellite p as

SD = A cos 𝜑 (6.2.39)

In (6.2.39) we do not use the subscript k and superscript p in order to simplify the
notation. The symbols A and 𝜑 denote the amplitude (signal voltage) and the phase,
respectively. The reflected signal is written as

SR = 𝛼A cos (𝜑 + 𝜃), 0 ≤ 𝛼 ≤ 1 (6.2.40)

Figure 6.2.2 Geometry for reflection on a vertical planar plane.
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The amplitude reduction factor (attenuation) is 𝛼 = A′∕A, where A′ is the amplitude
of the reflected signal. The total multipath phase shift is

𝜃 = 2𝜋f Δ𝜏 + 𝜙 (6.2.41)

where f is the frequency,Δ𝜏 is the time delay, and 𝜙 is the fractional shift. The multi-
path delay shown in Figure 6.2.2 is the sum of the distances AB and BC, which equals
2d cos 𝛽. Converting this distance into cycles and then to radians gives

𝜃 =
4𝜋d
𝜆

cos 𝛽 + 𝜙 (6.2.42)

where 𝜆 is the carrier wavelength. The composite signal at the antenna is the sum of
the direct and reflected signal,

S = SD + SR = R cos (𝜑 + 𝜓) (6.2.43)

It can be verified that the resultant carrier phase voltage R(A, 𝛼, 𝜃) and the carrier
phase multipath delay 𝜓(𝛼, 𝜃) are

R(A, 𝛼, 𝜃) = A(1 + 2𝛼 cos 𝜃 + 𝛼2)1∕2 (6.2.44)

𝜓(𝛼, 𝜃) = tan−1
(

𝛼 sin 𝜃
1 + 𝛼 cos 𝜃

)
(6.2.45)

Regarding the notation, we used the symbols Mp
k,1 and Mp

k,2 in previous sections
to denote the total multipath, i.e., the multipath effect of all reflections on L1
and L2, respectively. If we consider the case of constant reflectivity, i.e., 𝛼 is
constant, the maximum path delay is found when 𝜕𝜓∕𝜕𝜃 = 0. This occurs at
𝜃(𝜓max) = ±cos−1(−𝛼), the maximum value being 𝜓max = ±sin−1𝛼. The maximum
multipath carrier phase error is only a function of the amplitude attenuation in this
particular case. The largest value is ±90∘ and occurs when 𝛼 = 1. This maximum
corresponds to 𝜆∕4. If 𝛼 ≪ 1, then 𝜓 can be approximated by 𝛼 sin 𝜃.

The multipath effect on pseudoranges depends among other things on the chipping
rate T of the codes and the receiver’s internal sampling interval S. A necessary step
for each receiver is to correlate the received signal with an internally generated code
replica. The offset in time that maximizes the correlation is a measure of the pseudo-
range. Avoiding the technical details, suffice it to say that time shifting the internal
code replica and determining the correlation for early, prompt, and late delays even-
tually determines the offset. The early and late delays differ from the prompt delay
by −S and S, respectively. When the early minus late correlation is zero, i.e., they
have the same amplitude, the prompt delay is used as a measure of the pseudorange.
Consult Kaplan (1996, p. 148) for additional details on the topic of code tracking
loops and correlation. For a single multipath signal, the correlation function consists
of the sum of two triangles, one for the direct signal and one for the multipath signal.
This is conceptually demonstrated in Figure 6.2.3. The solid thin line and the dashed
line represent the correlation functions of the direct and multipath signals, respec-
tively. The thick solid line indicates the combined correlation function, i.e., the sum
of the thin line and dashed line. The left figure refers to destructive reflection when the
reflected signal arrives out of phase with respect to the direct signal. The right figure
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Figure 6.2.3 Correlation function in the presence of multipath. p denotes the time delay
of the multipath signal and q is the multipath induced pseudorange error.

refers to constructive reflection when the reflected and direct signals are in phase. Let
the combined signal be sampled at the early and late delays. The figure shows that the
prompt delay would coincide with the maximum correlation for the direct signal and
indicate the correct pseudorange but will be in error by the multipath-induced range
error q for the combined signal. The resulting pseudorange measurement errors are
negative for destructive reflection and positive for constructive reflection, even though
the reflected signal always arrives later than the direct one.

The pseudorange multipath error further depends on whether the sampling interval
is greater or smaller than half the chipping period. Byun et al. (2002) provide the
following expressions. If S > T∕2 (wide sampling), then

Δ𝜏P =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δ𝜏𝛼 cos (2𝜋fΔ𝜏 + 𝜙)
1 + 𝛼 cos(2𝜋fΔ𝜏 + 𝜙)

if Δ𝜏 < T − S + Δ𝜏P

(T − S + Δ𝜏)𝛼 cos(2𝜋fΔ𝜏 + 𝜙)
2 + 𝛼 cos(2𝜋fΔ𝜏 + 𝜙)

if T − S + Δ𝜏P < Δ𝜏 < S + Δ𝜏P

(T + S + Δ𝜏)𝛼 cos(2𝜋fΔ𝜏 + 𝜙)
2 − 𝛼 cos(2𝜋fΔ𝜏 + 𝜙)

if s + Δ𝜏P < Δ𝜏 < T + S + Δ𝜏P

0 if Δ𝜏 > T + S + Δ𝜏P
(6.2.46)

and if S < T∕2 (narrow sampling), then

Δ𝜏P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δ𝜏𝛼 cos (2𝜋fΔ𝜏 + 𝜙)
1 + 𝛼 cos(2𝜋fΔ𝜏 + 𝜙)

if Δ𝜏 < S + Δ𝜏P

s𝛼 cos(2𝜋fΔ𝜏 + 𝜙) if S + Δ𝜏P < Δ𝜏 < T − S + Δ𝜏P
(T + S − Δ𝜏)𝛼 cos(2𝜋fΔ𝜏 + 𝜙)

2 − 𝛼 cos(2𝜋fΔ𝜏 + 𝜙)
if T − S + Δ𝜏P < Δ𝜏 < T + S

0 if Δ𝜏 > T + S
(6.2.47)

The pseudorange multipath error is dP = cΔ𝜏P, and Δ𝜏 denotes the time delay of the
multipath signal. The expressions are valid for the P-codes and the C/A-code as long
as the appropriate chipping period T is used.
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Figure 6.2.4 P1-code pseudorange multipath delay envelope in the case of wide sam-
pling. T = 98nsec, S = 60nsec, 𝛼1 = 0.1, 𝜙1 = 0.

Figure 6.2.4 shows an example of the envelope for the P1-code multipath
range error Δ𝜏P1 oscillations versus time delay Δ𝜏 for the wide-sampling case
S > T∕2. As the phase varies by 𝜋, the multipath error changes from upper to lower
bounds and vice versa. The distinct regions of (6.2.46) are readily visible in the
figure. Figure 6.2.5 shows an example of the C/A-code multipath range error for
the narrow-sampling case S < T∕2. The main difference between the wide and
narrow sampling interval is that the latter has a constant peak at region 2. In fact,
shortening the sampling interval S has long been recognized as a means to reduce the
pseudorange multipath error. See the second component of (6.2.47), where S appears
as a factor. Comparing (6.2.46) and (6.2.47), we find that in region 1 the slopes of
the envelopes are the same for wide and narrow correlating. Narrow correlation
causes the bounds in region 2 to be smaller. Region 4, for which the multipath error
is zero, is reached earlier the narrower the sampling (given the same chipping rate).
The lower envelope in these figures corresponds to destructive reflection, while the
upper envelope refers to constructive reflection.

Figure 6.2.5 C/A-code pseudorangemultipath delay envelope in the case of narrow sam-
pling. T = 980nsec, S = 48nsec, 𝛼1 = 0.1, 𝜙1 = 0.
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The multipath frequency f𝜓 depends on the variation of the phase delay 𝜃, as can
be seen from (6.2.40), (6.2.45), (6.2.46), or (6.2.47). Differentiating (6.2.42) gives
the expression for the multipath frequency

f𝜓 =
1
2𝜋

d𝜃
dt

=
2d
𝜆

sin 𝛽|𝛽̇| (6.2.48)

The multipath frequency is a function of the elevation angle and is proportional to
the distance d and the carrier frequency. For example, if we take 𝛽̇ = 0.07mrad∕s
(= one-half of the satellite’s mean motion) and 𝛽 = 45∘, then the multipath period
is about 5 minutes if d = 10m and about 50 minutes if d = 1m. The variation in the
satellite elevation angle causes the multipath frequency to become a function of time.
According to (6.2.48), the ratio of the multipath frequencies for L1 and L2 equals
that of the carrier frequencies, f𝜓,1∕f𝜓,2 = f1∕f2.

As an example of a carrier phase multipath, consider a single multipath signal
and the ionospheric phase observable (6.1.44). The effect of the multipath for this
function is

𝜑MP ≡ 𝜓1 −
f1
f2
𝜓2

= tan−1
(

𝛼 sin 𝜃1
1 + 𝛼 cos 𝜃1

)
−

f1
f2
tan−1

(
𝛼 sin 𝜃2

1 + 𝛼 cos 𝜃2

)
(6.2.49)

Figure 6.2.6 shows that the multipath 𝜑MP impacts the ionospheric observable in a
complicated manner. The amplitude of the cyclic phase variations is nearly propor-
tional to 𝛼. When analyzing the ionospheric observable in order to map the temporal

Figure 6.2.6 Example of multipath on the ionospheric carrier phase observable from a
vertical planar surface. d = 10m, 𝜙1 = 𝜙2 = 0.
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Figure 6.2.7 Pseudorange multipath from a single reflection on a vertical planar sur-
face. 𝛼 = 0.1, d = 5𝜆1, 𝜙1 = 𝜙2 = 0.

variation of the ionospheric delay, the multipath signature (6.2.49) cannot be ignored.
In fact, the multipath variation of (6.2.45) might occasionally impact our ability to
fix the integer ambiguities, even for short baselines.

Figure 6.2.7 shows the effects of multipath on the pseudoranges P1 and P2, and the
ionospheric free function (6.1.38).We are using the expression for region 1 in (6.2.46)
or (6.2.47), since we consider the case of a nearby reflection. The time delay Δ𝜏 is
a function of the satellite elevation angle and can be computed from (6.2.42). The
figures show the multipath for a satellite that rises (𝛽 = 0∘) until it passes overhead
(𝛽 = 90∘). The multipath is largest for a satellite in the horizon (reflection on vertical
surface). In the case of reflection from a horizontal surface, themultipath has a reverse
dependency, i.e., it is largest for satellites at the zenith, as can readily be verified.

Fenton et al. (1991) discuss one of the early implementations of narrow correla-
tion in C/A-code receivers. Narrow correlator technology and on-receiver processing
methods to reduce carrier phase and pseudorange multipath effects are extensively
documented in the literature, e.g., van Dierendonck et al. (1992), Meehan and Young
(1992), Veitsel et al. (1998), and Zhdanov et al. (2001). If the phase shift 𝜃 changes
rapidly, one might even attempt to average the pseudorange measurements. In addi-
tion to sophisticated on-receiver signal processing, there are several external ways to
mitigate multipath.

1. Since multipath can also arrive from below the antenna (due to edge diffrac-
tion), a ground plate is helpful. The ground plate is usually a metallic surface
of circular or rectangular form.

2. Partial multipath rejection can be achieved by shaping the gain pattern of the
antenna. Since a lot of multipath arrives from reflections near the horizon, mul-
tipath may be sharply reduced by using antennas having low gain in these
directions.
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3. Improved multipath resistance is achieved with choke rings. These are metallic
circular grooves with quarter-wavelength depth.

4. Highly reflective surfaces change the polarization from right-hand circular (sig-
nal received directly from the GPS satellite) to left-hand circular. GPS antennas
that are designed to receive right-hand polarized signals will attenuate signals
of opposite polarization.

5. Arrays of antennas can also be used to mitigate multipath. Due to a different
multipath geometry, each antenna sees the multipath effect differently. Com-
bined processing of signals from all antennas allows multipath mitigation (Fu
et al., 2003). In a design proposed by Counselman, the antenna elements are
arranged along the vertical rather than the horizontal (Counselman, 1999).

6. Since the geometry between a GPS satellite and a receiver-reflector repeats
every sidereal day, multipath shows the same pattern between consecutive days.
Such repetition is useful to verify the presence of multipath by analyzing the
repeatability patterns and eventually model the multipath at the station. In rel-
ative positioning, the double-difference observable is affected by multipath at
both stations.

In practical applications, of course, the various satellite signals are reflected at differ-
ent objects. The attenuation properties of these objects generally vary; in some cases
attenuation might even depend on time. Since the angle of incident also affects atten-
uation, it can readily be appreciated that the multipath is a difficult error source with
which to deal. It is common practice not to observe satellites close to the horizon in
order reduce multipath.

Equations (6.1.50) and (6.1.51) are useful to gauge the multipath, in particular the
multipath effect on the pseudoranges, if dual-frequency observations are available.

6.2.6 Phase Center Offset and Variation

It is important that the satellite signals are modeled correctly at the satellite and at the
receiver. At the satellite one must take the separation of satellite antenna phase and
satellite center of mass into consideration. The user antenna phase center offset and
variation is generally dealt with in terms of relative and absolute antenna calibration
(see Chapter 9 for a more detailed treatment of phase center definition and its varia-
tion). The data on both the satellite antenna and themost important user antenna phase
center offsets are available from the IGS in the form of ANTEX (antenna exchange
format) files. This format was especially designed to be able to handle multiple satel-
lite systems, multiple frequencies per satellite system, and azimuth dependencies of
the phase center variations.

6.2.6.1 Satellite Phase Center Offset The satellite antenna phase center off-
sets are usually given in the satellite-fixed coordinate system (x′) that is also used to
express solar radiation pressure (see Section 5.1.4.3). The origin of this coordinate
system is at the satellite’s center of mass. If e denotes the unit vector pointing to the
sun, expressed in the ECEF coordinate system (x), then the axes of (x′) are defined
by the unit vector k (pointing from the satellite toward the earth’s center, expressed
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in (x)), the vector j = (k × e)∕|k × e | (pointing along the solar panel axis), and the
unit vector i = j × k that completes the right-handed coordinate system (also located
in the sun-satellite-earth plane). It can readily be verified that

xsa = xsc +[i j k] x′ (6.2.50)

where xsa is the position of the satellite antenna and xsc denotes the position of the
satellite’s center of mass.

The satellite phase center offsets must be determined for each satellite type. When
estimating the offsets from observations while the satellite is in orbit, the effect of
the offsets might be absorbed, at least in part, by other parameters. This might be the
case for the offset in direction k and the receiver clock error. See Mader and Czopek
(2001) as an example for calibrating the phase center of the satellite antenna for a
Block IIA antenna using ground measurements. The satellite antenna phase center
calibration data are available in the ANTEX files from IGS.

6.2.6.2 User Antenna Calibration In the past, the phase center offset and vari-
ations of most user antennas were calibrated relative to a reference antenna. This
procedure is called relative antenna calibration. Absolute antenna calibrations, where
the phase offset and variations are determined independently of a reference antenna,
were conducted only for those antennas used at reference stations for which per defi-
nition, the best accuracy is needed. However, as in recent years more absolute antenna
calibration facilities became available, the trend is moving toward using absolute
calibration.

The immediate reference point in positioning with GPS is the phase center of the
receiver antenna. Since the phase center cannot be accessed directly with tape, we
need to know the relationship between the phase center and an external antenna ref-
erence point (ARP) in order to relate the GPS-determined positions to a surveying
monument. Unfortunately, the phase center is not well defined. Its location varies
with the elevation angle of the arriving signal, and to a lesser extend it also depends
on the azimuth. The relationship between the ARP and the phase center, which is the
object of antenna calibration, is usually parameterized in terms of phase center offset
(PCO) and phase center variation (PCV). The largest offset is in height, which can be
as much as 10 cm. The PCO and the PCV also depend on the frequency.

For simplicity, imagine a perfect antenna that has an ARP and a phase center offset
that is well known. Imagine further that you connect a “phase meter” to the antenna
and that you move the transmitter along the surface of a sphere that is centered on the
phase center. In this ideal case, since the distance from the transmitter to the phase
center never changes, the output phase will always read a same constant amount. In
actuality, there is no perfect antenna, and that situation can never be realized. Instead,
one effectively moves a source along a sphere centered on a point that one selects
as an average phase center. Now instead of recording a constant phase, one detects
phase variations, primarily as a function of satellite elevation. Since the distance from
source to antenna is constant, these phase variations must be removed so that constant
geometric distance is represented by constant phase measurements. Had one picked
another phase center, we would get another set of phase variations. It follows that in
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general the PCO and PCVs must be used together and why different PCOs and PCV
sets will lead one back to the same ARP.

For a long observation series one might hope that the average location of the PCV
is well defined and that the position refers to the average phase center. For RTK appli-
cations there is certainly no such averaging possible. For short baselines where the
antennas at the end of the line see a satellite at approximately the same elevation
angle, orienting both antennas in the same direction can largely eliminate the PCO
and PCV. This elimination procedure works only for the same antenna types, however.
For large baselines or when mixing antenna types, an antenna calibration is neces-
sary and respective corrections must be applied. Antenna calibration is also important
when estimating tropospheric parameters, since both the PCV and the tropospheric
delay depend on the elevation angle.

Relative antenna calibration using field observations was, e.g., developed at the
NGS (Mader, 1999), which also made this service available to users. All test anten-
nas are calibrated with respect to the same reference antenna, which happens to be an
AOAD/M_T choke ring antenna. The basic idea is that if the same reference antenna
is always used for all calibrations, the PCO and PCV of the reference antenna cancel
when double-differencing observations of a new baseline and applying the calibrated
PCO and PCV to both antennas. This technique is accurate as long as the elevation
difference of a satellite, as seen from both antennas, is negligible since the PCV is
parameterized as a function of the elevation angle. Since the PCV amounts to about
only 1 to 2 cm and varies only slightly and smoothly with elevation angle, relative
phase calibration is applicable to even reasonably long baselines. NGS uses a cali-
bration baseline of 5m. The reference antenna and the test antenna are connected to
the same type of receiver, and both receivers use the same rubidium oscillator as an
external frequency standard. Since the test baseline is known, a common frequency
standard is used, and because the tropospheric and ionospheric effects cancel over
such a short baseline, the single-difference discrepancies over time are very flat and
can be modeled as(

𝜑
p
12,b − 𝜑

p
12,0

)
i
= 𝜏i + 𝛼1𝛽
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(
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(6.2.51)

The subscript i denotes the epoch, the superscript p identifies the satellite having
elevation angle 𝛽i, and 𝜏i is the remaining relative time delay (receiver clock error).
The coefficients 𝛼1 to 𝛼4 and 𝜏i are estimated by observing all satellites from rising
to setting. The result of the relative calibration of the test antenna is then given by

𝜑̂antenna,PCV (𝛽) = 𝛼̂1𝛽 + 𝛼̂2𝛽
2 + 𝛼̂3𝛽

3 + 𝛼̂4𝛽
4 + 𝜉 (6.2.52)

The symbol 𝜉 denotes a translation such that 𝜑̂antenna,PCV(90
∘) = 0. The remaining

clock difference estimate 𝜏 is not included in (6.2.52). Both 𝜏 and 𝜉 cancel in double
differencing. Recall that this calibration procedure is relative and therefore (6.2.52)
must be applied in the double-differencing mode. We further notice that the model
(6.2.52) does not include an azimuthal parameter. The calibration data is available in
the ANTINFO (antenna information format) files, which were formatted especially
for relative antenna calibration.
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Automated absolute and site-independent field calibration of GPS antennas in
real time is reported in Wübbena et al. (2000), Schmitz et al. (2002), and references
listed therein. They use a precisely controlled three-axes robotic arm to determine
the absolute PCO and PCV as a function of elevation and azimuth. This real-time
calibration uses undifferenced observations from the test antenna that are differenced
over very short time intervals. Rapid changes of orientation of the calibration robot
allow the separation of PCV and any residual multipath effects. Several thousand
observations are taken at different robot positions. The calibration takes only a
few hours.

In order to better serve the high-accurate GNSS community, NGS has also devel-
oped an absolute calibration technique (Bilich and Mader, 2010). They move the
antenna to be tested on a two-axes robotic arm to view the satellite from different
angles. The antenna motion is relatively fast to allow separation of the antenna pattern
of the test antenna and the reference antenna and to eliminate errors such as multipath,
thus effectively producing absolute calibration. The procedure uses across-receiver,
across-time differencing to estimate the antenna calibration parameters. The cali-
bration baseline is about 5m long, and current procedure requires both receivers to
be connected to a common clock. The calibration results are also reported in the
ANTEX format.

There are other approaches available for absolute antenna calibration. For
example, the antenna can be placed in an anechoic chamber. The interior of such
a chamber is lined with radiofrequency absorbent material that reduces signal
reflections or “echoes” to a minimum. A signal source antenna generates the signals.
Since the source antenna can transmit at different frequencies, these anechoic
chamber techniques are suitable for general antenna calibration.

The interested reader is requested to surf the Internet for examples of antenna
calibration and additional resources.

6.2.7 GNSS Services

There are numerous services available to help users get the best out of GNSS. One
such service is the antenna calibration at NGS mentioned above. Others include the
gridded hydrostatic and wet zenith delays available from the TU Vienna and the Uni-
versity of New Brunswick (Chapter 8), ocean loading coefficients from the Onsala
Space Observatory (Chapter 4), polar motion and earth rotation parameters from the
IERS (Chapter 4), geoid undulations from various geodetic agencies to convert ellip-
soidal eights to orthometric heights, and freeware such as LAMBDA (Section 6.5),
made available by the UT Delft. Here we briefly focus on two additional services that
have a major impact on the use of GNSS. The first service refers to the products pro-
vided by the IGS (International GNSS Service), and by the second service we mean
the various online services that process field observations to produce final positions
and related information.

6.2.7.1 IGS The International GNSS Service (IGS) is a response to a call by inter-
national users for an organizational structure that helps maximize the potential of
GNSS systems. It is a globally decentralized organization that is self-governed by its
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members and is without a central source of funding. The support comes from various
member organizations and agencies around the world called contributing organi-
zations. Established by the International Association of Geodesy (IAG) in 1993, it
officially began its operations on January 1, 1994, under the name International GPS
Service for Geodynamics. The current name has been in use since 2005 to convey a
stated goal of providing integration and service for all GNSS systems. Details about
this important open service, which is available to any GNSS user, including formal
statements of goals and objectives, are available at its website http://www.igs.org.

A governing board sets the IGS policies and exercises broad oversight of all IGS
functions. The executive arm of the board is the central bureau, which is located
at the JPL. There are over 400 globally distributed permanent GPS tracking sites.
Figure 6.2.8 shows a subset of participating sites. These stations operate continuously
and deliver data almost in real time to the data centers. There are currently 28 data
centers—4 global, 6 regional, 17 operational data centers, and 1 project data center.
These data centers provide efficient access and storage of data, data redundancy, and
data security at the same time. There are 12 analysis centers. These centers use the
global data sets to produce products of the highest quality. The analysis centers coop-
erate with an analysis center coordinator, whose main task is to combine the products
of the centers into a single product, which becomes the official IGS product. In addi-
tion, there are 28 associate analysis centers that produce information for regional
subnetworks, such as ionospheric information and station coordinate velocities.

Table 6.2.2 summarizes the various IGS products. The orbital accuracy in section
(1) of the table is RMS values computed from three geocentric coordinates as
compared with independently determined laser ranging results. The first accuracy
identifier given for the clocks is the RMS computed relative to the IGS time scale; the
latter is adjusted to GPS time in daily segments. The second accuracy identifier for
the clocks is the standard deviation computed by removing biases for each satellite,
which causes the standard deviation to be smaller than the RMS value. The real-time

GMT Jan 2 16:10:25 2003

Figure 6.2.8 IGS permanent tracking network in 2002. (Courtesy NASA/JPL/Caltech)

http://www.igs.org
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TABLE 6.2.2 IGS Products Product Availability Standards and Quality of Service.

Product Component Accuracy Latency Updates

GPS Satellite Ephemeris and Satellite Clocks (1)

Ultra-rapid (predicted half) Orbits ∼5 cm Predicted 4x daily
Sat. clocks ∼3 ns;1500 ps

Ultra-rapid (observed half) Orbits ∼3 cm 3–9 hours 4x daily
Sat. clocks ∼150 ps; ∼50 ps

Rapid Orbits ∼2.5 cm 17–41 hours Daily
Sat. & sta. clocks ∼75 ps; 25 ps

Final Orbits ∼2 cm 12–18 days Weekly
Sat. clocks ∼75 ps; 20 ps

Real time Orbits ∼5 cm 25 sec Continuous
Sat. clocks 300 ps; 120 ps

Geocentric Coordinates and Velocities of IGS Tracking Stations

Final positions Horizontal 3mm 11–17 days Weekly
Vertical 6mm

Final velocities Horizontal 2mm/yr 11–17 days Weekly
Vertical 3mm/yr

Earth Rotation Parameters (2)

Ultra-rapid (predicted half) Polar motion ∼200 μas Real time 4× daily
Polar motion rate ∼300 μas/day
Length of day ∼50 μas

Ultra-rapid (observed half) Polar motion ∼50 μas 3–9 hours 4× daily
Polar motion rate ∼250 μas/day
Length of day ∼10 μas

Rapid Polar motion ∼40 μas 17–41 hours Daily
Polar motion rate ∼200 μas/day
Length of day ∼10 μas

Final Polar motion ∼30 μas 11–17 days Weekly
Polar motion rate ∼150 μas/day
Length of day ∼0.01 μas

Atmospheric Parameters (3)

Final troposphere ∼4mm for ZPD ∼3 weeks Daily

Ionosphere TEC grid 2–8 TECU <11 days Weekly

Rapid iono TEC grid 2–9 TECU <24 hours Daily

Source: Strategic Plan 2013–2016, www.igs.org.

http://www.igs.org
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service (IGS-TRS) is the latest addition to the list of products. The service reached
full operating capability in 2013 and provides orbit estimates every 5 or 60 seconds
and satellite clock estimates every 5 seconds. It uses the Internet protocol NTRIP
(Network Transport of RTCM via Internet Protocol) to deliver data to users. Users
must run an NTRIP client application, which is available as open source software.
Because IGS focuses on all GNSS systems, similar products will be available for
other GNSS systems or will be available when these become operational. The first
addition will be GLONASS products.

Understanding section (2) of the table, it helps to interpret the angular measure-
ment unit. In units of radians we have 100 μas corresponding to 3.1mm of equatorial
rotation, and in angular units 10 μsec correspond to 4.6mm of equatorial rotation. In
section (3), a TEC unit (TECU) corresponds to 1016 electrons per 1m2 column.

The IGS is also very instrumental in creating specialized standards for data formats
and promoting their universal acceptance. Examples include the series of receiver
independent exchange formats (RINEX), standard formats for orbital files (SP3), the
solution independent exchange format (SINEX), and the IONspheric Exchange for-
mat (IONEX). IGS, beingwhat it is—a federation of voluntary participating agencies,
universities, and enthusiastic individual scientists—hasmade a truly outstanding con-
tribution to the development of GNSS applications. It is a vivid demonstration that
the high-accuracy focus on GNSS is understood and valued globally.

6.2.7.2 Online Computing Online GNSS positioning computing services are
probably the ones of most immediate interest to users who collect data in the field.
These computing services accept input data in common format such as RINEX and
use supplementary observations from existing CORS or IGS stations to produce the
best solution in a given geodetic frame. Since these services are still evolving and
adopt their services to ever-changing GNSS system constellations, it is best to obtain
the most up-to-date information from the respective websites. In order to become
familiar with these services and their products, it is best to submit test data sets. Test-
ing and verifying is the best way of finding out which of them best fits one’s needs.
Most of them render the service free of charge.

APPS (Automatic Precise Positioning Service, http://apps.gdgps.net) is operated
at the Jet Propulsion Laboratory, California, and is probably the oldest operating
online service. A popular service with the U.S. surveying community is OPUS
(Online Positioning User Service, http://www.ngs.noaa.gov/OPUS), operated by the
National Geodetic Survey. The SCOUT (Scripts Coordinate Update Tool, http://sopac
.ucsd.edu/cgi-bin/SCOUT.cgi) service is offered by Scripts Orbit and Permanent
Array Center (SOPAC), University of California, San Diego. It traces its origin to the
very significant geodetic activities in California in connection with earthquake mon-
itoring. A recent addition to online processing is CenterPoint RTX Post-Processing
by Trimble Navigation Limited (http://www.trimblertx.com). This service uses
the company’s proprietary worldwide CORS network. Other important services
are CSRS-PPP (Canadian Spatial Reference System Precise Point Positioning,
http://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php), GAPS (GPS Analysis
and Positioning Software; http://gaps.gge.unb.ca/), and the Australian AUSPOS
(http://www.ga.gov.au/bin/gps.pl), among others.

http://apps.gdgps.net
http://www.ngs.noaa.gov/OPUS
http://sopac.ucsd.edu/cgi-bin/SCOUT.cgi
http://www.trimblertx.com
http://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php
http://gaps.gge.unb.ca
http://www.ga.gov.au/bin/gps.pl
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6.3 NAVIGATION SOLUTION

The navigation solution, also frequently referred to simply as point positioning, is
the type of solution the GPS system was originally designed for, achieving position
accuracy of about 1m. The solution is available at any time, depending of course
on satellite visibility, anywhere on earth. This solution is frequently implemented
in nonsurveying products, such as general consumer products or low-accuracy
hand-held receivers, or is executed in the background as part of more elaborate
solutions.

The navigation solution estimates the receiver coordinates, of course understood
to be the receiver antenna coordinates and the receiver clock error using pseudor-
ange observables. Carrier phases can be used to smooth the pseudoranges. There are
several simplifying assumptions. The satellite positions at signal transmission times
are assumed known and available from the broadcast ephemeris. The satellite clock
corrections are also assumed to be available from the navigation message and must
be applied to the observations. As discussed in Section 6.2.2, the satellite clocks are
monitored by the control center, which models the clock offsets in terms of polyno-
mials in time, and provides an estimate for the time group delay and the intersignal
correction. The navigation solution does not estimate a separate satellite clock error.
The ionospheric and tropospheric delays are also computed frommodels as explained
in Chapter 8 and applied to the observations, and the hardware delays and multipath
are neglected.

6.3.1 Linearized Solution

The navigation solution is based on the pseudorange equation (6.1.28). Applying the
simplifying assumptions, we can write equations of the type

Pp
k = ‖xp − xk‖ − c dtk + 𝜀

p
k,p = 𝜌

p
k − 𝜉k + 𝜀

p
k,p (6.3.1)

The position of the satellite at signal transmission is xp, the receiver location is xk, and
𝜉k = c dtk is the receiver clock error expressed in units of meters. We use the notation
where the superscript denotes the satellite and the subscript denotes the receiver. The
four unknowns xk and 𝜉k can be computed using four pseudoranges measured simul-
taneously to four satellites. In case more satellites are observed at the same time, the
parameters are estimated by the least-squares method. The effect of the earth’s rota-
tion during the signal travel time must be taken into consideration when computing
the topocentric satellite distance 𝜌pk following Section 6.2.1. Since the receiver clock
error 𝜉k is solved together with the position coordinates at each epoch, a relatively
inexpensive quartz crystal clock in the receiver is sufficient rather than an expensive
atomic clock.

As we can see, the basic requirement for a solution to exist is that four satellites
are visible at a given epoch. This visibility requirement is a key factor in the design of
constellations that aspire to provide global coverage at any time. Modifications of the
basic point positioning solution can be readily envisioned. For example, for applica-
tions on the ocean it might be possible to determine the ellipsoidal height sufficiently
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accurately from the height above the water and geoid undulation. Equation (6.3.1)
could be parameterized in terms of ellipsoidal latitude, longitude, and height using
transformations (4.3.26) through (4.3.30). Therefore, at least in principle, pseudor-
anges of three satellites are sufficient to determine horizontal position at sea. Other
variations, such as connecting the receiver to an accurate atomic clock, could make
the receiver clock parameter superfluous or permit a simple modeling of the receiver
clock error.

The point positioning accuracy depends on the accuracy of the data provided by
the navigation message, the receiver-satellite constellation geometry at the time of
observation, the quality of the available ionospheric and tropospheric delays, and the
actual measurement error. In practice, one prefers to observe all satellites in view
in order to achieve redundancy and the best geometry. Dual-frequency users can
use the ionospheric-free pseudorange function (6.1.38) to eliminate the effect of the
ionosphere.

If the ordered set of parameters is

xT = [dxk dyk dzk 𝜉k] (6.3.2)

then the design matrix follows from (6.3.1) after linearization around the nominal
station location xk,0

A =

⎡⎢⎢⎢⎢⎢⎣

e1k 1

e2k 1

e3k 1

⋮ ⋮

⎤⎥⎥⎥⎥⎥⎦
eik =

[
xi − xk
𝜌ik

yi − yk
𝜌ik

zi − zk
𝜌ik

]||||||xk,0 (6.3.3)

The A matrix has as many rows as there are satellites observed, which typically
includes all satellites in view. The horizontal 1 × 3 vector eik contains the direction
cosines for the line from the nominal station location to the satellite. The expres-
sion for the least-squares estimate x = −(ATPA)−1ATP� is given in Chapter 2. The
weight matrix P is typically diagonal with the diagonal elements reflecting a weight-
ing scheme that is a function of the satellite elevation angle.

We take note that the receiver clock estimate absorbs common mode errors of tro-
pospheric and ionospheric delays and hardware delays. In general, the propagation
media delays are a function of azimuth and elevation angle. For example, in the case
of the ionosphere we consider splitting the total delay into an average station com-
ponent Ik,P and a component 𝛿Ipk,P that is a function of the direction of the satellite,
giving Ipk,P = Ik,P + 𝛿I

p
k,P. The tropospheric delay can conceptually be split in a simi-

lar manner. The receiver hardware delay is also a common error since it is the same
for every satellite observation. These common components can be combined with the
receiver clock error into a new epoch parameter 𝜉k as

𝜉k = cdtk + Ik,P + Tk + dk,P (6.3.4)
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The symbols for ionosphere and the troposphere have no superscript p in this
equation in order to identify them as common components at station k. It follows
that unmodeled errors that are common to all observations at a particular station do
not affect the estimated epoch position. Thus, modeling of the ionosphere and tropo-
sphere is useful only if it reduces the variability with respect to the common portion.

6.3.2 DOPs and Singularities

It has become common practice to use DOP (dilution of precision) factors to describe
the effect of the receiver-satellite geometry on the accuracy of point positioning. The
DOP factors are simple functions of the diagonal elements of the covariance matrix
of the adjusted parameters, derived from the linearized model. In general,

𝜎 = 𝜎0 DOP (6.3.5)

where 𝜎0 denotes the standard deviation of the observed pseudoranges, and 𝜎 is a
one-number representation of the standard deviation of position and/or time. When
computing DOPs, the pseudorange observations are considered uncorrelated and of
the same accuracy, i.e., the weight matrix isP = I. The cofactor matrix of the adjusted
receiver position and receiver clock is

Qx = (ATA)−1 =

⎡⎢⎢⎢⎣
qx qxy qxz qx𝜉

qy qyz qy𝜉
qz qz𝜉

sym q𝜉

⎤⎥⎥⎥⎦ (6.3.6)

It is often desirable to interpret results in the local geodetic coordinate system, which
consists of the coordinates northing n, easting e, and up u. We transform the cofactor
matrix (6.3.6) using (4.4.25). The result is

Qw =

⎡⎢⎢⎢⎣
qn qne qnu qn𝜉

qe qeu qe𝜉
qu qu𝜉

sym q𝜉

⎤⎥⎥⎥⎦ (6.3.7)

The DOP factors are functions of the diagonal elements of (6.3.6) or (6.3.7).
Table 6.3.1 shows the various dilution factors: vertical dilution of precision (VDOP)
for the height, horizontal dilution of precision (HDOP) for horizontal positions,

TABLE 6.3.1 DOP Expressions.

VDOP =
√
qu

HDOP =
√
qn + qe

PDOP =
√
qn + qe + qu =

√
qx + qy + qz

TDOP =
√
q𝜉

GDOP =
√
qn + qe + qu + q𝜉
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positional dilution of precision (PDOP), time dilution of precision (TDOP), and geo-
metric dilution of precision (GDOP). The GDOP is a composite measure reflecting
the geometry of the position and the time estimate. The DOPs can be computed in
advance, given the approximate receiver location and a predicted satellite ephemeris.

The DOPs were useful for finding the best subset of satellites at the time when a
receiver had only four or five channels. They are still useful in identifying a tempo-
ral weakness in geometry in kinematic applications, in particular in the presence of
signal obstruction. As the constellation observed and the satellites approach a crit-
ical configuration, the columns of the design matrix become increasingly linearly
dependent, the DOP values increase, and the resulting positioning solution becomes
ill conditioned. We consider the case when all satellites, as viewed from the receiver
location, appear to be located on the surface of a circular cone (Figure 6.3.1) or in a
plane. The vertex of the cone in the figure is located at the receiver. The unit vector
eaxis denotes the axis of the cone. The relevant portion of the linearized pseudorange
equation is

dPp
k = −epk ⋅ dxk (6.3.8)

where epk is the unit vector given in (6.3.3). For all satellites that are located on the
cone, the dot product

eik ⋅ e
T
axis = cos 𝜃 (6.3.9)

is constant. The unit vector eik represents the first three elements of row i of the
design matrix. Therefore, (6.3.9) expresses a perfect linear dependency of these three

earth

eaxis

θ

Figure 6.3.1 Critical configuration on a circular cone.
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columns. The other critical configuration occurs when the satellites and the receiver
are located in the same plane. In this case, the first three columns of the design matrix
fulfill the cross-product vector function

eik × ejk = n (6.3.10)

where n is perpendicular to the plane. This degenerate solution can readily be visu-
alized since the out-of-plane receiver location is not determined by the linearized
model.

Critical configurations usually do not last long because of the continuous
motion of the satellites. They present a problem only in continuous kinematic
applications or very short rapid static positioning. The more satellites available
with unobstructed line of sight, the less likely it is that a critical configuration will
ever occur.

6.3.3 Nonlinear Closed Solution

The closed-form point positioning solution has been treated in detail in Grafarend
and Shan (2002) and Awange and Grafarend (2002a,b). The reader might consult
these publications for an in-depth study of closed expressions, for derivations, and
additional references on the topic. Bancroft’s (1985) solution is a very early, if not
the first, closed-form solution. We merely summarize the solution using the notation
of Goad (1998). In order to achieve compact expressions, we define the following
product of two arbitrary vectors g and h as

⟨g , h⟩ ≡ gTMh (6.3.11)

whereM is the matrix

M =

[
3I3 0
0 −𝟏

]
(6.3.12)

The relevant terms of the pseudorange (6.3.1) are

Pi
k + c dtk = ‖xi − xk‖ 1 ≤ i ≤ 4 (6.3.13)

Squaring both sides gives(
xi ⋅ xi − Pi2

k

)
− 2

(
xi ⋅ xk + Pi

k cdtk
)
= −

(
xk ⋅ xk − c2dt2k

)
(6.3.14)

As can be verified, the four pseudorange equations can be written in the compact form

𝜶 − BM
[
xk
cdtk

]
+ 𝛬𝝉 = 0 (6.3.15)
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where

𝛬 =
1
2

⟨[
xk
cdtk

]
,

[
xk
cdtk

]⟩
(6.3.16)

𝛼i =
1
2

⟨[
xi

Pi
k

]
,

[
xi

Pi
k

]⟩
(6.3.17)

𝜶
T = [𝛼1 𝛼2 𝛼3 𝛼4] (6.3.18)

𝝉
T = [1 1 1 1] (6.3.19)

B =

⎡⎢⎢⎢⎢⎣
x1 y1 z1 −P1

k

x2 y2 z2 −P2
k

x3 y3 z3 −P3
k

x4 y4 z4 −P4
k

⎤⎥⎥⎥⎥⎦
(6.3.20)

The solution of (6.3.15) is [
xk
cdtk

]
= MB−1(𝛬𝝉 +𝜶) (6.3.21)

We note, however, that𝛬 is also a function of the unknowns xk and dtk. We substitute
(6.3.21) into (6.3.16), giving

⟨B−1
𝝉 , B−1

𝝉⟩𝛬2 + 2
{⟨B−1

𝝉 , B−1
𝜶⟩ − 1

}
𝛬 + ⟨B−1

𝜶, B−1
𝜶⟩ = 0 (6.3.22)

This is a quadratic equation of 𝛬. Substituting its roots into (6.3.21) gives two solu-
tions for the station coordinates xk. Converting the solution to geodetic coordinates
and inspecting the respective ellipsoidal heights readily identifies the valid solution.

6.4 RELATIVE POSITIONING

In relative positioning, the vector between two stations is determined when two
receivers observe simultaneously. If more than two receivers observe at the same
time, we speak of a session network consisting of all the co-observing stations.
Session solutions result in a set of correlated vectors between the stations. Our focus
will be on short baselines, in which case certain small terms can be neglected.

In relative positioning, one tends to use across-receiver observations, or double-
or triple-difference observations. In this subsection, we will deal with double
differencing for positioning static receivers as was developed when GPS became
available. In Section 6.6, the focus is on network-supported positioning using various
forms of differential corrections. Since across-receiver differencing is becoming
more popular, Chapter 7 is dedicated to using across-receiver differencing and
kinematic applications.

We begin by providing the closed-form solution for double-differenced pseudor-
anges by modifying the solution presented in the previous section. This is followed
by the linearized double-difference and triple-difference solutions. Several aspects of
relative positioning are discussed, in particular the impact of the accuracy of the fixed
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station on the baseline length, the question of what constitutes independent baselines
will be addressed, and wewill have a look at innovative, but these days less important,
antenna swap methods to get a kinematic survey started.

Although double differencing is certainly a popular method for baseline determi-
nation, we briefly review the merits of undifferenced processing as proposed by Goad
(1985) and then discuss the ambiguity function technique as an alternative to double
differencing. The subsection closes with reviewing some peculiarities encountered
when processing GLONASS observations.

6.4.1 Nonlinear Double-Difference Pseudorange Solution

This solution is a modification of Bancroft’s solution presented in Section 6.3.3 but
applied to relative positioning. It assumes that the coordinates of one of the baseline
stations, station xk, and the positions of the satellite are known. The coordinates of the
other station, station xm, are to be determined using double-difference pseudoranges.

The double difference pseudorange equation (6.1.81) can be written as

Ppq
km,1 = ‖xp − xk‖ − ‖xp − xm‖ −

{‖xq − xk‖ − ‖xq − xm‖}
+Mpq

km,1,P + 𝜀
pq
km,1,P

= 𝜌pqkm +Mpq
km,1,P + 𝜀

pq
km,1,P (6.4.1)

For short baselines, we neglect the double-difference ionospheric and tropospheric
terms, and also ignore the multipath. The hardware delays cancel as part of the double
differencing. Consider the three independent double differences that can be formed
from the observations of four satellites

Ppi
km = ‖xp − xk‖ − ‖xp − xm‖ −

{‖xi − xk‖ − ‖xi − xm‖}
1 ≤ i ≤ 3 (6.4.2)

Let p denote the base satellite, in this case we have taken p = 4. Since the satellite
coordinates and the station coordinates xk are known, we can compute the auxiliary
quantity Q

Qpi
m = Ppi

km − ‖xp − xk‖ + ‖xi − xk‖ (6.4.3)

Comparing (6.4.2) and (6.4.3), we find that Q relates to the unknown xm as

Qpi
m = −‖xp − xm‖ + ‖xi − xm‖ (6.4.4)

Following Chaffee and Abel (1994), we translate the origin of the coordinate system
to satellite p

x̃i = xi − xp (6.4.5)

Noting that in the translated coordinate system x̃p = 0, we obtain from (6.4.4)

Qpi
m + ‖x̃m‖ = ‖x̃i − x̃m‖ (6.4.6)

Equations (6.4.6) and (6.3.13) are of the same form. Squaring (6.4.6) gives(
x̃i ⋅ x̃i − Qpi2

m

)
− 2

(
x̃i ⋅ x̃m + ‖‖x̃m‖‖Qpi

m

)
= 0 (6.4.7)
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This equation can be verified using

𝛬2 = x̃m ⋅ x̃m (6.4.8)

𝛼i =
1
2

⟨[
x̃i

Qpi
m

]
,

[
x̃i

Qpi
m

]⟩
(6.4.9)

B =
⎡⎢⎢⎣
x̃1 ỹ1 z̃1

x̃2 ỹ2 z̃2

x̃3 ỹ3 z̃3

⎤⎥⎥⎦ (6.4.10)

𝝉
T =

[
− Qp1

m − Qp2
m − Qp3

m

]
(6.4.11)

x̃m = B−1(𝛬𝝉 + 𝜶) (6.4.12)

Substituting (6.4.12) in (6.4.8) gives the quadratic equation for 𝛬,(⟨B−1
𝝉 ,B−1

𝝉⟩ − 1
)
𝛬2 + 2⟨B−1

𝝉 ,B−1
𝜶⟩𝛬 + ⟨B−1

𝜶,B−1
𝜶⟩ = 0 (6.4.13)

The two solutions for𝛬 are substituted in (6.4.12) to obtain two positions for x̃m. The
ellipsoidal height can be used to decide which of the positions is correct. Once x̃m is
computed, the coordinates can be translated to xm using (6.4.5).

The closed formulas can be generalized for more than four satellites. In this case,
the number of rows in B equals the number of satellites or the number of double
differences. We multiply (6.3.15) from the left with BT and set 𝜶 = BT

𝜶,B = BTB,
and 𝝉 = BT

𝝉 . Equations (6.3.22) or (6.4.13) can then be rewritten in the bar notation
and solved for 𝛬.

6.4.2 Linearized Double- and Triple-Differenced Solutions

Relative positioning with carrier phases of short baselines is presented, assuming
again that one baseline station, in this case xk, is known. The key element in this
solution is dealing with the ambiguity parameters. Let there be R receivers observing
S satellites at T epochs to generate RST carrier phase observations. In many cases,
the data set might not be complete due to cycle slips and signal blockage. Let the
undifferenced phase observations 𝝍 be ordered first by epoch, then by receiver, and
then by satellite. For epoch i, we have

𝝍 i =
[
𝜑1
1(i) · · · 𝜑S

1(i) · · · 𝜑1
R(i) · · · 𝜑S

R(i)
]T

(6.4.14)

𝝍 =
⎡⎢⎢⎣
𝝍1
⋮
𝝍T

⎤⎥⎥⎦ (6.4.15)
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Regarding the stochastic model, we make the simplifying assumption that all carrier
phase observations are uncorrelated and are of the same accuracy. Thus, the complete
RST × RST cofactor matrix of the undifferenced phase observations is

Q𝜑 = 𝜎2𝜑I (6.4.16)

with 𝜎𝜑 denoting the standard deviation of the phase measurement expressed in
cycles.

The next task is to find the complete set of independent double-difference obser-
vations. We designate one station as the base station and one satellite as the base
satellite. Without loss of generality, let station 1 be the base station and satellite 1
be the base satellite. The session network of R stations is now thought of as consist-
ing of R − 1 baselines emanating from the base station. There are S − 1 independent
double differences for each baseline. Thus, a total of (R − 1)(S − 1) independent dou-
ble differences can be computed for the session network. On the basis of the ordered
observation vector (6.4.14) and the base station and base satellite ordering scheme,
an independent set of double differences for epoch i is

𝚫i =
[
𝜑12
12(i) · · · 𝜑1S

12(i) · · · 𝜑12
1R(i) · · · 𝜑1S

1R(i)
]T

(6.4.17)

𝚫 =
⎡⎢⎢⎣
𝚫1
⋮
𝚫T

⎤⎥⎥⎦ (6.4.18)

The transformation from RST undifferenced observations to (R − 1)(S − 1)T
double-differenced observations is

𝚫 = D𝝍 (6.4.19)

where D is the (R − 1)(S − 1)T × RST transformation matrix having elements −1, 1,
and 0 arranged in a well-defined pattern that reflects the number of stations, satellites,
and epochs.

For the ordered vector of triple-difference observations,

𝛁i =
[
𝜑12
12(i + 1, i) · · · 𝜑1S

12(i + 1, i) · · · 𝜑12
1R(i + 1, i) · · · 𝜑1S

1R(i + 1, i)
]T

(6.4.20)

𝛁 =
⎡⎢⎢⎣
𝛁1
⋮

𝛁T−1

⎤⎥⎥⎦ (6.4.21)

we have
𝛁=T𝚫 = TD𝝍 (6.4.22)

The matrix T also has elements −1, 1, and 0 arranged in a well-defined pattern.
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The double- and triple-difference observations are linear functions of the undif-
ferencedcarrier phases. By applying covariance propagation and taking the cofactor
matrix (6.4.16) into account, the respective cofactor matrices are

QΔ = 𝜎2𝜑DD
T (6.4.23)

Q∇ = TQΔT
T (6.4.24)

The double-difference cofactor matrix QΔ is block-diagonal.The triple-difference
cofactor matrix Q∇ is band-diagonal for T > 3. The triple-difference observa-
tions between consecutive (adjacent) epochs are correlated. The inverse of the
triple-difference cofactor matrix, which is required in the least-squares solution, is a
full matrix.

The relevant terms of the double-difference carrier phase equation (6.1.82) are

𝜑
pq
km =

f

c

{‖xp − xk‖ − ‖xp − xm‖ − ‖xq − xk‖ + ‖xq − xm‖}
+ Npq

km +Mpq
km,𝜑 + 𝜀

pq
km,𝜑

=
f

c
𝜌
pq
km + Npq

km +Mpq
km,𝜑 + 𝜀

pq
km,𝜑 (6.4.25)

The residual ionospheric and tropospheric terms are not explicitly listed in (6.4.25)
since they are expected to cancel over short baselines. Notice the presence of the
ambiguity term Npq

km in (6.4.25) as compared to the expression (6.4.1) for pseudo-
ranges. Assuming that the station coordinates xk are known, the parameters to be
estimated are xm and the double-difference ambiguities. There are (R − 1)(S − 1)
double-difference ambiguities if there are no cycle slips. The multipathMpq

km,𝜑 is typ-
ically treated as a model error and ignored. A row of the design matrix consists of the
partial derivatives with respect to the coordinates of station m

𝜕𝜑
pq
km

𝜕xm
=

f

c

(
epm − eqm

)
(6.4.26)

and contains a 1 in the column of the respective double-difference ambiguity param-
eter, and zero elsewhere. The least-squares solution that estimates the parameters

x =

[
xm
b

]
(6.4.27)

bT =
[
N12
12 · · · N1S

12 · · · N12
1R · · · N1S

1R

]T
(6.4.28)

is called the double-difference float solution. If it is possible to also constrain the
estimated ambiguities to integers, then we speak of the fixed solution. See Section
6.4.5 for details on ambiguity fixing.
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The partial derivatives of triple differences follow from those of double differences
by differencing

𝜕𝜑
pq
km(j, i)

𝜕xm
=
𝜕𝜑

pq
km(j)

𝜕xm
−
𝜕𝜑

pq
km(i)

𝜕xm
(6.4.29)

since the triple difference is the difference of two double differences. The design
matrix of the triple difference contains no columns for the ambiguities because the
ambiguities cancel during the differencing across time.

As to software implementation, it is important to avoid repetitious computation
when computing the QΔ and Q∇ matrices and fully explore the pattern of the D and
T matrices to avoid unnecessary zero multiplications. The respective approaches for
time- and space-saving software implementations are well known and not discussed
in detail here.

The above processing scheme also applies to dual-frequency or multifrequency
observations. For each frequency, there is a separate set of ambiguities to be esti-
mated. Similarly, one could transform dual-frequency observations to wide lanes and
narrow lanes and process these, taking advantage of being able to fix the wide-lane
ambiguities first. Also, relative positioningwith pseudoranges and linearizedmodel is
very similar to the one for carrier phases. Comparing (6.4.1) and (6.4.25), the major
difference is the lack of an ambiguity term in the pseudorange expression. Conse-
quently, there are no ambiguity parameters. The partial derivatives of the coordinates
station coordinates are

𝜕Ppq
km

𝜕xm
= epm − eqm (6.4.30)

Therefore, in the case of short baselines where the ionospheric and tropospheric
effects can be neglected and themultipath is omitted or suitably considered byweight-
ing the observations as a function of the satellite elevation angle, there are only three
parameters to be estimated in the double-difference pseudorange solutions.

A general remark is in order regarding cancelation of unmodeled errors in double
differencing. For short baselines, the errors common to both stations tend to can-
cel during differencing. Because the ionospheric and the tropospheric corrections
are highly correlated over short distances, most of their delays are common to both
stations. An exception might be a tropospheric correction of nearby stations with
significantly different elevations. It is useful to apply tropospheric and ionospheric
corrections from external sources if these provide accurate differential corrections
between the stations. If this is not the case, because, say, the assumed meteorological
data are not representative of the actual tropospheric conditions, it might be bet-
ter to apply no corrections and rely on common-mode elimination. Because of the
cancellation of most of the effects of the propagation media, the clock errors, and
hardware delays, the technique of relative positioning has become especially popular
in surveying. Although the double-difference ambiguity parameters might initially
be perceived as a nuisance, they provide a unique vehicle to improving the solution
if they can be successfully constrained to integers.
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6.4.3 Aspects of Relative Positioning

Although relative posting is well established, this subsection looks at some of the
things that one needs to be aware of. Even in relative positioning over short base-
lines, near singularities may occur when some satellite signals are blocked by obsta-
cles. Also, the user should be aware of the implications of holding one baseline
station fixed, i.e., be able to separate absolute positioning from relative positioning.
In session solutions, only independent baselines should be used. This subsection also
includes material on the antenna-swapping technique which, historically speaking,
helped jumpstart kinematic applications.

6.4.3.1 Singularities Similar to point positioning, there are also critical satellite
configurations to be concerned with in relative positioning. Whereas the satellites
cannot be located simultaneously on a perfectly circular cone as viewed from each of
the stations, however, the satellites could be located approximately on circular cones
in the case of short baselines, resulting in near singularities. Consider the relevant
portion of the double-difference pseudorange or scaled carrier phase equation

Ppq
km = 𝜌pk − 𝜌

p
m −

[
𝜌
q
k − 𝜌

q
m

]
+ · · · (6.4.31)

Let us take stationm to be the known location. Then the relevant part of the lineariza-
tion is

dPpq
km = −epk ⋅ dxk + eqk ⋅ dxk =

[
eqk − epk

]
⋅ dxk + · · · (6.4.32)

It can readily be verified that the direction vectors eik are related to the vectors of
direction eic from the center of the baseline as

eik = eic + 𝜺
i
k (6.4.33)

where the components of 𝜺ik are of the order O
(
b∕𝜌pk

)
. The symbol b denotes the

length of the baseline. Using (6.4.33), equation (6.4.32) becomes

dPpq
km =

[
eqc − epc + 𝜺

q
k − 𝜺

p
k

]
⋅ dxk + · · · (6.4.34)

For the special case where the vertex of the circular cone (see Figure 6.3.1) is at the
center of the baseline, the condition

eic ⋅ eaxis = cos 𝜃 (6.4.35)

is valid for all satellites on the cone. This means that the dot products[
eqc − epc + 𝜺

q
k − 𝜺

p
k

]
⋅ eaxis =

[
𝜺
q
k − 𝜺

p
k

]
⋅ eaxis (6.4.36)

are of the order O
(
b∕𝜌pk

)
. Such a product applies to each double-difference observa-

tion. Therefore, we are dealing with a near-singular situation since the columns of
the double-difference design matrix are nearly dependent. The shorter the baseline,
the more likely it is that a near singularity is noticeable. As stated for the navigation
solution, if all satellites in view are observed and there are no line-of-sight obstruc-
tions, such near singularity does not occur.
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6.4.3.2 Impact of a Priori Position Error At least in the early days of GPS
satellite surveying, a frequent concern was the need for a priori knowledge of the geo-
centric station position of the fixed station, as well as the impact of ephemeris errors
on relative positioning. Of course, in today’s situation, if one starts the survey at a
known location with centimeter accuracy and uses the precise ephemeris, these con-
cerns are no longer valid. However, looking at the geometry of this problem helps us
understand why GPS provides accurate relative positions and less accurate geocentric
positions.

The answer to these concerns lies again in the linearized double-difference
equations. Without loss of generality, it is sufficient to investigate the difference
between one satellite and two ground stations. Scaled to distances, the relevant
portion of the double-difference equation is

Ppq
km(t) = 𝜌

p
k(t) − 𝜌

p
m(t) + · · · (6.4.37)

The linearized form is

dPpq
km = −epk ⋅ dxk + epm ⋅ dxm + [epk − epm] ⋅ dx

p (6.4.38)

Next, we transform the coordinate corrections into their differences and sums. This
is accomplished by

dxk − dxm = d(xk − xm) = db (6.4.39)

dxk + dxm
2

= d

(
xk + xm

2

)
= dxc (6.4.40)

The difference (6.4.39) represents the change in the baseline vector, i.e., the change
in length and orientation of the baseline, and (6.4.40) represents the change in the
geocentric location of the baseline center. The latter can be interpreted as the trans-
latory uncertainty of the baseline, or the uncertainty of the fixed baseline station.
Transforming (6.4.38) to the difference and sum gives

dPpq
km = −

1
2

[
epk + epm

]
⋅ db −

[
epk − epm

]
⋅ dxc +

[
epk − epm

]
⋅ dxp (6.4.41)

There is a characteristic difference in magnitude between the first bracket and the
others. Allowing an error of the order O(b∕𝜌pk), the first bracket simplifies to 2epm or
2epk . The second and third brackets are of opposite signs but of the same magnitude.
It is readily verified that the terms in the latter two brackets are of the order O(b∕𝜌pk).
When the baseline vector is defined by

b ≡ 𝝆pm − 𝝆pk (6.4.42)

Equation (6.4.41) becomes, after neglecting the usual small terms,

dPpq
km = −epm ⋅ db +

b
𝜌
p
m

⋅ dxc −
b
𝜌
p
m

⋅ dxp (6.4.43)

Equating the first two terms in (6.4.43), we get the relative impact of changes in the
baseline and the translatory position of the baseline from

𝝆
p
m ⋅ db = b ⋅ dxc (6.4.44)
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Similarly, changes in the baseline vector and ephemeris position are related by

𝝆
p
m ⋅ db = b ⋅ dxp (6.4.45)

These relations are usually quoted in terms of absolute values, thereby neglecting the
cosine terms of the dot product. In this sense, a rule of thumb for relating baseline
accuracy, a priori geocentric position accuracy, and ephemeris accuracy is

‖db‖
b

=
‖dxc‖
𝜌
p
m

=
‖dxp‖
𝜌
p
m

(6.4.46)

Equation (6.4.46) shows that the accuracy requirements for the a priori geocentric
station coordinates and the satellite orbital positions are the same. The accuracy
requirement is a function of the baseline length. This means that for short baselines,
an accurate position of the reference station might not be required and that the sim-
ple point positioning might be sufficient. A 1000 km line can be measured to 1cm
if the ephemeris errors and the geocentric location error can be reduced to 0.2m,
according to this rule of thumb. Another interpretation is that the ratio of relative posi-
tioning capability db to absolute positioning capability dxc is about baseline length
over the topocentric satellite distance. Equation (6.4.46) explains that GPS observa-
tions from closely spaced receivers, as is the case for short baselines, do not provide
accurate geocentric locations but provide accurate relative locations, thus the prac-
tice of holding one station fixed in relative location determinations. Of course, it is
understood that any error in the coordinates of the fixed station propagates directly
into the coordinates of the newly determined stations, i.e., speaking in terms of geo-
centric coordinates, the new position can only be as good as the fixed position. Inner
constraint solutions of vector networks allow an objective assessment of the accuracy
of the relative positioning achieved. See Section 4.4.4.

6.4.3.3 Independent Baselines The ordering scheme of base station and base
satellite used for identifying the set of independent double-difference observations is
not the only scheme available; it has been used here because of its simplicity. An
example where the base station and base satellite scheme requires a slight modifica-
tion occurs when the base station does not observe at a certain epoch due to temporary
signal blockage. If station 1 does not observe, then the double difference 𝜑pq

23 can be
computed for this particular epoch. Because of the relationship

𝜑
pq
23 = 𝜑

pq
13 − 𝜑

pq
12 (6.4.47)

the ambiguity Npq
23 is related to the base station ambiguities as

Npq
23 = Npq

13 − Npq
12 (6.4.48)

Introduction of Npq
23 as an additional parameter would create a singularity of the nor-

mal matrix because of the dependency expressed in (6.4.48). Instead of adding this
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new ambiguity, the base station ambiguities Npq
12 and Npq

13 are given the coefficients
1 and −1, respectively, in the design matrix. The partial derivatives with respect to
the station coordinates can be computed as required by (6.4.47) and entered directly
into the design matrix, because the respective columns are already there. A similar
situation arises when the base satellite changes. The linear functions in this case are

𝜑23
km = 𝜑13

km − 𝜑12
km (6.4.49)

N23
km = N13

km − N12
km (6.4.50)

The respective elements for the base satellite ambiguities in the design matrix are,
again, 1 and −1.

One must identify (R − 1)(S − 1) independent double-difference functions in net-
work solutions. In session networks that contain amixture of long and short baselines,
it might be important to take advantage of short baselines because the respective
unmodeled errors (troposphere, ionosphere, and possibly orbit) are expected to be
small. Fixing the ambiguities to integers adds strength to the solution. This additional
strength gained by fixing the ambiguities of a short baseline may also make it possible
to fix the ambiguities for the next longer baseline, even though the ambiguity search
algorithms might not have been successful without that constraint. The technique is
sometimes referred to as “boot-strapping” from shorter to longer baselines. A suitable
procedure would be to take baselines in all combinations and order them by increasing
length and identify the set of independent baselines, starting with the shortest.

There are several schemes available to identify independent baselines and obser-
vations. Hilla and Jackson (2000) report using a tree structure and edges. Here we
follow the suggestion of Goad and Mueller (1988) because it highlights yet another
useful application of the Cholesky decomposition. Assume that matrix D of (6.4.19)
reflects the ordering suggested here, i.e., the first rows of D refer to the double dif-
ferences of the shortest baseline, the next set of rows refer to the second shortest
baseline, and so on. We write the cofactor matrix (6.4.23) as

QΔ = 𝜎20DD
T = 𝜎20LL

T (6.4.51)

where L denotes the Cholesky factor (A.3.54). The elements of the cofactor matrix
QΔ are

qij =
∑
k

di(k)dj(k) (6.4.52)

where di(k) denotes the ith row of the matrix D. It is readily verified that the ith and
jth columns of QΔ are linearly dependent if the ith and jth rows of D are linearly
dependent. In such a case, QΔ is singular. This situation exists when two double
differences are linearly dependent. The diagonal element j of the Cholesky factor L
will be zero. Thus, one procedure for eliminating the dependent observations is to
carry out the computation of L and discard those double differences that cause a zero
on the diagonal. The matrix QΔ can be computed row by row starting at the top, i.e.,
the double differences can be processed sequentially one at a time, from the top to the



314 GNSS POSITIONING APPROACHES

bottom. For each double difference, the respective row of L can be computed. In this
way, the dependent observations can be immediately discovered and removed. Only
the independent observations remain. The process ends as soon as the (R − 1)(S − 1)
double differences have been found.

If all receivers observe all satellites for all epochs, this identification process needs
to be carried out only once. The matrix L, since it is now available, can be used
to decorrelate the double differences. The corresponding residuals might be diffi-
cult to interpret but could be transformed to the original observational space using
L again.

6.4.3.4 Antenna Swap Technique In view of modern processing of multi-
frequency observations, the antenna swapping technique may today be perceived as
impractical, although when introduced by Remondi (1985) it was an innovative and
major step forward in making kinematic surveying practical at the time. Although
today multifrequency observations are processed recursively as explained in Chapter
7 and the transition to the kinematic survey is automatic as soon as the ambiguities
are fixed, let us step back for a moment to see how it used to be (at the time surveyors
mostly operated single-frequency receivers).

Basically, a kinematic survey requires an initialization. This means the double-
difference ambiguities are resolved first and then held fixed while other points are
being surveyed, assuming of course that no cycle slips occurred while the rover moves
or that cycle slips are repaired appropriately. A simple way for initial determination
of ambiguities is to occupy two known stations. The procedure works best for short
baselines where the ionospheric and tropospheric disturbances are negligible. The
double-difference equation (6.4.25) can be readily solved for the ambiguity

Npq
km = 𝜑pq

km − 𝜆−1𝜌pqkm (6.4.53)

when both receiver locations xk and xm are known. Usually, simple rounding of the
computed values is sufficient to obtain the integers. Once the initial ambiguities are
known, the kinematic survey can begin. Let the subscripts k and m now denote the
fixed and the moving receiver, then

𝜌
pq
m = 𝜌pqk − 𝜆

[
𝜑
pq
km − Npq

km

]
(6.4.54)

If four satellites are observed simultaneously, there are three equations like (6.4.54)
available to compute the coordinates of the moving receiver xm. If more than four
satellites are available, the usual least-squares approach is applicable and cycle slips
can be repaired from phase observations. In principle, if five satellites are observed
we can repair one slip per epoch; if six satellites are observed, two slips can occur at
the same time, etc.

Remondi (1985) introduced the antenna swap procedure in order to initialize the
ambiguities for kinematic surveying, requiring only one known station. Assume that
four or more satellites were observed at least for one epoch while receiver R1 and its
antenna were located at station k and receiver R2 and its antenna were at station m.
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This is followed by the antenna swap, meaning that antenna R1 moves to station m
and antenna R2 moves to station k, followed by at least one epoch of observations to
the same satellites. The antennas remain connected to their respective receivers. Dur-
ing data processing, it is assumed that the antennas never moved. Using an expanded
form of notation to identify the receiver and the respective observation, a double dif-
ference at epoch 1 when R1 was at k and at epoch t when R1 was at m can be written,
respectively, as

𝜑
pq
km(R2 − R1, 1) = 𝜆

−1[𝜌pk(R1, 1) − 𝜌
q
k(R1, 1) − 𝜌

p
m(R2, 1) + 𝜌

q
m(R2, 1)

]
+ Npq

km
(6.4.55)

𝜑
pq
km(R2 − R1, t) = 𝜆

−1[𝜌pm(R1, t) − 𝜌
q
m(R1, t) − 𝜌

p
k(R2, t) + 𝜌

q
k(R2, t)

]
+ Npq

km
(6.4.56)

Notice the sequence of subscripts on the right-hand side of (6.4.56). Differencing
both observations gives

𝜑
pq
km(R2 − R1, 1) − 𝜑

pq
km(R2 − R1, t) = 𝜆

−1[𝜌pqk (t) − 𝜌pqm (t) + 𝜌pqk (1) − 𝜌pqm (1)
]

≈ 2𝜆−1
[
𝜌
pq
k (t) − 𝜌pqm (t)

]
(6.4.57)

Equation (6.4.57) can be solved for xm, given xk and observations to at least four
satellites (three double differences). Once the position ofm is known, the ambiguities
can be computed from (6.4.53).

If the topocentric satellite distances would not change during the antenna swap-
ping due tomotion of the satellites, the antenna swap technique would yield a baseline
vector of twice the actual length. The geometry of antenna swap can be readily visu-
alized in a simplified one-dimensional situation. Consider a horizontal baseline and
a satellite located somewhere along the extension of that baseline. As one antenna
moves from one end of the baseline to the other, it will register, let’s say, a positive
accumulated carrier phase change equal to the length of the baseline. As the other
antenna switches location, it will also register a carrier phase change equal to the
negative of the length of the baseline. Both receivers together will register a motion
of twice the length of the baseline.

Initialization by antenna swap on the ground is conveniently done for a very short
baseline of a couple of meters. A typical point positioning solution for xk is sufficient
for such short baselines.

6.4.4 Equivalent Undifferenced Formulation

The double-difference algorithm can readily be changed to an equivalent one of
single-difference processing. Following Goad (1985) we write the undifferenced
phase equation (6.1.30) as

𝜑
p
k(t) = 𝜆

−1
1 𝜌

p
k + 𝜉

p
k + 𝜀

p
k,𝜑 (6.4.58)

where 𝜉pk includes the ambiguity parameter, the receiver and satellite clock terms,
ionospheric and tropospheric effects, hardware delays, and multipath. Considering
again station 1 as base station and satellite 1 as base satellite, then the undifferenced
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equations, comprising a double-difference observation containing satellite 2, can be
written as

𝜑1
1(t) = 𝜆

−1𝜌11 + 𝜉
1
1 + 𝜀

1
1,𝜑

𝜑1
2(t) = 𝜆

−1𝜌12 + 𝜉
1
2 + 𝜀

1
2,𝜑

𝜑2
1(t) = 𝜆

−1𝜌21 + 𝜉
2
1 + 𝜀

2
1,𝜑

𝜑2
2(t) = 𝜆

−1𝜌22 + 𝜉
2
2 + 𝜀

2
2,𝜑 (6.4.59)

Next we compute the double-difference term 𝜉1212 ,

𝜉1212 =
(
𝜉11 − 𝜉

1
2

)
−

(
𝜉21 − 𝜉

2
2

)
= N12

12 +M12
12,𝜑 + 𝜀

12
12,𝜑 (6.4.60)

in which we have neglected the double-difference ionospheric and tropospheric
terms. Solving (6.4.60) for 𝜉22 and substituting into (6.4.59) gives

𝜑1
1(t) = 𝜆

−1𝜌11 + 𝜉
1
1 + 𝜀

1
1,𝜑

𝜑1
2(t) = 𝜆

−1𝜌12 + 𝜉
1
2 + 𝜀

1
2,𝜑

𝜑2
1(t) = 𝜆

−1𝜌21 + 𝜉
2
1 + 𝜀

2
1,𝜑

𝜑2
2(t) = 𝜆

−1𝜌22 + N12
12 + 𝜉

1
1 + 𝜉

1
2 + 𝜉

2
1 + 𝜀

2
2,𝜑 (6.4.61)

This is the required reformulation. The undifferenced observations are parameterized
in terms of epoch parameters by 𝜉11 , 𝜉

1
2 , and 𝜉

2
1 , which refer to either the base station

or the base satellite, and the double difference ambiguity N12
12 . Note that only the

nonbase station nonbase satellite observation contains the ambiguity term.
Given that the 𝜉 -parameters must be estimated every epoch and the stations coor-

dinates and ambiguity parameters are common to all epochs, the resulting normal
matrix has a well-known pattern. Although the size matrix increases quickly with
time, it can be efficiently stored in computer memory and the normal equation can be
solved quickly using either matrix partitioning techniques or recursive least squares.
The advantage of the undifferenced formulation is that no variance-covariance prop-
agation is needed for the observations, i.e., the variance-covariance matrix of the
undifferenced observations is diagonal.

6.4.5 Ambiguity Function

The least-squares techniques discussed above require partial derivatives and the
minimization of vTPv, with v and P being the double-difference residuals and
double-difference weight matrix. The derivatives and the discrepancy terms depend
on the assumed approximate coordinates of the stations. The least-squares solution is
iterated until the solution converges. In the case of the ambiguity function technique,



RELATIVE POSITIONING 317

we search for station coordinates that maximize the cosine of the residuals. Consider
again the double-difference observation equation

vpqkm = 𝜑pq
km,a − 𝜑

pq
km,b =

f

c
𝜌
pq
km,a + Npq

km,a − 𝜑
pq
km,b (6.4.62)

In usual adjustment notation, the subscripts a and b denote the adjusted and the
observed values, respectively. In (6.4.62), we have neglected again the residual
double-difference ionospheric and tropospheric terms, as well as the signal multipath
term. The residuals in units of radians are

𝜓
pq
km = 2𝜋 vpqkm (6.4.63)

The key idea of the ambiguity function technique is to realize that a change in the
integer Npq

km changes the function 𝜓pq
km by a multiple of 2𝜋 and that the cosine of this

function is not affected by such a change because

cos
(
𝜓

pq
km,L

)
= cos

(
2𝜋vpqkm,L

)
= cos

[
2𝜋

(
vpqkm,L + ΔNpq

km,L

)]
(6.4.64)

where ΔNpq
km,L denotes the arbitrary integer. The subscript L, denoting the frequency

identifier, has been added for the purpose of generality.
There are 2(R − S)(S − 1) double differences available for dual-frequency obser-

vations. If we further assume that all observations are equally weighted, then the sum
of the squared residuals becomes, with the help of (6.4.63),

vTPv
(
xm,N

pq
km,L

)
=

2∑
L=1

R−1∑
m=1

S−1∑
q=1

(
vpqkm,L

)2
=

1
4𝜋2

2∑
L=1

R−1∑
m=1

S−1∑
q=1

(
𝜓

pq
km,L

)2
(6.4.65)

If the station coordinates xk are known, the function could be minimized by varying
the coordinates xm and the ambiguities using least-squares estimation. The ambiguity
function is defined as

AF(xm) =
2∑

L=1

R−1∑
m=1

S−1∑
q=1

cos
(
𝜓

pq
km,L

)
=

2∑
L=1

R−1∑
m=1

S−1∑
q=1

cos

{
2𝜋

[
fL
c
𝜌
pq
km,a + Npq

km,L,a − 𝜑
pq
km,L,b

]}

=
2∑

L=1

R−1∑
m=1

S−1∑
q=1

cos

{
2𝜋

[
fL
c
𝜌
pq
km,a − 𝜑

pq
km,L,b

]}
(6.4.66)

The small double-difference ionospheric, tropospheric, and multipath terms are
not listed explicitly in this equation, although they are present and will affect
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the ambiguity function technique just as they affect the other solution methods.
Nevertheless, if we assume that these terms are negligible, and that the receiver
positions are perfectly known, then the maximum value of the ambiguity function
(6.4.66) is 2(R − 1)(S − 1) because the cosine of each term is 1. Observational noise
will cause the value of the ambiguity function to be slightly below the theoretical
maximum. Since the ambiguity function does not depend on the ambiguities, it is
also independent of cycle slips. This invariant property is the most attractive feature
of the ambiguity function and is unique among all the other solution methods.

Because the values 𝜑pq
km,L in (6.4.63) are small when good approximate coordi-

nates are available (typically corresponding to several hundredths of a cycle), we can
expand the cosine function in a series and neglect higher-order terms. Thus,

AF(xm) =
2∑

L=1

R−1∑
m=1

S−1∑
q=1

cos
(
𝛹

pq
km,L

)
=

2∑
L=1

R−1∑
m=1

S−1∑
q=1

⎡⎢⎢⎣1 −
(
𝜓

pq
km,L

)2
2!

+ · · ·
⎤⎥⎥⎦

= 2(R − 1)(S − 1) −
1
2

2∑
L=1

R−1∑
m=1

S−1∑
q=1

(
𝜓

pq
km,L

)2
= 2(R − 1)(S − 1) = 2𝜋2vTPv (6.4.67)

The last part of this equation follows from (6.4.65). The ambiguity function and the
least-squares solution are equivalent in the sense that the ambiguity function reaches
maximum and vTPv minimum at the point of convergence, i.e., at the correct xm.

There are several ways to initialize an ambiguity function solution. The simplest
procedure is to use a search volume centered at some initial estimate of the station
coordinates xm. Such an estimate could be computed from point positioning with
pseudoranges; the size of the search volume would be chosen as a function of the
accuracy of the coordinate estimates. This physical search volume is subdivided into
a narrow grid of points with equal spacing. Each grid point is considered a can-
didate for the solution and used to compute the ambiguity function (6.4.66). The
double-difference ranges 𝜌pqkm,a, which are required in (6.4.66), are evaluated for the
trial position. As the ambiguity function is computed by adding the individual cosine
terms one double difference at a time, an early exit strategy can be implemented to
reduce the computational effort. For example, if the trial position differs significantly
from the true position, the residuals are likely to be bigger than one would expect
just from measurement noise, unmodeled ionospheric and tropospheric effects, and
multipath. An appropriate strategy could be to abandon the current trial position, i.e.,
stop accumulating the ambiguity function, and to begin with the next trial position.
This would occur as soon as one term is below the cutoff criteria, e.g.,

cos
{
2𝜋

[
𝜑
pq
km,L,a(t) − 𝜑

pq
km,L,b(t)

]}
i
< 𝜀 (6.4.68)

The choice of the cutoff criteria 𝜀 is critical not only for accelerating solutions but
also for assuring that the correct solution is not missed. This early exit strategy is
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unforgiving in the sense that once the correct (trial) position is rejected, the scanning
of the remaining trial positions cannot yield the correct solution.

A matter of concern is that the grid of trial positions is close enough to assure that
the true solution is not missed. Of course, a very narrow spacing of the trial positions
increases the computational load, despite the early exit strategy. The optimal spacing
is somewhat related to the wavelength and the number of satellites. On the other hand,
the ambiguity function technique can be modified in several ways in order to increase
its speed, such as using the double-differenced wide-lanes first. In this case, the trial
positions can initially be widely spaced to reflect the wide-lane wavelength of 86 cm.
These solutions could serve to identify a smaller physical search space, which can
then be scanned using narrowly spaced trial positions.

The ambiguity function technique offers no opportunity to take the correlation
between the double-difference observables into account. There is no direct accu-
racy measure for the final position that maximizes the ambiguity function, such as
standard deviations of the coordinates. The quality of the solution is related to the
spacing of the trial positions. If the trial positions, e.g., having a 1 cm spacing and a
maximum of the ambiguity function is uniquely identified, then one could speak of
centimeter-accurate positioning. In order to arrive at a conventional accuracy mea-
sure, one can take the position that maximizes the ambiguity function and carry out
a regular double-difference least-squares solution. Because the initial positions for
this least-squares solution are already very accurate, a single iteration is sufficient
and it should be possible to fix the integer. The fixed solution would give the desired
statistical information.

The ambiguity function values of all trial positions are ordered by size and normal-
ized (dividing by the number of observations). Often, peaks of lesser value surround
the highest peak and it might be impossible to identify the maximum reliably. This
situation typically happens when the observational strength is lacking. The solution
can be improved by observing for a longer period of time, selecting a better satellite
configuration, using dual-frequency observations, etc.

The strength of the ambiguity function approach lies in the fact that the correct
solution is obtained even if the data contain cycle slips. Remondi (1984) discusses the
application of the ambiguity function technique to single differences. The geodetic
use of the ambiguity function technique seems to be traceable to very long baseline
interferometry (VLBI) observation processing. Counselman and Gourevitch (1981)
present a very general ambiguity function technique and discuss in detail the patterns
to be expected for various trial solutions.

6.4.6 GLONASS Carrier Phase

The current GLONASS system implements frequency division multiple access
(FDMA) signal modulation as discussed in Chapter 5, whereas other satellite
systems utilize CDMA modulation. A consequence of this arrangement is that each
GLONASS satellite transmits at a slightly different carrier frequency within its
bands while all GPS satellites transmit at the same carrier frequency within the L1
and L2 bands. The GPS carrier phase equation (6.1.30), therefore, must be slightly
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generalized to allow frequency-dependent hardware delays. We write

𝜑r
k,1(t) =

f r1
c
𝜌rk(t, t − 𝜏) + Nr

k,1 + f r1dtk − f r1dt
r −

f r1
c
Irk,1,P +

f r1
c
Tr
k + 𝛿

r
k,1,𝜑 + 𝜀

r
k,1,𝜑

(6.4.69)

𝛿rk,1,𝜑 = drk,1,𝜑 + Dr
1,𝜑 +Mr

k,1,𝜑 (6.4.70)

where superscript r denotes the GLONASS channel number that identifies the fre-
quencywithin the L1 band at which the satellite is transmitting.Note that the hardware
delay terms have been given a superscript r. The receiver hardware delay in (6.1.31)
has no superscript since in the case of GPS, all satellites transmit on the same L1
carrier frequency. The satellite hardware delay Dr

1,𝜑 also uses a superscript r to iden-
tify the frequency of the GLONASS satellite, whereas in (6.1.31), once again, the
superscript p identifies the GPS satellite.

As an introductory example to GLONASS carrier phase processing, we discuss the
experimental test of a 10m baseline collected in 1998 on the roof of 3S Navigation
Company, Irvine, California. The receivers were connected to a rubidium clock and
recorded single-frequency pseudorange and carrier phases of SG = 5 GPS satellites
and SR = 4 GLONASS satellites every second. As Figure 5.3.1 shows, during the
mid-1990s, the GLONASS satellite population was sufficiently robust, thus allow-
ing the development of mixed system positioning techniques. This baseline solution
was reported in Leick et al. (1998), who used a Kalman filtering program and a
least-squares batch program for independent computational verification (both include
the LAMBDA ambiguity fixer).

Let the superscripts p and r identify any of the SG GPS or SR GLONASS satellites,
respectively. Following this notation, the single-difference observations can then be
written as

𝜑
p
km,1,G =

f1
c
𝜌
p
km + Np

km,1,G + dkm,1,G − f1dtkm (6.4.71)

𝜑r
km,1,R =

f r1
c
𝜌rkm + Nr

km,1,R + dkm,1,R − f r1dtkm (6.4.72)

These equations utilize a common receiver clock error dtkm for GPS and GLONASS
observations. The across-receiver hardware delay differences dkm,1,G and dkm,1,R are
dealt with separately. Note, however, that the GLONASS hardware delay term dkm,1,R
does not have a superscript, which may seem contrary to what one would expect
from the undifferenced hardware delay in (6.4.70). Since both receivers were of the
same type, produced by the same manufacturer, and were running the same soft-
ware, the implicit assumption is that the frequency-dependency contribution within
the same band is negligible in the across-receiver difference. Studying the validity of
this assumption was one of the purposes for collecting this experimental data set.

When processing GPS observations only, one would set dkm,1,G = 0 since GPS
satellites transmit on the same L1 frequency and identical receivers were used, and
then estimate the time-dependent clock errors and the constant ambiguities and
station coordinates. A suitable ambiguity fixing technique would be applied to fix
the across-difference ambiguities to integer.
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For the combined processing of GPS andGLONASS across-receiver observations,
we used the satellite-dependent parameterization

𝜉
p
km,1,G = Np

km,1,G + dkm,1,G (6.4.73)

𝜉rkm,1,R = Nr
km,1,R + dkm,1,R (6.4.74)

According to the model assumptions, 𝜉 parameters are constants in time but not inte-
gers because of the receiver hardware delays. Letting the superscripts q and s denote
the respective GPS and GLONASS base satellites, we can then write the following
set of equations:

𝜑
q
km,1,G =

f1
c
𝜌
q
km + 𝜉qkm,1,G − f1 dtkm (6.4.75)

𝜑
p
km,1,G =

f1
c
𝜌
p
km + 𝜉qkm,1,G + Npq

km,1,G − f1 dtkm (6.4.76)

𝜑s
km,1,R =

f s1
c
𝜌skm + 𝜉skm,1,R − f s1dtkm (6.4.77)

𝜑r
km,1,R =

f r1
c
𝜌rkm + 𝜉skm,1,R + Nrs

km,1,R − f r1dtkm (6.4.78)

where Npq
km,1,G = 𝜉pkm,1,G − 𝜉qkm,1,G and Nrs

km,1,R = 𝜉rkm,1,R − 𝜉skm,1,R are the GPS and
GLONASS double-difference ambiguities, respectively. Note that the across-
receiver observations (6.4.75) and (6.4.77) refer to the base satellites, and that there
are SG − 1 equations (6.4.76) and SR − 1 equations (6.4.78) that refer to nonbase
satellites. A Kalman filter, or equivalently recursive least squares, provides the
estimated real-valued ambiguity Npq

km,1,G and Nrs
km,1,R, the station coordinates, and the

receiver clock and base satellite epoch parameters 𝜉qkm,1,G and 𝜉skm,1,R.
The float solution allows a first look at the variation of the hardware delays. First,

compute the nonbase parameters

𝜉
p
km,1,G = N̂pq

km,1,G + 𝜉qkm,1,G (6.4.79)

𝜉rkm,1,R = N̂rs
km,1,R + 𝜉

s
km,1,R (6.4.80)

and then analyze the differences Δ𝜉qpkm,G = 𝜉qkm,1,G − 𝜉pkm,1,G and Δ𝜉qrkm,G,R = 𝜉qkm,1,G −

𝜉rkm,1,R. Note that these differences are taken relative to the estimated GPS base station

parameter. The fractional parts of Δ𝜉qpkm,G estimates the difference dqkm,1,G and dpkm,1,G
(we have added the superscripts for clarity). These fractional parts are expected to be
zero. Indeed, the computed values are located around zero within a couple of hun-
dredths of a cycle, and the fractional values ofΔ𝜉qrkm,G,R, which estimate the difference
of dkm,1,G and drkm,1,R, are clustered at 0.35 cycles and also vary by a couple of hun-

dredths of a cycle (Leick et al. 1998). Since Δ𝜉qpkm,G and Δ𝜉qrkm,G,R, respectively, vary
only a couple of hundredths of a cycle over time, one can draw two conclusions:
first, the offset of Δ𝜉qrkm,G,R by about 0.35 cycles is significant and second, there is no
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Figure 6.4.1 Fractional parts of across-system across-receiver hardware delays after
fixing double-difference system ambiguities.

evidence in the data that the across-receiver hardware delays have a dependency on
the GLONASS channel number that exceeds a couple of hundredths of a cycle.

The above conclusions are reconfirmed by the fixed ambiguity solution. The float
solution is subjected to an ambiguity fixing routine yielding integer ambiguities, and
then the other parameters are updated accordingly. Figure 6.4.1 shows the updated
Δ𝜉qrkm,G,R differences for a period of one hour, in which all double-difference ambigu-
ities could be fixed. The figure shows identical graphs for each GLONASS satellite,
i.e., the lines are plotted on top of each other. The fixed solution confirms the off-
set described above, which is due to the frequency offset of GPS L1 and the bundle
of GLONASS frequencies in the L1 band. The remaining minor variation is due to
multipath and possibly temperature change and could be modeled as a constant in
practical applications.

Having verified the insensitivity of the across-receiver hardware delays to the
GLONASS channel number within the same band, the conventional carrier phase
double differences have the form

𝜑
pq
km,1,G =

f1
c
𝜌
pq
km + Npq

km,1,G (6.4.81)

𝜑rs
km,1,G =

f r1
c
𝜌rkm −

f s1
c
𝜌skm + Nrs

km,1,R −
(
f r1 − f s1

)
dtkm (6.4.82)

In contrast to GPS double differences, the GLONASS double differences depend on
the receiver clock error scaled by the respective frequency difference. This depen-
dency is demonstrated in Figure 6.4.2, which shows the functions

𝜑rs = 𝜑rs
km,1,R −

f r1
c
𝜌rkm,a +

f s1
c
𝜌skm,a + Δrs (6.4.83)

where the observations have been corrected for the adjusted topocentric satellite dis-
tances and translated by Δrs in order to zero the function at the first epoch. The
graph shows essentially straight lines because the receivers were connected to a stable
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Figure 6.4.2 Impact of receiver clock errors on GLONASS double-differenced observa-
tions.

rubidium clock. The slope of the lines is a function of the frequency difference f r1 − f s1 .
Four lines are shown corresponding to the five GLONASS satellites in the data.

Equations (6.4.81) and (6.4.82) could be used in principle to estimate the
double-difference integers, as long as the receiver clock differences are also
estimated at each epoch. However, caution is required because the coefficients of
the clock parameter in (6.4.82) are relatively small compared to, for example, the
respective coefficient in the single difference (6.4.78). Another way of looking at
this situation is to scale the carrier phases in such a way that the clock term cancels.
Consider this example:

𝜑r
km,1,R −

f r1
f s1
𝜑s
km,1,R =

f r1
c
𝜌rskm + Nr

km,1,R −
f r1
f s1
Ns
km,1,R (6.4.84)

One could attempt to compute an approximationNs
km,1,R,0 of the across-receiver ambi-

guity using (6.4.72), with station coordinates and receiver clock estimated from pseu-
doranges and assuming that dkm,1,R is negligible. The function (6.4.84) can then be
written as

𝜑r
km, 1,R −

f r1
f s1
𝜑s
km, 1,R +

f r1
f s1
Ns
km, 1,R, 0 =

f r1
c
𝜌rskm + Ñrs

km, 1,R + 𝜂rs (6.4.85)

with

Ñrs
km, 1,R = Nr

km, 1,R − ΔNs 𝜂rs =
f s1 − f r1
f s1

ΔNs
km, 1,R ≤ 0.01 ΔNs

km, 1,R (6.4.86)

If ΔNs
km, 1,R is sufficiently small, i.e., Ns

km, 1,R, 0 can be computed sufficiently accu-

rately, it might be possible to neglect 𝜂rs and estimate and fix the ambiguity Ñrs
km, 1,R

as an integer.
Other elements of the GLONASS system, such as the form and contents of the

broadcast navigation message, the coordinates system, and the system time, are
described elsewhere. GLONASS attracted a lot of interest during the mid-1990s
because more usable satellites became available to the user, the GLONASS
dual-frequency pseudoranges were not encrypted, and the carrier frequencies were
different from those of GPS. The following is a sample of relevant literature from
the so-called first GLONASS period: Raby and Daly (1993), Leick et al. (1995,
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1998), Gourevitch et al. (1996), Povalyaev (1997), Pratt et al. (1997), Rapoport
(1997), Kozlov and Tkachenko (1998), Roßach (2001), and Wang et al. (2001).
Today, GLONASS once again has a fully deployed constellation and GLONASS
observations are routinely combined with GPS observation. For additional details
on generalized processing of observations from different satellite systems that allow
even nonidentical receivers, see Chapter 7.

6.5 AMBIGUITY FIXING

Ambiguity fixing is essential for achieving centimeter-level accuracy in relative posi-
tioning. We first discuss ambiguity fixing in the context of a constrained adjustment,
provide a brief background on the various approaches proposed to solve the ambigu-
ity fixing problem, and then discuss in detail the popular LAMBDA method. In the
second part of this section, the view is broadened by looking at practices in related
disciplines to solve similar problems that might also be of benefit in certain circum-
stances when applied to GNSS applications.

6.5.1 The Constraint Solution

Fixing ambiguities implies converting real-valued ambiguity estimates to integers.
The procedures follow the general linear hypothesis testing as described in Section
2.7.3. The objective is to constrain the estimated ambiguities of the float solution to
integers. Let’s assume that the parameters are grouped as

x∗ =
[
a∗

b∗

]
(6.5.1)

The symbol a∗ denotes the estimated station coordinates and possibly other parame-
ters, such as tropospheric refraction or receiver clock errors. The symbol b∗ denotes
the estimated float ambiguities. Using the same partitioning, other relevant matrices
from the float solution are

N =

[
N11 N21
N21 N22

]
=

[
L11 0
L12 L22

] [
L11 0
L12 L22

]T
(6.5.2)

Qx∗ = N−1 =

[
Qa∗ Qa∗b∗

QT
a∗b∗ Qb∗

]
(6.5.3)

Q−1
b∗ = L22L

T
22 (6.5.4)

The submatrices Lij are part of the Cholesky factor L. The relation (6.5.4) can be
readily verified. In the notation of Section 2.7.3, we state the zero hypothesis H0 as

H0 ∶ A2x
∗ + �2 = 0 (6.5.5)

These are n conditions, one for each ambiguity. The hypothesis states that a partic-
ular integer set is statistically compatible with the estimated ambiguities from the
float solution. When constraining ambiguities, the coefficient matrix A2 takes on the
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simple form A2 =
[
0 I

]
, where the identity matrix I is of size n. The misclosure is

�2 = −b, where b is the set of integer ambiguity values that are to be tested. The
change in vTPv due to the n constraints can be written according to (2.7.54)

ΔvTPv = [b∗ − b]TQ−1
b [b∗ − b] (6.5.6)

which can he used in the F test (2.7.55)

ΔvTPv
vTPv∗

df

n
∼ Fn,df (6.5.7)

to test the acceptance of H0. The value v
TPv∗ comes from the float solution and df

denotes the degree of freedom of the latter.
Once the hypothesisH0 has been accepted, thus the best ambiguity candidateb has

been identified, the change in the float solution due to the constraints can be computed
using expressions from Table 2.5.5. One obtains for the station coordinates, given the
integer-constrained ambiguities

â|b = a∗ −Qa∗b∗Q
−1
b∗ (b

∗ − b) (6.5.8)

The respective cofactor matrix after constraining is

Qâ|b = Qa∗ −Qa∗b∗Qb∗Q
T
a∗b∗ (6.5.9)

It follows from the positive definiteness properties of the diagonal submatrices of N
orQ that the diagonal elements ofQa|b are smaller than the diagonal elements ofQa∗ ,
thus expressing a reduction in the variances of the coordinates due to imposing the
constraints.

In the early days of GPS surveying, a test set b of integer values was obtained by
simply rounding the estimated float ambiguities to the nearest integer. This approach
works well for long observation times where many satellites can be observed, and
the change in satellite geometry over time significantly improves the float solution.
In such cases, the estimated real-valued ambiguities are already close to integers
and their estimated variances are small. The situation changes drastically when one
attempts to shorten the time of observation, possibly down to the extreme of just
one epoch. It is only the distribution of the satellites in the sky and the availability
of observations at multiple frequencies that adds strength to the geometry in such a
case. The estimated float ambiguities will not necessarily be close to integer, and the
estimates will have large variances and be highly correlated in general. A possible
solution is to find candidate sets bi of integers and compute ΔvTPvi according to
(6.5.6) for each member of the set. Those with the smallest contribution are subjected
to the test (6.5.7).

There are two potential problems with this approach, however. The first one is that
we might have many sets b that need to be tested if the variances of the real-valued
ambiguities are large. An efficient algorithm, therefore, is needed to shorten the
computation time for ambiguity fixing. The second problem is that several candidate
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sets might pass the test (6.5.7). Naturally, one would like to identify the correct
candidate as soon as possible in order to avoid collecting additional observations.
The discernibility of the candidate sets will be addressed in Section 6.5.3.

Frei and Beutler (1990) suggest a specific ordering scheme for the candidate ambi-
guity sets based on the float solution and the covariance matrix. The efficiency of their
algorithms relies on the fact that if a certain ambiguity set is rejected, then a whole
group of sets is identifiable that can also be rejected and consequently need not be
computed explicitly.

Euler and Landau (1992) and Blomenhofer et al. (1993) point out that the
matrix L22 in (6.5.4) remains the same for all candidate sets. They further recom-
mend computing (6.5.6) in two steps. First, compute g = LT22(b

∗ − bi) and then
ΔvTPv =

∑
g2i , i = 1 · · · n. As soon as the first element g1 has been computed,

it can be squared and taken as the first estimate of the quadratic form. Note that
ΔvTPv ≥ g21. The value ΔvTPv = g21 is substituted in (6.5.7) to compute the test
statistic. If that test fails, the trial ambiguity set bi can immediately be rejected.
There is no need to compute the remaining gi values. If the test passes, then the next
value, g2, is computed and the test statistic is computed based on ΔvTPv = g21 + g22.
If this test fails, the ambiguity set is rejected; otherwise, g3 is computed, etc. This
procedure continues until either the zero hypothesis has been rejected or all gi have
been computed and the complete sum of n g-squared terms is known. This strategy
can be combined with the ordering scheme mentioned above.

Chen and Lachapelle (1995) take advantage of the fact that integer ambiguity
resolution accelerates if the range of candidates for a specific ambiguity is small. The
smaller these search ranges, the fewer ambiguity sets need to be tested. Their method
leads to a sequential reduction in the range of candidates for ambiguities not yet
fixed. The procedure is an application of sequential conditional adjustment. When
an ambiguity has been fixed and the covariance matrix of the parameters has been
propagated, the standard deviations of the remaining ambiguity parameters become
smaller. See the explanation given in regard to (6.5.9). The procedure starts with
determining the range of the ambiguity which has the smallest variance. There is a
strong resemblance between this method and LAMBDA, which will be discussed
below in detail. The latter technique first reduced correlation between ambiguities
and then applies sequential conditional adjustment.

Melbourne (1985) discusses an approach in which station coordinates are
eliminated from the observation equation prior to the search for the ambiguities. The
S − 1 double-difference epoch observation equations v = Aa + b + � are multiplied
by GT , with GTA = 0, giving GT (b-v + �) = 0. The columns of the matrix G span
the null space of A or AAT . Taking v = 0 one could attempt to identify by trial and
error the correct set of ambiguities that fulfills the condition. Observing five satellites
generates one condition; each additional satellites adds another condition. Since
the elements of G change with time enough epochs will eventually be available to
allow a unique identification of the ambiguity. Only the correct set of ambiguities
will always fulfill the condition. As an alternative to the trial-and-error method, one
could use the mixed adjustment model to estimate b̂.
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Hatch (1990) suggests a scheme that divides satellites into primary and secondary
ones. Consider four satellites, called the primary satellites. The respective three
double-difference equations contain the station coordinates and three double-
difference ambiguities. When the satellite geometry changes over time, it is possible
to estimate all of these parameters. Any secondary satellites in addition to these
four primary satellites are, strictly speaking, redundant and are used to develop
a procedure for rapidly identifying integer ambiguities. The procedure starts by
computing trial sets for the three primary ambiguities using an initial position
estimate from a point positioning solution, or from the float solution if several
epochs of observations are available and the receivers do not move.

For details on the procedures mentioned above, please check the references cited.
Over the years, another method has become the most popular one of all. This is
LAMBDA, which we will discuss in some detail in the next section.

Finally, we have pointed out above that there might be several sets of integer
ambiguities that pass the test (6.5.7). Since the adjustment has already passed the basic
chi-square test, the adjustment as such is correct, i.e., there are no model errors, the
observational weights have been chosen correctly, and blunders have been eliminated.
In that case, it is natural to look for the smallest ΔvTPv. From this point of view,
the integer fixing problem is called integer least squares and (6.5.8) is the integer
least-squares estimator. In short, one seeks the integer vectorb thatminimizesΔvTPv.

6.5.2 LAMBDA

Teunissen (1993) introduced the least-squares ambiguity decorrelation adjustment
(LAMBDA) method. This technique has the highest probability of correct integer
estimation among a certain group of estimators (Teunissen, 1999). This probabilistic
property and its speed of resolving the ambiguities have resulted in high popular-
ity and general acceptance of the technique. The reader is referred to de Jonge and
Tiberius (1996) for details about implementation. The software is available from the
TU Delft. This section merely highlights some features of the LAMBDA algorithm.

At the core of the LAMBDA decorrelation is the Z transformation:

z = ZTb (6.5.10)

ẑ = ZT b̂ (6.5.11)

Qz = ZTQbZ (6.5.12)

In (6.5.11) we used the symbol b̂ instead of b∗ to denote the float ambiguity estimate.
The matrix Z is a regular and square. In order for integers to be preserved, i.e., the
integers b should be mapped into integers z and vice versa, it is necessary that the
elements of both matrices Z and Z−1 are integers. The condition |Z| = ±1 assures
that the inverse contains only integer elements if Z contains integers. Simply consider
this: if all elements of Z are integers, then this is also true for the cofactor matrix C.
Therefore, the inverse

Z−1 =
CT|Z| (6.5.13)
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has integer elements because |Z| = ±1. The latter condition also implies that

|Qz| = |ZTQbZ| = |ZT ||Qb||Z| = |Qb| (6.5.14)

The quadratic form also remains invariant with respect to the Z transformation. Sub-
stituting (6.5.10) and (6.5.11) into (6.5.6) and using the inverse of (6.5.12) gives

ΔvTPv = [b̂-b]TQ−1
b [b̂-b]

= [z − z]TZ−1Q−1
b (Z−1)T [ẑ-z]

= [ẑ-z]TQ−1
z [ẑ-z] (6.5.15)

Note again that in (6.5.15) we used the symbol b̂ instead of b∗ to denote the float
ambiguity estimate.

Consider the following example with two random integer variables b̂ =
[
b̂1 b̂2

]T
.

Let the respective covariance matrix be

𝜮b =

[
𝜎2b1

𝜎b1b2
𝜎b2b1 𝛼2b2

]
(6.5.16)

wherewe have omitted the hat notation for simplicity. Let the transformation z = ZTb
utilize a transformation matrix of the special form

ZT =

[
1 𝛽

0 1

]
(6.5.17)

where ẑ = [ẑ1 ẑ2]
T . We note that |Z| = 1. The element 𝛽 is obtained by rounding

−𝜎b1b2∕𝜎
2
b2

to the nearest integer 𝛽 = int
(
− 𝜎b1b2∕𝜎

2
b2

)
. Because 𝛽 is an integer, the

transformed z variables will also be integers. Applying variance-covariance propa-
gation gives

𝜮z = ZT
𝜮bZ =

[
𝛽2𝜎2b2

+ 2𝛽𝜎b1b2 + 𝜎
2
b1

𝛽𝜎2b2
+ 𝜎b1b2

𝛽𝜎2b2
+ 𝜎b1b2 𝜎2b2

]
(6.5.18)

Let 𝜀 denote the change due to the rounding, i.e., 𝜀 = 𝜎b1b2∕𝜎
2
b2
+ 𝛽. Using (6.5.18),

the variance 𝜎2z1 of the transformed variable can be written as

𝜎2z1 = 𝜎
2
b1
−

(
𝜎2b1b2

𝜎4b2

− 𝜀2
)
𝜎2b2

(6.5.19)

This expression shows that the variance of the transformed variable decreases com-
pared to the original one, i.e., 𝜎2z1 < 𝜎

2
b1

whenever||𝜎b1b2∕𝜎2b2 || > 0.5 (6.5.20)

and that both are equal when 𝜎b1b2∕𝜎
2
b2

= |𝜀| = 0.5. The property of decreasing the
variance while preserving the integer makes the transformation (6.5.17) a favorite for
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resolving ambiguities because it reduces the search range of the transformed variable.
It is interesting to note that z1 and z2 would be uncorrelated if one were to choose
𝛽 = −𝜎b1b2∕𝜎

2
b2
. However, such a selection is not permissible because it would not

preserve the integer property of the transformed variables.
When implementing LAMBDA, the Z matrix is constructed from the n × n sub-

matrix Qb given in (6.5.3). There are n variables b̂ that must be transformed. Using
the Cholesky decomposition, we find

Qb = HTKH (6.5.21)

The matrixH is the modified Cholesky factor that contains 1 at the diagonal positions
and follows from (6.5.4). The diagonal matrix K contains the diagonal squared terms
of the Cholesky factor. Assume that we are dealing with ambiguities i and i + 1 and
partition these two matrices as

H =

⎡⎢⎢⎢⎢⎢⎢⎣

1
⋮ ⋱

hi,1 · · ·
hi+1, 1 · · ·

1
hi+1, i 1

⋮ · · ·
hn,1 · · ·

⋮ ⋮
hn,i hn, i+1

⋱
· · · 1

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
H11 0 0
H21 H22 0
H31 H32 H33

⎤⎥⎥⎦ (6.5.22)

K =

⎡⎢⎢⎢⎢⎢⎢⎣

k1, 1
⋱

ki, i
ki+1, i+1

⋱
kn, n

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
K11 0 0
O K22 0
O O K33

⎤⎥⎥⎦ (6.5.23)

The transformation matrix Z is partitioned similarly

Z1 =

⎡⎢⎢⎢⎣
I

1 0
𝛽 1

I

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
I11 0 0
0 Z22 0
0 0 I33

⎤⎥⎥⎦ (6.5.24)

where 𝛽 = −int(hi+1, i) represents the negative of the rounded value of hi+1, i, and

ẑ1 = ZT
1 b̂ (6.5.25)

Qz,1 = ZT
1QbZ1 = ZT

1H
TKHZ1 = HT

1K1H1 (6.5.26)

It can be shown that the specific form of Z1 and choice for Z22 imply the following
updates:

Qz, 1 =
⎡⎢⎢⎣

Q11 sym

ZT
22Q21 ZT

22Q22Z22

Q31 Q32Z22 Q33

⎤⎥⎥⎦ (6.5.27)
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H1 = HZ1 =
⎡⎢⎢⎣
H11 0 0
H21 H22 0
H31 H32 H33

⎤⎥⎥⎦ (6.5.28)

H22 =

[
1 0

hi+1, i + 𝛽 1

]
(6.5.29)

H32 =

⎡⎢⎢⎢⎣
hi+2, i + 𝛽hi+2, i+1 hi+2, i+1
hi+3, i + 𝛽hi+3, i+1 hi+3, i+1

⋮ ⋮
hn, i + 𝛽hn, i+1 hn, i+1

⎤⎥⎥⎥⎦ (6.5.30)

K1 = K (6.5.31)

The matrix K does not change as a result of this decorrelation transformation.
If 𝛽 = 0, the transformation (6.5.25) is not necessary. However, it is necessary to

check whether or not the ambiguities i and i + 1 should be permuted to achieve further
decorrelation. Consider the permutation transformation

Z2 =

⎡⎢⎢⎢⎣
I

0 1
1 0

I

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
I11 0 0
0 P 0
0 0 I33

⎤⎥⎥⎦ (6.5.32)

This specific choice for Z2 leads to

H22 =

[
1 0

h′i+1, i 1

] ⎡⎢⎢⎣
1 0

hi+1, iki+1, i+1

ki, i + h2i+1, iki+1, i+1
1

⎤⎥⎥⎦ (6.5.33)

H21 =
⎡⎢⎢⎣

−hi+1, i 1
ki, i

ki, i + h2i+1, iki+1, i+1
h′i+1, j

⎤⎥⎥⎦H21 (6.5.34)

H32 =

⎡⎢⎢⎢⎣
hi+2, i+1 hi+2, i
hi+3, i+1 hi+3, i

⋮ ⋮
hn, i+1 hn, i

⎤⎥⎥⎥⎦ (6.5.35)

K22 =

[
k′i, i 0
0 k′i+1, i+1

] ⎡⎢⎢⎢⎣
ki+1, i+1 −

h2i+1, ik
2
i+1, i+1

ki, i + h2i+1, iki+1, i+1
0

0 ki, i + h2i+1, iki+1, i+1

⎤⎥⎥⎥⎦
(6.5.36)

Permutation changes the matrix K at K22. To achieve full decorrelation, the terms
k′i+1, i+1 and ki+1, i+1 must be inspected while the ith and (i + 1)th ambiguity are



AMBIGUITY FIXING 331

considered. Permutation is required if k′i+1, i+1 < ki+1, i+1. If permutation occurs, the
procedure again starts with the last pair of the (n − 1)th and nth ambiguities and
tries to reach the first and second ambiguities. A new Z transformation matrix is
constructed whenever decorrelation takes place or the order of two ambiguities is
permuted. This procedure is completed when no diagonal elements are interchanged.

The result of the transformations can be written as

ẑ = ZT
q …ZT

2 ZT
1 b̂ (6.5.37)

Qz,q = ZT
q …ZT

2 ZT
1QbZ1Z2 …Zq = HT

qKqHq (6.5.38)

The matrices Hq and Kq are obtained as part of the consecutive transformations. The
permuting steps assure that Kq contains decreasing diagonal elements, the small-
est element being located at the lower right corner. As a measure of decorrelation
between the ambiguities, we might consider the scalar (Teunissen, 1994)

r = |R|1∕2 0 ≤ r ≤ 1 (6.5.39)

where R represents a correlation matrix. Applying (6.5.39) to Qb and Qz, q will give
a relative sense of the decorrelation achieved. A value of r close to 1 implies a high
decorrelation. Therefore, we expect rb < rz, q. The scalar r is called the ambiguity
decorrelation number.

The search step entails finding candidate sets of ẑi given (ẑ , Qz,q), whichminimize

ΔvTPv = [ẑ-z]TQ−1
z, q[ẑ-z] (6.5.40)

A possible procedure would be to use the diagonal elements ofQz, q, construct a range
for each ambiguity centered around ẑl, form all possible sets zi, evaluate the quadratic
form for each set, and keep track of those sets that produce the smallest ΔvTPv. A
more organized and efficient approach is achieved by transforming the ẑ variables
into variables ŵ that are stochastically independent. First, we decompose the inverse
of Qz, q as

Q−1
z, q = MSMT (6.5.41)

where M denotes the lower triangular matrix with l along the diagonal, and S is a
diagonal matrix containing positive values that increase toward the lower right corner.
The latter property follows from the fact that S is the inverse of Kq. The transformed
variables ŵ

ŵ = MT [ẑ - z] (6.5.42)

are distributed as ŵ ∼ N(0 , S−1). Because S is a diagonal matrix, the variables ŵ are
stochastically independent. Using (6.5.42) and (6.5.41), the quadratic form (6.5.40)
can he written as

ΔvTPv = ŵTSŵ =
n∑
i=1

ŵ2
i si, i ≤ 𝜒2 (6.5.43)
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The symbol 𝜒2 acts as a scalar; additional explanations will be given below. Finally,
we introduce the auxiliary quantity, also called the conditional estimate

ŵi|I =
n∑

j=i+1

mj,i(ẑj-zj) (6.5.44)

The symbol |I indicates that the values for zj have already been selected, i.e., are
known. Note that the subscript j goes from i = 1 to n. Sincemi, i = 1 and using (6.5.44)
and (6.5.42), we can write the ith component as

ŵi = ẑi − zi + ŵi|I i = 1, n − 1 (6.5.45)

The bounds of the z parameters follow from (6.5.43). We begin with the nth level to
determine the bounds for the nth ambiguity and then proceed to level 1, establish-
ing the bound for the other ambiguities. Using the term with ŵn sn, n in (6.5.43), and
knowing that the matrix element mn, n = 1 in (6.5.42), we find

ŵ2
nsn, n = (zn − ẑn)

2sn, n ≤ 𝜒2 (6.5.46)
The bounds are

ẑn −

(
𝜒2

sn, n

)1∕2

≤ zn ≤ ẑn +

(
𝜒2

sn, n

)1∕2

(6.5.47)

Using the terms from i to n in (6.5.43) and (6.5.45), we obtain for level i

ŵ2
i si,i = (ẑi − zi + ŵi, I)

2si, i ≤
[
𝜒2 −

n∑
j=i+1

ŵ2
j sj, j

]
(6.5.48)

ẑi + ŵi|I − 1√
si, i

[
𝜒2 −

n∑
j=i+1

ŵ2
j sj, j

]1∕2

≤ z1

≤ ẑi + ŵi|I + 1√
si, i

[
𝜒2 −

n∑
j=i+1

ŵ2
j sj, j

]1∕2

(6.5.49)

The bounds (6.5.47) and (6.5.49) can contain one or several integer values zn or zi.
All values must be used when locating the bounds and integer values at the next lower
level. The process stops when level 1 is reached. For certain combinations, the process
stops earlier if the square root in (6.5.49) becomes negative.

Figure 6.5.1 demonstrates how one can proceed systematically, trying to reach the
first level. At a given level, one proceeds from the left to the right while reaching
a lower level. This example deals with n = 4 ambiguities − z1, z2, z3, and z4. The
fourth level produced the qualifying values z4 = {−1, 0, 1}. Using z4 = −1 or z4 = 1
does not produce a solution at level 3 and the branch terminates. Using z4 = 0 gives
z3 = {−1, 0} at level 3. Using z3 = −1 and z4 = 0, or in short notation z = (−1, 0),
one gets z2 = 0 at level 2. The combination z = (0,−1, 0) does not produce a solution
at level 1 so the branch terminates. Returning to level 3, we try the combination z =
(0, 0), giving z2 = {−1, 0, 1} at level 2. Trying the left branch with z = (−1, 0, 0) gives
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–1 0 1

–1 0

0 –1 0 1

–2 –1 0 1 2

z4

z3

z1

z2

Figure 6.5.1 Candidate ambiguities encountered
during the search procedure with decorrelation.

no solution and the branch terminates. Using z = (0, 0, 0) gives z1 = {−2,−1, 0, 1, 2}
at the first level. The last possibility, using z = (1, 0, 0), gives no solution. We con-
clude that five ambiguity sets zi = (z1, 0, 0, 0) satisfy the condition (6.5.43). In gen-
eral, several branches can reach the first level. Because sn,n is the largest value in
S, the number of zn candidates is correspondingly small, thus lowering the num-
ber of branches that originate from level n and assuring that not many branches
reach level 1.

The change ΔvTPvi can be computed efficiently from (6.5.43) because all ŵi sets
become available as part of computing the candidate ambiguity sets. The matrix S
does not change. The qualifying candidates zi are converted back to bi using the
inverse of (6.5.37).

If the constant 𝜒2 for ambiguity search is chosen improperly, it is possible that
the search procedure may not find any candidate vector or that too many candidate
vectors are obtained. The latter case results in time-consuming searches. This
dilemma can be avoided if the constant is set close to the ΔvTPv value of the
best candidate ambiguity vector. To do so, the real-valued ambiguities of the float
solution are rounded to the nearest integer and then substituted into (6.5.40). The
constant is then taken to be equal to ΔvTPv. This approach guarantees obtaining at
least one candidate vector, which probably is the best one because the decorrelated
ambiguities are generally of high precision. One can compute a new constant 𝜒2 by
adding or subtracting an increment to one of the nearest integer entries. Using this
procedure results in only a few candidate integer ambiguity vectors and guarantees
that at least two vectors are obtained.

LAMBDA is a general procedure that requires only the covariance submatrix and
the float ambiguity estimates. Therefore, the LAMBDA is applicable even if other
parameters are estimated at the same time, such as station coordinates, tropospheric
parameters, and clock errors. LAMBDA readily applies to dual-frequency obser-
vations, or even future multifrequency situations. Even more generally, LAMBDA
applies to any least-squares integer estimation, regardless of the physical meaning of
the integer parameters.

LAMBDA can also be used to estimate a subset of ambiguities. For example, in
the case of dual-frequency ambiguities one might parameterize in terms of wide-lane
and L1 ambiguities. LAMBDA could operate first on the wide-lane covariance sub-
matrix and fix the wide-lane ambiguities and then attempt to fix the L1 ambiguities.
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Teunissen (1997) shows that the Z transformation always includes the wide-lane
transformation.

6.5.3 Discernibility

The ambiguity testing outlined above is a repeated application of null hypotheses
testing for each ambiguity set. The procedure tests the changes ΔvTPv due to the
constraints. The decision to accept or reject the null hypothesis is based on the proba-
bility of the type-I error, which is usually taken to be 𝛼 = 0.05. In many cases, several
of the null hypotheses will pass, thus identifying several qualifying ambiguity sets.
This happens if there is not enough information in the observations to determine the
integers uniquely and reliably. Additional observations might help resolve the sit-
uation. The ambiguity set that generates the smallest ΔvTPv fits the float solution
best and, consequently, is considered the most favored fixed solution. The goal of
additional statistical considerations is to provide conditions that make it possible to
discard all but one of the ambiguity sets that passed the null hypotheses test.

The alternative hypothesis Ha is always relative to the null hypothesis H0. The
formalism for the null hypothesis is given in Section 2.7.3. In general, the null and
alternative hypotheses are

H0: A2x
∗ + �2 = 0 (6.5.50)

Ha: A2x
∗ + �2 +w2 = 0 (6.5.51)

Under the null hypothesis, the expected value of the constraint is zero. See also
equation (2.7.45). Thus,

E
(
zH0

) ≡ E(A2x
∗ + �2) = 0 (6.5.52)

Because w2 is a constant, it follows that

E
(
zHa

) ≡ E(A2x
∗ + �2 +w2) = w2 (6.5.53)

The random variable zHa
is multivariate normal distributed with mean w2, i.e.,

zHa
∼ Nn−r

(
w2, 𝜎

2
0T

−1) (6.5.54)

See equation (2.7.47) for the corresponding expression for the zero hypothesis. The
matrix T has the same meaning as in Section 2.7.3, i.e.,

T=
(
A2N

−1
1 AT

2

)−1
(6.5.55)

The next step is to diagonalize the covariance matrix of zHa
and to compute the sum

of the squares of the transformed random variables. These newly formed random
variables have a unit variate normal distribution with a nonzero mean. According to
Section A.5.2, the sum of the squares has a noncentral chi-square distribution. Thus,

ΔvTPv
𝜎20

=
zTHa

TzHa

𝜎20

∼ 𝜒2
n2,𝜆

(6.5.56)
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where the noncentrality parameter is

𝜆 =
wT

2Tw2

𝜎20

(6.5.57)

The reader is referred to the statistical literature, such as Koch (1988), for additional
details on noncentral distributions and their respective derivations. Finally, the ratio

ΔvTPv
vTPv∗

n1 − r

n2
∼ Fn2,n1−r,𝜆

(6.5.58)

has a noncentral F distribution with noncentrality 𝜆. If the test statistic computed
under the specifications ofH0 fulfills F ≤ Fn2,n1−r,𝛼

, thenH0 is accepted with a type-I
error of 𝛼. The alternative hypothesis Ha can be separated from H0 with the power
1 − 𝛽(𝛼, 𝜆). The type-II error is

𝛽(𝛼, 𝜆) = ∫
Fn2 ,n1−r,𝛼

0
Fn2,n1−r,𝜆

dx (6.5.59)

The integration is taken over the noncentral F-distribution function from zero to the
value Fn2,n1−r,𝛼

, which is specified by the significance level 𝛼.
Because the noncentrality is different for each alternative hypothesis according to

(6.5.57), the type-II error 𝛽(𝛼, 𝜆) also varies withHa. Rather than using the individual
type-II errors to make decisions, Euler and Schaffrin (1990) propose using the ratio of
noncentrality parameters. They designate the float solution as the common alternative
hypothesis Ha for all null hypotheses. In this case, the value w2 in (6.5.51) is

w2 = −(A2x
∗ + �2) (6.5.60)

and the noncentrality parameter becomes

𝜆 ≡ wT
2Tw2

𝜎20

=
ΔvTPv
𝜎20

(6.5.61)

where ΔvTPv is the change of the sum of squares due to the constraint of the null
hypothesis.

Let the null hypothesis that causes the smallest changeΔvTPv be denoted byHsm.
The changes in the sum of the squares and the noncentrality are ΔvTPvsm and 𝜆sm,
respectively. For any other null hypothesis we have 𝜆j > 𝜆sm. If

ΔvTPvj
ΔvTPvsm

=
𝜆j

𝜆sm
≥ 𝜆0(𝛼, 𝛽sm, 𝛽j) (6.5.62)

then the two ambiguity sets comprising the null hypotheses Hsm and Hj are suffi-
ciently discernible. Both hypotheses are sufficiently different and are distinguishable
by means of their type-II errors. Because of its better compatibility with the float
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Figure 6.5.2 Discernibility ratio. (Permission by Springer Verlag).

solution, the ambiguity set of the Hsm hypothesis is kept, and the set comprising Hj
is discarded.

Figure 6.5.2 shows the ratio 𝜆0(𝛼, 𝛽sm, 𝛽j) as a function of the degree of freedom
and the number of conditions. Euler and Schaffrin (1990) recommend a ratio between
5 and 10, which reflects a relatively large 𝛽sm and a smaller 𝛽j. Since Hsm is the
hypothesis with the least impact on the adjustment, i.e., the most compatible with
the float solution, it is desirable to have 𝛽sm > 𝛽j (recall that the type-II error equals
the probability of accepting the wrong null hypothesis). Observing more satellites
reduces the ratio for given type-II errors.

Many software packages implement a fixed value for the ratio of the best and the
second-best solutions, e.g.,

ΔvTPv2nd smallest

ΔvTPvsm
> 3 (6.5.63)

to decide on discernibility. The explanations given above lend some theoretical jus-
tification to this commonly used practice, at least for a high degree of freedom.

A lot of work has been done to investigate the theoretical foundations of the ratio
test, to suggest better tests for the particular case of integer fixing, and to refine the
respective statistics. Examples are Wang et al. (1998), who constructed a test based
on the distance between the minimum and the second minimum of ΔvTPv instead
of the ratio. Teunissen (1998) looked at the success rate of ambiguity fixing for the
rounding and bootstrapping techniques. Teunissen (2003) introduced the integer aper-
ture theory and showed that the ratio test is a member of a class of tests provided
by the aperture theory. The probability density function of GNSS ambiguity resid-
uals, defined as the difference of float and integer ambiguity, and optimal testing is
addressed in Verhagen and Teunissen (2006a,b). There is a lot of literature available
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on testing and validation of integer estimation. As a first reading, we recommend
Verhagen (2004) and Teunissen and Verhagen (2007).

6.5.4 Lattice Reduction and Integer Least Squares

Though the LAMBDA method described above is sufficient to process the GNSS
data, another look is essential for understanding how to possibly improve the perfor-
mance of processing engines as the number of signals increases. At the time when
L1, L2, and L5 GPS signals are available along with L1, L2 GLONASS, L1, E5a,
E5b, E6 Galileo, L1, L2, L5, E6 QZSS, L1, L5 WAAS, and B1, B2, B3 Beidou sig-
nals, the ambiguity resolution problem can encounter 40 and more variables. The
need to solve such a large number of ambiguities in real time when performing RTK
positioning makes it necessary to revisit the ambiguity resolution problem in view of
computational experience accumulated in computer science since the early eighties
of the last century.

Usually all integer least-squares methods, including LAMBDA, consist of two
parts. The first part transforms the variables in such a way that the new covariance
matrix (or its inverse) is closer to the well-conditioned diagonal matrix with diagonal
entries sorted in ascending or descending order. This is called the lattice reduction.
The second part is the integer least squares. Both parts can be performed in many
different ways and combined together to form new algorithms.

There are many areas in which the minimization of quadratic functions over a
set of integer points is important. Several methods to solve such problems have been
developed and are described in the literature—see, for example, Pohst (1981), Fincke
and Pohst (1985), Babai (1986), and Agrell et al. (2002). These or similar problems
appear, for example, in the implementation of maximum likelihood decoders (MLD)
of signals over the finite alphabet performing the search over a certain lattice for a
vector closest to a given vector. In order to optimize the search over the lattice, the
lattice reduction algorithms have been proposed. A systematic study of this subject
starts with Lenstra at al. (1982), giving rise to many applications in mathematics and
computer science, as well as data transmission and cryptology. The paper by Korkine
and Zolotareff (1873) should also be mentioned. It shows that the conditioning prob-
lem for integer lattices has drawn the attention of mathematicians for a long time.
The independent statistical study by Teunissen (1993) on the decorrelation method
was a response to the need to deal with integer ambiguities in GPS applications.

As a brief introduction to the current state of integer quadratic programming, we
start with a description of the branch-and-bound algorithm. It produces a number of
candidate solutions, whereas whole subsets of unpromising candidates are discarded
by using lower estimated bounds of a cost function. The branch-and-bound algo-
rithm was proposed in Land and Doig (1960) and is still receiving attention in the
literature; see, for example, Buchheim et al. (2010) for effective and fast computer
implementations.

Then we describe the Finke and Pohst algorithm of Pohst (1981) and Fincke and
Pohst (1985). Then the lattice reduction problem will be addressed. In addition,
three other algorithms will be briefly identified. Note again that the lattice reduction
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and integer search can be combined together in different combinations, allowing the
derivation of new algorithms that are numerically efficient.

6.5.4.1 Branch-and-Bound Approach Consider the minimization of

q(ẑ) = (ẑ− z)TD(ẑ− z) (6.5.64)

over the integer vector ẑ ∈ Zn, where Zn is the integer-valued lattice in the
n-dimensional Euclidean space. In Figure 6.5.3, the contour line ellipse illustrates
the constant level set for the positive definite quadratic function. The ellipse is
centered at the real-valued vector z. The problem consists of searching for a vector
z∗ ∈ Zn which minimizes (6.5.64), i.e., the vector which is closest to z with respect
to the norm ‖⋅‖2D.

Figure 6.5.3 Contour line of the quadratic function (dashed ellipse centered at the
point z) in the two-dimensional case. The vector z∗ closest to z in the norm ‖⋅‖2

Dmust be
found.
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The branch-and-bound method sequentially reduces the uncertainty of vector z∗

by constructing subsets of the spaceRn(Zn ⊂ Rn). Each subset corresponds to certain
hypothesis about the location of the solution. Each subset is accompanied by the
lower estimate of the cost function (6.5.64). The initial hypothesis corresponds to set
S = R2. The lower estimate of the function (6.5.64) is

min
y∈S

q(y)= q(z) = 0 (6.5.65)

We describe the branch-and-bound method using the example shown in Figure 6.5.3.
Then we will give its formal description. The point z has noninteger values of entries.
Consider the second entry. As follows from the figure, it belongs to the segment 0 <
z2 < 1. Construct two subsets S(1) ⊂ S and S(2) ⊂ S in such a way that

S(1) ∩ S(2) = ∅ (6.5.66)
and

Z2 ⊂ S(1) ∪ S(2) (6.5.67)

More specifically, S(1) = {z ∶ z2 ≥ 1} and S(2) = {z ∶ z2 ≤ 0}. The subsets are
dashed in the figure. The white (not dashed) strip {z ∶ 0 < z2 < 1} does not contain
integer-valued vectors and can be taken out from further consideration because of
(6.5.67). The conditions (6.5.66) and (6.5.67) mean that either z∗ ∈ S1 or z∗ ∈ S2.
We described the first branching shown in Figure 6.5.4. Calculate the lower bounds
of the function q(y) over the subsets S(1) and S(2):

v(1) = min
y∈S(1)

q(y) ≤ min
y∈Z2∩S(1)

q(y) (6.5.68)

v(2) = min
y∈S(2)

q(y) ≤ min
y∈Z2∩S(2)

q(y) (6.5.69)

Note that v(1) and v(2) take their values at the points z(1) and z(2), respectively (see
Figure 6.5.3). The values v(1) and v(2) estimate the lower bound of the minimum over
the integer lattice in the sets S(1) and S(2) because

v∗ = q(z∗) = min
ẑ∈Z2

q(ẑ)

= min

{
min

ẑ∈S(1)∩Z2
q(ẑ), min

ẑ∈S(2)∩Z2
q(ẑ)

}
≥ min

{
min
y∈S(1)

q(y), min
y∈S(2)

q(y)
}

= min
{
v(1), v(2)

}
(6.5.70)

Figure 6.5.4 Branching of the set S = R2 into two parts
S(1) ∪ S(2) ⊂ S in such a way that no one integer point is lost:
Z2 ⊂ S(1) ∪ S(2).
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In other words, v∗ ≥ v(1) = q(z(1)) and v∗ ≥ v(2) = q(z(2)). Proceed with the branching
to decrease the uncertainty of the location of the optimal point z∗. Look at the tree
in Figure 6.5.4 (consisting of root S and two leaves S(1) and S(2)) and choose the
leaf having the least estimate, which is v(2) as seen from the figure because the ellipse
passing through point z(2) lies inside the ellipse passing through point z(1). The second
entry of the vector z(2) is an integer, whereas the first one is not and can, therefore,
be used for branching. Let us divide the set S(2) (for which z(2) is the optimum point)
into two subsets and exclude the strip {z ∶ −1, < z1 < 0}: S(21) = {z ∈ S(2) ∶ z1 ≤
−1} and S(22) = {z ∈ S(2) ∶ z1 ≥ 0}. Figures 6.5.5 and 6.5.6 show the partition of the
plane corresponding to sets S(1) ∪ S(21) ∪ S(22) ⊂ S and the corresponding branching
tree, respectively. Points z(1), z(21), and z(22), which are minimizers of q(y) over the
sets S(1) , S(21), and S(22), respectively, are shown in Figure 6.5.5. The same way as it
was proven in (6.5.70), the following conditions are established: v∗ ≥ v(21) = q(z(21))
and v∗ ≥ v(22) = q(z(22)).

Figure 6.5.5 Partition of the plane corresponding to the sets S(1) ∪ S(21) ∪ S(22) ⊂ S.
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Figure 6.5.6 The branching tree with leaves
S(1),S(21),S(22). Not one of the integer points is lost in such a
partition.

More generally, at each step of branching, the estimates v(i1…ik) corresponding to
the leaves of the branching tree do not exceed the optimal value v∗

v∗ ≥ v(i1…ik) (6.5.71)

Again, choose the leaf of the tree shown in Figure 6.5.6 corresponding to the
least estimate. There are three leaves: S(1) , S(21), and S(22). As it follows from
Figure 6.5.5, the least estimate is v(1) because the ellipse passing through the point
z(1) lies inside two other ellipses. The first entry for point z(1) is not an integer and it,
therefore, will be used for branching the leaf node S(1) into two subsets excluding the
strip {z ∶ 0 < z1 < 1}: S(11) = {z ∈ S(1) ∶ z1 ≤ 0} and S(12) = {z ∈ S(1) ∶ z1 ≥ 1}.
Figures 6.5.7 and 6.5.8 show the partition of the plane corresponding to the sets
S(11) ∪ S(12) ∪ S(21) ∪ S(22) ⊂ S and the corresponding branching tree, respectively.

Choose the least estimate among v(11) , v(12) , v(21), and v(22). It is v(21) according
to Figure 6.5.7. The estimate v(21) achieves at the point z(21) which has a first
integer entry −1 and a second entry satisfying constraints −1 < z2 < 0. The leaf
node S(21) is then split into two subsets excluding the strip {z ∶ −1 < z2 < 0}:
S(211) = {z ∈ S(21) ∶ z2 ≥ 0} and S(212) = {z ∈ S(21) ∶ z2 ≤ −1}. Obviously,
S(211) = {z ∶ z1 ≤ −1, z2 = 0}. Figures 6.5.9 and 6.5.10 show the partition of
the plane S(11) ∪ S(12) ∪ S(211) ∪ S(212) ∪ S(22) ⊂ S and the corresponding tree. The
least estimate among v(11) , v(12) , v(211) , v(212), and v(22) is v(12) (see Figure 6.5.9).
The estimate v(12) satisfies condition v(12) = q(z(12)) because the ellipse pass-
ing through it lies inside all other ellipses. The set S(12) is split into two sets,
S(121) and S(122), according to conditions S(121) = {z ∈ S(12) ∶ z2 ≥ 2} and
S(122) = {z ∈ S(12) ∶ z2 ≤ 1} = {z ∶ z1 ≥ 1, z2 = 1}. Figures 6.5.11 and 6.5.12
show the partition of the plane S(11) ∪ S(121) ∪ S(122) ∪ S(211) ∪ S(212) ∪ S(22) ⊂ S and
the corresponding tree.

As it follows from Figure 6.5.11, the least estimate is v(211) which satisfies condi-
tion v(211) = q(z(211)). Also, as it can be observed from the figure, it is integer valued.
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Figure 6.5.7 Partition of the plane corresponding to the sets S(11) ∪ S(12) ∪ S(21) ∪ S(22)

⊂ S.

Figure 6.5.8 Branching tree with leaves S(11) , S(12) , S(21) , S(22).
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Figure 6.5.9 Partition of the plane corresponding to the sets S(11) ∪ S(12) ∪ S(211) ∪ S(212) ∪

S(22) ⊂ S.

Now we conclude that

v(211) = min
{
v(11) , v(121) , v(122) , v(211) , v(212) , v(22)

}
= min

{
min
y∈S(11)

q(y), min
y∈S(121)

q(y), min
y∈S(122)

q(y),

min
y∈S(211)

q(y), min
y∈S(212)

q(y), min
y∈S(22)

q(y)
}

≤ min
ẑ∈Z2

q(ẑ) = q(z∗) = v∗ (6.5.72)

On the other hand, v(211) = q(z(211)) and taking into account that z(211) is integer val-
ued, we conclude that v(211) = q(z(211)) ≥ v∗. Together with (6.5.72) this means

v(211) = v∗ (6.5.73)

or, in other words, z(211) is the optimal integer-valued point.
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Figure 6.5.10 Branching tree with
leaves S(11) , S(12) , S(211) , S(212) , S(22).

Now we provide a more formal description of the branch-and-bound method. The
binary tree is subject to a transformation at each step k. Each node of the tree corre-
sponds to the subset of space Rn. In all figures, the branching starts from the node
marked by the symbol S. It is called the root and corresponds toRn. At the step k = 0,
the tree consists of only root. Let {S(𝛼1), S(𝛼2),… , S(𝛼mk )} be subsets corresponding
to the leaves of the current tree, 𝛼i being a multi-index. If the leaf node is subjected
to branching into another two leaves, the index 𝛼i is transformed into two indices 𝛼i 1
and 𝛼i 2. The total number of leaves at the step k is mk, with m0 = 1. Note that a leaf
of a tree is a node that has not been subjected to branching (see Figure 6.5.13).

The subset corresponding to leaves has the following property:

Zn ∩

(
mk
∪
i=1

S(𝛼i)
)

= Zn (6.5.74)

which means that every point of the integer lattice Zn belongs to one of the leaf sub-
sets. There is an estimate v(𝛼i) and a point z(𝛼i) assigned to a leaf subset as follows:

v(𝛼i) = min
y∈S(𝛼i)

q(y) = q(z(𝛼i)) (6.5.75)

At step k, the leaf subjected to branching is chosen. That is, the leaf corresponding to
the minimum value of the estimate

v(𝛼∗) = min
i=1,…,mk

v(𝛼i) (6.5.76)
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Figure 6.5.11 Partition of the plane corresponding to the sets S(11) ∪ S(121) ∪ S(122) ∪
S(211) ∪ S(212) ∪ S(22) ⊂ S.

If the vector z(𝛼∗) is integer valued, then it is a solution to the problem (6.5.64). Actu-
ally, according to conditions (6.5.75), (6.5.76), and (6.5.74), we have

v(𝛼∗) = min
i=1,…,mk

v(𝛼i) = min
i=1,…,mk

{
min
y∈S(𝛼i)

q(y)
}

≤ min
i=1,…,mk

{
min

y∈Zn∩S(𝛼i)
q(y)

}
= min

y∈Zn∩
(⋃mk

i=1
S(𝛼i)

) q(y)
= min

y∈Zn
q(y) = v∗ (6.5.77)

On the other hand, for any integer point including z(𝛼∗), the following condition holds:

v∗ ≤ v(𝛼∗) (6.5.78)
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Figure 6.5.12 Branching tree with leaves S(11) ∪ S(121) ∪ S(122) ∪ S(211) ∪ S(212) ∪ S(22) ⊂ S.

Figure 6.5.13 Binary tree and set of leaves (surrounded by the dashed line).
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The combination of (6.5.77) and (6.5.78) proves that v∗ = v(𝛼∗), which means opti-
mality of z(𝛼∗).

If the vector z(𝛼∗) is not integer valued, then at least one of its entries, say the lth
entry, satisfies the condition [

z(𝛼∗)l

]
< z(𝛼∗)l <

[
z(𝛼∗)l

]
+ 1 (6.5.79)

where [⋅] is the integer part of the value. Then the set S(𝛼∗) is split into two parts

S(𝛼∗1) = S(𝛼∗) ∩
{
z ∶ zl ≤ [

z(𝛼∗)l

]}
S(𝛼∗2) = S(𝛼∗) ∩

{
z ∶ zl ≥ [

z(𝛼∗)l

]
+ 1

}
(6.5.80)

Excluding the slice, we have
[
z(𝛼∗)l

]
< zl <

[
z(𝛼∗)l

]
+ 1, which means that the leaf node

S(𝛼∗) is subjected to the branching as shown in Figure 6.5.14. The multi-indices 𝛼∗1
and 𝛼∗2 are constructed by adding the symbol 1 or 2 to the end of the multi index 𝛼∗.
This completes the description of the branch-and-bound algorithm.

Figure 6.5.14 Binary tree and the set of leaves after the branching is performed.
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Figure 6.5.15 Single-branch tree.

The estimation problem (6.5.75) is a quadratic programming problem with
component-wise box constraints. Algorithms for such problems are considered in
Gill et al. (1982). The practical numerical complexity of the branch-and-bound
method depends on how much branching has been made. The closer the branching
tree is to a single branch (see Figure 6.5.15), the faster the algorithm. On the other
hand, the full binary tree supposes exponential computational complexity.

It has been noted that the closer the matrix D in (6.5.64) is to a diagonal matrix
(the closer the problem is to a minimization of squares of independent variables),
the less branching (fewer leaves) is involved in the resulting tree when performing
the algorithm. A significant task, therefore, is to transform problem (6.5.64) into a
form that makes the matrix D close to being a diagonal. The integer-valued nature
of the problem must be preserved, of course. The unimodular transformations are
used for that purpose because they are integer valued together with their inverse.
The reduction of the off-diagonal entries of the matrix is tightly connected with the
reduction of the lattice, generated by its Cholesky factor. Among all bases generating
the same lattice, one looks for the bases having the shortest possible vectors, that is,
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the subject of lattice reduction theory pioneered by Korkine and Zolotareff (1873).
The work of Lenstra et al. (1982) has drawn attention to the lattice reduction problem
in modern literature in the area of linear and quadratic integer optimization. We will
describe the LLL (Lensta- Lenstra- Lovász) algorithm after a short introduction to
another approach to integer minimization known as the Finke-Pohst algorithm [see
Pohst (1981) and Fincke and Pohst (1985)].

6.5.4.2 Finke-Pohst Algorithm The algorithm described in this subsection
overlaps with the LAMBDA method, while being proposed by other authors
independently. The problem (6.5.64) can be equivalently formulated as calculating
the vector of the given lattice that is closest to a given vector. Recall that for
linearly independent vectors b1,… ,bm ∈ Rn, the lattice 𝛬 is the set of their linear
combinations with integer coefficients

𝛬 =

{
b̂ =

n∑
i=1

ẑibi ∶ ẑi ∈ Z

}
(6.5.81)

Calculating the Cholesky decomposition of the matrixD = LLT and b = LTz, we can
formulate (6.5.64) as a problem of calculating a vector of the lattice 𝛬 that is closest
to b (closest vector problem, or CVP). Note also that there can be different bases
b1,… ,bn ∈ Rn generating the same lattice𝛬. LetB andB∗ bematrices composed of
columns b1,… ,bn and b

∗
1,… ,b∗

n, respectively. Two bases generate the same lattice
𝛬 if there exists an integer-valued unimodular (integer-valued invertible) matrix U
such that B∗ = BU. Pohst (1981) and Fincke and Pohst (1985) suggest the following
algorithm for CVP:

Let lij be entries of the matrix L and qij = lij∕ ljj for 1 ≤ j ≤ i ≤ n. Then (6.5.64)
can be written as

q(ẑ) =
n∑
i=1

l2jj

(
ẑj − zj +

n∑
i=j+1

qij
(
ẑi − zi

))2

(6.5.82)

The following sequential search over entries of the vector ẑ is induced by the
triangular structure of the matrix L and (6.5.82). Let C be the upper bound of the
minimum in (6.5.64). For example,C = q([z]). The value |ẑn − zn| is clearly bounded
by the value C1∕2∕lnm. More specifically,]

zn −
C1∕2

lnn

[
≤ ẑn ≤

[
zn +

C1∕2

lnn

]
(6.5.83)

where [x] is the least integer greater or equal to x and ]x[ is the largest integer less or
equal to x. When introducing LAMBDAwe already obtained similar bounds (6.5.47).
For each possible value of ẑn satisfying (6.5.83), we obtain

l2n−1,n−1(ẑn−1 − zn−1 + qn,n−1(ẑn−1 − zn−1))
2 ≤ C − l2nn(ẑn − zn)

2 (6.5.84)
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The last inequality implies lower and upper bounds

Ln−1 ≤ ẑn−1 ≤ Un−1 (6.5.85)

Ln−1 =

]
zn−1 − qn,n−1

(
ẑn−1 − zn−1

)
−

T1∕2
n−1

ln−1,n−1

[
(6.5.86)

Un−1 =

[
zn−1 − qn,n−1

(
ẑn−1 − zn−1

)
+

T1∕2
n−1

ln−1,n−1

]
(6.5.87)

Tn−1 = C − l2nn(ẑn − zn)
2 (6.5.88)

Proceeding with other entries ẑn−2, ẑn−3,…, we obtain for each fixed set of values
ẑn,ẑn−1,… , ẑk+1

l2kk

(
ẑk − zk +

n∑
i=k+1

qik
(
ẑi − zi

))2

≤ Tk (6.5.89)

Tk = Tk+1 − l2k+1,k+1

(
ẑk+1 − zk+1 +

n∑
i=k+2

qi,k+1
(
ẑi − zi

))2

(6.5.90)

with Tn = C and k taking values in decreasing order n − 1, n − 2,… , 1. Each time the
vector satisfying condition q(ẑ) < C is obtained, C is decreased suitably. Again, sim-
ilarity with earlier described estimates (6.5.48) and (6.5.49) should be noted. These
considerations are summarized in the following algorithm. Denote by z∗ the current
record vector and f as the binary flag taking the unit value if the record has been
updated at the most outer iteration of the algorithm, and zero otherwise.

1. z∗ = [z],C = q([z]), f = 1.
2. If f = 0, the algorithm terminates with z∗ being a solution.

3. Set k = n, Tn = C, Sn = 0, f = 0.

4. Set Uk =

[
T1∕2
k

lk,k
+ zk − Sk

]
, Lk =

]
−

T1∕2
k

lk,k
+ zk − Sk

[
, ẑ = Lk − 1.

5. Set ẑk ∶= ẑk + 1. If ẑk ≤ Uk, go to step 7; else go step 6.

6. If k = n, go to step 2; else set k ∶= k + 1 and go to step 5.

7. If k = 1, go to step 8; else set k ∶= k − 1, Sk =
n∑

i=k+1

qi,k(ẑi − zi),

Tk = Tk+1 − qk+1,k+1(ẑk+1 − zk+1 + Sk+1)
2. Go to step 4.

8. If q(ẑ) < C, set C = q(ẑ), z∗ = ẑ, and f = 1. Go to step 5.

This is the Fincke-Pohst algorithm [Pohst (1981) and Fincke and Pohst (1985)]. Its
various modifications differ in the strategy of how the values ẑk are updated at step 5.
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For example, they can be sorted from left to right, or from the center incrementally,
i.e., 0,−1, 1,−2, 2,….

As noted in Fincke and Pohst (1985), using lattice reduction can significantly
decrease the computation complexity of the algorithm. Let ri denote the columns
of the matrix (LT )−1. Then

(ẑi − zi)
2 =

(
rTi L

T (ẑ − z)
)2 ≤ ‖ri‖2(ẑ − z)TD(ẑ − z) ≤ ‖ri‖2C (6.5.91)

for all i = 1, ⋅ ⋅ ⋅, n. This means that by reducing the length of rows of the matrix L−1,
we reduce the search range of the integer variables. Applying any of the reduction
methods to the matrix (LT )−1, we obtain the reduced matrix by multiplying it by
appropriately chosen unimodular matrix U−1, thus obtaining (MT )−1 = U−1(LT )−1.
Then, instead of solving CVP (6.5.64), we solve CVP:

q(ŷ) = (ŷ − y)TMMT (ŷ − y) (6.5.92)

using the algorithm described above, y = U−1z and recover the original integer-
valued vector

ẑ = Uŷ (6.5.93)

The resulting algorithm is as follows:

1′. Compute Cholesky decompositionD = LLT and L−1 (it is computed as a solu-
tion of the system LX = I (see Section A.3.6 of Appendix A).

2′. Perform the lattice reduction, computing the row-reduced matrix (MT )−1

together with the unimodular matrix U−1 subject to (MT )−1 = U−1(LT )−1.
ComputeMT = LTU.

3′. Compute Cholesky decomposition LL
T
= MMT and qij = lij∕ljj.

4′. Compute z ∶= U−1z and perform the algorithm step 1 to 8 described above.

6.5.4.3 Lattice Reduction Algorithms Now we describe the algorithms of
lattice reduction aimed to reduce the rows of the matrix L (columns of the matrix
LT ). Let b1,… ,bn be columns of LT generating the lattice (6.5.81). Starting with
the LLL algorithm, we apply the Gram-Schmidt orthogonalization process to vec-
tors b1,… ,bn. The orthogonal vectors b

∗
1, ⋅ ⋅ ⋅,b

∗
n and numbers 𝜇ij, 1 ≤ j ≤ i ≤ n are

inductively defined by

b∗
1 = b1, b

∗
i = bi −

i−1∑
j=1

𝜇ijb
∗
j (6.5.94)

𝜇ij = bT
i b

∗
j ∕b

∗T
j b∗

j (6.5.95)

Note that b∗
i with i > 1 is the projection of bi on the orthogonal complement of the

linear subspace spanned on the vectors b∗
j , j = 1,… , i − 1 and b∗

1,… ,b∗
n. Vectors b

∗
i

form the orthogonal basis of Rn. The smaller the absolute values of 𝜇ij, the closer
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the original basis for the lattice b1,… ,bn to the orthogonal basis. The basis for the
lattice is called LLL reduced if

|𝜇ij| ≤ 1∕2 for 1 ≤ j < i ≤ n (6.5.96)
and ‖b∗

i ‖2 + 𝜇2i,i−1‖b∗
i−1‖2 ≥ 𝛿‖b∗

i−1‖2 for 1 < i ≤ n (6.5.97)

where 1
4
< 𝛿 ≤ 1. In the original Lenstra et al. (1982) paper, the case 𝛿 = 3∕4 was

considered. Condition (6.5.96) is called the size reduction condition, and condition
(6.5.97) is called the Lovász condition. The following transformation will be referred
to as the size reduction transformation and denoted by T(k, l) for l < k:

If |𝜇kl| > 1
2
then

⎧⎪⎨⎪⎩
r = integer nearest to𝜇kl, bk = bk − rbl,
𝜇kj ∶= 𝜇kj − r𝜇lj for j = 1, 2, ⋅ ⋅ ⋅, i − 1,
𝜇kl ∶= 𝜇kl − r

(6.5.98)

The LLL algorithm for 𝛿 = 3∕4 consists of the following steps:

1. Perform the Gram-Schmidt orthogonalization according to (6.5.94) and
(6.5.95), and denote Bi = ‖b∗

i ‖2. Set k = 2.

2. Perform T(k, k − 1). If Bk <
(
3
4
− 𝜇2k,k−1

)
Bk−1, then go to step 3.

Perform T(k, l) for l = k − 2,… , 1. If k = n, terminate k ∶= k + 1, go to step 2.
3. Set 𝜇 ∶= 𝜇k,k−1, B ∶= Bk + 𝜇

2Bk−1, 𝜇k,k−1 ∶= 𝜇Bk−1 ∕B,
Bk ∶= Bk−1Bk∕B, Bk−1 ∶= B,
swap vectors (bk−1, bk) ∶= (bk, bk−1),

swap values

(
𝜇k−1,j
𝜇k,j

)
∶=

(
𝜇k,j
𝜇k−1,j

)
for j = 1, 2,… , k − 2(

𝜇i,k−1
𝜇i,k

)
∶=

(
1 𝜇k,k−1
0 1

) (
0 1
1 −𝜇

) (
𝜇i,k−1
𝜇i,k

)
for j = k + 1, k + 2,… , n

if k > 2, then k ∶= k − 1, go to step 2.

The unimodular matrixU is constructed along with the construction of the reduced
basis. The transformation T(k, l) is equivalent to the multiplication of the matrix B =
[b1,b2,… ,bn] by the matrix ⎡⎢⎢⎢⎣

1
1
−r 1

1

⎤⎥⎥⎥⎦
← k
← l

(6.5.99)

Step 2 is equivalent to the permutation matrix

⎡⎢⎢⎢⎣
1

0 1
1 0

1

⎤⎥⎥⎥⎦
← (k − 1)

← k
(6.5.100)
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The product of sequentially generated matrices (6.5.99) and (6.5.100) results in the
matrix U.

There are other definitions of lattice reduction and other reduction algorithms.
They can be applied at step 2′ of the algorithm 1′ to 4′.

Note that the LLL algorithm is not the first reduction algorithm proposed in history.
Another type of basis reduction is the Korkine-Zolotareff (KZ) reduction. To define
it, given the basis b1,b2,… ,bn we construct the upper triangular matrix, obtained
via Gram-Schmidt decomposition (6.5.94) and (6.5.95),

G =

⎡⎢⎢⎢⎢⎢⎣

‖‖b∗
1
‖‖ 𝜇21‖b∗

1‖ 𝜇31‖b∗
1‖ ⋅ ⋅ ⋅ 𝜇n1‖b∗

1‖
0 ‖b∗

2‖ 𝜇32‖b∗
2‖ ⋅ ⋅ ⋅ 𝜇n2‖b∗

2‖
0 0 ‖b∗3‖ ⋅ ⋅ ⋅ 𝜇n3‖b∗

3‖
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋅ ⋅ ⋅ ‖b∗

n‖

⎤⎥⎥⎥⎥⎥⎦
(6.5.101)

The basis b1,b2,… ,bn is KZ reduced if its upper triangular representation (6.5.101)
is KZ reduced. The matrix (6.5.101) is defined, recursively, to be KZ reduced if either
n = 1 or each of the following conditions holds: (6.5.96), the vector (‖b∗

1‖, 0,… , 0)T

is shortest in the lattice generated by columns of the matrix (6.5.101), and the sub-
matrix ⎡⎢⎢⎢⎣

‖‖b∗
2
‖‖ 𝜇32‖b∗

2‖ · · · 𝜇n2‖b∗
2‖

0 ‖b∗
3‖ · · · 𝜇n3‖b∗

3‖
⋮ ⋮ ⋱ ⋮
0 0 · · · ‖b∗

n‖
⎤⎥⎥⎥⎦ (6.5.102)

is KZ reduced. TheKZ-reduced basis is also LLL reduced, but for LLL there exists the
LLL algorithm described above, having polynomial complexity, while KZ reduction
requires more extensive calculations. Hybrids between KZ and LLL reductions have
been proposed in Schnorr (1987). It is noted in Agrell et al. (2002) that the KZ reduc-
tion is recommended for applications where the same lattice is to be searched many
times for different vectors z in (6.5.64); otherwise, LLL reduction is recommended
(the latter is the case for applications to RTK).

Wübben et al. (2011) introduce Seysen’s reduction and Brun’s reduction algo-
rithms. Both methods use unimodular transformations, differing in definition of the
orthogonality measure of the resulting basis.

Another class of methods, called inverse integer Cholesky decorrelation, is intro-
duced inWang et al. (2010) and Zhou and He (2013). In order to make the matrixD or
its inverse closer to diagonal, different decorrelation techniques have been developed.
The construction of the unimodular transformation starts with Cholesky decomposi-
tion in the form

D = L𝚫LT (6.5.103)

where L is the lower triangular matrix with unit diagonal and 𝚫 is a diagonal matrix
with positive elements. The unimodular transformation U1 is constructed as inverse
L rounded

U1 = [L−1] (6.5.104)
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The unimodular transformation can be applied to D or D−1. In the first case, we have

D1 = U1DU
T
1 (6.5.105)

The matrix D1 is not diagonal since the rounding operation has been applied to L−1

in (6.5.104). Repeating calculations (6.5.103) to (6.5.105) construct the unimodu-
lar transformation UT = UT

1U
T
2 · · ·. Calculations repeat until either convergence or a

predetermined condition number is reached.

6.5.4.4 Other Searching Strategies The second stage of the integer least-
squares algorithm was presented in this section by the branch-and-bound algorithm
and sphere decoding (Fincke-Pohst) algorithm. In order to describe other approaches
to the searching strategies, we will use the conceptual description presented in Agrell
et al. (2002), Section IIIA.

Let the problem (6.5.64) be rewritten in the form

‖Gẑ− x‖2 → min
ẑ∈Zn

(6.5.106)

The recursive characterization of the lattice spanned on columns of the matrix G
follows from the representation

G =
[
Gn−1 gn

]
(6.5.107)

withGn−1 being the n × (n − 1)matrix and gn being the last column ofG. Moreover,
gn can be written as gn = g|| + g⟂ where g|| ∈ span(Gn−1) belongs to the column
space of Gn−1 and Gn−1g⟂ = 0. If the matrix G is upper triangular as in (6.5.101),
then obviously g|| = (gn1,… , gn,n−1, 0)

T and g⟂ = (0,… , 0, gnn)
T . Then the lattice

𝛬(G) can be factorized as a stack of (n − 1)-dimensional translated sublattices

𝛬(G) =
+∞
∪

zn=−∞
{c + zng|| + zng⟂ ∶ c ∈ 𝛬(G∗)} (6.5.108)

The hyperplanes {c + zng|| + zng⟂ ∶ c ∈ 𝛬(G∗)} containing these sublattices are
called layers. Thus, the number zn indexes the layers. It denotes to which layer a
certain lattice point belongs. The vector g|| is the offset by which the sublattice is
translated within its layer, relative to the adjacent layers. The distance between two
adjacent layers is ‖g⟂‖. For the upper triangular case (6.5.101), we have ‖g⟂‖ =|gnn| = gnn because gnn > 0.

Now, a large class of search algorithms can be described recursively as a finite
number of (n − 1)-dimensional search operations.

The distance from the vector x in (6.5.106) to the layer indexed by the number zn
is

yn = |zn − zn| ⋅ ‖g⟂‖ (6.5.109)

with zn being defined as

zn =
xTg⟂

gT
⟂g⟂

(6.5.110)
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For the upper triangular case (6.5.101), we have yn = |zngnn − xn| (because gnn > 0).
Let z∗ be a solution to (6.5.106) and 𝜌n be the upper bound on ‖Gẑ - x‖. Then only
the finite number of layers in (6.5.108) must be searched, indexed by numbers

zn =

]
zn −

𝜌n‖‖g⟂
‖‖

[
,… ,

[
zn +

𝜌n‖‖g⟂
‖‖

]
(6.5.111)

The layer with zn = integer nearest (zn) has the shortest orthogonal distance to x. In
addition to the two search methods already described above, another three methods
will be identified. Each is indexed in search layer segments (6.5.111), but they differ
in the order the layers are tried and in the way the upper bound 𝜌n is treated and
updated. Note that in the branch-and-bound method we dealt with the lower bounds.

Let us denote [[z]] ≡ integer nearest(z). If only z∗n = [[zn]] is considered in (6.5.111),
the problem is immediately reduced to one (n − 1)-dimensional problem. Sequential
application of this strategy yields the Babai nearest plane algorithm (Babai, 1986).
Note that the lattice reduction can be repeated or updated for each reduction of dimen-
sion. The Babai nearest plane algorithm can be performedwithout the reduction to the
upper triangle from (6.5.101). It is a fast time-polynomial method giving an approx-
imate solution to (6.5.106). In other words, its computational cost has polynomial
dependence on the dimension n. The result depends not only on the vector x and
the lattice 𝛬(G) but also on the lattice reduction lattice basis. Effectively, this means
dependence on the lattice reduction method used. The solution zB found by this algo-
rithm is called the Babai solution and the lattice point xB = GzB is called the Babai
lattice point.

Other methods find the strict solution to (6.5.106). Running through all layers and
searching each layer with the same value of 𝜌n−1 regardless of zn yields the Kannan
strategy (Kannan 1983, 1987).

The error vector Gz∗ − x consists of two orthogonal components. The first one
belongs to the column space of Gn−1 [g|| ∈ span(Gn−1)] and it represents the (n −
1)-dimensional error vector. The second one is collinear to g⟂ and its length is yn as
defined in (6.5.109). Since the distance yn depends on the layer index zn, the upper
bound 𝜌n−1 can be chosen as

𝜌n−1 =
√
𝜌2n − y2n (6.5.112)

The idea to let the bound be dependent on the layer index represents the Pohst strategy
(Pohst,1981; Fincke and Pohst,1985). A detailed description of the algorithm based
on this strategy for the case of the upper triangular matrix G has already been given
above (see the algorithm steps 1 to 8). The points lying inside the sphere are searched.
That is why the method is called “the sphere decoder,” since decoding of the vector
x is the goal in the communication applications. When the lattice point inside the
sphere is found, the bound 𝜌n is immediately updated (see step 8 with C = 𝜌2n ).

The Schnorr-Euchner strategy (Schnorr and Euchner, 1994) combines ideas of the
Babai nearest plane algorithm and the Fincke-Pohst decoder. Let zn ≤ [[zn]]. Then the
sequence

zn = [[zn]], [[zn]] − 1, [[zn]] + 1, [[zn]] − 2,… (6.5.113)
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orders layers in (6.5.111) in non-decreasing distance from x. Similarly, they are
ordered as

zn = [[zn]], [[zn]] + 1, [[zn]] − 1, [[zn]] + 2,… (6.5.114)

if zn > [[zn]]. Since the volume of the layer decreases with increasing distance yn, the
chance to find the correct layer earlier maximizes. Another advantage to have the
order of layers according to nondecreasing distance to x is that the search can be
safely terminated as soon as yn exceeds the distance to the best lattice point Gẑ has
found so far. The very first lattice point generated by the algorithm will be the Babai
lattice point. Since the ordering (6.5.113) or (6.5.114) does not depend on the bound
𝜌n, no initial guess about this bound is needed. The bound is updated each time the
record value is found. The first value of the bound is the distance from x to the Babai
lattice point.

6.5.4.5 Connection Between LAMBDA and LLL Methods The LLL algo-
rithm plays a significant role in different fields of discrete optimization and communi-
cation theory. It is used as a preconditioning step in integer programming algorithms
(Schrijver, 1986). In 1993, Teunissen published the LAMBDA method for solving
integer least-squares problems for GPS ambiguity resolution [see Teunissen (1993)
and Subsection 6.5.2]. At its first stage, the preconditioning unimodular transfor-
mation is constructed and applied to the covariance matrix. Historically, LAMBDA
appeared later than LLL, but theoretically LAMBDA is independent of LLL and
based on different statistical constructions. Overlaps and differences between the
decorrelation LAMBDA algorithm and LLL are pointed out in many papers (Lannes,
2013; Grafarend, 2000). Also, there are similarities between the integer search part
of LAMBDA and the Fincke-Pohst algorithm. Currently these approaches are devel-
oping simultaneously. All developments made on the LLL algorithm can be applied
to the LAMBDA algorithm and vice versa.

The statistical proof of optimality of LAMBDA was published in Teunissen
(1999). A class of integer estimators is introduced that includes integer rounding,
integer bootstrapping; see Blewitt (1989) and Dong and Bock (1989) for details,
and the integer least squares. The integer least-squares estimator was proven to
be best in the sense of maximizing the probability of correct integer estimation.
For the case of ambiguity resolution, this implies that the success rate of any other
estimator of integer carrier phase ambiguities will be smaller than, or at most equal
to, the ambiguity resolution rate of the integer least-squares estimator. This useful
conclusion can be extended on any of the algorithms considered in this subsection
but excluding the Babai algorithm, since it provides a fast but approximate solution.
It would be interesting to extend the analysis of Teunissen (1999) to the case of
the Babai algorithm to see how its success rate relates to the success rate of the
approximate algorithms.

With these remarks on the connection between LAMBDA and other integer least-
squares estimators, we conclude this subsection. These existing connections may
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serve as an illustration of the fact that similarly effective results can be obtained by sci-
entists solving different technology problems having similar mathematical meaning.

It should be noted that currently there is no best algorithm showing superior per-
formance among all others in terms of the success rate and the computational cost
simultaneously, including computational cost of the preconditioning and search. This
leaves a huge opportunity for the creativity of engineers working on efficient geodetic
software.

6.6 NETWORK-SUPPORTED POSITIONING

Positioning is always supported in one way or another by a network of reference sta-
tions. This is even the case for PPP (precise point positioning), where the “network
in the background” is the global IGS network whose observations are used to com-
pute the precise ephemeris and the satellite clock error. We discuss three types of
positioning techniques. The first one is the PPP model, which uses lumped parame-
ters that combine the ambiguities and the receiver and satellite hardware delays and
clock errors that are part of the receiver code bias and satellite code bias. The second
technique is CORS-based relative positioning, which uses double-difference observa-
tions to eliminate clock errors and hardware delay terms. RTK (real-time kinematic)
is part of this solution group and applies the classical differential correction to the
user observations. RTK, with focus on across-receiver differencing, is discussed in
Chapter 7. The third technique is PPP-RTK.We reparameterize the unknowns to elim-
inate the singularities of the system, compute bias parameters instead of the classical
differential corrections, use these to correct the user observations, and fix reparame-
terized undifferenced ambiguities. Several PPP-RTK models will be discussed. The
first model is for single-frequency observation. The development starts with the basic
carrier phase and pseudorange equations and formulates a network solution to com-
pute the biases. All terms are carried through the development up to the user solution,
in order to better understand how various terms are combined as part of the reparame-
terization. Next, the dual-frequency model is given for network solutions, as well as a
line-by-line approach. The last model discussed used dual-frequency across-satellite
differences. All dual-frequency PPP-RTK approaches are equivalent in the sense they
use the same observational content, although performance differences may occur in
practice due to implementation considerations.

6.6.1 PPP

In traditional network-supported positioning which includes traditional RTK, the car-
rier phase and code (pseudorange) differential corrections of a base station are trans-
mitted to the user. At the user station the observations and differential corrections are
transformed into equivalent double differences or across-station single differences
in order to carry out the ambiguity-fixed position determination. This technique is
discussed in Section 6.6.2. In PPP or PPP-RTK the focus is on transmitting satellite
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phase and code biases, which consist of clock errors and hardware delays. These
biases become estimable after all linear- dependent parameters have been eliminated
through reparameterization. In the case of PPP, reparameterization consists of lump-
ing together the integer ambiguities and receiver and satellite hardware delays and
estimating the new parameter as a real number, whereas in PPP-RTK (Section 6.2.3)
the ambiguities are isolated and thus become accessible to integer constraining.

The estimation of the tropospheric delay is briefly addressed in the PPP section,
with the understanding that such an estimation also applies to PPP-RTK.

As to PPP, Zumberge et al. (1998a) introduced precise point positioning utilizing
the ionospheric-free carrier phase and pseudorange functions. The ionospheric-free
carrier phase equation requires a minor modification to deal with the clock errors,
the hardware delays, and the ambiguities. Equation (6.1.39) can be written and mod-
ified as

𝛷IF12pk = 𝜌
p
k + (cdtk − dk,𝛷IF12) −

(
cdtp − Dp

𝛷IF12

)
+ 𝜆𝛷IF12N

p
k, 𝛷IF12 + Tp

k

+Mp
k, 𝛷IF12 + 𝜀𝛷IF12

= 𝜌pk + (cdtk − dk,PIF12) −
(
cdtp − Dp

PIF12

)
+ Rp

k + Tp
k +Mp

k, 𝛷IF12 + 𝜀𝛷IF12

= 𝜌pk + 𝜉k,PIF12 − 𝜉
p
PIF12 + Rp

k + Tp
k +Mp

k, 𝛷IF12 + 𝜀𝛷IF12 (6.6.1)

where dk,𝛷IF12 and Dp
𝛷IF12 are the respective receiver and satellite L1 and L2 hard-

ware phase delays of the function 𝛷IF12. These delays follow from applying the
ionospheric-free function to the hardware delay terms listed in (6.1.33), in particular
the receiver delay is a function of (dk,1,𝛷, dk,2,𝛷) and the satellite delay is a function of(
Dp
1,𝛷,D

p
2,𝛷

)
. The terms 𝜆𝛷IF12 and N

p
k, 𝛷IF12 are the ionospheric-free wavelength and

ambiguity, Tp
k is the tropospheric delay, Mp

k, 𝛷IF12 is the multipath, and 𝜀𝛷IF12 is the
random measurement noise of the ionospheric-free function. In line two, we add and
subtract the receiver and satellite ionospheric-free hardware code delays dk,PIF12 and
Dp
PIF12 of the PIF12 function. These delays follow from applying the ionospheric-free

function to the hardware delay terms listed in (6.1.29), in particular the receiver delay
is a function of (dk,1,P, dk,2,P) and the satellite delay is a function of

(
Dp
1,P,D

p
2,P

)
. The

combined terms are

Rp
k = 𝜆𝛷IF12N

p
k,𝛷IF12 +

(
dk,PIF12 − Dp

PIF12

)
−

(
dk,𝛷IF12 − Dp

𝛷IF12

)
𝜉k,PIF12 = cdtk − dk,PIF12

𝜉
p
PIF12 = cdtp − Dp

PIF12 (6.6.2)

The lumped parameters Rp
k bundle the ambiguity parameters and the receiver and

satellite hardware code and phase delays. In traditional PPP, the hardware delay terms
are considered constant, even for long observation sessions. The lumped parameters,
one per satellite and station pair, are therefore also constants unless there are cycle
slips. The new parameters 𝜉k,PIF12 and 𝜉

p
PIF12 are called the ionospheric-free receiver

and satellite code biases. They consist of the respective clock errors and hardware
code delays of thePIF12 function. These delays are functions of the original hardware
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code delays dk,1,P, dk,2,P, D
p
1,P and Dp

2,P listed in (6.1.29), as mentioned above. Simi-
larly, we have an ionospheric-free receiver phase bias 𝜉k,𝛷IF12 = cdtk − dk,𝛷IF12 and
a satellite phase bias 𝜉p

𝛷IF12 = cdtp − Dp
𝛷IF12. These biases do not explicitly appear

in (6.6.1) because of the introduction of the lumping parameter.
The ionospheric-free pseudorange observations (6.1.38) are the second

type of observation in the PPP model. Using the parameterization in terms of
ionospheric-free receiver and satellite code biases, this equation becomes

PIF12pk = 𝜌
p
k + 𝜉k,PIF12 − 𝜉

p
PIF12 + Tp

k +Mp
k,PIF12 + 𝜀PIF12 (6.6.3)

Equations (6.6.1) and (6.6.3) comprise the PPP model. We first discuss the network
solution and the user solution, retaining all terms of the equations, and then provide
brief remarks on how to deal with the tropospheric and ionospheric terms.

Reparameterization and Network Solution: The network consists of R
known stations that observe S satellites in common view. Even a first glance at
equations (6.6.1) and (6.6.3) reveals the linear dependency of the code biases. Any
change in the receiver code bias can be compensated by a respective change in the
satellite code biases. This linear dependency is conveniently eliminated by selecting
a base station and estimating the code bias parameters relative to the receiver code
bias of that station. This is another type of reparameterization.

The topocentric satellite range term 𝜌
p
k should be moved to the left side of the

equations since the network receivers are located at known stations, and station
coordinates are consequently not estimated. Consider the following formulation and
solution of a small network consisting of three stations that observe three satellites
(omitting the multipath terms):

⎡⎢⎢⎢⎢⎢⎢⎣

𝜱IF𝟏𝟐1 − 𝝆1
PIF𝟏𝟐1 − 𝝆1
𝜱IF𝟏𝟐2 − 𝝆2
PIF𝟏𝟐2 − 𝝆2
𝜱IF𝟏𝟐3 − 𝝆3
PIF𝟏𝟐3 − 𝝆3

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

I I
I 0

0 0
0 0

0 0
0 0

I 0
I 0

I I
0 I

0 0
0 0

I 0
I 0

0 0
0 0

I I
0 I

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⌢
𝜉PIF12⌢
R1⌢
R2⌢

𝜉2,PIF12⌢
R3⌢

𝜉3,PIF12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.6.4)

𝜱IF𝟏𝟐k − 𝝆k =
⎡⎢⎢⎢⎣
𝛷IF121k − 𝜌

1
k

𝛷IF122k − 𝜌
2
k

𝛷IF123k − 𝜌
3
k

⎤⎥⎥⎥⎦ PIF𝟏𝟐k − 𝝆k =
⎡⎢⎢⎢⎣
PIF121k − 𝜌

1
k

PIF122k − 𝜌
2
k

PIF123k − 𝜌
3
k

⎤⎥⎥⎥⎦ (6.6.5)

⌢
𝝃PIF12 =

⎡⎢⎢⎢⎣
⌢
𝜉
1
PIF12⌢
𝜉
2
PIF12⌢
𝜉
3
PIF12

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
−𝜉1PIF12 + 𝜉1,PIF12 + T1

1

−𝜉2PIF12 + 𝜉1,PIF12 + T2
1

−𝜉3PIF12 + 𝜉1,PIF12 + T3
1

⎤⎥⎥⎦ (6.6.6)

⌢
R1 =

⎡⎢⎢⎢⎣
⌢
R

1
1⌢

R
2
1⌢

R
3
1

⎤⎥⎥⎥⎦
⌢
R2 =

⎡⎢⎢⎢⎣
⌢
R

1
2⌢

R
2
2⌢

R
3
2

⎤⎥⎥⎥⎦
⌢
R3 =

⎡⎢⎢⎢⎣
⌢
R

1
3⌢

R
2
3⌢

R
3
3

⎤⎥⎥⎥⎦ (6.6.7)
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⌢
𝝃2,PIF12 =

⎡⎢⎢⎣
𝜉2,PIF12 − 𝜉1,PIF12 − T1

12

𝜉2,PIF12 − 𝜉1,PIF12 − T2
12

𝜉2,PIF12 − 𝜉1,PIF12 − T3
12

⎤⎥⎥⎦
⌢
𝝃3,PIF12 =

⎡⎢⎢⎣
𝜉3,PIF12 − 𝜉1,PIF12 − T1

13

𝜉3,PIF12 − 𝜉1,PIF12 − T2
13

𝜉3,PIF12 − 𝜉1,PIF12 − T3
13

⎤⎥⎥⎦
(6.6.8)

It can readily be verified by direct substitution that (6.6.4) to (6.6.8) indeed represent
the system of equations (6.6.1) and (6.6.3) correctly (ignoring the multipath terms).
The reparameterizations resulted in estimable parameters that have been denoted by
an overhead arc. Station 1 has been selected as the base station in this example. As a
consequence of this arbitrary selection, the reparameterized ionospheric-free satellite
code biases

⌢
𝜉
p
PIF12, p = 1, · · · , S, are relative to the ionospheric-free receiver code bias

𝜉1,PIF12, of the base station, i.e., the receiver delay term in (6.6.6) refers to station 1.
The reparameterized ionospheric-free receiver code biases

⌢
𝝃2,PIF12, and

⌢
𝝃3,PIF12, are

also relative to the receiver code bias of the base station. The latter two estimable
biases contain cross-receiver tropospheric delay with respect to the base station. The
lumped parameters

⌢
R

p
k are defined in (6.6.2).

This example can readily be generalized for a larger network. As the number of
satellites increases, so does the number of components in vectors (6.6.5) to (6.6.8).
Each additional station adds two rows to the matrix in (6.6.4). These rows are iden-
tical to the bottom two rows, but the submatrix in the lower right corner shifts to the
right accordingly. ForR receivers and S satellites the system consists of 2RS equations
and as many parameters; the matrix has full rank. These are S reparameterized satel-
lite code biases (6.6.6), RS lumped parameters (6.6.7), and (R − 1)S reparameterized
receiver code biases (6.6.8).

The estimated reparameterized ionospheric-free satellite code biases
⌢
𝜉
p
PIF12 are

transmitted to the user at the unknown station u.
User Solution: The user solution also begins with equations (6.6.1) and (6.6.3).

We subtract the received bias corrections (6.6.8) and then balance the equations, rec-
ognizing that the received corrections includes a tropospheric term, giving

𝛷IF12pu −
⌢
𝜉
p
PIF12 = 𝜌

p
u +

⌢
𝜉u,PIF12 + Rp

u + Tp
u1 +M𝛷IF12 + 𝜀𝛷IF12

PIF12pu −
⌢
𝜉
p
PIF12 = 𝜌

p
u +

⌢
𝜉u,PIF12 + Tp

u1 +MPIF12 + 𝜀PIF12

}
(6.6.9)

⌢
𝜉u,PIF12 = 𝜉u,PIF12 − 𝜉1,PIF12 (6.6.10)

The user receiver code bias estimate
⌢
𝜉u,PIF12 is relative to the base station code

bias. The solution presented contains the unaltered tropospheric term of the original
equations. Clearly the multipath is omnipresent in both the estimated code biases and
in the user solution. In order to simply the expressions, the multipath terms will only
be listed in the user solution. The transmitted satellite bias corrections depend on the
tropospheric delay at the base station, as can be seen from (6.6.6). This tropospheric
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delay appears also on the right side of (6.6.9). Note that in the standard subscript
notation the double subscript implies differencing, thus Tp

ul = Tp
u − Tp

1 .
Tropospheric Considerations: The tropospheric delay typically varies with tem-

perature, pressure, and humidity. If the tropospheric model corrections with sufficient
accuracy are available at the network stations, a network solution of two stations
observing three satellites becomes

⎡⎢⎢⎢⎣
𝜱IF𝟏𝟐1 − 𝝆1 − T1
PIF𝟏𝟐1 − 𝝆1 − T1
𝜱IF𝟏𝟐2 − 𝝆2 − T2
PIF𝟏𝟐2 − 𝝆2 − T2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
I I
I 0

0 0
0 0

I 0
I 0

b I
b 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

⌢
𝝃PIF12⌢
R1⌢
R2⌢

𝝃2,PIF12

⎤⎥⎥⎥⎥⎦
Tk =

⎡⎢⎢⎢⎣
T1
k

T2
k

T3
k

⎤⎥⎥⎥⎦ (6.6.11)

bT =
[
1 1 1

]
(6.6.12)

⌢
𝝃PIF12 =

⎡⎢⎢⎢⎣
⌢
𝜉
1
PIF12⌢
𝜉
2
PIF12⌢
𝜉
3
PIF12

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
−𝜉1PIF12 + 𝜉1,PIF12
−𝜉2PIF12 + 𝜉1,PIF12
−𝜉3PIF12 + 𝜉1,PIF12

⎤⎥⎥⎦
⌢
R

T
k =

⎡⎢⎢⎢⎣
⌢
R

1
k⌢

R
2
k⌢

R
3
k

⎤⎥⎥⎥⎦ (6.6.13)

⌢
𝜉2,PIF12 = 𝜉2,PIF12 − 𝜉1,PIF12 (6.6.14)

The absence of the tropospheric terms in the estimated code biases causes the dimen-
sion of

⌢
𝜉2,PIF12 to reduce to one. Consequently, the code bias estimates at the nonbase

stations do not contain any terms that depend on the satellites. There are S + RS +
(R − 1) parameters, i.e., S satellite code biases, RS lumped parameters, and R − 1
nonbase station receiver code biases. There are now more equations than parameters.
The user solution for this case is

𝛷IF12pu −
⌢
𝜉
p
PIF12 = 𝜌

p
u +

⌢
𝜉u,PIF12 + Rp

u + Tp
u +M𝛷IF12 + 𝜀𝛷IF12

PIF12pu −
⌢
𝜉
p
PIF12 = 𝜌

p
u +

⌢
𝜉u,PIF12 + Tp

u +MPIF12 + 𝜀PIF12

}
(6.6.15)

This user solution differs from the previous one in that it contains only the tropo-
spheric term for the user station.

In practical applications the tropospheric delay is estimated or modeled at the net-
work stations and the user station. The tropospheric slant total delay Tp

k is typically
decomposed into the hydrostatic and wet delay components. Following (8.2.18), we
write

Tp
k = ZHDk mh(𝜗

p) + ZWDkmwv(𝜗
p)

= Tp
k,0 + dTk mwv(𝜗

p) (6.6.16)

Examples for the zenith hydrostatic delay (ZHD) and the zenith wet delay (ZWD)
models are given in (8.2.14) and (8.2.15). These models use meteorological data as
input. The mapping functions mh and mwv follow from (8.2.19), with 𝜗 being the
zenith angle of the satellite. The term Tp

k,0 represents an approximation of the slant
total tropospheric delay as computed by temperature, pressure, and relative humidity
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observations using the ZHD and ZWDmodels, and dTk is the unknown vertical tropo-
spheric correction at the station. The latter is multiplied by the wet mapping function,
assuming that the tropospheric correction becomes necessary because of inaccurate
knowledge of the wet delay. As to the mapping function, one can use the well-known
Niell mapping function discussed in Section 8.2.2 or other functions developed more
recently.

In order to incorporate tropospheric estimation, the system (6.6.4) is expanded to
include the new parameters dTk. The mathematical model for the network now is

⎡⎢⎢⎢⎣
𝜱IF𝟏𝟐1 − 𝝆1 − T1,0
PIF𝟏𝟐1 − 𝝆1 − T1,0

𝜱IF𝟏𝟐2 − 𝝆2 − T2,0
PIF𝟏𝟐2 − 𝝆2 − T2,0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
I I m1
I 0 m1

0 0 0
0 0 0

I 0 0
I 0 0

I m2 b
0 m2 b

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⌢
𝜉PIF12⌢
R1
dT1⌢
R2
dT2⌢
𝜉2,PIF12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.6.17)

mk =
⎡⎢⎢⎣
mwv

(
𝜗1k

)
mwv

(
𝜗2k

)
mwv

(
𝜗3k

)⎤⎥⎥⎦ (6.6.18)

The observations must be corrected by the model value Tp
k,0. The subscript zero is

borrowed from adjustment notation and means approximate value, i.e., point of lin-
earization. The matrix needs extra columns to accommodate the new tropospheric
parameters. In addition to these new parameters, the estimable parameters (6.6.13)
and (6.6.14) apply. There are S + RS + R + R − 1 parameters, i.e., S satellite code
biases, RS lumped parameters, R tropospheric parameters, and R − 1 nonbase station
receiver code biases. The user solution is

𝛷IF12pu −
⌢
𝜉
p
PIF12 − Tp

u,0 = 𝜌
p
u +

⌢
𝜉u,PIF12 + Rp

u + dTumwv

(
𝜗
p
u

)
+M𝛷IF12 + 𝜀𝛷IF12

PIF12pu −
⌢
𝜉
p
PIF12 − Tp

u,0 = 𝜌
p
u +

⌢
𝜉u,PIF12 + dTumwv

(
𝜗
p
u

)
+MPIF12 + 𝜀PIF12

}
(6.6.19)

There are, of course, more refined ways of modeling and estimating the tropospheric
delays at the network and at the user, in particular when observing over a longer
period of time. This more elaborate modeling is not discussed here.

Let us note that some linear dependencies were eliminated by parameterizing all
code bias parameters relative to the base station receiver code bias. Since this bias
term includes the receiver clock, it varies accordingly. Also, the corrections (6.6.8)
include the across-receiver tropospheric difference which adds additional variability.
If the tropospheric corrections are estimated at the network, then the biases do not
depend on the troposphere. See equation (6.6.13).

Let us note that, apart from using carrier phase observations, the formulation pre-
sented above includes code observations on L1 and code observations on L2. Since
the code hardware delays depend on the type of codes, i.e. the P1Y and C/A-code
delays differ, the satellite code bias 𝜉pPIF12 estimated with (6.6.1) and (6.6.3) also
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depends on the choice of the codes. The IGS estimates its “satellite clock correc-
tion”, which corresponds to 𝜉pPIF12, based in P1Y and P2Y-code observations. If one
wishes to remain compatible with the “IGS clock” but uses other code observations,
one needs to correct the pseudoranges by what has traditionally been called the differ-
ential code bias (DCB). For example, if one observes the C/A-code and the P2Y code,
one needs the correction DCBP1Y–CIA, which is the difference of the respective hard-
ware code delays. These can then be transformed to the respective ionospheric-free
code delays to correct PIF12. In practical applications one needs to be aware that not
all receivers observe the same codes. Also, since GPSmodernization and other GNSS
systems provide new frequencies and codes, such compatibility issues need special
attention. Refer to Section 6.2.2.2 for a general approach and notation in regards to
intersignal corrections.

6.6.2 CORS

Continuously operating reference stations (CORS) transmit their carrier phase and
pseudorange observations in real time to a processing center. The center computes
corrections, such as ionospheric and tropospheric corrections and possibly orbital
corrections, and transmits these and possibly the original observations of a master
reference station to users. The user combines this information with observations col-
lected by the user receiver to determine its position. This conceptual model applies
to one CORS station or a network of such stations and to one user or several users.

6.6.2.1 Differential Phase and Pseudorange Corrections Let us look at
a simple way for computing the differential corrections to the observations. For every
satellite p observed at station k, we determine an integer number Kp

k :

Kp
k =

[
Pp
k

(
1
)
−𝛷p

k (1)

𝜆

]
=

[1
𝜆

(
2Ipk,P − 𝜆N

p
k + 𝛿

p
k,P − 𝛿

p
k,𝛷

)]
(6.6.20)

using the observed pseudoranges and carrier phases at some initial epoch. The sym-
bol [⋅] denotes rounding. The modified carrier phase 𝛩p

k (t) at subsequent epochs is

𝛩
p
k (t) = 𝛷

p
k (t) + 𝜆K

p
k (6.6.21)

The numerical value of the carrier phase range is close to that of the pseudorange,
differing primarily because of the ionosphere, as can be seen from the right side of
(6.6.20); Kp

k is not equal to the ambiguity. The discrepancy of the carrier phase range
at epoch t is

�
p
k = 𝛩

p
k − 𝜌

p
k =

(
𝛷

p
k + 𝜆K

p
k

)
− 𝜌pk (6.6.22)

where 𝜌pk is the topocentric satellite distance from the known station. The mean dis-
crepancy 𝜇k of all satellites observed at the site and epoch t is

𝜇k(t) =
1
S

S∑
p=1

�
p
k(t) (6.6.23)
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where S denotes the number of satellites. This mean discrepancy is driven primarily
by the receiver clock error. The carrier phase correction at epoch t is

Δ𝛷p
k = 𝛩

p
k − 𝜌

p
k =

(
𝛷

p
k + 𝜆K

p
k

)
− 𝜌pk − 𝜇k (6.6.24)

The second part of this equation follows by substituting (6.6.21) for the carrier phase
range. The phase correction (6.6.24) is transmitted to the user receiver u.

The user’s carrier phase𝛷p
u is corrected by subtracting the carrier phase correction

that was computed at receiver k:

𝛷
p
u = 𝛷

p
u − Δ𝛷p

k (6.6.25)

Let us recall the across-receiver phase difference

𝛷
p
u −𝛷

p
k = 𝜌

p
uk + 𝜆N

p
uk + cdtuk + Ipuk,𝛷 + Tp

uk + 𝛿
p
uk,𝛷 (6.6.26)

Substituting (6.6.24) in (6.6.25) gives the expression for the corrected carrier phase
at receiver u,

𝛷
p
u = 𝜌

p
u + 𝜆

(
Np
uk − Kp

k

)
+ cdtuk + 𝜇k + Ipuk,𝛷 + Tp

uk + 𝛿
p
uk,𝛷 (6.6.27)

Differencing (6.6.27) between two satellites gives

𝛷
pq
u = 𝜌pqu + 𝜆

(
Npq
uk − Kpq

k

)
+ Ipquk,𝛷 + Tpq

uk +Mpq
uk,𝛷 + 𝜀pquk,𝛷 (6.6.28)

The position of station u can now be computed at site u using the corrected obser-
vation 𝛷

p
u to at least four satellites and forming three equations like (6.6.28). These

equations differ from the conventional double-difference following (6.6.26) by the
fact that the modified ambiguity

N
pq
uk = Npq

uk − Kpq
k (6.6.29)

is estimated instead of Npq
uk .

The telemetry load can be reduced if it is possible to increase the time between
transmissions of the carrier phase corrections. For example, if the change in the dis-
crepancy from one epoch to the next is smaller than the measurement accuracy at
the moving receiver, or if the variations in the discrepancy are too small to adversely
affect the required minimal accuracy for the moving receiver’s position, it is possi-
ble to average carrier phase corrections over time and transmit the averages. Also,
it might be sufficient to transmit the rate of correction 𝜕Δ𝛷∕𝜕t. If t0 denotes the
reference epoch, the user can interpolate the correctors over time as

Δ𝛷p
k (t) = Δ𝛷p

k (t0) +
𝜕Δ𝛷p

k

𝜕t
(t − t0) (6.6.30)
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One way to reduce the size and the slope of the discrepancy is to use the best avail-
able coordinates for the fixed receiver and a good satellite ephemeris. Clock errors
affect the discrepancies directly. Connecting a rubidium clock to the fixed receiver
can effectively control the variations of the receiver clock error. Prior to its termina-
tion, selective availability was the primary cause of satellite clock error and was a
determining factor that limited modeling like (6.6.30).

In the case of pseudorange corrections, we obtain similarly

�
p
k = 𝜌

p
k − Pp

k (6.6.31)

ΔPp
k = 𝜌

p
k − Pp

k − 𝜇k (6.6.32)

P
p
u(t) = Pp

u(t) + ΔPp
k(t) (6.6.33)

P
pq
u (t) = 𝜌pqu (t) + Ipquk,P + Tpq

uk +Mpq
uk,P + 𝜀

pq
uk,P (6.6.34)

The approach described here is applicable to carrier phases of any frequency and to
all codes. As seen from (6.6.22) to (6.6.24), the carrier phase and pseudorange correc-
tions contain the ionospheric and tropospheric terms. As suggested in the previous
section, the tropospheric delay could be estimated at the network, the ionosphere
effects could be eliminated by using dual-frequency observations, and in doing so
one would obtain less variability in the corrections. The receiver and satellite clock
errors have canceled as part of the implicit double differencing, as have the receiver
and satellite hardware delays.

6.6.2.2 RTK In real-time positioning (RTK), the users receive the differential
correction from one or several CORS stations (simply referred to as the reference
stations) and determine their positions relative to these stations, preferably with an
ambiguity-fixed solution. As mentioned above, for short baselines one neglects the
tropospheric, ionospheric, and orbital errors. In practical applications it is desirable
to extend the reach of RTK over longer baselines. Because of the high spatial correla-
tion of troposphere, ionosphere, and orbital errors, these errors exhibit to some extent
a function of distance between the receivers. Wübbena et al. (1996a) took advantage
of this dependency and suggested the use of reference station networks to extend the
reach of RTK.

There are two requirements at the heart of multiple reference station RTK. First,
the positions of the reference stations must be accurately known. This can be readily
accomplished using postprocessing and long observation times. The second require-
ment is that the across-receiver or double-difference integer ambiguities for baselines
between reference stations can be computed. It is then possible to compute tropo-
spheric and ionospheric corrections (and possibly orbital corrections) and transmit
them to the RTK user.

Let k denote the master reference station and m the other reference stations of
the network. Let the master reference station record its own observations and receive
observations from the other reference stations in real time. The processor at the mas-
ter reference station can then generate the corrections Tp

km and Ipkm,1,P at every epoch
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for all reference stations and all satellites. These corrections are used to predict the
respective corrections at a user location. Various models are in use or have been pro-
posed for computing these corrections and making them available to the user.

Wübbena et al. (1996a) proposed to parameterize the corrections in terms of coor-
dinates. One of the simplest location-dependent models is a plane

Tp
km(t) = ap1(t) + ap2(t)nm + ap3(t)em + ap4(t)um (6.6.35)

Ipkm,P(t) = bp1(t) + bp2(t)nm + bp3(t)em + bp4(t)um (6.6.36)

where the symbols nm , em, and um denote northing, easting, and up coordinates in
the geodetic horizon at the master reference station k. A set of coefficients api (t) and
bpi (t), also called the network coefficients, are estimated for every satellite p and net-
work station m as a function of time. Because of the high temporal correlation of
the troposphere and ionosphere, simple models in time are sufficient to reduce the
amount of data to be transmitted. The master reference station k transmits its own car-
rier phase observations and the network coefficients ai, bi, or alternatively the carrier
phase corrections (6.6.24), over the network. A rover u interpolates these correc-
tions for its approximate position and determines its precise location from the set of
double-difference observations. This modeling scheme (6.6.35) and (6.6.36) is also
referred to as the FKP (flächen korrektur parameter) technique.

Rather than transmitting network coefficients ai, bi, one might consider transmit-
ting corrections computed specifically for points on a grid at known locations within
the network. The user would interpolate the corrections for the rover’s approximate
location and apply them to the observations. Wanninger (1997) and Vollath et al.
(2000) suggest the use of virtual reference stations (VRS) to avoid changing existing
software that double differences the original observations directly. The VRS concept
requires that the rover transmit its approximate location to the master reference sta-
tion, which computes the corrections for the user approximate location. In addition,
the master reference station computes virtual observations for the approximate rover
location using its own observations and then corrects them for troposphere and iono-
sphere. The rover merely has to double difference its own observations with those
received from the master reference station. No additional tropospheric or ionospheric
corrections or interpolations are required at the rover because the effective virtual
baseline is very short, typically in the range of meters corresponding to the rover’s
initial determination of its own location from pseudoranges.

Euler et al. (2001) and Zebhauser et al. (2002) suggest transmitting the obser-
vation of the master reference station and the correction differences between pairs
of reference stations. The latter would be corrected for location, receiver clock, and
ambiguities. The approach is called MAC (master auxiliary concept).

The message formats for data exchange between the reference station, the
master station, and the user generally follow standardized formats set by the Radio
Technical Commission for Maritime Services (RTCM). This is a nonprofit scientific,
professional, and educational organization consisting of international member orga-
nizations that include manufacturers, marketing, service providers, and maritime
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user entities. Special committees address in-depth concerns in radionavigation.
The reports prepared by these committees are usually published as RTCM rec-
ommendations. The RTCM Special Committee 104 deals with global navigation
satellite systems.

As the network area increases, the tropospheric and ionospheric corrections and
the orbit corrections require amore elaborate parameterization and are typically trans-
mitted to the user via geostationary satellites. Such networks are called wide area
differential GPS (WADGPS) networks. Examples of such systems are WAAS (wide
area augmentation system) and EGNOS (European Geostationary Navigation Over-
lay Service). Amore complete listing of systems is found in Chapter 5. RTK solutions
are discussed in detail in Chapter 7.

6.6.3 PPP-RTK

The goal of PPP-RTK algorithmic development is to find estimable quantities for
undifferenced phase and pseudorange observations that allow the fixing of undiffer-
enced ambiguities to integers. In contrast to the PPP solution, the ambiguity param-
eters and the receiver and satellite hardware delay terms are not lumped together.
Examples of PPP-RTK implementations are reported in Ge et al. (2008) and Loyer
et al. (2012).

There are at least two equivalent approaches for finding estimable quantities. One
is reparameterization and the other is imposing minimal constraints. The advantage
of reparameterization is that all terms remain visible in the expression and thus might
make it easier to interpret the impact of any residual errors on the estimable quantities.

Three models are presented. The first model is the one-step single-frequency
solution in which observations from all stations are processed in one batch
solution, providing a single solution for the estimated parameters and a full
variance-covariance matrix. The second model deals with dual-frequency obser-
vations. A one-step solution is given and then a sequential solution in which
the wide-lane ambiguities are estimated first, followed by a model variation that
estimates the parameters and biases by baseline. Only the one-step solutions can
take advantage of the full variance-covariance matrix, while the others ignore some
correlations between parameters. The third model utilizes across-satellite differences
of dual-frequency observations. The network solution provides the PPP-RTK biases
to be transmitted to users.

6.6.3.1 Single-Frequency Solution The case of single-frequency carrier
phase and pseudorange equations (6.1.31) and (6.1.27) are

𝛷
p
k − 𝜌

p
k = 𝜉k,𝛷 − 𝜉p

𝛷
+ 𝜆Np

k + Tp
k − Ipk,p +Mp

k,𝛷 + 𝜀pk,𝛷

Pp
k − 𝜌

p
k = 𝜉k,P − 𝜉

p
P + Tp

k + Ipk,P +Mp
k,P + 𝜀

p
k,P

(6.6.37)

𝜉k,𝛷 = cdtk − dk,1,𝛷 𝜉k,P = cdtk − dk,1,P

𝜉
p
𝛷
= cdtp + Dp

1,𝛷 𝜉
p
P = cdtp + Dp

1,P

(6.6.38)
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The topocentric range term 𝜌
p
k has been moved to the left side of the equation since

the network station coordinates are assumed to be known. Other symbols denote the
receiver phase and code biases 𝜉k,𝛷 and 𝜉k,P, the satellite phase and code biases 𝜉p

𝛷
and 𝜉pP, the slant tropospheric delay Tp

k , the slant ionosphere Ipk,P, the wavelength
𝜆, the integer ambiguity Np

k , the multipath terms Mp
k,𝛷 and Mp

k,P, and 𝜀 denotes the
respective observational noise. We note that each 𝜉-term combines a clock error and
a hardware delay term. As to terminology, in Collins (2008) the these terms are
referred to as decoupled clock parameters, with 𝜉k,𝛷 and 𝜉p

𝛷
respectively called the

receiver and satellite “phase clocks”, and 𝜉k,P and 𝜉pP termed the receiver and satellite
“code clocks.”

Reparameterization and Network Solution: The system (6.6.37) is singular
because a number of linear dependencies exist between the various parame-
ters. Assuming R receivers observing S satellites, there are 2RS equations and
2R + 2S + 2RS + 2RS + RS unknowns, i.e., 2R receiver phase and code biases, 2S
satellite phase and code biases, 2RS tropospheric terms, 2RS ionospheric terms, and
RS ambiguities. Traditional double differencing removes linear dependencies by
introducing the base station and base satellite concept and differencing the observa-
tions to eliminate the receiver and satellite biases and creating double-differenced
ambiguities. Contrary to the popular double differencing, in PPP-RTK the origi-
nal observations are kept in undifferenced form and the linear dependencies are
eliminated by means of reparameterization (Teunissen et al., 2010). For the current
development, all terms are initially retained (except multipath). Eventually the
tropospheric delay terms can be omitted because the tropospheric delay will be
modeled or estimated at the network. The ionospheric delay terms will not be
present when using ionospheric-free dual-frequency carrier phase and pseudorange
functions.

Considering the carrier phase observation (6.6.37), we observe that an arbitrary
constant added to the satellite phase bias 𝜉p

𝛷
can be offset by adding the same con-

stant to each of the receiver phase biases 𝜉k,𝛷, keeping the observable𝛷
p
k unchanged.

Similarly, it further shows that any arbitrary constant change in either 𝜉k,𝛷 or 𝜉p
𝛷
can

be offset by a corresponding change in the ambiguity Np
k . The result of reparameter-

ization to eliminate linear dependencies is demonstrated by the following example
consisting of three stations observing three satellites:

⎡⎢⎢⎢⎣
𝜱
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1 − 𝝆

p
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𝜱
p
2 − 𝝆

p
2

𝜱
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p
3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
I 0 0 0 0
I
I

b 0
0 b

A 0
0 A

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
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𝝃𝛷⌢
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𝝃3,𝛷⌢
N2⌢
N3

⎤⎥⎥⎥⎥⎥⎥⎦
(6.6.39)

𝜱k − 𝝆k =
⎡⎢⎢⎣
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k
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k − 𝝆

3
k
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⎡⎢⎢⎣
0
1
0

0
0
1

⎤⎥⎥⎦ (6.6.40)
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⌢
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𝜉
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+𝜆N2
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1

+T1
1

+T2
1

+T3
1

−I11,P
−I21,P
−I31,P

⎤⎥⎥⎦ (6.6.41)

⌢
𝜉2,𝛷 =

[
𝜉2,𝛷 − 𝜉1,𝛷 + 𝜆N1

21+ T1
21− I121,P

]
⌢
𝜉3,𝛷 =

[
𝜉3,𝛷 − 𝜉1,𝛷 + 𝜆N1

31 + T1
31− I131,P

] (6.6.42)

⌢
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[ ⌢
N

2
2⌢

N
3
2

]
=

[
𝜆N21

21 + T21
21 − I2121

𝜆N31
21 + T31

21 − I3121

]
⌢
N3 =

[ ⌢
N

2
3⌢

N
3
3

]
=

[
𝜆N21

31 + T21
31 − I2131

𝜆N31
31 + T31

31 − I3131

] (6.6.43)

The correctness of the solution (6.6.41) to (6.6.43) can be verified by substituting
it into (6.6.39) and comparing the result to (6.6.37). Again, in accordance with the
traditional notation, the double subscripts or superscripts indicate a differencing oper-
ation. See equation (6.1.7) for a definition of the differencing operation. There are RS
observations and as many reparameterized unknowns, i.e., S satellite biases, R − 1
nonbase receiver phase biases, and (R − 1)(S − 1) ambiguities. Therefore, the matrix
in (6.6.39) has full rank and the system has a unique solution. The estimable quanti-
ties are identified by an overhead arc. The base station and base satellite are station 1
and satellite 1, respectively. Similar to the case of PPP, the phase bias estimates are
relative to the phase bias 𝜉1,𝛷 of the base station.

Let us consider the view of constraining parameters to eliminate linear depen-
dencies. We could impose the constraint 𝜉1,𝛷 = 0, delete the term 𝜉1,𝛷 from (6.6.41)
and (6.6.42), and call it definition of the clock datum at the base station. This step
eliminates one parameter. Second, we realize that (6.6.41) contains only base station
ambiguities. Imposing the constraints Np

1 = 0 establishes the ambiguity datum for
the base station and eliminates S parameters. This step allows us to remove the base
station ambiguities in (6.6.41) to (6.6.43). Third, we look at the nonbase station ambi-
guities contained in (6.6.42) and (6.6.43). For every nonbase station, we constrain its
ambiguities to the base satellite to zero, i.e., N1

l = 0, l = 2 · · ·R. For example, look-
ing at (6.6.43), we see the ambiguityN21

21 = N21
2 − N21

1 . The across-satellite difference
N21
1 is already zero because of constraints of the second step. The third step results in

N1
2 = 0, and thus N21

21 becomes N2
2 . One can continue in a similar fashion with non-

base station 3 and other nonbase stations. The third step establishes the ambiguity
datum for each nonbase station and eliminates R − 1 additional linear dependencies.
All three steps combined generate S + R minimal constraints. Considering there are
RS observations and S + R + RS original parameters, i.e., S satellite phase biases,
R receiver phase biases, and RS undifferenced ambiguities, imposing that many min-
imal constraints results in a zero degree of freedom solution, identically to what has
been obtained with the reparameterization approach.
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Imposing minimal constraints or reparameterization leads to the same set of
estimable quantities. The important thing is that in (6.6.43) there are eventually
only integers left. As already mentioned, at the network stations the tropospheric
delays will either be corrected by a model value or estimated. The tropospheric term
will not be present or appear as a separate term to be estimated. The ionospheric
delay term will also not be present when dual-frequency observations are used.
As a result of the reparameterization and the stipulations regarding tropospheric and
ionospheric delays, the ambiguities have been isolated as separate parameters and
can be estimated as integers. Yet another view is that of short baselines, for which
the double-differenced troposphere and ionosphere are negligible per definition.
This leaves only integers in (6.6.43). There is one ambiguity for each nonbase station
and nonbase satellite pair. Finally, the system (6.6.39) can readily be generalized to
include more satellites and stations.

The reparameterization of the pseudoranges in (6.6.37) requires only the elimina-
tion of the base receiver code bias 𝜉1,P. For the case of three receivers observing three
satellites and base station 1 and base satellite 1, we have

⎡⎢⎢⎢⎣
Pp
1 − 𝝆

p
1

Pp
2 − 𝝆

p
2

Pp
3 − 𝝆

p
3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
I 0 0
I I 0
I 0 I

⎤⎥⎥⎦
⎡⎢⎢⎣
⌢
𝝃P⌢
𝝃2,P⌢
𝝃3,P

⎤⎥⎥⎦ (6.6.44)

Pk − 𝝆k =
⎡⎢⎢⎣
P1
k − 𝜌

1
k

P2
k − 𝜌

2
k

P3
k − 𝜌

3
k

⎤⎥⎥⎦ (6.6.45)

⌢
𝝃P =

⎡⎢⎢⎢⎣
⌢
𝜉
1
P⌢
𝜉
2
P⌢
𝜉
3
P

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−
⌢
𝜉
1
P +

⌢
𝜉1,P + T1

1 + I11,P

−
⌢
𝜉
2
P +

⌢
𝜉1,P + T2

1 + I21,P

−
⌢
𝜉
3
P +

⌢
𝜉1,P + T3

1 + I31,P

⎤⎥⎥⎥⎥⎦
(6.6.46)

⌢
𝝃2,P =

⎡⎢⎢⎢⎣
𝜉2,P − 𝜉1,P + T1

21 + I121,P
𝜉2,P − 𝜉1,P + T2

21 + I221,P
𝜉2,P − 𝜉1,P + T3

21 + I321,P

⎤⎥⎥⎥⎦
⌢
𝝃3,P =

⎡⎢⎢⎢⎣
𝜉3,P − 𝜉1,P + T1

31 + I131,P
𝜉3,P − 𝜉1,P + T2

31 + I231,P
𝜉3,P − 𝜉1,P + T3

31 + I331,P

⎤⎥⎥⎥⎦ (6.6.47)

The combined network solution of the carrier phases (6.6.39) and pseudoranges
(6.6.44) provides S satellite phase bias estimates

⌢
𝜉
p
𝛷 and S satellite code biases⌢

𝜉
p
P, p = 1, · · · , S, which are transmitted to the user. The estimated ambiguities⌢

N
q
l , l = 2, · · · ,R, and q = 2, · · · , S may at first glance appear as a by-product in

PPP-RTK, but their resolution to integers is important to achieve maximal accuracy
for the satellite phase and code biases.

Instead of transmitting the full bias values, it is sufficient to only transmit the
fractional parts. Consider the following:

np1 =

[⌢
𝜉
p
𝛷

𝜆

]
⌢
𝜉
p
𝛷,FCB =

⌢
𝜉
p
𝛷

𝜆
− np1 (6.6.48)
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with p = 1, · · · , S. The symbol [•] denotes the rounding operation to the nearest inte-
ger and should not be confused with a matrix bracket, and the subscript FCB denotes
the fractional cycle bias. The symbol np1 denotes the integer number of wavelengths 𝜆
that go into the satellite phase bias

⌢
𝜉
p
𝛷. In case the tropospheric and ionospheric terms

are not present the bias simply consists of −𝜉p
𝛷
+ 𝜉1,𝛷 + 𝜆Np

1 . Therefore, more pre-
cisely and in tunewith subsequent sections, np1 is the integer number of wavelengths in
−𝜉p

𝛷
+ 𝜉1,𝛷 plusNp

1 .The second equation in (6.6.48) provides the computed fractional
satellite phase bias

⌢
𝜉
p
𝛷,FCB. This value is transmitted to the user.

For convenience, this fractional bias is parameterized in terms of Δnp, which is
the number of integer cycles in −𝜉p

𝛷
+ 𝜉1,𝛷:

np1 = Δnp + Np
1 (6.6.49)

Multiplying
⌢
𝜉
p
𝛷,FCB in (6.6.48) by 𝜆, substituting (6.6.41) for the satellite phase

bias
⌢
𝜉
p
𝛷 and then substituting (6.6.49), the desired form for the fractional cycle bias

becomes
𝜆
⌢
𝜉
p
𝛷,FCB = −𝜉p

𝛷
+ 𝜉1,𝛷 − 𝜆Δnp + Tp

1 − Ip1,P (6.6.50)

This equation expresses the computed fractional satellite phase bias as a function of
satellite and base station phase biases and an unknown integer Δnp.

User Solution: The user beginswith the phase and pseudorange equations (6.6.37).
Subtracting the fractional cycle bias of the base satellite from the observation gives

𝛷1
u − 𝜆

⌢
𝜉
1
𝛷,FCB = 𝜌1u + 𝜉u,𝛷 − 𝜉1,𝛷 + 𝜆

(
N1
u + Δn11

)
+ T1

u1 − I1u1,P + 𝜀𝛷 (6.6.51)

The reparameterized receiver phase bias at the user station,
⌢
𝜉u,𝛷, is defined as

⌢
𝜉u,𝛷 = 𝜉u,𝛷 − 𝜉1,𝛷 + 𝜆

(
N1
u + Δn1

)
(6.6.52)

This lumped parameter contains the receiver phase difference of station u and base
station, the unknown ambiguity of the base satellite, and the unknown number of
integer wavelengths defined in (6.6.49). The equation for a nonbase satellite, q =
2, · · · , S, is

𝛷
q
u − 𝜆

⌢
𝜉
q
𝛷,FCB = 𝜌qu +

⌢
𝜉u,𝛷 + 𝜆

(
Nq1
u + Δnq1

)
+ Tq

u1 − Iqu1,P + 𝜀𝛷 (6.6.53)

The expression has been algebraically rearranged such that the estimable receiver
phase parameter is the same as in (6.6.52). In the process of this rearrangement, the
ambiguity became an across-satellite ambiguity. The lumped integer

⌢
N

q
u = Nq1

u + Δnq1 (6.6.54)

becomes the estimable ambiguity for station u and satellite q. The corrected pseudo-
range follows from (6.6.37) by subtracting transmitted code bias (6.6.46)

Pp
u −

⌢
𝜉
p
P = 𝜌pu + (𝜉u,P − 𝜉1,P) + Tp

u1 + Ipu1,P + 𝜀P (6.6.55)
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The code phase bias difference becomes the new estimable code bias at station u

⌢
𝜉u,P = 𝜉u,P − 𝜉1,P (6.6.56)

Equations (6.6.51), (6.6.53), and (6.6.56) comprise the complete set for the user solu-
tion. In summary, they are

𝛷1
u − 𝜆

⌢
𝜉
1
𝛷,FCB = 𝜌1u +

⌢
𝜉u,𝛷 + T1

u1 − I1u1,P +M𝛷 + 𝜀𝛷

𝛷
q
u − 𝜆

⌢
𝜉
q
𝛷,FCB = 𝜌qu +

⌢
𝜉u,𝛷 + 𝜆

⌢
N

q
u + Tq

u1 − Iqu1,P +M𝛷 + 𝜀𝛷

Pp
u −

⌢
𝜉
p
P = 𝜌pu +

⌢
𝜉u,P + Tp

u1 + Ipu1,P +Mp + 𝜀P

⎫⎪⎬⎪⎭ (6.6.57)

The superscript q runs from 2 to S and p runs from 1 to S. There are a total of 2S
observation and 3 + 2 + (S − 1) parameters; they are the three baseline components,
the receiver phase bias and receiver code bias terms, and the S − 1 ambiguities.

In the solution (6.6.57) only the nonbase satellite phase equation contains an ambi-
guity parameter; all phase equations contain the same receiver phase bias parameter.
Keeping these important characteristics in mind, it is clear that the user can select
the base satellite independently of which base satellite might have been used in the
network solution. Therefore, no information about the identification of the network
base satellite needs to be transmitted to the user. The user is free to select any satel-
lite as the base satellite. With tropospheric delays modeled at the network, the user
equation will only contain Tq

u . Similar handling could be argued for the ionosphere;
however, the dual-frequency solutions discussed belowwill eliminate the ionospheric
term anyway.

Equation (6.6.57) represents the essence of PPP-RTK. The satellite phase and code
biases are generated by a network of stations at known locations and transmitted to
the user. In the user solution these biases are treated as known quantities and applied
to the observations. The network could in principle consist of just a single station.
However, with more network stations, the strength of the solution increases by virtue
of fixing the ambiguities to integers since a full variance-covariance matrix becomes
available. The estimated satellite phase and code biases depend on the base station
receiver clock. Unless the base station is equipped with an atomic clock, epoch-wise
estimation is required and one cannot readily take advantage of the long-term stability
of the satellite clocks and reduce the transmission load for the phase and code biases.

6.6.3.2 Dual-Frequency Solutions All dual-frequency solutions make use of
the Hatch-Melbourne-Wübbena (HMW) function for computing the wide-lane ambi-
guity. Furthermore, the ionospheric-free functions are used in order to eliminate the
first-order ionospheric delays. The tropospheric delays are assumed to be modeled or
estimated using a mapping function that depends on the satellite elevation angle, and
therefore are not relevant to linear independence considerations for parameters. The
tropospheric delay and multipath terms will be omitted below. The one-step solution
given resolves the integer ambiguities as part of a network solution, and the satel-
lite biases and HMW satellite hardware delays are computed for transmission to the
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user. The line-by-line method resolves the ambiguities through simple rounding of
averaged observation from a receiver-satellite pair. The fractional satellite biases and
HMW satellite hardware delays are computed and transmitted. In all cases we assume
that the tropospheric delays at the network station have been corrected using a tropo-
spheric model. An initial comparison of various techniques to fix integers in precise
point positioning can be found in Geng et al. (2010).

One-Step Network Solution: Collins (2008) proposed a one-step solution using
the dual-frequency ionospheric-free phase function, the HMW function, and the
ionospheric-free pseudorange function. Although these functions are correlated
since the HMW function depends on carrier phase and pseudorange observations, he
showed that the correlation is small and suggested that it be neglected. The respective
model equations are (6.1.39), (6.1.48), and (6.1.38) and listed for easy reference as:

𝛷IF12pk = 𝜌
p
k + 𝜉k,𝛷IF12 − 𝜉

p
𝛷IF12 + 𝜆𝛷IF12N

p
k,𝛷IF12 + Tp

k +Mp
k,𝛷IF12 + 𝜀𝛷IF12

HMW12pk = −dk,HMW12 + Dp
HMW12 + 𝜆12N

p
k,12 +Mp

k,HMW12 + 𝜀HMW12

PIF12pk = 𝜌
p
k + 𝜉k,PIF12 − 𝜉

p
PIF12 + Tp

k +Mp
k,HMW12 + 𝜀PIF12

⎫⎪⎬⎪⎭
(6.6.58)

The ionospheric-free receiver phase biases 𝜉k,𝛷IF12 and satellite phase biases 𝜉p
𝛷IF12

contain the receiver and satellite clock errors and receiver and the satellite hardware
delays obtained from (6.1.39) by lumping the respective clock and hardware terms
contained in 𝛿R2, or by applying the ionospheric-free function to the phase function
of (6.6.38). The product of ionospheric-free wavelength and ambiguity is according
to (6.1.39),

𝜆𝛷IF12N
p
k,𝛷IF12 = c

f1 − f2
f 21 − f 22

Np
k,1 + c

f2
f 21 − f 22

Np
k,12 (6.6.59)

where c is the velocity of light. In the case of GPS, the integer Np
k,1 is the L1 ambi-

guity and Np
k,12 = Np

k,1 − Np
k,2 is the wide-lane ambiguity. Using the GPS frequencies

f1 = 154 f0 , f2 = 120f0, and f0 = 10.23 MHz, the scaled ionospheric-free ambiguity
becomes numerically

𝜆𝛷IF12N
p
k,𝛷IF12 =

2cf0
f 21 − f 22

(
17Np

k,1 + 60Np
k,12

)
= 0.107Np

k,1 + 0.378Np
k,12 (6.6.60)

For other frequencies or satellite systems, the numerical values in (6.6.60) change
accordingly. We further note that the HMW function does not depend on the receiver
and satellite clock errors and the tropospheric delay. The terms dk,HMW12 and
Dp
HMW12 are the receiver and satellite hardware delays of the HMW12 function. The

ionospheric-free receiver code biases 𝜉k,PIF12 and satellite biases 𝜉pPIF12 contain the
receiver and satellite clock errors and respective hardware code delays.

For the network solution the linear dependencies in the mathematical model
(6.6.58) are removed by reparameterization, as was done in the previous section.
In fact the solution steps applied for the single-frequency case to achieve the
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reparameterization also apply to this dual-frequency case. The example presented
again includes three satellites and two stations. The extension to more network
stations observing more common satellites can readily be implemented. As was the
case above, station 1 is the base station and satellite 1 is the base satellite. With these
specifications the reparameterized solution can be written as

⎡⎢⎢⎢⎣
𝜱IF𝟏𝟐1−𝝆1
HMW𝟏𝟐1

𝜱IF𝟏𝟐2 −𝝆2
HMW𝟏𝟐2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
I 0
0 I

0 0 0
0 0 0

I 0
0 I

b 0 C
0 b D

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

⌢
𝝃𝛷IF12⌢
DHMW12⌢
𝜉2,𝛷 IF12⌢
d
p
HMW12⌢
N

⎤⎥⎥⎥⎥⎥⎥⎦
(6.6.61)

𝜱IF𝟏𝟐k − 𝝆k =
⎡⎢⎢⎢⎣
𝛷IF121k − 𝜌

1
k

𝛷IF122k − 𝜌
2
k

𝛷IF123k − 𝜌
3
k

⎤⎥⎥⎥⎦ HMW𝟏𝟐k =
⎡⎢⎢⎣
HMW121k
HMW122k
HMW123k

⎤⎥⎥⎦ (6.6.62)

C = 𝜆𝛷IF12

⎡⎢⎢⎣
0
17
0

0
60
0

0
0
17

0
0
60

⎤⎥⎥⎦ D = 𝜆12

⎡⎢⎢⎣
0
0
0

0
1
0

0
0
0

0
0
1

⎤⎥⎥⎦ (6.6.63)

⌢
𝝃𝛷IF12 =

⎡⎢⎢⎢⎣
⌢
𝜉
1
𝛷IF12⌢
𝜉
2
𝛷IF12⌢
𝜉
3
𝛷IF12

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−
⌢
𝜉
1
𝛷IF12 + 𝜉1,𝛷IF12 + 𝜆𝛷IF12N

1
1,𝛷IF12

−
⌢
𝜉
2
𝛷IF12 + 𝜉1,𝛷IF12 + 𝜆𝛷IF12N

2
1,𝛷IF12

−
⌢
𝜉
3
𝛷IF12 + 𝜉1,𝛷IF12 + 𝜆𝛷IF12N

3
1,𝛷IF12

⎤⎥⎥⎥⎦
⌢
DHMW12 =

⎡⎢⎢⎢⎣
⌢
D

1
HMW12⌢

D
2
HMW12⌢

D
3
HMW12

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
D1
HMW12 − d1,HMW12 + 𝜆12N

1
1,12

D2
HMW12 − d1,HMW12 + 𝜆12N

2
1,12

D3
HMW12 + d1,HMW12 + 𝜆12N

3
1,12

⎤⎥⎥⎦
(6.6.64)

⌢
𝜉2,𝛷IF12 = 𝜉2,𝛷IF12 − 𝜉1,𝛷IF12 + 𝜆𝛷IF12N

1
21,𝛷IF12

⌢
d2,HMW12 = −d2,HMW12 + d1,HMW12 + 𝜆12N

1
21,12

(6.6.65)

⌢
N =

⎡⎢⎢⎢⎢⎢⎣

⌢
N

2
2,1⌢

N
2
2,12⌢

N
3
2,1⌢

N
3
2,12

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
N21
21,1

N21
21,12

N31
21,1

N31
21,12

⎤⎥⎥⎥⎥⎦
(6.6.66)

For verification purposes, substitute (6.6.64) to (6.6.66) into (6.6.61) and compare
with (6.6.58). The equation system is of full rank. It consists of 2RS equations and
as many parameters, i.e., S satellite phase biases

⌢
𝜉
p
𝛷IF12, S satellite HMW hardware

biases
⌢
D

p
HMW12 , p = 1 · · · S , R − 1 receiver phase biases

⌢
𝜉k,𝛷IF12 , R − 1 HMW
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receiver hardware biases
⌢
dk,HMW12 , k = 2 · · ·R, and 2(R − 1)(S − 1) ambiguity

parameters Nq1
m1,1 and Nq1

m1,12 with m = 2, · · · ,R and q = 2 · · · S. In order to aid in
reading the notation, let us recall the notational use in the case of dual frequencies:
the subscripts preceding the comma identify stations and the differencing operation,
the superscripts identify the satellites and the differencing operation, the numerical
1 after the comma refers to the L1 ambiguity, and the 12 indicates the L1 and L2
wide lane. For example, in this notation N21

21, 12 = N21
21,1 − N21

21,2 is the difference of
the double-differenced L1 and L2 ambiguities.

The pseudorange solution is identical to the one given in (6.6.44) to (6.6.47),
except replacing subscripts P by PIF12 and omitting the tropospheric term. It is
repeated here for easy referencing. The two-station and three-satellite solution is[
PIF𝟏𝟐1 − 𝝆1
PIF𝟏𝟐2 − 𝝆2

]
=

[
I 0
I b

] [ ⌢
𝝃PIF12⌢
𝜉2,PIF12

]
(6.6.67)

PIF𝟏𝟐k − 𝝆k =
⎡⎢⎢⎣
PIF121k − 𝜌

1
k

PIF121k − 𝜌
1
k

PIF121k − 𝜌
1
k

⎤⎥⎥⎦ (6.6.68)

⌢
𝝃PIF12 =

⎡⎢⎢⎢⎣
⌢
𝜉
1
PIF12⌢
𝜉
2
PIF12⌢
𝜉
3
PIF12

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−𝜉1PIF12 + 𝜉1,PIF12
−𝜉2PIF12 + 𝜉1,PIF12
−𝜉3PIF12 + 𝜉1,PIF12

⎤⎥⎥⎥⎦ 𝜉2,PIF12 = 𝜉2,PIF12 − 𝜉1,PIF12

(6.6.69)

The vector b is given in (6.6.12). If one combines the pseudorange and carrier phase
observations into one solution, there are in total 3RS observations and 2RS + S + R −
1 parameters, giving a degree of freedom of RS − R − S + 1.

User Solution: For the user solution, the original equations (6.6.58) are corrected
for the transmitted ionospheric-free satellite phase biases, HMW hardware delays,
and satellite code biases are applied to the observations. Assuming again without
loss of generality that the user selects satellite 1 as the base satellite, the user
solution is

𝛷IF121u −
⌢
𝜉
1
𝛷IF12 = 𝜌

1
u + 𝜉u, 𝛷IF12− 𝜉1, 𝛷IF12 + 𝜆𝛷IF12 + N1

u1, 𝛷IF12

+ T1
u + 𝜀𝛷IF12

= 𝜌1u +
⌢
𝜉u, 𝛷IF12 + T1

u + 𝜀𝛷IF12 (6.6.70)

𝛷IF12qu −
⌢
𝜉
q
𝛷IF12 = 𝜌

q
u +

⌢
𝜉u, 𝛷IF12 + 𝜆𝛷IF12N

q1
u1, 𝛷IF12 + Tq

u + 𝜀𝛷IF12

= 𝜌qu +
⌢
𝜉u, 𝛷IF12 + 𝜆𝛷IF12

⌢
N

q
u, 𝛷IF12 + Tq

u + 𝜀𝛷IF12 (6.6.71)

HMW121u −
⌢
D

1
HMW12 = −du,HMW12 + d1,HMW12 + 𝜆12N

1
u1, 12 + 𝜀HMW12

=
⌢
du,HMW12 + 𝜀HMW12 (6.6.72)
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HMW12qu −
⌢
D

q
HMW12 =

⌢
du,HMW12 + 𝜆12N

q1
u1, 12 + 𝜀HMW12

=
⌢
du,HMW12 + 𝜆12

⌢
N

q
u, 12 + 𝜀HMW12 (6.6.73)

PIF12pu −
⌢
𝜉
p
PIF12 = 𝜌

p
u + 𝜉u,PIF12 − 𝜉

p
1,PIF12 + Tp

u + 𝜀PIF12

= 𝜌pu +
⌢
𝜉u,PIF12 + Tp

u + 𝜀PIF12 (6.6.74)

with q = 2, · · · , S. We note again that, as is the case with the single-frequency user
solution, the base satellite phase equation and the HMW equation do not contain
ambiguity parameters. As long as this property is recognized, the user is free to adopt
any satellite as the base satellite, regardless of the choice made during the network
solution. The final form of the user solution for all three functions is

𝛷IF121u −
⌢
𝜉
1
𝛷IF12 − T1

u, 0 = 𝜌
1
u +

⌢
𝜉u, 𝛷IF12 + dTumwv(𝜗

1) +M𝛷IF12 + 𝜀𝛷IF12

𝛷IF12qu −
⌢
𝜉
q
𝛷IF12 − T1

u, 0 = 𝜌
q
u +

⌢
𝜉u, 𝛷IF12 + 𝜆𝛷IF12

(
17

⌢
N

q
u, 1 + 60

⌢
N

q
u, 12

)
+ dTumwv(𝜗

q) +M𝛷IF12 + 𝜀𝛷IF12
HMW121u −

⌢
D

1
HMW12 =

⌢
du,HMW12 +MHMW12 + 𝜀HMW12

HMW12qu −
⌢
D

q
HMW12 =

⌢
du,HMW12 + 𝜆12

⌢
N

q
u, 12 +MHMW12 + 𝜀HMW12

PIF12pu −
⌢
𝜉
p
PIF12 − T1

u,0 = 𝜌
p
u +

⌢
𝜉u,PIF12 + dTumwv(𝜗

p) +MPIF12 + 𝜀PIF12

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(6.6.75)

where q = 2 · · · S and p = 1 · · · S. We have added one vertical tropospheric parame-
ter. There are 3S observations and 3 + 3 + 2(S − 1) parameters to be estimated, i.e.,
three baseline components, three receiver biases, 2(S − 1) ambiguities, and one tropo-
spheric parameter. In (6.6.75) the satellite phase and code biases and HMW satellite
hardware delays are subtracted.

Network Wide-laning First: The solution of (6.6.61) can be carried in two
steps by first estimating the wide-lane ambiguities from the HMW function and
then estimating the L1 ambiguities from the ionospheric-free phase function using
the wide-lane ambiguities as known quantities. This approach ignores the corre-
lation between both functions. Extracting the HMW equations from (6.6.61), the
solution is [

HMW𝟏𝟐1
HMW𝟏𝟐2

]
=

[
I 0 0
I b 𝜆12A

] ⎡⎢⎢⎣
⌢
DHMW12⌢
d2,HMW12⌢
N2,HMW12

⎤⎥⎥⎦ (6.6.76)

⌢
N2,HMW12 =

[ ⌢
N

2
2, 12⌢

N
3
2, 12

]
=

[ ⌢
N

21
21, 12⌢

N
31
21, 12

]
(6.6.77)

The estimates
⌢
DHMW12 and

⌢
d2,HMW12 are identical to those in (6.6.64) and (6.6.65).

There are RS equations and as many unknowns, i.e., S satellite hardware biases, R − 1
receiver hardware delays, and (R − 1)(S − 1) double-difference ambiguities. Given



NETWORK-SUPPORTED POSITIONING 377

the wide-lane ambiguities
⌢
N2,HMW12, one can now compute the ionospheric-free

phase solution components as[
𝜱IF𝟏𝟐1 − 𝝆1

𝜱IF𝟏𝟐2 − 𝝆2 − 60𝜆𝛷IF12
⌢
N2,HMW12

]
=

[
I 0 0
I b 17𝜆𝛷IF12A

] ⎡⎢⎢⎣
⌢
𝝃𝛷IF12⌢
𝜉2, 𝛷IF12⌢
N2,1

⎤⎥⎥⎦ (6.6.78)

⌢
N2,1 =

[ ⌢
N

2
2, 1

⌢
N

3
2, 1

]
=

[
N21
21, 1

N31
21, 1

]
(6.6.79)

The estimates
⌢
𝝃𝛷IF12 and

⌢
𝜉2, 𝛷IF12 are identical to those in (6.6.64) and (6.6.65).

The system (6.6.78) contains again RS equations for as many unknowns. The
ionospheric-free phase observations are corrected for the known wide-lane ambi-
guities

⌢
N2,HMW12 obtained from the first step. Next we can compute the fractional

cycle biases
⌢
𝝃𝛷IF12,FCB and

⌢
DHMW12,FCB, which can be transmitted to the user. The

fractional biases are explicitly computed in the next approach.
Line-by-Line Approach: This procedure was proposed in Laurichesse and

Mercier (2007). We again select station 1 as the base station. The approach first
calls for the HMW functions in (6.6.58) to be averaged individually over time and
then rounded to determine the integer number of wide lanes of the hardware delays.
Next, the fractional satellite hardware delays are computed. The solution of this first
step is

HMW12p1 = −d1,HMW12 + Dp
HMW12 + 𝜆12N

p
1, 12 (6.6.80)

np1,HMW12 =
⎡⎢⎢⎣
HMW12p1
𝜆12

⎤⎥⎥⎦ Dp
HMW12,FCB =

HMW12p1
𝜆12

− np1,HMW12 (6.6.81)

np1,HMW12 = ΔnpHMW12 + Np
1, 12 (6.6.82)

𝜆12D
p
HMW12,FCB = Dp

HMW12 − d1,HMW12 − 𝜆12Δn
p
HMW12 (6.6.83)

with p = 1, · · · , S. The overbar ofHMW12 indicates averaging over time. The integer
unknown ΔnpHMW12 represents, the integer number of wide-lane wavelengths that go
into the hardware difference −d1,HMW12 + Dp

HMW12. Equation (6.6.83) follows from
the second equation in (6.6.81) multiplied by the wide-lane wavelength, and then sub-
stituting (6.6.80) and (6.6.82). The integer np1,HMW12 can usually be identified reliably
after only a short period of observations.

The second step requires a similar treatment of the ionospheric-free phase func-
tion (6.6.58). The observation is averaged again over time, then the known integer
np1,HMW12 of (6.6.81) is subtracted from the averaged observation, and finally (6.6.82)
is used on the right side. The result is

ap1 ≡ 𝛷IF12p1 − 𝜌p1 − 𝜆𝛷IF1260np1,HMW12 = 𝜉1, 𝛷IF12 − 𝜉
p
𝛷IF12

+ 𝜆𝛷IF12
(
17Np

1,1 − 60ΔnpHMW12

)
(6.6.84)
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np1,a =

[
ap1
𝜆c

]
𝜉
p
a,FCB =

ap1
𝜆c

− np1,a (6.6.85)

np1,a = Δnpa + Np
1,1 (6.6.86)

𝜆c𝜉
p
a,FCB = 𝜉1,𝛷IF12 − 𝜉

p
𝛷IF12 − 𝜆𝛷IF12

(
17Δnpa + 60ΔnpHMW12

)
(6.6.87)

where 𝜆c = 17𝜆𝛷IF12 ≈ 10.7. Thus, the quantity np1,a is the integer number of 𝜆c units
in ap1. Since 𝜆c is small and the function (6.6.84) depends on the receiver clock errors,
a longer observation series is required to determine the correct integer np1,a. This con-
cludes the required computations at the network. The fractional HMW12 satellite
hardware delays Dp

HMW12,FCB and satellite phase biases 𝜉pa,FCB are transmitted to the
user to correct user observations.

However, the nonbase stations have thus far not been used. The fractional satellite
hardware delays Dp

HMW12,FCB and satellite phase biases 𝜉pa,FCB were computed above
without the benefit of observations from nonbase stations. The observations from
these stations can serve as quality control. In the case of the HMW12 observations,
the nonbase station observations are also first averaged over time, then corrected for
the HMW12 fractional satellite hardware bias, and then rounded to determine the
fraction receiver hardware delays. Using (6.6.83), one obtains

HMW12pk − 𝜆12D
p
HMW12,FCB = −dk,HMW12 + d1,HMW12 + 𝜆12

(
Np
k,12 + ΔnpHMW12

)
(6.6.88)

npk,HMW12 =
⎡⎢⎢⎣
HMW12pk − 𝜆12D

p
HMW12,FCB

𝜆12

⎤⎥⎥⎦
dk,HMW12,FCB =

HMW12pk − 𝜆12D
p
HMW12,FCB

𝜆12
− npk,HMW12

(6.6.89)

with p = 1, · · · , S and k = 2, · · · ,R. The S values for a specific receiver hardware
delay dk,HMW12,FCB should agree within random noise. Similarly, the averaged
ionospheric-free phase observations are corrected for (6.6.87), giving

bpk ≡ 𝛷IF12pk − 𝜌pk − 𝜆c𝜉pa,FCB
= 𝜉k,𝛷IF12 − 𝜉1,𝛷IF12 + 𝜆𝛷IF12

(
17Np

k,1 + 60Np
k,12 + 17Δnpa + 60ΔnpHMW12

)
(6.6.90)

npk,b =

[
bpk
𝜆c

]
𝜉k,FCB =

bpk
𝜆c

− npk,b (6.6.91)

with p = 1, · · · , S and k = 2, · · · ,R. The S values for a specific nonbase station
receiver phase bias 𝜉k,FCB should be consistent.



NETWORK-SUPPORTED POSITIONING 379

User Solutions: The solution that can readily be built having the fractional cycle
delays and biases Dp

HMW12,FCB and 𝜉pa,FCB available is

HMW121u − 𝜆12D
1
HMW12,FCB = −du,HMW12 + d1,HMW12 + 𝜆12

(
N1
u,12 + Δn1HMW12

)
=

⌢
du,HMW12 (6.6.92)

HMW12pu − 𝜆12D
p
HMW12,FCB =

⌢
du,HMW12 + 𝜆12

(
Np1
u,12 + Δnp1HMW12

)
(6.6.93)

𝛷IF121u − 𝜆c𝜉
1
a,FCB = 𝜉u,𝛷IF12 − 𝜉1,𝛷IF12

+ 𝜆𝛷IF12

[
17

(
N1
u,1 + Δn1a

)
+ 60

(
N1
u,12 + Δn1HMW12

)]
=

⌢
𝜉u,𝛷IF12 (6.6.94)

𝛷IF12pu − 𝜆c𝜉
p
a,FCB = 𝜉u,𝛷IF12 + 𝜆𝛷IF12

[
17

(
Np1
u,1 +Δnp1a

)
+ 60(Np1

u,12 +Δnp1HMW12)
]

(6.6.95)
Parameterizing and adding pseudorange observations:

HMW121u − 𝜆12D
1
HMW12,FCB =

⌢
du,HMW12 +MHMW12 + 𝜀HMW12

HMW12qu − 𝜆12D
q
HMW12,FCB =

⌢
du,HMW12 + 𝜆12

⌢
N

q
u,12 +MHMW12 + 𝜀HMW12

𝛷IF121u − 𝜆c𝜉
1
a,FCB = 𝜌1u +

⌢
𝜉u,𝛷IF12 +M𝛷IF12 + 𝜀𝛷IF12

𝛷IF12qu − 𝜆c𝜉
q
a,FCB = 𝜌qu + 𝜉u,𝛷IF12 + 𝜆𝛷IF12

(
17

⌢
N

q
u,1 + 60

⌢
N

q
u,12

)
+M𝛷IF12 + 𝜀𝛷IF12

PIF12pu −
⌢
𝜉
p
PIF12 = 𝜌

p
u +

⌢
𝜉u,PIF12 +MPIF12 + 𝜀PIF12

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(6.6.96)

q = 2, · · · , S, p = 1, · · · , S. The parameterized ambiguities in (6.6.93) and (6.6.95)
contain the unknownsΔnpHMW12, which equal the number of full 𝜆12 wavlengths in the
satellite hardware delays Dp

HMW12 − d1,HMW12, and the unknown Δnpa , which equals
the number of 𝜆c distances in 𝜉1,𝛷IF12 − 𝜉

p
𝛷IF12 − 60𝜆𝛷IF12Δn

p
HMW12. The reparame-

terized wide-lane ambiguities in (6.6.96) are the same.

6.6.3.3 Across-Satellite Differencing The attraction of across-satellite dif-
ferencing relates to the cancelation of receiver clock errors and receiver hardware
delays. The technique was applied in Garbor and Nerem (1999) and later refined in
Ge et al. (2008). The model functions are again the ionospheric-free carrier base and
pseudorange functions, theHMW12 function, and, for convenience, we add theAIF12
function (6.1.49). Assuming satellite 1 as the base satellite, the difference functions
are for a general station k:

HMW121qk = D1q
HMW12 + 𝜆12N

1q
k,12 + 𝜀HMW12

AIF121qk = D1q
AIF12 + 𝜆𝛷IF12

(
17N1q

k,1 + 60N1q
k,12

)
+ 𝜀AIF12

𝛷IF121qk = 𝜌1qk + 𝜉1q
𝛷IF12 + 𝜆𝛷IF12

(
17N1q

k + 60N1q
k,12

)
+ T1q

k + 𝜀𝛷IF12
PIF121qk = 𝜌1qk + 𝜉1qPIF12 + T1q

k + 𝜀PIF12

⎫⎪⎪⎬⎪⎪⎭
(6.6.97)
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The superscripts indicate the across-differencing operation. The receiver terms
dk,HMW12, 𝜉k,𝛷IF12, and 𝜉k,PIF12 cancel due to the differencing, i.e., the receiver clock
error and the receiver hardware delays cancel. Since AIF12 is the difference of
𝛷IF12 and PIF12 according to (6.1.49), the satellite hardware delays of function
AIF12 are the differences of the 𝛷IF12 satellite phase bias and PIF12 satellite code
bias:

Dp
AIF12 = 𝜉

p
𝛷IF12 − 𝜉

p
PIF12 = Dp

PIF12 − Dp
𝛷IF12 (6.6.98)

In the difference (6.6.98) the satellite clock error cancels. The receiver clock error
and receiver hardware delay in AIF12 have canceled due to the cross-satellite differ-
encing, as mentioned above. It follows that D1q

HMW12, D
1q
AIF12, 𝜉

1q
𝛷IF12, and 𝜉

1q
PIF12 only

contain satellite hardware phase and code delays.
The approach is to determine the fractional cycle biases of the across-satellite hard-

ware delays D1q
HMW12,FCB and D1q

AIF12,FCB from the network and transmit these values

to the user who will utilize (6.6.98) to convert D1q
AIF12,FCB to 𝜉1q

𝛷IF12 and correct the
phase observations. No base station needs to be specified.

Network Solution: For the network solution, the HMW12 function of (6.6.97) is
averaged over time and then its fractional cycle bias is computed following the regular
procedure:

HMW121qk = D1q
HMW12 + 𝜆12N

1q
k,12 (6.6.99)

n1qk,HMW12 =
⎡⎢⎢⎣
HMW121qk
𝜆12

⎤⎥⎥⎦ D1q
HMW12,FCB =

HMW121qk
𝜆12

− n1qk,HMW12

(6.6.100)

n1qk,HMW12 = Δn1qHMW12 + N1q
k,12 (6.6.101)

𝜆12D
1q
HMW12,FCB = D1q

HMW12 − 𝜆12Δn
1q
HMW12 (6.6.102)

The average is again indicated by the overbar. The unknown integer Δn1qHMW12 is the

number of wide-lane cycles inD1q
HMW12. The fractional cycle hardware delay (6.6.100)

is averaged over all stations, k = 1 · · ·R and denoted by D1q
HMW12.

Second, the AIF12 function of (6.6.97) is averaged over time and corrected for the
known integer n1qk,HMW12 of (6.6.100), and then the fractional cycle bias is computed.
The result is

A1q
k ≡ AIF121qk − 60𝜆𝛷IF12n

1q
k,HMW12 = 𝜆𝛷IF12

(
17N1q

k,1 − 60Δn1qHMW12

)
+ D1q

AIF12

(6.6.103)

n1qk,A =

[
A1q
k

𝜆c

]
D1q
A,FCB =

A1q
k

𝜆c
− n1qk,A (6.6.104)
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n1qk,A = Δn1qA + N1q
k,1 (6.6.105)

𝜆cD
1q
A,FCB = D1q

AIF12 − 𝜆𝛷IF12
(
17Δn1qA + 60Δn1qHMW12

)
(6.6.106)

where 𝜆c = 17𝜆𝛷IF12. Average the fractional cycle bias over all stations, k = 1 · · ·R

and denote it by D1q
A,FCB.

The fractional cycle biases D1q
HMW12,FCB and D1q

A,FCB are transmitted to the user,

q = 2, · · · , S. The ionospheric-free satellite code bias 𝜉1qPIF12 must also be made avail-

able to the user for computing 𝜉1q
𝛷IF12 via the relation (6.6.98) and for correcting the

pseudorange observations. Ideally, the biases for all across-satellite difference com-
binations should be available to the users to enable them to select any base satellite.

User Solution: For the user solution, theHMW12 and PIF12 functions in (6.6.97)

can readily be corrected for D1q
HMW12,FCB and 𝜉1qPIF12, respectively. The correction

𝜉
1q
𝛷IF12 follows immediately from (6.6.98) and (6.6.106) as

𝜉
1q
𝛷IF12 = D1q

AIF12 + 𝜉
1q
PIF12

= 𝜆cD
1q
A,FCB + 𝜆𝛷IF12

(
17Δn1qA + 60Δn1qHMW12

)
+ 𝜉1qPIF12 (6.6.107)

Applying the three corrections to (6.6.97), the three user equations become

HMW121qu − 𝜆12D
1q
HMW12,FCB = 𝜆12

⌢
N

q
u,12 +MHMW12 + 𝜀HMW12

𝛷IF121qu − 𝜆cD
1q
A,FCB − 𝜉

1q
PIF12 = 𝜌

1q
u + 𝜆𝛷IF12

(
17

⌢
N

q
u,1 + 60

⌢
N

q
u,12

)
+ T1q

u +M𝛷IF12 + 𝜀𝛷IF12

PIF121qu − 𝜉1qPIF12 = 𝜌
1q
u + T1q

u +MPIF12 + 𝜀PIF12 (6.6.108)

with ⌢
N

q
u,1 = N1q

u,1 + Δn1qA
⌢
N

q
u,12 = N1q

u,12 + Δn1qHMW12 (6.6.109)

The HMW12 and𝛷IF12 functions contain the same wide-lane ambiguity. It consists
of the original wide-lane ambiguity plus an unknown number of wide-lane cycles
in satellite hardware delay D1q

HMW12. The ionospheric-free code bias 𝜉
1q
PIF12 is needed

for every epoch. The user can select any base satellite but must be able to identify
the respective transmitted biases. The system includes 3(S − 1) observations,
three position coordinates, 2(S − 1) ambiguities, and one tropospheric parameter.
Since across-satellite differencing cancels the receiver clock errors and receiver
hardware delays, the transmitted fractional cycle biases are more stable than those
of PPP.

The fractional satellite hardware delays (6.6.102) and (6.6.106) for the HMW12
and AIF12 functions can be computed without knowledge of the network sta-
tion coordinates. Both are geometry-free linear functions of carrier phases and
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pseudoranges. It follows that the observational noise and impact of the multipath
are dominated by that of the pseudoranges, because the noise and multipath of the
carrier phases are much smaller than those of the pseudoranges. Consequently, the
observational noise and multipath impact of the computed satellite phase bias 𝜉1q

𝛷IF12
in (6.6.107) is correspondingly large. However, the satellite code difference is still
needed to complete this computation. Even though network station coordinates are
not needed for the computations of the D1q

HMW12,FCB and D1q
A,FCB hardware delays, the

coordinates are needed for computing 𝜉1qPIF12. If the latter biases can be obtained from

the clock corrections of the IGS precise ephemeris, i.e., the equality 𝜉1qPIF12 = 𝜉
1q
IGS is

valid, then the network station coordinates are not needed at all.
However, instead of computing 𝜉1q

𝛷IF12 via (6.6.107), one can compute it more
accurately using the function 𝛷IF12. One could apply the procedure expressed in
(6.6.80) to (6.6.87) to across-satellite differences. A possible drawback is that now
the network station coordinates must be known. Also, one can apply the AIF12 and
(6.6.107) approach to any dual-frequency observations, not just to L1 and L2 obser-
vations discussed above.

The recursive adjustment technique applies to all of the models because they
contain a mix of epoch parameters and constant parameters. For example, in the
one-step network case (6.6.61) and (6.6.67) the

⌢
𝜉
p
𝛷IF12,

⌢
𝜉
p
k,𝛷IF12,

⌢
𝜉
p
PIF12, and

⌢
𝜉k,PIF12

are epoch parameters; the most active varying parameter is the receiver clock error.
The HMW12 hardware delays

⌢
D

2
HMW12 and

⌢
d2,HMW12 are fairly stable. Similarly, in

the line-by-line case the fractional cycle bias 𝜉pa,FCB varies rapidly while the hardware
delay Dp

HMW12,FCB varies more slowly. In the across-satellite single-differencing

case, both hardware delays, D1q
HMW12,FCB and D1q

A,FCB vary slowly. In all cases the
ambiguity parameters remain constant until cycle slips occur. In that case the
ambiguity parameters must be reinitialized and some convergence time might be
required depending on the number of slips. If the time between consecutive epochs
is sufficiently small one might succeed in modeling the ionospheric change between
the epochs and use across-time differences to determine the cycle slips and avoid or
reduce re-convergence time.

6.7 TRIPLE-FREQUENCY SOLUTIONS

Special triple-frequency functions are considered that bring uniqueness to
triple-frequency processing as opposed to classical dual-frequency methods.
We basically discuss two types of solutions. The first one is the one-step batch
solution in which all observations are combined and all parameters are estimated
simultaneously. The second solution is TCAR (three-carrier ambiguity resolution),
in which one attempts to resolve the ambiguities first and then computes the position
coordinates of the station.

6.7.1 Single-Step Position Solution

Processing of triple- and dual-frequency observations does not conceptually differ
much. In the triple-frequency case, the complete set of observations consists of the
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three pseudoranges and three carrier phases. As in the dual-frequency case, the orig-
inal observables can be processed directly or first transformed into a set of linear
independent functions, also called combinations, which may exhibit certain desirable
characteristics. Consider the following example set:

P1 = 𝜌 + I1,P + T +M1,P + 𝜀P
P2 = 𝜌 + 𝛽(0,1,0)I1,P + T +M2,P + 𝜀P
P3 = 𝜌 + 𝛽(0,0,1)I1,P + T +M3,P + 𝜀P
𝛷1 = 𝜌 + 𝜆1N1 − I1,P + T +M1,𝛷 + 𝜀𝛷
𝛷(1,−1,0) = 𝜌 + 𝜆(1,−1,0)N(1,−1,0) − 𝛽(1,−1,0)I1,P + T +M(1,−1,0),𝛷 + 𝜀(1,−1,0),𝛷
𝛷(1,0,−1) = 𝜌 + 𝜆(1,0,−1)N(1,0,−1) − 𝛽(1,0,−1)I1,P + T +M(1,0,−1),𝛷 + 𝜀(1,0,−1),𝛷

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(6.7.1)

in which we have used a mixture of traditional notation and new triple-frequency
subscript notation. We use the traditional subscript notation, which identifies the
frequency by a single subscript when it is convenient and there is no concern of los-
ing clarity. Examples of identity in notation are 𝜆(1,0,0) = 𝜆1 and M(1,0,0),𝛷 = M1,𝛷.
Checking the definition of auxiliary quantities given in (6.1.62), we readily see that
the ionospheric scale factor 𝛽(1,0,0) = 1 and any variance factor 𝜇2 with one nonzero
index equals one.

Since this section exclusively deals with relative positioning between two stations
using double differences, we have dropped the subscripts and superscripts that iden-
tify stations and satellites and also indicate the differencing operation. For example,
we simply use P1 instead of Ppq

km,1 to identify the pseudorange of the first frequency.
In the simplified notation we, therefore, have the following double- differenced quan-
tities: pseudorange P, scaled carrier phase 𝛷, topocentric satellite distance 𝜌, iono-
spheric delay I1,P at the first frequency, tropospheric delay T , integer ambiguity N,
multipath M, and measurement noise 𝜀.

In the model (6.7.1) we have chosen the original pseudoranges as observables.
As to the carrier phase observation, we selected the extra-wide-lane 𝛷(0,1,−1), the
wide-lane 𝛷(1,−1,0), and the original phase observation on the first frequency, 𝛷1.
Triple-frequency observations allow for additional combinations, many ofwhich have
desirable properties. Any of them can be used as long as the set is linearly indepen-
dent. In all cases, it is assumed that variance-covariance propagation is fully applied
to any functions of the original observables.

When estimating the positions in a network solution or even processing a sin-
gle baseline, it might be advantageous to group the ambiguity parameters by narrow
lane, wide lane, and extra wide lane and apply sequential estimation. With such a
grouping of parameters, the required variance-covariance elements for estimating
the extra-wide-lane integer ambiguities are conveniently located in the lower right
submatrix or the top left submatrix of the full variance-covariance matrix. The ambi-
guity estimator could be used to identify the extra-wide-lane integer ambiguities and
then constrain them. The smaller variance-covariance matrix resulting from imple-
menting the extra wide-lane ambiguity constraints serves as a basis to estimate the
wide-lane integer ambiguities. One can again take advantage of the grouping of the
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wide-lane ambiguity parameters. The number of remaining ambiguities, i.e., the wide
lane and narrow lanes, is the same as in the case of traditional dual-frequency pro-
cessing. After estimating and constraining the wide-lane integer ambiguities, the new
variance-covariance matrix that is now even smaller in size, is the basis for esti-
mating the narrow-lane ambiguities. Alternatively, of course, the search algorithm
could operate on the full variance-covariance matrix and optimize the sequence of
search itself.

The need to minimize the computation load during ambiguity resolution has
resulted in a strong desire to estimate the extra-wide-lane ambiguities first. This can
be done as described above, i.e., as part of the positioning solution estimate the extra
wide lanes first, implement the integer constraints, and then apply the ambiguity
estimator to the updated solutions containing less ambiguity parameters, and so on.
Alternatively, one can estimate the extra-wide-lane ambiguities independently and
prior to the positioning solution. The latter approach is the essence of the TCAR
technique to be discussed below.

In the network or baseline solution with model (6.7.1), all correlations between
the parameters are considered in the ambiguity resolution by way of utilizing the
full variance-covariance matrix. Techniques like LAMBDA are optimal because they
operate on the full variance-covariance matrix. Some correlations between parame-
ters are ignored if integer ambiguities, such as the extra wide lanes, are resolved by
TCAR techniques prior to the positioning solution. In that sense the one-step solution,
which simultaneously searches on all integer ambiguities as part of the positioning
solution, is optimal.

The tropospheric and ionospheric effects on the observations are as relevant to
triple-frequency observations as they are to dual-frequency observations. These
effects cancel in double differencing for a sort baseline per definition. For longer
baselines, the tropospheric delay must be either estimated or corrected based on a
tropospheric model or mitigated using available external network corrections. The
same is true for the ionosphere in principle. However, triple-frequency observations
provide the possibility of formulating ionospheric-reduced functions for longer
baseline processing when the residual double difference ionosphere can become
significant. In fact, observations from three or more frequencies make it possible
to create functions of the original observables that to some degree balance noise,
virtual wavelength, and ionospheric dependency. Generally speaking, for rapid and
successful ambiguity fixing, it is beneficial to have functions that are affected by
the ionosphere as little as possible, have a long wavelength relative to the remaining
ionospheric delay, and yet exhibit minimal noise amplification.

Cocard et al. (2008) provides a thorough mathematical treatment to identify all
phase combinations for GPS frequencies that exhibit the properties of low noise,
reduced ionospheric dependency, and acceptable wavelengths. They group the
functions (6.1.59) by the sum of the integer indices i, j, and k, i.e., i + j + k = 0,
i + j + k = ±1, etc. and demonstrate that two functions from the first group are
needed, as well as one from another group. Among the many functions identified,
only a small subset exhibits the desirable properties; this includes the triplet
consisting of the two extra wide lanes (0,1,−1) and (1, −6,5), and the narrow lane
(4,0, −3).



TRIPLE-FREQUENCY SOLUTIONS 385

Feng (2008) also carries out an extensive investigation to identify the most suit-
able functions for the GPS, Galileo, and Beidou systems. He generalizes the search by
minimizing a condition that not only considers the noise of the original observations
but also includes noise factors for residual orbital errors, tropospheric errors, first-
and second-order ionospheric errors, and multipath. This total noise is considered a
function of the baseline length for a more realistic modeling of uncertainty. Because
the GPS, Galileo, and Beidou satellite systems use in part different frequencies, the
optimal set of combinations depends on the system. Additionally, the assumptions
made for the modeling of the noise as a function of baseline length affects the out-
come. He also identifies a number of combinations of interest, among them the three
combinations given above for GPS.

Table 6.7.1 provides relevant values for the phase functions used in this section. For
other relevant combinations, the reader is referred to the references. The numerical
values listed are the wavelength 𝜆, the ionospheric scale factor 𝛽, the variance factor
𝜇2, and a multipath factor 𝜈. The definition of these quantities is given in (6.1.63).
All values refer to GPS frequencies. The function (1, −6, 5) is indeed an extra wide
lane because its wavelength is 3.258m, and (4,0, −3) is a narrow lane. The relative
insensitivity of these two new functions regarding the ionosphere is evidenced from
the small ionospheric scale factors of −0.074 and −0.0099. They should, therefore,
be good candidates for the processing of longer baselines. However, their variance
factors are high because of the close adjacency of the second and third frequencies.

Even though the new extra wide lane functions (1,−6, 5) show a very desirable low
ionospheric dependency as compared to the other extra wide lane (0,1, −1), there is
still a need for the traditional ionospheric-free function. In fact, with triple-frequency
observations, we can formulate several dual-frequency ionospheric-free functions. Of
special interest are the triple-frequency ionospheric-free functions that also minimize
the variance. Consider the pseudorange and carrier phase functions

PC = aP1 + bP2 + cP3 (6.7.2)

𝛷C = a𝛷1 + b𝛷2 + c𝛷3 (6.7.3)

and the conditions of the factors

a + b + c = 1

a +
f 2
1

f 2
2

b +
f 2
1

f 2
3

c = 0

a2 + b2 + c2 = min

⎫⎪⎬⎪⎭ (6.7.4)

TABLE 6.7.1 Selected Triple-Frequency Function Values for GPS Frequencies.
The wavelength is in meters.

(i, j, k) (4,0, −3) (1,0, −1) (1, −1,0) (1, −6,5) (0,1, −1)
𝜆(i, j, k) 0.108 0.752 0.863 3.258 5.865
𝛽(i, j, k) −0.0099 −1.339 −1.283 −0.074 −1.719
𝜇2
(i, j, k) 6.79 24 33 10775 1105

v(i, j, k) 4 1 8 161 47
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It follows from (6.1.59) to (6.1.66) that the first condition preserves the geometric
terms, the second condition enforces the function to be ionospheric free, and the
third condition minimizes the variance of the function. The third condition assumes
that the standard deviations 𝜎𝛷i

= 𝜎𝛷 and 𝜎Pi = 𝜎P are, respectively, the same for all
frequencies. The general solution for the coefficients is

a =
1 − Fa − Fb + 2FaFb

2
(
1 − Fa + F2

b

) b = Fa − aFb c = 1 − a − b (6.7.5)

Fa =
f 21

f 21 − f 23
Fb =

f 21
(
f 22 − f 23

)
f 22

(
f 21 − f 23

) (6.7.6)

For GPS frequencies, we have a = 2.3269, b = −0.3596, and c = −0.9673. These
computed functions can be written in the standard form

PC = 𝜌 + cdt − cdt + T + 𝛿PC + 𝜀PC (6.7.7)

𝛷C = 𝜌 + R + cdt − cdt + T + 𝛿𝛷C + 𝜀𝛷C (6.7.8)

with R = a𝜆1N1 + b𝜆2N2 + c𝜆3N3. The respective standard deviations can be com-
puted as 𝜎PC = 2.545𝜎P and 𝜎𝛷C = 2.545𝜎𝛷. Please note that the derivation (6.7.2) to
(6.7.8) as presented refers to undifferenced observations. When viewed as double dif-
ferences, the only changes are in (6.7.7) and (6.7.8), i.e., deletion of the clock terms,
and the replacement of 𝛿PC with MPC and 𝛿𝛷C with M𝛷C. The 𝛷C function is pre-
sented in Hatch (2006), including the general form of the solution coefficients. Using
only the first two conditions of (6.7.4) leads to geometry-free and ionospheric-free
(GIF) solutions, which are popular in dual-frequency processing.

6.7.2 Geometry-Free TCAR

The idea behind the TCAR approach is to find three carrier phase linear combina-
tions that allow integer ambiguity resolution in three consecutive steps. In a fourth
step, the resolved integer ambiguities are considered known when estimating the
receiver position in a geometry-based solution. One can either use the estimated inte-
ger combination or transform them to original ambiguities and use the latter in the
position computation. This transformationmust, of course, preserve the integer nature
that imposes some restrictions on admissible combinations. Consider the following
example of the transformations:

⎡⎢⎢⎣
0 1 −1
1 −6 5
4 0 −3

⎤⎥⎥⎦
⎡⎢⎢⎣
N1
N2
N3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
N(0,1,−1)
N(1,−6,5)
N(4,0,3)

⎤⎥⎥⎦ (6.7.9)

⎡⎢⎢⎣
N1
N2
N3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−18 −3 1
−23 −4 1
−24 −4 1

⎤⎥⎥⎦
⎡⎢⎢⎣
N(0,1,−1)
N(1,−6,5)
N(4,0,−3)

⎤⎥⎥⎦ (6.7.10)
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For the original ambiguities to be integers, it is necessary that the elements of the
matrix on the left side of (6.7.9) are integers and that the determinant is either plus
or minus one. These conditions can readily be explained by computing the matrix
inverse. Equation (A.3.4) shows a general way to compute the inverse. If the elements
of the matrix are integers, then the cofactor matrix also contains integers, and if the
determinant located in the denominator is plus or minus one, then the elements of the
inverse matrix must be integers.

There are two approaches to TCAR. The first to be discussed is the geometry-free
approach (GF-TCAR), in which the functions do not contain the topocentric satel-
lite distance and the tropospheric delay. In the second approach, the geometry-based
(GB-TCAR) approach, the topocentric satellite distance and tropospheric delay are
present in the equations. However, the topocentric distance is not parameterized in
terms of station coordinates. For each of these approaches, the double differences are
processed separately and the respective ambiguity is determined by simple round-
ing in a sequential solution. Both approaches begin by resolving the extra-wide-lane
ambiguity, proceed with estimating the wide-lane ambiguity, and then resolving the
narrow-lane ambiguity. In deviation from the original idea of TCAR, which calls for
consecutive estimation of these ambiguities, one can readily combine two or even all
three steps into one solution.

We first review the geometry-free solutions in the context of dual-frequency obser-
vations. This type of a solution approach has been frequently used even during the
time when only dual-frequency observations were available. For example, already
Goad (1990) and Euler and Goad (1991) use the geometry-free model to study opti-
mal filtering for the combined pseudorange and carrier phase observations for single
and dual frequencies. We will discuss this model to demonstrate the reduction in
correlation between estimated ambiguities due to wide-laning, and clarify the term
extra-wide-laning as used traditionally during the dual-frequency era and its use today
in connection with triple-frequency processing.

Taking the undifferenced pseudorange and carrier phase equations (6.1.28) and
(6.1.32), carrying out the double differencing, and dropping the subscripts and super-
scripts that identify stations and satellites, the dual-frequency pseudoranges and car-
rier phases are written in the form

⎡⎢⎢⎢⎣
P1
P2
𝛷1
𝛷2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 1 0 0
1 𝛾12 0 0
1 −1 𝜆1 0
1 −𝛾12 0 𝜆2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜌 + Δ
I1,P
N1
N2

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
M1,P
M2,P
M1,𝛷
M2,𝛷

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
𝜀1,P
𝜀2,P
𝜀1,𝛷
𝜀2,𝛷

⎤⎥⎥⎥⎦ (6.7.11)

The auxiliary parameter Δ includes the tropospheric delay, and in case of undiffer-
enced equations it includes also the clock corrections and hardware delays of receiver
and satellite. Other parameters are the ionospheric delay I1,P, and the ambiguities
N1 and N2. The factor 𝛾12 is given in (6.1.1). The parameters 𝜌 + Δ and I1,P change
with time, but the ambiguity parameters are constant unless there are cycle slips.
Equation (6.7.11) is called the geometry-free model; it is valid for static or moving
receivers and is readily applicable to estimations with recursive LSQ having a set of
constants and a set of epoch parameters to be estimated.
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Dropping the multipath term as usual, the matrix form of (6.7.11) is �b = Ax + 𝜺.
The A matrix contains constants that do not depend on the receiver-satellite
geometry. Since the matrix has full rank, the parameters can be expressed as a
function of observations, i.e., x = A−1�b. Applying variance-covariance propaga-
tion, one obtains 𝜮x = A−1

𝜮�b
(A−1)T . Next we consider the linear transformation

z = Zx, with

Z =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 −1
0 0 1 0

⎤⎥⎥⎥⎦ (6.7.12)

with variance-covariance matrix 𝜮z = Z𝜮xZ
T . The new variables of z are

𝜌 + Δ, I1,P,N12, and N1, with the wide-lane ambiguity being N12 = N1 − N2.
For numerical computations, we assume that the standard deviation of the

carrier phases 𝜎1,𝜑 and 𝜎2,𝜑 are related as 𝜎2,𝛷 = 𝜎1,𝛷
√
𝛾12, and that the standard

deviations of the pseudorange and carrier phases follow the relation k = 𝜎P∕𝜎𝛷
for both frequencies, where k is a constant. Assuming further that the observations
are uncorrelated, the covariance matrix of the observations consists of diagonal
elements (k2, 𝛾12k

2, 1, 𝛾12), and is scaled by 𝜎21,𝛷. If we set k equal to 154, which
corresponds to the ratio of the L1 GPS frequency and the P-code chipping rate and
use 𝜎1,𝛷 = 0.002m, then the standard deviations and the correlation matrix are,
respectively,(

𝜎𝜌+Δ, 𝜎I , 𝜎1,N , 𝜎2,N
)
=

(
0.99 m, 0.77 m, 9.22 cycL1, 9.22 cycL2

)
⎡⎢⎢⎢⎣
𝜎𝜌+Δ
𝜎I1,P
𝜎N1

𝜎N2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.99
0.77
9.22
9.22

⎤⎥⎥⎥⎦ Cx =

⎡⎢⎢⎢⎣
1 −0.9697 −0.9942 −0.9904

1 0.9904 0.9942
1 0.9995

sym 1

⎤⎥⎥⎥⎦ (6.7.13)

(
𝜎𝜌+Δ, 𝜎I , 𝜎w, 𝜎1,N

)
=

(
0.99 m, 0.77 m, 0.28 cycLw, 9.22 cycL1

)
⎡⎢⎢⎢⎣
𝜎𝜌+Δ
𝜎I1,P
𝜎N12

𝜎N1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.99
0.77
0.28
9.22

⎤⎥⎥⎥⎦ Cz =

⎡⎢⎢⎢⎣
1 −0.9697 −0.1230 −0.9942

1 0.1230 0.9904
1 0.0154

sym 1

⎤⎥⎥⎥⎦ (6.7.14)

Striking features of the epoch solution (6.7.13) are the equality of the standard devia-
tion for both ambiguities with the number of digits given, and the high correlation
between all parameters. Of particular interest is the shape and orientation of the
ellipse of standard deviation for the ambiguities. The general expressions (2.7.79)
to (2.7.83) can be applied to the third and fourth parameters. They could be drawn
with respect to the perpendicular N1 and N2 axes, which carry the units L1 cycles and
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L2 cycles. The computations show that the ellipse almost degenerates into a straight
line with an azimuth of 45∘, the semiminor and semimajor axes being 0.20 and 13.04,
respectively.

The correlation matrix (6.7.14) shows a small correlation of 0.0154 between the
wide-lane ambiguity and the L1 ambiguity. Furthermore, the correlations between the
wide-lane ambiguity and both the topocentric distance and the ionospheric parame-
ter have been reduced significantly. Considering the small standard deviation for the
wide-lane ambiguity of 0.28 and the low correlations with other parameters, it seems
feasible to estimate the wide-lane ambiguity from epoch solutions. The semiaxes of
the ellipse of standard deviation for the ambiguities are 9.22 and 0.28, respectively.
The azimuth of the semimajor axis with respect to the N12 axis is 89.97∘, i.e., the
ellipse is elongated along the N1 direction. The correlation matrix still shows high
correlations between N1 and the ionosphere and topocentric distance, indicating that
the estimation of the N1 ambiguity is not that straightforward and will require a long
observation set. If we consider the square root of the determinant of the covariance
matrix to be a single number that measures correlation, then (|Cz|∕|Cx|)1∕2 ≈ 33
implies a major decorrelation of the epoch parameters.

Assume that the double-difference wide-lane ambiguity has been fixed using the
HMW function (6.1.48), which is implied in (6.7.11), then AC2 of (6.1.56) allows
computation of the L1 double-difference ambiguity as

N1 = 𝜑1 +
f1

f1 − f2
(N12 − 𝜑12) +

f1 − f2
f2

I1,𝜑 +MAC2 ≈ 𝜑1 + 4.5[N12 − 𝜑12] + · · ·

(6.7.15)
Fortunately, this expression does not depend on the large pseudorange multipath
terms, but only on the smaller carrier phase multipath. Given the GPS frequencies
f1 and f2, and assuming that the wide-lane ambiguity has been incorrectly identified
within 1 lane, then the computed L1 ambiguity changes by 4.5 cycles. The first deci-
mal of the computed L1 ambiguity would be close to 5. However, since the L1 ambi-
guity is an integer, we can use that fact to decide between two candidate wide-lane
ambiguities. This procedure is known as extra-wide-laning (Wübbena, 1990). It was
an important tool in the dual-frequency era that helped to shorten the time of success-
ful ambiguity fixing. It is important to note, however, that in triple-frequency process-
ing, the terms extra-wide-laning or extra-wide-lane ambiguity refer to any dual- or
triple-frequency frequency function whose corresponding wavelength is larger than
the legacy dual-frequency wavelength 𝜆(1,−1,0).

In the subsequent sections, we provide one or several algorithms for the resolution
of the extra-wide-lane, wide-lane, and narrow-lane ambiguity and briefly discuss dis-
tinguishing properties regarding ionospheric dependency, formal standard deviation
of the computed ambiguity, and multipath magnification. In order to provide numer-
ical values to approximately judge the quality of the various solutions, we assume
a standard deviation of 0.002 and 0.2m for the carrier phase and pseudorange mea-
surement, respectively.

6.7.2.1 Resolving EWL Ambiguity The extra-wide-lane (EWL) ambiguity
N(0,1,−1) is easy to compute, possibly even in a single epoch. This is a direct result
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of the given pseudorange and carrier phase measurement accuracies, as well as the
closeness of the GPS second and third frequencies. Two solutions are discussed.
The first solution shows a reduced ionospheric dependency and the second solution
is ionospheric free. Just to be sure, the expression “extra wide lane” as used
here in connection with triple-frequency observations is not to be confused with
extra-wide-laning as used in connection with (6.7.15).

Differencing𝜱(𝟎 , 𝟏 ,−𝟏) and P𝟐: This solution differences the extra wide lane and
the pseudorange. Differencing (6.1.65) and (6.1.66) gives the function

𝛷(0,1,−1) − P2 = 𝜆(0,1,−1)N(0,1,−1) − (𝛽(0,1,−1) + 𝛽(0,1,0))I1,P +M + 𝜀 (6.7.16)

The hardware delay terms cancel as part of the double differencing. The symbol M,
without any subscript or superscript, denotes the total double-differencedmultipath of
the function. The multipath of the pseudorange is the dominating part, i.e.,M ≈ MP.
Similarly, the symbol 𝜀 denotes the random noise of the function. Rearranging the
equation to solve for the ambiguity gives

N(0,1,−1) =
𝛷(0,1,−1) − P2

𝜆(0,1,−1)
+
𝛽(0,1,−1) + 𝛽(0,1,0)

𝜆(0,1,−1)
I1,P −

M + 𝜀
𝜆(0,1,−1)

(6.7.17)

The EWL ambiguity solution still depends on the ionosphere because the factor of
I1,P in (6.7.17), denoted henceforth as 𝛽N , equals −0.012. A double-difference iono-
sphere of 1m falsifies the ambiguity by merely one hundredth of an extra-wide-lane
cycle. A similarly good ionospheric reduction is achieved if one were to use the third
pseudorange P3 instead of P2.

Assuming that the carrier phases are stochastically independent and have the
same variance, and assuming a similar property for the statistics of the pseudoranges
(although in this particular case there is only one pseudorange used), and then apply-
ing variance propagation following (6.1.67), the variance of the EWL ambiguity is

𝜎2N =
𝜇2
(0,1,−1)

𝜎2
𝛷
+ 𝜎2P

𝜆2
(0,1,−1)

= 32𝜎2
𝛷
+ 0.029𝜎2P (6.7.18)

Equation (6.7.18) results merely from propagation of stochastic independent random
errors and does not reflect the multipath. The relatively large factor of 32 of the carrier
phase variance is caused by the close location of the second and third frequency. As
stated above, taking 0.002 and 0.2m as standard deviations for the carrier phase and
pseudorange, respectively, the formal standard deviation of the EWL ambiguity is
𝜎N = 0.036 (extra wide lanes).

The propagation of the multipath is more complicated. It is essentially unpre-
dictable since it depends on each individual carrier phase and pseudorange as well
as time (because the reflection geometry is a function of time). While the multi-
path is a perpetually worrisome unknown in precise positioning, its impact on the
calculation of the ambiguity is significantly reduced in this particular case because
of the EWL wavelength 𝜆(0,1,−1) in the denominator of (6.7.17). The multipath effect



TRIPLE-FREQUENCY SOLUTIONS 391

on the ambiguity isMN ≤ 0.17M, whereM is the multipath of𝛷(0,1,−1) − P2 and thus
itself a function of M𝛷 and MP. Using factor v(i, j, k) of (6.1.63), one can compute
the maximum value by adding the absolute values of phase and pseudorange com-
binations multipath. In this particular case, it actually is sufficient to approximate
M ≈ MP since MP ≫ M𝛷, thus simply obtain MN ≤ 0.17MP. There is no additional
scaling since only one pseudorange is involved (and not a pseudorange combination).

We conclude that function (6.7.16) is a good candidate for estimating the EWL
ambiguity because the ionospheric impact is small, the formal standard deviation of
the ambiguity is low, and the multipath is significantly reduced.

Applying the HMW Function to Second and Third Frequency: An alternative
way of computing the EWL ambiguity follows directly from (6.1.48) when applied
to the second and third frequency:

𝛷(0,1,−1) − P(0,1,1) = 𝜆(0,1,−1)N(0,1,−1) +M + 𝜀 (6.7.19)

N(0,1,−1) =
𝛷(0,1,−1) − P(0,1,1)

𝜆(0,1,−1)
−

M + 𝜀
𝜆(0,1,−1)

(6.7.20)

𝜎2N =
𝜇2
(0,1,−1)

𝜎2
𝛷
+ 𝜇2

(0,1,1)
𝜎2P

𝜆2
(0,1,−1)

= 32𝜎2
𝛷
+ 0.015𝜎2P (6.7.21)

This solution is ionospheric free as to first-order ionospheric effects on the obser-
vation. The standard deviation is very close to the one determined for the previous
solution, and the multipath is reduced by the same factor. Therefore, both solution
approaches are essentially equivalent, although one might intuitively prefer the iono-
spheric free solution to alleviate any concerns about the ionosphere.

6.7.2.2 Resolving the WL Ambiguity Three solutions are discussed for
resolving the wide-lane (WL) ambiguity. The significance of the ionospheric delay
becomes more apparent as seen from the first solution presented. The second
solution uses the HMW function applied to the first and second frequency, as has
been traditionally done in the dual-frequency case. The third solution represents one
of the modern approaches, which is ionospheric free and minimizes the variance.

Differencing 𝛷(𝟎 , 𝟏 ,−𝟏) and 𝛷(𝟏 ,−𝟏 , 𝟎): Knowing the EWL integer ambiguity, we
can readily write the ambiguity-corrected carrier phase extra wide lane as

𝛷(0,1,−1) = 𝛷(0,1,−1) − 𝜆(0,1,−1)N(0,1,−1) (6.7.22)

Subtracting the wide-lane carrier phase function from the ambiguity-corrected func-
tion gives

𝛷(0,1,−1) −𝛷(1,−1,0) = −𝜆(1,−1,0)N(1,−1,0) + (−𝛽(0,1,−1) + 𝛽(1,−1,0))I1,P +M + 𝜀
(6.7.23)

N(1,−1,0) =
−𝛷(0,1,−1) +𝛷(1,−1,0)

𝜆(1,−1,0)
+

−𝛽(0,1,−1) + 𝛽(1,−1,0)
𝜆(1,−1,0)

I1,P +
M + 𝜀
𝜆(1,−1,0)

(6.7.24)
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𝜎2N =
𝜇2
(0,1,−1)

+ 𝜇2
(1,−1,0)

𝜆2
(1,−1,0)

𝜎2
𝛷
= (1485 + 44)𝜎2

𝛷
= 1529𝜎2

𝛷
(6.7.25)

The ionospheric factor 𝛽N = 0.505 is relatively large. An ionosphere of 1m causes a
change of one-half of theWL ambiguity. The standard deviation of theWL ambiguity
is 𝜎N = 39𝜎𝛷. Notice that the variance factor of the extra wide lane is much larger
than that of the wide lane because of the relative closeness of the second and third fre-
quencies. There is also a similarly unequal contribution to the total multipath which
is MN ≤ 64M𝛷, applying again the multipath factor of (6.1.68). There is no pseudo-
range multipath because the function does not include pseudoranges. The technique
is best suited for short baselines, due to the residual impact of the ionosphere.

The above simple quality measures make clear that WL resolution should be
expected to be more difficult than the EWL resolution. More observations will need
to be taken over a longer period of time to reduce the noise to be able to identify the
correct integer of the ambiguity. Unfortunately, when observations are taken over a
longer period of time, the multipath variations can become a major concern.

ApplyingHMWFunction to the First and Second Frequency:TheHMW func-
tion provides an attractive alternative to the previous approach. We can readily write

N(1,−1,0) =
𝛷(1,−1,0) − P(1,1,0)

𝜆(1,−1,0)
−

M + 𝜀
𝜆(1,−1,0)

(6.7.26)

𝜎2N =
𝜇2
(1,−1,0)

𝜎2
𝛷
+ 𝜇2

(1,1,0)
𝜎2P

𝜆2
(1,−1,0)

= 44𝜎2
𝛷
+ 0.682𝜎2P (6.7.27)

This estimate of the wide-lane ambiguity is free of ionospheric effects and even has
a good formal standard deviation of 𝜎N = 0.17, assuming the default values. As with
any of theHMWfunctions, equation (6.7.26) contains a potentially large pseudorange
multipath that is even slightly amplified because the wide-lane wavelength is less than
1m, i.e.,MN ≤ 1.2M𝛷.

Ionospheric-Reduced and Minimum Variance: Zhao et al. (2014) propose to
minimize the variance of the sum of the scaled pseudoranges and ambiguity-corrected
extra wide lane. In addition, they introduce an adaptive factor that scales the iono-
spheric effect from zero (ionospheric free) to higher values that might relate to longer
baselines. Consider

aP1 + bP2 + cP3 + d𝛷(0,1−1) −𝛷(1−1,0) = −𝜆(1−1,0)N(1−1,0) + 𝛽I1,P +M + 𝜀
(6.7.28)

𝛽 = a + b𝛽(0,1,0) + c𝛽(0,0,1) − d𝛽(0,1,−1) + (1 + 𝜅)𝛽(1−1,0) (6.7.29)

N(1−10) =
−aP1 − bP2 − cP3 − d𝛷(0,1,−1) +𝛷(1,−1,0)

𝜆(1,−1,0)
+

𝛽

𝜆(1,−1,0)
I1,P +

M + 𝜀
𝜆(1,−1,0)

(6.7.30)
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a + b + c + d = 1
𝛽 = 0

(a2 + b2 + c2)𝜎2P + d2𝜇2(0,1,−1)𝜎
2
𝛷
= min

⎫⎪⎬⎪⎭ (6.7.31)

The first condition in (6.7.31) assures the geometry-free part, i.e., the topocentric
satellite distance and the tropospheric delay terms cancel. The second condition,
which includes the adoptive factor 𝜅, enforces the function (6.7.28) to be ionospheric
free even if 𝜅 = 0. The idea is to increase 𝜅 with baseline length to allow a residual
double-differenced ionosphere of k𝛽(1,−1,0) I1,P. The third condition implies mini-
mum variance, assuming (as is done throughout this section) that the variances of the
three pseudoranges are the same. The conditions (6.7.31) together imply the need to
compute a new set of coefficients (a, b, c, d) for every 𝜅.

For the special case of 𝜅 = 0, one obtains a = 0.5938, b = 0.0756, c = −0.0416,
and d = 0.3721, and the variance of the wide-lane ambiguity becomes

𝜎2N =
(a2 + b2 + c2)𝜎2P + (d2𝜇2(0,1,−1) + 𝜇

2
(1,−1,0)

)𝜎2
𝛷

𝜆2
(1,−1,0)

= 0.484𝜎2P + 250𝜎2
𝛷

(6.7.32)

Using again the default standard deviations for pseudoranges and carrier phases,
we get 𝜎N = 0.143 for this ionospheric-free case. The maximum multipath MN ≤
0.82MP + 29.6M𝛷 contains a significant phase contribution that comes from the EWL
component. For a discussion on the cases of 𝜅 ≠ 0, please see Zhao et al. (2014).

6.7.2.3 Resolving the NL Ambiguity Three solutions are presented for
resolving the narrow-lane (NL) ambiguity N3. All three solutions rely on ambiguity-
corrected wide-lane carrier phase observations. The first one is also applicable to
dual-frequency applications to resolve N1 and shows a strong dependency in the
ionospheric delay. The second and third solutions are of the ionospheric-free type
and are characterized, as one would expect, by a very high standard deviation and
multipath factor.

Differencing Ambiguity-Corrected WL and Original Phase: Since the wide-
lane ambiguity is now known, we can compute

𝛷(1,−1,0) −𝛷3 = −𝜆3N3 + (−𝛽(1,−1,0) + 𝛽(0,0,1))I1,P +M + 𝜀 (6.7.33)

N3 =
−𝛷(1,−1,0) +𝛷3

𝜆3
+

(−𝛽(1,−1,0) + 𝛽(0,0,1))

𝜆3
I1,P −

M + 𝜀
𝜆3

(6.7.34)

𝜎2N =
𝜇2
(1,−1,0)

+ 1

𝜆23

𝜎2
𝛷
= 522𝜎2

𝛷
(6.7.35)

The ionospheric factor of 𝛽N = 12.06 causes a large amplification of the residual iono-
spheric carrier phase delays. The standard deviation of the ambiguity is 𝜎N = 23𝜎𝛷.
Even if (6.7.33) were differenced with respect to 𝛷1 or 𝛷2, the standard deviation
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would not change significantly because the wide lane is the largest contributor. The
multipath isMN ≤ 36M𝛷. Once theN3 ambiguity is available, the other original ambi-
guities follow from

N2 = N(0,1,−1) + N3

N1 = N(1,−1,0) + N2 (6.7.36)

Because of the high ionospheric dependency, this approach works best for short base-
lines.

In support of this approach, one might consider estimating the ionosphere. Differ-
encing the ambiguity-corrected extra wide lane and wide lane gives

𝛷(0,1,−1) −𝛷(1,−1,0) = (−𝛽(0,1,−1) + 𝛽(1,−1,0))I1,P +M + 𝜀 (6.7.37)

I1,P =
𝛷(0,1,−1) −𝛷(1,−1,0)

−𝛽(0,1,−1) + 𝛽(1,−1,0)
−

M + 𝜀
−𝛽(0,1,−1) + 𝛽(1,−1,0)

(6.7.38)

𝜎2I1,P
=

𝜇2
(0.1,−1)

+ 𝜇2
(1,−1,0)

(−𝛽(0,1,−1) + −𝛽(1,−1,0))2
𝜎2
𝛷
= 6008𝜎2

𝛷
(6.7.39)

The respective numerical quality values are 𝜎1 = 78𝜎𝛷 and M1 ≤ 126M𝛷. Applying
the variance propagation to (6.7.34) for the carrier phases and the ionospheric delay
to take both the observational noise and the uncertainty of the computed ionosphere
into account, gives

𝜎2N = (522 + 12.062 ⋅ 6008)𝜎2
𝛷

(6.7.40)

with 𝜎N = 935𝜎𝛷. This high standard deviation clearly indicates that computing the
ionospheric delay first and then using it in (6.7.34) results in a high uncertainty for
the ambiguity.

An alternative way of computing the ionosphere is equation (6.1.57), which uses
the original observations explicitly. In the traditional notation the function is

AC3 ≡ (𝜆12 − 𝜆13)𝜑1 − 𝜆12𝜑2 + 𝜆13𝜑3 − N12𝜆12 + N13𝜆13

=
(√
𝛾12 −

√
𝛾13

)
I1,P +M + 𝜀 (6.7.41)

However, this equation is identical to (6.7.37) after appropriate scaling, and therefore,
does not offer a better way for computing the ionospheric delay. Given the significant
impact of the residual ionosphere when computing the original ambiguity N3, it is
tempting to look again for an ionospheric-free solution.

WL Ambiguity-Corrected Triple-Frequency Phases: A possible candidate for
computing the first ambiguity is equation (6.1.53), after all it is an ionospheric-free
and geometry-free function. Solving the equation for N1, the general form can be
written as

N1 = a𝛷1 + b𝛷2 + c𝛷3 + dN12 + eN13 +M + 𝜀 (6.7.42)

The ambiguity N13 is obtained from the previously resolved WL and EWL ambigu-
ities as N13 = N12 + N23. The numerical phase factors are a = −143, b = −777, and
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c = −634. These values translate into a very large standard deviation of 𝜎N = 1013𝜎𝛷
for the ambiguity and largemultipathmagnification ofMN ≤ 1554M𝛷. These extraor-
dinarily large values do not change even if (6.7.42) were to be formulated in terms of
N23 instead of N13.

Ionospheric-Free Function with Ambiguity-Corrected EWL and WL:
Another approach to compute an ionospheric-free function is to utilize both
ambiguity-corrected EWL and WL functions. Consider

a𝛷(0,1,−1) + b𝛷(1,−1,0) −𝛷3 = −𝜆3N3 + (−a𝛽(0,1,−1) − b𝛽(1,−1,0) + 𝛽(0,0,1))I1,P

+M + 𝜀 (6.7.43)

N3 =
−a𝛷(0,1,−1) − b𝛷(1,−1,0) +𝛷3

𝜆3
+ 𝛽NI1,P +

M + 𝜀
𝜆3

(6.7.44)

𝜎2N3
=

a2𝜇2(0,1,−1) + b2𝜇2(1,−1,0) + 1

𝜆3
𝜎2
𝛷

(6.7.45)

a + b = 1
a𝛽(0,1,−1) + b𝛽(1,−1,0) − 𝛽(0,0,1) = 0

}
(6.7.46)

a =
𝛽(0,0,1) − 𝛽(1,−1,0)
𝛽(0,1,−1)−𝛽(1,−1,0)

b = 1 − a (6.7.47)

The first condition in (6.7.46) assures a geometry-free solution, and the second
condition makes the solution ionospheric free. The first phase factor is a = −7.07.
The standard deviation and the multipath can be computed as 𝜎N = 2818𝜎𝛷 and
MN ≤ 4686M𝛷. These values are very high and render the solution to be of ques-
tionable value. Li et al. (2010) carried out the solution for the combination (0,1,−1),
(1,−6,5), and (4,0,−3), resulting in a = −0.039, 𝜎N = 997𝜎𝛷, and MN ≤ 1596M𝛷.

6.7.3 Geometry-Based TCAR

The geometric terms, such as the topocentric satellite distance and the tropospheric
delay, are included in the solution. In order to make a solution possible, the mathemat-
ical model includes separate equations for pseudoranges and carrier phases. Because
the tropospheric delay is explicitly included, it might be necessary to model or esti-
mate this delay for long baselines. For short baselines, the tropospheric delay is
lumped with the topocentric satellite distance. The goal of geometry-based TCAR
(GB-TCAR) is still to estimate the integer ambiguities first in three separate steps
and then estimate the position coordinates in a fourth step. The topocentric satellites
distance is, therefore, not parameterized in terms of coordinates.

Even in the case of GB-TCAR, one also prefers to compute the extra wide-lane
ambiguity N(0,1,−1) according to (6.7.19) using the HMW function. This is done
because this function can be easily applied and works well. Instead of resolving the
wide lanes N(0,1,−1) or N(1,0,−1) next, which certainly could be done, we resolve the
extra wide lane N(1,−6,5), and then the narrow lane N(4,0,−3).
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Resolving N(1 ,− 6 , 5): Consider the following model:

PC = 𝜌′ +MPC + 𝜀PC
𝛷(1,−6,5) = 𝜌

′ + 𝜆(1,−6,5)N(1,−6,5) − 𝛽(1,−6,5)I1,P +M(1,−6,5) + 𝜀(1,−6,5),𝛷

}
(6.7.48)

where PC is the triple-frequency function (6.7.7) that is ionospheric free and mini-
mizes the variances. The tropospheric delay is lumped with the topocentric satellite
distance as 𝜌′ = 𝜌 + T . The standard deviation of the optimized pseudorange function
is given above as 𝜎PC = 2.545𝜎P, and the multipath isMPC = 3.6MP. Instead of PC,
one could also use an ionospheric-free dual-frequency function because their stan-
dard deviations are not much larger. The ionospheric factor for the phase combination
is 𝛽(1,−6,5) = −0.074, making this function suitable for processing of long baselines.
The standard deviation and the multipath are 𝜎(1,−6,5),𝛷 = 104𝜎𝛷 and M(1,−6,5),𝛷 =
161M𝛷. The wavelength is 𝜆(1,−6,5) = 3.258 which, according to our adopted con-
vention, actually is an EWL and not a WL function.

The model contains two types of parameters, the lumped parameter 𝜌′ which is
estimated for each epoch, and the ambiguity parameter which is constant as long as
there is no cycle slip. Once the integer ambiguities have been determined, we can
compute the traditional WL and EWL ambiguities as[

N(1,−1,0)
N(1,0,−1)

]
=

[
1 5
1 6

] [
N(1,−6,5)
N(0,1,−1)

]
(6.7.49)

which can then be used as known quantities.
Resolving the Narrow-Lane Ambiguity: Since N(0,1,−1), N(1,−6,5), and N(1,0,−1)

are known, the narrow-lane ambiguity can be computed using one of the wide-lane
functions as

𝛷(1,0,−1) = 𝜌
′ − 𝛽(1,0,−1)I1,P +M(1,0,−1) + 𝜀(1,0,−1),𝛷

𝛷(4,0,−3) = 𝜌
′ + 𝜆(4,0,−3)N(4,0,−3) − 𝛽(4,0,−3)I1,P +M(4,0,−3) + 𝜀(4,0,−3),𝛷

}
(6.7.50)

Several variations are possible. For example, instead of using the extra wide lane
𝛷(1,0,−1), one might consider 𝛷(1,−6,5). The latter provides more reduction in iono-
spheric impact at the expense of potentially a higher multipath.

6.7.4 Integrated TCAR

The various steps of GB-TCAR can, of course, be combined into one step which is
referred to as an integrated TCAR (Vollath et.al., 1998). This model uses all obser-
vations simultaneously. In this example,

P1 = (𝜌 + T) + I1,P +M1,P + 𝜀P
P2 = (𝜌 + T) + 𝛽(0,1,0)I1,P +M2,P + 𝜀P
P3 = (𝜌 + T) + 𝛽(0,0,1)I1,P +M3,P + 𝜀P
𝛷1 = (𝜌 + T) + 𝜆1N1 − I1,P +M1,𝛷 + 𝜀𝛷
𝛷(4,0,−3) = (𝜌 + T) + 𝜆(4,0,−3)N(4.0.−3) − 𝛽(4,0,−3)I1,P +M(4,0,−3),𝛷 + 𝜀(4,0,−3),𝛷
𝛷(1,−6,5) = (𝜌 + T) + 𝜆(1,−6,5)N(1.−6.5) − 𝛽(1,−6,5)I1,P +M(1,−6,5),𝛷 + 𝜀(1,0,−1),𝛷
L1,P = I1,P

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(6.7.51)
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the EWL and NL carrier phase functions were chosen. For long baselines, the
tropospheric delay might need to be modeled and parameterized separately. In
epoch-by-epoch sequential processing, one would fix the extra wide lane first and
continue processing epochs until the other ambiguities have been fixed. Since several
ambiguities are estimated in one step, one can readily use search algorithms that
take advantage of the full variance-covariance matrix and not neglect correlations
between the parameters.

The system (6.7.51) contains an ionospheric observation. In the simplest case the
initial value, conceptually identical to approximate values in adjustment terminology,
could be zero and the ionospheric parameter would be allowed to adjust according
to the assigned weight. If available, one could use an external ionospheric model to
assign the initial value. In that case the residual ionospheric delays to be estimated
would be small and the ambiguity estimation over longer baseline should be easier,
depending on the accuracy of the external information.

The system (6.7.51) can readily be replaced with another set of functions, as long
as they are independent. An interesting combination is the optimized pseudorange
equation (6.7.2), the triple-frequency ionospheric-free phase function (6.1.58), and
the dual-frequency ionospheric-free phase function (6.1.39). The ambiguities to be
estimated would be N1, N12, and N13.

6.7.5 Positioning with Resolved Wide Lanes

Following the TCAR philosophy, the station coordinates are estimated after all ambi-
guities have been resolved. Typically, one would prefer the resolved original integer
ambiguities N1, N2, and N3 for accurate positioning. However, when in need of rapid
positioning with low accuracy, one can utilize the resolved EWL andWL ambiguities
and avoid the additional difficulties of resolving the NL ambiguity. For example, con-
sider the ambiguity-corrected EWL function

𝛷(1,−6,5) = 𝜌 − 𝛽(1,−6,5)I1,P + T +M(1,−6,5),𝛷 + 𝜀(1,−6,5),𝛷 (6.7.52)

Since this function has a low ionospheric dependency, it is suitable for long
baseline processing. Another candidate is function (6.1.58), given here in traditional
notation:

AC4 ≡ 𝜆13
[
𝜆12
𝜆1
𝜑1 −

(
𝜆12
𝜆1

+
𝜆13

𝜆3

)
𝜑2 +

𝜆23

𝜆3
𝜑3 −

𝜆12
𝜆1

N12 +
𝜆23

𝜆3
N23

]
= 𝜌 + T +MAC4 + 𝜀AC4 (6.7.53)

The formal standard deviation of the function is 𝜎AC4 = 27𝜎𝜑. The multipath isM ≤
41M𝜑.

For even coarser positioning, consider the special pseudorange function PC of
(6.7.2), which was designed to minimize the variance. As a matter of interest, another
pseudorange equation that includes all three pseudoranges can be readily derived
from (6.7.53). Divide each 𝜑i by 𝜆i and replace the symbols 𝜑i with 𝛷i. In a second
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and final step, replace the 𝛷i by Pi and delete the ambiguity terms, giving

𝜆13𝜆12

𝜆21

P1 −
𝜆13

𝜆2

(
𝜆12
𝜆1

+
𝜆23

𝜆3

)
P2 +

𝜆13𝜆23

𝜆23

P3 = 𝜌 + T +M + 𝜀 (6.7.54)

The numerical values of the respective pseudorange factors are 17.88, −84.71, and
67.82. Such large factors cause a very high variance for the combination and a
potentially large multipath magnification. Therefore, this function is not attractive
for use.

As to GF-TCAR and short baselines, for which per definition the double-
differenced ionosphere is negligible, only the formal standard deviation of the
ambiguities and multipath magnification factor need to be examined. For the extra
wide lane N(0,1,−1) and wide lane function N(1,−1,0), there are several acceptable
choices. In both cases, the HMW function is among them. Approach (6.7.34) is
best-suited for estimating the N3 ambiguities since the other two candidates have
a high standard deviation and high multipath magnification. The same functions
also seem to be the preferred functions for long baselines. Clearly, in that case the
ionospheric delay becomes noticeable, external information about the ionosphere
should be considered.

In terms of GB-TCAR, the system (6.7.51) is the preferred one because all obser-
vational information is used together. Since the extra wide lanes N(0,1,−1) or N(1,−6,5)
can generally be determined over a short period of time, possibly even with a single
epoch of data, one might give preference to determining one of them separately and
then constrain it.

6.8 SUMMARY

In this chapter, we addressed the basic GNSS positioning approaches. This chapter
should be viewed together with Chapter 7, which provides all the details onRTKusing
recursive least-squares. In Section 6.1, we derived the basic pseudorange and carrier
phase equation and then listed various undifferenced functions of these observables,
including triple-frequency functions. The notation used in this chapter was explained,
and efforts were made to keep the notation clear and systematic. We also referred to
the special triple-frequency subscript notation, which has become popular in recent
literature.

Section 6.2 referred to operational details of “things to know” for serious GNSS
users. We emphasized the excellent “GNSS infrastructure” that is in place and ready
to be used. Over the years, much effort has been made to establish various services
of exemplary quality that make it easy for the user to get the best performance out of
GNSS systems. Especially relevant are the services of the IGS and the various online
computing services that accept original field observations.

Sections 6.3 and 6.4 referred to the well-established navigation solution using
pseudoranges and the broadcast ephemeris for single-point positioning (nonlinear
and linearized solutions), as well as relative positioning using carrier phases and
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pseudoranges with emphasis on static positioning. The dilution of precision factors
was given. Although the ambiguity function technique does not seem to enjoy major
popularity among users, it was presented to provide an alternative to the customary
double-difference ambiguity fixing. Yet another alternative to double differencing
was briefly presented, i.e., the equivalent undifferenced formulation.

Ambiguity fixing with LAMBDA was dealt with in Section 6.5. The popular ratio
test was discussed, including one approach of discernibility that gives some guidance
as to the best value to adopt for the ratio. It was mentioned that a lot of research has
been done to improve the testing theory to assure that indeed the correct set of ambigu-
ities is accepted. An example is the aperture theory developed by Teunissen. However,
to keep the mathematics at a minimum, only respective references are cited for this
research. Instead, a major subsection was provided to see what other disciplines are
doing who have problems similar to ambiguity fixing in GNSS.

As to network-supported positioning in Section 6.6, the key parameters of PPP
are the lumped parameter Rp

k and the ionospheric-free receiver and satellite code
biases 𝜉k,PIF12 and 𝜉

P
PIF12 in (6.6.2). In the case of RTK, the differential corrections are

Δ𝛷p
k in (6.6.24) and ΔPp

k in (6.6.33), which are transmitted to the user. There were
three PPP-RTK solutions discussed—the single-frequency, the dual-frequency, and
the across-satellite difference methods. For these three methods, the elements trans-
mitted to the user are, respectively,

{
𝜉
p
𝛷,FCB, 𝜉

p
P

}
of (6.6.57),

{
𝜉1
𝛷IF12, D

p
HMW12, 𝜉

p
PIF12

}
of

(6.6.75), and
{
D1q

HMW12,FCB, D
1q
A,FCB, 𝜉

1q
PIF12

}
of (6.6.108).

In Section 6.7, the triple-frequency solutions were examined. The major
difference between the single-step batch solution and TCAR is that the former
uses all correlations between parameters when resolving the integer ambiguities.
Of the TCAR solutions presented, the system that combines all observations is
preferred because it allows all correlations to be utilized when fixing the integers.
Both single-step solution and TCAR can be solved sequentially allowing the
EWL ambiguities to be estimates first, followed by the WL and then the NL
ambiguities. In terms of GF-TCAR and short baselines, for which per definition
the double-differenced ionosphere is negligible, only the formal standard deviation
of the ambiguities and multipath magnification factor need to be examined. As to
EWL and WL functions, there are several acceptable choices. In both cases, the
HMW function is among them. In terms of GB-TCAR, the system that uses all
observational information is preferred. Since the extra wide lanes can generally be
determined over a short period of time, possibly even with a single epoch of data,
one might in this case give preference to determining these separately and then
constrain them.





CHAPTER 7

REAL-TIME KINEMATICS RELATIVE
POSITIONING

Real-time kinematics (RTK) is a high-precision positioning technique that uses car-
rier phase and pseudorange measurements in real time. The high-precision position
calculations are performed at the rate of measurements at the rover station. The base
station, which is located at a known position, transmits its raw data, appropriately for-
matted, through a data communication channel. Ultra high frequency (UHF), cellular
Global System for Mobile Communications (GSM), Long Term Evolution (LTE),
WiFi, or Internet channels can be used for data transmission. Usually the data is trans-
mitted one way, from the base to the rover. One or several rovers can listen to a certain
base station and difference their raw measurements with raw measurements from the
base station to correct the position.

There are several formats in use for data transmission of full raw measurements
or differential corrections. All formats compact the transmission of information that
is necessary to cancel GNSS errors. Errors that do not depend on the position of
a station, or are nearly independent of location, tend to vary slightly with position
and have almost equal effects on the measurements of both stations. These include
satellite clock errors, satellite ephemerides errors, and atmospheric delays. The rover,
having available its own measurements and the measurements from the base station,
is able to form across-receiver differences to calculate the high-precision position
relative to the base. The rover computes across-receiver differences for all satellites
observed simultaneously at the base and the rover. Across-receiver differencing is
carried out in a uniform manner for all GNSS systems such as GPS, GLONASS,
Galileo, QZSS, Beidou, and SBAS.

In this chapter the recursive least-squares estimation approach of Chapter 3 is
applied exclusively. The notation of that chapter is in general also carried over.
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The estimation uses across-receiver differences and not double differences. Two data
sets of actual observations help in illustrating the numerical aspects.

We develop a unified scheme for processing multifrequency and multisystem
observations in RTK mode. We present tables that allow a unique association
of signals and satellite systems. The suitability of a linear model to express the
frequency dependency of GLONASS receiver hardware is verified first, which
then allows for ready incorporation of GLONASS observations into the processing
scheme. Although the linearization of carrier phase and pseudorange observations
has been addressed in the previous chapter, it is presented again in the context of
across-receiver difference observables and for providing the linearized form of the
light time iteration procedure discussed in Chapter 6.

We first apply the RTK algorithm to a short static baseline and generate figures
to demonstrate the convergence of across-receiver fractional hardware carrier phase
delays. The RTKkinematic processing solutions beginwith a short line whose rover is
allowed unconstrained motions. This is followed by the RTK dynamic processing of
a short line, whose rover motion is described by a dynamic model, and by the process-
ing of a long line inwhich the ionospheric delay is also described by a dynamicmodel.
A separate section deals with the extension of the algorithm to allow the number of
signals to vary, as is the case when satellites set or rise or loss of signal occurs due to
blockage of the signal by physical objects along the line of sight to the satellites. New
ambiguity parameters are introduced after cycle slips. In addition, a special section
is dedicated to the detection and isolation of cycle slips. The approach selected bor-
rows from procedures that are popular in compressive signal sensing theory. The slip
history is considered a sparse event and is numerated by sparsely populated vectors
or matrices. The second to the last section deals with ambiguity fixing. We identify
one base satellite within a group, i.e., the group of GPS satellites, estimate the base
satellite ambiguities as real-valued number and fix the double-difference ambiguities.
The chapter closes with remarks on optimal software implementation.

7.1 MULTISYSTEM CONSIDERATIONS

When speaking about the GNSS navigation signal, we mean a combination of signals
from different carrier frequencies and satellite systems such as GPS, GLONASS,
Galileo, QZSS, SBAS, and Beidou. We note that not all combinations of systems
and frequencies are possible. For example, Galileo does not transmit signals in the
L2 frequency band and GPS does not transmit in the E6 band. Table 7.1.1 shows the
currently available satellite systems and carrier frequencies expressed in MHz.

The GLONASS FDMA L1 and L2 signals are available on GLONASS M satel-
lites. The integer number l taking values from the range

l ∈ [−7, 6] (7.1.1)

is referred to as the frequency letter. Actually, the same letter has been allocated to
two satellites having different satellite numbers. The respective satellites are located
at opposite points in the same orbital plane and thus cannot be observed simulta-
neously by a station located near or on the earth surface. The expected GLONASS
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TABLE 7.1.1 GNSS Name and Band Frequencies.

GNSS Band Frequency

GPS L1
L2
L5

154 × 10.23 = 1575.42
120 × 10.23 = 1227.6
115 × 10.23 = 1176.45

Galileo L1
E5a
E5b
E6

154 × 10.23 = 1575.42
115 × 10.23 = 1176.45
118 × 10.23 = 1207.14
125 × 10.23 = 1278.75

GLONASS FDMA L1
L2

1602 + l × 0.5625
1246 + l × 0.4375

Beidou (Compass) B1
B2 (E5b)
B3

152.5 × 10.23 = 1561.098
118 × 10.23 = 1207.14
124 × 10.23 = 1268.52

QZSS L1
L2
L5
E6

1575.42
1227.6
1176.45
1278.75

SBAS L1
L5

1575.42
1176.45

CDMA system (not shown in the table) will include the GLONASS CDMA L1, L2,
L3, and L5. GPS, Galileo, SBAS, and QZSS signals are using the same time scale,
while GLONASS and Beidou use their own time scale.

The basics of code and carrier phase processing are described in preceding
chapters. Now we are starting to describe the numerical algorithms for recurrent
processing of pseudorange and carrier phase measurements intended for both
real-time kinematics (RTK) processing and postmission processing. The next section
gives expressions for undifferenced measurements and across-receiver difference
measurements for rover and base. These are the navigation equations since they
connect measurements with the position of the rover station, which is the subject of
the position determination.

7.2 UNDIFFERENCED AND ACROSS-RECEIVER DIFFERENCE
OBSERVATIONS

Let S∗ be the set of signals currently available and Sk be the set of signals available for
processing at receiver k. For s ∈ Sk we assume that the signal s = (p, b) is represented
by a pair of numbers consisting of an internal number p that uniquely identifies the
navigation system, and the frequency band identifier b. Table 7.2.1 shows the internal
number assignment we have chosen. Note that internal numbering is for internal use
inside the receiver firmware, it is not standardized and certainly can differ by receiver
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TABLE 7.2.1 Assignment of Internal Satellite Numbers.

Internal Satellite
Number p GNSS

Set of Available
Frequency Bands Fp

1,… , 32 GPS L1, L2, L5
33,… , 56 GLONASS FDMA L1, L2
57,… , 86 Galileo L1, E5a, E5b, E6
87,… , 90 QZSS L1, L2, L5, E6
91,… , 120 Beidou B1, B2, B3
121,… , 143 SBAS L1, L5

TABLE 7.2.2 Current Assignment of GLONASS Satellite Number
and Frequency Letters.

p l(p) p l(p) p l(p) p l(p)

33 1 39 5 45 −2 51 3
34 −4 40 6 46 −7 52 2
35 5 41 −2 47 0 53 4
36 6 42 −7 48 −1 54 −3
37 1 43 0 49 4 55 3
38 −4 44 −1 50 −3 56 2

manufacturer. The range of the frequency band identifier depends on the satellite
number. Let us denote the set of frequency bands available for the satellite p by Fp.
The GLONASS satellite letters (7.1.1) are mapped to numbers in Table 7.2.1 (cur-
rently for p = 33,… , 56) as shown in Table 7.2.2 according to the official site of the
Russian Information Analytical Center (http://glonass-iac.ru/en/GLONASS).

Let 𝛴p denote the satellite system corresponding to satellite p. The mapping p →
𝛴p is defined in the Table 7.2.1. Note again, that Table 7.2.1 describes an exemplary
mapping. Different manufacturers use different mappings.

We now present the fundamental set of navigation equations using notations intro-
duced in Chapter 6 and generalized to the signal concept notation s = (p, b) and
b ∈ Fp, and indexing the station by k, and time ofmeasurement by t. The pseudorange
measurement equation becomes

Pp
k,b(t) = 𝜌

p
k(t) + cdtk(t) − cdtp(t) +

(
f pL1
f pb

)2

Ipk,L1(t) + Tp
k (t)

+ dk,b,P +Mp
k,b,P − Dp

b,P + 𝜀
p
k,b,P(t) (7.2.1)

The signal of the frequency band b emitted by the satellite p experiences a hardware
delay at the receiver k by dk,b,P. The corresponding satellite hardware delay is denoted
by Dp

b,P. The code multipath delay of the signal emitted from satellite p at frequency
band b and received by station k is denoted by Mp

k,b,P.

http://glonass-iac.ru/en/GLONASS
http://glonass-iac.ru/en/GLONASS
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The carrier phase measurement has the form

𝜑
p
k,b(t) =

f pb
c
𝜌
p
k(t) + f pb dtk(t) − f pb dt

p(t) + Np
k,b

(
tpCS,k,b

)
−

1
c

(
f pL1
)2

f pb
Ipk,L1(t)

+
f pb
c
Tp
k (t) + dpk,b,𝜑 +Mp

k,b,𝜑 − Dp
b,𝜑 + 𝜀pk,b,𝜑 (7.2.2)

where f pb is the carrier frequency of the signal. For example, according to
Tables 7.1.1, 7.2.1, and 7.2.2 we have: f pL1 = 1575.42 MHz, f pL2 = 1227.6 MHz,
f pL5 = 1176.45 MHz for p = 1,… , 32, f pL1 = 1602 + l(p) × 0.5625 MHz, f pL2 =

1246 + l(p) × 0.4375 MHz for p = 33,… , 56, f pL1 = 1575.42 MHz, f pE5a =
1176.45 MHz, f pE5b = 1207.14 MHz, f pE6 = 1278.75 MHz for p = 57,… , 86
and so on.

The symbol tpCS,k,b in (7.2.2) is the exact time the last cycle slip happened. Note that
the cycle slip leads to a jump, usually integer valued, of the carrier phase ambiguity.
Half a cycle slip can also occur, lasting for several seconds until certain phase-locked
loop (PLL) corrects its state to the nearest stable state. Other notation includes the car-
rier phase multipath delay Mp

k,b,𝜑 and the satellite hardware delay Dp
b,𝜑. The receiver

hardware delay of a signal emitted at frequency band b by satellite p at station k
usually depends on frequency. Assuming that

dpk,b,𝜑 = d0k,b,𝜑 +
f pb
c
𝜇k,b,𝜑 (7.2.3)

we are introducing a linear frequency dependence of the hardware delay as a rea-
sonable first-order approximation. For all GPS L1 signals, having the same carrier
frequency 1575.42MHz (and therefore experiencing the same hardware delays), the
second term in (7.2.3) can be ignored so one obtains dpk,L1,𝜑 ≡ d0k,L1,𝜑 for p = 1,… , 32.
The same is true for GPS L2 signals, GPS L5 signals, and other signals except for
GLONASS FDMA L1 and GLONASS FDMA L2, because each satellite has its own
carrier frequency letter. In other words, considering dependency of hardware delay
on the satellite number inside the system and on the frequency band makes sense only
for the GLONASS system.

As discussed later, this first-order approximation is applicable in practice. The
coefficients of the linear dependency 𝜇k,b,𝜑 are available from a lookup table stored
in the computer or receiver memory. Another option is to consider it a constant param-
eter that is to be estimated along with other parameters. Note that using the lookup
table allows for a more precise representation andmore thorough compensation of the
hardware biases as compared to their linear representation. Additional details about
the creation of a lookup table are given below.

All other notations used in (7.2.1) and (7.2.2) have been introduced in Chapter 6.
Using the following notation for the carrier wavelengths

𝜆
p
b =

c

f pb
(7.2.4)
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we can present the carrier phase measurements equation (7.2.2) in themetric form:

𝛷
p
k,b(t) = 𝜌

p
k(t) + cdtk(t) − cdtp(t) + 𝜆pbN

p
k,b

(
tpCS,k,b

)
−

(
𝜆
p
b

𝜆
p
L1

)2

Ipk,L1(t) + Tp
k (t)

+ 𝜆pbd
p
k,b,𝜑 +Mp

k,b,𝛷 − Dp
b,𝛷 + 𝜀b,𝛷(t) (7.2.5)

The terms Mp
k,b,𝛷, Dp

b,𝛷, and 𝜀b,𝛷(t) denote carrier phase multipath, hardware-
dependent biases of the satellite, and noise expressed in the metric form.

The error terms in equations (7.2.1), (7.2.2), and (7.2.5) can be divided into two
groups—modeled errors and nonmodeled errors. The tropospheric delay can be mod-
eled using one of the models described in Chapter 8. According to the tropospheric
model, the delay term Tp

k (t) is estimated using a rough approximation of the position
and a priori atmospheric data such as temperature, pressure, and humidity. Improv-
ing the position solution iteratively also improves the tropospheric delay estimate,
provided the iterations converge. Therefore, the tropospheric delay is considered
as a correction to be compensated on the left side of (7.2.1) and (7.2.2), forming
left-side terms

P
p
k,b(t) = Pp

k,b(t) − Tp
k (t) (7.2.6)

𝜑
p
k,b(t) = 𝜑

p
k,b(t) −

1
𝜆
p
b

Tp
k (t) (7.2.7)

Note that we do not compensate for other terms that are specific to a certain satel-
lite and common for different stations because these will vanish when calculating
across-receiver differences.

The multipath error term is usually not modeled. We must accept its existence
together with possibly other unmodeled errors. Not being able to directly compensate
or estimate these unmodeled errors, we take into account their statistical properties,
such as epoch-wise variance or across-epoch correlation. Combining all unmodeled
terms with those on the right side of (7.2.1) and (7.2.2), we define the cumulative
unmodeled errors 𝜀pk,b,P(t) and 𝜀

p
k,b,𝜑(t).

The navigation equations can be now presented in the form

P
p
k,b(t) = 𝜌

p
k(t) + cdtk(t) − cdtp(t) +

(
f pL1
f pb

)2

Ipk,L1(t)

+ dk,b,P − Dp
b,P + 𝜀

p
k,b,P(t) (7.2.8)

𝜑
p
k,b(t) =

1
𝜆
p
b

𝜌
p
k(t) + f pb dtk(t) − f pb dt

p(t) + Np
k,b

(
tpCS,k,b

)
−

1
𝜆
p
b

(
f pL1
f pb

)2

Ipk,L1(t)

+ dpk,b,𝜑 − Dp
b,𝜑 + 𝜀pk,b,𝜑 (7.2.9)
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In equations (7.2.1), (7.2.2), (7.2.8), and (7.2.9), the symbol 𝜌pk denotes the distance
that the signal travels from transmission at the satellite antenna to reception at the
receiver antenna. The travel time in the vacuum is

𝜏
p
k =

𝜌
p
k

c
(7.2.10)

Assuming that two receivers k and m observe the same satellite p, the across-receiver
differences of pseudorange and carrier phase measurements that are introduced in
Section 6.1.2 can be written as

P
p
km,b(t) = 𝜌

p
k(t) − 𝜌

p
m(t) + cdtkm(t) +

(
f pL1
f pb

)2

Ipkm,L1(t)

+ dkm,b,P + 𝜀
p
km,b,P(t), (7.2.11)

𝜑
p
km,b(t) =

1
𝜆
p
b

(
𝜌
p
k(t) − 𝜌

p
m(t)
)
+ f pb dtkm(t) + Np

km,b

(
tpCS,km,b

)
−

1
𝜆
p
b

(
f pL1
f pb

)2

Ipkm,L1(t)

+ dpkm,b,𝜑 + 𝜀pkm,b,𝜑, (7.2.12)

The symbol tpCS,km,b = max
{
tpCS,k,b, t

p
CS,m,b

}
denotes the time at which the last cycle

slip occurred at either carrier phase 𝜑p
k,b(t) or 𝜑

p
m,b(t), i.e., the time the latest cycle

slip occurred in either receiver. As was mentioned in Section 6.1.2, errors or biases
which are specific for satellite p vanish in (7.2.11) and (7.2.12). We also denote

Skm = Sk ∩ Sm (7.2.13)

as the set of signals common for both stations k and m. Across-receiver differences
are available only for signals s ∈ Skm.

The across-receiver difference of the hardware delay dpkm,b,𝜑 can be written as d
0
k,b,𝜑

for all signals except GLONASS FDMA L1 and GLONASS FDMA L2, as was pre-
viously mentioned. The first-order approximation of dpkm,b,𝜑 for GLONASS signals
has the form

dpkm,b,𝜑 = d0km,b,𝜑 +
1
𝜆
p
b

𝜇km,b,𝜑 (7.2.14)

which is similar to (7.2.3). Note that the constant term d0km,b,𝜑 always appears
as a sum with the across-receiver carrier phase ambiguity Np

km,b. Therefore, the
across-receiver ambiguity is part of it and estimated along as a lumped parameter. For
all signals except GLONASS FDMA, the hardware carrier phase delays disappear
in the across-receiver difference. For GLONASS FDMA, the constant term d0km,b,𝜑
is combined with the across-receiver ambiguity while the linear term

(
1∕𝜆pb
)
𝜇km,b,𝜑

is preserved. The coefficient 𝜇km,b,𝜑 is the additional delay expressed in metric units.
If receivers at stations k and m are absolutely identical, then we can assume that
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Figure 7.2.1 Across-receiver difference of GLONASS hardware carrier phase delay in
cycles (vertical axis) as a function of the frequency letter (horizontal axis).

the across-receiver difference 𝜇km,b,𝜑 vanishes, which is confirmed by real-world
experience; however, if the pair of receivers are not identical (for example, if they
are produced by different manufacturers), the problem of estimation of this value
becomes critical. For example, for the pair Triumph-1 receiver by Javad GNSS and a
Leica receiver, the values dpkm,L1,𝜑 and dpkm,L2,𝜑 expressed as a function of the carrier
phase letter l are shown in Figure 7.2.1.

The figure confirms that first-order approximation (7.2.14) is reasonable because
the first-order linear term dominates the variation. The constant terms d0km,L1,𝜑 and
d0km,L2,𝜑 are chosen in such a way, that dpkm,L1,𝜑 = 0 and dpkm,L2,𝜑 = 0 for the zero
letter or, in other words, for such p that l(p) = 0 in Table 7.2.2. They take large val-
ues and cannot be simply ignored because the ambiguity resolution would become
impossible.

There are two ways to determine these constants. The first way requires
long-term data collection of a zero baseline. Processing of the across-receiver and
across-satellite differences allows for determination of the fractional parts of carrier
phase ambiguity. The resulting averaged data is then stored in the software lookup
tables. The second way considers the linear dependence (7.2.14) and estimates the
“slope coefficients” 𝜇km,L1,𝜑 and 𝜇km,L2,𝜑 as additional constants along with other
parameters during positioning. The linearization (7.2.14) is part of the linearized
navigation equation scheme considered in the next section.

7.3 LINEARIZATION AND HARDWARE BIAS PARAMETERIZATION

Aiming to apply the linear estimation theory described in Chapter 3, let us linearize
the navigation equations around a nominal location. Let

(
xk,0(t), yk,0(t), zk,0(t)

)T
be
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the vector of approximate Cartesian coordinates of the station k at the time t. Note
that location of antenna, location of receiver, and location of station have the same
meaning throughout this chapter. Let the station m be located at the precisely known
static position

xm =
⎛⎜⎜⎝
xm
ym
zm

⎞⎟⎟⎠ (7.3.1)

Station k is considered unknown or only approximately known. The position of the
station k can be expressed as

xk(t) =
⎛⎜⎜⎝
xk (t)
yk(t)
zk(t)

⎞⎟⎟⎠ =
⎛⎜⎜⎝
xk,0 (t) + dxk(t)
yk,0(t) + dyk(t)
zk,0(t) + dzk(t)

⎞⎟⎟⎠ (7.3.2)

by adding corrections to the approximate coordinates. Stand-alone, or autonomous
positioning using only pseudorange measurements as described below provides
approximation accurate to within several meters or better. Therefore, the expected
range of the corrections dxk, dyk, dzk is a few meters. Let

xp(t − 𝜏pk ) =
⎛⎜⎜⎝
xp
(
t − 𝜏pk

)
yp(t − 𝜏pk )
zp(t − 𝜏pk )

⎞⎟⎟⎠ (7.3.3)

be Cartesian coordinates of the satellite p at the time
(
t − 𝜏pk

)
. The signal travel dis-

tance 𝜌pk is defined in Section 6.2.1. In this section we expand this expression and
represent it in the form

𝜌
p
k

(
t, t − 𝜏pk

)
= ‖‖xk(t) − xp

(
t − 𝜏pk

)‖‖ + d𝜌pk (7.3.4)

where d𝜌pk is the additional distance between satellite and receiver antennas that the

signal travels due to the rotation of the earth. Let
.
𝛺e be the angular speed of the earth

rotation,
.
𝛺e = 7.2921151467 × 10−5 rad∕ sec, and

.⃗

𝛺e =
⎛⎜⎜⎝
0
0
.
𝛺e

⎞⎟⎟⎠ (7.3.5)

be the angular rotation velocity vector expressed in ECEF, where the arrow means
the vector. Since the earth rotation angle during the travel time is small, we can use
the first-order approximation of the rotation matrix

R3(𝜃) ≈ I3 +
⎡⎢⎢⎣
0 𝜃 0
−𝜃 0 0
0 0 0

⎤⎥⎥⎦ (7.3.6)
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where I3 is the 3 × 3 identity matrix, as well as

R3(𝜃)x
p(t − 𝜏pk ) ≈ xp

(
t − 𝜏pk

)
+
⎡⎢⎢⎣
0 𝜃 0
−𝜃 0 0
0 0 0

⎤⎥⎥⎦ xp
(
t − 𝜏pk

)
= xp
(
t − 𝜏pk

)
− 𝜏pk

.⃗

𝛺e × xp
(
t − 𝜏pk

)
(7.3.7)

where the symbol × denotes the vector product. Preserving the first-order term in the
Taylor series expansion of the expression (7.3.4), we have

𝜌
p
k

(
t, t − 𝜏pk

)
= ‖‖xk(t) − R3(𝜃)x

p
(
t − 𝜏pk

)‖‖
≈ ‖‖xk (t) − xp

(
t − 𝜏pk

)
− 𝜏pk

.⃗

𝛺e × xp
(
t − 𝜏pk

)‖‖
≈ ‖‖xk (t) − xp

(
t − 𝜏pk

)‖‖ − 𝜏
p
k

[
xk(t) − xp

(
t − 𝜏pk

)]
⋅
.⃗

𝛺e × xp
(
t − 𝜏pk

)
‖‖xk (t) − xp

(
t − 𝜏pk

)‖‖ (7.3.8)

where the symbol ⋅ is used for the scalar product. Estimating 𝜏
p
k as 𝜏

p
k ≈‖‖xk(t)−xp(t−𝜏pk)‖‖

c
we rewrite the expression (7.3.8) in the form

𝜌
p
k

(
t, t − 𝜏pk

)
≈ ‖‖xk (t) − xp

(
t − 𝜏pk

)‖‖ − [xk(t) − xp
(
t − 𝜏pk

)]
⋅
.⃗

𝛺e × xp
(
t − 𝜏pk

)
c

(7.3.9)
The numerator in the second term of expression is a triple product of vectors, which
is further expressed as

[
xk(t) − xp

(
t − 𝜏pk

)]
⋅
.⃗

𝛺e × xp
(
t − 𝜏pk

)
= det

[
xk (t) − xp

(
t − 𝜏pk

) .⃗

𝛺e xp
(
t − 𝜏pk

)]
= det

[
xk (t)

.⃗

𝛺e xp
(
t − 𝜏pk

)] − det
[
xp
(
t − 𝜏pk

) .⃗

𝛺e xp
(
t − 𝜏pk

)]
= − det

[
.⃗

𝛺e xk (t) xp
(
t − 𝜏pk

)] − 0 = − det
⎡⎢⎢⎣
0 xk xp

0 yk yp
.

𝛺e zk zp

⎤⎥⎥⎦
=

.

𝛺e

(
xp
(
t − 𝜏pk

)
yk(t) − xk(t)y

p
(
t − 𝜏pk

))
(7.3.10)

where we took into account that a determinant with two equal columns van-
ishes and the permutation of columns changes the sign of a determinant.
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Finally,

𝜌
p
k

(
t, t − 𝜏pk

)
= ‖‖xk (t) − xp

(
t − 𝜏pk

)‖‖ +
.

𝛺e

c

(
xp
(
t − 𝜏pk

)
yk(t) − xk(t)y

p
(
t − 𝜏pk

))
=
√(

xk (t) − xp
(
t − 𝜏pk

))2
+
(
yk (t) − yp

(
t − 𝜏pk

))2
+
(
zk (t) − zp

(
t − 𝜏pk

))2
+

.

𝛺e

c

(
xp
(
t − 𝜏pk

)
yk(t) − xk(t)y

p
(
t − 𝜏pk

))
(7.3.11)

This equation gives a first-order approximation to the iterative solution discussed
at the end of Section 6.2.1. Linearization of (7.3.11) around the approximate point
(uk,0(t), vk,0(t),wk,0(t))

T takes the following form:

𝜌
p
k

(
t, t − 𝜏pk

)
≈ 𝜌

p
k,0

(
t, t − 𝜏pk

)
+ Hp

k,1 dxk(t) + Hp
k,2 dyk(t) + Hp

k,3 dzk(t) (7.3.12)

where

𝜌
p
k,0

(
t, t − 𝜏pk

)
=
√(

xk,0 (t) − xp
(
t − 𝜏pk

))2
+
(
yk,0 (t) − yp

(
t − 𝜏pk

))2
+
(
zk,0 (t) − zp

(
t − 𝜏pk

))2
+

.

𝛺e

c

[
xp
(
t − 𝜏pk

)
yk,0(t) − xk,0(t)y

p
(
t − 𝜏pk

)]
(7.3.13)

A first approximation 𝜏pk,b for the travel time is obtained from the pseudorange obser-
vation as

𝜏
p
k,b =

Pp
k,b(t)

c
(7.3.14)

The partial derivatives, or directional cosines, are expressed as

Hp
k,1(t) =

xk,0(t) − xp
(
t − 𝜏pk

)√(
xk,0 (t) − xp

(
t− 𝜏pk

))2
+
(
yk,0 (t) − yp

(
t − 𝜏pk

))2
+
(
zk,0 (t) − zp

(
t − 𝜏pk

))2
−
𝛺e

c
yp
(
t − 𝜏pk

)
Hp
k,2(t) =

yk,0(t) − yp
(
t− 𝜏pk

)√(
xk,0 (t) − xp

(
t− 𝜏pk

))2
+
(
yk,0 (t) − yp

(
t− 𝜏pk

))2
+
(
zk,0 (t) − zp

(
t− 𝜏pk

))2
+
𝛺e

c
xp
(
t − 𝜏pk

)
Hp
k,3(t) =

zk,0 − zp
(
t− 𝜏pk

)√(
xk,0 (t) − xp

(
t− 𝜏pk

))2
+
(
yk,0 (t) − yp

(
t− 𝜏pk

))2
+
(
zk,0 (t) − zp

(
t− 𝜏pk

))2
(7.3.15)
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Finally, all necessary expressions are now available to express the across-receiver
differences (7.2.11) and (7.2.12) in the linearized form,

P
p
km,b(t) − 𝜌

p
k,0

(
t − 𝜏pk

)
+ 𝜌pm
(
t − 𝜏pm

)
= Hp

k,1 dxk(t) + Hp
k,2 dyk(t) + Hp

k,3 dzk(t)

+ cdtkm(t) +

(
f pL1
f pb

)2

Ipkm,L1(t) + dkm,b,P + 𝜀
p
km,b,P(t) (7.3.16)

𝜑
p
km,b(t) −

1
𝜆
p
b

(
𝜌
p
k,0

(
t− 𝜏pk

)
− 𝜌pm
(
t− 𝜏pm

))
=

1
𝜆
p
b

(
Hp
k,1 dxk (t) +Hp

k,2 dyk(t) +Hp
k,3 dzk(t)

)
+ f pb dtkm(t) + Np

km,b

(
tpCS,km,b

)
−

1
𝜆
p
b

(
f pL1
f pb

)2

Ipkm,L1(t) + dpkm,b,𝜑 + 𝜀pkm,b,𝜑 (7.3.17)

Let nkm be the number of signals, counting pseudoranges and carrier phases, in set
s ∈ Skm. The subscript km will be omitted whenever it does not lead to misunder-
standing throughout this section, i.e., S ≡ Skm, n ≡ nkm, and so on. Assume that the
across-receiver difference pseudorange and carrier phase observations are somehow
ordered in set S,

S = {s1,… , sn} (7.3.18)

Let A be the n × 3 matrix composed of the coefficients (7.3.15). More precisely, let

S = {s1,… , sn} = {(p1, b1),… , (pn, bn)} (7.3.19)

then

A =

⎡⎢⎢⎢⎢⎣
Hp1
k,1 Hp1

k,2 Hp1
k,3

Hp2
k,1 Hp2

k,2 Hp3
k,3

· · ·
Hpn
k,1 Hpn

k,2 Hpn
k,3

⎤⎥⎥⎥⎥⎦
(7.3.20)

and the set of across-receiver difference equations (7.3.16) and (7.3.17) can be rep-
resented in the vector form.

Station m with a known position is called the base. The position of station k is
to be determined. It can be either static, occupying a time-invariant position, or its
position can vary in time. In the latter case, we have to solve the kinematic positioning
problem. Station k is called the rover independently of whether it is static or roving.
Real-time positioning is called the real-time kinematics (RTK).

The position of the base station (7.3.1) and the approximate position of the rover
station Xk,0 in (7.3.2) are known. The positions of the satellites xp

(
t − 𝜏pm

)
and

xp
(
t − 𝜏pk

)
are calculated using the broadcast ephemeris or a precise ephemeris

provided by, for example, the IGS. Given the known data, the quantities on the left
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of the linearized equations (7.3.16) can be calculated forming the n-dimensional
vector

bP(t) =

⎛⎜⎜⎜⎜⎝
P
p1
km,b1

(t) − 𝜌p1k,0
(
t − 𝜏p1k

)
+ 𝜌

p1
m

(
t − 𝜏p1m

)
P
p2
km,b2

(t) − 𝜌p2k,0
(
t − 𝜏p2k

)
+ 𝜌

p2
m

(
t − 𝜏p2m

)
⋮

P
pn
km,bn

(t) − 𝜌pnk,0
(
t − 𝜏pnk

)
+ 𝜌

pn
m

(
t − 𝜏pnm

)
⎞⎟⎟⎟⎟⎠

(7.3.21)

where P
pi
km,bi

(t) = P
pi
k,bi

(t) − P
pi
m,bi

(t). The quantities P
pi
k,bi

(t) and P
pi
m,bi

(t) are defined in
(7.2.6). The quantities on the left of the linearized equations (7.3.17) can be calculated
the same way, forming the n-dimensional vector

b𝜑(t) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜑
p1
km,b1

(t) − 1

𝜆
p1
b1

(
𝜌
p1
k,0

(
t − 𝜏p1k

)
− 𝜌

p1
m

(
t − 𝜏p1m

))
𝜑
p2
km,b2

(t) − 1

𝜆
p2
b2

(
𝜌
p2
k,0

(
t − 𝜏p2k

)
− 𝜌

p2
m

(
t − 𝜏p2m

))
⋮

𝜑
pn
km,bn

(t) − 1

𝜆
pn
bn

(
𝜌
pn
k,0

(
t − 𝜏pnk

)
− 𝜌

pn
m

(
t − 𝜏pnm

))
⎞⎟⎟⎟⎟⎟⎟⎠

(7.3.22)

where 𝜑pi
km,bi

(t) = 𝜑
pi
k,bi

(t) − 𝜑pi
m,bi

(t). The quantities 𝜑pi
k,bi

(t) and 𝜑pi
m,bi

(t) are defined in
(7.2.7). Let us combine three independent variables of the linearized system (7.3.16)
and (7.3.17) into the three-dimensional vector

dx(t) =
(
dxk (t) , dyk(t), dzk(t)

)T
(7.3.23)

and denote
𝜉(t) = cdt(t) (7.3.24)

Let
e = (1, 1, · · · , 1)T (7.3.25)

be the vector having units at all positions, and let

i =
(
Ip1L1, I

p2
L1,… , IpnL1

)T
(7.3.26)

be the vector of across-receiver difference ionospheric delays related to all n
satellites,

𝜞 =

⎡⎢⎢⎢⎢⎢⎣

(
f p1L1∕f

p1
b1

)2
0 ⋮ 0

0
(
f p2L1∕f

p2
b2

)2
⋮ 0

· · · · · · ⋱ ⋮

0 0 · · ·
(
f pnL1∕f

pn
bn

)2
⎤⎥⎥⎥⎥⎥⎦

(7.3.27)
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And let

𝜦 =

⎡⎢⎢⎢⎢⎢⎣

𝜆
p1
b1

0 ⋮ 0

0 𝜆
p2
b2

⋮ 0

· · · · · · ⋱ ⋮

0 0 · · · 𝜆
pn
bn

⎤⎥⎥⎥⎥⎥⎦
(7.3.28)

be diagonal matrices,

n =
(
Np1
b1

(
tp1CS,b1
)
,Np2

b2

(
tp2CS,b2
)
,… ,Npn

bn

(
tpnCS,bn
))T

(7.3.29)

be the vector of carrier phase ambiguities, and, finally

dP = (db1,P, db2,P,… , dbn,P)
T (7.3.30)

d𝜑 = (dp1b1,𝜑
, dp2b2,𝜑

,… , dpnbn,𝜑
)T (7.3.31)

be the vector of across-receiver pseudorange and phase receiver hardware biases.
Then, ignoring noise terms, the systems (7.3.16) and (7.3.17) can be rewritten as

bP(t) = Adx(t) + e𝜉(t) + 𝜞 i(t) + dP (7.3.32)

b𝜑(t) = 𝜦
−1Adx(t) +𝜦−1e𝜉(t) + n −𝜦−1

𝜞 i(t) + d𝜑 (7.3.33)

The linearized across-receiver pseudorange and carrier phase navigation
equations (7.3.32) and (7.3.33) will be used in the rest of this chapter.

The hardware biases depend on the satellite system and the frequency band. They
are constant or slowly varying in time due to variation of receiver temperature during
operation, aging of electronic parts, and other physical reasons. Typically, receivers
carry out one or several radio frequency conversions as the signal travels from the
antenna to the digital processing component. Conversion from the carrier frequency
to an intermediate frequency that is typically several tens of MHz, also referred to
as down-conversion or frequency shifting, is performed independently for each radio
frequency. Receivers have dedicated intermediate frequency channels, including an
intermediate frequency oscillator for each frequency band. Therefore, a reasonable
assumption is that each combination of satellite system and frequency corresponds
to one bias specific to a certain intermediate frequency channel. The number of such
combinations is generally less than the number of satellites. Each signal (p, b) corre-
sponds to a pair (𝛴p, b) where b ∈ Fp.

In the following we will use symbols G for GPS, R for GLONASS, E for
Galileo, B for Beidou, Q for QZSS, and S for the SBAS system. For example, for a
dual-frequency and dual-system receiver supporting L1 and L2 bands for GPS and
GLONASS, the pair (𝛴p, b) takes four values: (G, L1), (G, L2), (R, L1), and (R,
L2). This means that there are four different variables dL1,G,P, dL2,G,P, dL1,R,P, and
dL2,R,P in vector (7.3.30). For carrier phase hardware biases, as already discussed
in the previous section, there are four variables dL1,G,𝜑, dL2,G,𝜑, dL1,R,𝜑, and dL2,R,𝜑.
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The entries of vector (7.3.31) related to GPS are dL1,G,𝜑 and dL2,G,𝜑. The entries of
vector (7.3.31) related to GLONASS can be expressed according to (7.2.14) and
Table 7.1.1 as

dpL1,𝜑
= d0L1,𝜑 +

f pL1
c
𝜇L1,𝜑 = d0L1,𝜑 +

1.602 ⋅ 109 + 5.625 ⋅ 105l(p)
c

𝜇L1,𝜑

≡ dL1,R,𝜑 + l(p)𝜇L1,R,𝜑 (7.3.34)

dpL2,𝜑
= d0L2,𝜑 +

f pL2
c
𝜇L2,𝜑 = d0L2,𝜑 +

1.246 ⋅ 109 + 4.375 ⋅ 105l(p)
c

𝜇L2,𝜑

≡ dL2,R,𝜑 + l(p)𝜇L2,R,𝜑 (7.3.35)

where l(p) stands for the GLONASS letter number. In other words, variables dL1,G,𝜑,
dL2,G,𝜑, dL1,R,𝜑, and dL2,R,𝜑 stand for the constant terms d0km,b,𝜑, whereas 𝜇L1,R,𝜑 and
𝜇L2,R,𝜑 denote “slope” values.

In the case of a multifrequency and multisystem receiver supporting

• L1, L2, and L5 bands for GPS
• L1 and L2 GLONASS
• L1, E5a, E5b, and E6 Galileo
• L1, L2, L5, and E6 QZSS
• L1 and L5 SBAS
• B1, B2, and B3 Beidou

the signals (L1 GPS, L1 Galileo, L1 SBAS, L1 QZSS), (L2 GPS, L2 QZSS), (L5
GPS, E5a Galileo, L5 SBAS, L5 QZSS), (E6 Galileo, E6 QZSS), respectively,
can share the same channel. Therefore, there are ten combinations: (G/E/S/Q, L1),
(G/Q, L2), (G/E/S/Q, L5), (E, E5b), (R, L1), (R, L2), (E/Q, E6), (B1, B), (B2,
B), and (B3, B). It means that there are up to 10 different independent slowly
varying or constant variables dL1,G∕E∕S∕Q,P, dL2,G∕Q,P, dL5,G∕E∕S∕Q,P, dE5b,E,P, dL1,R,P,

dL2,R,P, dE6,E∕Q,P, dB1,B,P, dB2,B,P, dB3,B,P and up to 10 different independent variables
dL1,G∕E∕S,Q,𝜑, dL2,G∕Q,𝜑, dL5,G∕E∕S∕Q,𝜑, dE5b,E,𝜑, dL1,R,𝜑, dL2,R,𝜑, dE6,E∕Q,𝜑, dB1,B,𝜑,

dB2,B,𝜑, dB3,B,𝜑 among entries of the vectors (7.3.30) and (7.3.31), respectively,

except for GLONASS. For GLONASS, the expressions (7.3.34) and (7.3.35) apply.
Note that the biases vector dP and the single difference time variable 𝜉(t) appear

as a sum in equation (7.3.32). This means that one of the biases, say dL1,G∕E∕S∕Q,P,
can be combined with 𝜉(t), while others can be differenced with dL1,G∕E∕S∕Q,P. We
therefore can formulate new bias variables,

𝜂1 = dL2 ,G∕Q,P − dL1 ,G∕E∕S∕Q,P 𝜂2 = dL1 ,R,P − dL1 ,G∕E∕S∕Q,P 𝜂3 = dL2 ,R,P − dL1 ,G∕E∕S∕Q,P

𝜂4 = dL5 ,G∕E∕S∕Q,P − dL1 ,G∕E∕S∕Q,P 𝜂5 = dE5b ,E,P
− dL1 ,G∕E∕S∕Q,P 𝜂6 = dE6 ,E∕Q,P

− dL1 ,G∕E∕S∕Q,P

𝜂7 = dB1 ,B,P
− dL1 ,G∕E∕S∕Q,P 𝜂8 = dB2 ,B,P

− dL1 ,G∕E∕S∕Q,P 𝜂9 = dB3 ,B,P
− dL1 ,G∕E∕S∕Q,P

(7.3.36)
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This reparameterization is sometimes referred to as establishing a bias datum. The
linearized equations (7.3.32) can now be expressed in the form

bP(t) = A dx(t) + e𝜉(t) + 𝜞 i(t) +W𝜂𝜼 (7.3.37)

The bias vector 𝜼 has the appropriate dimension m𝜂 . It is three dimensional for
dual-band and dual-system GPS/GLONASS receivers. In the case of the multiband,
multisystem receiver considered above, the vector 𝜼 is nine dimensional with
variables defined in (7.3.36). It is one dimensional in the case of dual-band GPS-only
receivers or single-band GPS/GLONASS receivers. There are three biases 𝜂1, 𝜂4, 𝜂6
in the case of dual-system multiband (GPS L1, L2, L5) / (Galileo L1, E5a, E6)
receivers.

The bias allocation matrixW𝜂 has dimensions n × m𝜂 and allocates a single bias,
or none, to a certain signal. No bias is allocated to the signal si = (pi, bi) if 𝛴

pi is
GPS, Galileo, SBAS, or QZSS, and bi = L1. In this case, the row of W𝜂 consists
of zeroes. In the case of other signals si = (pi, bi), the ith row W𝜂,i of the allocation
matrix has one and only one unit entry while others are zero. The row is defined as
follows:

W𝜂,i = (0, 0, 0, 0, 0, 0, 0, 0, 0) if 𝛴pi = GPS,Galileo, SBAS, or QZSS, bi = L1
W𝜂,i = (1, 0, 0, 0, 0, 0, 0, 0, 0) if 𝛴pi = GPS or QZSS, bi = L2
W𝜂,i = (0, 1, 0, 0, 0, 0, 0, 0, 0) if 𝛴pi = GLONASS, bi = L1
W𝜂,i = (0, 0, 1, 0, 0, 0, 0, 0, 0) if 𝛴pi = GLONASS, bi = L2
W𝜂,i = (0, 0, 0, 1, 0, 0, 0, 0, 0) if 𝛴pi = GPS,Galileo,SBAS, or QZSS, bi = L5(E5a)
W𝜂,i = (0, 0, 0, 0, 1, 0, 0, 0, 0) if 𝛴pi = Galileo, bi = E5b
W𝜂,i = (0, 0, 0, 0, 0, 1, 0, 0, 0) if 𝛴pi = QZSS or Galileo, bi = E6
W𝜂,i = (0, 0, 0, 0, 0, 0, 1, 0, 0) if 𝛴pi = Beidou, bi = B1
W𝜂,i = (0, 0, 0, 0, 0, 0, 0, 1, 0) if 𝛴pi = Beidou, bi = B2
W𝜂,i = (0, 0, 0, 0, 0, 0, 0, 0, 1) if 𝛴pi = Beidou, bi = B3

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(7.3.38)

Consider a dual-band GPS/GLONASS receiver as an example. Suppose it tracks
six GPS satellites and six GLONASS satellites. The total number of dual-band sig-
nals is 24. Let the signals be ordered in the following way: 6 GPS L1, 6 GPS L2, 6
GLONASS L1, and 6 GLONASS L2 signals. The biases allocation matrix presented
in the linearized single-difference pseudorange equation (7.3.37) takes the following
form:

W𝜂
T =
⎡⎢⎢⎣
0 0 0 1 1 1 0 0 0 0 0 0
0 0 ⋮ 0 0 0 ⋮ 0 1 1 ⋮ 1 0 0 ⋮ 0
0 0 0 0 0 0 0 0 0 1 1 1

⎤⎥⎥⎦ (7.3.39)

Notice that the matrix is transposed.
Now consider hardware biases affecting the across-receiver carrier phase mea-

surements in equation (7.3.33). For all signals except GLONASS, dpb,𝜑 ≡ d0b,𝜑 is one
of variables dL1,G∕E∕S∕Q,𝜑, dL2,G∕Q,𝜑, dL5,G∕E∕S∕Q,𝜑, dE5b,E,𝜑, dE6,E∕Q,𝜑, dB1,B,𝜑, dB2,B,𝜑,
and dB3,B,𝜑. For GLONASS signals we have expressions (7.3.34) and (7.3.35).
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The vector d𝜑 appears as a sumwith the ambiguity vector n in (7.3.33). The values
l(p)𝜇L1,𝜑 and l(p)𝜇L2,𝜑 in (7.3.34) and (7.3.35) appear linearly dependent on the letter
l(p) of theGLONASS signal. Similarly as discussed above, each combination of satel-
lite system and frequency corresponds to one certain carrier phase bias. In the case of
multisystem and multifrequency receivers we have 10 different terms: dL1,G∕E∕S∕Q,𝜑,

dL2,G∕Q,𝜑, dL5,G∕E∕S∕Q,𝜑, dE5b,E,𝜑, dE6,E∕Q,𝜑, dB1,B,𝜑, dB2,B,𝜑, dB3,B,𝜑, dL1,R,𝜑, and dL2,R,𝜑.

These terms are combined with ambiguities and thus destroy the integerness. The
fractional part of the ambiguities will be common for all measurements inside the
group of signals (p, b) having the same combination of system and frequency band
(𝛴p, b). For example, ambiguities will have the same fractional part for signals among
the (GPS/ Galileo/ SBAS/ QZSS, L1) group, or for signals among the (GLONASS,
L2) group. Allowing different reference satellites for each group when forming dou-
ble differences, we guarantee that the terms dL1,G∕E∕S∕Q,𝜑, dL2,G∕Q,𝜑, dL5,G∕E∕S∕Q,𝜑,

dE5b,E,𝜑, dE6,E∕Q,𝜑, dB1,B,𝜑, dB2,B,𝜑, dB3,B,𝜑, dL1,R,𝜑, and dL2,R,𝜑 vanish and thus allow

integer fixing of double-difference ambiguities. Let the across-receiver ambiguity
vector n be expressed in the form of concatenation of 10 groups:

n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nL1,G∕E∕S∕Q

nL2,G∕Q

nL5,G∕E∕S∕Q

nE5b,E

nL1,R

nL2,R

nE6,E

nB1,B

nB2,B

nB3,B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.3.40)

Let n𝛼 be the ambiguity vector of a certain group, a = 1,… , 10. The actual number
of groups depends on the receiver hardware. Each vector n𝛼 has its own dimension
n𝛼 . Also, let {𝜈} be the fractional part of the value v, {𝜈} = 𝜈 − [𝜈], with [𝜈] being the
integer part of 𝜈. The ambiguities inside each group have common fractional parts

{Na,i} = {Na,ra
} (7.3.41)

where Na,i denotes the ith entry of vector N𝛼 . The reference ambiguity ra in (7.3.41)
is chosen independently for each group. The index i in (7.3.41) varies in the range
i = 1,… , na. An alternative form of the condition (7.3.41) is

{naNa,i} =

{
na∑
j=1

Na,j

}
(7.3.42)

which does not depend on the choice of the reference ambiguity.
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The variables 𝜇L1,R,𝜑 and 𝜇L2,R,𝜑 in (7.3.34) and (7.3.35) introduce the frequency
dependency of the bias inside the L1 and L2 group for the GLONASS system. There-
fore, we have only two groups of signals involving 𝜇pb,𝜑 ≠ 0. Let

𝝁 =

(
𝜇L1,R,𝜑
𝜇L2,R,𝜑

)
(7.3.43)

and W𝜇 be the n × 2 bias allocation matrix corresponding to the bias vector 𝝁 with
rows defined as follows:

W𝜇,i =
[
l
(
pi
)
, 0
]

if 𝛴pi = GLONASS, bi = L1
W𝜇,i = [0, l(pi)] if 𝛴pi = GLONASS, bi = L2
W𝜇,i = [0, 0] otherwise

⎫⎪⎬⎪⎭ (7.3.44)

For the example of the GPS/GLONASS/L1/L2 receiver introduced earlier, we have
(the matrix is transposed for convenience),

WT
𝜇 =

[
0 0 ⋮ 0 0 0 ⋮ 0 l1 l2 ⋮ ln5 0 0 ⋮ 0
0 0 ⋮ 0 0 0 ⋮ 0 0 0 ⋮ 0 l1 l2 ⋮ ln6

]
(7.3.45)

where n5 is the number of ambiguities of the fifth group in (7.3.40) (GLONASS,
L1). Similarly, n6 denotes the number of (GLONASS, L2) ambiguities, which is not
necessarily equal to n5. The across-receiver differenced carrier phase linearized mea-
surements in equation (7.3.33) can be expressed in the form

b𝜑(t) = 𝜦
−1Adx(t) +𝜦−1e𝜉(t) + n −𝜦−1

𝜞 i(t) +W𝜇𝝁 (7.3.46)

The variables 𝝁 are absent if the hardware does not support GLONASS. The vector
𝝁 becomes a scalar if only the L1 or L2 frequency band is available for GLONASS.

In summary, the linearized single-difference measurement equations are (7.3.37)
and (7.3.46). The recursive estimation algorithms described in Chapter 3 can
now be easily applied. In expression (7.3.46) the ambiguity vector is presented
as a sum with W𝜇𝝁. Therefore, we cannot distinguish between n and W𝜇𝝁 until
we impose the condition (7.3.41) or (7.3.42). The floating ambiguity estimation
filter estimates the sum n +W𝜇𝝁. In the following sections we describe filtering
algorithms. Real-valued ambiguities are commonly known as floating ambiguities.
The determination of ambiguities subjected to the constraint (7.3.41), resulting in
integer-valued ambiguities or fixed ambiguities, will be described in Section 7.10.

7.4 RTK ALGORITHM FOR STATIC AND SHORT BASELINES

Many surveying applications use RTK for static positioning. The base station is m
and its actual coordinates (7.3.1) are known. The position of the rover station k is
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unknown and considered stationary. Its approximate position is

xk,0 =
⎛⎜⎜⎝
xk,0
yk,0
zk,0

⎞⎟⎟⎠
and its unknown position is expressed as

xk =
⎛⎜⎜⎝
xk
yk
zk

⎞⎟⎟⎠ =
⎛⎜⎜⎝
xk,0 + dxk
yk,0 + dyk
zk,0 + dzk

⎞⎟⎟⎠ ≡ xk,0 + dx (7.4.1)

The across-receiver ionospheric delay partially cancels in equations (7.3.37) and
(7.3.46). The residual delay has a magnitude that is approximately proportional to the
baseline length. Assume that for each satellite the magnitude of the across-receiver
ionospheric delay is constrained by the following expression:

|ipkm| ≈ S × 10−6 × ‖xk − xm‖ (7.4.2)

where the scaling factor S typically varies from 1 to 4 depending on the solar activity
in the 11-year cycle, taking values ≈ 1 for years of low solar activity and ≈ 4 for high
solar activity. This ionospheric modeling is true for typical lengths encountered in
surveying, i.e., not greater than several tens of kilometers. The residual ionosphere,
therefore, is about S millimeters for every kilometer of baseline length.

For short baselines of about 5 km or less, the across-receiver ionosphere delay can
be neglected in navigation equations (7.3.37) and (7.3.46), which then take the form

bP(t) = Adx + e𝜉(t) +W𝜂𝜼 (7.4.3)

b𝜑(t) = 𝜦
−1Adx +𝜦−1e𝜉(t) + n +𝜦−1W𝜇𝝁 (7.4.4)

The time-invariant parameters to be estimated in (7.4.3) and (7.4.4) are as follows:
correction to the approximate rover position dx, carrier phase ambiguity n, pseu-
dorange biases 𝜂 defined in (7.3.36), and carrier phase biases 𝝁 defined in (7.3.43).
The last term is absent if there are no GLONASS measurements. The across-receiver
carrier phase ambiguities are estimated as real-valued approximation, yielding the
so-called floating ambiguity. The integer-valued (fixed) ambiguity solution will be
considered later.

The ambiguity vector n includes the across-receiver windup terms (Section 6.2.4).
Rotation of the antenna around the vertical axis generates one carrier phase cycle per
each full rotation. However, this would not violate the assumption of a constant value
of n since both the base and rover stations remain stationary. Later, when discussing
the kinematic processing we will address this question in detail.

Estimation of the floating ambiguity is a necessary first step. The condition
(7.3.41) is not taken into account and the term n +𝜦−1W𝜇𝝁 in (7.4.4) can be
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estimated as constant real-valued floating ambiguity vector. So, at this stage we
replace (7.4.4) with the equation

b𝜑(t) = 𝜦
−1A dx +𝜦−1e𝜉(t) + n (7.4.5)

The kinematic parameter to be estimated in (7.4.3) and (7.4.5) is 𝜉(t) which is the
across-receiver clock error. Therefore, we have a mixed set of variables, static and
arbitrary varying. The numerical scheme for incremental least squares is described in
Section 3.2.

Let CP be a covariance matrix of the across-receiver pseudorange unmodeled
errors including noise and multipath. Define it as a diagonal matrix, assuming that
hardware noise and multipath errors are independent for different satellites, taking
the form

CP = diag
(
(𝜎1,P)

2, (𝜎2,P)
2,… , (𝜎n,P)

2) (7.4.6)

Individual errors corresponding to signals (p, b) and (q, c) can be taken to be inde-
pendent of each other, which suggests the diagonal form of the matrix (7.4.6). The
variance 𝜎2i,P, corresponding to the signal si = (pi, bi), consists of two terms. The first
term reflects a noise component that depends on the signal frequency band, and a
second term reflects the variance of errors that are dependent on satellite elevation.
The latter errors include a multipath generated by reflection from the ground and the
residual ionosphere delay of signals that pass through the layer of the ionosphere at
different elevation angles. A good practical assumption is

𝜎2i,P = 𝜎2bi,P
+

(
𝜎P

𝜀 + sin 𝛼pi

)2

(7.4.7)

where 𝜎bi,P is a standard deviation of the noise component depending on the frequency
band, 𝛼pi is the elevation of the satellite pi, and 𝜀 and 𝜎P are constants. A usual choice
that works in practice for most receivers is

𝜎bi,P ∼ 0.25 − 2 m 𝜀 ∼ 0.1 𝜎P ∼ 0.5 − 1 m (7.4.8)

Let C𝜑 be a covariance matrix of the across-receiver carrier phase noise. Using the
same reasoning as above, we assume

C𝜑 = diag
(
(𝜎1,𝜑)

2, (𝜎2,𝜑)
2,… , (𝜎n,𝜑)

2) (7.4.9)

(𝜎i,𝜑)
2 = (𝜎bi,𝜑)

2 +

(
𝜎𝜑

𝜀 + sin 𝛼pi

)2

(7.4.10)

𝜎bi,𝜑 ∼ 0.01 − 0.05 cycle 𝜀 ∼ 0.1 𝜎𝜑 ∼ 0.01 − 0.05 cycle (7.4.11)

Covariance matrices (7.4.6) and (7.4.9) are used in the algorithm, described in
Section 3.2.
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Let us present the set of navigation equations (7.4.3) and (7.4.5) in the form (3.2.1).
Recall the notation that t + 1 does not necessarily mean time t incremented by one
second. It means the discrete time instance immediately following the time instance
t. The actual time step will be denoted by 𝛿t.

Consider the case of multisystem and multiple frequency band receivers. The
structure of the navigation equations and the set of parameters were described in
the previous section. We use Rn to denote the n-dimensional real-valued Euclidean
space and Rn×m for the space of real-valued n × m matrices. Let y be the vector of
constant parameters (not including 𝝁 in the floating solution for reasons discussed
above),

y =
⎛⎜⎜⎝
𝜼

dx
n

⎞⎟⎟⎠ (7.4.12)

where 𝜼 ∈ R9 is the vector of intersignal biases described in (7.3.36), dx ∈ R3 is a
vector of corrections to the rover position, and n ∈ Rn is a vector of carrier phase
ambiguities of signals, structured according to (7.3.40). The total number of signals
is n.

The vector of time-varying parameters is one dimensional since only one variable
𝜉(t) is time dependent. Rewrite measurement equations (7.4.3) and (7.4.5) in the form
(3.2.1),

J𝜉(t) +W(t)y = b(t) (7.4.13)

where

J =

(
e

𝜦
−1e

)
∈ R2n×1 (7.4.14)

and 𝜦 ∈ Rn×n is a diagonal matrix of wavelengths, defined in (7.3.28),

W(t) =

[
W𝜂 A (t) 0

0 𝜦
−1A(t) In

]
(7.4.15)

The bias allocation matrixW𝜂 ∈ Rn×9 is defined in (7.3.38). The zero matrices have
appropriate size, and In denotes n × n identity matrix. The directional cosine matrix
A(t) ∈ Rn×3 is defined in (7.3.20), and the time-varying entries of the matrix are
defined in (7.3.15). The right-hand side vector b(t) has the form

b(t) =
(
bP (t)
b𝜑(t)

)
∈ R2n (7.4.16)

The vectors bP(t) and b𝜑(t) are defined in (7.3.21) and (7.3.22), respectively.
In the following, we assume that the set of signals does not change during the

operation of the algorithm, and that there are no cycle slips in the carrier phase mea-
surements. Both assumptions will be relaxed later.
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Let C be the diagonal matrix of measurements composed of blocks CP and C𝜑 as
defined above in (7.4.6) and(7.4.9),

C =

[
CP 0
0 C𝜑

]
∈ R2n×2n (7.4.17)

The Cholesky decomposition of the diagonal matrix C takes the simple form

C = 𝜮2
𝜮 =

[
𝜮P 0
0 𝜮𝜑

]
(7.4.18)

with𝜮P = diag(𝜎1,P, 𝜎2,P,… , 𝜎n,P) and𝜮𝜑 = diag(𝜎1,𝜑, 𝜎2,𝜑,… , 𝜎n,𝜑). The forward
and backward solutions are simply

F𝛴b = B𝛴b = 𝜮−1b (7.4.19)

Let ny = dim(y) be the number of constant estimated parameters. Algorithm 2
(Table 3.2.1) of Chapter 3 takes the following form. Start with t = t0, 𝜉(t0) = 0,
D̂(t0) ∈ Rny×ny , D̂(t0) = 0, and y(t0) = 0, and continue as described in Table 7.4.1.
The updated estimate of the constant parameters vector is “disassembled” into the
following parts:

yT (t + 1) =
(
𝜂T (t + 1), dxT (t + 1),nT (t + 1)

)
(7.4.20)

The updated estimate of the time-varying scalar parameter 𝜉(t + 1) is the
across-receiver single-difference clock error.

7.4.1 Illustrative Example

We processed 2660 epochs of raw data collected on February 15, 2013, by two
Triumph-1 receivers by Javad GNSS. The data collection started at 07:47:58.00
and finished at 08:32:17.00. The raw data included dual-band GPS and GLONASS
pseudorange and carrier phase data. The approximate ECEF position of the base in
the WGS-84 frame was

xm =
(
− 2681608.127,−4307231.857, 3851912.054

)T
= 37.390538∘N,−121.905680∘E,−11.06m (7.4.21)

The approximate ECEF position of the rover was

xk,0 =
(
− 2681615.678,−4307211.353, 3851926.005

)T
−37.390711∘N,−121.905874∘E,−13.25m (7.4.22)
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TABLE 7.4.1 Algorithm for Static and Short Baseline RTK.

Compute the right-hand
side vector b(t + 1)
according to (7.4.16),
(7.3.21), and (7.3.22)

b(t + 1) =
⎛⎜⎜⎝
bP (t + 1)

b𝜑(t + 1)

⎞⎟⎟⎠ ∈ R2n

bP(t + 1) =⎛⎜⎜⎜⎜⎜⎝

P
p1
km,b1

(t + 1) − 𝜌p1k,0
(
t + 1 − 𝜏p1k

)
+ 𝜌p1m
(
t + 1 − 𝜏p1m

)
P
p2
km,b2

(t + 1) − 𝜌p2k,0
(
t + 1 − 𝜏p2k

)
+ 𝜌p2m
(
t + 1 − 𝜏p2m

)
⋮

P
pn
km,bn

(t + 1) − 𝜌pnk,0
(
t + 1 − 𝜏pnk

)
+ 𝜌pnm
(
t + 1 − 𝜏pnm

)
⎞⎟⎟⎟⎟⎟⎠

b𝜑(t + 1) =⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜑
p1
km,b1

(t + 1) − 1

𝜆
p1
b1

(
𝜌
p1
k,0

(
t + 1 − 𝜏p1k

)
− 𝜌p1m
(
t + 1 − 𝜏p1m

))
𝜑
p2
km,b2

(t + 1) − 1

𝜆
p2
b2

(
𝜌
p2
k,0

(
t + 1 − 𝜏p2k

)
− 𝜌p2m
(
t + 1 − 𝜏p2m

))
⋮

𝜑
pn
km,bn

(t + 1) − 1

𝜆
pn
bn

(
𝜌
pn
k,0

(
t + 1 − 𝜏pnk

)
− 𝜌pnm
(
t + 1 − 𝜏pnm

))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Compute the linearized measurements matrix
W(t + 1) according to (7.4.15), (7.3.38),
(7.3.20), and (7.3.15)

W(t + 1) =
⎡⎢⎢⎣
W𝜂 A (t + 1) 0

0 𝜦
−1A(t + 1) In

⎤⎥⎥⎦
A(t + 1) =

⎡⎢⎢⎢⎢⎢⎣

Hp1
k,1 Hp1

k,2 Hp1
k,3

Hp2
k,1 Hp2

k,2 Hp3
k,3

· · ·

Hpn
k,1 Hpn

k,2 Hpn
k,3

⎤⎥⎥⎥⎥⎥⎦
Compute the vector J

J =
⎛⎜⎜⎝

e

𝜦
−1e

⎞⎟⎟⎠ ∈ R2n×1

Square root of diagonal covariance matrix
according to (7.4.18) 𝜮 =

⎡⎢⎢⎣
𝜮P 0

0 𝜮𝜑

⎤⎥⎥⎦
Weighing b(t + 1) = 𝜮−1b(t + 1)

J = 𝜮−1J
W(t + 1) = 𝜮−1W(t + 1)

Compute the residual vector r(t + 1) r(t + 1) = b(t + 1) −W(t + 1)y(t)

Compute the projection matrix𝜫
𝛾 =

√
J
T
J

J̃
T
= 𝛾−1J

T

𝜫 = In − J̃J̃
T

Update the matrix D̂(t) D̂(t + 1) = D̂(t) +W
T
(t + 1)𝜫W(t + 1)

= D̂(t) +W
T
(t + 1)W(t + 1) −W

T
(t + 1)J̃J̃

T
W(t + 1)

(continued)
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TABLE 7.4.1 (Continued)

Compute Cholesky decomposition of
D̂(t + 1)

D̂(t + 1) = L̂L̂
T

Update the estimate of constant
parameters y(t)

y(t + 1) = y(t) + BL̂

(
FL̂

(
W

T
(t + 1)𝜫r(t + 1)

))
Compute the second residual vector
r′(t + 1)

r′(t + 1) = b(t + 1) −W(t + 1)y(t + 1)

Compute the estimate of across-receiver
clock difference 𝜉(t + 1)

𝜉(t + 1) = 1

𝛾
J̃
T
r′(t + 1)

The approximation of the baseline vector was

blkm,0 = xk,0 − xm =
(
−7.551, 20.504, 13.951

)T
xyz

(7.4.23)

whereas the known accurate vector was

bl∗km = xk − xm =
(
−9.960, 20.634, 15.402

)T
xyz

(7.4.24)

Transformation to the geodetic horizon (easting, northing, and up) gave us

blkm,0 =
(
−17.247, 19.231, −2.187

)T
enu

bl∗km =
(
−19.361, 19.677, −0.382

)T
enu

(7.4.25)

The algorithm was executed to calculate the correction vector dx in (7.4.1), along
with the other parameters in (7.4.12) and the clock error 𝜉(t). Ten satellites were
chosen for the processing, such that the constellation would not change during
processing as suggested in assumptions that we made. The set of GPS satellites
is defined by their PRNs: 4, 9, 15, 17, 24, 28. The set of GLONASS satellites
is defined by their letter numbers –7, 0, 2, and 4, which correspond to carrier
frequencies seen in Table 7.4.2. The time of day in seconds varies from 28,078
to 30,737.

TABLE 7.4.2 GLONASS Letters and Frequencies.

Letter L1 (MHz) L2 (MHz)

–7 1598.0625 1242.9375
0 1602.0 1246.0
2 1603.125 1246.875
4 1604.25 1247.75
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Figure 7.4.1 Across-receiver single-difference hardware bias estimates as a function
of time.

Figure 7.4.1 shows the estimates of across-receiver hardware biases. The hardware
biases’ differences are small but nonzero. Their estimate converges as shown in the
figure. Both receivers are of the same type and made with identical parts. Figure 7.4.2
illustrates the convergence of corrections dxk(t), dyk(t), dzk(t) transformed into the
geodetic horizon format. The corrections converge to the vector

dx =
(
−2.122, 0.451, 1.797

)T
enu

(7.4.26)

Figure 7.4.2 Corrections of the rover position expressed in easting, northing, and
up [m].
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which is in agreement with

bl∗km − blkm,0 =
(
−2.114, 0.446, 1.805

)T
enu

(7.4.27)

which is the difference between correct baseline and initial approximation (7.4.25).
These results illustrate the convergence of the floating ambiguity solution to the

correct solution. In order to investigate the convergence of the floating ambiguities
satisfying condition (7.3.41), consider the floating estimates of the GPS L1 ambigu-
ities for six satellites. First, wait until they converge, then calculate the integer parts
of the settled values and subtract these integer values from the estimated float values.
Figure 7.4.3 shows fractional parts converging to approximately equal values.

Figure 7.4.4 illustrates convergence of the GPS L2 ambiguity estimates. After
compensation of the integer parts the sameway as discussed above, they show conver-
gence to a common fractional value which obviously differs from that corresponding
to the L1 frequency band. This happens because different hardware channels
have different heterodynes, which confirms that hardware delays are a function of
frequency.

Figures 7.4.5 and 7.4.6 show the GLONASS ambiguity estimates for L1 and L2
frequency bands. These estimates have also been corrected by subtracting the integer
parts to show how their fractional parts match. The ambiguities demonstrate conver-
gence to real values that have approximately the same fractional values. As suggested
earlier in this chapter, the coefficients of the frequency-dependent part of carrier phase
biases introduced in (7.3.43) are included in the estimates of the floating ambiguities.
This means that they must introduce different fractional parts for ambiguities that
correspond to satellites having different frequency letters. The reason for not seeing
this disagreement in the figures, or at least the difference are negligibly small, can be
explained by the fact that the hardware of the base and rover receiver was identical,
i.e., both used Triumph-1 receivers.

Figure 7.4.3 Convergence of the GPS L1 ambiguity estimates to a common fractional
value.



RTK ALGORITHM FOR STATIC AND SHORT BASELINES 427

Figure 7.4.4 Convergence of the GPS L2 ambiguity estimates to common fractional
value.

Figure 7.4.5 Convergence of the GLONASS L1 ambiguity estimates to a common frac-
tional value.

Figures 7.4.3 to 7.4.6 illustrate convergence of across-receiver ambiguity esti-
mates. The slow rate of convergence does not allow precise determination of the
fractional parts, yet the figures allow us to make a qualitative conclusion about con-
vergence. The ambiguities will jump to their correct integer value after they have been
fixed. Fixing ambiguities for this example is considered in Section 7.10.

Figure 7.4.7 illustrates behavior of the time–varying parameter 𝜉(t). The
across-receivers’ single-difference clock error varies in time because local oscil-
lators vary independently. The figure shows the long-term instability of the local
oscillators. The time drift with respect to the system time is periodically corrected
in the receiver firmware. Normally, corrections happen when the difference exceeds
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Figure 7.4.6 Convergence of the GLONASS L2 ambiguity estimates to a common frac-
tional value.

Figure 7.4.7 Across-receiver difference of the clock shift.

plus or minus half a millisecond. The clock is then corrected by one millisecond.
Half a millisecond is approximately 149,896m in the metric scale. Therefore, the
single difference of the clock error can experience jumps of about 299,792m, as can
be seen from the figure.

In this section, we discussed the RTK algorithm for processing a short static base-
line. The convergence of across-receiver hardware bias estimates, corrections to the
rover position, and ambiguity estimates is illustrated. Note that the term ambigu-
ity used in this and following sections differs of that used in Chapter 6, where it
was understood to be a physical quantity having an integer-valued nature. Instead,
in this chapter we allow across-receiver ambiguities to have a fractional part. More-
over, it includes hardware delays. In this chapter, when focusing on the computational
aspects, the term ambiguity is a “lumped” parameter, aggregating all terms appearing
as a sum with integer ambiguity in the navigation equations. The algorithm estimates
ambiguity as real-valued vectors. The condition of having a common fractional part
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for ambiguities from each group of signals will be imposed later in Section 7.10,
which is devoted to fixing across-receiver ambiguity. In the next section, we extend
consideration of the numerical algorithms to the cases of a kinematic rover and dif-
ferent baseline lengths.

7.5 RTK ALGORITHM FOR KINEMATIC ROVERS AND SHORT
BASELINES

The rover is allowed to change its position arbitrarily over time. The numerical
scheme for parameters estimation using across-receiver differences of pseudorange
and carrier phase measurements will be derived. This problem falls into the classi-
fication described in Section 3.2, where the static parameters are hardware biases
and carrier phase ambiguities, and arbitrarily varying kinematic parameters are the
across-receiver clock error and corrections to the approximate rover position.

Considering the navigation equations (7.4.3) and (7.4.5), we do not assume the
corrections x to the rover position (7.4.1) to be a constant. Instead, the rover position,
i.e., the approximate location, and the correction will be considered as time vary-
ing. This problem corresponds to the case of real-time kinematics. Equation (7.4.1)
becomes

xk(t) =
⎛⎜⎜⎝
xk (t)
yk(t)
zk(t)

⎞⎟⎟⎠ =
⎛⎜⎜⎝
xk,0 (t) + dxk(t)
yk,0(t) + dyk(t)
zk,0(t) + dzk(t)

⎞⎟⎟⎠ ≡ xk,0(t) + dx(t) (7.5.1)

and the navigation equations (7.4.3) and (7.4.5) take the form

bP(t) = Ax(t) + e𝜉(t) +W𝜂𝜼 (7.5.2)

b𝜑(t) = 𝜦
−1Ax(t) +𝜦−1e𝜉(t) + n (7.5.3)

The approximation xk,0(t) of the rover position is not constant. An easy choice for
the time-varying approximation is the stand-alone position of the rover computed
from pseudoranges. Another possibility is using the previously estimated position
xk(t − 1), assuming the dynamics are not too rapid. The vector of constant parameters
now takes the form

y =

(
𝜼

n

)
(7.5.4)

while the vector of arbitrary varying parameters is

dx(t) =
(
𝜉 (t)
dx(t)

)
(7.5.5)

We rewrite equations (3.2.1) in the form

J(t) dx(t) +Wy = b(t) (7.5.6)
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where now

J(t) =
[

e A (t)

𝜦
−1e 𝜦

−1A(t)

]
∈ R2n×4, W =

[
W𝜂 0
0 In

]
(7.5.7)

and apply the algorithm of Section 3.2 the same way as we did in the previous section.
Additionally, all other notations used in the description of the algorithm have not
changed.

The across-receiver carrier phase ambiguity vector n includes across-receiver
windup terms. In the case of a kinematic rover, these terms may not be constant. This
fact violates the assumption that n is a constant vector because the rover antenna
can experience arbitrary rotations. However, for short baselines these rotations lead
to the variation of all carrier phase observables by almost the same windup angle.
This means that for short baselines, the windup angle almost does not violate the
integer value of double-difference ambiguities; see Section 6.2.4. Working with
across-receiver differences, the algorithm detects simultaneous variation of all
carrier phase observables and compensates them in such a way that the ambiguity
vector n remains constant. We call this procedure windup compensation.

Regarding implementation of the windup compensation we recognize that if all
values 𝜑p

km,b(t + 1) in the expression (7.3.22) experience the same variation wkm, then
the corresponding components of the residual vector r𝜑(t + 1) defined as

r(t + 1) = b(t + 1) −Wy(t), r(t + 1) =
(
rTP(t + 1), rT𝜑(t + 1)

)T
(7.5.8)

will experience the same variation according to equation (7.5.3) and expressions
(7.3.22). Partitioning the vector r(t + 1) in (7.5.8) into two parts corresponds to the
partition (7.4.16). The variation is easily detectable if we compare the mean value

r𝜑 =
1
n

n∑
i=1

r𝜑,i(t + 1) (7.5.9)

with the root mean square deviation

r𝜑,0 =

√√√√1
n

n∑
i=1

r2
𝜑,i(t + 1) − r2𝜑 (7.5.10)

By choosing a proper confidence level, we get the threshold value 𝛽r𝜑,0 for the detec-
tion criterion, where the scalar 𝛽 is the multiple of the root mean square deviation.
It is chosen as 3 or 4 for a 0.997 or 0.999 confidence level, respectively. We assume
that the carrier phase windup happens if the following condition holds:

r𝜑 > 𝛽r𝜑,0 (7.5.11)

If (7.5.11) holds, then all values 𝜑p
km,b(t + 1) are updated by the same value r𝜑:

𝜑
p
km,b(t + 1) ∶= 𝜑

p
km,b(t + 1) − r𝜑 (7.5.12)
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A full description of the short baseline kinematic rover RTK algorithm follows. Let
ny = dim(y) = dim(𝜼) + dim(n). Starting with t = t0, dx(t0) = 0, D̂(t0) ∈ Rny×ny ,
D̂(t0) = 0, and y(t0) = 0, continue as described in Table 7.5.1.

The updated estimate of the constant parameters vector consists of the parts

yT (t + 1) =
(
𝜂T (t + 1),nT (t + 1)

)
(7.5.13)

The updated estimate of the time-varying parameter dx(t + 1) consists of the
across-receiver clock shift and the correction vector of the rover position

dxT (t + 1) =
(
𝜉(t + 1), dxT (t + 1)

)
(7.5.14)

The updated estimate of the time-varying scalar parameter 𝜉(t + 1) is the
across-receiver clock error. Vector dx(t + 1) is the correction to the rover position.

7.5.1 Illustrative Example

The raw data of used in the Section 7.4.1 is now processed as if they were kine-
matics set. In other words, data collected in static mode will be processed by the
algorithm described in the Table 7.5.1, which calls for an arbitrary varying position
of the rover. The approximate ECEF position of the base is (7.4.21), the same as used
in of Section 7.4.1.

Figure 7.5.1 shows the estimated hardware biases. The estimates and the time
dependence pattern look much like those shown in Figure 7.4.1 for the static case.
Although a larger number of time-varying parameters potentially leads to larger
volatility of all parameter estimates, the hardware biases converge to the same values
in both cases.

Figures 7.5.2 to 7.5.4 show components of the baseline blkm(t) = xk(t) − xm cal-
culated for the static and kinematic cases (Section 7.4.1 and the present section) i
and kinematic (Example 7.5.2) cases in comparison with their precise values given
in (7.4.24). In order to have a detailed look at the convergence properties for the
two cases, only the last 600 epochs are presented. As can clearly be seen, the kine-
matic estimate shows volatility compared to the static estimate. The reasons for such
volatility are noise and carrier phase multipath errors.

Finally, Figure 7.5.5 shows the scatter plot of easting and northing components
of the baseline obtained for the kinematic and static cases, also shown for the last
600 epochs. The scatter plot of the static solution shows convergence of the recur-
sive estimate. Differences between kinematic and static solutions can reach several
centimeters for various reasons. First, the convergence from the initial data to the
value settled around the accurate value takes time. Second, the multipath error varies
with time, thus disturbing the instant corrections vector. Multipath is a result of signal
reflection from a surface. For long occupation times it filters out in static processing.

The plots of the carrier phase ambiguity estimates look practically identical to
those of the static case described in the Section 7.4.1 and are omitted for the sake
of brevity. Across-receiver clock error estimates are also identical to those shown in
Figure 7.4.7.
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TABLE 7.5.1 Algorithm for Kinematic Rover and Short Baseline RTK.

Perform the windup compensation
procedure as described in (7.5.9) and
(7.5.12)

r𝜑 = 1

n

n∑
i=1

r𝜑,i(t + 1)

r𝜑,0 =

√
1

n

n∑
i=1

r2𝜑,i(t + 1) − r2𝜑

if r𝜑 > 𝛽r𝜑,0 then 𝜑
p
km,b(t + 1) ∶= 𝜑

p
km,b(t + 1) − r𝜑

Compute the
right-hand side
vector b(t + 1)
according to
(7.4.16), (7.3.21),
and (7.3.22)

b(t + 1) =
⎛⎜⎜⎝
bP (t + 1)

b𝜑(t + 1)

⎞⎟⎟⎠ ∈ R2n

bP(t + 1) =

⎛⎜⎜⎜⎜⎜⎝

P
p1
km,b1

(t + 1) − 𝜌p1k,0
(
t + 1 − 𝜏p1k

)
+ 𝜌p1m
(
t + 1 − 𝜏p1m

)
P
p2
km,b2

(t + 1) − 𝜌p2k,0
(
t + 1 − 𝜏p2k

)
+ 𝜌p2m
(
t + 1 − 𝜏p2m

)
⋮

P
pn
km,bn

(t + 1) − 𝜌pnk,0
(
t + 1 − 𝜏pnk

)
+ 𝜌pnm
(
t + 1 − 𝜏pnm

)
⎞⎟⎟⎟⎟⎟⎠

b𝜑(t + 1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜑
p1
km,b1

(t + 1) − 1

𝜆
p1
b1

(
𝜌
p1
k,0

(
t + 1 − 𝜏p1k

)
− 𝜌p1m
(
t + 1 − 𝜏p1m

))
𝜑
p2
km,b2

(t + 1) − 1

𝜆
p2
b2

(
𝜌
p2
k,0

(
t + 1 − 𝜏p2k

)
− 𝜌p2m
(
t + 1 − 𝜏p2m

))
⋮

𝜑
pn
km,bn

(t + 1) − 1

𝜆
pn
bn

(
𝜌
pn
k,0

(
t + 1 − 𝜏pnk

)
− 𝜌pnm
(
t + 1 − 𝜏pnm

))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Compute the matrix J(t + 1) according to (7.5.7),
(7.3.20), and (7.3.15) J(t + 1) =

⎡⎢⎢⎣
e A (t + 1)

𝜦
−1e 𝜦

−1A(t + 1)

⎤⎥⎥⎦
A(t + 1) =

⎡⎢⎢⎢⎢⎢⎣

Hp1
k,1 Hp1

k,2 Hp1
k,3

Hp2
k,1 Hp2

k,2 Hp3
k,3

· · ·

Hpn
k,1 Hpn

k,2 Hpn
k,3

⎤⎥⎥⎥⎥⎥⎦
Compute the matrixW according to (7.5.7) and
(7.3.38) W =

⎡⎢⎢⎣
W𝜂 0

0 In

⎤⎥⎥⎦
Square root of diagonal covariance matrix according
to (7.4.18) 𝜮 =

⎡⎢⎢⎣
𝜮P 0

0 𝜮𝜑

⎤⎥⎥⎦
Weighing b(t + 1) = 𝜮−1b(t + 1)

J(t + 1) = 𝜮−1J(t + 1)

W = 𝜮−1W
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TABLE 7.5.1 (Continued)

Compute the residual vector r(t + 1) r(t + 1) = b(t + 1) −Wy(t)

Compute Cholesky decomposition LJL
T
J = J

T
(t + 1)J(t + 1)

Forward run substitution J̃
T
(t + 1) = FLJ

(J
T
(t + 1))

Compute the projection matrix 𝜫 = I2n − J̃(t + 1)J̃
T
(t + 1)

Update the matrix D̂(t) D̂(t + 1) = D̂(t) +W
T
𝜫W

= D̂(t) +W
T
W −W

T
J̃(t + 1)J̃

T
(t + 1)W

Compute Cholesky decomposition D̂(t + 1) = L̂L̂
T

Update the estimate of constant
parameters y(t)

y(t + 1) = y(t) + BL̂

(
FL̂

(
W

T
(t + 1)𝜫r(t + 1)

))
Compute the second residual vector
r′(t + 1)

r′(t + 1) = b(t + 1) −Wy(t + 1)

Compute the updated estimate dx(t + 1) dx(t + 1) = BL
J
J̃
T
(t + 1)r′(t + 1)

Figure 7.5.1 Hardware biases estimates for the kinematic case.



434 REAL-TIME KINEMATICS RELATIVE POSITIONING

Figure 7.5.2 Comparison of the easting component of the baseline calculated for the
kinematic and static cases with the precise value. The last 600 epochs are shown.

Figure 7.5.3 Comparison of the northing component of the baseline calculated for the
kinematic and static cases with the precise value. Only the last 600 epochs are shown.

Figure 7.5.4 Comparison of the up component of the baseline calculated for the kine-
matic and static cases with the precise value. Only the last 600 epochs are shown.
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Figure 7.5.5 Scatter plot of easting and northing components for the baseline. The last
600 epochs are shown. Dashed line (static), solid (kinematic).

7.6 RTK ALGORITHM WITH DYNAMIC MODEL AND SHORT
BASELINES

We derive the numerical scheme for estimating the time-varying position of the rover
when it is subjected to dynamic constraints. This problem falls into the classification
described in Section 3.5 where the static parameters are hardware biases and carrier
phase ambiguities, the across-receiver clock error is the arbitrary varying kinematic
parameter, and the kinematic parameters subjected to the dynamic model are correc-
tions to the approximate rover position.

We use the same across-receiver linearized navigation equations (7.4.3) and (7.4.5)
that were used in the previous section. The motion of the rover was constrained to
static in Section 7.4, and it was not constrained at all in Section 7.5. Now we con-
sider the intermediate problem of constraining themotion by a certain dynamic mode.
Following this way, we will distinguish between kinematic and dynamic cases.

In some applications, the physical nature of the problem imposes the dynamic
model. For example, dynamics of the wheeled robot are governed by certain non-
holonomic differential equations. The dynamics of a solid body equipped by inertial
sensors are also well known. In general, we can say that the rover does not move
very aggressively, just like a vessel experiencing no significant roll and heave when
in steady motion or making slow turns, or we can say that the rover is maneuvering
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rapidly. For such a general description of the dynamics, one often uses the model
proposed in Singer (1970). In our notations the model looks like

xk(t) = xk(t − 1) + Δtvk(t − 1) +
1
2
Δt2ak(t − 1)

vk(t) = vk(t − 1) + Δtak(t − 1)

ak(t) = 𝛾ak(t − 1)

(7.6.1)

where xk(t), vk(t), and ak(t) are position, velocity, and acceleration of the rover (kth
station). The symbolΔt denotes the across-epoch time interval; note that (t + 1) refers
to the epoch after epoch t and not a certain time increment. The factor 𝛾 is given by

𝛾 = e−𝛼 𝛼 =
Δt
Tcorr

(7.6.2)

The correlation time Tcorr governs the volatility of acceleration. For example, if
the rover experiences slow turns between long periods of steady movement, we
can assume Tcorr = 60 sec, while for atmospheric turbulence Tcorr = 1 sec is more
appropriate.

Assuming that at each epoch we have the position of the rover expressed as a sum
of the approximation xk,0(t) and correction dx(t) similar to (7.5.1), we can introduce
the vector of state variables

x̃(t) =
⎛⎜⎜⎝
dx (t)
v(t)
a(t)

⎞⎟⎟⎠ (7.6.3)

and the matrix F (not depending on t)

F =
⎡⎢⎢⎣
I3 ΔtI3

1
2
Δt2I3

0 I3 ΔtI3
0 0 𝛾I3

⎤⎥⎥⎦ ∈ R9×9 (7.6.4)

Then the dynamic equations (3.3.1) take the form

x̃(t) = Fx̃(t − 1) + f(t) + 𝜺(t) (7.6.5)

where

f(t) =
⎛⎜⎜⎝
xk,0 (t − 1) − xk,0(t)

0
0

⎞⎟⎟⎠ (7.6.6)

and

E
(
𝜺(t)𝜺T (t)

)
= Q = 𝜎2

⎡⎢⎢⎢⎢⎢⎣

Δt5

20
I3

Δt4

8
I3

Δt3

6
I3

Δt4

8
I3

Δt3

3
I3

Δt2

2
I3

Δt3

6
I3

Δt2

2
I3 ΔtI3

⎤⎥⎥⎥⎥⎥⎦
∈ R9×9 (7.6.7)
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The quantity 𝜎2 is another parameter that depends on the expected dynamics (Singer,
1970). Note that the introduction of the vector f(t) in (7.6.5) extends the notation
(3.3.1), while it only changes the “compute the projected estimate” step of the optimal
estimation algorithm; see Table 3.5.1.

We now have everything prepared for application of the numerical scheme
described in Section 3.5. The vector of constant parameters consists of hardware
biases 𝜼 and floating ambiguities n, and takes the form

y =

(
𝜼

n

)
(7.6.8)

The single arbitrary varying parameter is 𝜉(t), which is the across-receiver clock error.
Rewrite the measurement equations (3.5.1) in the form

H(t)x̃(t) + J𝜉(t) +Wy = b(t) (7.6.9)

where

H(t) =
[

A (t) 0 0

𝜦
−1A(t) 0 0

]
∈ R2n×9,J =

(
e

𝜦
−1e

)
∈ R2n×1,

W =

[
W𝜂 0
0 In

]
∈ R2n×(2n+9) (7.6.10)

and apply the algorithm given in Table 3.5.1. described in Section 3.5 the sameway as
we did in the previous section. The first three columns of the matrix H(t) correspond
to the variables dx(t), while the next six columns correspond to v(t) and a(t). The
dimensions of the matrixW in (7.6.10) are presented for the general case in (7.3.38).
In the case of a GPS/GLONASS triple-band receiver, the matrix W has dimensions
2n × (2n + 3). All other notations used in the description of the algorithm have the
same meaning as in the previous section. Let ny = dim(y) = dim(𝜼) + dim(n). Start-
ing with t = t0, x̃(t0) = 0, D̂(t0) ∈ R(ny+9)×(ny+9), D̂(t0) = 0, and y(t0) = 0, continue
as described in Table 7.6.1.

7.6.1 Illustrative Example

The raw data used in Sections 7.4.1 and 7.5.1 will be processed taking into account
a dynamic model. In other words, data collected in static mode will be processed
by equation (7.6.1), allowing variation of the rover position in accordance to the
dynamic model (7.6.4), (7.6.5), and (7.6.7), and allowing arbitrary variation of the
across-receiver clock estimate.

Figure 7.6.1 compares the up component of the baseline vector calculated for the
dynamic case (dashed line) and the kinematic case (solid line). Only the last 100
epochs are presented in order to easily see the difference. The figure shows a more
conservative variation in the dynamic case, whereas the kinematic estimate demon-
strates higher volatility. We used the following parameters of the dynamic model:
𝛼 = 0.01sec−1 and 𝜎 = 0.01 m∕sec2.
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TABLE 7.6.1 Algorithm with Dynamic Model and Short Baselines.

Perform the windup compensation
procedure as described in (7.5.9) and
(7.5.12)

r𝜑 = 1

n

n∑
i=1

r𝜑,i(t + 1)

r𝜑,0 =

√
1

n

n∑
i=1

r2𝜑,i(t + 1) − r2𝜑

if r𝜑 > 𝛽r𝜑,0 then 𝜑
p
km,b(t + 1) ∶= 𝜑

p
km,b(t + 1) − r𝜑

Compute the
right-hand side
vector b(t + 1)
according to
(7.4.16), (7.3.21),
and (7.3.22)

b(t + 1) =
⎛⎜⎜⎝
bP (t + 1)

b𝜑(t + 1)

⎞⎟⎟⎠ ∈ R2n

bP(t + 1) =

⎛⎜⎜⎜⎜⎜⎝

P
p1
km,b1

(t + 1) − 𝜌p1k,0
(
t + 1 − 𝜏p1k

)
+ 𝜌p1m
(
t + 1 − 𝜏p1m

)
P
p2
km,b2

(t + 1) − 𝜌p2k,0
(
t + 1 − 𝜏p2k

)
+ 𝜌p2m
(
t + 1 − 𝜏p2m

)
⋮

P
pn
km,bn

(t + 1) − 𝜌pnk,0
(
t + 1 − 𝜏pnk

)
+ 𝜌pnm
(
t + 1 − 𝜏pnm

)
⎞⎟⎟⎟⎟⎟⎠

b𝜑(t + 1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜑
p1
km,b1

(t + 1) − 1

𝜆
p1
b1

(
𝜌
p1
k,0

(
t + 1 − 𝜏p1k

)
− 𝜌p1m
(
t + 1 − 𝜏p1m

))
𝜑
p2
km,b2

(t + 1) − 1

𝜆
p2
b2

(
𝜌
p2
k,0

(
t + 1 − 𝜏p2k

)
− 𝜌p2m
(
t + 1 − 𝜏p2m

))
⋮

𝜑
pn
km,bn

(t + 1) − 1

𝜆
pn
bn

(
𝜌
pn
k,0

(
t + 1 − 𝜏pnk

)
− 𝜌pnm
(
t + 1 − 𝜏pnm

))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Compute the covariance matrix Q according to
(7.6.7) and its Cholesky decomposition

LQL
T
Q = Q

Compute forward and backward substitutions with
the matrix F defined according to (7.6.4)

F = FLQ
(F)

F̃ = BLQ
(F)

Compute the matrix H(t + 1) according to (7.6.10),
(7.3.20), and (7.3.15) H(t) =

⎡⎢⎢⎣
A (t) 0 0

𝜦
−1A(t) 0 0

⎤⎥⎥⎦
A(t + 1) =

⎡⎢⎢⎢⎢⎢⎣

Hp1
k,1 Hp1

k,2 Hp1
k,3

Hp2
k,1 Hp2

k,2 Hp3
k,3

· · ·

Hpn
k,1 Hpn

k,2 Hpn
k,3

⎤⎥⎥⎥⎥⎥⎦
Compute the vector J according to (7.6.10)

J =
⎛⎜⎜⎝

e

𝜦
−1e

⎞⎟⎟⎠



RTK ALGORITHM WITH DYNAMIC MODEL AND SHORT BASELINES 439

TABLE 7.6.1 (Continued)

Compute the matrixW according to (7.6.10),
(7.3.38) W =

⎡⎢⎢⎣
W𝜂 0

0 In

⎤⎥⎥⎦
Square root of diagonal covariance matrix
according to (7.4.18) 𝜮 =

⎡⎢⎢⎣
𝜮P 0

0 𝜮𝜑

⎤⎥⎥⎦
Weighing b(t + 1) = 𝜮−1b(t + 1)

J = 𝜮−1J
W = 𝜮−1W
H(t + 1) = 𝜮−1H(t + 1)

Compute the projection matrix𝜫
𝛾 =

√
J
T
J

J̃ = 1

𝛾
J

𝜫 = I2n − J̃J̃
T

Compute the residual vector r(t + 1) r(t + 1) = b(t + 1) − H(t + 1)x̃(t) −Wy(t)

Compute the
updating matrix
𝚫(t + 1) Δ(t + 1) =

⎡⎢⎢⎢⎢⎣
F
T
F −F̃

T
0

−F̃ Q−1 + H
T
(t + 1)𝜫H(t + 1) H

T
(t + 1)𝜫W

0 W
T
𝜫H(t + 1) W

T
𝜫W

⎤⎥⎥⎥⎥⎦
Partitioning the
matrix D̂(t) in the
block form and
extend it adding
zero blocks

D̂(t) =
⎡⎢⎢⎣
Dxx Dxy

DxyT Dyy

⎤⎥⎥⎦, Dxx ∈ R9×9, Dxy ∈ R9×ny , Dyy ∈ Rny×ny

D̃(t) =

⎡⎢⎢⎢⎢⎣
Dxx 0 Dxy

0 0 0

DxyT 0 Dyy

⎤⎥⎥⎥⎥⎦
∈ R(ny+18)×(ny+18)

Update the matrix
D̃(t)

G(t + 1) = D̃(t) + Δ(t + 1)

=

⎡⎢⎢⎢⎢⎣
Dxx + F

T
F −F̃

T
Dxy

−F̃ Q−1 + H
T
(t + 1)𝜫H(t + 1) H

T
(t + 1)𝜫W

DxyT W
T
𝜫H(t + 1) Dyy +W

T
𝜫W

⎤⎥⎥⎥⎥⎦
Compute Cholesky
decomposition and
the updated matrix
D̂(t + 1)

G(t + 1) = L̂L̂
T
=
⎡⎢⎢⎣
L 0

K M

⎤⎥⎥⎦
⎡⎢⎢⎣
LT KT

0 MT

⎤⎥⎥⎦ ,L ∈ R9×9,M ∈ R(ny+9)×(ny+9)

D̂(t + 1) = MMT

(continued)
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TABLE 7.6.1 (Continued)

Compute the updated estimate⎛⎜⎜⎝
x̃ (t + 1)

y(t + 1)

⎞⎟⎟⎠
⎛⎜⎜⎝
x̃ (t + 1)

y(t + 1)

⎞⎟⎟⎠
=
⎛⎜⎜⎝
Fx̃ (t) + xk,0(t) − xk,0(t + 1)

y(t)

⎞⎟⎟⎠
+BM

⎛⎜⎜⎝FM

⎛⎜⎜⎝
⎛⎜⎜⎝
H

T
(t + 1)

W
T

⎞⎟⎟⎠𝜫r(t + 1)
⎞⎟⎟⎠
⎞⎟⎟⎠

Compute the second residual vector r′(t + 1) = b(t + 1) − H
T
(t + 1)x(t + 1) −Wy(t + 1)

Compute the estimate of the across-receiver clock difference
𝜉(t + 1)

𝜉(t + 1) = 1

𝛾
J̃
T
r′(t + 1)

Figure 7.6.1 Comparison of up component of the baseline calculated for both kinematic
and dynamic cases. The last 100 epochs are shown.

The other estimates, excluding northing and easting components of the baseline,
are practically identical to those obtained in the kinematic case and are omitted for
brevity.

In this section, we considered short kinematic baseline processing with the rover
motion constrained by a dynamic model. In contrast with the previous section, no
arbitrary variation of the rover position is acceptable.We considered the case of a very
general dynamic model (7.6.1). In practical applications, such as machine control, the
dynamic model should be chosen that best reflects the dynamics of the machine. For
example, the road construction machines that have a body (probably rotating), a blade
or boom and bucket, the physical quantities like masses, lengths of links, and inertia
momentums can be used to describe the dynamic model.

If there is no specific information about the dynamics of the physical bodies, except
knowing that the kinematics of the rover antenna cannot be absolutely arbitrary by
allowing immediate and large changes of position, a reasonable practical recipe is to
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use model (7.6.1). Figure 7.6.1 illustrates how this model constrains the variation of
position.

7.7 RTK ALGORITHM WITH DYNAMIC MODEL AND LONG
BASELINES

If baselines are greater than about 5 km, the across-receiver ionospheric delays cannot
be neglected in the navigation equations (7.3.37) and (7.3.46). The vector i(t) ∈ Rn

of the across-receiver ionospheric delay varies with time. Having additional n vari-
ables to estimate at each epoch, the redundancy of the system of navigation equations
reduces because the difference in the number of equations and parameters reduces.
There are two options to restrict variation of the ionospheric delay estimate:

1. Restrict variation of the ionospheric delay estimated at each epoch. The esti-
mates related to different epochs are independent of each other.

2. Introduce the dynamic model that governs variation of the ionospheric delay
from epoch to epoch.

If one considers the ionospheric delays as slowly varying parameters, one follows
the second approach, which is the more general of the two. Following the second
approach, include the vector i(t) in the set of estimated parameters that are subject to
the dynamic model. Modify the measurement equations (7.6.9) as follows:

H(t)x̃(t) +Hii(t) + J𝜉(t) +Wy = b(t) (7.7.1)

where the matrix Hi(t) has the form

Hi =

[
𝜞

−𝜦−1
𝜞

]
(7.7.2)

according to equations (7.3.37) and (7.3.46), and the matrix 𝜞 is defined by (7.3.27).
Restrict the variation of the time-dependent vector i(t) by the dynamic equations

i(t) = 𝛾ii(t − 1) + 𝜺i(t) (7.7.3)

where
𝛾i = e−Δt∕𝜏i (7.7.4)

withΔt being the across-epoch time difference, and 𝜏i is the correlation time reflecting
the rate of variation of the ionospheric delay in time. A typical value for 𝜏i is 1200 sec.
The white noise 𝜺i(t) has the covariance matrix 𝜎2i In, which provides the variance of
the across-receiver ionosphere satisfying the condition (7.4.2). Let

𝜎
2
i = (S × 10−6 × ‖xk − xm‖)2 (7.7.5)
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where the factor S is defined in (7.4.2) to be an expected mean value of ‖i(t)‖2.
It follows from (7.7.3) that ‖i(t)‖2 = ‖𝛾ii(t − 1) + 𝜺i(t)‖2. Then, assuming that the
stochastic process i(t) is stationary and i(t) does not depend on 𝜺i(t), we take a mean
value of both sides of the last equality. We obtain

𝜎2i =
(
1 − 𝛾2i

)
𝜎
2
i (7.7.6)

combine parameters that are subject to dynamic constraints into the new vector

̃̃x(t) =
[
x̃ (t)
i(t)

]
∈ R9+n (7.7.7)

and introduce the matrices

̃̃H(t) =
[
H (t) Hi

]
∈ R2n×(n+9) (7.7.8)

̃̃F =

[
F 0
0 𝛾 iIn

]
∈ R(n+9)×(n+9) (7.7.9)

̃̃Q =

[
Q 0
0 𝜎2i In

]
∈ R(9+n)×(9+n) (7.7.10)

then apply the algorithm, described in the Table 7.6.1 with vector x̃(t) substituted
by vector ̃̃x(t), and matrices H(t), F, and Q substituted by matrices (7.7.8), (7.7.9),
and (7.7.10), respectively. For long baselines, the windup compensation procedure
does not totally compensate the windup angle in double-difference carrier phase
observables.

7.7.1 Illustrative Example

Consider a dual-band GPS and GLONASS data set collected for a 45 km baseline
observed over 4075 sec. For S = 2, equation (7.7.5) gives 𝜎i = 0.09 m. The
ionospheric correlation time is chosen as 𝜏i = 1200 sec. Figure 7.7.1 illustrates
the estimates of the baseline vector components using the algorithm described in
Section 7.6 without ionospheric delay estimation (dashed line), and the algorithm
described in the current section that includes the ionospheric delay estimation (solid
black line). The dotted line shows the components of the known baseline. As can
be seen, the ionosphere estimation improves the overall accuracy of the estimation.
Moreover, the ambiguity resolution is faster because it allows compensation of
the slowly varying ionospheric delay, which otherwise would appear as bias in the
navigation equations if not compensated.

Figure 7.7.2 illustrates the ionospheric delay estimate for one GPS satellite (solid
black line) and one GLONASS satellite (dashed line). In order to exclude the transient
values, the figure shows the last 3000 epochs. For the sake of comparison, Figure 7.7.3
shows the estimate of the ionospheric delay for the same two satellites when using
𝜏i = 3600 sec. A larger correlation time produces more stable estimates.
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Figure 7.7.1 Easting, northing, and up components of the baseline calculated for the
cases of estimating the residual ionospheric delay (solid line) and ignoring the ionospheric
delay (dashed line). The dotted line shows the known values.

In this section we considered long baseline processing, in which case the
across-receiver ionospheric difference cannot be neglected and the RTK processing
engine must appropriately handle it. The most efficient approach is estimating it
and thus compensating for it in the navigation equations. The ionospheric term
appears in the navigation equations as an additional variable reducing redundancy.
Effectively, we have n variables more to be estimated at each time epoch. On
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Figure 7.7.2 Across-receiver ionospheric delay estimate for one GPS and one
GLONASS satellite obtained for the a priori ionospheric correlation time 𝝉 i =𝟏𝟐𝟎𝟎 sec.
The units are in meters.

Figure 7.7.3 Ionosphere delay estimate for one GPS satellite and one GLONASS satel-
lite obtained for the a priori ionosphere correlation time 𝝉 i =𝟑𝟔𝟎𝟎 sec.

the other hand, it is obvious that the ionospheric delay at the adjacent epochs for
each satellite cannot vary independently. Therefore, it is wise to apply a dynamic
model constraining variation of the residual ionospheric delay estimate. We used a
practically proven first-order dynamic model – the simplest one among all possible
models. The above figures illustrate the behavior of the ionospheric delay estimates.
Effectively, we can see from Figures 7.7.2 and 7.7.3 that the RTK processing engine
picks up part of other real error terms, most likely the multipath, together with the
ionospheric estimate. The positive effect of the ionospheric delay estimation on the
position estimate is illustrated in Figure 7.7.1. The estimation of the ionospheric
delay decreases a mean value of the position error and the dynamic model allows
for better smoothing of the ionosphere estimate and, therefore, a smoothing of the
position noise estimate.
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7.8 RTK ALGORITHMS WITH CHANGING NUMBER OF SIGNALS

In the RTK algorithms in the previous sections we assumed the set of signals to be
constant over time. The receiver was assumed to observe the same number of satel-
lites and the receiver hardware and firmware were assumed to track a constant number
of signals for each satellite. These assumptions greatly simplify the description of
filtering schemes but naturally do not correspond to reality. Satellites rise and set
while observation sessions are ongoing. The satellite visibility may change for a short
period in kinematic applications when a vehicle passes a tree or other object. Even
if one of the signals, say the C/A L1 GPS signal keeps tracking, another signal from
the same satellite, say L2 GPS, may experience short-term interruption. The discon-
tinuity may be as short as one or a few epochs, but nevertheless the number of signals
is changing in time and the RTK algorithm must make accommodations to achieve
optimal processing for such a discontinuous data flow.

Even if a tracked signal does not completely disappear, the continuity of the phase
measurement may be affected. Discontinuity can occur when the carrier phase locked
loop (PLL) loses continuity of tracking. In other words, the state of the PLL may
jump into the vicinity of another stable point. This means that after some transient
is settled, the carrier phase ambiguity will have changed by some unknown integer
(cycles). The dimension of the state space is defined by the order of the PLL, which
in turn depends on the number of integration operators in the closed loop. Usually
the PLL state space is two or three dimensional, including the carrier phase, its rate
of change, and probably second time derivative.

The ambiguities were considered constant in the description of the RTK
algorithms. Nowwe accept the fact that they can vary. The detection of cycle slips was
already mentioned in Section 6.2.3 when discussing geometry-free solutions. More
numerical algorithms will be considered in the following section. The cycle slips
leading to an unknown ambiguity jumpwill be treated as if the signal disappears at the
current epoch and appears again at the next epoch, suggesting another value of tpCS,km,b
and another carrier phase ambiguity in the navigation equations (7.2.12) and (7.3.17).

First, consider the case when a new signal appears. Let the set of signals be S =
{s1,… , sn} as suggested by equation (7.3.19) for epochs t = t0,… , t1. Suppose the
new signal sn+1 appears at the epoch t1 + 1, so that starting with epoch t1 + 1, we
have

S+ = {s1,… , sn, sn+1} (7.8.1)

which has one more signal sn+1 compared to (7.3.19).
New signals might require a new carrier phase ambiguity and probably a new

hardware bias if the new signal is the only one in the group having the same bias.
These new constant parameters must be recursively estimated starting with epoch
t1 along with all other constant parameters. In Chapter 3, when discussing recur-
rent algorithms for various least-squares problems, we assumed that the vector of
time-invariant parameters has a constant dimension that does not depend on time.
For example, when discussing problem (3.1.1) we supposed that y ∈ Rn, while the
number of observables m(t) was varying with time. Let us now extend the problem
setup, assuming that y ∈ Rn for t = 1,… , t1 and y ∈ Rn+1 for t = t1 + 1,….
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We will apply Algorithm 1 given in Table 3.1.1 in Section 3.1 for problem (3.1.1),
running it for sequential epochs t = 1,… , t1. Starting with epoch t1 + 1 we assume
that the vector y has dimension n + 1. Moreover, after its optimal estimate y(t1) is cal-
culated, we can assume that it has dimension n + 1 for all time instants t = 1,… , t1 +
1,…, with the (n + 1)th entry set to zero for t = 1,… , t1. The measurement matrix is
assumed to have the last column, i.e., the n + 1th column, containing zeroes

W(t) =

⎡⎢⎢⎢⎣
w11 (t) · · · w1n(t) 0
w21(t) · · · w2n(t) 0
· · · · · · · · · · · ·

wm(t),1(t) · · · wm(t),n(t) 0

⎤⎥⎥⎥⎦ (7.8.2)

for t = 1,… , t1. Starting with epoch t1 + 1, the algorithm operates with dimension
n + 1, but modifications are needed at the time instant t1. The iteration of Algorithm
1 (see Table 3.1.1), corresponding to the epoch t = t1, starts with the extension of the
vector y(t1) by adding (n + 1)th entry equal to zero

y(t1) →
[
y
(
t1
)

0

]
(7.8.3)

Also, the calculation of matrix D(t1 + 1) is split into two substeps:

a. Extend the n × n matrix D(t1) by forming the (n + 1) × (n + 1) matrix

D+(t1) =

⎡⎢⎢⎢⎣
D
(
t1
) 0

⋮
0

0 · · · 0 0

⎤⎥⎥⎥⎦ ∈ R(n+1)×(n+1) (7.8.4)

b. Calculate the matrix update

D(t1 + 1) = D+(t1) +W
T
(t1 + 1)W(t1 + 1) (7.8.5)

All other steps are performed the same way as described in Algorithm 1 in
Table 3.1.1. Obviously, the dimension can be extended by more than one at the time
instant t = t1. More than one zero will be added to the vector y(t1) in (7.8.3) and
more than one zero row and column will be added to the matrix D(t1) in (7.8.4). The
same reasoning holds for all other problem setups described in Sections 3.2 to 3.5.

The step “Update the matrix D̂(t)” of the algorithms in Tables 7.4.1 and 7.5.1, and
the step “Compute Cholesky decomposition and the updated matrix D̂(t + 1)” of the
algorithm in Table 7.6.1 must be modified in the same manner as (7.8.4) and (7.8.3),
allowing estimation of the ambiguity of the new signal to start at the same epoch as
it appears for the first time.

Now consider the case when the existing signal disappears. Let the set of signals
be S = {s1,… , sn} as suggested by (7.3.19) for epochs t = t0,… , t1, and suppose that
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one of the signals, say sn without loss of generality, disappears at the epoch t1 + 1 so
that starting with the epoch t1 + 1 we have

S− = {s1,… , sn−1} (7.8.6)

Again, going back to the problem in Section 3.1 of Chapter 3, and assume that the
algorithm in Table 3.1.1 was running for sequential time instances t = 1,… , t1, recur-
sively estimating the vector of constant parameters y ∈ Rn based on sequentially
received measurements. Starting with time instant t1 + 1, we assume that the vector
y has dimension n − 1 and that the variable yn is no longer represented in the obser-
vation model (3.1.1). How do we modify the numerical scheme described in Section
3.1 in such a way that it would generate an optimal estimate of vector y(t) ∈ Rn for
t = 1,… , t1 and z(t) ∈ Rn−1 for t = t1 + 1,…?

Suppose that the algorithm in Table 3.1.1 ran for sequential epochs t = 1,… , t1.
Let us look at expression (3.1.11) and present it in a more convenient form for further
analysis. Expanding the parentheses in (3.1.11) and taking into account (3.1.13) and
(3.1.15), we obtain

I
(
y, t′
)
=
(
W(t′)y − b(t′)

)T(W(t′)y − b(t′)
)

= yTD(t′)y − 2yTW
T
(t′)b(t′) + b

T
(t′)b(t′)

= yTD(t′)y − 2yTD(t′)D−1(t′)W
T
(t′)b(t′) + b

T
(t′)b(t′)

= yTD(t′)y − 2yTD(t′)y(t′) + b
T
(t′)b(t′) (7.8.7)

Then adding and subtracting the term yT (t′)D(t′)y(t′) to the above expression, we
arrive at the following expression:

I(y, t′) = yTD(t′)y − 2yTD(t′)y(t′) + y(t′)TD(t′)y(t′) − y(t′)TD(t′)y(t′) + b
T
(t′)b(t′)

=
(
y − y(t′)

)TD(t′)(y − y(t′)
)
− b

T
W(t′)D−1(t′)W

T
(t′)b(t′) + b

T
(t′)b(t′)

=
(
y − y(t′)

)TD(t′)(y − y(t′)
)
+ b

T
(t′)(I −W(t′)D−1(t′)W

T
)b(t′)

=
(
y − y(t′)

)TD(t′)(y − y(t′)
)
+ c (7.8.8)

where the constant c does not depend on the variable y. Obviously the quadratic
function (7.8.8) takes its minimum at the point y(t′). Then we can express the func-
tion I(y, t′ + 1), corresponding to the next time instant recursively using expressions
(3.1.8) and (7.8.8),

I(y, t′ + 1)

= I(y, t′) +
(
W(t′ + 1)y − b(t′ + 1)

)T(W(t′ + 1)y − b(t′ + 1)
)

=
(
y− y(t′)

)TD(t′)(y− y(t′)
)
+
(
W(t′ + 1)y−b(t′ + 1)

)T(W(t′ + 1)y−b(t′ + 1)
)

(7.8.9)
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The optimal estimate y(t′ + 1) minimizes the function (7.8.9). Equating the first
derivatives of (7.8.9) to zero, we obtain the equation

D(t′)
(
y − y(t′)

)
+W(t′ + 1)T

(
W(t′ + 1)y − b(t′ + 1)

)
= 0 (7.8.10)

Solving it for y(t′ + 1), we obtain the same expressions as (3.1.16),

y(t′ + 1) = y(t′) +D−1(t′ + 1)W
T
(t′ + 1)

(
b(t′ + 1) −W(t′ + 1)y(t′)

)
(7.8.11)

where D(t′ + 1) = D(t′) +W
T
(t′ + 1)W(t′ + 1). See also expression (3.1.17).

Look at the least-squares problem (7.8.9) for t′ = t1. Let the vector of variables y
and the vector of optimal estimate y(t1) be split into two parts:

y =

[
z
yn

]
z ∈ Rn−1 y(t1) =

[
z
(
t1
)

yn(t1)

]
z(t1) ∈ Rn−1 (7.8.12)

and the matrix D(t1) be split accordingly:

D(t1) =

[
Dz

(
t1
)

dn(t1)

dT
n(t1) dnn(t1)

]
(7.8.13)

According to our assumption z(t) ∈ Rn−1 for t = t1 + 1,… and, therefore, we can
express the matrixW(t1 + 1) in the form

W(t1 + 1) =

⎡⎢⎢⎢⎣
w11

(
t1 + 1

)
· · · w1,n−1(t1 + 1) 0

w21(t1 + 1) · · · w2,n−1(t1 + 1) 0
· · · · · · · · · · · ·

wm(t1+1),1
(t1 + 1) · · · wm(t1+1),n−1

(t1 + 1) 0

⎤⎥⎥⎥⎦ =
[
Wz

(
t1 + 1

)
0
]

(7.8.14)
whose last column, the nth column, is zero. We can rewrite the problem (7.8.9) in the
form

min
y∈Rn

I(y, t1 + 1) = min
z∈Rn,yn∈R

1
I(z, yn, t1 + 1) = min

z∈Rn

(
min
yn∈R

1
I(z, yn, t1 + 1)

)
= min

z∈Rn

[(
z − z(t1)

)TDz(t1)
(
z − z

(
t1
) )

+
(
Wz(t1 + 1)z − b(t′ + 1)

)T(Wz
(
t1 + 1

)
z − b(t′ + 1)

)
+ min

yn∈R
1

(
2(z − z(t1))

Tdn(t1)
(
y − y(t1)

)
+ dnn

(
y − y(t1)

)2)]
(7.8.15)

Taking the internal minimum over the variable yn ∈ R1 in (7.8.15), we obtain

(
y − y(t1)

)
= −

dT
n (t1)
(
z − z(t1)

)
dnn

(7.8.16)
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Substituting (7.8.16) back into (7.8.15) we present it in the form

min
z∈Rn

I(z, t1 + 1) = min
z∈Rn

[(
z − z(t1)

)TDz(t1)
(
z − z(t1)

)
+
(
Wz(t1 + 1)z − b(t′ + 1)

)T(Wz(t1 + 1)z − b(t′ + 1)
)]

(7.8.17)

where
Dz(t1) = Dz(t1) −

1
dnn

dn(t1)d
T
n (t1) (7.8.18)

Then, the solution to the problem (7.8.17) is given by the following expressions:

z(t′ + 1) = z(t′) +Dz
−1(t′ + 1)Wz

T
(t′ + 1)

(
b(t′ + 1) −Wz(t

′ + 1)z(t′)
)

(7.8.19)

Dz(t
′ + 1) = Dz(t

′) +Wz

T
(t′ + 1)Wz(t

′ + 1) (7.8.20)

which are obtained the same way that expression (7.8.11) was obtained above.
We note that the matrix D(t) now has a form similar to (7.8.13) for t ≥ t1 + 1.

Since the matrix W(t) has a form similar to (7.8.14) for all t ≥ t1 + 1, then columns
dn(t) ≡ dn(t1) for all t ≥ t1 + 1, which follows from expression (3.1.15). It means that
the algorithm described in Table 3.1.1 remains unchanged except for updating of the
matrix D(t1) and the optimal estimate. Updating of the matrix D(t1) takes the form:

a. Present the n × n matrix D(t1) in the form (7.8.13).
b. Calculate the (n − 1) × (n − 1) matrix update according to the expression

D(t′ + 1) = Dz(t1) −
1
dnn

dn(t1)d
T
n (t1) +Wz

T
(t′ + 1)Wz(t

′ + 1) (7.8.21)

following from expressions (7.8.20) and (7.8.18). Updating of the optimal estimate
takes the form:

a. Present the n-dimensional estimate y(t1) in the form of (7.8.12).
b. Calculate the estimate update:

y(t + 1) ∶= z(t) + BLD(t+1)

(
FLD(t+1)

W
T
(t + 1)r(t + 1)

)
(7.8.22)

All remaining quantities are calculated according to the algorithm in Table 3.1.1.
The same reasoning holds true for all other problems described in Sections 3.2, 3.4,
and 3.5. The matrix D̂(t) updating steps of the algorithms in Sections 7.4.1, 7.5.1,
and 7.6.1 must be modified according to the procedure described above, allowing for
“seamless” optimal estimation of the remaining ambiguities when one of the signals
disappears.

Note again that when the cycle slip is detected in one of the carrier phase signals,
the situation can be treated as a discontinuity of the carrier phase observation. One
can proceed with a sequential application of two schemes, assuming that the signal
disappears and reappears with another ambiguity.
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7.9 CYCLE SLIP DETECTION AND ISOLATION

As was mentioned above, a discontinuity of phase measurement can occur on one
or several signals. The individual PLL generating carrier phase measurement for a
certain signal may lose the locked mode as a result of short-term shading or some
other disturbance. Depending on the order of the PLL, its state vector can be two
dimensional, three dimensional, or it can have even higher dimensions. In the first
case, the PLL state vector consists of the carrier phase and its first derivative, also
known as Doppler frequency. In the second case, the second derivative of the carrier
phase, or rate of Doppler frequency, is added. Discontinuity of tracking results in
a jump of the state into the vicinity of another stable point in the state space. This
means that after some transient is settled, the carrier phase ambiguity has changed by
some number of integer cycles. This means that the carrier phase ambiguity changes
its integer value. One can deal with this by adding another ambiguity variable and
changing the value of tpCS,km,b in the navigation equation (7.3.17).

This section focuses on the detection of cycle slips using across-receiver
across-epoch differences and making use of signal redundancy. We start with
brief remarks on triple-difference cycle slip fixing and traditional dual-frequency
geometry-free solutions, by providing some specifics for triple-frequency cycle slip
detection, and briefly discussing the two-step method by Dai et al. (2008).

Triple-difference solution was considered in Section 6.1.4 as a tool for cycle slip
detection. It is applicable to the static positioning case. The triple-difference method
works independently for each carrier phase signal and each pair of satellites, using
time redundancy and assuming that the measurements are sufficiently oversampled.
The sampling period is equal to the across-epoch time interval. In the kinematic case,
a sufficient sampling rate allows prediction of the term Δ𝜌pqkm in expression (6.1.91).
Any of the curve fitting methods make it possible to predict the triple difference of
the topocentric satellite distance. Other predictors known in the estimation theory
can also be applied. A predicted triple difference of the topocentric satellite distances
can be used to compensate the term Δ𝜌pqkm for the kinematic case when it cannot be
neglected.

If more than one carrier frequency is available for each satellite, it is possible to use
geometry-free combinations as mentioned in Section 6.2.3. Detection of cycle slips
based on the geometry-free combination works if the cycle slip occurs on only one
of the signals for a certain satellite. More generally, it works if cycle slips affecting
different frequency signals do not cancel in the geometry-free combination. Even if
a step change has been detected in the geometry-free combination, it is hard to judge
upon which of the two signals, let us say corresponding to L1 or L2, the slip actually
occurred. Therefore, to be on the safe side the processing enginemust flag both signals
as possibly having a cycle slip, even if it may result in a false alarm for one of them.

Cycle slip detection methods for triple-frequency observations are considered, for
example, in Wu et al. (2010). The set of observations consists of the three pseudo-
ranges and three carrier phases. These include L1, L2, L5 for GPS and QZSS; L1,
E5b, E5a for Galileo; or B1, B2, B3 for the Beidou satellite system. Consider the
across-receiver difference of the scaled carrier phase functions (6.1.26) for a certain
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satellite in the form (7.2.12):

𝛷1(t) ≡ 𝜆1𝜑1(t) = 𝜌(t) + 𝜉(t) + 𝜆1N1(t) − I1(t) + 𝜆1d1 + 𝜆1𝜀1(t) (7.9.1)

𝛷2(t) ≡ 𝜆2𝜑2(t) = 𝜌(t) + 𝜉(t) + 𝜆2N2(t) − (f1∕f2)
2I1(t) + 𝜆2d2 + 𝜆2𝜀2(t) (7.9.2)

𝛷3(t) ≡ 𝜆3𝜑3(t) = 𝜌(t) + 𝜉(t) + 𝜆3N3(t) − (f1∕f3)
2I1(t) + 𝜆3d3 + 𝜆3𝜀3(t) (7.9.3)

where the across-receiver difference symbol km is omitted for brevity. The
across-receiver ambiguities Ni(t) do not depend on t until a cycle slip occurs. The
symbol Δ will be used to denote differencing across time between two adjacent
epochs t + 1 and t,

𝜆iΔ𝜑i(t + 1, t) = Δ𝜌(t + 1, t) + cΔ𝜉(t + 1, t) + 𝜆iΔNi(t + 1, t)

−𝛾iΔIi(t + 1, t) + 𝜆iΔdi(t + 1, t) + 𝜆Δ𝜀i(t + 1, t) (7.9.4)

where 𝛾i = (f1∕fi)
2 and 𝛾1 = 1. Let us make the following simplifying assumptions:

a. Ionospheric delay does not significantly change between epochs, so the quantity
ΔIi(t + 1, t) can be neglected in (7.9.4).

b. The hardware bias term is practically constant, so the cross-epoch bias 𝜆iΔdi(t +
1, t) can be neglected.

The quantities ΔNi(t + 1, t), i = 1, 2, 3 represent exactly the cycle slips that
occurred between epochs t + 1 and t. Let us construct the multifrequency carrier
phase combination:

Δ𝛷c ≡
∑

i=1,2,3

𝛼i𝜆iΔ𝜑i(t + 1, t)

=
[
Δ𝜌(t + 1, t) + cΔ𝜉(t + 1, t)

] ∑
i=1,2,3

𝛼i +
∑

i=1,2,3

𝛼i𝜆iΔNi(t + 1, t)

+
∑

i=1,2,3

𝛼i𝜆iΔ𝜀i(t + 1, t) (7.9.5)

In order to preserve the geometric and clock terms in (7.9.5), we assume that coeffi-
cients 𝛼i satisfy

𝛼1 + 𝛼2 + 𝛼3 = 1 (7.9.6)

Therefore (7.9.5) can be written as

Δ𝛷c = Δ𝜌(t + 1, t) + cΔ𝜉(t + 1, t) + 𝜆cΔNc + Δ𝜀c (7.9.7)

where 𝜆cΔNc ≡
∑

i=1,2,3

𝛼i𝜆iΔNi(t + 1, t) and Δ𝜀c ≡
∑

i=1,2,3

𝛼i𝜆i𝜀i(t + 1, t). The value

ΔNc will be called the cycle slip of the carrier phase combination. In order to keep
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the integer value of ΔNc, assuming that cycle slips ΔNi(t + 1, t) are integers, the
coefficients 𝛼i satisfy additional conditions. Namely, the values

mi =
𝜆i𝛼i
𝜆

(7.9.8)

must be integer. Together with (7.9.6), one obtains the expression for the wavelength
of carrier phase combination

𝜆c =
𝜆1𝜆2𝜆3

m1𝜆2𝜆3 + m2𝜆1𝜆3 + m3𝜆1𝜆2
=

1
m1∕𝜆1 + m2∕𝜆2 + m3∕𝜆3

(7.9.9)

and corresponding frequency

fc ≡ c
𝜆c

= m1f1 + m2f2 + m3f3 ≡ f(m1,m2,m3)
(7.9.10)

using triple-frequency subscript notations as in Section 6.7.1. Taking in account
expressions (7.9.7) to (7.9.9), the across-receiver across-time carrier phase
combination Δ𝜑c = Δ𝛷c∕𝜆c can be expressed as

Δ𝜑c = Δ𝜑(m1,m2,m3)
(t + 1, t) (7.9.11)

The carrier phase noise is assumed to be Gaussian white noise with a standard devi-
ation 𝜎𝜑 for each of the three frequencies. Then the standard deviation of the combi-
nation noise Δ𝜀c is expressed as

𝜎c =
√
2𝜆c𝜎𝜑

√
m2
1 + m2

2 + m2
3 (7.9.12)

with the
√
2 factor reflecting across-epoch differencing. The wavelength combination

for selected integer parametersm1,m2, andm3 is shown in the Table 7.9.1, with classic
wide lane and extra wide lane as particular cases.

Let us compare the expression (7.9.7) with across-receiver across-epoch pseudor-
ange observations with ionospheric and biases terms neglected according to assump-
tions (a) and (b). This pseudorange function is expressed as

ΔP = Δ𝜌(t + 1, t) + cΔ𝜉(t + 1, t) + Δ𝜀P (7.9.13)

with standard deviation of the noise term Δ𝜀P estimated as
√
2𝜎P. The factor

√
2

again reflects the across-epoch differencing, and 𝜎P is the standard deviation of the
pseudorange noise. Then the cycle slip value of the carrier phase combination (7.9.11)
can be estimated as

ΔNc =
Δ𝛷c − ΔP

𝜆c
+

Δ𝜀c − Δ𝜀P
𝜆c

(7.9.14)

with the second term being the cycle slip estimation error. Its standard deviation is
estimated according to (7.9.12) as

𝜎N =
√
2 ⋅

√
𝜎2𝜑(m

2
1 + m2

2 + m2
3) +

𝜎2P

𝜆2c
(7.9.15)
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TABLE 7.9.1 Wavelength and Frequency of Selected GPS
Carrier Phase Combinations.

m1 m2 m3 fc (MHz) 𝜆c (m)

1 −1 0 347.82 0.862
1 0 −1 398.97 0.751
0 1 −1 51.15 5.861
1 −6 5 92.07 3.256

−9 2 10 40.92 7.326
−1 10 −9 112.53 2.664
3 0 −4 20.46 14.652

−1 8 −7 10.23 29.305

From (7.9.15) it can be seen that the precision of cycle slip determination depends on
the noise of pseudorange and carrier phase observations and the wavelength of car-
rier phase combination. Under the same observation condition, the longer the carrier
phase wavelength is and the smaller the absolute values mi, the higher the preci-
sion of the cycle slip estimation. This means that the combination {3, 0,−4} with
𝜆c = 14.652 is preferable to {−9, 2, 10} with 𝜆c = 7.326 (see Table 7.9.1).

Another interesting approach to detection and correction of cycle slips in single
GNSS receivers is proposed in Dai et al. (2008). They use the geometry-free combi-
nation for cycle slip detection. At the second stage, they combine the across-epoch
increments of carrier phase and pseudorange measurements to correctly determine
the cycle slip values using an integer search technique as applied in ambiguity reso-
lution, because effectively the cycle slip is just an unknown increment of the carrier
phase ambiguity. We introduce the generalization of the geometry-free combination
if we replace the condition (7.9.6) by

𝛼1 + 𝛼2 + 𝛼3 = 0 (7.9.16)

Then (7.9.5) takes the form

Δ𝛷(𝛼1,𝛼2,𝛼3)
(t + 1, t)

≡ ∑
i=1,2,3

𝛼i𝜆i Δ𝜑i(t + 1, t) =
∑

i=1,2,3

𝛼i𝜆iNi(t + 1, t) +
∑

i=1,2,3

𝛼i𝜆iΔ𝜀i(t + 1, t)

(7.9.17)

The standard deviation of the noise term in (7.9.17) is expressed as

𝜎c =
√
2𝜎𝜑

√
(𝛼21𝜆

2
1 + 𝛼

2
2𝜆

2
2 + 𝛼

2
3𝜆

2
3) (7.9.18)

By choosing a proper confidence level, we get the critical value 𝛽𝜎c for the cycle
slip detection criterion, where the factor 𝛽 depends on the confidence level. It can be
chosen, for example, as 3 for the confidence level 0.997. The following inequality
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allows checking whether cycle slips arose on one or more carrier phase signals of a
specific satellite between two adjacent epochs:

|Δ𝛷(𝛼1,𝛼2,𝛼3)
(t + 1, t)| > 𝛽𝜎c (7.9.19)

However, if (7.9.19) is not satisfied, one cannot state that the carrier phase
data is not contaminated by cycle slips. There are special cycle slip groups
which cannot be detected using the criterion (7.9.19). Consider, for example,
the group of cycle slips {154, 120, 115} for the GPS case. With obvious
notations we have ΔN(𝛼1,𝛼2,𝛼3)

{154, 120, 115} ≡ ΔNc(t + 1, t) = 0. Therefore
Δ𝛷(𝛼1,𝛼2,𝛼3)

(t + 1, t) = Δ𝜀c and this cycle slip group is not detectable by crite-
rion (7.9.19). Other groups of cycle slips can give nonzero but small values of
𝜆c ΔNc(t + 1, t), also precluding detection by criterion (7.9.19). If the cycle slip
group satisfies the inequality

||𝜆cΔNc(t + 1, t)|| ≤√𝛽2 − 1𝜎c (7.9.20)

then it cannot be detected by criterion (7.9.19). The cycle slip groups satisfy-
ing (7.9.20) are called in Dai et al. (2008) insensitive groups. For the Galileo
case, an obvious example of the insensitive group is {154, 118, 115} resulting in
ΔN(𝛼1,𝛼2,𝛼3)

{154, 118, 115} = 0 for all scalars (𝛼1, 𝛼2, 𝛼3), thus satisfying (7.9.16).
Consider more examples. Let the scalars be chosen as (−1, 5,−4). An example of

an insensitive cycle slip group giving a nonzero but small value satisfying (7.9.20)
is {51, 39, 38}. We have |ΔN(−1,5,−4){51, 39, 38}| = 0.0107. If 𝜎𝜑 = 0.01 and 𝛽 = 3,

then direct calculations with (7.9.18) give
√
𝛽2 − 1𝜎c = 0.0645 which proves that

the group {51, 39, 38} is insensitive for the combination (−1, 5,−4). Another group
{31, 23, 23} gives |ΔN(−1,5,−4){31, 23, 23}| = 0.783, which does not satisfy (7.9.20)
and can be detected by the criterion (7.9.19) for a given confidence level.

Let now the scalars be (4, 1,−5). In this case,
√
𝛽2 − 1𝜎c = 0.0600. The

group {51, 39, 38} [which was insensitive for combination (−1, 5,−4)] now gives|ΔN(4,1,−5){51, 39, 38}| = 0.0882 which can be [detected by (7.9.19), while the
group {31, 23, 23} [detectable by (7.9.19) for previous combination] now shows
insensitivity because |ΔN(4,1,−5){31, 23, 23}| = 0.0032.

There might be different insensitive groups, depending on the values of 𝛼1, 𝛼2, 𝛼3.
As was illustrated, using two proper geometry-free combinations can reduce the num-
ber of insensitive cycle slip groups.

Once the occurrence of cycle slips has been confirmed, one should quantify the
value of the slips and remove them from the carrier phase observations by subtraction.
Dai et al. (2008) give a cycle slip determination approach to fix the value of cycle slips
for a single satellite. They use pseudoranges to determine the value of the cycle slips.
By introducing the across-epoch pseudorange observables (7.9.13), the integer search
method is applied as described in Sections 6.5.2 to 6.5.4.

Removal of the cycle slips from the carrier phase observations is not the only
possible approach for handling cycle slips. Another option consists of resetting the
ambiguity estimation channels affected by cycle slips in the recursive estimation algo-
rithm. The method described in Section 7.8 can be used for this purpose.
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The described methods have advantages such as individual analysis for each satel-
lite or signal, but there are also disadvantages. A main disadvantage of individual
analysis of triple differences is that for fast kinematics situations, the carrier phase
measurements experience rapid and unpredictable variations, which can mask small
cycle slips. Using geometry-free combinations in multiple-frequency receivers is not
possible if some signals are temporarily unavailable; the technique is simply not
applicable for use with single-frequency receivers. One can readily state that there
is no one method for cycle slip detection and removal that is best for all situations.

7.9.1 Solutions Based on Signal Redundancy

In real-time kinematic processing we need approaches that work reliably under fast
and aggressive dynamics, even when the number of available signals varies unpre-
dictably. Here we discuss another group of methods based on the concept of signal
redundancy. There must be at least five satellites available in two sequential epochs.
Multiple-frequency signals are not necessary for each satellite. The method works
for single-frequency cases as well, see Kozlov and Tkachenko (1998). Some satel-
lites may have only L1 observables, while others could have L5 observables only, or
L1 and L2 observables.

Consider multiple signals for two sequential epochs. We form across-receiver
across-epoch differences and use the linearized form (7.3.46). Again, the symbol Δ
will be used to denote differencing over time:

Δb𝜑(t + 1, t) = 𝜦−1AΔdx(t + 1, t) +𝜦−1eΔ𝜉(t + 1, t) + Δn(t + 1, t)

−𝜦−1
𝜞 Δi(t + 1, t) +𝜦−1W𝜇Δ𝝁(t + 1, t) (7.9.21)

Taking into account assumptions (a) and (b) formulated earlier in this section, we
neglect the terms 𝜦−1

𝜞Δi(t + 1, t) and 𝜦−1W𝜇Δ𝝁(t + 1, t),

Δb𝜑(t + 1, t) = 𝜦−1AΔdx(t + 1, t) +𝜦−1eΔ𝜉(t + 1, t) + Δn(t + 1, t) (7.9.22)

When forming the right-side vector of (7.3.22) we had a nominal position(
xk,0(t), yk,0(t), zk,0(t)

)T
at each epoch as point of linearization, and dx(t) was the

vector of corrections to this nominal position. Let us assume that the precise position
xk(t), or its estimate obtained at the epoch t, can serve as the nominal position for
the next epoch t + 1:

xk,0(t + 1) = xk(t) (7.9.23)

Therefore, the quantity Δdx(t + 1, t) becomes an across-epoch position increment
Δx(t + 1, t) of the rover antenna. The expression for the residual vector Δb𝜑(t + 1, t)
in (7.9.22) has the form

Δb𝜑(t + 1, t) =

⎛⎜⎜⎜⎜⎜⎜⎝

Δ𝜑
p1
km,b1

(t + 1, t) − 1

𝜆
p1
b1

(
Δ𝜌

p1
k (t + 1, t) − Δ𝜌

p1
m (t + 1, t)

)
Δ𝜑

p2
km,b2

(t + 1, t) − 1

𝜆
p2
b2

(
Δ𝜌

p2
k (t + 1, t) − Δ𝜌

p2
m (t + 1, t)

)
⋮

Δ𝜑
pn
km,bn

(t + 1, t) − 1

𝜆
pn
bn

(
Δ𝜌

pn
k (t + 1, t) − Δ𝜌

pn
m (t + 1, t)

)
⎞⎟⎟⎟⎟⎟⎟⎠

(7.9.24)
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The across-time increment of topocentric geometric distance from the base station to
the satellite is expressed as

Δ𝜌
pi
m (t + 1, t) = 𝜌

pi
m

(
t + 1 − 𝜏pim (t + 1)

)
− 𝜌

p1
m

(
t − 𝜏pim (t)

)
(7.9.25)

Since the position of the base is stationary, the value Δ𝜌pim (t + 1, t) reflects the change
of distance caused by the motion of the satellite, though it also depends on the base
station position. In the same way, since we assumed that xk,0(t + 1) = xk(t), the value

Δ𝜌
pi
k (t + 1, t) = 𝜌

pi
k,0

(
t + 1 − 𝜏pim (t + 1)

)
− 𝜌

pi
k

(
t − 𝜏pim (t)

)
(7.9.26)

will be defined by the motion of the satellite, though also being dependent on the
position xk(t). If the baseline is short, the quantities (7.9.25) and (7.9.26) compensate
for each other in (7.9.24). This means that for short baselines, the across-receiver
across-time carrier phase residuals are approximately equal to the across-receiver
across-time carrier phase observations. For longer baselines this conclusion is not
valid; however, the difference ofΔb𝜑(t + 1, t) andΔ𝝋(t + 1, t)will show a slow vary-
ing function with time, depending on the motion of the satellites rather than on the
motion of the rover. The shorter the baseline, the less it is time dependent.

The quantity Δn(t + 1, t) in (7.9.22) is exactly the vector of cycle slips. Using
notations

J =
[
𝜦

−1e 𝜦
−1A
]
∈ Rn×4 (7.9.27)

x(t + 1) =

(
Δ𝜉 (t + 1, t)
Δx(t + 1, t)

)
= R4 (7.9.28)

b(t + 1) = Δb𝜑(t + 1, t) (7.9.29)

𝜹(t + 1) = 𝚫n(t + 1, t) (7.9.30)

we can present equation (7.9.22) in the form

b(t + 1) = Jx(t + 1) + 𝜹(t + 1) + 𝜺𝜑(t + 1) (7.9.31)

where we have added the noise term 𝜺𝜑(t + 1). Suppose 𝜺𝜑,s ∼ n(0, 𝜎𝜀𝜑 ) and its
covariance matrix is

C = E(𝜺𝜑𝜺
T
𝜑) = 𝜎𝜀𝜑

2In (7.9.32)

where 𝜎𝜀𝜑 is of the order of a hundredth of a cycle, e.g., 0.01 or 0.02, and In is the
n × n identity matrix. The outlier vector 𝜹(t + 1) contains integer values. Another
significant difference between noise 𝜺𝜑(t + 1) and outlier vector 𝜹(t + 1) is that the
latter one is sparse.

The sparseness property of the cycle slip outlier vector 𝜹(t + 1)means that it con-
sists mostly of zeroes. Probably all of its entries are zero if no cycle slips occurred
between 2 consecutive epochs. Even if cycle slips occurred, they affect only a small
number of signal measurements, for example, 1, 2, or 3 among a total number of 20
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or so signals. Sparseness of the outlier vector is the key property that allows recovery
and isolation of its nonzero entries. Here we will introduce an approach that explores
the sparseness property.

The following terminology is borrowed from the literature on compressive sens-
ing. The compressive sensing technique has received much attention in the literature
devoted to the recovery of sparse signals. Sparseness occurs in different domains such
as time domain, frequency domain, and space domain. We will be using some basic
concepts adopted in this theory. More specifically, we will be dealing with outliers as
sparse vectors since they affect only a few signals.

The set of nonzero entries of the vector 𝜹(t + 1) is called “support set” and is
denoted by

supp
(
𝜹(t + 1)

)
=
{
s ∶ 𝛿s(t + 1) ≠ 0

}
(7.9.33)

The lower index s indexes the entries of the vector 𝜹(t + 1) connected to signals s =
1,… , n. We use the “cardinality” notation to denote the number of elements in the
set. Therefore,

card
(
supp
(
𝜹(t + 1)

))
(7.9.34)

is exactly the number of nonzero entries in the vector 𝜹. Another frequently used
notation for the same quantity is l0-norm.

Recall the definition of the lq-norm of a vector. For an arbitrary vector 𝛿, it is
defined as

‖𝜹‖lq =
(

n∑
s=1

||𝛿s||q
)1∕q

(7.9.35)

For example, if q takes values ∞, 2, 1, and 0, then the l𝛼-norm is expressed as

‖𝜹‖l∞ = max
s=1,···,n

|𝛿s| (7.9.36)

‖𝜹‖l2 =
(

n∑
s=1

||𝛿s||2
)1∕2

(7.9.37)

‖𝜹‖l1 = n∑
s=1

|𝛿s| (7.9.38)

‖𝜹‖l0 = card{s ∶ 𝛿s ≠ 0} (7.9.39)

where (7.9.36) gives the maximum modulus of the entries, expression (7.9.37) is an
Euclidian norm, expression (7.9.38) is a sum of modulus of the entries, and (7.9.39)
is a number of the nonzero entries.

Note that across-epoch carrier phase increments for each signal form the
n-dimensional vector b(t + 1), whereas the four-dimensional vector x(t + 1), which
varies arbitrarily, can form only a four-dimensional subspace in the n-dimensional
space, provided no cycle slips have occurred. This simply means that carrier phase
variation cannot be arbitrary. The carrier phase measurements must vary consistently
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to each other, forming only a four-dimensional subspace when cycle slips are absent.
In order to check if it is true, we must test the linear system

b(t + 1) = Jx(t + 1) (7.9.40)

for consistency. The zero hypothesis is that 𝜹(t + 1) = 0 in the system (7.9.31). Actu-
ally, the noise term 𝜺𝜑 in (7.9.31) prevents consistency. However, we can check to see
if the sum of squared residuals of the least-squares solution of (7.9.40) with covari-
ance matrix (7.9.32) satisfies the statistical test 𝜒2

n−4. If it is satisfied, we can say
that the system (7.9.40) is consistent with accuracy 𝜎𝜀𝜑 . If consistency of the sys-
tem (7.9.40) is violated, then our assumption about absence of cycle slips is not true,
thus 𝜹(t + 1) ≠ 0. If that happens, we say that the presence of cycle slips has been
detected. In order to find out which entry or entries of the sparse vector 𝜹(t + 1) is
nonzero, we apply a blunders detection technique.

Below we consider a modern approach recently developed in the digital signal
processing literature dealing with sparse signals detection (Candez and Tao, 2005;
Candez et al., 2005). Sparseness means that the vector to be recovered has a small
number of nonzero entries, while zero entries dominate. Probably all entries are zero
if no cycle slips occurred. Detection of the outliers can be referred to as recovery
of the support set (7.9.33). We will compare different approaches to recovery of the
vector of outliers. As we will see, each approach relates to the certain value of q in
(7.9.35).

Let x∗ be the least-squares solution to the system (7.9.40). Assuming that the
covariance matrix of the noise is (7.9.32), we have

x∗ = (JTJ)−1JTb (7.9.41)

where the time symbol t + 1 is omitted for brevity. Then the residual vector and
weighted sum of squares can be calculated as

v = b − Jx∗ =
(
In − J(JTJ)−1JT

)
b (7.9.42)

V = vTC−1v =
1

𝜎2𝜀𝜑

vTv (7.9.43)

The expression (2.7.37) of Section 2.7.1 states that if 𝜀𝜑,s ∼ n(0, 𝜎𝜀𝜑 ), then the value
(7.9.43) is distributed according to the 𝜒2 law with n − 4 degrees of freedom. Let 𝛼
denote the significance level. The inverse 𝜒2 distribution T(𝛼,m) with m degrees of
freedom is available from statistical tables and mathematical software. This means
that if the value (7.9.43) does not exceed T(𝛼, n − 4) with probability 1 − 𝛼 the zero
hypothesis is accepted. If it exceeds, then the presence of cycle slips is detected.

Approach 1 (Exhaustive search of affected signals): Assuming that the redun-
dancy is large enough for the removing of affected signals, we can isolate cycle slips.
To remove signals affected by cycle slips, we perform an exhaustive search removing
signals one by one, then pair by pair, then triple, by triple, and so on, until statisti-
cal tests comparing the value (7.9.43), calculated using the remaining signals with
the threshold T(𝛼, n − k − 4) is satisfied. Here, k is the number of removed signals,
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k = 1, 2, 3,…, and n − k is the number of remaining signals. The matrix J and the
vector b now have dimensions (n − k) × 4 and (n − k) × 1. The search is performed
until n − k > 4 or, in other words, as long as redundancy allows. The search is com-
plete once either the statistical test is satisfied or redundancy does not allow removing
any more signals.

Let us consider the data set used in Subsection 7.4.1 to illustrate how cycle slip
detection and isolation works. It is a short baseline static data set. We assumed that
the best available estimate of position x(t) is taken as a nominal position for the epoch
t + 1 and, therefore, the quantity Δdx(t + 1, t) becomes the across-epoch position
incremental of the rover antenna. For static conditions we can use the time-invariant
nominal position of the rover antenna for all epochs, while the precise base position
is used as the nominal position of the base antenna. The first 200 epochs are analyzed.

The data was carefully selected and analyzed beforehand to be sure that there were
no cycle slips. After that, three signals were artificially affected by cycle slips:

• L1 signal of the satellite GPS 4

• L2 signal of the satellite GPS 9

• L1 signal of the satellite GLONASS with the frequency letter –7

The magnitude of the cycle slip is +1 for all three signals. All three cycle slips are
inserted at epoch number 110. We know that small cycle slips are hard to detect and
isolate. Also, “nested” cycle slips, or cycle slips that occur simultaneously, are hard
to analyze. Therefore, the case we are analyzing is not trivial. Figure 7.9.1 shows the
triple differences of residuals (7.9.24) for the L1 signal, calculated for satellites GPS
4 (which is affected by the cycle slip) and the satellite GPS 15 (which, as we know,
is not affected because all three cycle slips were inserted manually).

As was stated earlier, if the condition (7.9.23) holds and the baseline is short (in
our case it is only a fewmeters long) the triple difference of the topocentric geometric
distance in (7.9.24) is close to the triple difference carrier phase. It is relatively small
in the Figure 7.9.1 and the carrier phase cycle slip generates a single-epoch outlier

Figure 7.9.1 Triple-difference carrier phase residuals calculated for L1 signal with GPS
satellites 4 and 15.
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at the epoch 110, which is exactly the epoch when the artificial cycle slip occurred.
Triple differences clearly show both the location and magnitude of the cycle slip.
Disadvantages of such a straightforward use of triple differences are as follows:

a. It works properly if the reference satellite is not affected by the cycle slip.

b. The cycle slip is seen clearly because the rover was static. If the antenna expe-
riences unpredictable motion between two epochs, the “legal” carrier phase
variation caused by the motion can exceed tens or hundreds of cycles, while
the “illegal” variation caused by the cycle slip can be as little as one cycle.
Therefore, the motion component can totally mask the cycle slip.

Recall that we do not consider individual across-epoch variation of carrier phases.
Instead, we analyze across-receiver across-time differences. Figure 7.9.2 shows plots
of Δbp𝜑(t + 1, t) across-receiver across-time differences of residuals (7.9.24) for the
same signals GPS 4 (L1) and GPS 15 (L1).

The single-epoch outlier in the dashed plot, caused by the cycle slip, is not easy to
recognize because of the carrier phase variation due to across-receiver clock variation.
On the other hand, this variation is almost identical for the two signals, GPS 4 (L1)
and GPS 15 (L1), and that is the reason why it cancels in the triple differences of
residuals shown in the previous figure. However, it must be emphasized again that
the carrier phase variation caused by the rover antenna dynamics can be so large and
so unpredictable that the cycle slip cannot be recognized when analyzing either triple
differences or across-receiver across-time differences individually.

Let us now try the method described above, based on the statistical analysis of the
residuals (7.9.42) and (7.9.43). First, run solutions of problem (7.9.40) and calculate
the values (7.9.43) for each epoch. The results are presented in Figure 7.9.3. The
threshold value T(0.05, 16) = 26.29 is shown in the figure as a dashed line. The value
𝜎𝜀𝜑 is 0.01. The plot is clipped at the value 70, while V equals 21,279 at the epoch
110 where three outliers occurred.

Figure 7.9.2 Across-receiver across-time differences of carrier phase residuals calcu-
lated for L1 signals of GPS 4 (dashed) and GPS 15 (solid).
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Figure 7.9.3 Weighted sum of residuals squared V (solid) compared with the 𝜒2 thresh-
old value (dashed).

After performing the exhaustive search by removing signals one by one, then
removing pairs, then removing triplets of signals, we finally found that the criterion

V ≤ T(𝛼, n − k − 4) (7.9.44)

was satisfied with k = 3, V = 4.586, and T(0.05, 13)=22.36.
As a result of the search, exactly three signals affected by cycle slips (having num-

bers 1, 7, 12) were removed. Note that there is no need to calculate the solution to
system (7.9.40) every time the set of signals changes during the exhaustive search.
Suppose that the row js is added to the matrix J or removed from it. Then the matrix
JTJ involved in expression (7.9.41) is updated by the rank one matrix Δ= jTs js. The
rank one update method, described in Section A.3.9, allows updating of the Cholesky
decomposition of matrix JTJ, resulting in the Cholesky decomposition of JTJ ± Δ.
This method can be used for recalculating the solution of the linear system after one
equation has been deleted or added (Golub et al.,1996).

The method works independently of the motion of the rover; it can be static or
performing unpredictable maneuvers. The numerical scheme of the method works
the same way because no assumptions about dynamics need to be made as the basis
of the method.

Note again that we are using an exhaustive search, trying all combinations of
measurements in order to find the vector 𝜹(t + 1) with the least possible number of
nonzero entries. We refer to this method as the l0 optimization, as it minimizes the
l0-norm of the vector 𝜹(t + 1) according to (7.9.34) and (7.9.39). We now describe
another approach to the outlier detection, which promises less of a computational
complexity because no exhaustive search will be involved.
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Let us look at the problem (7.9.31) from another point of view, following the
approach described in Candez et al. (2005). We want to correctly recover the vec-
tor x(t + 1) from the measurements b(t + 1), which are corrupted by small noise
𝜺𝜑(t + 1) and sparse outliers 𝜹(t + 1). The sparseness implies that only a small num-
ber of entries in the vector 𝜹(t + 1) are nonzero. The magnitude of nonzero entries
can be arbitrarily large. The key property of 𝜹(t + 1) is the sparseness. For example,
only 3 out of 20 entries being nonzero would be considered sparse. Is it possible to
recover x(t + 1) exactly or estimate it almost exactly from data corrupted not only by
noise but also by large outliers?

Approach 2 (Minimization of l1-norm of residuals): Under reasonable condi-
tions, the vector x(t + 1) can be recovered as a solution to the following l1 minimiza-
tion problem:

b(t + 1) = Jx(t + 1) + 𝜹(t + 1)‖𝜹(t + 1)‖l1 → min (7.9.45)

provided that the vector of outliers is sufficiently sparse. The function ‖𝜹‖l1 = n∑
s=1

|𝛿s|
was introduced in (7.9.38). The approach can be reformulated using the concept of
the support set (7.9.33). Sufficient sparseness of the vector 𝜹(t + 1) means that

‖𝜹‖l0 ≤ 𝜌n 𝜌 ≪ 1 (7.9.46)

Therefore, the true value of the vector x(t + 1) can be recovered almost exactly by
solving the linear programming problem (7.9.45). “Almost” means that the recovered
solution will be exact up to the precision induced by the magnitude 𝜎𝜀𝜑 of the noise
component of the error 𝜺𝜑(t + 1) in model (7.9.31). To see that (7.9.45) is a linear
optimization problem, rewrite it in the following equivalent form:

b(t + 1) = Jx(t + 1) + u − v

us ≥ 0 vs ≥ 0
n∑

s=1

(us + vs) → min (7.9.47)

Almost exact recovery of the vector x(t + 1) means that the outlier vector 𝜹(t + 1)
will appear “almost” exactly (up to the magnitude of the noise) in the residuals

r = b(t + 1) − Jx(t + 1)

r ≈ 𝜹(t + 1) (7.9.48)

Let us try this approach using the same example considered earlier. Direct applica-
tion of the simplex method (Vanderbei, 2008) to the problem (7.9.47) results in the
solution

x∗(t + 1) u∗, v∗ (7.9.49)
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and
𝜹
∗(t + 1) = u∗ − v∗ (7.9.50)

Only entries of the vector 𝛿∗(t + 1) having numbers 1, 7, 12 (GPS L1 PRN4;
GLONASS L1 letter -7, and GPS L2 PRN 9, respectively) are significantly nonzero

𝛿∗1 (t + 1) = 0.9806

𝛿∗7 (t + 1) = 0.9951

𝛿∗12(t + 1) = 0.9982 (7.9.51)

while others are either exactly zero or near zero with a magnitude of the order of
𝜎𝜀𝜑 . Below there are all 20 entries of the vector, and the 1th, 7th, and 12th entries are
marked by a bar:

𝜹
∗(t + 1) = (0.980, 0, 0.0173, 0, 0, 0, 0.995, 0, 0, 0, 0, 0.998, 0, 0.003, 0, 0, 0.002,

0, 0.002, 0, 0, 0, 0, 0, 0.006, 0, 0, 0.004, 0.002, 0.003, 0.002, 0, 0, 0,

0, 0.013, 0, 0, 0, 0.00)T (7.9.52)

To be precise, we are interested in the recovery of just the vector of outliers, not the
vector x(t + 1). Correct recovery of 𝜹(t + 1) means that the support set (7.9.33) has
been correctly detected. Note again that we are interested in “almost” correct recovery
of the support set, i.e., entries having near zero absolute values, comparable with 𝜎𝜀𝜑 ,
are identified as zero.

With the outlier vector support set having been identified, the problem of cycle slip
isolation is completely solved. The signals affected by outliers can be removed, while
the remaining signals are affected only by noise, which we have always accepted as
unavoidable.

The simplex method is not the only known method for linear programming prob-
lems. There are many efficient methods, like interior point methods (Lustig et al.,
1994), that show extremely efficient behavior that qualifies them for implementa-
tion in real-time software. The computational complexity of the linear optimization
problem is polynomial dependent on the problem dimensions, while the computa-
tional load for exhaustive search grows exponentially as a function of the number of
signals.

Simultaneous solution for the vector x(t + 1) and recovery of the outlier
vector 𝜹(t + 1) via solution to the problem (7.9.47) will be referred to as the
l1-optimization method. This method is faster but less precise then the l0- opti-
mization method. This means that the l1-optimization method does not necessarily
correctly recover the outlier support set, while the l0 optimization always works
correctly.

Approach 3 (OMP method): Now consider the third method, which is even less
computationally involved than the l1-optimization method; however, it is also less
precise in recovery of the support set. Let F be the annulator matrix for the matrix J,

FJ = 0 J ∈ Rn×4 F ∈ R(n−4)×n (7.9.53)
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This equation implies that the columns of matrix J belong to the kernel of the matrix
F, or that J spans the null space ofF. Let usmultiply both sides of the equality (7.9.31)
by the matrix F:

F𝜹(t + 1) = c(t + 1) + 𝝃𝜑(t + 1) (7.9.54)

where c(t + 1) = Fb(t + 1) and 𝝃𝜑(t + 1) = −F𝜺𝜑(t + 1). Ignoring noise, we are
looking for solutions to the system (7.9.54). Note first that if cycle slips are absent,
the system (7.9.40) is “almost” consistent and the vector b(t + 1) belongs to the
linear space spanned on the columns of matrix J. This means that if cycle slips
are absent, the vector c(t + 1) = Fb(t + 1) is near zero. Otherwise, if cycle slips
exist, the outlier vector satisfies the system (7.9.54) with the nonzero constant term
c(t + 1).

How can one find the annulator matrix? Consider the QR decomposition of the
matrix J as described in section A.3.8,

QR = J (7.9.55)

where thematrixQ ∈ Rn×n is orthonormal and thematrixR ∈ Rn×4 has the following
structure:

R =

[
U

(n−4)04

]
U ∈ R4×4

(n−4)04 ∈ R(n−4)×4 (7.9.56)

The matrix U is upper triangle. It directly follows from the previous two equations
that the orthonormal matrix QT can be partitioned into two parts

QT =

[
G
F

]
(7.9.57)

with the matrix F obeying the property (7.9.53).
The linear system (7.9.54) is underdetermined because F ∈ R(n−4)×n. There are

infinitely many solutions, but we are interested in a solution that has the least possi-
ble support set. In other words, we are looking for a solution with the least possible
number of nonzero entries. In order to solve this problem, also arising in the context
of a compressive sensing framework, we can apply the l1 optimization

F(u − v) = c(t + 1)

us ≥ 0 vs ≥ 0
n∑

s=1

(us + vs) → min (7.9.58)

which is equivalent to (7.9.47). Alternatively, we can apply the so-called orthogonal
matching pursuit (OMP) algorithm (Cai and Wang, 2011). The OMP algorithm is
described as follows:

1. Initialize the algorithm calculating residual and support set

y(0) = c(t + 1) S(0) = ∅ (7.9.59)

and set k = 0.
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2. Check if the termination criterion

1

𝜎2𝜀𝜑

‖y(k)‖l2 < T(𝛼, n − k − 4) (7.9.60)

is satisfied with some significance level 𝛼. The algorithm terminates if the cri-
terion (7.9.60) is satisfied. Otherwise set k ∶= k + 1 and continue.

3. Find the index s(k) that solves the optimization problem

max
s=1,…,n

||fTs y(k−1)||√
fTs fs

(7.9.61)

with fs being the s-th column of the matrix F.
4. Update the support set

S(k) = S(k−1) ∪ {s(k)} (7.9.62)

5. Solve the least-squares problem

𝜹
(k) =
(
FT (S(k))F(S(k)))−1FT (S(k))c(t + 1) (7.9.63)

with the matrix F(S) being the matrix consisting of columns fs, s ∈ S, and cal-
culate the residual vector

y(k) = c(t + 1) − F(S(k))𝜹(k) (7.9.64)

6. Go to step 1.

Let us apply the OMP algorithm to the same example, GPS + GLONASS, L1 +
L2, number of signals n = 20. Earlier we chose 𝛿𝜑 = 0.01. Let the significance level
be the same as before, 𝛼 = 0.95. At epoch 110, we have the following results running
the OMP algorithm:

k = 0
1

𝜎2𝜀𝜑

‖y(0)‖l2 = 21279

k = 1 s1 = 12 S1 = {12}
1

𝜎2𝜀𝜑

‖y(1)‖l2 = 13287

k = 2 s2 = 7 S2 = {12, 7}
1

𝜎2𝜀𝜑

‖y(2)‖l2 = 5281.6

k = 3 s3 = 1 S3 = {12, 7, 1}
1

𝜎2𝜀𝜑

‖y(3)‖l2 = 4.586

and the algorithm terminates as 4.586 < T(0.95, 13) = 22.36 and the criterion
(7.9.60) is satisfied. So, the correct support set is found at the third iteration.
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This method will be referred to as “the OMP method.” It has complexity (com-
putational load) comparable with n2 × 4 which is the lowest complexity among all
methods considered. On the other hand, it has least precision in correctly recovering
the support set, which as was already stated, is the set of signals affected by cycle
slips or signals to be isolated.

Let us present the OMP method in a slightly modified form. Consider the residual
(7.9.42) of the least-squares solution of problem (7.9.40). Taking into account the
decomposition (7.9.55) and (7.9.56), we can write

r =
(
In − J(JTJ)−1JT

)
b(t + 1)

= Q
(
In −
[

U

(n−4)04

]
(UTU)−1

[
UT 04,n−4

])
QTb(t + 1)

= Q
[

04 40n−4
n−404 In−4

]
QTb(t + 1) = FTFb(t + 1) = FTc(t + 1) (7.9.65)

Consider the first iteration of the OMP method setting k = 1. The vector y(0) = c(t +
1) and, therefore, taking into account (7.9.65), the step (7.9.61) chooses the maximum
normalized entry of the residual

s(1) = Arg max
s=1,···,n

|fTs c(t + 1)|‖fs‖l2 = Arg max
s=1,…,n

|rs|‖fs‖l2 (7.9.66)

where rs denotes the sth entry of the residual vector r. In other words, at the first
iteration we have isolated the signal corresponding to the maximum value of the nor-
malized residual (see data snooping in Section 2.9.2 for comparison).

At its first iteration, the OMP method isolates signals with the maximum value of
the normalized residual entry. The isolated signal is removed from the linear system
(7.9.40), which is solved again with the dimension reduced by one. Note that the
sequential computation of solution to the linear system with the number of equations
reduced by one can be efficiently performed using the “rank one update” technique.

7.10 ACROSS-RECEIVER AMBIGUITY FIXING

The across-receiver ambiguity vector is structured according to (7.3.40). Each indi-
vidual vector na is subject to the constraint (7.3.41), which means that all ambiguities
inside a certain group must have an identical fractional part. In equivalent formu-
lation, this means that across-receiver across-satellite (double) differences must be
integers. Let us denote the set of such ambiguity vectors by ℕ, which is exactly the
set of vectors partitioned according to (7.3.40) satisfying the condition

ℕ =
{
n = (n1

T ,… ,na
T )T ∶ na ∈ ℕa, a = 1,… , a

}
(7.10.1)

ℕa =
{
na ∶ na = n̂a + 𝛼aena , n̂a ∈ Zna , a = 1,… , a

}
(7.10.2)

where a ≤ 10 is the number of ambiguity groups in the partitioning (7.3.40), na
is the na-dimensional ambiguity vector of the certain group a = 1,… , a, n̂a is
the integer-valued ambiguity vector (which can be considered a double-difference
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ambiguity vector), the real-valued common fractional part is denoted by 𝛼a, and
ena = (1,… , 1)T is the vector consisting of all units. The symbol Zn denotes the set
of integer-valued vectors (the lattice, generated by the standard basis).

Considering the value ΔvTPv in the expression (6.5.6), we first explain how it
appears in the RTK filtering scheme. Then we explain how to use methods described
in Sections 6.5.2 to 6.5.4 for ambiguity resolution. Sections 7.4.1, 7.5.1, and 7.6.1
deal with a vector of constant parameters, a time-varying vector of corrections to the
approximate station positions, and optionally across-receiver ionospheric delays. The
vector of constant parameters is denoted in (7.4.12), (7.5.4), and (7.6.8) by y. It can
be split into two parts similar to (6.5.1) using the following notation:

y =

[
𝜼

n

]
𝜂 ∈ Rn𝜂 n ∈ ℕ (7.10.3)

The algorithms in Subsections 7.4.1, 7.5.1, and 7.6.1 recursively produce a
real-valued estimate y(t) of the parameter (7.10.3), along with time-varying
parameter x(t).

Omitting for brevity the symbol t of time dependence, we obtain the following
expression of the change function ΔvTPv:

q(y) = (y − y)TD(y − y) (7.10.4)

with the matrix D recursively updated. The function (7.10.4) is subject to minimiza-
tion over the vector variable y, partitioned in two parts according to (7.10.3)

min

y=

[
𝜼

n

]
, n∈ℕ

q(y) (7.10.5)

The definition (7.10.2) is redundant. We can combine one of the entries of the vector
na ∈ Zna with the real value 𝛼a. Choosing this entry is equivalent to choosing a refer-
ence signal. For each group, one reference signal must be chosen. It is reasonable to
choose the signal with the best signal-to-noise ratio (SNR). Using that signal to com-
pute across-satellite differences introduces the least possible error to other signals.
Let us denote the reference signal as ra for the group a, a = 1,… , a. Then

ℕa = {na ∶ na = Ea,ra
n̂a,ra

+ 𝛼aena−1, n̂a,ra
∈ Zna−1, a = 1, · · · , a} (7.10.6)

where Ea,ra
is the na × (na − 1)matrix obtained by crossing out the rath column from

the identity matrix Ina so that the row ra consists of all zeroes,

Ea,ra
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
⋱

1
0 · · · 0 0 · · · 0

1
⋱

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
← ra (7.10.7)
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The real-valued parameters 𝛼a can be combined with the vector 𝜼 in the partition
(7.10.3). We will do it in two steps. First, we present the matrix D and the vector y in
(7.10.4) in the block form according to the partition (7.10.3)

D =

[
D𝜂𝜂 D𝜂N

DT
𝜂N DNN

]
y =

[
𝜂

n

]
(7.10.8)

Application of the partial minimization [Appendix A.3.7, equation (A.3.88)] leads to
the equivalent form of the problem (7.10.5),

min
n∈ℕ

qn(n) = min
N∈ℕ

(n − n)T (Dnn −DT
𝜂nD

−1
𝜂𝜂D𝜂n)(n − n) (7.10.9)

where minimization is taken over the vector n from the set defined by conditions
(7.10.1) and (7.10.6).

Let us denote

Er =

⎡⎢⎢⎢⎣
E1,r1

⋮
E2,r2

⋮
· · · · · · ⋱ ⋮

· · · Ea,ra

⎤⎥⎥⎥⎦ ∈ Rn×(n−a) (7.10.10)

Gr =

⎡⎢⎢⎢⎣
e1,r1 ⋮

e2,r2 ⋮
· · · · · · ⋱ ⋮

· · · ea,ra

⎤⎥⎥⎥⎦ ∈ Rn×a (7.10.11)

where n is the number of signals, i.e., the dimension of the ambiguity vector. Then
n ∈ ℕ can be presented as

n = Ern̂ +Gr𝜶 (7.10.12)

where n̂ ∈ Zn−a is the integer-valued vector, and𝜶 is the real-valued vector consisting
of the real-valued reference ambiguities. The quadratic function qn(n) defined in
(7.10.9) can be rewritten as

qn(n̂,𝜶) = (Ern̂ +Gr𝜶 − n)T (Dnn − DT
𝜂nD

−1
𝜂𝜂D𝜂n)(Ern̂ +Gr𝜶 − n) (7.10.13)

in the form (A.3.89) of Appendix A. Application of the second step of the partial
minimization leads to the integer quadratic minimization problem

min
n̂∈Zn−a

[min
𝛼∈Ra

qn(n̂, 𝛼)] = min
n̂∈Zn−a

q̂n(n̂) (7.10.14)

with q̂n(n̂) defined as

q̂N(n̂) = (Ern̂ − n)T𝜫𝛼(Ern̂ − n) (7.10.15)
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following expression (A.3.91) of Appendix A and 𝜫𝛼 being defined according to
(A.3.92) as

𝜫𝛼 = D −DGr(G
T
r DGr)

−1GT
r D (7.10.16)

where
D = Dnn −DT

𝜂nD
−1
𝜂𝜂D𝜂n (7.10.17)

is matrix of the quadratic function (7.10.13). Finally, the function q̂n(n̂) can be
expressed in the form

q̂n(n̂) = (n̂ − n)TD(n̂ − n) (7.10.18)

where

D = ET
r𝜫𝛼Er (7.10.19)

n = (ET
r𝜫𝛼Er)

−1ET
r𝜫𝛼n (7.10.20)

The integer search algorithms explained in Sections 6.5.2 and 6.5.4 can then be
applied to the problem min

n̂∈Zn−a
q̂N(n̂).

Keep in mind that it is not necessary to explicitly calculate the matrix D
in (7.10.17). Instead, one calculates the Cholesky decomposition of matrix D,
partitioned into blocks as in (7.10.8), and makes use of expression (A.3.94) of
Appendix A.

If GLONASS observables are involved in processing, then interchannel biases
appear. As discussed at the end of Section 7.2, these biases can be either compensated
or estimated. More precisely, the slope terms 𝜇L1,R,𝜑 and 𝜇L2,R,𝜑 can be estimated. Let
the vector 𝝁 be defined according to (7.3.43) and the matrixW

𝝁
be defined according

to (7.3.45). Let us consider the real-valued vector 𝝁 as the parameter to be estimated
along with 𝜶 in (7.10.13),

qn(n̂,𝜶,𝝁)

= (Ern̂ +Gr𝜶 +W
𝝁
𝝁 − n)T (Dnn −DT

𝜂nD
−1
𝜂𝜂D𝜂n)(Ern̂ +Gr𝜶 +W

𝝁
𝝁 − n)

+ 𝜌𝝁T
𝝁 (7.10.21)

Attempting to estimate both 𝝁 and 𝜶 can make the problem (7.10.21) ill conditioned.
A positive parameter 𝜌 is added to avoid ill conditioning or near singularity of the
matrix of the quadratic function

q̂n(n̂) = min
𝜶∈Ra,𝝁∈R2

qn(n̂,𝜶,𝝁) n̂ ∈ Zn−a (7.10.22)

The greater 𝜌, the more constrained the variation of 𝝁. The estimate of 𝝁will become
near zero when 𝜌 takes large values relative to max

i
Dii. Recall that parameter 𝝁
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refers to the first-order linear approximation of the dependency of hardware carrier
phase biases on frequency, as proposed in expressions (7.3.34) and (7.3.35). This
linear approximation makes sense because in practice the biases behave as shown
in Figure 7.2.1. The linear part of the across-receiver hardware carrier phase bias
as shown in that figure is quite typical for two receivers from different manufactur-
ers. Usually its value can be one or several cycles when the letter l runs over the
range [–7, 6]. In other words, parameter 𝝁 takes values in the range of approximately
[–0.1, 0.1]. A typical choice for the parameter 𝜌 is 0.001 or 0.0001.

Figure 7.2.1 shows that across-receiver hardware biases violate the integer-valued
nature of ambiguities and make fixing them impossible unless the biases are either
compensated or estimated. In the first case, they are taken from the lookup table. The
RTCM3 format allows for transmission of manufacturer and hardware version details
from the base to the rover. Thus, the rover is able to read the appropriate lookup table.
In the second case, if the rover does not know the hardware details of the base, or if
it does not have the appropriate lookup table, it can try to estimate the coefficients of
their linear approximation, or even estimate higher order coefficients.

7.10.1 Illustrative Example

Let us now continue with the example in Subsection 7.5.2. The ambiguities were fixed
with a discernibility ratio of 4.78 at the first epoch. To see how the position changes
when the ambiguities are fixed, we intentionally postponed the fixing to epoch 31,
allowing the first 30 epochs to float. Figure 7.10.1 illustrates the variation of the up
component of the baseline vector expressed in the geodetic horizon. Note that the
RTK algorithm described in Section 7.5 estimates the position of the kinematic rover.
The dashed black line shows the variation of the up component of the float solution for
the first 30 epochs, followed by another 30 epochs of the fixed solution (the solid line).

Before considering the convergence of the estimated across-receiver ambiguity
parameters, note that their values also aggregate hardware delays along with
integer-valued number of carrier waves, giving them fractional parts. In Chapter 6
the term “across-receiver ambiguity” strictly referred to the integer-valued quantity.
After the double-difference ambiguities have been fixed, the single-difference
ambiguity estimates (with fraction) take their correct values as summarized in
Tables 7.10.1 and 7.10.2. Ambiguities of four groups (a = 4 for this example) have
equal fractional parts inside each group.

When L1, L2, and L5 GPS signals are available along with L1 and L2 GLONASS;
L1 and E5 Galileo; L1, L2, and L5 QZSS; L1 and L5 WAAS; and B1, B2, and B3
Compass, there can be more than 40 different ambiguities. Although fast integer
searchmethods have been addressed in Sections 6.5.2 to 6.5.4, computation reduction
issues remain significant. Moreover, when trying to fix all ambiguities together, there
may be situations when a large error or an undetected cycle slip in one measurement
channel prevents the whole set of ambiguities from being fixed successfully. There
are two different ways to mitigate this problem:

• Partial fixing
• Fixing linear combinations of measurements
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Figure 7.10.1 Up component of the baseline vector. The first 60 epochs are shown (top);
first 30 are float, next 30 are fixed. The bottom panel shows an enlargement of same plot
starting with epoch 28,104.

In the partial fixing approach, a set of the “best ambiguities” is identified and fixed
first. The number of ambiguities in the best set should not exceed some predefined
value, say 20 or 30, but should include ambiguities corresponding to signals with the
highest SNR and a good geometry factor. Other criteria for selecting various subsets
of ambiguities to be fixed are discussed in Cao et al. (2007). The criteria might be a
satellite system, frequency, or a combination thereof.

While the set of best ambiguities is subjected to fixing, the other ambiguities not
included in that set are kept floating. The partial minimization approach described in
Appendix A.3.7 is used to decompose the least-squares problem (7.10.18) into two

subproblems. Let vectors n̂ = (n̂T
1 , n̂

T
2 )

T and n = (n
T

1 ,n
T

2 )
T be partitioned into

two parts. Then the problem (7.10.18) can be presented in the form (A.3.86). The
internal minimum (A.3.88) is taken over the variable n̂2 [the variable y in the
formulation (A.3.86)]. It corresponds to the ambiguities that are kept floating, while
the external minimum is taken over the variable n̂1 [the variable x in (A.3.88)]. It
corresponds to the ambiguities needing to be fixed. The minimization is performed
over the integer-valued vectors n̂1. The floating vector n̂2(n̂1) (the argument of
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TABLE 7.10.1 Fixed Values of the Estimated
Across-Receiver GPS Ambiguities.

PRN L1 L2

4 −29.2932 0.7662
9 11.7068 −8.2338
15 7.7068 15.7662
17 −22.2932 −8.2338
24 20.7068 11.7662
28 1.7068 1.7662

TABLE 7.10.2 Fixed Values of the Estimated
Across-Receiver GLONASS Ambiguities.

Letter L1 L2

−7 9.3922 6.0677
0 3.3922 2.0677
2 −22.6078 10.0677
4 −35.6078 −12.9323

conditional minimum) is then calculated according to expression (A.3.87). At this
stage we have the integer-valued vector n̂1 and the floating vector n̂2(n̂1). Usually, if
the ambiguities of the first primary set were fixed correctly with good discernibility
ratios, the floating values n̂2(n̂1) become close to the integer values. Straightforward
rounding can complete the calculation. Alternatively, we can substitute the fixed
vector n̂1 into (7.10.18) and consider it as a quadratic function of the remaining
variable n̂2 subject to fixing.

Partial ambiguity fixing is discussed in Teunissen (1998), though it can be derived
from the partial minimization scheme described in Appendix A.3.7. When keep-
ing part of the ambiguities floating, they are combined with the parameter 𝜼 in the
partition (7.10.8) and (7.10.9), and are handled the same way as already discussed.
After the primary set of ambiguities has been fixed, the set of real-valued parame-
ters 𝜂, including the floating estimate of the secondary set of ambiguities, is updated
accordingly. Then secondary ambiguities are fixed. If the number of ambiguities is
very large, the fixing process can be divided into three or more stages. Consider only
two subsets. When solving for the first subset (external problem), the matrix of the
first problem is defined according to expression (A.3.88), taking into account the
whole matrix (7.10.19). Therefore, the correlation between two subsets of estimated
single-difference ambiguities will correctly be taken into account.

A drawback of sequential partial fixing is that the discernibility ratio estimated at
each stage will in general be lower than the one estimated for the whole problem,
assuming that there are no biases affecting the signals.

An advantage of sequential partial fixing is its ability to temporarily or perma-
nently isolate the signal affected by the bias that prevents the fixing. Only one bad
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signal can decrease the discernibility ratio, thus not allowing the fixing of the whole
set of ambiguities. A natural criterion for exclusion of a signal from the set to be
fixed is a low SNR in combination with a relatively high satellite elevation. Usu-
ally it indicates either shading of the signal or a very large carrier phase multipath
error. Sometimes the presence of large multipath error can be detected by comparing
residuals of the carrier phase observables of the first and second (or third) frequen-
cies for a certain satellite. If residuals have large values of a different sign, this can
be an indication of the presence of significant carrier phase multipath. In this case,
across-receiver single-difference ambiguities corresponding to observables suppos-
edly affected bymultipath, can be intentionally kept floating for several epochs. Thus,
the partial fixing approach can be used not only to reduce the dimension of the integer
search but also to isolate some measurements that could decrease the discernibility
ratio if they are included in the fixing.

The algorithm of fixing across-receiver ambiguities has been considered in this
section. The estimated across-receiver ambiguities include hardware delays as a
sum with the integer-valued ambiguities. Hardware delays cause fractional parts
of across-receiver ambiguities, which are common for each group of signals. The
single-difference ambiguity approach allows for processing of arbitrary combina-
tions of signals because no L1, L2, or L5 linear combinations are calculated. This
allows processing of carrier phase and pseudorange observables sequentially, epoch
by epoch, even if signals from some frequencies are temporarily or permanently not
available at some epochs. If certain signals become unavailable at a certain epoch
or become available again (either physically or due to a detected cycle slip), the
methods described in Sections 7.8 and 7.9 allow for sequential optimal processing.

7.11 SOFTWARE IMPLEMENTATION

An RTK engine implementation can be divided into several computational processes
that run in parallel:

1. Ambiguity filtering and resolution

2. Calculation of position, velocity, and time

3. Receiving and extrapolating the measurements from the base station, which can
be either a real physical receiver or a virtual base station intentionally generated
to serve the rover

The measurements are generated in the rover at a high update rate, usually 20 to
100 times per second, we say at 20 to 100Hz, while measurements generated by the
base are transmitted to the rover at a much lower rate, say once per second, i.e., at
1Hz rate. The relatively low rate of transmission is explained by way of throughput
and the reliability of the data link.

Ambiguity filtering and resolution are computationally intensive. The numerical
schemes described in this chapter involve many matrix operations. Matrix dimen-
sions depend on the number of ambiguities, which in turn depends on the number of
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available signals. On the other hand, the ambiguities are constant and do not vary until
the cycle slip occurs. This means the ambiguities can be estimated at a low update
rate, not necessarily at the rate the measurements are generated in the rover receiver.
Because the data from the rover and base must be used when forming across-receiver
differences, only measurements with matching time tags can be taken into the ambi-
guity estimation process. Therefore, the first process can be considered slow and of
low priority. Note that real-time operating systems working in the receiver must share
computational resources among parallel processes. This task is accomplished using
a mechanism of priorities. The higher priority process interrupts the lower priority
process when attempting to share common resources. Therefore, high priority is usu-
ally granted to processes operating with raw data acquisition and initial data handling.
These processes are not intensive computationally and allow other lower priority pro-
cesses to access processor resources after they complete their tasks. Low-priority
processes perform computationally intensive tasks, processing relatively slow vary-
ing quantities.

The second process completes the computation of position, velocity, and clock
shift. These calculations are based on the unbiased carrier phase measurements deter-
mined as a difference between carrier phase measurements and constant ambiguities
estimated in the first process. Carrier phase measurements are normally generated
at a high update rate, while ambiguities are estimated using a low update rate, i.e.,
the same rate as measurements come through the data link between the base and
the rover. The second process contains relatively simple calculations. It has a higher
priority compared with the first one.

The third computational process is responsible for receiving measurements from
the base. It decodes measurements, formatted as RTCM 2 or 3. These formats are
specifically designed for compact and reliable data transmission through the radio
or GSM channels affected by irregular time delay. The RTCM messages carry either
full carrier phase and pseudorange measurements or corrections to them. Corrections
are usually residual values defined as a measurement with geometry and time terms
compensated at the base station before transmission.

The measurements received from the base must be extrapolated ahead of time to
compensate for the transmission delay and the difference between the high update rate
of the rover measurements (e.g., 20Hz) and low update rate of the base measurements
(e.g., 1Hz). Extrapolation allows the rover software to have the base measurements
match the same time instants of the rover measurements. Extrapolation can be per-
formed for each signal using independent Kalman filters, based on the simple second-
or third-order dynamic model. See Singer (1970) for examples.



CHAPTER 8

TROPOSPHERE AND IONOSPHERE

The impact of the atmosphere on GNSS observations is the focus of this chapter.
In Section 8.1 we begin with a general overview of the troposphere and ionosphere
as it relates to GPS satellite surveying and introduce the general form of the index
of refraction. Section 8.2 addresses tropospheric refraction starting with the expres-
sion of refractivity as a function of partial pressure of dry air, partial water vapor
pressure, and temperature. The equation for the zenith hydrostatic delay (ZHD) by
Saastamoinen (1972), the expression for the zenith wet delay (ZWD) by Mendes and
Langley (1999), and Niell (1996) to relate slant delays and zenith delays are given
without derivation. We then establish the relationship between the zenith wet delay
and precipitable water vapor (PWV).

Section 8.3 deals with tropospheric absorption and water vapor radiometers
(WVR) that measure the tropospheric wet delay. We present and discuss the radiative
transfer equation and the concept of brightness temperature. To demonstrate further
the principles of the water vapor radiometer, we discuss the relevant absorption
line profiles for water vapor, oxygen, and liquid water. This is followed by a brief
discussion on retrieval techniques for computing wet delay and on radiometer
calibration using tipping curves.

Section 8.4 concentrates on ionospheric refraction. We begin with the Appleton-
Hartree formula for refraction index and derive expressions for the first-order,
second-order, and third-order ionospheric delay of GNSS signals. We briefly address
the masking of certain cycle slips in the GPS L1 and L2 phases, then focus on the
popular single-layer ionospheric model to relate the vertical total electron content
(VTEC) to the respective slant total electron content (STEC), and how VTEC
is computed from ground GNSS observations. The chapter concludes with brief
remarks on popular global ionospheric models.

475
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8.1 OVERVIEW

The propagation media affect electromagnetic wave propagation at all frequencies,
resulting in a bending of the signal path, time delays of arriving modulations,
advances of carrier phases, scintillation, and other changes. In GNSS positioning
one is primarily concerned with the arrival times of carrier modulations and carrier
phases. Geometric bending of the signal path causes a small delay that is negligible
for elevation angles above 5∘. The propagation of electromagnetic waves through
the various atmospheric regions varies with location and time in a complex manner.
There are two major regions of the atmosphere of interest; these are the troposphere
and ionosphere. Whereas positioning with GNSS requires careful consideration of
the impacts of the atmosphere on the observations, GNSS, in turn, has become an
important tool for studying the properties of the atmosphere. The propagation of
electromagnetic signals in the GNSS frequency range, which is approximately the
microwave region, is discussed in this chapter but only to the extent required for
positioning.

Most of the mass of the atmosphere is located in the troposphere. We are con-
cerned with the tropospheric delay of pseudoranges and carrier phases. For frequen-
cies below 30 GHz, the troposphere behaves essentially like a nondispersive medium,
i.e., the refraction is independent of the frequency of the signals passing through it.
This tropospheric refraction includes the effect of the neutral, gaseous atmosphere.
The effective height of the troposphere is about 40 km. The density in higher regions
is too small to have a measurable effect. Mendes (1999) and Schüler (2001) are just
two of many excellent references available to read about the details of tropospheric
refractions. Typically, tropospheric refraction is treated in two parts. The first part is
the hydrostatic component that follows the laws of ideal gases. It is responsible for
a zenith delay of about 240 cm at sea level locations. It can be computed accurately
from pressure measured at the receiver antenna. The more variable second part is
the wet component, which is also called the nonhydrostatic wet component and is
responsible for up to 40 cm of delay in the zenith direction. Computing the wet delay
accurately is a difficult task because of the spatial and temporal variation of water
vapor. As an example, Figure 8.1.1 shows the ZWD every 5 min for 11 consecutive

Figure 8.1.1 ZWD from GPS. (Data
from Bar-Sever, JPL.)
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days in July of 1999 at Lamont, Oklahoma, as determined by GPS. The figure also
shows the difference in ZWD as determined by GPS and WVR. Both determina-
tions agree within 1 cm. The gaps indicate times when suitable observations were not
available.

The ionosphere covers the region between approximately 50 and 1500 km above
the earth and is characterized by the presence of free (negatively charged) electrons
and positively charged molecules called ions. The number of free elections varies
with time and space and, consequently electron density profiles exhibit considerable
variability. Often the spatial distribution of the ionosphere in height is divided into
regions which themselves can be subdivided into layers. The lower region is the D
region reaching up to about 90 km, followed by the E region up to about 150 km, and
the F region up to about 600 km. The area above 600 km is called the topside of the
ionosphere. These specific numerical height values are not universally agreed upon;
therefore other values may be found in the literature. In GNSS applications we are
concerned with the overall impact of the free electrons along the transmission line
from satellite to receiver for the GNSS frequency range. The regional subdivisions
and their respective characteristics, such as the phenomena of signal reflections for
transmissions below 30 MHz, are not of interest to GNSS positioning although such
properties are important for communication. Hargreaves (1992) and Davies (1990)
are recommended texts for in-depth studies of the physics of the ionosphere.

Of concern in GNSS applications is the total electron content (TEC) which equals
the number of free electrons in 1m2 column. When referring to the path along the
receiver-satellite line of sight we talk about slant total electron content (STEC), and
the TEC of a vertical column is called the vertical total electron content (VTEC). The
TEC is often expressed in TEC units TECU, whereby 1 TECU = 1016 el∕m2. The
free electrons delay pseudoranges and advance carrier phases by equal amounts as
will be derived below. The size of this impact depends not only on the TEC value
but also on the carrier frequency, i.e., the ionosphere is a dispersive medium. For the
GNSS frequency range the delays or advances can amount to tens of meters.

Figure 8.1.2 shows a snapshot of the TEC. This GIM (global ionospheric map)
shows the VTEC on March 7, 2000, at 03 UT. The map shows the typical global mor-
phology of the ionosphere when the Appleton (equatorial) anomaly is well developed.
There are two very strong peaks of ionization on either side of the geomagnetic equa-
tor. The peaks begin in the afternoon and stretch into the nighttime region. The peak
values are relatively large since it is near solar maximum, although vertical TECs can
be larger than the 140 to 150 TECU shown for this day. The peak of the ionosphere
occurs typically in the equatorial region at 14:00 local time. Each dot is the location
of a GPS receiver that contributed data to this GIM run. This particular GIM’s time
resolution is 15 min, i.e., a new map is available four times per hour. The GDGPS
system (www.gdgps.net) now produces such global maps every 5 min.

The better the atmospheric parameters are known the more accurate can the
respective corrections to GNSS observations be computed. One typically uses
temperature, pressure, and humidity at the receiver antenna, as well as the TEC. GPS
also contributes to the mapping of the spatial and temporal distribution of these atmo-
spheric parameters. Figure 8.1.3 shows a schematic view of a low-earth orbiter (LEO)

http://www.gdgps.net
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Figure 8.1.2 Snapshot of VTEC. (Courtesy of B. D. Wilson, JPL.)

Figure 8.1.3 Schematic view of an LEO
satellite and a GPS satellite configuration.

earth

LEOGPS

atmosphere

and a GPS satellite. As viewed from the LEO, an occultation takes place when the
GPS satellite rises or sets behind the ionosphere and troposphere. When signals pass
through the media they experience tropospheric delays, ionospheric code delays, and
phase advances. Assuming the accurate position of the LEO is known and the LEO
carries a GPS receiver, one can estimate atmospheric parameters and profiles of these
parameters by comparing the travel time of the signal and the geometric distance
between both satellites. One of the more extensive efforts for the spatial and temporal
mapping of the atmosphere uses the FORMOSAT-3/COSMIC constellation which
was launched in 2006. The constellation consists of six satellites equipped with GPS
antennas. The system provides global coverage with almost uniform data distribution
eliminating sparseness and lack of occultation data which hindered previous efforts.

Radio occultation will not be discussed further in this chapter because such details
of modeling and processing respective observations are not within the scope of this
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book. Background information on occultation techniques and a thorough error analy-
sis for retrieved profiles of refractivity, geopotential height of constant pressure levels,
and temperature is available in Kursinski et al. (1997). Bust and Mitchel (2008) dis-
cuss the status of voxel-based 3-dimensional time-varying mapping of the ionosphere
and the iterative pixel-based algebraic reconstructed technique (ART) and multi-
plicative algebraic reconstruction technique (MART) of ionospheric tomography. A
comprehensive open access source on the subject is Liou et al. (2010). A special
issue of GPS Solutions (vol. 14, number 1, 2010) has been published on the result
of the COSMIC mission. A recent contributions to COSMIC radio occultations is
Sokolovskiy et al. (2013) who studied the improvements provided by the new L2C
GPS observations.

The general form of the index of refraction for electromagnetic waves can be writ-
ten as a complex number

n = 𝜇 − i𝜒 (8.1.1)

where 𝜇 and 𝜒 are related to refraction and absorption, respectively. Let A0 denote
the amplitude, we can write the equation of a wave as

A = A0e
i(𝜔t−n𝜔x∕c) = A0e

i(𝜔t−𝜇 𝜔x∕c)e−𝜒𝜔x∕c (8.1.2)

The wave propagates at speed c∕𝜇, where c denotes the speed of light. The absorp-
tion in the medium is given by the exponential attenuation e−𝜒𝜔x∕c. The absorption
coefficient is 𝜅 = 𝜔𝜒∕c. It is readily seen that the amplitude of the wave will reduce
by factor e at distance 1∕𝜅.

For GPS frequencies and for frequencies in the microwave region, the index of
refraction can be written as

n = n + n′(f ) + in′′(f ) (8.1.3)

The medium is called dispersive if n is a function of the frequency. When applying
(8.1.3) to the troposphere the real parts n and n′(f ) determine refraction that causes
the delays in pseudoranges and carrier phases. The nondispersive part of the index
of refraction is n. For frequencies in the microwave range the frequency-dependent
real term n′(f ) causes delays around the millimeter level at 60 GHz and centimeter
level at 300 GHz (Janssen, 1993, p. 218). In general, n′(f ) and n′′(f ) are due to inter-
actions with line resonances of molecules in the vicinity of the carrier frequency. The
GPS frequencies are far from atmospheric resonance lines. The imaginary part n′′(f ),
however, quantifies absorption (emission) and is important to the WVR observable.
When applying (8.1.3) to the ionosphere the term n′(f ) is important.

8.2 TROPOSPHERIC REFRACTION AND DELAY

The index of refraction is a function of the actual tropospheric path through which
the ray passes, starting at the receiver antenna and continuing up to the end of the
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effective troposphere. Let s denote the distance; the delay due to refraction is

v = ∫ n(s)ds − ∫ ds = ∫ (n(s) − 1)ds (8.2.1)

The first integral refers to the curved propagation path. The path is curved due to
the decreasing index of refraction with height above the earth. The second integral
is the geometric straight-line distance the wave would take if the atmosphere were a
vacuum. The integration begins at the height of the receiver antenna.

Because the index of refraction n(s) is numerically close to unity, it is convenient
to introduce a separate symbol for the difference,

n(s) − 1 = N(s) ⋅ 10−6 (8.2.2)

N(s) is called the refractivity. Great efforts have been made during the second part
of the last century to determine the refractivity for microwaves. Examples of relevant
literature are Thayer (1974) and Askne and Nordius (1987). The refractivity is usually
given in the form

N = k1
pd
T
Z−1
d + k2

pwv
T

Z−1
wv + k3

pwv
T2

Z−1
wv (8.2.3)

where

pd partial pressure of dry air (mbar). The dry gases of the atmosphere are,
in decreasing percentage of the total volume: N2,O2, Ar, CO2, Ne,
He, Kr, Xe, CH4,H2, and N2O. These gases represent 99.96% of the
volume.

pwv partial pressure of water vapor (mbar). Water vapor is highly variable
but hardly exceeds 1% of the mass of the atmosphere. Most of the water
in the air is from water vapor. Even inside clouds, precipitation and tur-
bulence ensure that water droplet density remains low. This variability
presents a challenge to accurate GNSS applications over long distances
on one hand, but on the other hand opens up a new field of activity, i.e.,
remotely sensing the atmosphere for water vapor.

T absolute temperature in degrees Kelvin (K).
Zd,Zwv compressibility factors that take into account small departures in behav-

ior of moist atmosphere and ideal gas. Spilker (1996, p. 528) lists the
expressions. These factors are often set to unity.

k1, k2, k3 physical constants that are based in part on theory and in part on experi-
mental observations. Bevis et al. (1994) lists: k1 = 77.60 K∕mbar, k2 =
69.5 K∕mbar, k3 = 370100 K2∕mbar.

Partial water vapor pressure and relative humidity Rh are related by the well-known
expression, e.g., WMO (1961),

Pwv[mbar] = 0.01Rh[%] e
−37.2465+0.213166T−0.000256908T2

(8.2.4)
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The two partial pressures are related to the total pressure p, which is measured
directly, by

p = pd + pwv (8.2.5)

The first term of (8.2.3) expresses the sum of distortions of electron charges of the
dry gas molecules under the influence of an applied magnetic field. The second term
refers to the same effect but for water vapor. The third term is caused by the perma-
nent dipole moment of the water vapor molecule; it is a direct result of the geometry
of the water vapor molecular structure. Within the GPS frequency range the third
term is practically independent of frequency. This is not necessarily true for higher
frequencies that are close to the major water vapor resonance lines. Equation (8.2.3)
is further developed by splitting the first term into two terms, one that gives refractiv-
ity of an ideal gas in hydrostatic equilibrium and another term that is a function of the
partial water vapor pressure. The large hydrostatic constituent can then be accurately
computed from ground-based total pressure. The smaller and more variable water
vapor contribution must be dealt with separately.

The modification of the first term (8.2.3) begins by applying the equation of state
for the gas constituent i, (i = d, i = wv),

pi = Zi𝜌iRiT (8.2.6)

where 𝜌i is the mass density and Ri is the specific gas constant (Ri = R∕Mi, where R
is the universal gas constant and Mi is the molar mass). Substituting pd in (8.2.6) into
the first term in (8.2.3), replacing the 𝜌d by the total density 𝜌 and 𝜌wv, and applying
(8.2.6) for 𝜌wv gives for the first term

k1
pd
T
Z−1
d = k1Rd 𝜌d = k1Rd 𝜌 − k1Rd 𝜌wv = k1 Rd 𝜌 − k1

Rd

Rwv

pwv
T

Z−1
wv (8.2.7)

Substituting (8.2.7) in (8.2.3) and combining it with the second term of that equation
gives

N = k1Rd𝜌 + k′2
pwv
T

Z−1
wv + k3

pwv
T2

Z−1
wv (8.2.8)

The new constant k′2 is

k′2 = k2 − k1
Rd

Rwv
= k2 − k1

Mwv

Md
(8.2.9)

Bevis et al. (1994) gives k′2 = 22.1 K∕mbar.
We can now define the hydrostatic and wet (nonhydrostatic) refractivity as

Nd = k1Rd 𝜌 = k1
p

T
(8.2.10)

Nwv = k′2
pwv
T

Z−1
wv + k3

pwv
T2

Z−1
wv (8.2.11)
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If we integrate (8.2.3) along the zenith direction using (8.2.10) and (8.2.11), we obtain
the ZHD and ZWD, respectively,

ZHD = 10−6∫ Nd(h)dh (8.2.12)

ZWD = 10−6∫ Nwv(h)dh (8.2.13)

The hydrostatic refractivity Nd depends on total density 𝜌 or the total pressure p.
When integrating Nd along the ray path the hydrostatic equilibrium condition to ideal
gases is applied. The integration of Nwv is complicated by the temporal and spatial
variation of the partial water vapor pressure pwv along the path.

8.2.1 Zenith Delay Functions

Even though the hydrostatic refractivity is based on the laws of ideal gases, the
integration (8.2.12) still requires assumptions about the variation of temperature and
gravity along the path. Examples of solutions for the ZHD are Hopfield (1969) and
Saastamoinen (1972). Saastamoinen’s solution is given in Davis et al. (1985) in the
form

ZHD[m] =
0.0022768p0[mbar]

1 − 0.00266 cos 2𝜑 − 0.00028H[km]
(8.2.14)

The symbol p0 denotes the total pressure at the site whose orthometric height is H
and latitude is 𝜑. Note that 1 mbar equals 1hPa.

The model assumptions regarding the wet refractivity are more problematic
because of temporal and spatial variability of water vapor. Mendes and Langley
(1999) analyzed radiosonde data and explored the correlation between the ZWD and
the surface partial water vapor pressure pwv, 0. Their model is

ZWD[m] = 0.0122 + 0.00943pwv, 0[mbar] (8.2.15)

Surface meteorological data should be used with caution in the estimation of the
ZWD. Typical field observations can be influenced by “surface layer biases” intro-
duced by micrometeorological effects. The measurements at the earth’s surface are
not necessarily representative of adjacent layers along the line of sight to the satellites.
Temperature inversion can occur during nighttime when the air layers close to the
ground are cooler than the higher air layers, due to ground surface radiation loss. Con-
vection can occur during noontime when the sun heats the air layers near the ground.

Expressions exist that do not explicitly separate between ZHD and ZWD. In some
cases, the models are independent of direct meteorological measurements. The latter
typically derive their input from model atmospheres.

8.2.2 Mapping Functions

Tropospheric delay is shortest in zenith direction and increases with zenith angle 𝜗
as the air mass traversed by the signal increases. The exact functional relationship is
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again complicated by temporal and spatial variability of the troposphere. The map-
ping function models this dependency. We relate the slant hydrostatic and wet delays,
SHD and SWD, to the respective zenith delays by

SHD = ZHD ⋅ mh(𝜗) (8.2.16)

SWD = ZWD ⋅ mwv(𝜗) (8.2.17)

The slant total delay (STD) is

STD = ZHD ⋅ mh(𝜗) + ZWD ⋅ mwv (𝜗) (8.2.18)

The literature contains several models for the mapping functions mh and mwv. The
one in common use is Niell’s (1996) function,

m(𝜗) =

1 +
a

1 +
b

1 + c

cos 𝜗 +
a

cos 𝜗 +
b

cos 𝜗 + c

+ h[km]

⎛⎜⎜⎜⎜⎜⎜⎝
1

cos 𝜗
−

1 +
ah

1 + bh
1+ch

cos 𝜗 +
ah

cos 𝜗 +
bh

cos 𝜗 + ch

⎞⎟⎟⎟⎟⎟⎟⎠
(8.2.19)

The coefficients for this expression are listed in Table 8.2.1 for mh as a function of the
latitude 𝜑 of the station. If 𝜑 < 15∘ one should use the tabulated values for 𝜑 = 15∘;
if 𝜑 > 75∘ use the values for 𝜑 = 75∘; if 15∘ ≤ 𝜑 ≤ 75∘ linear interpolation applies.
Before using the values in Table 8.2.1, however, the coefficients a, b, and c must be
corrected for periodic terms following the general formula

a(𝜑,DOY) = ã − ap cos

(
2𝜋

DOY − DOY0

365.25

)
(8.2.20)

where DOY denotes the day of year and DOY0 is 28 or 211 for stations in the
southern or northern hemisphere, respectively. When computing the wet mapping

TABLE 8.2.1 Coefficients for Niell’s Hydrostatic Mapping Function.

𝜑 ã ⋅ 103 b̃ ⋅ 103 c̃ ⋅ 103 ap ⋅ 105 bp ⋅ 105 cp ⋅ 105

15 1.2769934 2.9153695 62.610505 0 0 0
30 1.2683230 2.9152299 62.837393 1.2709626 2.1414979 9.0128400
45 1.2465397 2.9288445 63.721774 2.6523662 3.0160779 4.3497037
60 1.2196049 2.9022565 63.824265 3.4000452 7.2562722 84.795348
75 1.2045996 2.9024912 64.258455 4.1202191 11.723375 170.37206

ah ⋅ 105 bh ⋅ 103 ch ⋅ 103

2.53 5.49 1.14
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TABLE 8.2.2 Coefficients for Niell’s Wet Mapping Function.

𝜑 a ⋅ 104 b ⋅ 103 c ⋅ 102

15 5.8021897 1.4275268 4.3472961
30 5.6794847 1.5138625 4.6729510
45 5.8118019 1.4572752 4.3908931
60 5.9727542 1.5007428 4.4626982
75 6.1641693 1.7599082 5.4736038

function, the height-dependent second term in (8.2.19) is dropped and the coefficients
of Table 8.2.2 apply.

The Niell mapping function enjoys much popularity because it is accurate, inde-
pendent of surface meteorology, and requires only station location and time as input.
It is based on a standard atmosphere to derive average values for the coefficients and
the seasonal amplitudes. Since compensation of tropospheric delay is of great impor-
tant in GNSS applications, in particular for long baselines where the tropospheric
effects decorrelated or for accurate single-point positioning, active research has con-
tinued and various new solutions and approaches have become available. Soon after
his innovative idea to generate a mapping function that does not require surface mete-
orology, Niell recognized certain shortcomings of using the standard atmosphere and
began experimenting with a numerical weather model (NWM) to obtain an improved
solution (Niell, 2000, 2001). He related the hydrostatic coefficients to the 200 mbar
isobaric pressure level surface above the site. The result is referred to as the isobaric
mapping function (IMF).

As the spatial resolution and accuracy of numerical weather models have
improved, these models have become the backbone for developing modern tro-
pospheric mapping functions. Boehm and Schuh (2004) introduced the Vienna
mapping function (VMF) which exploited all the relevant data that can be extracted
from an NWM. An updated version, called VMF1, is described in Boehm et al.
(2006). These Vienna mapping functions are based on data from the European Center
for Medium-Range Weather Forecasts (ECMWF) models. For extra demanding
applications, VMF1 can generate the mapping function coefficients for individual
stations, although the computational load is heavy for each such computation.

However, slightly less accurate but more accessible than the original VMF1, new
implementations of the VMF1 are also available to users. These versions take as
input a file that contains a global grid of points for which the needed information has
been generated, and then determine the mapping function coefficients for the user
site through spatial and temporal interpolation. The latest of these versions, called
GPT2, has been introduced in Lagler et al. (2013). The input is an ASCII file gener-
ated by processing global monthly mean profiles for pressure, temperature, specific
humidity, and geopotential (discretized at 37 pressure levels and 1∘ latitude and longi-
tude), between the years 2001 and 2010 (10 years), available from the ERA-Interim,
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which is the latest global atmospheric reanalysis of the ECMWF (Dee et al., 2011).
This file contains 120 monthly values for pressure, temperature, specific humidity,
the a coefficients for the hydrostatic and wet mapping functions, and the temper-
ature laps rate on a global grid of either 1∘ or 5∘. For each entry the mean value
and the annual and semiannual amplitudes are given. The current implementation
requires the user to execute two simple Fortran subroutines, both of which are avail-
able at ftp://tai.bipm.org/iers/convupdt/chapter9/ for download. In addition to the file
described above, the subroutine GPT2.F takes as input the ellipsoidal latitude, lon-
gitude, and height of the station and the time of observation. The output is pressure,
temperature, temperature laps rate, water vapor pressure, and hydrostatic and wet
mapping function coefficients a for the site. The second subroutine, VMF1_HT, takes
as input the thus computed a coefficients, geographic location of the site, and time
and zenith distance of observation, and outputs hydrostatic and wet mapping func-
tion values mh(𝜗) and mwv(𝜗). It uses b and c coefficients discussed in Boehm et al.
(2006) and numerically corrected as explained in the comments section of subroutine
VMF1_HT. For computing ZHD and ZWD the user has the option to use measured
total surface pressure and partial water vapor pressure in (8.2.14) and (8.2.15) or
similar expressions or use the output values from GPT2.F.

Whenever NWMs are used to determine the mapping function coefficients, there
is always implicitly the technique of raytracing involved with the needed meteoro-
logical data derived from the NWM. Raytracing through the atmosphere can be used
as the truth for comparisons if profiles of pressure, temperature, and relative humid-
ity are available from radiosondes. Hobiger et al. (2008a,b) report on using NWM to
compute the tropospheric slant delays directly and in real time.

8.2.3 Precipitable Water Vapor

The GPS observables directly depend on the STD. This quantity, therefore, can be
estimated from GPS observations. One might envision the situation where widely
spaced receivers are located at known stations and that the precise ephemeris is avail-
able. If all other errors are taken into consideration, then the residual misclosures
of the observations are the STD. We could compute the ZHD from surface pressure
measurements and a hydrostatic delay model. Using appropriate mapping functions,
we could then compute the ZWD from (8.2.18) using the estimated STD. The ZWD
can then be converted to precipitable water.

We begin with defining the integrated water vapor (IWV) along the vertical and
the precipitable water vapor (PWV) as

IWV ≡ ∫ 𝜌wv dh (8.2.21)

PWV ≡ IWV
𝜌w

(8.2.22)

ftp://tai.bipm.org/iers/convupdt/chapter9
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where 𝜌w is the density of liquid water. In order to relate the ZWD to these measures,
it is convenient to introduce the mean temperature Tm,

Tm ≡ ∫
pwv
T

Z−1
wv dh

∫
pwv
T2

Z−1
wv dh

(8.2.23)

The ZWD follows then from (8.2.13), (8.2.11), and (8.2.23) as

ZWD = 10−6
(
k′2 +

k3

Tm

)
∫

pwv
T

Z−1
wv dh (8.2.24)

To be precise let us recall that (8.2.24) represents the nonhydrostatic zenith delay.
Using the state equation of water vapor gas,

pwv
T

Z−1
wv = Rwv𝜌wv (8.2.25)

in the integrand gives

ZWD = 10−6
(
k′2 +

k3

Tm

)
Rwv∫ 𝜌wv dh (8.2.26)

We replace the integrand in (8.2.26) by IWV according to (8.2.21) and then replace
the specific gas constant Rwv by the universal gas constant R and the molar mass
Mwv. The conversion factor Q that relates the zenith nonhydrostatic wet delay to the
precipitable water then becomes

Q ≡ ZWD
PWV

= 𝜌w
R

Mwv

(
k′2 +

k3

Tm

)
10−6 (8.2.27)

The constants needed in (8.2.27) are known with sufficient accuracy. The largest error
contribution comes from Tm, which varies with location, height, season, and weather.
TheQ value varies between 5.9 and 6.5, depending on the air temperature. For warmer
conditions, when the air can hold more water vapor, the ratio is toward the low end.
Bevis et al. (1992) correlate Tm with the surface temperature T0 and offer the model

Tm[K] = 70.2 + 0.72T0[K] (8.2.28)

The following models for Q are based on radiosonde observations (Keihm, JPL, pri-
vate communication),

Q = 6.135 − 0.01294(T0 − 300) (8.2.29)

Q = 6.517 − 0.1686 PWV + 0.0181 PWV2 (8.2.30)

Q = 6.524 − 0.02797 ZWD + 0.00049 ZWD2 (8.2.31)
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If surface temperatures are not available, one can use (8.2.30) or (8.2.31), which take
advantage of the fact that Q correlates with PWV (since higher PWV values are gen-
erally associated with higher tropospheric temperatures).

8.3 TROPOSPHERE ABSORPTION

This section deals briefly with some elements of remote sensing by microwaves.
The interested reader may consult a general text on remote sensing. We recommend
the book by Janssen (1993) because it is dedicated to atmospheric remote sensing
by microwave radiometry. The material presented below very much depends on that
source. Solheim’s (1993) dissertation is also highly recommended for additional
reading.

8.3.1 The Radiative Transfer Equation

The energy emission and absorption of molecules are due to transitions between
allowed energy states. Several fundamental laws of physics relate to the emissions
and absorptions of gaseous molecules. Bohr’s frequency condition relates the fre-
quency f of a photon emission or absorption to the energy levels Ea and Eb of the
molecule and to Planck’s constant h. Einstein’s law of emission and absorption spec-
ifies that if Ea > Eb, the probability of stimulated emission of a photon by a transition
from state a to state b is equal to the probability of absorption of a photon by a tran-
sition from b to a. These two probabilities are proportional to the incident energy at
frequency f . Dirac’s perturbation theory gives the conditions that must be fulfilled in
order to enable the electromagnetic field to introduce transitions between states. For
wavelengths that are very long compared to molecular dimensions, this operator is
the dipole moment. This is the case in microwave radiometry. We typically observe
the rotation spectra, corresponding to radiation emitted in transition between rota-
tional states of a molecule having an electric dipole moment. The rotational motion
of a diatomic molecule can be visualized as a rotation of a rigid body about its center
of mass. Other types of transitions of molecular quantum states that emit at the ultra-
violet, gamma, or infrared range are not relevant to sensing of water vapor. Although
the atmosphere contains other polar gases, only water vapor and oxygen are present
in enough quantity to emit significantly at microwave range.

Let I(f ) denote the instantaneous radiant power that flows at a point in a medium,
over a unit area, per unit-frequency interval at a specified frequency f , and in a given
direction per unit solid angle. As the signal travels along the path s, the power changes
when it encounters sources and sinks of radiation. This change is described by the
differential equation

dI(f )

ds
= −I(f ) 𝛼 + S (8.3.1)

The symbol 𝛼 denotes the absorption (describing the loss) and S is the source (describ-
ing the gain) into the given direction.
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Scattering from other directions can lead to losses and gains to the intensity. In the
following we will ignore scattering. We assume thermodynamic equilibrium, which
means that at each point along the path s the source can be characterized by temper-
ature T . The law of conservation of energy for absorbed and emitted energy relates
the source and absorption as

S = 𝛼 B( f ,T) (8.3.2)

where

B( f ,T) =
2𝜋hf 3

c2 (ehf∕(kT) − 1)
(8.3.3)

B( f ,T) is the Planck function, h is the Planck constant, k is the Boltzmann constant,
T is the physical temperature, and c denotes the speed of light. Please consult the
specialized literature for details on (8.3.3).

With stated assumptions, equation (8.3.1) becomes a standard differential equation
with all terms depending only on the intensity along the path of propagation. The
solution can be written as

I( f , 0) = I( f , s0)e
−𝜏(s0) + ∫

s0

0
B( f ,T) e−𝜏(s) 𝛼ds (8.3.4)

𝜏(s) = ∫
s

0
𝛼(s′)ds′ (8.3.5)

Equation (8.3.4) is called the radiative transfer equation. I( f , 0) is the intensity at the
measurement location s = 0, and I( f , s0) is the intensity at some boundary location
s = s0. The symbol 𝜏(s) denotes the optical depth or the opacity.

If hf ≪ kT , as is the case for microwaves and longer waves, the denominator in
(8.3.3) can be expanded in terms of hf ∕kT . After truncating the expansion, the Planck
function becomes the Rayleigh-Jeans approximation

B(𝜆,T) ≈
2f 2kT

c2
=

2kT
𝜆2

(8.3.6)

The symbol 𝜆 denotes the wavelength. Expression (8.3.6) expresses a linear rela-
tionship between Planck function and temperature T . For a given opacity (8.3.5) the
intensity (8.3.4) is proportional to the temperature of the field of view of the radiome-
ter antenna, given (8.3.6).

The Rayleigh-Jeans brightness temperature Tb( f ) is defined by

Tb(f ) ≡ 𝜆2

2k
I(f ) (8.3.7)

Tb(f ) is measured in degrees Kelvin; it is a simple function of the intensity of the
radiation at the measurement location. If we declare the space beyond the boundary
s0 as the background space, the Rayleigh-Jeans background brightness temperature
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can be written as

Tb0(f ) ≡ 𝜆2

2k
I( f , s0) (8.3.8)

Using definitions (8.3.7) and (8.3.8), the approximation (8.3.6), and T = Tb, the radia-
tive transfer equation (8.3.4) becomes

Tb = Tb0 e
−𝜏(s0) + ∫

s0

0
T(s) 𝛼 e−𝜏(s) ds (8.3.9)

This is Chandrasekhar’s equation of radiative transfer as used in microwave remote
sensing. For ground-based GPS applications, the sensor (radiometer) is on the ground
(s = 0) and senses all the way to s = ∞. Tb0 becomes the cosmic background tem-
perature Tcosmic, which results from the residual cosmic radiation of outer space that
is left from the Big Bang. Thus

Tb = Tcosmic e
−𝜏(∞) + ∫

∞

0
T(s) 𝛼 e−𝜏(s) ds (8.3.10)

𝜏(∞) = ∫
∞

0
𝛼(s)ds (8.3.11)

Tcosmic = 2.7 K (8.3.12)

The brightness temperature (8.3.10) depends on the atmospheric profiles of physi-
cal temperature T and absorption 𝛼. For the atmosphere the latter is a function of
pressure, temperature, and humidity. Equation (8.3.10) represents the forward prob-
lem, i.e., given temperature and absorption profiles along the path, one can compute
brightness temperature. The inverse solution of (8.3.10) is of much practical interest.
It potentially allows the determination of atmospheric properties such as T and 𝛼, as
well as their spatial distribution from brightness temperature measurements.

Consider the following special cases. Assume that the temperature T is constant.
Neglecting the cosmic term, using d𝜏 = 𝛼ds, the radiative transfer equation (8.3.10)
becomes

Tb = T∫
𝜏(a)

0
e−𝜏 d𝜏 = T

(
1 − e−𝜏(a)

)
(8.3.13)

For a large optical depth 𝜏(a)≫ 1 we get Tb = T and the radiometer acts like a ther-
mometer. For a small optical path 𝜏(a)≪ 1 we get Tb = T 𝜏(a). If the temperature
is known, then 𝜏(a) can be determined. If we also know the absorption properties of
the constituencies, it might be possible to estimate the concentration of a particular
constituent of the atmosphere.

For the sake of clarity, we reiterate that (8.3.7) defines the Rayleigh-Jeans
brightness temperature. The thermodynamic brightness temperature is defined as the
temperature of a blackbody radiator that produces the same intensity as the source
being observed. The latter definition refers to the physical temperature, whereas the
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Rayleigh-Jeans definition directly relates to the radiated intensity. The difference
between both definitions can be traced back to the approximation implied in (8.3.6).
A graphical representation of the differences is found in Janssen (1993, p. 10).

8.3.2 Absorption Line Profiles

Microwave radiometers measure the brightness temperature. In ground-based
radiometry, the relevant molecules are water vapor, diatomic oxygen (O2), and liquid
water. Mathematical models have been developed for the absorption. For isolated
molecules, the quantum mechanic transitions occur at well-defined resonance
frequencies (line spectrum). Collision with other molecules broadens these spectral
lines. When gas molecules interact, the potential energy changes due to changing
relative position and orientation of the molecules. As a result, the gas is able to
absorb photons at frequencies well removed from the resonance lines. Pressure
broadening converts the line spectrum into a continuous absorption spectrum, called
the line profile. The interactions and thus the broadening increase with pressure.
Given the structure of molecules it is possible to derive mathematical functions
for the line profiles. Because of the complexities of these computations and the
presence of collisions, these functions typically require refinement with laboratory
observations. The results are line profile models.

Figures 8.3.1 and 8.3.2 show line profiles for water vapor, oxygen, and liq-
uid water computed with Fortran routines provided by Rosenkranz. (See also
Rosenkranz, 1998). All computations refer to a temperature of 15∘C. The top three
lines in Figure 8.3.1 show the line profiles for water vapor for pressures of 700, 850,
and 1013 mbar, and a water vapor density of 10 g∕m3. The maximum absorption
occurs at the resonance frequency of 22.235 GHz. The effect of pressure broadening
on the absorption curve is readily visible. Between about 20.4 and 23.8 GHz the
absorption is less, the higher the pressure. The reverse is true in the wings of the
line profile. In the vicinity of these two particular frequencies, the absorption is
relatively independent of pressure. Most WVRs use at least one of these frequencies

Figure 8.3.1 Absorption of water vapor, liquid water, and oxygen between 10 and
40GHz.
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Figure 8.3.2 Absorption of water vapor, liquid water, and oxygen between 10 and
900GHz.

to minimize the sensitivity of brightness temperature to the vertical distribution
of water vapor. The water vapor absorption is fairly stable in regard to changes in
frequency around 31.4 GHz. Dual-frequency WVRs for ground-based sensing of
water vapor typically also use the 31.4 GHz frequency to separate the effects of
water vapor from cloud liquid. The 31.4 GHz channel is approximately twice as
sensitive to cloud liquid emissions as the channel near 20.4 GHz. The opposite is true
for water vapor, allowing separate retrievals of the two most variable atmospheric
constituents. The absorption line of oxygen in Figure 8.3.1 refers to a water vapor
density of 10 g∕m3 and a pressure of 1013 mbar. The line of liquid water (suspended
water droplets) is based on a water density of 0.1 g∕m3. The absorption used in the
radiative transfer equation (8.3.10) is the sum of the absorption of the individual
molecular constituencies, i.e.,

𝛼 = 𝛼wv(f ,T , p, 𝜌wv) + 𝛼lw(f ,T , 𝜌lw) + 𝛼ox(f ,T , p, 𝜌wv) (8.3.14)

The absorption units are typically referred to as neper per kilometer. The absorption
unit refers to the fractional loss of intensity per unit distance (km) traveled in a loga-
rithmic sense. That is, an absorption value of 1 neper/km would imply that the power
would be attenuated by 1∕e fractional amount over 1 km given that the absorption
properties remained constant over that kilometer. A neper is the natural logarithm of
a voltage ratio and is related to the dB unit as follows:

dB =
20

ln(10)
neper ≈ 8.686 neper (8.3.15)

The line profiles contain other maxima, as seen in Figure 8.3.2. A large maximum for
water vapor at 183.310 GHz is relevant to water vapor sensing in airborne radiometry.
The liquid water absorption increases monotonically with frequency in the microwave
range. Oxygen has a band of resonance near 60 GHz. The oxygen absorption is well
modeled with pressure and temperature measurements on the ground; the absorption
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is small compared to that of water vapor and nearly constant for a specific site because
oxygen is mixed well in the air. The profiles of Figure 8.3.2 refer to a temperature of
15∘C, a water vapor density of 10 g∕m3, a pressure of 1013 mbar, and a liquid water
density 0.1 g∕m3.

Since the absorption of oxygen can be computed from the model and ground-based
observations, it is possible to separate its known contribution in (8.3.10) and invert
the radiative transfer equation to determine integrated water vapor and liquid water
as a function of the observed brightness temperatures. Westwater (1978) provides
a thorough error analysis for this standard dual-frequency case. The fact that at
23.8 GHz the absorption of water vapor is significantly higher than at 31.4 GHz
(while the absorption of liquid water changes monotonically over that region), can be
used to retrieve separately integrated water vapor and liquid water from the inversion
of the radiative transfer equation. With more channels distributed appropriately
over the frequency, one might be able to roughly infer the water vapor profiles as
well as integrated water vapor and liquid water, or even temperature, vapor, and
liquid profiles.

8.3.3 General Statistical Retrieval

Consider the following experiment. Use a radiosonde to measure the temperature
and water vapor density profile along the vertical and use equations (8.2.21) and
(8.2.22) to compute IWV and PWV. Compute the brightness temperature Tb from
the radiative transfer equation (8.3.10) for each radiometer frequency using the
frequency-dependent absorption model for water vapor 𝛼wv( f ,T , p, pw) and oxygen
absorption.

Figure 8.3.3 shows the result of such an experiment. The plot shows the observed
Tb for WVR channels at 20.7 and 31.4 GHz. The data refer to a Bermuda radiosonde
station and were collected over a 3-year period. The Bermuda site experiences nearly
the full range of global humidity and cloud cover conditions. The scatter about the

Figure 8.3.3 Brightness temperature versus precipitable water vapor. (Data source:
Keihm, JPL.)
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heavily populated “clear” lines is due to the occurrence of cloudy cases. The slopes
of Tb (20.7) are approximately 2.2 times the slopes of the Tb (31.4). The scatter about
the Tb (31.4) clear line is approximately twice as large as the scatter about the Tb
(20.7) clear line. These results are indicative of the facts that (1) the sensitivity of Tb
(20.7) to PWV is approximately 2.2 times greater than that of Tb (31.4) and (2) that
the sensitivity of Tb (31.4) to liquid water is approximately 2 times greater than that
of Tb (20.7). The sensitivity to liquid water is also illustrated in Figure 8.3.4, which
shows Tb variations versus cloud liquid. Despite the large scatter (due to variable
PWV), one can see that the slope of the Tb (31.4) data is approximately twice as
large as the slope of the Tb (20.7) data.

Because of the relationships between ZWD, IWV, and PWV as seen by (8.2.26),
(8.2.21), and (8.2.22), the strong correlation seen in Figure 8.3.3 between PWV and
the brightness temperature makes a simple statistical retrieval procedure for the ZWD
possible. Assume a radiosonde reference station is available to determine ZWD and
that a WVR measures zenith T20.7 and T31.4. Using the model

ZWD = c0 + c20.7 T20.7 + c31.4 T31.4 (8.3.16)

we can estimate accurate retrieval coefficients ĉ0, ĉ20.7, and ĉ31.4. When users operate
a WVR in the same climatological region, they can then readily compute the ZWD
at their location from the observed brightness temperature and the estimated regres-
sion coefficients. This statistical retrieval procedure can be generalized by using an
expanded regression model in (8.3.16) and by incorporating brightness temperature
measurements from several radiosonde references distributed over a region.

The opacity may also be used in this regression. In fact, opacity varies more lin-
early with PWV than does the brightness temperature Tb. At high levels of water
vapor, or low elevation angles, the Tb measurements will eventually begin to satu-
rate, i.e., the rate of Tb increase with increasing vapor will start to fall off. This is
not true for opacity, which essentially remains linear with the in-path vapor abun-
dance. Opacity is available from (8.3.11) but also can be conveniently related to the

Figure 8.3.4 Brightness temperature versus cloud liquid. (Data source: Keihm, JPL.)



494 TROPOSPHERE AND IONOSPHERE

brightness temperature. Define mean radiation temperature Tmr as

Tmr ≡ ∫
∞

0
T(s) 𝛼(s) e−𝜏(s) ds

∫
∞

0
𝛼(s) e−𝜏(s) ds

(8.3.17)

This auxiliary quantity can be accurately estimated from climatologic data. Cor-
rections with surface temperature permit Tmr estimates to be computed to a typical
accuracy of ∼ 3 K. Using the relationship

∫
𝜏(∞)

0
𝛼e−𝜏 ds = 1 − e−𝜏(∞) (8.3.18)

where we used again d𝜏 = 𝛼ds, the radiative transfer equation (8.3.10) can be writ-
ten as

Tb = Tcosmic e
−𝜏(∞) + Tmr

(
1 − e−𝜏(∞)

)
(8.3.19)

which, in turn, can be rewritten as

𝜏(∞) = ln

(
Tmr − Tcosmic

Tmr − Tb

)
(8.3.20)

The opacities and brightness temperature show similarly high correlations with the
wet delay. In fact, at low elevation angles the opacities correlate even better with the
wet delay than do brightness temperatures.

If the user measures the brightness temperatures along the slant path rather than the
zenith direction, the observed Tb must be converted to the vertical to estimate ZWD
using (8.3.16). Given the slant Tb measurement at zenith angle 𝜗, and an estimate of
Tmr, the slant opacity can be computed and converted to the zenith opacity using the
simple 1∕ cos(𝜗) mapping function. The equivalent zenith Tb follows from (8.3.19).
For elevation angles above 15∘ this conversion is very accurate.

For a specific site Tmr is computed from (8.3.17) using radiosonde data that typify
the site. The variation of Tmr with slant angle is minimal for elevations down to about
20∘. The value used for WVR calibration and water vapor retrievals can be a site
average (standard deviation typically about 10 K), or can be adjusted for season to
reduce the uncertainty. If surface temperatures T are available, then Tmr correlations
with T can reduce the Tmr uncertainty to about 3 K.

8.3.4 Calibration of WVR

Because the intensity of the atmospheric microwave emission is very low, the WVR
calibration is important. Microwave radiometers receive roughly a billionth of a watt
in microwave energy from the atmosphere. The calibration establishes a relation-
ship between the radiometer reading and the brightness temperature. Here we briefly
discuss the calibration with tipping curves. This technique provides accurate bright-
ness temperatures and the instrument gain without any prior knowledge of either.
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Under the assumption that the atmosphere is horizontally homogeneous and that
the sky is clear, the opacity is proportional to the thickness of the atmosphere. Clearly
the amount of atmosphere sensed increases with the zenith angle. For zenith angles
less than about 60∘ one might consider adopting the following model for the mapping
function for the opacity:

m𝜏 (𝜗) ≡ 𝜏(𝜗)

𝜏(𝜗 = 0)
=

1
cos 𝜗

(8.3.21)

Figure 8.3.5 shows an example of radiometer calibration using tipping. The opacity is
plotted versus air mass. Looking straight up, the opacity of one air mass is observed.
Looking at 30∘, the opacity of two air masses is observed, etc. Since opacity is linear,
we can extrapolate to zero air mass. At zero air mass, we have m𝜏 (𝜗) = 0 because
there is no opacity for a zero atmosphere.

The calibration starts with a radiometer voltage (noise diode, labeled ND in
Figure 8.3.5) reading Nbb of an internal reference object, which one might think of
as a blackbody. The physical temperature of that object is Tbb. Let G denote the
initial estimate of the gain factor (change in radiometer count reading over change
in temperature). The observed brightness temperature at various zenith angles,
measured by tipping the antenna, is then computed by

T(𝜗) = Tbb −
1
G

(
Nbb − N(𝜗)

)
(8.3.22)

The brightness temperatures are substituted into (8.3.20) to get the opacity. If the lin-
ear regression line through the computed opacities does not pass through the origin,

Figure 8.3.5 Tipping curve example. (Courtesy of R. Ware, Radiometrics Corporation,
Boulder.)
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the gain factor G is adjusted until it passes though the origin. If the regression coeffi-
cient of the linear fit is better than a threshold value, typically r = 0.99, the tip curve
calibration is accepted. The time series in Figure 8.3.5 show the history of passed tip
curve calibrations at various microwave frequencies.

The tipping curve calibration assumes that we know the microwave cosmic
background brightness temperature Tcosmic = 2.7 K. Arno Penzias and Robert
Wilson received the Nobel Prize for physics in 1978 for their discovery of the cosmic
background radiation. Conducting their radio astronomy experiments, they realized
a residual radiation that was characteristically independent of the orientation of the
antenna.

8.4 IONOSPHERIC REFRACTION

Coronal mass ejections (CMEs) and extreme ultraviolet (EUV) solar radiation (solar
flux) are the primary causes of the ionization (Webb and Howard, 1994). A CME is
a major solar eruption. When passing the earth, it causes at times sudden and large
geomagnetic storms, which generate convection motions within the ionosphere, as
well as enhanced localized currents. The phenomena can produce large spatial and
temporal variation in the TEC and increased scintillation in phase and amplitude.
Complicating matters are coronal holes, which are pathways of low density through
which high-speed solar wind can escape the sun. Coronal holes and CME are the two
major drivers of magnetic activities on the earth. Larger magnetic storms are rare but
may occur at any time.

Solar flux originates high in the sun’s chromosphere and low in its corona. Even a
quiet sun emits radio energy across a broad frequency spectrum, with slowly varying
intensity. EUV radiation is absorbed by the neutral atmosphere and therefore cannot
be measured accurately from ground-based instrumentation. Accurate determination
of the EUV flux requires observations from space-based platforms above the iono-
sphere. A popular surrogate measure to the EUV radiation is the widely observed flux
at 2800 MHz (10.7 cm). The 10.7 cm flux is useful for studying the ozone layer and
global warming. However, Doherty et al. (2000) point out that predicting the TEC by
using the daily values of solar 10.7 cm radio flux is not useful due to the irregular,
and sometimes very poor, correlation between the TEC and the flux. The TEC at any
given place and time is not a simple function of the amount of solar ionizing flux.

The transition from a gas to an ionized gas, i.e., plasma, occurs gradually. During
the process, a molecular gas dissociates first into an atomic gas that, with increas-
ing temperature, ionizes as the collisions between atoms break up the outermost
orbital electrons. The resulting plasma consists of a mixture of neutral particles, pos-
itive ions (atoms or molecules that have lost one or more electrons), and negative
electrons. Once produced, the free electron and the ions tend to recombine, and a bal-
ance is established between electron-ion production and loss. The net concentration
of free electrons is what impacts electromagnetic waves passing through the iono-
sphere. In order for gases to be ionized, a certain amount of radiated energy must
be absorbed. Hargreaves (1992, p. 223) gives maximum wavelengths for radiation
needed to ionize various gases. The average wavelength is about 900 Å (1 Å equals
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0.1 nm). The primary gases available at the upper atmosphere for ionization are oxy-
gen, ozone, nitrogen, and nitrous oxide.

Because the ionosphere contains particles that are electrically charged and capable
of creating and interacting with electromagnetic fields, there are many phenomena in
the ionosphere that are not present in ordinary fluids and solids. For example, the
degree of ionization does not uniformly increase with the distance from the earth’s
surface. As mentioned above, there are regions of ionization, historically labeledD,E,
and F, that have special characteristics as a result of variation in the EUV absorption,
the predominant type of ions present, or pathways generated by the electromagnetic
field. The electron density is not constant within such a region and the transition
to another region is continuous. Whereas the TEC determines the amount of pseu-
dorange delays and carrier phase advances, it is the layering that is relevant to radio
communication in terms of signal reflection and distance that can be bridged at a given
time of the day. In the lowest D region, approximately 60 to 90 km above the earth,
the atmosphere is still dense and atoms that have been broken up into ions recombine
quickly. The level of ionization is directly related to radiation that begins at sunrise,
disappears at sunset, and generally varies with the sun’s elevation angle. There is still
some residual ionization left at local midnight. The E region extends from about 90
to 150 km and peaks around 105 to 110 km. In the F region, the electrons and ions
recombine slowly due to low pressure. The observable effect of the solar radiation
develops more slowly and peaks after noon. During daytime this region separates
into the F1 and F2 layers. The F2 layer (upper layer) is the region of highest electron
density. The top part of the ionosphere reaches up to 1000 to 1500 km. There is no
real boundary between the ionosphere and the outer magnetosphere.

Ionospheric convection is the main result of the coupling between the magneto-
sphere and ionosphere. While in low altitudes the ionospheric plasma co-rotates with
the earth, at higher latitudes it is convecting under the influence of the large-scale
magnetospheric electric field. Electrons and protons that speed along the magnetic
field lines until they strike the atmosphere not only generate the spectacular lights of
the aurora in higher latitudes, but they also cause additional ionization. Peaks of elec-
tron densities are also found at lower latitudes on both sides of the magnetic equator.
The electric field and the horizontal magnetic field interact at the magnetic equator to
raise ionization from the magnetic equator to greater heights, where it diffuses along
magnetic field lines to latitudes approximately ±15∘ to 20∘ on either side of the mag-
netic equator. The largest TEC values in the world typically occur at these so-called
equatorial anomaly latitudes.

There are local disturbances of electron density in the ionosphere. On a small scale,
irregularities of a few hundred meters in size can cause amplitude fading and phase
scintillation of GPS signals. Larger disturbances of the size of a few kilometers can
significantly impact the TEC. Amplitude fading and scintillation can cause receivers
to lose lock, or receivers may not be able to maintain lock for a prolonged period
of time. Scintillation on GPS frequencies is rare in the midlatitudes, and amplitude
scintillation, even under geomagnetically disturbed conditions, is normally not large
in the auroral regions. However, rapid phase scintillation can be a problem in both
the equatorial and the auroral regions, especially for semicodeless L2 GPS receivers,
as the bandwidth of such receivers might be too narrow to follow rapid phase
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scintillation effects. Strong scintillation in the equatorial region generally occurs in
the postsunset to local midnight time period, or during geomagnetically quiet period,
but, mostly during equinoctial months in years having high solar activity. Even
during times of strong amplitude scintillation the likelihood of simultaneous deep
amplitude fading to occur on more than one GPS satellite is small. Thus, a modern
GPS receiver observing all satellites in view should be able to operate continuously
through strong scintillation albeit with a continuously changing geometric dilution
of precision (GDOP) due to the continually changing “mix” of GPS satellites in lock.

Sunspots are seen as dark areas in the solar disk. At the dark centers the temper-
ature drops to about 3700 K from 5700 K for the surrounding photosphere. They
are magnetic regions with field strengths thousands of times stronger than the earth’s
magnetic field. Sunspots often appear in groups with sets of two spots, one with pos-
itive (north) magnetic fields, and one with negative (south) magnetic fields. Sunspots
have an approximate lifetime of a few days to a month. The systematic recording of
these events began in 1849 when the Swiss astronomer Johann Wolf introduced the
sunspot number. This number captures the total number of spots seen, the number
of disturbed regions, and the sensitivity of the observing instrument. Wolf searched
observatory records to tabulate past sunspot activities. He apparently traced the activ-
ities to 1610, the year Galileo Galilei first observed sunspots through his telescope
(McKinnon, 1987). Sunspot activities follow a periodic variation, with a principal
period of 11 years, as seen in Figure 8.4.1. The cycles are usually not symmetric.
The time from minimum to maximum is shorter than the time from maximum to
minimum.

Sunspots are good indicators of solar activities. Even though sunspots have a high
correlation with CME and solar flux, there is no strict mathematical relationship
between them. It can happen that GPS is adversely affected even when daily sunspot
numbers are actually low. Kunches and Klobuchar (2000) point out that GPS opera-
tions are more problematic during certain years of the solar cycle and during certain
months of those years. The years at or just after the solar maximum will be stormy,
and the months near the equinoxes will contain the greatest number of storm days.
Sunspots are good for long-term prediction of ionospheric states.

Figure 8.4.1 Sunspot numbers.
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8.4.1 Index of Ionospheric Refraction

The Appleton-Hartree formula is usually taken as the start for developing the iono-
spheric index of refraction that is applicable to the range of GPS frequencies. The
formula is valid for a homogeneous plasma that consists of electrons and heavy
positive ions, a uniform magnetic field, and a given electron collision frequency. Fol-
lowing Davies (1990, p. 72), the Appleton-Hartree formula is

n2 = 1 −
X

1 − iZ −
Y2
T

2(1 − X − iZ)
±

√
Y4
T

4(1 − X − iZ)2
+ Y2

L

(8.4.1)

Since the goal is to find the ionospheric index of refraction that applies to the GNSS
frequency f , several simplifications are permissible. The numerator X represents the
squared ratio of fp and f , where fp is a natural gyrofrequency or plasma frequency by
which free electrons cycle geomagnetic field lines. It is a basic constant of plasma
(Davies 1990, pp. 21, 73). We can write

X =
f 2
p

f 2
f 2
p = ApNe Ap =

e2

4𝜋2𝜀0me

= 80.6 (8.4.2)

The electron density Ne is typically given in units of electrons per cubic meter
(el∕m3). The symbol e = 1.60218 ⋅ 10−19 coulombs denotes the electron charge,
me = 9.10939 ⋅ 10−31 kg is the electron mass, and 𝜀0 = 8.854119 ⋅ 10−12 faradays/m
is the permittivity of free space. The element Z = v∕f is the ratio of the electron
collision frequency v and the satellite frequency. This term quantifies the absorption.
We simply set Z = 0 because it is negligible in the context of ionospheric refraction at
GNSS frequencies. As a result of this simplification the expression of the refraction
index is no longer complex. The symbols YT and YL denote the transversal and
longitudinal component of the geomagnetic filed vector B. For actual computations
the International Geomagnetic Reference Field (Finlay et al., 2010) can be a source
for data for accurate representation of the earth’s magnetic field. Let B denote the
modulus of this vector, then

YT = Y sin 𝜃 YL = Y cos 𝜃 (8.4.3)

Y =
fg
f

fg = AgB Ag =
e

2𝜋me
(8.4.4)

where 𝜃 is the angle between signal propagation direction and vectorB. Incorporating
the specifications mentioned above, the Appleton-Hartree equation (8.4.1) takes the
form

n2 = 1 −
X

1 −
Y2sin2𝜃

2(1 − X)
±

√
Y4sin2𝜃

4(1 − X)2
+ Y2cos2𝜃

(8.4.5)
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The next step in the development is expanding (8.4.5) in a binomial series and retain-
ing only relevant terms. Details of this expansion are given in Brunner and Gu (1991)
or Petrie et al. (2011). The result is

n = 1 −
ApNe

2f 2
−

ApNeAgB|cos 𝜃|
2f 3

−
A2
pN

2
e

8f 4
(8.4.6)

The second term in (8.4.6) is a first-order term, followed by the second- and third-
order terms. Note that the power of the frequency in the denominators increases with
order. The absolute value of the cosine term is required to handle RHCP signals over
the full range of 2𝜋. For approximate numerical evaluation one might assume average
values such as Ne ≈ 1012 el∕m3 and B = 5 ⋅ 10−5 telsa. Within this approximation,
only the second-order term depends on the geomagnetic vector.

Since the ionosphere is a dispersive medium, the phase velocity is a function of its
frequency, i.e., the carrier phase and the phase of the modulation travel at different
velocities. Consequently we need to introduce two indices of refraction. Henceforth,
the phase index of refraction dealt with above is denoted by n𝛷 and specifically refers
to the GNSS carrier phase. Since the carrier is modulated by codes such as C/A-codes
and P-codes, we also need a separate index of refraction for the propagation of these
codes. It is called the group index of refraction and denoted by ng. General physics
provides the well-known relationship between these two indices of refraction as

ng = n𝛷 + f
dn𝛷
df

(8.4.7)

Thus we only need to differentiate (8.4.6) with respect to the frequency, multiply by
the frequency, and add it to the phase index of refraction, giving

ng = 1 +
ApNe

2f 2
+

ApNeAgB|cos 𝜃|
f 3

+
3A2

pN
2
e

8f 4
(8.4.8)

Comparing (8.4.6) and (8.4.8) we observe that the first-order terms have the same
magnitude but opposite sign. The higher order terms also have opposite sign but differ
by a factor 2 and 3, respectively. Since Ne > 0 we have n𝛷 < 1 and ng > 1.

The impact of the ionosphere is given by

Iimpact = ∫ (n(s) − 1)ds (8.4.9)

whereby the integration takes place over the propagation path of the signal, with the
index of refraction changing with distance. For the carrier phase and the pseudorange
the impact is in units of meters,

If , 𝛷 = ∫ (n𝛷 − 1)ds = −
q

f 2
−

s
2f 3

−
r

3f 4
+ · · · (8.4.10)

If ,P = ∫ (ng − 1)ds =
q

f 2
+

s
f 3

+
r
f 4

+ · · · (8.4.11)
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We readily see that the carrier phase experiences an advancement because n𝛷 < 1
and the pseudorange experiences a delay because ng > 1 relative to vacuum travel
for which ng = n𝛷 since the index of refraction would not depend on the frequency.
The q, a, and r terms follow from (8.4.6) or (8.4.8) as

q =
Ap

2 ∫ Ne ds = 40.3∫ Ne ds (8.4.12)

s = ApAg∫ NeB|cos 𝜃|ds = 2.256 ⋅ 1012∫ NeB|cos 𝜃|ds (8.4.13)

r =
3
8
A2
p∫ N2

e ds = 2437∫ N2
e ds (8.4.14)

All expressions above are seen to be a function of the integral ∫ Ne ds which repre-
sents the total number of free electron along a 1m2 column from the earth surface to
the end of the ionosphere. It has become a common practice to call this integral the
total electron content (TEC). Thus

TEC = ∫ Ne ds (8.4.15)

Typically the TEC values range from 1016 to 1018el∕m2. Often the total electron con-
tent is expressed in terms of TEC units (TECU), with one TECU being 1016 electrons
per 1m2 column.

The values q, s, and r determine the magnitude of the first-, second-, and
third-order ionospheric delays for a given GNSS frequency. In order to evaluate
these delays approximately, let us assume an ionosphere of 60 TECUs , giving a
TEC of 60 ⋅ 1016 electrons in the 1m2 column. Using this value in (8.4.12) the
first order ionospheric delay becomes q∕f 2 ≈ 10 m. Using a geomagnetic field of
B = 5 ⋅ 10−5 telsa in (8.4.13) the second-order ionospheric delay is s∕f 3 ≈ 1cm.
In order to evaluate r in (8.4.14) we assume that Ne is uniformly distributed over
100 km, giving r∕f 4 ≈ 1mm for the third-order delay. Apparently the second-order
ionospheric delay is at the level of 1 cm or less, and the third-order effect is at the
level of the carrier phase measurement accuracy. Another way at looking at the
impact of the large first-order ionospheric term is to realize that a change of 1.12%
in TEC causes a single-cycle change in L1 assuming a maximum TEC of 1018

electrons.
In many applications dual-frequency observations are used to eliminate the

ionospheric effects on the signal. Consider the basic dual-frequency ionospheric-free
function (6.1.39),

𝛷IF12 ≡ f 2
1

f 2
1 − f 2

2

𝛷1 −
f 2
2

f 2
1 − f 2

2

𝛷2 (8.4.16)

It is readily verified that the large first-order ionospheric term q∕f 2 cancels in this
function. However, subjecting the second- and third-order terms to this function



502 TROPOSPHERE AND IONOSPHERE

shows that neither of them cancels. Therefore, we have reached the important
conclusion that only the first-order ionospheric effects cancel in the popular
“ionospheric-free function” (8.4.16). The impact of the second-order term is

f 2
1

f 2
1 − f 2

2

⋅
−s

2f 3
1

−
f 2
2

f 2
1 − f 2

2

⋅
−s

2f 3
2

=
s

2
(
f 2
1 + f 2

2

)
f1f2

(8.4.17)

Taking the same numerical values for TEC and B as used above, the second-order
effect is approximately 0.0037m. A similar computation for the third-order term
yields ≈ 0.0008m

If there are three frequency observations available, one can also compute the func-
tion 𝛷IF13 [simply replace subscripts 2 by 3 in (8.4.16)]. It can then be verified that
the function

IF2 ≡ 𝛷IF12 −𝛷IF13

(
f 2
1 + f 2

3

)
f3(

f 2
1 + f 2

2

)
f2

≠ f (q, s) (8.4.18)

does not depend on the first and second order ionospheric effect since the s term can-
cels. The factor of𝛷IF13 is 0.724 in case of GPS. See Wang et al. (2005) for a method
to compute the third-order ionospheric delay given three frequency observations.

Returning to the first-order ionospheric effect, equations (8.4.11) and (8.4.12) give
the well-known expression

If ,P =
40.30
f 2

TEC (8.4.19)

As mentioned above, TEC of 1018 a change of about 1% or 1 TECU in electron con-
tent causes a change in range of about one L1 wavelength. The first-order ionospheric
defects on two frequencies are related as

I1,P = −I1, 𝛷 = −
c
f1
I1, 𝜑 (8.4.20)

I2,P = −I2, 𝛷 = −
c
f2
I2, 𝜑 (8.4.21)

I1,P
I2,P

=
f 2
2

f 2
1

(8.4.22)

I1, 𝜑
I2, 𝜑

=
f2
f1

(8.4.23)

These relations are convenient when manipulating phase observation. The subscripts
P and 𝛷 refer to the pseudorange and scaled carrier phase, respectively, with the
numerical values given in linear units of meters. The subscript 𝜑 indicates the unit of
radians for the ionospheric phase advance. Figure 8.4.2 shows a log-log plot of the
ionospheric delay as a function of frequency for various TEC values.
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Figure 8.4.2 Ionospheric range correction.

The literature is rich with excellent contributions about ionospheric delay. Most
of it can be found searching online resources. Reading this literature one notices
that most publications refer to the seminal study by Hartmann and Leitinger (1984)
on tropospheric and ionospheric effects for signal frequencies above 100 MHz.
Details on higher-order ionospheric effects GPS signals can already be found in
Bassiri and Hajj (1993) and Datta-Barua et al. (2006). An excellent review of the
subject is provided by Petrie et al. (2011) which also includes an extensive list of
references. The latter reference also reviews several approaches to quantify the
geometric bending error, or the excess path length, which result from the difference
of the geometric receiver-satellite range and the actual path the signal takes under
the influence of ionospheric refraction. The bending effect has the same frequency
dependency as the third-order ionospheric delay term and its size increases as
the elevation angle decreases. Garcia-Fernandez et al. (2013) evaluate various
approaches for computing second-order ionospheric corrections, such as ways
to obtain TEC values and variations in ionospheric model assumption, and also
examine deeper the relationship between network solutions and PPP in regards to
these corrections. In general one must keep in mind that the ionospheric impacts
on GNSS signals depend on the total electron content which varies with time and
location.

Even though phase advancement and group delay are very important, they are not
the only manifestations of the ionosphere on the signal propagation. Some of the
phase variations are converted to amplitude variation by means of diffraction. The
result can be an irregular but rapid variation in amplitude and phase, called scintilla-
tion. The signal can experience short-term fading by losing strength. Scintillations
might occasionally cause phase-lock problems to occur in receivers. A receiver’s
bandwidth must be sufficiently wide not only to accommodate the normal rate of
change of the geometric Doppler shift, (up to 1 Hz) but also the phase fluctuations
due to strong amplitude and phase scintillation. These scintillation effects generally
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require a minimum receiver bandwidth of at least 3 Hz under severe fading and phase
jitter conditions. If the receiver bandwidth is set to 1 Hz to deal with the rate of change
of the geometric Doppler shift, and if the ionosphere causes an additional 1 Hz shift,
the receiver might lose phase lock.

8.4.2 Ionospheric Function and Cycle Slips

Dual-frequency observations can eliminate the first-order ionospheric effects by
forming the popular dual-frequency ionospheric-free functions. Consider the relevant
terms of the ionospheric-free function (6.1.41)

f 2
1

f 2
1 − f 2

2

𝜑1 −
f1f2

f 2
1 − f 2

2

𝜑2 = · · · 𝛽12N1 − 𝛿12N2 + · · · (8.4.24)

and the ionospheric function (6.1.44)

𝜑1 −
f1
f2
𝜑2 = · · · + N1 −

√
𝛾12N2 − (1 − 𝛾12)I1,𝜑 + · · · (8.4.25)

with 𝛽12 = f 2
1 ∕

(
f 2
1 − f 2

2

)
, 𝛿12 = f1f2∕

(
f 2
1 − f 2

2

)
, and the squared ratio 𝛾12 = f 2

1 ∕f
2
2 as

already defined in (6.1.1). Analyzing these dual-frequency carrier phase functions
requires extra attention because certain cycle slip combinations on L1 and L2 generate
almost identical effects. For example, consider the ionosphere-free phase observable
(8.4.24). The ambiguities enter this function not as integers but in the combination of
𝛽12N1 − 𝛿12N2, causing noninteger change when cycle slips occur.

Table 8.4.1 lists in columns 1 and 2 small changes in the ambiguities and shows
in columns 3 and 4 their effects on the ionospheric-free and the ionospheric phase

TABLE 8.4.1 Small Cycle Slips on Ionospheric-Free and
Ionospheric Functionsa.

ΔN1 ΔN2 𝛽12 ΔN1 − 𝛿12 ΔN2 ΔN1 −
√
𝛾12 ΔN2

±1 ±1 ±0.562 ∓0.283
±2 ±2 ±1.124 ∓0.567
±1 ±2 ∓1.422 ∓1.567
±2 ±3 ±0.860 ∓1.850

±3 ±4 ∓0.298 ∓2.133
±4 ±5 ±0.264 ∓2.417
±5 ±6 ±0.827 ∓2.700
±6 ±7 ±1.389 ∓2.983
±5 ±7 ±1.157 ∓3.983
±6 ±8 ∓0.595 ∓4.267
±7 ±9 ∓0.033 ∓4.550
±8 ±10 ±0.529 ∓4.833

aThe numbers refer to GPS L1 and L2 frequencies.
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functions. Certain combinations of both integers produce almost identical changes
in the ionosphere-free phase function. For example, the change of (−7,−9) causes
only a small change of 0.033 cycles in the ionospheric-free function. The changes
(1, 1) and (8, 10) cause nearly indistinguishable changes of 0.562 and 0.529 cycles. If
pseudorange positioning is accurate enough to resolve the ambiguities within three to
four cycles, then some of these pairs can be identified. Also, analyzing the ionospheric
function does not identify all pairs because several pairs generate the same changes
within a couple of tenths of a cycle.

Table 8.4.2 shows an arrangement of integer pairs that have the same effect on
the ionospheric function within a couple of hundredths of a cycle. For example, the
impact of combinations (−2,−7) and (7, 0) differs by only 0.02 cycle. This amount
is too small to be discovered in an observation series since it approaches the level of
phase measurement accuracy.

8.4.3 Single-Layer Ionospheric Mapping Function

Although the ionosphere varies in thickness over time and location one often models it
as an infinitesimal thin single layer at a certain height above the earth. Through sim-
ple geometric relations one derives an ionospheric mapping function which relates
the slant TEC and the vertical electron content (VTEC) as a function of the satel-
lites zenith angle. Figure 8.4.3 shows a spherical approximation of the respective
geometry with earth radius R. The receiver is located at station k where the satellite
appears at zenith angle zk. The receiver-satellite line of sight intersects the single iono-
spheric layer, located at height h above the earth, at the ionospheric pierce point (IPP).

TABLE 8.4.2 Similar Effects of Selected Cycle Slips Pairs on the
Ionospheric Functiona.

ΔN1 ΔN2 ΔN1 −
√
𝛾12 ΔN2 ΔN1 ΔN2 ΔN1 −

√
𝛾12 ΔN2

−2 −7 6.983 7 0 7.000
−2 −6 5.700 7 1 5.717
−2 −5 4.417 7 2 4.433
−2 −4 3.133 7 3 3.150
−2 −3 1.850 7 4 1.867
−2 −2 0.567 7 5 0.583
−2 −1 −0.718 7 6 −0.700
−2 0 −2.000 7 7 −1.983

2 0 2.000 −7 −7 1.983
2 1 0.717 −7 −6 0.700
2 2 −0.567 −7 −5 −0.583
2 3 −1.850 −7 −4 −1.867
2 4 −3.133 −7 −3 −3.150
2 5 −4.417 −7 −2 −4.433
2 6 −5.700 −7 −1 −5.717
2 7 −6.983 −7 0 −7.000

aThe numbers refer to GPS L1 and L2 frequencies.
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single layer ionosphere
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Figure 8.4.3 Spherical approximation of single-layer ionospheric model.

The satellite zenith angle at IPP is z′. Simple geometry shows that the geocentric angle
of receiver and IPP is 𝜓 = zk − z′. The subionospheric point (SIP) is located at the
intersection of the sphere and the geocentric line though the IPP.

For the sake of deriving the single-layer model let us now think of the ionosphere as
a thin band centered at the infinitesimal thin single layer. We assume that the electrons
are homogeneously distributed within this thin band. Since the ionospheric delay is
proportional to the TEC it is also proportional to the distance traveled through the
band. Therefore, we can relate the VTEC and the TEC as

VTEC = cos z′ ⋅ TEC (8.4.26)

Please note that such a simple model was also used to relate the slant and vertical
opacity in the previous section. Applying plane trigonometry to the triangle O-k-IPP
gives sin z′ = R sin z∕(R + h), then the ionospheric mapping function F(zk) can be
defined as

F(zk) ≡ 1
cos z′

=

[
1 −

(
R sin zk
R + h

)2
]−1∕2

(8.4.27)

relating the slant TEC and VTEC at the zenith angle zk as

TEC = F(zk) ⋅ VTEC (8.4.28)

The location of the SIP can readily be obtained by applying spherical trigonome-
try to this spherical approximation. Let (𝜑k, 𝜆k) denote the known geodetic latitude
and longitude of the receiver. We can construct a spherical triangle whose sides are
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90 − 𝜑k and 𝜓 , and enclose the azimuth 𝛼pk . The law of sine (A.1.1) and the law of
cosine for sides (A.1.3) give

sin(𝜆IPP − 𝜆k) = sin𝜓k sin 𝛼pk∕ cos𝜑IPP (8.4.29)

sin𝜑IPP = sin𝜑k cos𝜓 + cos𝜑k sin𝜓 cos 𝛼pk (8.4.30)

which determine the location of the subionospheric point. Alternative methods exist
to compute this location.

8.4.4 VTEC from Ground Observations

The ionosphere can be estimated using the dual-frequency observations. Consider the
ionospheric functions (6.1.45) and (6.1.46),

I4(t) = 𝜆1N1 − 𝜆2N2 − (1 − 𝛾12)I1,P − d12,𝛷 + D12,𝛷 + 𝜀𝛷 (8.4.31)

I5(t) = (1 − 𝛾12) I1,P − d12,P + D12,P + 𝜀P (8.4.32)

where d12,𝛷 and D12,𝛷 denote the interfrequency receiver hardware phase delay and
satellite hardware phase delay, respectively, also called the across-frequency hard-
ware delays. The d12,P and D12,P are the respective hardware code delays, called
differential code bias (DCB) in Chapter 6. See also the discussion on interfrequency
signal correction of Section 6.2.2.2. The pseudoranges should be corrected for these
biases or corrections. The multipath term have been omitted from the equations.

Let us consider a continuous satellite arc of observations. During such a time span
the receiver and satellite hardware delays can be considered constant. As a first step
one needs to fix all cycle slips in (8.4.31). Next we compute the offset

Δp
k =

1
n

n∑
i=1

(
I5pk + I4pk

)
i

(8.4.33)

The summation goes over the n epochs of the arc. Perhaps one might adopt an
elevation-dependent weighting scheme in (8.4.33) to take into account the change in
measurement accuracy with elevation angle. The computed offset is subtracted from
(8.4.31) which can then be modeled as

I4pk(t) − Δp
k = −(1 − 𝛾12) I

p
k, 1,P(t) − dk + Dp (8.4.34)

per arc. For clarity we have added the subscript k to denote the receiver and the super-
script p to identify the satellite. The terms dk and Dp are the residual receiver and
satellite hardware delays that can be taken as a constant over the time of the arc,
but could bias the ionospheric estimates. Using the ionospheric mapping function
(8.4.28) to relate the STEC at the receiver to the VTEC at the ionospheric pierce
point, we can write

Ipk, 1,P(𝜆, 𝜑, t) = F(zk) Ik, 1,P(𝜆IPP, 𝜑IPP, t) (8.4.35)
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TABLE 8.4.3 Broadcast Ionospheric Model.

𝜑k, 𝜆k geod. latitude and longitude of receiver [SC] T = GPS time [sec]
𝛼
p
k , 𝛽

p
k azimuth and altitude of satellite [SC] 𝛼n, 𝛾n broadcast coefficients

Fp
k = 1 + 16

(
0.53 − 𝛽pk

)3
(a) 𝜓 =

0.0137
𝛼
p
k + 0.11

− 0.022 (b)

𝜑IPP =

⎧⎪⎨⎪⎩
𝜑k + 𝜓 cos 𝛼pk if |𝜑IPP| ≤ 0.416
0.416 if 𝜑IPP > 0.416
−0.416 if 𝜑IPP < −0.416

(c) 𝜆IPP = 𝜆k +
𝜓 sin 𝛼

p
k

cos 𝜑IPP

(d)

𝜙 = 𝜑IPP + 0.064 cos(𝜆IPP − 1.617) (e)

t =

⎧⎪⎨⎪⎩
𝜆IPP4.32 × 104 + T if 0 ≤ t < 86400
𝜆IPP4.32 × 104 + T − 86400 if t ≥ 86400
𝜆IPP4.32 × 104 + T + 86400 if t < 0

(f)

x =
2𝜋(t − 50400)

P
(g)

P =

⎧⎪⎨⎪⎩
3∑

n=0

𝛾n 𝜙
n if P ≥ 72000

72000 if P < 72000

(h) A =

⎧⎪⎨⎪⎩
3∑

n=0

𝛼n𝜙
n if A ≥ 0

A = 0 if A < 0

(i)

Ipk, 1,P =

{
c Fp

k

[
5 × 10−9 + A

(
1 − x2

2
+ x4

24

)]
if |x | < 1.57

c Fp
k (5 × 10−9) if |x | > 1.57

(j)

Conversion of SC unit: 1 SC = 180∘

One could use the mapping function (8.4.27), or the one of Table 8.4.3, or one that is
based on a realistic electron density profile model such as the extended slab density
model by Coster et al. (1992).

Next, a function is needed that expresses the vertical ionospheric delay as a func-
tion of latitude and longitude. A simple representation could be a spherical harmonic
expansion similar to (4.3.31),

VTEC(𝜑,Δ𝜆) =
nmax∑
n=0

n∑
m=0

(Cnm cosmΔ𝜆 + Snm sinmΔ𝜆)Pnm(sin𝜑k) (8.4.36)

where (𝜑, 𝜆) is the point for which the VTEC is needed, Δ𝜆 = 𝜆 − 𝜆0, 𝜆0 is the lon-
gitude of the mean sun, and Pnm are the associated Legendre functions. The spherical
harmonic coefficients (Cnm, Snm) represent a parameterization of the global VTEC
field. Since the TEC varies with time, even in a sun-referenced frame, such coef-
ficients are only valid for a certain period of time before they would have to be
updated. There are other parameterizations possible. For example, Mannucci et al.
(1998) divides the surface of the earth into tiles (triangles) and estimates the vertical
TEC at the vertices. Only observations that fall within the triangle are used to esti-
mate the TEC at the vertices of that triangle, assuming that the TEC varies linearly
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within the triangle. The IGS GIM is available on a geographic latitude and longitude
grid for certain epochs. Computing the VTEC at a certain location and time requires
then a spatial and temporal interpolation.

Conceptually the spherical harmonic coefficients can be estimated as follows:
Express the observations I4pk as a function of spherical harmonic coefficients by sub-
stituting (8.4.35) into (8.4.34) , use (8.4.19) to convert vertical ionospheric delay to
VTEC. In practice one prefers a parameterization in the geomagnetic sun-fixed frame
because the TEC values depend the least on time in that frame.

Since the instrumental biases dk and Dp are geometry independent, but the iono-
spheric delay depends on the azimuth and elevation of the satellite, the biases and the
ionospheric parameters are estimable. However, the receiver and satellite hardware
delays cannot be estimated separately unless either a receiver or satellite is introduced
as a reference. Alternatively, one could impose the constraint 𝛴D = 0 (zero-mean
reference), or follow Sardón et al. (1994) who do not combine the ionospheric pseudo-
range and carrier phase equations but lump together the ambiguities and the hardware
phase delays and distribute the effect of hardware delays among other terms. Man-
nucci et al. (1998) avoid singularity by combing dk and Dp and estimating only one
constant per arc, called “phase-connected” arc of data.

8.4.5 Global Ionospheric Maps

The term global ionospheric map (GIM) refers to a mathematical expression or
a set of data files to allow computing of the VTEC or the vertical ionospheric
delay at any location on the earth at a specific instant of time. Equation (8.4.36) is
an example.

8.4.5.1 IGS GIMs When thinking of a global ionospheric map the IGS products
most likely come to mind first. These products were already introduced in Section
6.2.7.1. They generally serve as a standard for comparisons because of their high
accuracy, and are a product of extensive international cooperation. Each of the IGS
associate centers located around the world independently computes a global VTEC
distribution from GNSS observations and shares its solution and related data with an
associate combination center to compute the final IGS GIM. The data transfer is facil-
itated by an especially designed standard data structure called IONEX (ionospheric
exchange format).

8.4.5.2 International Reference Ionosphere The International Reference
Ionosphere (IRI) results from efforts of the Committee on Space and Research
(COPSAR) and the International Union of Radio Science (URSI). The website
http://iri.gsfc.nasa.gov/ provides background information on the IRI and allows users
to enter input data and instantly receive results in digital or graphical form. It uses
a variety of input data. In addition to monthly averages of electron density the IRI
provides much information about the ionosphere that is of interest to the ionospheric
specialist rather than the geodesist, such as electron temperature, ion tempera-
ture, and ion composition in the altitude range of 60 to1500 km. However, with

http://iri.gsfc.nasa.gov
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assimilation of GNSS observation the IRI model becomes not only better and also
more responsive to short-term phenomena. On the other side, the GNSS community
uses the wealth of information that the IRI model provides to investigate the most
optimal height of the single ionospheric shell for relating VTEC and STEC. The IRI
model is data driven, i.e., it is an empirical model. The current version is IRI-2011.
To learn more about the status of this model and its expected future development the
reader is referred to Bilitza et al. (2011).

8.4.5.3 GPS Broadcast Ionospheric Model In order to support single-
frequency positioning, the GPS broadcast message contains eight ionospheric model
coefficients for computing the ionospheric group delay along the signal path. The
respective algorithm was developed by Klobuchar (1987) and is listed in Table 8.4.3.
See also IS-GPS-200G (2012, p. 123) or Klobuchar (1996). In addition to the
broadcast coefficients, other input parameters are the geodetic latitude and longitude
of the receiver, the azimuth and elevation angle of the satellite as viewed from
the receiver, and the time. Note that several angular arguments are expressed in
semicircles (SC). All auxiliary quantities in the middle portion of the table can be
computed one at a time starting from the top. The function in the third part of the
table has been multiplied with the velocity of light, in order to yield the slant group
delay directly in meters. The algorithm presented here compensates about 50 to 60%
of the actual group delay.

The Klobuchar algorithm is based on the single-layer model of the ionosphere.
As discussed above, the assumption is that the TEC is concentrated in an infinitesi-
mally thin spherical layer at a certain height, e.g., 350 km in this case. The model
further assumes that the maximum ionospheric disturbance occurs at 14:00 local
time. The mapping function F and other expressions are approximations to reduce
computational complexity but are still of sufficient accuracy to meet the purpose of
the algorithm. Most of the symbols have the same meaning as used above, e.g., the
geodetic latitude and longitude of the ionospheric pierce point and the receiver are
(𝜑IPP, 𝜆IPP) and (𝜑k, 𝜆k), respectively, and the geocentric receiver-IPP angle is𝜓 . The
geomagnetic latitude of the ionospheric pierce point is 𝜙, t is the local time, P is the
period in seconds, x is the phase in radians, and A denotes the amplitude in seconds.

8.4.5.4 NeQuick Model NeQuick (Radicella, 2009) is a three-dimensional
time-dependent global electron density model. NeQuick contains an analytical
representation of the vertical profile of electron density, with continuous first
derivative. It takes the characteristics of the various ionospheric layers such as
location and thickness into account. The input of NeQuick is the positions of
receiver and satellite, time, and ionization parameters such as the solar radio flux
F10.7 or monthly smoothed sunspot numbers. It calculates the electron content at
various places along the receiver-satellite path. The STEC follows from numerical
integration. The NeQuick model has been adopted by Galileo for single-frequency
users. There is especially a good motivation for adopting a high-quality ionospheric
model for single-frequency Galileo users because the Galileo global navigation
satellite system will feature the highly precise E5 AltBOC signal for precision



IONOSPHERIC REFRACTION 511

code range measurements. According to OS-SIS-CD (2010) it is assumed that the
model corrects 70% of the ionospheric delay in the Galileo frequency range. Each
satellite transmits as part of the navigation message three ionization parameters for
computing an effective ionization level parameter which replaces the solar flux input
parameter F10.7. Schüler (2014) used the NeQuick model to attempt to derive an
improved mapping function that would perform better at lower elevation angles than
the standard single-layer mapping function.

8.4.5.5 Transmission to the User Various methods are in use to make the
VTEC data available to the user. Users of IGS products can obtain the data via the
Internet. In many applications it is sufficient to use the ionospheric information
included with the satellite broadcast navigation message; examples are the streams
based on the Klobuchar model in case of GPS or the NeQuick model in case of
Galileo. Each of the GNSS satellite systems broadcasts such data. The situation is
similar for Satellite Augmentation Systems (SBAS) such as the Wide Area Augmen-
tation System (WAAS) in the United States, the European Geostationary Overlay
Service (EGNOS), and the GPS aided GEO augmentation system (GAGAN). Each
augmentation service draws observation from a network of reference stations,
processes them at a center, and uploads the VTEC information typically to a
geostationary satellite for rebroadcasting to the user.

Finally, for accurate relative positioning in surveying over short distances with car-
rier phase observations and ambiguity fixing, single-frequency users still depend on
the elimination of ionospheric effects through across-receiver or double differencing,
as mentioned in Sections 6.1.2.1 and 6.1.3.





CHAPTER 9

GNSS RECEIVER ANTENNAS

The receiver antenna is the first block in a chain of signal transformations to convert
the signals emitted by the satellites into useful data. Some of the antenna features
define the currently achievable accuracy of positioning. However, traditionally, the
basics of applied electromagnetics are omitted in courses on satellite geodesy. To
compensate for that, the first six sections address fundamentals of the electromagnetic
field and antenna theory with focus on antennas useful for precise positioning.

In Section 9.1, plane and spherical electromagnetic waves of different types of
polarization are discussed andwidely used reference sources of radiation—aHertzian
and a half-wave dipole—are introduced. This allows treating the radiation of any
practical antenna as interference of radiation of Hertzian dipoles, and in doing so,
coming to a unified field representation that is valid for any arbitrary antenna. In
addition, the widely used complex notation for time harmonic signals and dB scale
are explained is this section.

Section 9.2 discusses antenna directivity and gain. The discussions on antenna
pattern are supplemented with examples of a perfect antenna for satellite positioning,
base station antennas, and rover antennas. It is shown that the cause of the largest
error in regard to positioning is the conflict between antenna gain for low elevation
satellites and the ability of an antenna to suppress multipath reflections associated
with these satellites. The section ends with estimating the effective area of a typical
GNSS receiving antenna.

Discussions of antenna phase center, phase center variations, and antenna calibra-
tions are provided in Section 9.3. In general, an antenna phase center can be defined
differently depending on the application. The expression “adopted in GNSS practice”
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refers to the averaging of deviations of position over a very long observation ses-
sion; these deviations are caused by carrier phase delays and advances introduced by
antenna phase pattern.

Section 9.4 is dedicated to multipath. What is commonly referred to as multipath
is identified as a particular case of the broad area of diffraction phenomenon; spatial
spreads of this phenomenon are estimated on the basis of Fresnel zones. Diffrac-
tion over a half-plane is used as an example since it allows for a complete analytical
treatment. This example illustrates types of errors that occur in the transition from
free line of sight to deep shadowing of satellite by obstacles. Multipath reflections
from different kinds of soils are discussed in this section with a focus on generat-
ing a left-hand circular polarized signal. The antenna down-up ratio is introduced,
and typical multipath-induced behavior of carrier phase residuals normally observed
with positioning is examined.

Section 9.5 is a brief introduction to transmission line theory and practice. We
explain why power transmission at GNSS frequencies requires different approaches
as compared to low-frequencies transmission. The wave impedance of a line, antenna
mismatch, and voltage standing-wave ratio (VSWR) terms are introduced.

Section 9.6 concludes the general overview of the GNSS antenna area. Electro-
magnetic noise reception from outer space, noise generation, and signal and noise
propagation through electronic circuitry are analyzed. Additionally, the role of a
low-noise amplifier is highlighted. The signal-to-noise ratio normally observed at
the GNSS receiver output is estimated.

Finally, Section 9.7 is an overview of practical GNSS antenna designs. We begin
with engineering formulas to estimate a common patch antenna performance. We
continue with variants of patch antennas with artificial metal substrates that are use-
ful for broadband GNSS applications. Then we turn to ground planes commonly used
formultipathmitigation, including flatmetal, impedance, and semitransparent ground
planes. Special attention is given to antennas with a cutoff pattern required to achieve
millimeter precision of positioning in real time. Antenna samples and relevant limita-
tions regarding antenna size are discussed. The section concludes with array antennas
and antenna manufacturing items. The majority of antenna samples presented in this
section is based on the developments done by D. Tatarnikov and his colleagues of the
Topcon Technology Center. Multiple references are provided for a broader view of
GNSS antenna technology.

Several appendices contain supplementary material to support this chapter. The
appendices mainly include concise mathematical formulations, often in regard to fun-
damental principles, that help one understand the roots of the material presented in
this chapter. Appendix D deals with the basics of vector calculus. Although this mate-
rial is found in advanced books on mathematics, the author feels that it is important
to provide this summary for the sake of easy reference. Appendices E and F provide
details about electromagnetic basics involved. Appendices G through I contain details
about electromagnetic analysis for certain antenna types.

The notation used in this chapter differs in many cases from the notation
used in other parts of the book. Vectors are indicated by an arrow placed atop a
uppercase letter, such as E⃗, H⃗. This notation is typical with the antenna area and
helps to differentiate physical vectors in three-dimensional space with mathematical
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multidimensional vectors widely used in other chapters. Unit vectors are indicated
by lowercase letters and a subscript zero like in x⃗0, y⃗0. Coordinate frames are
employed for certain electromagnetic situations. In most cases the coordinate frame
is associated with the antenna under consideration. The frame in most cases is local
to the electromagnetic problem and is not related to geodetic frames, as is typically
discussed in other parts of the book.

9.1 ELEMENTS OF ELECTROMAGNETIC FIELDS AND
ELECTROMAGNETIC WAVES

The principle quantities describing the electromagnetic field and the most important
equations are discussed in this section. The goal is to touch upon basics which are
required to characterize antennas used with GNSS receivers. For an in-depth treat-
ment of engineering electromagnetics, the reader is referred to the classical reference
Balanis (1989). A compact overview of antenna theory and antenna parameters could
be found in the handbook by Lo and Lee (1993).

9.1.1 Electromagnetic Field

A scalar field in general is a scalar quantity distributed in space and time. It is conve-
nient to consider a number of sensors located at different points in space measuring a
physical quantity u. Introducing Cartesian coordinates (x, y, z) to mark the positions
of sensors, one writes the scalar field u observed at a time instant t in the form

u = u(x, y, z, t) (9.1.1)

A common example of a scalar field is temperature distribution in a room. Tempera-
ture could be different at different points and could vary over time.

A vector is a quantity that has both magnitude and direction. A typical example
would be the wind speed, as it may vary from point to point in space and over time.
The vector field as a function of space coordinates and time is introduced by writing

A⃗ = A⃗(x, y, z, t) (9.1.2)

In order to describe vector quantities, it is useful to project the vectors onto a coordi-
nate system. For Cartesian coordinates one has

A⃗(x, y, z, t) = Ax(x, y, z, t)x⃗0 + Ay(x, y, z, t)y⃗0 + Az(x, y, z, t)z⃗0 (9.1.3)

We mark unit vectors of Cartesian coordinates as x⃗0, y⃗0, z⃗0. Other coordinate
systems often used are spherical or cylindrical. Details are shown in Appendix D.
Equation (9.1.3) represents a sum of projections multiplied by the corresponding
unit vectors. Each projection generally is a function of space coordinates and time.

The examples mentioned above were related to some medium or “matter.”
The electromagnetic field does not require any “matter.” In today’s physics the
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electromagnetic field is considered another form of substance (compared to matter).
It is capable of transporting energy across the space in the form of electromagnetic
waves. In general, an electromagnetic field is a plurality of four vector fields: electric
field intensity E⃗, electric flux density D⃗, magnetic field intensity H⃗, and magnetic
flux density B⃗. The International System of Units (SI) is used throughout the chapter.
The vector units in the SI system are: E⃗ (volts/meter), D⃗ (coulombs/ square meter),
H⃗ (amperes/meter), and B⃗ (webers/square meter). For a majority of media that relate
to the antenna area the vector D⃗ is strictly proportional to E⃗, and B⃗ is proportional
to H⃗. Free space is the area where there is no matter. For vectors in free space one
writes

D⃗ = 𝜀0E⃗ (9.1.4)

B⃗ = 𝜇0H⃗ (9.1.5)

The parameters 𝜀0 and 𝜇0 are called absolute permittivity and permeability of free
space. Using SI units

𝜀0 =
1

36𝜋
10−9 [farads∕meter] (9.1.6)

𝜇0 = 4𝜋10−7 [henries∕meter} (9.1.7)

To avoid mistakes one is to note that, as mentioned, with free space “there is no mat-
ter”; it would be incorrect to consider free space as having some kind of permittivity
and permeability. The parameters 𝜀0 and 𝜇0 do not have specific physical meaning.
Their appearance and numerical value comes from the use of SI units.

Electrical and magnetic properties of media are characterized by a relative (to
that of free space) dielectric permittivity, 𝜀, relative magnetic permeability, 𝜇, and
conductivity of themedium, 𝜎. The terms dielectric andmagnetic constants are also in
use for the 𝜀 and 𝜇, respectively. The parameters 𝜀 and 𝜇 are dimensionless, parameter
𝜎 is measured in units of 1/(ohms times meters). For a particular medium one writes

D⃗ = 𝜀0𝜀E⃗ (9.1.8)

B⃗ = 𝜇0𝜇H⃗ (9.1.9)

Conductivity 𝜎 establishes a relationship between electric field intensity E⃗ and con-
duction currents induced in the media. This is known as a differential form of Ohm’s
law. We will not use this material in explicit form in this chapter and refer the reader
to Balanis (1989) for details. For the free space one takes 𝜀 = 𝜇 = 1 and 𝜎 = 0. As
to electromagnetics related to GNSS antenna, the majority of media is nonmagnetic
and 𝜇 = 1 could be accepted in most cases except for atmospheric plasma and spe-
cial materials like ferrites. Typical values of 𝜀 and 𝜎 for selected media are listed in
Table 9.1.1. The data is taken partly from Balanis (1989) and partly from Nikolsky
(1978). One notes that dielectric permittivity 𝜀 ranges from unity up to several dozen.
The conductivity 𝜎 covers 24 orders in magnitude starting from 10−17 for insulators
and up to 107 for metals. The first and the last row in Table 9.1.1 indicate two use-
ful limiting cases. The first one is called a perfect conductor with infinitely large
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TABLE 9.1.1 Permittivity, Conductivity, and Loss Factor of Selected Media

Material 𝜀 𝜎 [𝛺 m]−1 tanΔe

Perfect conductor 1 ∞ ∞

Copper 1 5.8 × 107 7 × 108

Gold 1 4 × 107 4.8 × 108

Aluminum 1 3.5 × 107 4.2 × 108

Iron 1 1 × 107 1.2 × 108

Seawater 80 1… 4 0.3

Natural freshwater 80 10−3 … 2.4 × 10−2 7.5 × 10−4

Wet soil 10–30 3 × 10−3 … 3 × 10−2 0.02

Dry soil 3–6 1 × 10−5 … 2 × 10−3 5 × 10−4

Marble 8 10−7 … 10−9 1.5 × 10−10

Quartz 4 2 × 10−17

Air 1.0005 0 0

Perfect insulator 𝜀 0 0

conductivity. This is a reasonable model for most metals at GNSS frequencies. The
last one is a perfect insulator possessing some permittivity 𝜀 and zero conductivity.
The last column in Table 9.1.1 shows a quantity referred to as dielectric loss factor.
This quantity is described in Section 9.1.3.

Relationships (9.1.8) and (9.1.9) allow avoiding the use of vectors D⃗ and B⃗ for
the majority of GNSS antenna-related considerations and allow characterizing the
electromagnetic field by vectors E⃗ and H⃗. The relations of electric field E⃗ and mag-
netic field H⃗, while both vary in time and space, are the contents of the Maxwell
equations, formulated by James C. Maxwell in the last third of the nineteenth cen-
tury. These equations are one of the cornerstones of knowledge of the world around
us. For the moment we are looking into an area where there are no sources of radia-
tion, such as between the transmitting and receiving antennas. For the homogeneous
nonconductive medium with parameters 𝜀 and 𝜇 the Maxwell equations read

rot H⃗ = 𝜀𝜀0
𝜕E⃗
𝜕t

(9.1.10)

rot E⃗ = −𝜇𝜇0
𝜕H⃗
𝜕t

(9.1.11)

The details of partial differentiation of vectors and of the use of the rot operator are
provided in Appendix D.
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9.1.2 Plane Electromagnetic Wave

The plane electromagnetic wave is one of the most basic and simplest solutions to
equations (9.1.10) and (9.1.11). Let both vectors E⃗ and H⃗ vary along a certain direc-
tion in space. Align the z axis of the coordinate framewith this direction. It is assumed
there are no variations of the fields in the x and y directions. The medium is taken as
unbounded free space with 𝜀 = 𝜇 = 1. A general representation of a linear polarized
plane electromagnetic wave propagating in free space in z direction is

E⃗ = E0u(ct − z)x⃗0 (9.1.12)

H⃗ =
E0

𝜂0
u(ct − z)y⃗0 (9.1.13)

Here

𝜂0 =

√
𝜇0
𝜀0

= 120𝜋 [ohm] (9.1.14)

is referred to as an intrinsic impedance of free space and

c =
1√
𝜀0𝜇0

≈ 3 ⋅ 108 [m∕ sec] (9.1.15)

is velocity of light in free space. With (9.1.12) and (9.1.13) E0 is constant and u(s)
is a wave profile. Both could be arbitrary and set up by the source. In order to prove
(9.1.12) and (9.1.13) one is to substitute these expressions into (9.1.10) and (9.1.11),
make use of the expression (D.12) of Appendix D taking 𝜕∕𝜕x = 𝜕∕𝜕y = 0, and
employ the relationship 𝜕u(ct − z)∕𝜕t = −c𝜕u(ct − z)∕𝜕z.

The main features of the wave are illustrated in Figure 9.1.1. Let the initial dis-
tribution of fields along z axes at a time instant t = 0 be shown as solid lines at the
left panel. Let vector fields at a point za be shown by thick arrows. Within the time
increment Δt the distribution will move along the z axes by the distance cΔt. Fields
indicated by thick arrows will now be observed at point z′a = za + cΔt. This is shown

Figure 9.1.1 Fields of a plane wave propagating along z axis.
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by dotted lines and arrows. The parameter c of (9.1.15) is the velocity of this motion.
In short, one says that it is a vector field distribution that moves in space.

Furthermore, with expressions (9.1.12) and (9.1.13) the vectors E⃗ and H⃗ are per-
pendicular to each other and are arranged in such a way that if looking along the
direction of travel the rotation from E⃗ to H⃗ is seen as clockwise. One says that these
vectors constitute a right-hand triad with the direction of wave travel. Vectors E⃗ and
H⃗ do not have projections onto the direction of travel. Such a wave is called a trans-
verse wave. The vectors E⃗ and H⃗ are directly proportional to each other in terms of
magnitude with the intrinsic impedance 𝜂0 in (9.1.14) being a proportionality coeffi-
cient. In SI units this coefficient is measured in ohms. In this regard we note that it
is incorrect to take the intrinsic impedance as a kind of “free space resistivity” to the
wave travel. Here again, similar to the discussion of 𝜀0 and 𝜇0, in free space there is
no matter to provide resistance. The value and dimensions of the free space intrinsic
impedance comes from the SI units.

Expressions (9.1.12) and (9.1.13) indicate that there is no dependence of fields
on x and y coordinates as was previously mentioned. However, these expressions are
not to be considered as an optical ray focused around the z axis. Instead, an electro-
magnetic plane wave defined by expressions (9.1.12) and (9.1.13) is a distribution
of fields occupying the entire space in such a way that along any line parallel to the
z axes these distributions are identical. In other words, each of two vectors E⃗ and H⃗
has the same magnitude and direction at any point in a plane perpendicular to the z
axis. This is illustrated further in the right panel in Figure 9.1.1. In general, a surface
of all the points for which vectors E⃗ (and H⃗) are identical is called a wavefront.
Wavefronts associated with the wave of (9.1.12) and (9.1.13) are planes, which is
why such a wave is called a plane one. One may view the process of wave travel
as a plurality of wavefronts moving across space with the velocity of light. This is
illustrated at the bottom right corner of the figure. Each front has a certain value of
vectors E⃗ and H⃗ associated with it.

An electromagnetic wave transports energy. There is a certain flux of power
through each 1m2 of an imaginary plane perpendicular to the direction of wave travel
The power flux density is characterized by the Poynting vector

𝛱⃗ = [E⃗, H⃗] [watts∕square meter] (9.1.16)

Here and further on in this chapter a cross-product of two vectors is indicated by
brackets like [⋅]. The magnitude of the Poynting vector equals the power per 1 m2

of a front. The direction of this vector points in the power flux direction. For a plane
wave it coincides with the direction of the wave travel. The Poynting vector is the
same at any point of a plane wavefront.

Finally, the orientation of vectors E⃗ and H⃗with respect to x-y coordinates in general
could be arbitrary but in such a way that they constitute a right-hand triad with the
direction of wave travel. Thus, the relation

E⃗ = 𝜂0[H⃗, z⃗0] (9.1.17)

holds. Here z⃗0 points in the direction of wave motion.
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A particular but important case of a plane wave occurs when the fields exhibit
time harmonic alternation with fixed frequency f measured in units of [hertz]. The
frequency is related to the period of alternation in time T in seconds as

f =
1
T

(9.1.18)

Along with frequency f an angular frequency𝜔 (also referred to as circular frequency)
is in use. The angular frequency is measured in radians per second and is related to f
and T as

𝜔 = 2𝜋f =
2𝜋
T

(9.1.19)

A time harmonic plane wave in free space satisfies the general expressions (9.1.12)
and (9.1.13), but the profile u takes the form

u = cos(𝜔t − kz + 𝜓0) (9.1.20)

Here
k = 𝜔

√
𝜀0𝜇0 (9.1.21)

is called a wavenumber or a propagation constant, and the argument of the cosine
function in (9.1.20) is called an instantaneous phase,

𝜓(z, t) = 𝜔t − kz + 𝜓0 (9.1.22)

with 𝜓0 being an initial phase observed at a point z = 0 at time instant t = 0. The
instantaneous phase (9.1.22) is constant across any plane z = const, that is, across
any wavefront.

The process of wave motion in the z direction is illustrated at the left panel in
Figure 9.1.2 for the vector E⃗.

The distribution of vector H⃗ is similar and perpendicular to E⃗. Let 𝜓0 in (9.1.22)
be zero. Then at a time instant t = 0 the instantaneous phase (9.1.22) at a point z = 0

Figure 9.1.2 Time harmonic plane wave propagating along z axis.
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would be zero. With time increment Δt this value would move to the point Δz such
that

𝜔Δt − kΔz = 0 (9.1.23)

The velocity of this motion,

vp =
Δz
Δt

=
𝜔

k
= c =

1√
𝜀0𝜇0

(9.1.24)

is called a phase velocity. For free space it equals the velocity of light (9.1.15). Com-
bining (9.1.21) and (9.1.24) one may rewrite (9.1.20) in the form

u = cos

(
𝜔

(
t −

z
vp

)
+ 𝜓0

)
(9.1.25)

This expression shows that with z advancing, the wave field exhibits a phase delay
equal to the product of𝜔 and time interval z∕vp. The latter is required to cover distance
z when traveling with the velocity vp.

As seen with expression (9.1.20) and Figure 9.1.2 the fields of a time harmonic
plane wave exhibit periodicity not only in time but also in space. The spatial period
𝜆 is defined as a distance along the direction of wave motion which causes 2𝜋 phase
delay to the field intensities. Thus

(𝜔t − k(z + 𝜆) + 𝜓0) − (𝜔t − kz + 𝜓0) = −2𝜋 (9.1.26)

yielding

𝜆 =
2𝜋
k

(9.1.27)

The distance 𝜆 is called a wavelength. Making use of (9.1.21), (9.1.24) and (9.1.19),
one may write

𝜆 = vpT (9.1.28)

This gives another definition of wavelength. Namely, a wavelength is such a distance
that a wavefront, associated with some certain value of the fields, covers within a time
interval equal to the period T. Another useful expression for the wavelength would be

𝜆 =
vp
f

(9.1.29)

For free space this comes to
𝜆 =

c
f

(9.1.30)

or
𝜆 [cm] =

30
f [GHz]

(9.1.31)

This last expression gives a convenient rule for calculating a free space wavelength.
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With the wavelength given, it is convenient to invert (9.1.27) and write

k =
2𝜋
𝜆

(9.1.32)

Using (9.1.32), it is instructive to rewrite (9.1.20) in the form

u = cos
(
2𝜋
( t
T
−

z
𝜆

)
+ 𝜓0

)
(9.1.33)

This clearly indicates the periodicity in time and space. The right panel of Figure 9.1.2
illustrates a spatial distribution of theE field.Wavefronts perpendicular to the drawing
plane are shown as dashed lines. It is worth mentioning that the H field exhibits same
alternation and is in-phase with the E field. The H⃗ vector is aligned parallel to the y
axes perpendicular to the drawing.

The expression for the Poynting vector (9.1.16) also holds true with the time har-
monic wave. It provides instantaneous value of power flux density at any point in
space and any instant of time. Using (9.1.16) with (9.1.12), (9.1.13), and (9.1.20)
one has

𝛱⃗ =
|E0|2
𝜂0

cos2(𝜔t − kz + 𝜓0)z⃗0 =
1
2

|E0|2
𝜂0

(1 + cos(2(𝜔t − kz + 𝜓0)))z⃗0 (9.1.34)

A power flux averaged over the period of an alternation is of interest in most cases.
Averaging over the period T yields

̃⃗
𝛱 =

1
T ∫

T

0
𝛱⃗ dt =

1
2

|E0|2
𝜂0

z⃗0 (9.1.35)

This shows that time-averaged power flux density associated with a time harmonic
plane wave is the same at any point in space and at any instant in time.

If thewave propagates not in free space but rather in somemediumwith parameters
𝜀, 𝜇, then expressions (9.1.12), (9.1.13), and (9.1.20) hold true, but instead of k and
𝜂0 one is to use

km = 𝜔
√
𝜀𝜇𝜀0𝜇0 (9.1.36)

𝜂m =

√
𝜇

𝜀
𝜂0 (9.1.37)

We use subscript m (medium) to distinguish these parameters with free space. Fol-
lowing the derivations of (9.1.24), one concludes that the phase velocity takes the
form

vp;m =
c√
𝜀𝜇

(9.1.38)
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It is one
√
𝜀𝜇th of the velocity of light in free space. Hence the wavelength (9.1.28)

will also be less by the factor
√
𝜀𝜇 as compared to that of free space,

𝜆m =
𝜆√
𝜀𝜇

(9.1.39)

The quantity 𝜂m in (9.1.37) is called an intrinsic impedance of the medium. It differs
with that of free space by the factor

√
𝜇∕𝜀. Regarding this term a note should be made

similar to the one made for free space impedance. At the moment we are considering
a nonconductive lossless medium, it would be incorrect to think that such a medium
provides a kind of “resistance” to the wave travel. Intrinsic impedance (9.1.37) is
just a proportionality coefficient between electric and magnetic field intensities. In
Section 9.1.3 we will discuss the wave traveling across a lossy medium.

The just-discussed time harmonic plane wave is an idealization to the real electro-
magnetic process. This wave occupies the entire space and lasts for unlimited time.
First, using the plane wave model would be justified in Section 9.1.4 while discussing
spherical waves radiated by an actual source. In regards to the latter, one is to consider
a group velocity term.

Any time-limited signal could be represented by a plurality of time harmonic
alternations. This is done by Fourier transform (Poularikas, 2000). Let us take two
harmonics with close frequencies𝜔1, 𝜔2 such that the difference𝜔2 − 𝜔1 = 2Δ𝜔 <<

𝜔1,2. We assume that the amplitudes of the harmonics are the same at both frequen-
cies. Let k1,2 be the wavenumbers associated with frequencies 𝜔1, 𝜔2 and let 𝜓1,2 be
the initial phases. For the total electric field distribution in space and time one has

E = E0(cos(𝜔1t − k1z + 𝜓1) + cos(𝜔2t − k2z + 𝜓2))

= 2E0 cos(Δ𝜔t − Δkz + Δ𝜓) cos(𝜔t − kz + 𝜓) (9.1.40)

Here 𝜔1,2 = 𝜔 ± Δ𝜔, k1,2 = k ± Δk, and 𝜓1,2 = 𝜓 ± Δ𝜓 . Expression (9.1.40) shows
that the total field could be viewed as a plane wave with angular frequency 𝜔 and
wavenumber k. This wave is called a carrier. The amplitude of this wave exhibits
slow variations in time and space following the envelope cos(Δ𝜔t − Δkz − Δ𝜓). This
envelope moves in a positive z direction with a velocity equal to

vg =
Δ𝜔
Δk

(9.1.41)

This velocity is recognized as an envelope or a signal velocity, and is called a group
velocity. It is proven in Balanis (1989) that the group velocity is also the velocity of
the power. Taking the limit Δ𝜔 → 0, one rewrites (9.1.41) in the form

vg =
d𝜔
dk

(9.1.42)
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For the free space case, making use of expressions (9.1.21) and (9.1.24), one has
vg = vp = c and both group and phase velocities equal to that of light. Further, a
medium with 𝜀, 𝜇 being constant over a frequency range of interest is referred to
as nondispersive. From (9.1.36) and (9.1.38) one has vg = vp = c∕

√
𝜀𝜇 for such a

medium. The nondispersive medium just decreases the velocities by a factor of
√
𝜀𝜇.

Finally, if a medium exhibits a permittivity or permeability variations as a function
of frequency, it is called a dispersive medium. For a dispersive medium the phase
and group velocities are different. A typical example is ionospheric plasma (this was
discussed in Chapter 8).

We conclude this section with an important remark. The GNSS signals spectrum
is shown schematically in Figure 5.4.1. From the point of view of antenna techniques
the details on signal power distribution over the spectrum are not of much interest,
instead, a frequency band defined by the lower and upper frequency of each signal
spectrum is. By absolute bandwidth Δf one refers to the difference between upper
frequency of the band f2 and lower frequency f1,

Δf = f2 − f1 (9.1.43)

However, with electromagnetics related to antenna area and signal propagation, not
an absolute but rather a relative bandwidth 𝛿f is important. This is the bandwidth Δf
related to the center frequency of a band f0. Relative bandwidth is normally expressed
as a percentage,

𝛿f =
Δf

f0
100% (9.1.44)

with

f0 =
f2 + f1

2
(9.1.45)

For instance, using Figure 5.4.1., the relative bandwidth of the GPS L2 signal is about
2%. One may check that the relative bandwidths of all the other GNSS signals are
also a low percentage. With electromagnetics, signals with relative bandwidth of a
few percent are referred to as narrowband. This is not to be confused with commu-
nications terminology where GNSS signals are referred to as broadband due to their
pseudorandom noise structure.

The electromagnetic properties of the majority of media related to propagation
of GNSS signals do not exhibit vast variations over frequency. Thus, the reason to
point out narrowband signals is that topics like signal propagation and reflection can
be discussed assuming the signal to be a perfect time harmonic with fixed frequency
equal to (9.1.45) or, equivalently, the carrier frequency. This simplifies the analysis
greatly and is widely used with this chapter.

Furthermore, it is currently not practical to consider antenna designs having as
many frequency channels as there are signals. Instead, the signals are grouped into
two subbands: the lower GNSS band ranging from 1160 to 1300MHz (left panel
of Figure 5.4.1) and the upper GNSS band, including augmentation systems like
Omnistar, ranging from 1545 to 1610MHz (right panel of Figure 5.4.1). The rela-
tive bandwidth of the lower GNSS band is 12% and that of the upper GNSS band is
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4%. The relative bandwidth of the entire GNSS band is 32.5%. Later, in Section 9.7,
we will see that these values affect antenna design to a large extent.

Based on this understanding, a free space wavelength of GNSS signals is 25.9 cm
at the lowest frequency of the lower GNSS band and shortens to 18.6 cm at the high-
est frequency of the upper GNSS band. As we will see, a wavelength constitutes a
natural scale for antenna-related considerations. For quick estimation purposes, it is
convenient to recall that the wavelength of GNSS signals in free space is about 20 cm.

9.1.3 Complex Notations and Plane Wave in Lossy Media

Expressions (9.1.12), (9.1.13), and (9.1.20) give just one example of what is referred
to as a time harmonic field with fixed frequency 𝜔. Generally, with time harmonic
alternation, the directions, amplitudes, and phases of E⃗ and H⃗ vectors vary from
point to point. In Cartesian coordinates the most general representation for the time
harmonic field is

E⃗(x, y, z, t) = E0x(x, y, z) cos(𝜔t + 𝜓x(x, y, z))x⃗0

+ E0y(x, y, z) cos(𝜔t + 𝜓y(x, y, z))y⃗0

+ E0z(x, y, z) cos(𝜔t + 𝜓z(x, y, z))z⃗0 (9.1.46)

Here E0x,y,z(x, y, z) and 𝜓x,y,z(x, y, z) are amplitudes and initial phases of the corre-
sponding projections. They are functions of position.

With trigonometric representations like (9.1.46), linear transformations such as
summation, differentiation, and integration change the function. For instance, con-
sider d sin(𝜔t)∕dt = 𝜔 cos(𝜔t). For convenience, it is common to make use of the
exponential form ei𝜔t. Here i is the imaginary unit i =

√
−1. For the exponential form

the differentiation and integration are equivalent to multiplication, i.e., dei𝜔t∕dt =
i𝜔ei𝜔t. Let u(t) be a time harmonic quantity with amplitude U0 and initial phase 𝜓0
such that

u(t) = U0 cos(𝜔t + 𝜓0) (9.1.47)

Instead of (9.1.47) one writes

ũ(t) = U0e
i(𝜔t+𝜓0) =

(
U0e

i𝜓0
)
ei𝜔t (9.1.48)

The tilde symbol is temporarily used to denote a complex time harmonic quantity.
The term in parenthesis in (9.1.48) is the complex amplitude. It contains amplitude
and initial phase and does not vary with time. We temporarily denote the complex
amplitude also referred to as phasor by a dot placed atop the quantity and write

•
U = U0e

i𝜓0 (9.1.49)

Thus

ũ(t) =
•
Uei𝜔t (9.1.50)
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It is instructive to apply complex notations to the sum of time harmonic quantities
with the same angular frequency 𝜔. Let us have a number of time harmonic sig-
nals with amplitudes Uq and initial phases 𝜓q. Here the index q = 1, 2,… ,Q counts
signals, and Q is the total number of signals. For the sum of these signals one has

ũ𝛴(t) =
Q∑
q=1

Uqe
i(𝜔t+𝜓q) = ei𝜔t

(
Q∑
q=1

Uqe
i𝜓q

)
(9.1.51)

According to the rules of complex algebra, the term in parenthesis is a complex quan-
tity with amplitude (module) U0𝛴 and phase 𝜓𝛴 such that

•
U𝛴 = U0𝛴e

i𝜓𝛴 =
Q∑
q=1

Uqe
i𝜓q (9.1.52)

and

ũ𝛴(t) =
Q∑
q=1

Uqe
i(𝜔t+𝜓q) =

•
U𝛴e

i𝜔t (9.1.53)

Thus, the sum is also time harmonic with the same frequency.
Derivations similar to the one just done are valid with vectors. The complex form

of (9.1.46) is

̃⃗
E(x, y, z, t)

= E0x(x, y, z)e
i(𝜔t+𝜓x(x,y,z))x⃗0 + E0y(x, y, z)e

i(𝜔t+𝜓y(x,y,z))y⃗0

+ E0z(x, y, z)e
i(𝜔t+𝜓z(x,y,z))z⃗0

=
[
E0x (x, y, z) e

i𝜓x(x,y,z)x⃗0 + E0y(x, y, z)e
i𝜓y(x,y,z)y⃗0 + E0z(x, y, z)e

i𝜓z(x,y,z)z⃗0
]
ei𝜔t

(9.1.54)

The expression in brackets in (9.1.54) is the complex amplitude of the vector

•

E⃗(x, y, z) =

[
E0x (x, y, z) e

i𝜓x(x,y,z)x⃗0 + E0y(x, y, z)e
i𝜓y(x,y,z)y⃗0

+E0z(x, y, z)e
i𝜓z(x,y,z)z⃗0

]
(9.1.55)

Thus one has
̃⃗
E(x, y, z, t) =

•

E⃗(x, y, z)ei𝜔t (9.1.56)

As seen, dependency of time and spatial coordinates is separated. The complex ampli-
tude of the vector contains position-dependent quantities only.

If complex amplitudes are known, one may always reconstruct a real time-
dependent quantity by multiplying with time-dependent factor ei𝜔t and taking a real
part. For instance, applying

u(t) = Re

{
•
Uei𝜔t

}
(9.1.57)
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yields (9.1.47) and applying

E⃗(x, y, z, t) = Re

{
•

E⃗ (x, y, z) ei𝜔t
}

(9.1.58)

yields (9.1.46).
In the treatment of electromagnetic fields themost important advantage of complex

notations is the separation of dependency of time and spatial coordinates asmentioned
(please check (9.1.54)). Furthermore, the factor ei𝜔t is common with all the equations
and drops out. In this way an essential simplification is achieved.Writing both vectors
E⃗ and H⃗ in the form of (9.1.56) and substituting into (9.1.10) yields

ei𝜔trot
•

H⃗ = i𝜔𝜀𝜀0

•

E⃗ei𝜔t (9.1.59)
Hence

rot
•

H⃗ = i𝜔𝜀𝜀0

•

E⃗ (9.1.60)

One can proceed similarly with equation (9.1.11).
An additional advantage of complex notations is that permittivity and conductivity

of the medium can be accounted for in a unified way. This is done by introducing a
complex permittivity

•
𝜀 =

(
𝜀 − i

𝜎

𝜔𝜀0

)
(9.1.61)

We refer to Balanis (1989) for details of derivation. This complex permittivity can be
rewritten in the form

•
𝜀 = 𝜀(1 − i tanΔe) (9.1.62)

Here tanΔe is called the electric loss tangent,

tanΔe =
𝜎

𝜔𝜀𝜀0
(9.1.63)

Sometimes with material specifications an electric loss tangent is referred to as a “dis-
sipation factor.” The reason is that the imaginary portion of the dielectric permittivity
is related to dissipation of the electromagnetic energy in the medium.We show tanΔe

for 1.5-GHz frequency in the third column of Table 9.1.1.
To be able to account for magnetic losses in the medium one writes magnetic

permeability in a complex form similar to (9.1.62)

•
𝜇 = 𝜇(1 − i tanΔm) (9.1.64)

Here tanΔm is a magnetic loss tangent. There is no need to go into the details of the
topic of magnetic loss tangent since it will not be used explicitly in this chapter.

For all subsequent discussions, we omit the dots with all complex quantities for
the sake of simplicity of writing. Throughout this chapter it is assumed that time
harmonic quantities are represented by complex amplitudes unless the opposite is
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stated. Maxwell equations for complex amplitudes of the vectors E⃗ and H⃗ take the
form

rot H⃗ = i𝜔𝜀𝜀0E⃗ (9.1.65)

rot E⃗ = −i𝜔𝜇𝜇0H⃗ (9.1.66)

These equations do not contain time as an independent variable. However, one should
always recall the rule in (9.1.58) for reconstructing the actual time-dependent process.

Now we look into power flux density. Assuming that the phases of the E⃗ and H⃗
vectors could differ from each other, performing averaging over period T similar to
(9.1.35) yields

𝛱⃗ = 1∕2[E⃗, H⃗∗] (9.1.67)

The superscript * indicates a complex conjugate throughout this chapter. In what
follows we omit the tilde like in expression (9.1.35) and always use the time-averaged
value defined by this expression. The Poynting vector (9.1.67) is in general complex.
Its real part is known as an active power flux density related to the power carried
by an electromagnetic wave. The imaginary part is known as a reactive power flux
density. It is related to reactive electromagnetic power which continuously bounces
back and forth between space and a source of radiation and is primarily located in
close proximity of the source. More on this power will be provided in Section 9.1.4.

The expressions for a time harmonic plane wave in complex notation take the
form

E⃗ = E0e
−ikmzx⃗0 (9.1.68)

H⃗ =
E0

𝜂m
e−ikmzy⃗0 (9.1.69)

They could be proven by substituting them into (9.1.65) and (9.1.66), and making use
of (9.1.36) and (9.1.37). For complex permittivity and permeability, the wavenumber
(9.1.36) and the intrinsic impedance (9.1.37) become complex. Substituting (9.1.62)
and (9.1.64) into (9.1.36) yields

km = 𝜔
√
𝜀0𝜇0𝜀𝜇(1 − i tanΔe)(1 − i tanΔm) = 𝛽 − i𝛼 (9.1.70)

Here 𝛽 > 0 is a real part of the wavenumber and 𝛼 > 0 is an imaginary part. Using
the rule (9.1.58) one arrives at a real time-dependent form of (9.1.68) as

E⃗(z, t) = |E0|e−𝛼z cos(𝜔t − 𝛽z + 𝜓0)x⃗0 (9.1.71)

and proceeds similarly with (9.1.69).
The real part 𝛽 of the wavenumber is referred to as phase constant or propagation

constant. In comparison to (9.1.20) it is seen that 𝛽 defines the phase velocity and the
wavelength. The imaginary part 𝛼 is known as an attenuation constant. Expression
(9.1.71) shows that the wave field now decays along the direction of travel. This is
what one would assume because the imaginary part 𝛼 comes from electromagnetic
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energy losses in themedium. By definition, a skin depth 𝛿 is a distance associated with
the amplitude decay by a factor of e. Using this definition, from (9.1.71) it follows
that

𝛿 = 1∕𝛼 (9.1.72)

For lossy media, a plane wave shows distinctly different behavior for insulators
and conductors. Good dielectrics, also referred to as insulators, are characterized by

tanΔe << 1 (9.1.73)

From (9.1.70) assuming tanΔm = 0 one has

𝛽 ≈ 𝜔
√
𝜀0𝜇0𝜀𝜇 (9.1.74)

𝛼 ≈ 𝛽
tanΔe

2
(9.1.75)

Comparing (9.1.71) to (9.1.36), one recognizes that the phase velocity and wave-
length coincide with the lossless case. Because of (9.1.73) the inequality 𝛽 >> 𝛼

holds. Thus, we have 𝛿 >> 𝜆m. In short, one may say that the wave propagates
through good dielectric almost like through a lossless medium, with the skin depth
largely exceeding the wavelength in the medium. This is what happens with the
wave propagating through the troposphere, for instance.

With good conductors
tanΔe >> 1 (9.1.76)

and from (9.1.70) one has

𝛽 ≈ 𝛼 ≈ 𝜔
√
𝜀0𝜇0𝜀𝜇

√
tanΔe

2
(9.1.77)

Thus the wavelength in conductors decreases compared to that in free space by orders
of magnitude due to the

√
tanΔe∕2 factor in (9.1.77). The skin depth in conductors

is

𝛿 =
𝜆m
2𝜋

(9.1.78)

This means that the wave traveling through conductors almost disappears at the dis-
tances of fractions of wavelength in the medium. In other words, the electromagnetic
field and electric currents are concentrated within a thin layer near the surface of the
conductor.

We take two examples. For gold in Table 9.1.1, expressions (9.1.77) and (9.1.78)
give a skin depth for GNSS frequencies of 2 ⋅ 10−3mm. That is the reason that most
electronic components like printed circuit boards and parts of antennas are plated
with a thin layer of gold. This is to decrease loss of signal energy and to provide
environmental protection at the same time. Another example is seawater. Here from
Table 9.1.1 one obtains tanΔe ≈ 0.3. Materials with tanΔe of the order of unity are
called semiconductors. They exhibit some of the properties of conductors and insu-
lators. In this case, one is to use the general expression (9.1.70) to find out that skin
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depth (9.1.72) for seawater at GNSS frequencies is about 2 cm. Thus at a depth of
several centimeters counting from the sea surface the GNSS signal is completely
absorbed by the water.

9.1.4 Radiation and Spherical Waves

The simplest and widely usedmodel of a source of radiation is the Hertzian dipole. By
such one means an elementary source in the form of time harmonic electric current
filament with the length L << 𝜆. The dipole is an appropriate model for one of the
first antennas constructed by Heinrich Hertz in the late nineteenth century.

We assume that the medium is free space. We use the spherical coordinate sys-
tem (Figure 9.1.3, left panel; also see Appendix D for details of vector representa-
tion in spherical coordinates). A dipole is placed at the origin and is parallel to the
zenith axes.We assume time harmonic radiation with fixed frequency𝜔. The complex
amplitudes of fields radiated by the dipole and observed at a point with coordinates
(r, 𝜃, 𝜙) are

H⃗ = 𝜙0IL
1
4𝜋

( 1
r2

+
ik
r

)
e−ikr sin 𝜃 (9.1.79)

E⃗ = −IL
1
4𝜋

𝜂0
k

(
r⃗0

2
r2

( i
r
− k

)
cos 𝜃 + 𝜃0

1
r

( i
r2

−
k
r
− ik2

)
sin 𝜃

)
e−ikr (9.1.80)

Here I is the electric current in units of amperes flowing through the dipole. Details
of the derivations for these expressions are shown in Appendix E.

It is common to subdivide the space around the dipole into three regions. The first
one is referred to as a reactive near-field region. It is located at the distances r << 𝜆

immediately surrounding the dipole. The third one is a far-field region with r >> 𝜆.
Finally, the second region is sometimes referred to as a radiating near-field region. It
is located between the two. We begin with the field characterization in the reactive
near-field region.

Because of the inequality r << 𝜆, one keeps only the highest terms of 1∕r in
(9.1.79) and (9.1.80). These terms provide the main contribution to the fields.

Figure 9.1.3 Coordinate frames for Hertzian and half-wave dipoles.
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Also here kr << 1 and the exponential term could be omitted. Thus one has

H⃗ = 𝜙0IL
1
4𝜋

1
r2

sin 𝜃 (9.1.81)

E⃗ = −iIL
1
4𝜋

𝜂0

k
1
r3
(r⃗02 cos 𝜃 + 𝜃0 sin 𝜃) (9.1.82)

We see that the electric and magnetic field intensities are 90∘ shifted in phase from
each other. The imaginary unit coefficient of electric field points to that. One con-
cludes that with fields (9.1.81) and (9.1.82) the Poynting vector (9.1.67) is purely
imaginary. One says that in the near-field region a reactive power is being accu-
mulated. This power is not radiated into space but instead is concentrated in close
proximity of the source. This is true not only with dipole but rather with any antenna.
The reactive power concentration is an undesirable but in general unavoidable prop-
erty. This, generally speaking, is what makes bandwidth of any antenna limited. More
on reactive power contribution to the antenna characteristics will be discussed in
Section 9.5.2.

At the far-field region one omits all the higher order terms of 1∕r in expressions
(9.1.79) and (9.1.80) and arrives at

H⃗ = 𝜙0IL
ik
4𝜋

e−ikr

r
sin 𝜃 (9.1.83)

E⃗ = 𝜃0IL𝜂0
ik
4𝜋

e−ikr

r
sin 𝜃 (9.1.84)

The electric and magnetic fields are now in-phase. Substituting these last expressions
into (9.1.67) yields

𝛱⃗ = r⃗0
1
2
|I|2𝜂0 (kL)2

(4𝜋r)2
sin2𝜃 (9.1.85)

The Poynting vector is now real. It has only one projection and it is pointed outward
toward the larger distances r. This indicates power flux toward larger distances.

Next, with expressions (9.1.83) and (9.1.84) the electric and magnetic field inten-
sities decay as r−1 with r increase, and power flux density (9.1.85) decays as r−2. We
are to calculate the total radiated power P𝛴 as a power flux through some imaginary
sphere of radius r centered at the dipole. Recall that the surface of a sphere grows as
4𝜋r2 with r increase. Thus the total power P𝛴 should be independent of r. Indeed,
using (9.1.85) and (D.26) from Appendix D, one has

P𝛴 = ∫
𝜋

0 ∫
2𝜋

0

1
2
|I|2𝜂0 (kL)2

(4𝜋r)2
sin3𝜃 r2d𝜙d𝜃 = const(r) (9.1.86)

In other words, through each imaginary sphere centered at the dipole the total flux
is the same. This is in agreement with the energy conservation low since with free
space there is no matter to absorb the radiated energy. In this regard, in the litera-
ture the power flux density decay as r−2 is occasionally referred to as radiation loss.
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This should not be confusing, the total power (9.1.86) remains always the same and
is just being spread over the imaginary spheres with larger radii.

The power distribution is not homogeneous over the sphere. The field amplitudes
are proportional to sin 𝜃 and power flux density (9.1.85) is proportional to sin2𝜃. One
says that the Hertzian dipole possesses some directivity. The fields and power flux
get maximum values in the direction perpendicular to that of the current (𝜃 = 𝜋∕2)
and are zero in the directions along the current (𝜃 = 0; 𝜋). The term sin 𝜃 represents
what is known as radiation pattern or antenna pattern. More on antenna patterns will
be discussed in Section 9.2.1.

Next, we see that the phase of fields (9.1.83) and (9.1.84) exhibits a delay−kr with
distance growth. Employing (9.1.32), (9.1.28), and (9.1.24) one notes that

kr = 2𝜋
r
cT

= 2𝜋
𝜏r
T

(9.1.87)

Here 𝜏r is the time interval which is required to cover the distance r while traveling
with velocity of light c. The quantity −kr is referred to as path delay. This delay is
constant over a sphere with radius r. Recalling the definition of the wavefront from
Section 9.1.2, one says that the front of the wave represented by expressions (9.1.83)
and (9.1.84) is a sphere. This is referred to as a spherical wave. The common sense
illustration to a spherical wave could be a well-known circular wavefront caused by
a float at the water surface.

Finally, the fields (9.1.83) and (9.1.84) do not have projections onto the direction
of the wave travel r⃗0, they constitute a right-hand triad with said direction and are
proportional to each other with 𝜂0 being the proportionality coefficient. This means
that locally, within some small area around an observation point, a spherical wave is
constructed exactly the sameway as the plane wave, as discussed in previous sections.
The wavefront of said plane wave could be taken as a plane tangential to said sphere
at the observation point. An example of such fronts is shown schematically in the left
panel of Figure 9.1.3. This property will remain common for all antennas. This was
one of the reasons we discussed a plane wave in previous sections.

It should be mentioned that GNSS satellites are about 20,000 km from the earth’s
surface. Any local area at the earth’s surface, like a building or even an entire city,
is negligibly small compared to that distance. This means that within such areas the
fields associated with GNSS signals could be viewed as plane waves arriving from
the satellites. Finally, with radiating near-field region a transition from reactive near
fields to the far fields is observed.

Now we turn to what is called an interference of waves radiated by a plurality of
dipoles. This will give us a method to calculate the field radiated by any arbitrary
antenna. First, we take a half-wave dipole as an example.

A half-wave dipole is probably the simplest antenna that could actually be con-
structed. This antenna consists of just two pieces of straight thin wires of about a
quarter-wavelength each. This is shown in the right panel in Figure 9.1.3. The sig-
nal is transported to the narrow gap between the wires by a transmission line shown
in the figure as dashed lines. Transmission line basics will be discussed further in
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Figure 9.1.4 Calculations of fields radiated by a half-wave dipole.

Section 9.5. The electric current distribution along the dipole has a form of half the
cosine-like wave, namely, using the coordinate frame of the figure,

I(z) = I0 cos
(
𝜋

2L
z
)

(9.1.88)

Here I(z) is the electric current at a point with coordinate z at the dipole and I0 is the
current at the center of the dipole. This value is set by the source. The symbol L is a
length of one arm of the dipole which is equal to a quarter of the wavelength.

We calculate the field radiated by a half-wave dipole as observed at a point P in
space. For that purpose the dipole is subdivided into a set of Hertzian dipoles each
with an infinitesimal lengthΔz. Two such Hertzian dipoles are shown in the left panel
in Figure 9.1.4.

The field ΔE⃗ radiated by a Hertzian dipole located at coordinate z′ is

ΔE⃗ = −I(z′)
1
4𝜋

𝜂0

k

⎛⎜⎜⎝
r⃗0

2

(r(z′))2

(
i

r(z′)
− k

)
cos(𝜃(z′))

+𝜃0
1

r(z′)

(
i

(r(z′))2
− k

r(z′)
− ik2

)
sin(𝜃(z′))

⎞⎟⎟⎠ e−ikr(z
′)Δz′ (9.1.89)

Here r(z′) is the distance counted from the Hertzian dipole to observation point P, and
𝜃(z′) is the corresponding angle counted from the z axis. Both quantities are functions
of coordinate z′. The total field is a sum (integral) of the fields (9.1.89) radiated by
all the Hertzian dipoles along the half-wave dipole. Thus one has

E⃗ = −I0
1
4𝜋

𝜂0
k ∫

L

−L
cos

(
𝜋

2L
z′
) ⎛⎜⎜⎝

r⃗0
2

(r(z′))2

(
i

r(z′)
− k

)
cos(𝜃(z′))

+𝜃0
1

r(z′)

(
i

(r(z′))2
− k

r(z′)
− ik2

)
sin(𝜃(z′))

⎞⎟⎟⎠ e−ikr(z
′)dz′

(9.1.90)
In the general case this expression cannot be simplified. This shows that in the reactive
near-field region and the radiating near-field region the fields are quite complex. But
for the far-field region the situation is different.

To calculate field intensities in the far-field region one omits all the higher order
terms of 1∕r similar to the far-field derivation of Hertzian dipole. The right panel of
Figure 9.1.4. shows an observation point P at the far-field region of the half-wave
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dipole. Please note that the distance to P is assumed to be very large compared to the
dipole length 2L. Two radius vectors go to P originating from two points on a dipole.
One is the dipole center located at the origin and another one is a point with coordinate
z′. The radius vectors are essentially parallel because of the very large distance to P.
In other words one may say that with (9.1.90) the angle 𝜃 and the distance r would be
the same for all the points on a dipole coinciding with those at the origin. This holds
true except for the exponent. From the right triangle shown as thick dashed lines, it
follows that

r(z′) ≈ r − z′ cos 𝜃 (9.1.91)

The reason for using (9.1.91) with the exponent is that the path difference z′ cos 𝜃 is
not negligible compared to the wavelength. Thus the product of this path difference
with the wavenumber k of (9.1.32) in the exponent may provide contributions com-
parable to 2𝜋. Factoring terms independent on z′ out of the integral (9.1.90) yields

E⃗ = 𝜃0I0𝜂0
ik
4𝜋

e−ikr

r
sin 𝜃∫

L

−L
cos

(
𝜋

2L
z′
)
eikz

′ cos 𝜃dz′ (9.1.92)

This expression shows that for the far-field region one obtains the total field in the
form of a spherical wave: the amplitude decays as 1∕r with distance and the phase
delay equals −kr. The integral in (9.1.92) tells us that the field is a sum (integral)
of partial spherical waves radiated by Hertzian dipoles. These are shown as dashed
circles in the right panel in Figure 9.1.4. Each partial spherical wave is taken with
the amplitude of the corresponding Hertzian dipole equal to cos(𝜋z′∕2L). The partial
waves arrive at the observation point P with an extra phase delay or phase advance
due to path difference. These delays and advances are a function of the direction set
up by angle 𝜃.

We can now consider a generalization. Currents flowing over parts of any antenna
could be subdivided into a set of elementary Hertzian dipoles. These dipoles would
radiate partial spherical waves. The total wave in the far-field region of an antenna
is an interference of such partial waves. For any arbitrary antenna the total wave is
expressed as follows:

E⃗(r, 𝜃, 𝜙) =
e−ikr

r

(
𝜃0U𝜃F𝜃(𝜃, 𝜙)e

i𝛹𝜃 (𝜃,𝜙) + 𝜙0U𝜙F𝜙(𝜃, 𝜙)e
i𝛹𝜙(𝜃,𝜙)

)
(9.1.93)

H⃗(r, 𝜃, 𝜙) =
1
𝜂0
[r⃗0, E⃗(r, 𝜃, 𝜙)] (9.1.94)

The derivations of these expressions are given in Appendix E. The fields (9.1.93)
and (9.1.94) constitute a spherical wave traveling in all directions from the radi-
ator. The wave has the same main features as has been discussed in regard to the
Hertzian and half-wave dipoles. Namely, the wave amplitude decays as r−1 with dis-
tance and its phase exhibits progressive delay as −kr. The wave is a locally plane one
since the E⃗ and H⃗ fields are orthogonal to each other, are proportional to each other
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with intrinsic impedance being a constant of proportionality, do not have projections
onto the direction of the wave travel r⃗0, and constitute a right-hand triad with said
direction.

The difference between expressions (9.1.83), (9.1.84), (9.1.93), and (9.1.94) is
that now, in general, the vectors E⃗ and H⃗ have projections onto both basis vectors
𝜃0 and 𝜙0. If one travels along the imaginary sphere of some radius r, then these
projections are not constant over the sphere. The amplitudes of these projections are
functions of angles 𝜃 and 𝜙. The angles define the direction toward the observation
point. The functionsF𝜃(𝜃, 𝜙) andF𝜙(𝜃, 𝜙) are real functions with peak values equal to
unity. One says that functions F𝜃(𝜃, 𝜙) and F𝜙(𝜃, 𝜙), representing field intensity as a
function of directions in space, constitute the radiation pattern of the source. In regard
to antennas, this is also referred to as antenna pattern. In general, the patterns for
𝜃th and 𝜙th projections differ. Also, the directions for which F𝜃(𝜃, 𝜙) and F𝜙(𝜃, 𝜙)
reach peak values are in general different. The antenna pattern is one of the most
important characteristics of an antenna. Antenna patterns of GNSS user antennas will
be discussed in details in Section 9.2

Further, functions𝛹𝜃(𝜃, 𝜙) and𝛹𝜙(𝜃, 𝜙) of (9.1.93) indicate that, in general, phase
delays of vector projections are not constant over the imaginary sphere in the far-field
region. This means that the wavefronts are not exactly spherical (see more discus-
sion in Section 9.3). However, it is customary to refer to the antenna far field as to a
spherical wave. Phases 𝛹𝜃(𝜃, 𝜙) and 𝛹𝜙(𝜃, 𝜙) are functions of direction indicated by
angles 𝜃 and 𝜙. These functions are called antenna phase patterns. By definition, an
antenna phase pattern shows radiated field phase as a function of directions in space.
In general, phase patterns for 𝜃th and 𝜙th projections differ. Antenna phase pattern is
another important characteristic for GNSS applications. It defines what is known as
antenna phase center and phase center variations (PCV).

The constants U𝜃 and U𝜙 in (9.1.93) are defined by antenna structure and sig-
nal source voltage applied to the antenna input. Sometimes they are referred to as
normalization constants. These constants are, in general, complex.

One is to note that for a given antenna the modules |U𝜙| and |U𝜙| are well defined
by the requirement that the peak values of F𝜃(𝜃, 𝜙) and F𝜙(𝜃, 𝜙) are equal to unity.
Indeed, these modules are actual field intensities of the corresponding projections at
the distance r in the directions where the radiation patterns are maximal. In contrast,
only the phases of products e−ikrU𝜃e

i𝛹𝜃 (𝜃,𝜙) and e−ikrU𝜙e
i𝛹𝜙(𝜃,𝜙) are actual field phases

with (r, 𝜃, 𝜙) given. This means that the phase patterns 𝛹𝜃(𝜃, 𝜙) and 𝛹𝜙(𝜃, 𝜙) are
defined up to constant terms: the constants could always be added to 𝛹𝜃(𝜃, 𝜙) and
𝛹𝜙(𝜃, 𝜙) with proper changes of arguments (phases) of U𝜙 and U𝜙. It will be shown
in Section 9.3 that one must account for this uncertainty of phase patterns.

To summarize, in spherical coordinates the point location is characterized by three
coordinates: radial distance r and two angles 𝜃 and 𝜙. In the far-field region the field
intensity dependency on the radial coordinate is the same for all the antennas. What
distinguishes one antenna from the other is field intensity dependencies on angles 𝜃
and 𝜙. These are manifested by antenna radiation pattern and phase pattern.
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9.1.5 Receiving Mode

Thus far we have discussed the radiation of electromagnetic waves. However, the
GNSS user antennas are essentially of the receiving type. The bridge between trans-
mitting and receiving modes of antenna operation is established by the reciprocity
theorem (Balanis, 1989).

Applied to the antenna pattern case, the reciprocity theorem states that the patterns
for the transmitting and receiving modes are identical. As an illustration consider two
antennas located in free space (Figure 9.1.5)

On the left of the figure a signal source is connected to antenna A which radiates
power into space. The electromagnetic waves reach antenna B and induce currents on
the elements of antenna B. The currents flow through the input of the receiver con-
nected to antenna B. On the right the inverted case is shown. Here a signal generator
is connected to antenna B and the receiver is connected to antenna A. The reciprocity
theorem for the case could be phrased as follows: if the signal generators are the same
in both cases then the signals at the receiver’s inputs are the same. Starting with this
point we consider the situation shown in Figure 9.1.6.

At the left panel, position and orientation of antenna A is fixed. Antenna B moves
along the sphere centered at A in such a way that the orientation of antenna B with
respect to the lineA toB is fixed. Both antennas are in the far-field region of each other.
It follows from the reciprocity theorem that whichever antenna A or B is transmitting
or receiving, the signal at the receiver input will be proportional to the antenna pattern

Figure 9.1.5 Reciprocity theorem.

Figure 9.1.6 Measurements of antenna pattern of A.
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of A. At the right panel another case is shown. Here antenna B is fixed and A is rotated
with respect to the line A to B. The signal at the receiver input is proportional to the
antenna pattern of A regardless of whichever antenna is transmitting or receiving.

The identity of antenna patterns for receiving and transmitting modes simplifies
antenna-related considerations to a large extent. For many cases it is more convenient
to treat the transmitting mode of the antenna rather than the receiving mode. This will
be used throughout the chapter. Figure 9.1.6 illustrates the practical ways for antenna
pattern measurements.

9.1.6 Polarization of Electromagnetic Waves

We consider a time harmonic electromagnetic plane wave and write it in real time-
dependent form:

E⃗1 = E0 cos(𝜔t − kz + 𝜓0)x⃗0 (9.1.95)

H⃗1 =
E0

𝜂0
cos(𝜔t − kz + 𝜓0)y⃗0 (9.1.96)

The E-field distributions along the z coordinate have been discussed already in regard
to Figure 9.1.2. Now we take some fixed coordinate, z = 0 for instance, and plot the
E-field magnitude versus time. This is shown in Figure 9.1.7. We conclude that the
E vector alternates in space and time being always parallel to some fixed direction.
In our case it is x axis. The H field possesses the same properties while being always
parallel to the y axis. Such a wave with vector E⃗ (and H⃗) being always parallel to a
certain direction is said to be linear polarized.

Now along with the plane wave defined by expressions (9.1.95) and (9.1.96) we
take another wave. This second wave has the same amplitude E0. The vectors E⃗ and
H⃗ of this second wave are 90∘ rotated in space and 90∘ delayed in phase with respect
to corresponding vectors of the first wave. We write

E⃗2 = E0 cos
(
𝜔t − kz + 𝜓0 −

𝜋

2

)
y⃗0 (9.1.97)

H⃗2 = −
E0

𝜂0
cos

(
𝜔t − kz + 𝜓0 −

𝜋

2

)
x⃗0 (9.1.98)

One notes the “minus” sign in (9.1.98), which is needed for the vectors E⃗ and H⃗ to
constitute a right-hand triad with the direction of travel (z axis).

Figure 9.1.7 E-field intensity of a linear
polarized wave versus time.
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Next, we focus on a wave that is the sum of waves 1 and 2. The E-field intensity
of this wave is denoted as E⃗𝛴 such that

E⃗𝛴 = E⃗1 + E⃗2 (9.1.99)

A similar expression holds for the H⃗ field. For any specific point in space, for instance,
point z = 0, one has (omitting the initial phase 𝜓0 for simplicity of writing)

E⃗1(z = 0) = E0 cos(𝜔t)x⃗0 (9.1.100)

E⃗2(z = 0) = E0 sin(𝜔t)y⃗0 (9.1.101)

E⃗𝛴(z = 0) = E0 cos(𝜔t)x⃗0 + E0 sin(𝜔t)y⃗0 (9.1.102)

We check the behavior of E⃗𝛴 with time. Snapshots for three time instants, namely
t = 0, t = T∕8, and t = T∕4 are shown in Figure 9.1.8.

First we note that as seen with (9.1.102) for any time instant the absolute value

(module) of E⃗𝛴 remains constant, i.e., |E⃗𝛴 | =√
E2
x + E2

y = |E0|. Next, for t = 0 (left

panel) one has E⃗1(z = 0) = E0x⃗0, E⃗2(z = 0) = 0 and E⃗𝛴(z = 0) = E0x⃗0. For t = T∕8
(middle panel) the corresponding values are E⃗1(z = 0) = E0 cos(𝜋∕4)x⃗0, E⃗2(z = 0) =
E0 sin(𝜋∕4)y⃗0, and E⃗𝛴(z = 0) = E0 cos(𝜋∕4)x⃗0 + E0 sin(𝜋∕4)y⃗0. Finally, for t = T∕4
(right panel) we have E⃗1(z = 0) = 0, E⃗2(z = 0) = E0y⃗0, and E⃗𝛴(z = 0) = E0y⃗0. It is
suggested the reader verify that for t = T the field intensity coincides with that for
t = 0. If one has taken another point in space with a certain z coordinate, then the
same analysis will hold; all the vectors will receive a delay in phase equal to −kz.
One concludes that at any point in space the vector E⃗𝛴 rotates as time advances while
remaining always constant in magnitude. This vector makes a complete circle within
the time interval of one period T. In Figure 9.1.8 the z axis is directed toward the
observer. This is marked by a thick dot at the origin. If one watches the rotation of
vector E⃗𝛴 from the top of z⃗0, the rotation is seen in a counterclockwise direction.

Figure 9.1.8 Snapshots of a circular polarized field versus time.
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Figure 9.1.9 Circular polarized field versus space
coordinate.

In the same way one may take any instant of time, for example, t = 0, and analyze
the behavior of the vectors versus space coordinate z. One writes

E⃗1(t = 0) = E0 cos(−kz)x⃗0 (9.1.103)

E⃗2(t = 0) = E0 sin(−kz)y⃗0 (9.1.104)

E⃗𝛴(t = 0) = E0 cos(−kz)x⃗0 + E0 sin(−kz)y⃗0 (9.1.105)

It is suggested that the reader check a set of points along the z axes, for instance, z = 0,
z = 𝜆∕8, and z = 𝜆∕4 to find out that the rotation is similar as described above. We
conclude that at any time instant the vector E⃗𝛴 is distributed in space in such a way
that it exhibits a rotation in counterclockwise direction if one watches from the top
of the direction of the wave propagation (z axis). The vector E⃗𝛴 is always constant in
magnitude and makes a complete circle within the distance of one wavelength. This
is schematically shown in Figure 9.1.9. The vector H⃗𝛴 of the wave exhibits the same
behavior, while being always perpendicular to E⃗𝛴 .

A wave with vectors E⃗ and H⃗ exhibiting rotations in time and space in a counter-
clockwise direction when watched from the top of the direction of wave propagation,
being always constant in magnitude and making a complete circle within the time
interval equal to the period of alternation and the space increment equaling the wave-
length, is called right-hand circular polarized (RHCP). We note that if one took the
E⃗2 and H⃗2 vectors not delayed but rather advanced 90∘ in phase with respect to E⃗1

and H⃗1 such that

E⃗2 = E0 cos
(
𝜔t − kz + 𝜓0 +

𝜋

2

)
y⃗0 (9.1.106)

H⃗2 = −
E0

𝜂0
cos

(
𝜔t − kz + 𝜓0 +

𝜋

2

)
x⃗0 (9.1.107)

then the same rotations would be observed in a clockwise direction. Such a wave is
called left-hand circular polarized (LHCP).

What we have just said proves statement A: A circular polarized wave is a sum of
two linear polarized waves. Vectors E⃗ (and H⃗) of the waves have the same amplitudes,



540 GNSS RECEIVER ANTENNAS

are 90∘ rotated in space with respect to each other, and are 90∘ shifted in phase with
respect to each other. The circular polarized wave is said to be RHCP if the rotation is
observed in a counterclockwise direction when watched from the top of the direction
of wave propagation and it is LHCP if the rotation is in the opposite direction.

For further derivations it is more convenient to use complex amplitudes. For RHCP
and LHCP waves traveling in positive direction of the z axis one writes

E⃗RHCP = E0e
−ikz 1√

2
(x⃗0 − iy⃗0) (9.1.108)

E⃗LHCP = E0e
−ikz 1√

2
(x⃗0 + iy⃗0) (9.1.109)

H⃗RHCP(LHCP) =
1
𝜂0

[
E⃗RHCP(LHCP), z⃗0

]
(9.1.110)

The constant 1∕
√
2 in (9.1.108) and (9.1.109) is introduced for purposes of normal-

ization as will be seen below. Now it is straightforward to prove the inverse statement,
statement B: A linear polarized wave is a sum of two circular polarized waves of equal
magnitudes but opposite directions of rotation. Indeed, using (9.1.108) and (9.1.109)
and setting up

E⃗1 =
1√
2

(
E⃗LHCP + E⃗RHCP

)
= E0e

−ikzx⃗0 (9.1.111)

E⃗2 =
1√
2

1
i

(
E⃗LHCP − E⃗RHCP

)
= E0e

−ikzy⃗0 (9.1.112)

one has two linear polarized waves. Snapshots for the vector (9.1.112) at time
instants t = 0, t = T∕8, and t = T∕4 at a point z = 0 are illustrated in Figure 9.1.10.
To obtain these figures one is to transfer the complex amplitudes in (9.1.112) to real
time-dependent quantities using the rule (9.1.58).

Figure 9.1.10 Linear polarized wave as a sum of two circular polarized waves.
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As was discussed in Section 9.1.4, a plane wave could be viewed as a local repre-
sentation of an actual spherical wave radiated by a source. One may say that expres-
sion (9.1.93) represents the far field of a source as a sum of two linear polarized
spherical waves: with vectors E⃗ having the 𝜃th and the 𝜙th projections. However, one
can write an equivalent representation of the same field in terms of RHCP and LHCP
components. For this purpose we introduce circular polarized basis vectors:

p⃗RHCP0 =
1√
2

(
𝜃0 − i𝜙0

)
(9.1.113)

p⃗LHCP0 =
1√
2

(
𝜃0 + i𝜙0

)
(9.1.114)

These vectors have a unit length (module)

||p⃗RHCP0
|| = ||p⃗LHCP0

|| = 1 (9.1.115)

and are orthogonal to each other such that the dot product

p⃗RHCP0 p⃗LHCP0 ∗ = 0 (9.1.116)

Transformation of (9.1.113) and (9.1.114) to a real time-dependent form makes it
clear that the vector (9.1.113) rotates in a counterclockwise direction if watched from
the top of the r⃗0 vector of the spherical coordinate frame. The vector (9.1.114) rotates
in a clockwise direction. Vectors (9.1.113) and (9.1.114) could be viewed as another
basis in the plane perpendicular to r⃗0. These vectors along with the pair (𝜃0, 𝜙0)
are particular cases of what is known as polarization basis. Vectors (9.1.113) and
(9.1.114) are circular polarized while 𝜃0 and𝜙0 are of orthogonal linear polarizations.

The field transformation from linear polarized representation (9.1.93) to circular
polarization is performed by the regular routine of basis transformation. According
to (9.1.113) and (9.1.114) the transformation matrix is

A =
1√
2

[
1 −i
1 i

]
(9.1.117)

Thus one has

E⃗(r, 𝜃, 𝜙) =
e−ikr

r

(
p⃗RHCP0 URHCPFRHCP (𝜃, 𝜙) e

i𝛹RHCP(𝜃,𝜙)

+p⃗LHCP0 ULHCPFLHCP(𝜃, 𝜙)e
i𝛹LHCP(𝜃,𝜙)

)
(9.1.118)

with

URHCPFRHCP(𝜃, 𝜙)e
i𝛹RHCP(𝜃,𝜙) =

1√
2

(
U𝜃F𝜃 (𝜃, 𝜙) e

i𝛹𝜃 (𝜃,𝜙)

+iU𝜙F𝜙(𝜃, 𝜙)e
i𝛹𝜙(𝜃,𝜙)

)
(9.1.119)

ULHCPFLHCP(𝜃, 𝜙)e
i𝛹LHCP(𝜃,𝜙) =

1√
2

(
U𝜃F𝜃 (𝜃, 𝜙) e

i𝛹𝜃 (𝜃,𝜙)

−iU𝜙F𝜙(𝜃, 𝜙)e
i𝛹𝜙(𝜃,𝜙)

)
(9.1.120)
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Here the functions FRHCP(LHCP)(𝜃, 𝜙) are real with peak values equal to unity.
These functions are antenna patterns in terms of RHCP (LHCP) components,
𝛹RHCP(LHCP)(𝜃, 𝜙) are corresponding phase patterns, and URHCP(LHCP) are complex
normalization constants. Since the expression (9.1.94) for the H-field intensity holds
true with the E-field representation (9.1.118), one is able to write the Poynting vector
(9.1.67) in the form

𝛱⃗ =
1
2
[E⃗, H⃗∗] =

1
2𝜂0

1
r2
(|URHCP|2(FRHCP(𝜃, 𝜙))

2 + |ULHCP|2(FLHCP(𝜃, 𝜙))
2)r⃗0

(9.1.121)
This expression shows a total power flux as a sum of RHCP and LHCP fluxes.

A simple rule in the antenna field says that transmitting and receiving antennas
should be matched in terms of polarization. For instance, if one antenna radiates a
linear polarized wave, with the vector E⃗ being aligned in a certain direction, and
another antenna receiving the radiation and being linear polarized but perpendicular
to that of the transmitting antenna, then the received signal will be zero. The same
is true for the case when a transmitting antenna is RHCP and the receiving one is
LHCP. This provides one of the reasons why GNSS signals are chosen to be circular
polarized.

Let us just assume for a moment that linear polarization is chosen for GNSS posi-
tioning. Let us further assume that the antenna of one satellite transmits a certain
linear polarized signal, say with the vector E⃗ parallel to the north-south line of the
local horizon. If the user antenna is also linear polarized and aligned in the west-east
direction, there will be a complete loss of signal. Therefore, to make such a system
functional, it would be necessary that not only all satellite antennas be parallel to
each other but also that all the user antennas would have to be parallel to the same
line or direction. This is obviously impractical. With a circular polarized signal all
these problems are avoided.

However, expressions (9.1.93) and (9.1.118) show that in general two linear or two
circular polarized components are radiated. By principal or co-polarization onemeans
a desired type behavior of the vector orientation. An undesired type is designated as
cross polarization. For instance, with expression (9.1.93) if a linear polarization with
the 𝜃th component of electric field intensity is desirable then this component will
be referred to as co-polarized while the 𝜙th is called cross polarized. Closer to the
GNSS case, if with expression (9.1.118) a RHCP component is desirable, it will be
referred to as co-polarized and LHCP as cross polarized. For the latter case we rewrite
(9.1.118) in the form

E⃗(r, 𝜃, 𝜙) =
e−ikr

r
URHCP

[
FRHCP (𝜃, 𝜙) e

i𝛹RHCP(𝜃,𝜙)p⃗RHCP0
+𝛼crossFLHCP(𝜃, 𝜙)e

i𝛹LHCP(𝜃,𝜙)p⃗LHCP0

]
(9.1.122)

Here

𝛼cross =
ULHCP

URHCP
(9.1.123)

is a coefficient which relates cross-polarization pattern (LHCP) to the principal
one (RHCP). This coefficient could be easily obtained with an appropriate antenna
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measurements technique by measuring the LHCP component intensity versus RHCP
component intensity for some fixed direction, for instance, the direction where
FRHCP(𝜃, 𝜙) reaches peak value. We will see later that a representation in the form
of (9.1.122) is adopted with the GNSS user antenna data. Coefficient 𝛼cross is
angular independent and is sometimes referred to as a normalization constant for the
cross-polarized component. Using (9.1.122) the total power flux (9.1.121) will read

𝛱⃗ =
1
2
[E⃗, H⃗∗] =

1
2𝜂0

1
r2
|URHCP|2[F2

RHCP(𝜃, 𝜙) + (𝛼cross)2F2
LHCP(𝜃, 𝜙)

]
r⃗0

(9.1.124)
Sometimes the total power pattern is important. This is the (normalized) total power
flux density as function of direction in space:

F2(𝜃, 𝜙) =
1

F2
max(𝜃, 𝜙)

(
F2
RHCP(𝜃, 𝜙) + (𝛼cross)2F2

LHCP(𝜃, 𝜙)
)

(9.1.125)

Here F2
max(𝜃, 𝜙) is the maximal value. One note is to follow—as mentioned at the

end of Section 9.1.4—the antenna phase pattern defined up to a constant term. With
expression (9.1.122) it is convenient to take the term 𝛼cross as a positive real number
by relating the constant phase term to the phase pattern of cross-polarized component
(to 𝛹LHCP).

We close this section with the most general type of polarization, i.e., elliptical
polarization. This is illustrated in Figure 9.1.11.

In the left panel the vector E⃗ observed at some point in space is shown. The vector
rotates and makes a complete cycle within the period Twith the end of the vector trac-
ing an ellipse. Right-hand and left-hand elliptical polarizations are defined the same
way as with circular polarizations. It is common to characterize elliptical polarization
by an axial ratio. By definition the axial ratio 𝛼ar is the ratio of the semiaxes of an
ellipse, namely,

𝛼ar =
b
a

(9.1.126)

Figure 9.1.11 Elliptical polarization.
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Linear polarization and circular polarization are particular cases of elliptical
polarization—for linear polarization 𝛼ar = 0 and for circular polarization 𝛼ar = 1.

In regard to elliptical polarization statements C and D hold. Statement C: An ellip-
tically polarized wave is a sum of two linear polarized waves if at least one of the
conditions of statement A is violated. Statement D: An elliptically polarized wave is
a sum of RHCP and LHCP waves. It has right-hand or left-hand rotation depending
on which component, RHCP or LHCP, is dominating in magnitude. We omit proofs
of statements C and D but illustrate statement D with the right panel in Figure 9.1.11.
Here a major semiaxes of an ellipse occurs at the time instant when the vectors E⃗ of
two circular polarized waves coincide and a minor semiaxes occurs when said vectors
are opposite to each other. Thus one writes{|E⃗RHCP| + |E⃗LHCP| = a|E⃗RHCP| − |E⃗LHCP| = b

(9.1.127)

The axial ratio of an ellipse 𝛼ar could be readily obtained by antenna measurement
techniques. Once 𝛼ar is known, then by inverting (9.1.127) one has

|E⃗LHCP||E⃗RHCP| =
1 − 𝛼ar
1 + 𝛼ar

(9.1.128)

This relationship allows the estimation of 𝛼cross once the axial ratio is known. Polar-
ization properties of the GNSS user antenna are important in many aspects. This is
discussed further in Sections 9.2 and 9.4.

9.1.7 The dB Scale

The decibel (dB) is a convenient and commonly adopted unit to compare quanti-
ties exhibiting a large range in magnitude. This is in particular true if the system
response is proportional not to the quantity but rather to the logarithm of the quan-
tity. The most common example is probably the human ear. Human ear responds to
air pressure coming from a sound. This pressure varies within an extremely large
scale. If the ear response was linearly proportional to air pressure and tuned for the
best reception of regular human speech volume, the humans would be deaf to the
rustling grass and might not survive the noise of an aircraft. Instead, the response of
the ear is proportional to the logarithm of air pressure. Figure 9.1.12 shows a plot of

Figure 9.1.12 Logarithm function.
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the logarithm function. This function emphasizes small values and suppresses large
ones. For instance, if a quantity changes by two orders of magnitude, then logarithm
changes by a factor of log(100) = 2 times.

Prior to discussing the dB scale one is to make an observation. As seen from
(9.1.35) the power flux is proportional to the square of the electric field intensity.
Another example of a squared functional relation is known from elementary physics.
Namely, the power P of a direct electric current is a product of current I and
voltage U:

P = IU (9.1.129)

By applying Ohm’s law this can be rewritten as

P = I2R = U2 1
R

(9.1.130)

where R stands for resistance. Thus the power is proportional to current or voltage
squared. This rule could be generalized. Each time one speaks about some quantity
like current, voltage, or electric and magnetic field intensities, the power related to
the quantity will be proportional to the quantity squared. LetQ be such a quantity, PQ
be corresponding power, and Q0 be some fixed reference value. Then Q∕Q0 is said to
be a relative value of Q (related to Q0), or PQ∕PQ0

= Q2∕Q0
2 is said to be a relative

power of Q.
By definition a related quantity in decibel units is

Q[dB] = 20 log

(
Q
Q0

)
= 10 log

(
PQ

PQ0

)
(9.1.131)

Here dB units are marked by subscript dB in brackets. Back conversion from dB to
magnitudes and powers is

Q = Q010
Q[dB]∕20 (9.1.132)

PQ = PQ0
10Q[dB]∕10 (9.1.133)

One is to note that the value of Q in dB is the same for relative magnitudes and
powers (9.1.131). Hence while using dB one does not have to state if magnitudes or
powers are meant. Typical figures to memorize are: +3 dB means twice the power
or
√
2 ≈ 1.4 of magnitude, –3 dB is half-power or 1∕

√
2 ≈ 0.7 magnitude, +6 dB is

two times magnitude or 4 times power, and –6 dB is half-magnitude or quarter power.
A good example of the use of the dB scale relevant to GNSS antennas is low-noise

amplifier (LNA) gain. As will be discussed in Section 9.6 the LNA goes directly
after the antenna and is responsible for setting up the GNSS receiver system noise
figure. The LNA gain normally is specified in technical documents, e.g., a 30 ± 2 dB
specification is typical. This means that ±2 dB gain change would not affect the sys-
tem performance. One may note that 30 dB means 1000 times in terms of power
while 32 dB means 1585 times power amplification and 28 dB means 631 times.
Therefore, in terms of output signal power the difference is significant. But again,



546 GNSS RECEIVER ANTENNAS

for system performance ± 2 dB of LNA gain is normally not that important. Thus, in
this case decibels provide the scale that is more suitable for the problem.

Finally, another reason to use dB scale is just practical convenience. Many for-
mulas look like multiplications of terms, in which case one is just to add numbers
in the dB scale. The dB scale is commonly adopted in electronic engineering and in
GNSS antenna documentation in particular and will be frequently used throughout
the chapter.

9.2 ANTENNA PATTERN AND GAIN

An antenna pattern defines the response of an antenna as a function of direction the
signal is radiated to or arrives from. The antenna pattern properties determine cur-
rently achievable precision of positioning in typical environments. In this section the
main features of antenna pattern are discussed in sequential order. We follow the
commonly adopted method, namely analyzing the pattern in transmitting mode and
making the “bridge” to receiving mode using the reciprocity theorem. The section
ends with the satellite signal power estimates at the antenna output.

9.2.1 Receiving GNSS Antenna Pattern and Reference Station
and Rover Antennas

It has been stated is Section 9.1.4 that an antenna pattern represents the distribution
of radiated field intensity or power as a function of directions in space. Practical ways
to measure the antenna pattern have been discussed in connection with Figure 9.1.6.
The method illustrated in the left panel of the figure is actually in use with very large
antennas like paraboloid reflector antennas or antenna arrays for radioastronomy or
radars. The sensor, antenna B, could be carried by a helicopter. Typical GNSS user
antennas are of the order of meters at most. With such antennas indoor testing can be
performed in anechoic chambers. An anechoic chamber is a room with walls, ceiling,

Figure 9.2.1 Antenna pattern measurement with anechoic chamber.



ANTENNA PATTERN AND GAIN 547

and a floor covered with special electromagnetic absorbing material. This is shown
schematically in Figure 9.2.1.

The material absorbs the electromagnetic wave impinging upon it and thus pre-
vents the wave from being reflected. The free space conditions are simulated. With
anechoic chamber tests, an arrangement shown in the right panel of the Figure 9.1.6
is normally used. The antenna under test (antenna A) is rotated. The position and
orientation of antenna B is fixed. Whichever antenna is radiating or receiving, the
received signal is a function of the rotation angles and is proportional to the pattern
of antenna A.

In this section we omit details related to polarization, leaving this discussion for
Section 9.2.3. To begin with, we assume that only the principal polarization compo-
nent is present in the far field. We denote an antenna pattern as F(𝜃, 𝜙). This is a real
function of angles 𝜃, 𝜙 normalized in such a way that the peak value equals to unity.
This can always be done with calculated or measured data. Since the power flux den-
sity (Poynting vector) is proportional to the squared field intensity, the antenna pattern
in terms of power is F2(𝜃, 𝜙).

We begin with some examples first. As seen from (9.1.84) and (9.1.85) a Hertzian
dipole pattern is

F(𝜃, 𝜙) = sin 𝜃 (9.2.1)

It is a function of 𝜃 but not 𝜙. This might be clear because of the ideal rotational
symmetry of the dipole with respect to azimuth (Figure 9.1.3).

Also of interest is that F(𝜃, 𝜙) = 0 for 𝜃 = 0 or 𝜋. This means that the dipole does
not radiate along its axis. Next, F(𝜃, 𝜙) = 1 for 𝜃 = 𝜋∕2 (90∘). This means that the
dipole current mostly radiates in the direction perpendicular to its axis. Now we turn
to the half-wave dipole. Performing integration with (9.1.92) and normalizing the
pattern to a peak value of unity yields

F(𝜃, 𝜙) =
cos

(
𝜋

2
cos (𝜃)

)
sin 𝜃

(9.2.2)

The main features of this pattern are similar to (9.2.1). The pattern does not depend
on 𝜙 because of rotational symmetry. The half-wave dipole does not radiate along its
axis but at a maximum in the direction perpendicular to its axis.

Now we look at a common way to plot an antenna pattern. Sometimes polar plots
are used. The top-left panel of Figure 9.2.2 shows polar plots for two patterns, the
Hertzian dipole (9.2.1) and the half-wave dipole (9.2.2).

In general, an antenna pattern plot represents a surface F as a function of two
variables, 𝜃 and 𝜙. The patterns (9.2.1) and (9.2.2) are independent of 𝜙. The cor-
responding surfaces would be tori which are homogeneous in azimuth. However, it
is customary to use plain figures assuming either 𝜃 or 𝜙 to be constant. One may
note that with spherical coordinates the angle 𝜃 varies within the range 0 ≤ 𝜃 ≤ 𝜋

(Appendix D). However, for illustrative purposes it is customary to allow 𝜃 to vary
within the range−𝜋 ≤ 𝜃 ≤ 𝜋, or from –180∘ to+180∘, thus creating a complete great
circle section of a pattern (IEEE Standard, 2004). Since patterns like (9.2.1) and
(9.2.2) are independent of 𝜙, the plots of Figure 9.2.2 are valid for any 𝜙. The plots
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Figure 9.2.2 Radiation patterns of Hertzian and half-wave dipoles.

are generated using common rules of polar plots, namely angle 𝜃 is counted from the
dipole axis and the length of the segment (shown as dashed line) is counted from the
origin. This length is proportional to the pattern reading.

As seen in Figure 9.2.2 the Hertzian and half-wave dipoles have almost the same
pattern shape. This illustrates that current segments have about the same radiation
patterns if the length of the segment varies from being negligibly small compared
to the wavelength up to about half of a wavelength [actually, up to about one wave-
length (Lo and Lee, 1993)]. Half-wavelength size is chosen not because of antenna
pattern advantages but for purposes of matching the antenna with the feeding cable.
Such matching conditions are discussed further in Section 9.5. The top-right panel
of Figure 9.2.2 illustrates the same two patterns in dB units. The peak value equal to
unity is 0 dB. Zero reading is minus infinity in dB. Another way to illustrate the pat-
tern is to use a Cartesian plot. An example is shown for the same patterns in relative
units (bottom-left panel) and in dB (bottom-right panel).

Now we turn to the GNSS user antenna. Figure 9.2.3 illustrates a typical situation.
The user antenna is installed at an open site about 2m above the ground surface. We
place the coordinate origin somewhere at the antenna. The vertical axis points to the
zenith. The angle 𝜃 is referred to as the zenith angle such that 𝜃 = 0 stands for zenith
direction, 𝜃 = 𝜋∕2 is for horizon, and 𝜃 = 𝜋 is for nadir. Sometimes the elevation
angle 𝜃e is also of use. This angle is measured relative to the local horizon. Angle 𝜙
is the local azimuth.

First, one considers a perfect GNSS receiving antenna. Such an antenna has an
ideal rotational symmetry with respect to zenith axes. Thus the antenna pattern is
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Figure 9.2.3 Coordinate frame for receiving
GNSS antenna over undelaying terrain.

Figure 9.2.4 Perfect GNSS user antenna pattern.

independent of 𝜙. Such an ideal antenna would provide an unbiased position in the
horizontal plane. Despite such an ideal antenna one still has to deal with multipath,
which is considered an essential error source in today’s high-precision GNSS posi-
tioning. For goodGNSS sites selection the only source ofmultipath is reflections from
terrain below the antenna. Therefore, for the complete rejection of multipath signals,
a perfect antenna would have to have a zero antenna pattern in directions below the
horizon. In order to have equal reception capabilities for all satellites in view the
antenna would have to have a constant pattern for directions above the horizon. In
normalized form this constant is unity. Hence a perfect GNSS user antenna would
have a step-like pattern equal to unity for directions from zenith down to horizon and
equal to zero from horizon to nadir (left panel in Figure 9.2.4). Right panel of the
Figure 9.2.4 illustrates the same pattern in dB scale. The pattern is to have the RHCP
component only to match with the type of polarization radiated by the satellites.

It is well established in antenna theory that the speed by which the pattern changes
with angles is generally proportional to the antenna size in wavelength scale. The
step-like pattern of Figure 9.2.4 would require an antenna of infinitely large size [the
reader might wish to check Lopez (1979) for a detailed discussion of the vertical
array antenna size needed to approach the step-like pattern of Figure 9.2.4, more
discussions are also provided in Sections 9.4.4, 9.7.4, and 9.7.7).

We now review the pattern of a GNSS user antenna that is of practical size. We
use the pattern in the form of normalized power flux (9.1.125), express this pattern in
dB, and plot it schematically in Figure 9.2.5. A high degree of rotational symmetry
with respect to the vertical axis is assumed and only the region 0 ≤ 𝜃 ≤ 𝜋 is shown.
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Figure 9.2.5 Typical pattern of a GNSS user
antenna.

A typical receiver antenna pattern has a maximum value equal to unity (or 0 dB)
normally in the direction of zenith. Then the pattern readings typically decrease as 𝜃
increases. Normally an elevation mask is used in processing. Typically the elevation
mask is 10∘ to 12∘. The reason for the mask angle is that satellite signals below those
elevations are likely to be obstructed by natural and human-made obstacles. At the
same time, the reliable tracking of low elevated satellites is absolutely necessary for
high-precision positioning to keep the DOP factor at minimal levels. This means that
the pattern readings for low elevations should be as high as possible (as small as
possible in absolute value in the dB scale with a minus sign). We mark the pattern
reading for 10∘ elevation asF+10. This reading determines the system’s ability to track
low elevation satellites. In the literature and in special antenna documentation another
pattern reading is sometimes mentioned. This is the reading for horizon direction
Fhorizon. The antenna pattern value in the direction of the horizon versus the zenith is
often referred to as a roll-off.With typical designs theF+10 reading is slightly less than
roll-off (in absolute value in dB). The angular region within the top semisphere above
10∘ to12∘ elevation is referred to as a major lobe of the GNSS user antenna pattern.

Now we discuss directions below the horizon. The pattern reading for 10∘ below
the horizon is marked as F−10. The reason is that given the specular reflections model,
see Section 9.4, for satellite elevations of 10∘ and higher the reflections from under-
lying terrain will come from 10∘ and lower below the horizon. Thus the F−10 reading
indicates a kind of weakest case from a multipath suppression standpoint. This read-
ing sets up the largest multipath error contribution. Thus the reading is desired to
be as small as possible (as large as possible in absolute value in dB with a minus
sign). So far for typical GNSS user antennas F−10 is 5 to 6 dB below F+10. With 𝜃
increasing below the horizon, the pattern values tend to decrease. Thus the multipath
error associated with high elevated satellites normally is smaller as compared to low
elevation multipath. This relation is analyzed in more detail in Section 9.4. There
could be some sharp drops and local maximums of the pattern (these are referred to
as back lobes). Finally we mark the Fnadir reading for 𝜃 = 180∘. This reading defines
suppression of multipath associated with high elevation satellites.

Therefore, one encounters conflicting requirements that actually govern large por-
tions of antenna design in high precision GNSS.With the antenna size generally given
it is not possible to achieve both high F+10 and low F−10. The collision between
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low elevated satellites tracking and multipath protection, while keeping the receiv-
ing GNSS antennas to practical size, is the major reason for achieving centimeter
accuracy instead of millimeter positioning accuracy in real time!

Currently, there are two distinctly different types of the GNSS receiving antennas
adopted in practice. The first is referred to as a reference station antenna. Currently,
such antennas are normally about 40 cm (two wavelengths) in size and are installed
at adequate open-sky sites. These antennas are to have the best multipath protection
possible to ensure the highest quality reference data. The standard is the choke ring
ground plane antenna.

The choke ring antenna was initially developed by the Jet Propulsion Laboratory
(JPL) of NASA. This antenna has been serving the geodetic community for more
than 20 years. Some of the design considerations of this antenna are discussed in
Section 9.7.4 along with newly suggested developments. Figure 9.2.6 illustrates the
CR4 antenna of Topcon Corporation. This antenna is a version of the original JPL
choke ring antenna with Dorne and Margolin antenna element. In Figure 9.2.7 the
antenna pattern for L1 and L2 signals of GPS are plotted in typical polar format.

Figure 9.2.6 CR4 reference station antenna
of Topcon Corp. JPL—original choke ring
ground plane with Dorne & Margolin antenna
element.

Figure 9.2.7 Antenna patterns of CR4 antenna for 1575MHz (left panel) and 1227MHz
(right panel) frequencies.
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Patterns for RHCP and LHCP components are shown separately as adopted in prac-
tice. The LHCP pattern is related to the RHCP pattern using expression (9.1.122).
For directions above the horizon the RHCP component is of interest. The F+10 read-
ings here are –14 to –15 dB for L1 and L2 signals. Approaching nadir the LHCP
component is dominating. For this antenna Fnadir is –25 to –30 dB.

The second antenna type is referred to as a rover antenna, which is for practical use
in the field. The art of design here is to provide compact and light-weight designs and
multipath protection that is sufficient for standard accuracy of positioning. With the
rover antennas, theF+10 reading normally is somewhat higher in order for the receiver
to keep track of the low elevated satellites even under hard practical conditions. As an
example, Figure 9.2.8 shows the rover antenna MGA8 of Topcon Corporation. One
may notice the difference in size compared to the choke ring (see more about this
antenna in Section 9.7.5). The RHCP and LHCP patterns of this antenna are shown
in Figure 9.2.9 for L1 and L2 signals, respectively. The F+10 readings are−7 to−8 dB
while Fnadir is about –20 dB.

Figure 9.2.8 Dual-frequency rover antenna
MGA8 of Topcon Corp.

Figure 9.2.9 Antenna patterns of MGA8 antenna for 1575 MHz (left panel) and 1227
MHz (right panel) frequencies.
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9.2.2 Directivity

Intuitively and from practical experience one knows that if one is to replace an antenna
by a more “directional” antenna the signal strength might get “better.” We will look
into this phenomenon and discuss what wemean by saying better in the case of GNSS
applications. Once again, we consider the transmitting mode of the antenna and refer
to the equality of the antenna pattern in the receiving mode (Section 9.1.5).

We begin with the ideal isotropic radiator, which is an antenna having equal radi-
ation intensity in all directions. Sometimes such radiators are called hypothetical
because it can be proven that it is not possible to achieve such properties in practice.
However, this hypothetical radiator is a convenient reference for directional properties
of actual antennas, thus it is widely used.

Let P𝛴 stand for the total power radiated by the isotropic radiator. One observes
the radiation on an imaginary sphere in the far-field region. If the power is distributed
uniformly in all directions, then the flux through each unit element of the sphere will
be the total power divided by the total area of the sphere. The latter is 4𝜋r2 where
the radius of the sphere is r. Hence the power flux per unit square (module of the
Poynting vector) is

𝛱isotropic =
P𝛴
4𝜋r2

(9.2.3)

It is the same in any direction fixed by angles 𝜃 and 𝜙. Now we replace the isotropic
radiator with the actual antenna that has a pattern ofF(𝜃, 𝜙). The pattern is normalized
such that its peak value equals unity.We assume for themoment that only the principal
polarization component is radiated. We further assume that the total radiated power
P𝛴 is the same as that of the ideal isotropic radiator. The power flux through different
unit elements of the sphere, however, will no longer be the same. The flux will depend
on angles 𝜃 and 𝜙 and will be proportional to the antenna power pattern,

𝛱actual(𝜃, 𝜙) =
P𝛴
4𝜋r2

D0F
2(𝜃, 𝜙) (9.2.4)

The constant of proportionality is denoted by D0. This constant is called antenna
directivity. It shows the gain in power flux versus an ideal isotropic antenna for the
direction where F(𝜃, 𝜙) = 1. In other words,

𝛱max actual(𝜃, 𝜙) =
P𝛴
4𝜋r2

D0 (9.2.5)

Thus, the exact definition of directivity is as follows: We consider the direction in
space in which the actual antenna radiates the peak signal. The antenna directivity
shows how many times the power flux density in this direction would grow if one
were to replace an ideal isotropic radiator with an actual antenna, assuming the same
total radiated power by both antennas.

The meaning of directivity comes from general considerations of energy conser-
vation law. An ideal isotropic radiator radiates with equal intensity in all directions.
Since an actual antenna has some directivity, it will radiate in some directions less
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Figure 9.2.10 Directivity calculation of a narrow-beam
antenna.

than the ideal isotropic antenna. Due to conservation of total power it must radiate
more in other directions. The coefficient showing the power flux density growth in
the direction in which the peak power flux is observed is the directivity.

We want to stress that the antenna itself is what is called a passive component. It
does not contain any amplifiers of the signal at the antenna input. One is not to be
confused with a low-noise amplifier (LNA), which is included into the user GNSS
antenna housing but it actually goes after the antenna. What is called antenna direc-
tivity comes just from antenna pattern properties, the antenna is able to radiate more
power in some directions just because it radiates less in other directions when com-
pared to an isotropic source.

Let’s look at some examples. First, we consider an antenna radiating all the power
within a very narrow beam having an angular width of Δ𝜃 (Figure 9.2.10).

Narrow-beam antennas are used for radar purposes. For an imaginary sphere of
radius r, the spherical area within the beam is

S = r2𝜋Δ𝜃2 (9.2.6)

The power flux density through this area will be total radiated power divided by S,
namely

𝛱 =
P𝛴

r2𝜋Δ𝜃2
(9.2.7)

The power flux density for an isotropic radiator is given in (9.2.2). Using the definition
of the directivity D0, one has

D0 =

P𝛴
r2𝜋Δ𝜃2

P𝛴
4𝜋r2

=
4𝜋

𝜋Δ𝜃2
(9.2.8)

Thus for this case, the directivity is the full solid angle of 4𝜋 steradian divided by
that of a beam. By making antennas with a narrow beam one can greatly increase the
power flux. Radar antennas have a directivity of 30 dB (or 1000 times) and more.

The next example refers to the perfect GNSS receiver antenna of the previous
section. In transmitting mode, such an antenna radiates uniformly in all directions
within the semisphere above the horizon but will not radiate at all within the
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semisphere below the horizon. The area of the imaginary semisphere above the
horizon is one-half of that of the full sphere. Hence,

D0 =

P𝛴
2𝜋r2

P𝛴
4𝜋r2

= 2 → +3 dB (9.2.9)

The directivity is equal to 2 or, equivalently, +3 dB. That is what one would achieve
with a perfect GNSS antenna for both the satellite tracking and the multipath rejection
point of view.

In order to derive the general formulas for the directivity, one must note that
because of the power conservation law, the total radiated power results from inte-
grating the power flux density over the imaginary sphere, thus

P𝛴 = ∫
2𝜋

0 ∫
𝜋

0
𝛱(r, 𝜃, 𝜙)r2 sin(𝜃)d𝜃d𝜙 (9.2.10)

Here, r is the radius of the sphere. Substituting (9.2.4) yields

P𝛴 = ∫
2𝜋

0 ∫
𝜋

0

P𝛴
4𝜋r2

D0F
2(𝜃, 𝜙)r2 sin(𝜃)d𝜃d𝜙 (9.2.11)

and
D0 =

4𝜋

∫
2𝜋

0 ∫
𝜋

0
F2(𝜃, 𝜙) sin(𝜃)d𝜃d𝜙

(9.2.12)

For a good GNSS user antenna with rotational symmetry with respect to the ver-
tical axis, taking F(𝜃, 𝜙) = F(𝜃) and performing integration over 𝜙 simplifies this
expression to

D0 =
2

∫
𝜋

0
F2(𝜃) sin(𝜃) d𝜃

(9.2.13)

Finally, the directivity pattern is

D(𝜃, 𝜙) = D0F
2(𝜃, 𝜙) (9.2.14)

This pattern shows gain or loss in power flux density versus an isotropic radiator as
a function of direction in space. The same quantity in dB scale reads

D(𝜃, 𝜙)[dB] = D0[dB] + F(𝜃, 𝜙)[dB] (9.2.15)

Since the antenna pattern is less than or equal to unity, F(𝜃, 𝜙)[dB] ≤ 0 holds. There-
fore (9.2.15) shows the power flux decrease for a particular direction related to max-
imum.
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We look at more directivity examples. For the Hertzian dipole, substituting the
antenna pattern (9.2.1) into (9.2.13), yields

D0 =
2

∫
𝜋

0
sin3(𝜃) d𝜃

= 1.5 → +1.8 dB (9.2.16)

For half-wave dipole employing (9.2.2),

D0 =
2

∫
𝜋

0

⎛⎜⎜⎜⎝
cos

(
𝜋

2
cos (𝜃)

)
sin(𝜃)

⎞⎟⎟⎟⎠
2

sin(𝜃) d𝜃

= 1.64 → +2.15 dB (9.2.17)

It has been mentioned that the antenna pattern for the Hertzian dipole is a bit wider
compared to the half-wave dipole (see Figure 9.2.2). This results in a slight decrease
in the directivity of the Hertzian dipole.

Finally we turn to directivity estimates that resemble a typical GNSS user antenna.
We start with replotting Figure 9.2.5 in relative units in terms of power (Figure 9.2.11,
left panel). An ideal GNSS user antenna power pattern is shown as a dashed line for
comparison. We note that a 12- to 18-dB roll-off for the direction of the horizon in
the relative power units scale means about 1/10 or less compared to zenith. Levels
of about –20dB, which are typical for the back lobes area of the pattern, are 0.01
compared to zenith, and are shown schematically in the left panel in Figure 9.2.11.

Now we take note of the denominator in the directivity formula (9.2.13). We use
an azimuth-independent version. Note that the “tail” of the pattern after 90∘ does not
contribute any significant value to the integral because F2(𝜃) is small. Therefore, for
the user antenna directivity calculations it is permissible to integrate only over the top
semisphere,

D0 ≈
2

∫
𝜋∕2

0
F2(𝜃) sin(𝜃)d𝜃

(9.2.18)

Figure 9.2.11 Directivity estimates of a typical GNSS user antenna.
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But for directions in the top semisphere a typical user antenna pattern is smooth and
could be approximated by a simple function.

We choose a cosine function with the only degree of freedom being the Fhorizon
value. We approximate the pattern as

F(𝜃) =
Δ + cos(𝜃)

Δ + 1
(9.2.19)

This gives F(0) = 1 for the zenith direction, and for horizon direction we get

Fhorizon = F
(
𝜋

2

)
=

Δ
Δ + 1

(9.2.20)

By varying Δ one can approximate a practical pattern. For instance, with Δ = 0.3
one has a 12.7-dB roll-off which is a typical practical figure. Substituting the approx-
imation (9.2.19) into (9.2.18) and using Δ = 0.3, yields +6.7-dB directivity. This is
a typical figure for a GNSS user antenna.

Next, we look into signal power versus zenith angle 𝜃. For this purposewe consider
the antenna directivity pattern (9.2.14). For a given roll-off value in dB one calculates
Δ by inverting (9.2.20),

Δ =
10Fhorizon[dB]∕20

1 − 10Fhorizon[dB]∕20
(9.2.21)

This expression is substituted into (9.2.19) and then into (9.2.18) and (9.2.14). This
way one has the directivity pattern (9.2.14) with the roll-off valuesFhorizon as a param-
eter. This is plotted in the right panel in Figure 9.2.11 in dB scale. The perfect GNSS
antenna directivity pattern is also shown as the dashed line for comparison. This
antenna has a constant directivity pattern equal to +3 dB.

We see that if a typical user antenna has 12.7-dB roll-off, then the directivity for
the horizon is about 4 dB below a perfect antenna. This means that the typical user
antenna will receive 4 dB less signal power from low elevation satellites compared to
a perfect one. For 18-dB roll-off the loss is about 7 dB. It has been pointed out previ-
ously that signal power for low elevation satellites is important from a reliability of
signal tracking standpoint. In actuality, power losses against a perfect antenna will be
even slightly larger due to a number of loss factors discussed in Section 9.2.4. Addi-
tionally, with a roll-off increase in dB scale the directivity for zenith slightly increases.
For 12.7-dB roll-off one has 6.7-dB zenith directivity while for 18-dB roll-off the
directivity is 7.2 dB. This stays in agreement with the main directivity features: with
a roll-off increase, the pattern becomes somewhat narrower and, thus, directivity for
zenith D0 should grow.

Given estimates are important for two reasons. First, one is to note that slight vari-
ations of zenith directivity D0 are associated with larger variations in the directivity
toward low elevated satellites. From this standpoint the zenith directivity, sometimes
shown in the user antenna documentation, is not that informative. Second, the growth
of the zenith directivityD0 is associated with a decrease in the low elevation satellites’
signal reception capabilities. Thus, larger zenith directivity generally means worse
GNSS antenna performance! It is worth mentioning that this kind of result, which
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may sound paradoxical, is based on the general energy conservation law and no engi-
neering effort can be applied to overcome this.We conclude that the better GNSS user
antenna would have a wider pattern for the top semisphere with less zenith directivity.
However, this is not to affect the multipath rejection capabilities. For more detailed
technical information regarding GNSS antenna directivity, the reader is referred to
Rao et al. (2013).

9.2.3 Polarization Properties of the Receiving GNSS Antenna

We begin with an example of a practical GNSS antenna. We take a circular metal
ground plane and place two crossed half-wave dipoles over it (Figure 9.2.12, left
panel). By means of a feed network, not shown in the figure, a high-frequency volt-
age is provided to both dipoles in such a way that the two voltages have the same
amplitude and a 90∘ phase shift with respect to one another. The voltages induce cur-
rents over the dipoles. The currents are shown schematically as dashed arrows. The
amplitudes of the currents are equal and denoted by I0. The y-dipole current is 90

∘

delayed in phase with respect to the x-dipole current. This is indicated by the −i term
with the y-dipole current.

An observation is in order. Specifics and flavor of engineering electromagnetics
manifests itself by two governing equations (9.1.10) and (9.1.11) and libraries of
books solving them for cases of particular interest. This resembles both the power of
fundamental physics to catch the main features of a large area in a compact format,
and sophistication of engineering to derive practically relevant conclusions from
these “simple” principles. With engineering electromagnetics, similar to many other
engineering branches, two methods are available for most cases: either more or less
approximate or heuristic analytical estimates or exact computer simulations with
special software packages. We will come across this many times in this chapter.
In regard to the antenna shown in the left panel in Figure 9.2.12 no “simple”
closed-form solution for the fields is available so far because the dipoles induce a

Figure 9.2.12 Cross-dipole antenna.
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complex current distribution onto the ground plane. Some estimates and ground
plane design guidelines will be discussed further in Section 9.7. As for this case,
useful closed-form expressions for the far fields could be derived for a limited case
of no ground plane. This design is not practical but it provides a general overview of
polarization properties of the circular polarized antennas. Let us turn to a new case.

Consider two half-wave dipoles radiating in free space (right panel in
Figure 9.2.12) and excited by voltages of above. As discussed in Section 9.1.6, the
electromagnetic field could be equivalently represented as a sum of linear polarized
waves or as a sum of circular polarized waves (far-field derivations for a cross-dipole
system are shown in Appendix E). On the basis of the linear polarized wave, the far
field is

E⃗ = −iI0𝜂0
e−ikr

2𝜋r

(
F𝜃(𝜃, 𝜙)e

i𝛹𝜃 (𝜃,𝜙)𝜃0 + F𝜙(𝜃, 𝜙)e
i𝛹𝜙(𝜃,𝜙)𝜙0

)
(9.2.22)

Here
F𝜃(𝜃, 𝜙)e

i𝛹𝜃 (𝜃,𝜙) = cos 𝜃(f (nx) cos𝜙 − if(ny) sin𝜙) (9.2.23)

F𝜙(𝜃, 𝜙)e
i𝛹𝜙(𝜃,𝜙) = −i(f (ny) cos𝜙 − if(nx) sin𝜙) (9.2.24)

with

f (u) =
cos

(
𝜋

2
u
)

1 − (u)2
(9.2.25)

For the circular polarized basis, the same field is

E⃗ = −iI0𝜂0
e−ikr√
2𝜋r

(
FRHCP(𝜃, 𝜙)e

i𝛹RHCP(𝜃,𝜙)p⃗RHCP0 + FLHCP(𝜃, 𝜙)e
i𝛹LHCP(𝜃,𝜙)p⃗LHCP0

)
(9.2.26)

where

FRHCP(𝜃, 𝜙)e
i𝛹RHCP(𝜃,𝜙) =

1
2

[
cos 𝜃(f (nx) cos𝜙 − if(ny) sin𝜙)

+(f (ny) cos𝜙 − if(nx) sin𝜙)

]
(9.2.27)

FLHCP(𝜃, 𝜙)e
i𝛹LHCP(𝜃,𝜙) =

1
2

[
cos 𝜃(f (nx) cos𝜙 − if(ny) sin𝜙)

−(f (ny) cos𝜙 − if(nx) sin𝜙)

]
(9.2.28)

Directional cosines nx and ny are given by (E.14) and (E.15) of Appendix E and are
illustrated in Figure E.2.

We take the case 𝜃 = 0 (zenith) first. From (9.2.26), (9.2.27), and (9.2.28) one
has FRHCP = 1, 𝛹RHCP = −𝜙, and FLHCP = 0. This means that for the zenith direc-
tion such a cross-dipole antenna radiates a pure RHCP field. The importance of the
phase pattern 𝛹RHCP being linear progressive with respect to azimuth will be dis-
cussed further in Section 9.3. Now we consider the horizon direction 𝜃 = 𝜋∕2. It
is more convenient to use the linear polarized basis for the moment with expressions
(9.2.22), (9.2.23), and (9.2.24). We see that the vertical (the 𝜃 th) component vanishes
in this direction and the only remaining one is the horizontal (the 𝜙 th) component.
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In short, one says that in the horizon direction a no-ground plane cross-dipole antenna
radiates a horizontal linear polarized field. Finally, we take the nadir direction 𝜃 = 𝜋.
From (9.2.26), (9.2.27), and (9.2.28) one immediately recognizes that FRHCP = 0 and
FLHCP = 1. Hence, a cross-dipole antenna radiates a pure LHCP field.

This basic result could be understood merely on the basis of symmetry. As was
discussed in Section 9.1.4, in the direction perpendicular to a dipole the dipole radi-
ates an electric field parallel to its axis. The electric field of a cross-dipole system
follows dipole current relationships in amplitude and phase for the zenith direction.
In other words, if one watches the electric field from the top of the z axis, it will rotate
in a counterclockwise direction, manifesting RHCP. Due to the symmetry of the sys-
tem, the field behavior in nadir direction will be the same. But now if one watches
the rotation from the negative z axis, it will be seen in a clockwise direction, thus
manifesting LHCP.

Next, there should be a direction in space where the rotation changes from right
hand to left hand. Due to symmetry this must be the local horizon. Let us fix the
x-axis direction with the local horizon plane. The dipole parallel to the x axis does
not radiate in the x axis direction (see Section 9.1.4), instead, the y dipole radiates
its maximum. Thus, within the plane of the local horizon, the polarization is linear
horizontal.

The ground plane shown in the left panel in Figure 9.2.12 changes these results
twofold. The ground plane will act like a mirror, making the radiation in an upward
direction much more as compared to the downward direction. Thus the RHCP com-
ponent at zenith direction will be much larger in magnitude compared to the LHCP
component at nadir. That is what is required to suppress multipath reflections com-
ing from underneath the antenna. Then, in general, an antenna with a ground plane
will not have a pure linear polarization in horizon direction. Instead it will have an
elliptical polarization with the RHCP component dominating.

Amore general situation is seen in Figure 9.2.13, which shows a schematic illustra-
tion of the GNSS user antenna polarization properties. One can say that if the antenna
radiates a pure RHCP field in the direction of the zenith, it will provide a pure LHCP
radiation in antizenith or nadir. This follows from basic symmetry as discussed above.
However, with these rotational properties, there should be some transition area where

Figure 9.2.13 Polarization properties of a
receiving GNSS antenna (schematically).
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the rotation changes its direction. As mentioned in Section.9.2.1, the angular region
from the zenith down to about 10∘ to 12∘ elevation could be referred to as the main
lobe of the GNSS antenna pattern. Within this angular region, the polarization nor-
mally is almost perfectly right-hand circular for most of the GNSS antennas. Then the
angular region of transition starts. In this region the polarization is getting more and
more elliptical, but still has the right-hand direction of rotation. At angles of about 40∘

to 60∘ below horizon the polarization becomes linear. After that the LHCP compo-
nent dominates (see Figures 9.2.7 and 9.2.9 illustrating RHCP and LHCP patterns for
the choke ring and MGA8 antennas).

We complete this discussion by addressing the polarization loss term. We have
established that in most directions a typical GNSS user antenna will have a some-
what elliptical polarization. This could be represented as a sum of pure RHCP and
pure LHCP components. In Section 9.2.2 we discussed directivity assuming that only
the principal polarization component is radiated. Now we take the cross-polarized
component into consideration. We use power flux density in the form of (9.1.121).
The total radiated power is

P𝛴 = PRHCP + PLHCP (9.2.29)

Here the power associated with co-(RHCP) and cross-(LHCP) polarized compo-
nents is

PRHCP(LHCP) =
1
2𝜂0

|URHCP(LHCP)|2∫ 𝜋

0 ∫
2𝜋

0
(FRHCP(LHCP)(𝜃, 𝜙))

2 sin 𝜃 d𝜙d𝜃

(9.2.30)
The power associated with the cross-polarized component is useless.We define polar-
ization efficiency for the GNSS user antenna as

𝜒pol =
PRHCP

PRHCP + PLHCP
(9.2.31)

The term 𝜒pol is one of the loss factors to be considered with antenna gain (see next
Section 9.2.4). Let us estimate polarization efficiency for the choke ring antenna using
patterns shown in Figure 9.2.7. First, as we have done in Section 9.2.2, we neglect
radiation in the bottom half of the sphere. This is possible because both RHCP and
LHCP components provide only small contributions to directivity in this area. Now
one notes that for most of the directions in the top semisphere the LHCP component
relative to RHCP is about –15 dB or less. For estimation purposes we take –10 dB or
0.1 in related power units as an overestimate. This gives 𝜒pol = 0.9 or −0.4 dB.

Finally, with the patterns seen in Figures 9.2.7 and 9.2.9 onemay estimate the axial
ratio term inverting the relationship (9.1.128). This axial ratio will be a function of 𝜃.
For instance, for L2 frequency of a choke ring antenna (Figure 9.2.7, right panel) at
zenith, we take LHCP pattern reading as –18 dB relative to RHCP. This gives 0.126
in relative units. Expression (9.1.128) shows then that 𝛼ar = 0.78. For the horizon
(𝜃 = 𝜋∕2) taking –10 dB LHCP relative to RHCP, one has 𝛼ar = 0.51. We see that
the axial ratio tends to decrease from zenith to horizon. This is common for all GNSS
user antennas as discussed above. Normally 𝛼ar is specified for the zenith direction in



562 GNSS RECEIVER ANTENNAS

user antenna documentation. A typical requirement is for 𝛼ar to not be less than 0.7
or –3 dB. However, the reason to limit the 𝛼ar is not just polarization loss. Normally
the decrease of 𝛼ar (the growth in dB scale with minus sign) for the zenith indicates
the loss of rotational symmetry of the antenna with respect to azimuth. As will be
discussed in Section 9.3, this in turn results in the antenna phase center offset from
the vertical axis, providing a biased position in the horizontal plane.

9.2.4 Antenna Gain

Antenna gain shows the actual gain or loss of signal power radiated in a certain direc-
tion against an ideal isotropic radiator. In Section 9.2.2, we discussed the gain that
comes from directivity. Now we take loss factors into consideration. These losses
are generally unavoidable. Once again, we keep discussing a transmitting mode of
antenna functionality.

Consider a signal generator connected to the antenna by a transmission line
(Figure 9.2.14). We will discuss some of transmission line basics in Section 9.5.
For now, we just note that a part of the power Pg provided by the generator will
be unavoidably reflected back from the antenna input. The physical phenomenon
causing such a reflection is known as a mismatch. The reflected power will be lost.
By 𝜒 ret we denote a parameter known as return loss. This is the part of the power Pg
lost due to reflections. One writes

Pa = (1 − 𝜒 ret)Pg (9.2.32)

Here, Pa is the useful power actually taken from the generator. Next, some of the
power Pa will be absorbed by the antenna body. An antenna, like any other real-world
body, absorbs electromagnetic field energy. We introduce 𝜒a as antenna efficiency
and write

P𝛴 = 𝜒aPa (9.2.33)

where P𝛴 is actually the power radiated into space. Finally, as discussed in the previ-
ous section, some of the radiated power is associated with the cross-polarized com-
ponent of the field. This power is lost. Thus the final useful power is

Puseful = 𝜒pol𝜒a(1 − 𝜒 ret)Pg (9.2.34)

This is the power that will be distributed in space due to the directivity properties of
the antenna.

Figure 9.2.14 Antenna gain calculation.



ANTENNA PATTERN AND GAIN 563

By definition, the antenna gain G is the ratio of the radiation intensity in a given
direction to the radiation intensity that would be obtained if the power accepted by
the antenna were radiated isotropically (IEEE Standard, 2004). The reason for intro-
ducing antenna gain is its ability to show actual advantages or disadvantages of one
antenna against another in terms of radiated power flux. The gain could be actu-
ally obtained by replacing the antenna under test with another one whose gain is
known from precise calculations or measurements. By comparison to derivations in
Section 9.2.2, one writes

G0 = 𝜒pol𝜒a(1 − 𝜒 ret)D0 (9.2.35)

This is referred to as maximal gain or just gain. An antenna gain pattern for the receiv-
ing GNSS antenna is

G(𝜃, 𝜙) = G0F
2
RHCP(𝜃, 𝜙) (9.2.36)

where F2
RHCP(𝜃, 𝜙) is a power pattern of the RHCP component.

It is worth mentioning that for the transmitting mode of an antenna, the loss factors
introduced are somewhat less important compared to the receiving mode. With the
transmitting mode, the losses could be potentially compensated by an increase in
power of a signal generator. On the contrary, with the receiving mode an antenna is
the first sensor with the chain of transformation from the arriving signal to obtaining
useful data. Each of the loss factors provides a certain signal damage that cannot
be compensated for. This will be discussed in more detail in Section 9.6 in relation
to the signal-to-noise ratio observed at the user GNSS receiver output. The natural
requirement for high-precision GNSS user antenna designs is to keep all loss factors
as small as possible.

We are to stress again that an antenna is a passive component, meaning no addi-
tional power is consumed from other sources for purposes of signal amplification. As
seen with (9.2.35), the antenna gain comes only from the directivity property. All the
loss factors contribute to a decrease in gain.

We look at some relevant numbers. The polarization efficiency 𝜒pol has been char-
acterized already in the previous section. The antenna efficiency 𝜒a is kept at the
highest levels by means of careful design and using appropriate materials. A typical
estimate is for 𝜒a not to exceed –1 dB. We will see later that return loss 𝜒 ret typically
does not exceed –10 dB.

We conclude this section with a topic the user might come across while dealing
with GNSS antennas—the gain transformation from one standard to another. Antenna
directivity with respect to an isotropic radiator is quite easy to evaluate and discuss.
However, as was mentioned already, an isotropic radiator cannot be constructed in
practice. That is why another antenna is sometimes used as a standard to evaluate
gain. The goal is to have the gain related to an antenna that could actually be built.
Directivity related to the new standard D0;new standard is

D0;new standard =
𝛱actual

𝛱new standard
=

𝛱actual

𝛱isotropic
∕
𝛱new standard

𝛱isotropic
(9.2.37)
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Here 𝛱 stands for power flux density (module of the Poynting vector) as before.
The half-wave dipole antenna is often used as a standard because half-wave dipole
antenna can easily be constructed and tested. At the same time, the directivity of a
half-wave dipole is known exactly; see (9.2.17). In dB units one has

G[dBd] = G[dBic] − 2.15 (9.2.38)

Here, special notations commonly used are shown. dBd units denote the gain related
to a dipole, while dBic is the gain related to the isotropic radiator.

9.2.5 Antenna Effective Area

Our goal is to make use of all the above derivations to estimate the signal power
delivered to the output of the user GNSS antenna.We begin with the antenna effective
area term.

In Figure 9.2.15, we show schematically the power flux from the signal source
arriving at the antenna. For GNSS applications the signal source is the satellite. Let
𝛱sat be the power flux density from the satellite. The antenna collects this power and
makes it available to the antenna output. The power flux density is measured in watts
per square meter. The received power, Preceived, is measured in watts. The received
power is directly proportional to the arriving flux. Thus

Preceived = 𝛱satSeff (9.2.39)

The constant of proportionality Seff should be measured in square meters. This term
is referred to as the antenna effective area in the direction of the signal.

One is to note that, in general, the effective area is not related to an actual surface
on the antenna elements. For instance, the effective area of a dipole antenna should
not be treated as a sum of surfaces of wires comprising the dipole. Instead, one may
think that a receiving antenna collects all the power flux that comes through a certain
equivalent effective area. This effective area is not a constant for the given antenna,
but rather it is proportional to the antenna power pattern. This is the case because of
the reciprocity theorem discussed in Section 9.1.5.

Figure 9.2.15 Definition of antenna effective
area.
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The key expression that relates the effective area with the antenna gain is

Seff (𝜃, 𝜙) =
𝜆2

4𝜋
G(𝜃, 𝜙) (9.2.40)

Here, G(𝜃, 𝜙) is the antenna gain pattern in transmitting mode. This relation consti-
tutes the “bridge” between the transmitting and receiving mode antenna functionality.
To estimate the receiving properties of the antenna, one is to employ this expression
and make use of the gain derivations for the transmitting mode.

By substituting (9.2.35) and (9.2.26) into (9.2.40) one accounts for directivity and
loss factors,

Seff (𝜃, 𝜙) =
𝜆2

4𝜋
𝜒pol𝜒a(1 − 𝜒 ret)D0F

2
RHCP(𝜃, 𝜙) (9.2.41)

Then the received power (9.2.39) in explicit form is

Preceived = P0sat𝜒pol𝜒a(1 − 𝜒 ret)D0F
2
RHCP(𝜃, 𝜙) (9.2.42)

Here, P0sat is the standard power received by the user antenna with a unit gain. This
value is specified by satellite developers. We take it as 10−16 W.

It is common to use (9.2.42) in the dB scale rather than in power units. For this
purpose it is customary to use not 1W but rather a 1-mW power as a reference. The
power related to 1mW has a special designation “dBm”—reads as “dB to mW.” The
received power (9.2.42) in dBm is

Preceived[dBm] = −130 + D0[dB] + FRHCP[dB](𝜃, 𝜙) + 𝜒pol[dB] + 𝜒a[dB] + (1 − 𝜒 ret)[dB]
(9.2.43)

We note that all the terms except for D0[dB] are negative, thus decreasing the power.
From this standpoint the power received from low elevated satellites is of special
interest. As discussed in Section 9.2.1, this power is F+10 dB below zenith. In actual-
ity, this power is even smaller due to a number of loss factors such as directivity of a
satellite antenna and increase in path propagation loss.We list all the other loss factors
for convenience: 𝜒pol[dB] = −0.4dB, 𝜒a[dB] = −1dB, (1 − 𝜒 ret)[dB] = −0.45dB.

It is instructive to mention that if one takes D0 = +6dB, the loss estimates just
given above, and assuming a GNSS wavelength of 20 cm, the expression (9.2.41)
gives an antenna effective area of Seff ≈ 80 cm2 for the direction where F2

RHCP(𝜃, 𝜙)
reaches unity (normally in zenith). This is independent to antenna type.

9.3 PHASE CENTER

The antenna phase center and phase center variations are quantities that explicitly
characterize a receiving GNSS antenna as a geodetic instrument. The physical nature
of these quantities originates from the antenna phase pattern. This section starts with
an overview of phase pattern details.
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9.3.1 Antenna Phase Pattern

Antenna phase pattern has been introduced in Section 9.1.4. In the receiving mode,
the phase pattern shows carrier phase delays or advances caused by the antenna as a
function of the direction from which the signal arrives. Assuming an RHCP signal
is radiated by a satellite, we consider only the principal polarization component of
the receiving antenna pattern which is RHCP. We denote the phase pattern as 𝛹 (𝜃, 𝜙)
and omit the RHCP designation for simplicity of writing. The phase pattern is usu-
ally measured in radians or degrees. The direct way of measuring 𝛹 (𝜃, 𝜙) would be
the same as with antenna pattern measurements shown in Figure 9.2.1. The antenna
under test and the source are located in the anechoic chamber at the far-field region
of each other. The antenna under test is rotated against some fixed center of rota-
tion. Signal phase delays or advances as a function of angular rotation generate the
phase pattern.

One immediately recognizes two important points. First, the antenna phase pattern
is accurate up to a constant term, because the distance between the source and antenna
under test can be arbitrary as long as they are at the far-field region of each other.
The reader is referred to discussions at the end of Section 9.1.4. We will see in the
next section that the uncertainty of this constant term should be properly accounted
for. Second, the thus defined antenna phase pattern is related to an adopted center
of rotation. We will call this center of rotation the antenna reference point (ARP).
For the discussion about antenna patterns in Section 9.2.1 the center of rotation was
not that important because the focus was on magnitudes of fields. Let us displace the
center of rotation against ARP. If the displacement is small compared to the distance
between the two antennas, the antenna pattern readings will not be affected. But if the
displacement is not small in wavelength scale, then the associated path delay change
will be noticeable compared to 2𝜋.

First, we look into the transformation of phase pattern if the center of rotation is
changed. One is to consider Figure 9.3.1.

We prefer to think in terms of the situation shown in the left panel Figure 9.1.6.
Namely, let the antenna under test be fixed and the source be rotated. Let the initial

Figure 9.3.1 Antenna phase pattern
transformation with the center of rotation
change.
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center of rotation be O and the new one be O′. The displacement vector r⃗d connects
the old and new centers. The angles 𝜃 and 𝜙 give the direction of the source in the
coordinate frame associated with the antenna under test, n⃗0 is a unit vector point-
ing toward the source. We use a logic that has already been applied in Section 9.1.4:
as long as the displacement |r⃗d| is small compared to the distance to the source, the
directions to the source fromO andO′ are essentially parallel. Let the “old” phase pat-
tern be 𝛹 (𝜃, 𝜙). This “old pattern” is measured with the source rotating with respect
to the center O. When the source rotates with respect to the new center O′ the sig-
nal exhibits extra delays or advances due to propagation path change by a factor Δr.
From the right triangle with Figure 9.3.1

Δr = |r⃗d| cos 𝜈 = r⃗dn⃗0 (9.3.1)

Here 𝜈 is the angle between r⃗d and n⃗0. Introducing Cartesian projections of r⃗d

r⃗d = xdx⃗0 + ydy⃗0 + zdz⃗0 (9.3.2)

and n⃗0 (directional cosines)
nx = sin 𝜃 cos𝜑 (9.3.3)

ny = sin 𝜃 sin𝜑 (9.3.4)

nz = cos 𝜃 (9.3.5)

one writes the dot product at the right hand side of (9.3.1) as

Δr = r⃗dn⃗0 = xd sin(𝜃) cos(𝜙) + yd sin(𝜃) sin(𝜙) + zd cos(𝜃) (9.3.6)

Thus the carrier phase delays or advances will be

Δ𝛹 = kΔr (9.3.7)

Here k is a wavenumber (9.1.32), in which 𝜆 denotes the wavelength. The total phase
of the field will be recognized as the antenna phase pattern related to the new origin
𝛹 ′(𝜃, 𝜙) such that

𝛹 ′(𝜃, 𝜙) = 𝛹 (𝜃, 𝜙) − Δ𝛹 (9.3.8)

Making use of (9.3.6), (9.3.7) yields

𝛹 ′(𝜃, 𝜙) = 𝛹 (𝜃, 𝜙) −
2𝜋
𝜆
(xd sin(𝜃) cos(𝜙) + yd sin(𝜃) sin(𝜙) + zd cos(𝜃)) (9.3.9)

Therefore the change in phase pattern due to the center of rotation displacement
equals a change in path delay for each direction (𝜃, 𝜙), expressed in angular units.
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An important property of circular polarized antennas and of receiving GNSS
antennas, in particular, has been mentioned already in Section 9.2.3. Namely, the
phase pattern of an RHCP antenna can be written in the form

𝛹 (𝜃, 𝜙) = −𝜙 + 𝛹1(𝜃, 𝜙) (9.3.10)

The first term on the right-hand side is a liner progressive phase delay, i.e., the
azimuth. This term is common for all the RHCP antennas. The second term is the
remaining phase pattern. The linear progressive term gives rise to the so-called
windup correction (see Section 6.2.4)

In order to finalize the overview of antenna phase pattern features, one is to
note that an antenna phase pattern is obviously a periodic function of azimuth 𝜙
with period 2𝜋. Such functions could be expanded in Fourier series with respect
to azimuth. For a function of the zenith angle 𝜃 and azimuth 𝜙 an expansion into
spherical harmonics is possible. Generally, spherical harmonics are widely used in
many areas. For fundamental treatment in regards to fields theory see Morse and
Feshbach (1953). A spherical harmonic GPS antenna phase pattern expansion was
presented in Rothacher et al. (1995). Spherical harmonics are orthogonal in the
space of functions defined at 0 ≤ 𝜃 ≤ 𝜋 and 0 ≤ 𝜙 ≤ 2𝜋, thus constituting a basis in
the space. The relevant expansion of an antenna phase pattern is

𝛹1(𝜃, 𝜙) =
∞∑
n=0

n∑
m=0

(Amn cos(m𝜙) + Bmn sin(m𝜙))P
m
n (cos 𝜃) (9.3.11)

Here Pm
n (cos 𝜃) are Legendre functions. Orthogonality conditions for these functions

and other useful formulas can be found in Abramowitz and Stegun (1972) or
Gradshteyn and Ryzhik (1994). The coefficients Amn and Bmn can be determined
using measured data for 𝛹1(𝜃, 𝜙) employing orthogonality.

9.3.2 Phase Center Offset and Variations

We begin with a definition. An antenna is said to have an ideal phase center if its phase
pattern 𝛹1(𝜃, 𝜙) in (9.3.10) is constant or can be made constant by the transformation
(9.3.9). For the first case, the phase center location is at the center of rotation to which
the pattern is referred to, thus coinciding with the ARP. In the second case the phase
center is offset from the center of rotation by the vector r⃗d.

This definition is qualitatively clear. If the antenna has an ideal phase center it
introduces an extra carrier phase delay or advance that is the same in all directions.
Since the phase pattern is defined up to constant term, this extra delay or advance
could be set to zero. In transmitting mode, in the far-field region such an antenna will
be recognized as a point that radiates ideal spherical wavefronts. Unfortunately, no
real-world antennas have an ideal phase center. Moreover, in general, the definition
of what one takes as phase center depends on the application.

Let us look at a qualitative illustration first by observing a float oscillating on the
water surface. If the float possesses perfect rotation symmetry, say like a cylinder
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Figure 9.3.2 Ideal circular and real wavefronts and associated phase centers.

perpendicular to the surface, then the wavefronts generated by the float would be
perfect circles as shown in the left panel in Figure 9.3.2. However, with the float
having arbitrary shape the wavefronts get disturbed (right panel of the figure). Then,
in the proximity of an observation point A the wavefront can be approximated by a
circular arc shown by the thick dotted line. Let A′ be the center of curvature of this
arc. An observer located in the proximity of Awill recognize the wavefronts as circles
originating from A′. Similarly, an observer at point B will recognize wavefronts as
originating from B′. Points A′ and B′ are referred to as partial phase centers, but these
will not be of interest in regards to GNSS positioning.

In order to define the phase center term relevant to receiving GNSS antennas, we
consider a typical situation of differential satellite positioning. In Figure 9.3.3 a base
station and rover antenna are shown. Each antenna has its ARP. In practice the ARP
is usually fixed at the antenna axis at the base of the threads plane. We assume that
phase patterns of base and rover antennas𝛹 base(𝜃, 𝜙) and𝛹 rover(𝜃, 𝜙) are known with
respect to the corresponding ARPs. The baseline vector r⃗ with projections (x, y, z)
connects the ARPs of the base and rover. The goal of satellite positioning is to mea-
sure r⃗. We look closely into this procedure.

We use the logic of the previous section. We assume that the baseline length is
much smaller compared to the distance to the satellite. Thus, onemay take the satellite

Figure 9.3.3 Calculation of phase center of
GNSS user antenna.
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directions from the base and rover as being essentially parallel. Let us assume that at
some instant of time there is a satellite q seen at angles 𝜃q, 𝜙q. Let n⃗0q be a unit vector
pointing toward satellite q. The Cartesian projections of n⃗0q are directional cosines:

nxq = sin(𝜃q) cos(𝜙q)

nyq = sin(𝜃q) sin(𝜙q)

nzq = cos(𝜃q) (9.3.12)

Let 𝜓base(rover)
q be the propagation path delay in radians for the signal traveling to the

base (rover). We are interested in 𝜓q, which is the difference in path delays between
rover and base:

𝜓q = 𝜓 rover
q − 𝜓base

q (9.3.13)

Let the distance from satellite q to the base (rover) be rbase(rover)q . Similar to the dis-
cussion in regards to Figure 9.3.1 one writes

𝜓q = −krroverq − (−krbaseq ) = kn⃗0qr⃗ (9.3.14)

Here k is a wavenumber (9.1.32). Note, that we omit all the tropospheric and iono-
spheric details because they cancel when differencing (9.3.14) for short baselines.

Nowwe turn to the equation that characterizes a practical observation case. For this
purpose we introduce 𝜓̂q. This is the GNSS observable (the output of the respective
receivers). One may write

𝜓̂q = 𝜓q + Δ𝜓q + 𝜏 (9.3.15)

Here 𝜓q is the exact value (9.3.13), Δ𝜓q is the direction-dependent error term, and 𝜏
is the constant error term. This constant term is related to hardware delays and initial
clock offset. Similarly let ̂⃗r be the GNSS estimate of the exact baseline r⃗. The estimate
differs from the exact value by the error Δr⃗:

̂⃗r = r⃗ + Δr⃗ (9.3.16)

Then, the GNSS observation equation is

𝜓̂q = kn⃗0q
̂⃗r (9.3.17)

which states that the GNSS observable is related to the baseline estimate in the same
way as the exact carrier phase difference is related to the exact baseline.

By subtracting (9.3.14) in (9.3.17) and using (9.3.16) one has the error equation

kn⃗0qΔr⃗ = Δ𝜓q + 𝜏 (9.3.18)

We proceed with analyzing this equation by making certain assumptions. The first
assumption will be that there are no other error sources contributing to the extra phase
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delays or advances except for the base and rover antennas. These delays or advances
are represented by the phase patterns of these antennas.

One immediately recognizes that for the carrier phase difference between base and
rover the linear azimuth-dependent term in (9.3.10) will be common to both phase
patterns and will cancel. From now on wewill drop the subscript 1 with the remaining
phase pattern at the right-hand side of (9.3.10) and always consider the phase pattern
with the linear azimuth-dependent term subtracted. Thus

Δ𝜓q = 𝛹 rover(𝜃q, 𝜙q) − 𝛹 base(𝜃q, 𝜙q) (9.3.19)

This equation is valid if the distance r between the base and the rover antennas is
small compared to the distance to satellite. Otherwise the windup correction arises.

Next, for the moment we assume that the base antenna has an ideal phase center
at its reference point and define its phase pattern to zero. We drop the identification
“rover” with the rover antenna phase pattern for the sake of simplicity of writing and
have

Δ𝜓q = 𝛹 (𝜃q, 𝜙q) (9.3.20)

Thus, we write (9.3.18) as

kn⃗0qΔr⃗ = 𝛹 (𝜃q, 𝜙q) + 𝜏 (9.3.21)

Within a given observation session there are a total number of Q angles available
from simultaneous observations at both stations. Therefore, one has Q equations like
(9.3.21) which together make a system of linear algebraic equations

kn⃗0qΔr⃗ − 𝜏 = 𝛹 (𝜃q, 𝜙q); q = 1, 2 · · ·Q (9.3.22)

of four unknowns—the three components of the Δr⃗ vector and the angular indepen-
dent delay term 𝜏. The number of equations in (9.3.22) is much larger than four. Note
that the goal here is to define the phase center location via the phase pattern with the
assumption there are no other error sources in the observation session except for the
phase pattern of the rover antenna. This means a common clock would be used in a
practical implementation.

By definition one says that the least-squares solution of the system (9.3.22) will
be the estimate of the rover antenna phase center offset r⃗pc relative to its ARP:

r⃗pc = Δr⃗ (9.3.23)

This definition is quite reasonable. This situation is shown by the vector diagram in
Figure 9.3.4 where we can see that the offset r⃗pc is the difference between the baseline
estimate and actual baseline under the assumptions made.

Figure 9.3.4 Phase center offset definition.
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The least-squares solution to (9.3.22) is

S =
Q∑
q=1

(−kn⃗0qr⃗pc + 𝛹 (𝜃q, 𝜙q) + 𝜏)2 → min (9.3.24)

Please note that up to this point a somewhat practical procedure has been discussed.
Certainly there are no base station antennas having an ideal phase center and there are
always additional error sources such as multipath. We will make certain corrections
later and return to this procedure when we discuss antenna calibrations in the next
section.

Finally we realize that the estimate of the rover antenna phase center offset as
described above has an obvious drawback—it depends on the geometry of the obser-
vation session. Namely it depends on the total number of observations Q and on the
respective angles 𝜃q, 𝜙q. To avoid this uncertainty one makes an additional assump-
tion that during the observation session the satellites move in such a way that their
paths cover the whole top semisphere continuously and homogeneously. Then we
switch from the summation in (9.3.24) to integration. The exact formula is

S = ∫
2𝜋

0 ∫
(𝜋∕2)−𝛼

0
{−(k sin(𝜃) cos(𝜙)xpc + k sin(𝜃) sin(𝜙)ypc + k cos(𝜃)zpc)

+𝛹 (𝜃, 𝜙) + 𝜏}2 sin(𝜃)d𝜃d𝜙→ min (9.3.25)

Here xpc, ypc, zpc are the exact rover antenna phase center offsets with respect to its
reference point. The angle 𝛼 is the elevation mask used with the observation session
as there were no satellites considered below zenith angle (𝜋∕2 − 𝛼). Some comments
on this formula are to follow.

First, as has been discussed previously, the phase pattern is defined up to a constant
term. This constant is part of the constant term 𝜏 in (9.3.25). Thus 𝜏 includes the
uncertainty of the phase pattern, hardware delays like length of cable connecting the
antenna with the receiver, and initial clock offset. All of these constants do not affect
the phase center location. Because of this, the antenna phase patterns can always be
standardized by subtracting a constant term, for instance, by setting up the readings
for zenith direction to zero. Next, the antenna phase center location is obviously a
function of elevation mask. This should always be accounted for with positioning
algorithms.

Finally, let the antenna have an ideal phase center located at (xpc, ypc, zpc). Then,
as follows from (9.3.9), its phase pattern with respect to the ARP is

𝛹 (𝜃, 𝜙) = k sin(𝜃) cos(𝜙)xpc + k sin(𝜃) sin(𝜙)ypc + k cos(𝜃)zpc (9.3.26)

Thus the formula (9.3.25) provides the solution to the problem of where to put a
hypothetical antenna with an ideal phase center in such a way that its phase pattern
would best fit the actual rover antenna phase pattern in the least-squares sense. This
definition of antenna phase center is quite certain. By IEEE Standard (2004) it is
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referred to as an average phase center over the coverage region above the elevation
mask. Getting back to the right panel in Figure 9.3.2 onemay say that the phase center
in the GNSS sense would be at point O. This point is the center of a circle best fitting
the actual wavefront for directions within the angular sector of interest shown as thick
dashed lines.

Now we turn to the solution of (9.3.25). Following a regular least-squares rou-
tine, the unknowns (xpc, ypc, zpc, 𝜏) are the solution to the system of linear algebraic
equations

𝜕S
𝜕xpc

= 0
𝜕S
𝜕ypc

= 0
𝜕S
𝜕zpc

= 0
𝜕S
𝜕𝜏

= 0 (9.3.27)

Taking partial derivations of the integrand, performing integration, and solving
(9.3.27) yields

xpc =
𝜆

2𝜋2

∫
2𝜋

0 ∫
(𝜋∕2)−𝛼

0
𝛹 (𝜃, 𝜙) sin (𝜃)2 cos(𝜙)d𝜃d𝜙

∫
(𝜋∕2)−𝛼

0
sin3(𝜃)d𝜃

(9.3.28)

ypc =
𝜆

2𝜋2

∫
2𝜋

0 ∫
(𝜋∕2)−𝛼

0
𝛹 (𝜃, 𝜙) sin (𝜃)2 sin(𝜙)d𝜃d𝜙

∫
(𝜋∕2)−𝛼

0
sin3(𝜃)d𝜃

(9.3.29)

zpc =
𝜆

4𝜋2

∫
2𝜋

0 ∫
(𝜋∕2)−𝛼

0
𝜓(𝜃, 𝜙) cos(𝜃) sin(𝜃)d𝜃d𝜙

∫
(𝜋∕2)−𝛼

0
cos(𝜃) sin(𝜃)d𝜃

−
∫

2𝜋

0 ∫
(𝜋∕2)−𝛼

0
𝜓(𝜃, 𝜙) sin(𝜃)d𝜃d𝜙

∫
(𝜋∕2)−𝛼

0
sin(𝜃)d𝜃

∫
(𝜋∕2)−𝛼

0
cos (𝜃)2 sin(𝜃)d𝜃

∫
(𝜋∕2)−𝛼

0
cos(𝜃) sin(𝜃)d𝜃

−
∫

(𝜋∕2)−𝛼

0
cos(𝜃) sin(𝜃)d𝜃

∫
(𝜋∕2)−𝛼

0
sin(𝜃)d𝜃

(9.3.30)

We see, that in general the phase center is offset from the ARP in all three coordinates
(x, y, z). Thus, generally, the user antenna should be oriented with respect to the local
horizon.
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An important particular case exists if the antenna possesses rotational symmetry
with respect to the vertical axis. In this case its phase pattern is a function of the
elevation angle 𝜃 only,

𝛹 (𝜃, 𝜙) = 𝛹 (𝜃) (9.3.31)

and from (9.3.28) and (9.3.29) it follows that

xpc = ypc = 0 (9.3.32)

In practice such an antenna is sometimes referred to as zero centered. GNSS posi-
tioning with a zero-centered antenna would be independent of antenna rotation with
respect to the vertical axis.

What remains is to note that if the base antenna does not possess an ideal phase
center at its ARP then the carrier phase error would be like (9.3.19) and the error to
positioning Δr⃗ in (9.3.18) would just be

Δr⃗ = r⃗roverpc − r⃗basepc (9.3.33)

Here r⃗base(rover)pc is the phase center offset of the base (rover) antenna, respectively.
We next discuss the term phase center variation (PCV) which is used in GNSS

practice. Once the phase center is defined let us transfer the antenna phase pattern
from ARP to the phase center. This new phase pattern has the special designation
PCV. Employing (9.3.9), one has

PCV(𝜃, 𝜙) = 𝛹 (𝜃, 𝜙) −
2𝜋
𝜆
(xpc sin(𝜃) cos(𝜙) + ypc sin(𝜃) sin(𝜙) + zpc cos(𝜃))

(9.3.34)
In short, a PCV refers to the antenna phase pattern that is related to the phase cen-
ter. Normally the PCV is expressed in length units rather than in angular units. The
transformation coefficient with (9.3.34) is 𝜆∕2𝜋; thus, the nature of the PCV term is
clear. After the phase center has been defined, what remains of the phase pattern after
transformation (9.3.34) looks like a slight phase center variation as expressed as a
function of angles 𝜃 and 𝜙.

We conclude with a remark. By substituting (9.3.11) into (9.3.28) and (9.3.29), the
phase center offset in the horizontal plane is represented as a sum of contributions of
the terms of (9.3.11). One may notice that all terms in the expansion (9.3.11) do not
contribute to the phase center offset in the horizontal plane except for the termm = 1.
Thus, claims of zero offset in the horizontal plane imply an antenna phase pattern
(and PCV) that is not strictly constant in azimuth 𝜙 but rather possesses a certain
degree of rotational symmetry with respect to azimuth—namely, with the termm = 1
vanishing. But the just-defined phase center refers to the mean value of the position
within a very long observation session (strictly—with satellite tracks homogeneously
covering the entire top the semisphere). Real-time positioning with about 10 satellites
may exhibit noticeable deviations from the phase center if the PCV is large.
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9.3.3 Antenna Calibrations

The practical procedures to determine the antenna phase center and the PCV are
known as antenna calibrations. There are three procedures in use: anechoic chamber
calibrations, relative calibrations and absolute calibrations.

Anechoic chamber calibration has already been discussed. Once the phase pattern
is known by anechoic chamber measurements, one applies (9.3.28) to (9.3.30) and
(9.3.34) to obtain phase center offset (PCO) and then the PCV. Using an anechoic
chamber as an antenna-specific instrument potentially allows for detailed antenna
characterization; phase center motion versus frequency, for instance, is of prime inter-
est (Schupler and Clark, 2000). The difficulties of employing anechoic chamber cal-
ibrations are of a practical nature.

The typical accuracy requirement for the GNSS user antenna phase pattern mea-
surements is 1mm.Multiplying by 2𝜋∕𝜆, with 𝜆 being the wavelength and taking 𝜆 =
20cm, one has an acceptable error of 0.031 rad.Wewill see later in Section 9.4 that the
phase error in radians approximately equals the magnitude of the multipath-reflected
signal in relative units. So the reflected signal magnitude should be less than 0.031
in relative units or –30 dB. But there is not just one multipath signal, say reflection
from the floor as shown with Figure 9.2.1; there is also multipath from the walls and
the ceiling. There are also implications as to disturbances from the equipment and
setup arrangements. Taking these additional error sources into account, one arrives at
a requirement for the anechoic properties of the chamber to be below –40 dB. These
are very stringent requirements.

Relative antenna calibration has been the practical solution to the problem formore
than two decades. The relative calibration technique was developed and has been used
at the antenna calibration center operated by National Geodetic Survey (NGS) of the
United States (Mader, 1999).

In order to understand relative calibrations we revisit the procedure of the previous
section again. We drop the assumption that the base antenna has an ideal phase center
and use the carrier phase delay error in the form of (9.3.19) and the positioning error
as (9.3.33). However, now we use these equations in the reverse order. Let us assume
that a baseline between the ARPs of base and rover is known a priori from direct mea-
surements, e.g., as obtained from optical instruments. In Figure 9.3.5 points A and B
represent the base and rover ARPs, respectively. Let the base antenna phase center off-
set CA be known a priori by some other measurements, e.g., from anechoic chamber
calibrations. Then we take actual field GNSS carrier phase observations and deter-
mine a baseline CD which is the baseline between the two phase centers. After that,

Figure 9.3.5 Relative antenna calibrations procedure.
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the rover phase center offset DB is obtained from the vector quadrangle. Now the
difference between phase center offsets (9.3.33) is substituted into equation (9.3.22)
and the difference between phase patterns (9.3.19) is calculated for the set of angles
(𝜃q, 𝜙q) for that observation session. This is a practical relative calibration procedure.

Obviously this procedure does not allow the determination of the rover antenna
phase pattern if the pattern of the base is not known. However, the power of this
approach is that, if the same base antenna is always used as the standard, there is
no actual need for its phase pattern. It could be set to zero. This is because in any
high-precision GNSS signal processing algorithms that use single or double differ-
encing, it is the difference between the phase patterns of the two antennas at the ends
of a baseline that is relevant. If each of the two patterns has the same error equal to
the antenna phase pattern of the standard, then this error would cancel in the differ-
ence as a common term. A database of calibrated antennas can be found at the NGS
website http://www.ngs.noaa.gov/ANTCAL.

Finally, we discuss the so-called absolute antenna calibrations that were developed
at the University of Hannover and the GEO++ company in Germany (Wübbena et al.,
1996, 2000). Absolute calibrations give the antenna phase pattern directly, similar to
anechoic chamber calibrations. However, for absolute calibrations there is no need
for the chamber. GNSS satellites are used as signal sources instead.

The schematic of this situation is shown in Figure 9.3.6. Let the antenna under
test—the rover—be rotated by a special robotic device similar to the rotations in the
anechoic chamber. The base station antenna is being kept at a fixed position. Let satel-
lite q be at the direction expressed by the angles 𝜃q, 𝜙q. At the time instant t1 let the
rover be inclined and rotated in such a way that, in the rover local coordinate system,
the satellite q corresponds to the angles 𝜃1;q, 𝜙1;q. For this situation, the difference in
carrier phase delays between rover and base will be as follows:

Δ𝜓1;q = 𝛹 rover(𝜃1;q, 𝜙1;q) − 𝛹 base(𝜃q, 𝜙q) + ARPpath delay1 (9.3.35)

In this equation the first term is the rover phase pattern reading for angles 𝜃1;q, 𝜙1;q,
the second term is the base antenna phase pattern reading for the angles 𝜃q, 𝜙q, and the

Figure 9.3.6 Absolute antenna calibrations
(schematically).

http://www.ngs.noaa.gov/ANTCAL
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third term is the path delay of the baseline between the two antenna reference points.
The latter is known precisely by calibrating the robot. The corresponding equation at
time instant t2 is

Δ𝜓2;q = 𝛹 rover(𝜃2;q, 𝜙2;q) − 𝛹 base(𝜃q, 𝜙q) + ARPpath delay2 (9.3.36)

Please note that for the latter time instant the rover antenna is additionally rotated and
inclined such that it “faces” satellite q by the angles 𝜃2;q, 𝜙2;q. If the robot can rotate
the rover antenna fast enough, then, within the time t1 to t2, the satellite q has not
moved significantly. The base antenna still “sees” satellite q under the same angles
𝜃q, 𝜙q. Then by differencing Δ𝜓2;q and Δ𝜓1;q the base antenna phase pattern cancel.
Thus one has

ΔΔ𝜓21;q = Δ𝜓2;q − Δ𝜓1;q = 𝛹 rover(𝜃2;q, 𝜙2;q) − 𝛹 rover(𝜃1;q, 𝜙1;q) (9.3.37)

The term on the left-hand side is referred to as time difference, i.e., the difference in
carrier phase delays for two time instants. Note: known path delays are supposed to
be subtracted from both the right- and left-hand side of (9.3.37).

Following this procedure, one gets the rover antenna phase pattern incrementally
as angle-by-angle difference. If we define the phase delay in the zenith direction to be
zero, then one may use the observed incremental changes to build a complete rover
phase pattern in the sequence as given below:

𝛹 rover(0, 0) = 0

𝛹 rover(𝜃1;q, 𝜙1;q) = ΔΔ𝜓10;q

𝛹 rover(𝜃2;q, 𝜙2;q) = ΔΔ𝜓21;q + ΔΔ𝜓10;q (9.3.38)

There certainly is a multipath error with any other GNSS observations. At any open
site there will be multipath reflections from surrounding terrain arriving at the rover
antenna. To eliminate these reflections from the pattern, the above procedure is to be
performed with all the visible satellites in parallel, followed by averaging. Amend-
ments to the just-described schematic accounting for satellites motion across the
sky and other details of the procedure can be found in the references cited above
or at the website of GEO + + company http://www.geopp.de/. For details about the
absolute antenna calibrations at the U.S. NGS the reader is referred to Bilich and
Mader (2010).

9.3.4 Group Delay Pattern

The antenna introduces delays not only to carrier phase but also toGNSS signal codes.
In general, a delay in “signal” propagation is referred to as a group delay measured
in units of time. This quantity is a function of the direction the signal arrives from; it
is designated as a group delay pattern 𝜏g(𝜃, 𝜙).

http://www.geopp.de
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We follow the derivations of expression (9.1.40). For the signal u(t) comprising
two harmonics at close frequencies 𝜔1 and 𝜔2, we rewrite (9.1.40) in the form

u(t) = 2u0 cos(Δ𝜔(t − 𝜏g) − Δkz) cos(𝜔t − kz − 𝜓) (9.3.39)

Here, the group delay is

𝜏g =
Δ𝜓

Δ𝜔
(9.3.40)

Taking the limit Δ𝜔→ 0, one has

𝜏g =
d𝜓
d𝜔

(9.3.41)

Thus a group delay pattern is

𝜏g(𝜃, 𝜙) =
d𝛹 (𝜃, 𝜙)

d𝜔
(9.3.42)

It equals the derivative of the phase pattern with respect to the angular frequency of
the carrier.

In principle, one may introduce group delay center and variations for pseudo-
ranges instead of carrier phases following exactly the derivations of the previous
sections. However, in practice this approach is not commonly adopted. The reason
is that normally with correct antenna designs that are capable of covering the GNSS
signal bands (Figure 5.4.1, also see the remark at the end of Section 9.1.2), the pat-
tern (9.3.42) is smooth enough such that the pattern contribution to the total error of
code-differential techniques is negligible. For more material on antenna group delay
see Lopez (2010) and Rao et al. (2013).

9.4 DIFFRACTION AND MULTIPATH

Multipath is one of the most frequently mentioned error sources in connection with
high-precision positioning. Multipath is a particular case of diffraction phenomena;
diffraction over a half-plane is an appropriate example to illustrate the semishadowing
case. We begin this section with a discussion about diffraction. Multipath reflections
from terrain underlying the receiving antenna and the role of antenna down-up ratio
to mitigate the error are discussed after that.

9.4.1 Diffraction Phenomena

On the way from the satellite to the receiver the radiated signal encounters obstacles.
These could be natural obstacles like trees or human-made obstacles like buildings.
The term “diffraction” in general refers to a phenomenon that occurs when the wave
interacts with an obstacle. Figure 9.4.1 illustrates the case. Here the electromagnetic
field of an incident wave is illustrated by a plurality of wavefronts shown in solid lines.
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Figure 9.4.1 Diffraction phenomenon.

As a result of this interaction, a so-called diffraction field is generated. Diffraction
wavefronts are shown as dashed lines. The diffraction field affects the amplitude and
phase distribution of the incident field. Diffraction phenomena occur with waves of
any kind, such as acoustic, electromagnetic, or say water surface waves. A common-
sense example could be ocean waves interacting with an isolated rock in a bay. The
branch of science treating diffraction phenomena is known as wave diffraction theory.
A complete list of references on this subject would be endless. In regard to electro-
magnetics, the foundations are provided by Morse and Feshbach (1953), Felsen and
Marcuvitz (2003), Fock (1965), Keller (1962), Ufimtsev (2003), Kouyoumjian and
Pathak (1974), Balanis (1989), and references therein. One is to note that so-called
strict analytical or closed-form solutions are available for a very limited number of
obstacle models such as spheres, cylinders, or wedges. For cases where obstacles
are much smaller or much larger compared to the wavelength, a group of asymptotic
methods is available. In more general cases, thorough numerical simulations with
special software packages are applied.

Back to GNSS, we note that the diffraction of satellite signals depends on the
obstacle configuration and on what the obstacle is made of. We will see later in this
section that with specular reflections the numbers are different for, let’s say, dry or
wet soil if assumed as a reflective surface. Also the GNSS diffraction scenery changes
with time. For example, cars move, trees bend under the force of the wind, which
makes exact simulations unrealistic. Thus, in general, it is not practical to estimate
the potential diffraction-related errors to GNSS positioning with the accuracy high
enough to compensate for them. Our focus will be on the main features of the phe-
nomena and what can be done antenna-wise to mitigate the errors. The natural scale
for diffraction problems is the wavelength 𝜆. Similar to the previous sections we take
𝜆 = 20 cm for estimation purposes.

It has been noted already that the direct satellite signal is not like an optical ray
having a negligibly small cross section. Instead in proximity of the user antenna a
direct signal is a plane wave distributed in space. In general, if one disturbs the elec-
tromagnetic field of the wave at any point in space then the signal at the receiving
antenna will also get disturbed. Our goal for the moment is to estimate a spatial area
that must be free of obstacles so that the direct path can be considered nondisturbed.
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An area in space that is relevant for the wave propagation from the transmitting
(satellite) antenna to the receiving one (the user antenna) is referred to as a Fresnel
zone. In general, the Fresnel zone consists of an infinite number of concentric ellip-
soids of rotation with the transmitting and receiving antennas being the focal points.
The ellipsoids are shown as dashed lines at the top-left panel in Figure 9.4.2. The
outer radius 𝜌 of the nth ellipsoid at the distance r1 and r2 from the transmitter and
the receiver, respectively, is

𝜌 =
√
n

√
𝜆

r1r2
r1 + r2

(9.4.1)

The main contribution comes from the fields within the first few ellipsoids. For esti-
mation purposes we take three of them. The third ellipsoid is referred to as the third
Fresnel zone. We will call them simply Fresnel zone for short. For our case the satel-
lite is the transmitter, r1 >> r2 and for n = 3

𝜌 ≈
√
3𝜆r2 (9.4.2)

For instance, at the distance r2 = 10m from the receiving antenna we have
𝜌 = 2.45m.

Now we briefly overview cases that may occur depending on where the obstacle is
located within a Fresnel zone. If the obstacle covers part of the Fresnel zone (top-left
panel in Figure 9.4.2), the satellite signal at the antenna output may still happen to be
strong enough for the user receiver to track it, but the carrier phase would be affected.
This is referred to as partial shadowing.

Another case is deep shadowing. This case occurs when the Fresnel zone is com-
pletely blocked by a large obstacle like a tall building (Figure 9.4.2, top-right panel).
Deep shadowing normally leads to loss of tracking of the satellite signal by the user
receiver. If signals of many satellites are blocked, then the user receiver is unable to
provide a position. This is what happens in natural or urban canyons.

The third case is when the obstacles are located outside the Fresnel zone of the
direct signal. Diffraction wavefronts caused by the obstacles are then referred to as
reflections. Such reflected fields could happen to be strong at the user antenna prox-
imity. When reflections from one or more sources arrive at the antenna along with
the direct signal, this is referred to as multipath (Figure 9.4.2, bottom-left panel).
Multipath reflections from terrain that is undelaying the user antenna are generally
unavoidable. We will focus on multipath in subsequent sections.

Finally, the fourth case is referred to as near-field effects. One notes that an inter-
action of an incident wave and an obstacle could be viewed as generating a diffracted
wave if the distance from the antenna to the obstacle is large compared to the antenna
dimensions and the wavelength. Otherwise, an obstacle and an antenna are said to be
in the near-field region of each other (see Section 9.1.4 for near-field region discus-
sion). A body located in the near-field region of an antenna, strictly speaking, should
be viewed as a part of the antenna. This body would affect the antenna pattern in
terms of magnitude, phase, and antenna frequency response. In GNSS positioning,
however, a receiving antenna could happen to be installed in close proximity to such
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Figure 9.4.2 Diffraction cases relevant to GNSS positioning.

a body in a way that the disturbances are relatively small; the antenna performance
would appear to be “almost” normal. For instance, this is the case if a body is located
underneath the antenna. As was discussed in Section 9.2.1, the antenna gain in the
directions below the local horizon is small compared to directions in the top semi-
sphere. In antenna transmitting mode, a body located underneath is illuminated by a
relatively weak field, thus having a small impact on the antenna characteristics. The
same is true for the receiving mode due to reciprocity. However, errors in positioning
introduced by such a body may happen to be noticeable (Dilssner et al., 2008). In this
case, we adopt terminology from the GNSS literature and call such disturbances to
GNSS observables a near-field multipath. A typical example would be a metal trigger
normally used with an antenna on a tripod (Figure 9.4.2, bottom-right panel). If an
antenna is too close to the trigger (say less than a wavelength of 20 cm), an extra error
in the vertical coordinate produced by the trigger may reach noticeable values up to
about half a centimeter. As discussed by Wübbena et al. (2011), near-field effects
manifest themselves differently as compared to “regular” multipath reflections and,
thus, could be identified in signal processing.
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Figure 9.4.3 Diffraction over half-plane.

The above analysis based on Fresnel zones is in all respects an approximate one.
The purpose of the analysis was to estimate the spatial spread of the processes. Now
we are to illustrate the wave diffraction effects in more detail. In particular, we look
into phenomena which occur in transition from partial to deep shadowing. For this
purpose, we consider a case that allows complete analytical treatment.

Please look at the top-left panel in Figure 9.4.3. Here, a half-plane is shown as
a thick solid line. The half-plane is the model of a tall building for instance. The
half-plane is vertical and infinite in the downward direction and in the direction per-
pendicular to the drawing plane. We assume the half-plane to be a perfect conductor.
The half-plane edge is located at the origin (pointO). The local horizon is shown as a
thick dashed line. We assume that the receiving antenna is located at point A (shown
by a thick dot). Our goal is to calculate the field at point Awhen it is excited by a plane
wave arriving from a satellite. The solution to the diffraction problem is described in
Appendix F.

We assume that the distance a from point A to the half-plane edge is large com-
pared to the wavelength. Let the angle 𝛼0 fix the direction toward A with respect to
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the half-plane (top-left panel, Figure 9.4.3). We subdivide the top semisphere into
three angular sectors. Let 𝛼inc be the angle from which the incident wave (emitted by
a satellite) arrives. If the wave arrives from the directions within sector I (top-right
panel, Figure 9.4.3) such that 𝜋 + 𝛼0 ≤ 𝛼inc ≤ 3𝜋∕2, then the receiving antenna is
illuminated (using optical analogy) by three types of waves. The first one is an inci-
dent wave from the satellite, and the second is the wave reflected by the half-plane.
The third one is a diffraction wave originating from the half-plane edge. If an incident
wave arrives from the direction within sector II (bottom-left panel, Figure 9.4.3) such
that 𝜋 − 𝛼0 ≤ 𝛼inc ≤ 𝜋 + 𝛼0, then the receiving antenna is illuminated by an incident
wave and a diffraction wave. Finally, with an incident wave arriving within sector
III (bottom-right panel Figure 9.4.3) such that 𝜋∕2 ≤ 𝛼inc ≤ 𝜋 − 𝛼0, the antenna at a
point A is within the shadow region of an incident wave and there is no reflected wave
in this region. The antenna is illuminated by diffraction wave only.

The incident and reflected waves mentioned above are referred to as geometrical
optics fields. The waves are of the plane wave type discussed in Sections 9.1.2 and
9.1.3. The reflected wave manifests what is known as multipath arriving from the
top semisphere. One might wish to check the derivations of Section 9.4.3 to estimate
the area of the half-plane responsible for forming the reflected wave field. We need to
mention that, staying with a perfectly conductive model of a half-plane, if an incident
wave is RHCP then the reflected wave is LHCP.

A diffraction wave is of a so-called cylindrical type. This wave originates from
the half-plane edge. The wavefronts of this wave are cylinders with the half-plane
edge being an axis. At distances far from the origin, the cylindrical wave is locally
a plane wave, meaning that in close proximity of an observation point, the vector
field is constructed the same way as for a plane wave (compare to spherical waves
discussion in Section 9.1.4). The difference with a spherical wave is that the field
intensities decay as 1∕

√
r, with r increasing. Here, r is the distance from the source

(half-plane edge).
The just described representation of the fields is valid if the direction of propaga-

tion of an incident wave is far from the shadow boundaries. In Figure 9.4.3 the lines
OB and OC are shadow boundaries for reflected and incident waves, respectively.
If an incident wave propagation direction is within narrow angular sectors immedi-
ately surrounding shadow boundaries, then the representation does not hold. One is
to use a more general representation in the form of Fresnel integral (expression F.5
of Appendix F).

For angular sectors I and II, the cylindrical wave provides a minor contribution to
the total field compared to an incident (and reflected) wave. However, for sector III
the cylindrical wave is the only term. We look into this case.

We introduce the angle 𝜃shadow (see the bottom-right panel in Figure 9.4.3) such
that

2𝜋 − 𝛼0 = 𝜃shadow + 3𝜋∕2 (9.4.3)

and satellite elevation angle 𝜃e such that

𝜃e = 𝛼inc − 𝜋∕2 (9.4.4)
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Then, at an observation point A, a satellite with elevation angle 𝜃e < 𝜃shadow is shad-
owed by the half-plane. In the proximity of point A the diffraction field is a local plane
wave propagating from the origin O. An antenna response to the diffraction field will
be as to a plane wave arriving from the direction 𝜃shadow.

Thus, the signal magnitude Sd at the antenna output is the product of two terms

Sd = F(𝜃shadow)D (9.4.5)

Here, F(𝜃shadow) is the antenna pattern reading for the elevation angle 𝜃shadow, and D
is the diffraction term (see Appendix F)

D =
1

2
√
𝜋
√
2ka sin

(
𝜃shadow − 𝜃e

2

) (9.4.6)

This expression is valid when
√
2ka sin((𝜃shadow − 𝜃e)∕2) > 1. At the same time, the

carrier phase error of the diffracted signal as a function of the direct signal (which
would occur if there was no half-plane), is

Δ𝜓d = −ka(1 − cos(𝜃shadow − 𝜃e)) −
𝜋

4
(9.4.7)

Next, we look into data illustratingwhat happens if satellite elevation is slightly below
𝜃shadow.

In Figure 9.4.4 we plot D in dB and the carrier phase error in cycles (in fractions
of 2𝜋) versus satellite elevation angle 𝜃e. The values a = 50𝜆 (equal to 10m assum-
ing wavelength of 20 cm ) and 𝜃shadow = 60∘ are adopted. As seen from the plots if
𝜃e = 50∘ (that is, 10∘ below 𝜃shadow), the error (9.4.7) approaches a cycle. With this
𝜃e the diffraction coefficient (9.4.6) provides an extra 18-dB signal attenuation to
F(𝜃shadow). With today’s sensitive receivers such a signal is potentially strong enough
to be tracked. Thus, an erroneous ambiguities resolution for such a satellite is likely
to occur. With smaller 𝜃e, the user antenna appears in the deeper shadow and the
satellite signal is likely to be lost. These are the main features of phenomena which
occur in transition from partial to deep shadowing.

Figure 9.4.4 Amplitude and carrier phase errors with direct satellite signal shadowed
by half-plane.
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We conclude this discussion by mentioning that although real-time corrections to
diffraction-related effects are so far impractical, increasing computer power allows
for the modeling of these effects even for complex sites. Such simulations are of value
for receiver design and test purposes. See discussion in Chen et al. (2009), Rigden
and Elliott (2006), and Weiss et al. (2008)

9.4.2 General Characterization of Carrier Phase Multipath

Let a direct signal with amplitude Udirect
0 and phase 𝜓direct and a number of reflected

signals with amplitudes U0;q and phases 𝜓q be observed at the antenna output.
The index q = 1, 2,… ,Q identifies reflected signals. Using the derivations of
Section 9.1.3, expression (9.1.52), one replaces all the reflected signals by one total
reflected signal with amplitude Urefl

0 and phase 𝜓 refl by writing

Urefl
0 ei𝜓

refl
=

Q∑
q=1

U0;qe
i𝜓q (9.4.8)

For short, we call this signal just the reflected signal. We denote the ratio of the
reflected and direct signal amplitude as 𝛼refl, such that

𝛼refl =
Urefl
0

Udirect
0

(9.4.9)

and denote the difference in the phase of reflected and direct signal as

Δ𝜓 refl = 𝜓 refl − 𝜓direct (9.4.10)

We consider the case where the reflected signal is weaker than the direct signal such
that 𝛼refl < 1. For the total signal at the antenna output, one has

U𝛴
0 e

i𝜓𝛴 = Udirect
0 ei𝜓

direct
+ Urefl

0 ei𝜓
refl

= Udirect
0 ei𝜓

direct(
1 + 𝛼refleiΔ𝜓

refl)
(9.4.11)

Denote the expression in parenthesis as(
1 + 𝛼refleiΔ𝜓

refl)
= 𝛼multei𝜓

mult
(9.4.12)

Thus, the total signal becomes

U𝛴
0 e

i𝜓𝛴 =
(
Udirect
0 𝛼mult

)
ei(𝜓

direct+𝜓mult) (9.4.13)

This equation shows that the presence of the reflected signal leads to a multipath
amplitude error 𝛼mult and multipath carrier phase error 𝜓mult.

The expression in parenthesis on the left-hand side of (9.4.12) can be analyzed on
the complex plane (Figure 9.4.5). Here we are interested in the sum of two vectors.
The first vector is equal to unity. The second vector has magnitude 𝛼refl and angle
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Figure 9.4.5 Representation of direct and
reflected signals on a complex plane.

Δ𝜓 refl relative to the first one. The magnitude (module) of the sum of two vectors
gives the amplitude error

𝛼mult = |1 + 𝛼refleiΔ𝜓
refl | =√

1 + 2𝛼refl cos(Δ𝜓 refl) + (𝛼refl)2 (9.4.14)

The argument of the sum gives carrier phase error

𝜓mult = arctan
𝛼refl sin(Δ𝜓 refl)

1 + 𝛼refl cos(Δ𝜓 refl)
(9.4.15)

Now we are interested in the behavior of these errors as a function of 𝛼refl and Δ𝜓 refl.
We start with the amplitude error.

As seen from (9.4.14) and Figure 9.4.5 the amplitude error 𝛼mult achieves a max-
imum of (1 + 𝛼refl) when Δ𝜓 refl = 0 and a minimum (1 − 𝛼refl) when Δ𝜓 refl = ±𝜋.
For any other Δ𝜓 refl the inequality holds.

1 − 𝛼refl < 𝛼mult < 1 + 𝛼refl (9.4.16)

In the left panel in Figure 9.4.6 we illustrate 𝛼mult in dB units as a function of Δ𝜓 refl

for different relative amplitudes of the reflected signal 𝛼refl. As seen, unless 𝛼refl

approaches unity, the amplitude error 𝛼mult stays within the range of a few dB. This
may not constitute a problem to the receiver except for low elevated satellites. As was
discussed in Section 9.2 the signal power at the antenna output for low elevation satel-
lites is less than for high elevation satellites. A further decrease in signal power due

Figure 9.4.6 Amplitude and carrier phase errors caused by multipath.
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to multipath may lead to the malfunctioning of the phase lock loops of the receiver.
This is recognized as a cycle slip. When 𝛼refl approaches unity, large signal drops
occur when Δ𝜓 refl ≈ ±𝜋. In communications theory this is referred to as multipath
induced fading.

Now we turn to the carrier phase error (9.4.15). For a weak multipath signal with
𝛼refl << 1, using the approximation tan x ≈ x for |x| << 1, yields

𝜓mult ≈ 𝛼refl sin(Δ𝜓 refl) (9.4.17)

Thus the phase error 𝜓mult oscillates with Δ𝜓 refl, and 𝛼refl is the amplitude of these
oscillations. In short, one may say that the multipath phase error in radians would
be within ±𝛼refl. In the case of a strong multipath when 𝛼refl = 1, one obtains from
(9.4.15):

𝜓mult = arctan
sin(Δ𝜓 refl)

1 + cos(Δ𝜓 refl)
= arctan

sin
(
Δ𝜓refl

2

)
cos

(
Δ𝜓refl

2

) =
Δ𝜓 refl

2
(9.4.18)

Assuming −𝜋 < Δ𝜓 refl < 𝜋, one has a maximal multipath carrier phase error|𝜓mult|max = 𝜋∕2. We plot (9.4.15) as a function of Δ𝜓 refl and different 𝛼refl in the
right panel in Figure 9.4.6.

Summarizing, if the ratio of the total multipath signal amplitude and direct signal
amplitude is 𝛼refl ≤ 0.6,… , 0.8, then the amplitude error can be about several dB and
the carrier phase error about 60∘ at most. Under such circumstances loss of signal
tracking does not occur and normally the receiver is able to provide correct ambigui-
ties resolution. A multipath error is less destructive compared to shadowing from this
point of view. However, multipath is in general unavoidable because reflections from
the ground surface below the user antenna always exist.

9.4.3 Specular Reflections

There is an important case of multipath that is referred to as specular reflections.
Figure 9.4.7 illustrates a direct wave from a satellite impinging upon a large plane
surface. For the moment, we consider the surface to be an ideal unbounded plane and

Figure 9.4.7 Definition of Fresnel coefficients
with specular reflections.
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the medium below the surface to be homogeneous. This may not look like a practi-
cally relevant model, but we already mentioned that our goal is not to derive exact
formulas to account for multipath and multipath errors but to discuss the main fea-
tures of the phenomena. Later in this section we will make some estimates on how
large the surface should be for the unbounded plane model to be valid. Under the
assumptions made, the wave diffraction problem allows for a closed-form solution.
We will focus on the case when the ground surface undelaying the user antenna pro-
duces the reflections. But the same derivations are valid for any large plane surface,
such as a wall of a tall building or a canyon.

Figure 9.4.7 also shows a reflected wave. This wave travels away from the surface
in such a way that the angle of travel direction with respect to the normal of the sur-
face is 𝜃, which is also the angle of the incident wave direction. Such reflections are
called specular. The amplitude of the reflected wave differs from the amplitude of the
incident wave by a reflection coefficient known as the Fresnel coefficient. It is a func-
tion of the incident wave frequency, angle 𝜃, and the parameters of the media. We are
assuming the incident wave to be propagating in air. As was discussed in Section
9.1.1, the free space approximation is relevant for this case. The medium below
the surface is characterized by permittivity 𝜀 and conductivity 𝜎 (see Table 9.1.1 in
Section 9.1.1). We assume that this medium is nonmagnetic, thus its permeability is
𝜇 = 1. There will also be a wave propagating inside the medium. This wave is called
transmitted (we are not interested in this wave).

In order to calculate the reflection coefficient one must distinguish between two
types of incident wave polarization. The first type is called perpendicular polarization.
This is a linear polarization with the electric field vector of the incident wave being
perpendicular to the drawing plane. This vector is designated by E⃗inc

⊥
and is marked by

a dot in Figure 9.4.7. Another type is called parallel polarization. Here, vector E⃗inc|| is
in the drawing plane. It is worthmentioning that the electric field vector should always
be perpendicular to the direction of wave propagation (Section 9.1.2). The two types
of polarization make a vector basis in the plane perpendicular to the direction of wave
travel. The reflected wave amplitudes are (Balanis, 1989)

Erefl
⊥

= R⊥E
inc
⊥

(9.4.19)

Erefl|| = R||Einc|| (9.4.20)

with the reflection coefficients for perpendicular and parallel polarization, respec-
tively,

R⊥ =
𝜂′ cos 𝜃 − 𝜉

𝜂′ cos 𝜃 + 𝜉
(9.4.21)

R|| = −
𝜂′𝜉 − cos 𝜃
𝜂′𝜉 + cos 𝜃

(9.4.22)

Here,

𝜂′ =
𝜂m
𝜂0

=
1√

𝜀(1 − i tanΔe)
(9.4.23)
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is the intrinsic impedance of the medium (9.1.37) related to that of free space, tanΔe

is the electric loss tangent (9.1.63) and the cosine of the complex refraction angle is

𝜉 =

√
1 −

sin2𝜃
𝜀(1 − i tanΔe)

(9.4.24)

Please note that expressions (9.4.21) and (9.4.22) give the reflection coefficients in
complex form. Therefore, these expressions contain both magnitude (module) and
phase. One is to fix the branch of the square root of the complex numbers in (9.4.23),
(9.4.24) with negative imaginary portion similar to (9.1.70).We turn to computational
results.

Figure 9.4.8 shows modules and phases of reflection coefficients for several media
as a function of the angle 𝜃. Modules of R⊥ and R|| are shown at the left-hand side of
the figure. First, please note that copper is always a perfect conductor. Copper surfaces

Figure 9.4.8 Modules and phases of reflection coefficients for a linear polarized inci-
dent wave.
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reflect the incident wave like a mirror with modules of R⊥ and R|| reaching unity.
Now let us recognize an important property. All of the media exhibit perfect mirror
properties for grazing directions with respect to the surface. For ground reflections
the angle 𝜃 is counted from the zenith, and low grazing angles close to 𝜃 ≈ 90 ∘ are
low elevations with respect to the local horizon. In this angle range the reflection
coefficients modules are about unity for all media.

We are focused on parallel polarization (top plots in Figure 9.4.8). Here, for
all media, except for perfect conductors, there exists a so-called Brewster angle.
For this angle the reflection coefficient reaches a distinct minimum that is almost
zero (top-left panel). For the incident wave arriving at the Brewster angle, all the
power will go inside the media without reflection. Finally for angles close to zenith
with 𝜃 ≈ 0, we see a variety of values. Most of them are around 0.5 which means
half-magnitude reflection. For low elevations the phases of R|| (top-right panel) are
all about 180∘ which implies antiphase reflection. For angles close to zenith the
phases are about zero which implies in-phase reflection. Rapid change occurs around
the Brewster angle.

Next, in the bottom plots we show the relevant results for perpendicular polar-
ization. There is no Brewster angle for this polarization. All the media behave like
a perfect mirror for low elevation angles and show reflection coefficient of about
one-half for incident wave arrival directions close to the zenith (bottom-left panel).
The phases of R⊥ (bottom-right panel) are all about 180∘ which means antiphase
reflection for all media.

Now we look into how to treat an RHCP incident wave that is relevant for GNSS
applications. First we introduce a set of unit vectors in the planes perpendicular to the
directions that the waves travel (see Figure 9.4.7). Here are basis vectors (x⃗inc0 , y⃗inc0 )

associated with the incident wave, and (x⃗refl0 , y⃗refl0 ) associated with the reflected wave.
For the incident wave to be RHCP, one writes

E⃗inc = E0
inc 1√

2

(
x⃗inc0 − iy⃗inc0

)
(9.4.25)

where E0
inc is amplitude. The reflected wave takes the form

E⃗refl = E0
inc 1√

2

(
R⊥x⃗

refl
0 − iR||y⃗refl0

)
(9.4.26)

Now we introduce circular polarized basis vectors associated with the reflected wave
similar to Section 9.1.6,

p⃗RHCP0 =
1√
2

(
x⃗refl0 − iy⃗refl0

)
(9.4.27)

p⃗LHCP0 =
1√
2

(
x⃗refl0 + iy⃗refl0

)
(9.4.28)
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and perform a basis transformation similar to that described in regard to expression
(9.1.118). Thus, one has

E⃗refl = E0
inc

{R⊥ + R||
2

p⃗RHCP0 +
R⊥ − R||

2
p⃗LHCP0

}
(9.4.29)

We denote

RRHCP =
R⊥ + R||

2
(9.4.30)

RLHCP =
R⊥ − R||

2
(9.4.31)

and arrive at the following conclusion: If an RHCP wave is incident onto a flat sur-
face, then it will be reflected with an RHCP coefficient (9.4.30); additionally, an
LHCP component will be generated. Its coefficient is shown in (9.4.31). We write
the reflection coefficients in exponential form:

RRHCP(LHCP) = |RRHCP(LHCP)|ei𝜓R;RHCP(LHCP) (9.4.32)

and plot the modules and phases in Figure 9.4.9. The module |RRHCP| (top-left panel)
equals unity for low elevations of about 𝜃 ≈ 90. So the reflected wave is almost totally
RHCP. But for zenith directions it decreases to zero, which means that the reflected
wave will be totally LHCP. Module |RLHCP| (bottom-left panel ) is about one-half for
most of the directions, which means that the reflected LHCP field magnitude is about
one-half the incident RHCP wave magnitude. Only for low elevations will it decrease
to zero. This should be the case because for those elevations the RHCP component has
about unity relative amplitude. Phases of the RHCP and LHCP components (shown at
the right-hand side of the figure) are close to 180∘. Thus, antiphase reflection occurs
for most angles.

Now one needs to check the diagram in Figure 9.2.13 again. As was stated in
Section 9.2.3, a GNSS user antenna is left-hand circular polarized for directions close
to nadir. Then polarization becomes elliptical, which means the antenna is sensitive
to both RHCP and LHCP components, and finally for directions close to the horizon,
the antenna is close to RHCP. As seen in Figure 9.4.9, the reflected signal has exactly
the same properties. So, any GNSS user antenna is almost perfectly matched with
ground reflected signals by polarization. The antenna does not filter out the signals
reflected by the ground due to polarization properties.

To finalize the discussion we are to estimate the area on the surface that defines
the reflected field intensity in the proximity of the user antenna. We should mention
again that figures like 9.4.7 are to be viewed as schematic. Incident and reflected fields
are spatial processes. In Figure 9.4.10 we show the reflective surface with the user
antenna installed at the height h over it. For a given 𝜃 the distance s from the antenna
nadir to the point of reflection C (left panel) is

s = h tan 𝜃 (9.4.33)



592 GNSS RECEIVER ANTENNAS

Figure 9.4.9 Modules and phases of reflection coefficients for RHCP incident wave.

Figure 9.4.10 Reflective area for the specular reflection from the earth surface.
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By image approach (Appendix E) one may view the reflection as signal generation by
an image of a real source. This is illustrated in the right panel. Shown is the reflective
plane which is tangential to the earth surface at the user antenna location. The actual
source is the satellite and the image is located opposite the source under the reflective
plane at the same distance from the plane. Two Fresnel zones are shown as dashed
lines; one is for the direct satellite signal and another one is for the signal generated by
the image. Now we are back to the left panel. Here the Fresnel zone for the reflected
signal in the user antenna proximity is shown as dashed lines. The wave propagation
path distance from the point C to the antenna is h∕ cos 𝜃, and from (9.4.2) the cross
section of the Fresnel zone is a circle with diameter

|AB| = 2
√
3(𝜆h)∕ cos 𝜃 (9.4.34)

Thus the footprint of the Fresnel zone at the surface is an ellipse with the semiminor
axis (perpendicular to the drawing ) equal to |AB|∕2 and semimajor axis equal to d/2,
where

d = |AB|∕ cos 𝜃 = 2
√
3(𝜆h)∕(cos 𝜃)3∕2 (9.4.35)

We call this area a reflective area for short. For instance with h = 2 m and 𝜆 = 20 cm
the reflective area for the zenith direction 𝜃 = 0 is a circle with a radius of about 1m
centered at antenna nadir, for a zenith angle 𝜃 = 45∘ it is an ellipse with semimajor
axis d∕2 ≈ 1.2 m centered at point C which is 2m away from the nadir, and with the
lowest elevation angle of 10∘ (𝜃 = 80∘) the semimajor axis is about 15m with the
center being 11m away from the nadir.

In conclusion, the surface roughness and inconsistency of the parameters of the
reflective medium will certainly change the values of the reflection coefficients but
may not change the main features of the phenomena. This is in particular true for low
elevations, when the reflective area is large compared to the wavelength. This justifies
the wide range of multipath estimates based on a specular reflections assumption. For
more accurate estimates accounting for surface roughness, the reader is referred to
Beckman and Spizzichino (1987).

9.4.4 Antenna Down-Up Ratio

As shown above, the relative amplitudes of the circular polarized components of the
wave reflected by a plane surface are about 0.5. The way to reduce the multipath
error for positioning is to make the antenna less sensitive to signals coming from
below the horizon. This can be done by means of shaping the antenna pattern. We are
now turning to that discussion. Our goal with the remaining section and the following
sections is to estimate the carrier phasemultipath error as a function of antenna pattern
characteristics.

We consider the situation of Figure 9.4.10 and take h to be about 2m. For now it
will be more convenient to use the satellite elevation angle 𝜃e instead of the zenith
angle 𝜃 (see the left panel of the figure for angles designations). The elevation angle
𝜃e is counted from the local horizon plane. With the specular reflections model the
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reflected signal would be coming from the −𝜃e direction. We use the approach of
Section 9.2.5 and characterize the signal at the antenna output bymeans of the antenna
effective area. Now we are interested not in powers but rather in complex amplitudes.
We use the antenna pattern in the form of (9.1.122) which relates the LHCP compo-
nent to RHCP by the normalization coefficient 𝛼cross. For the direct satellite signal at
the antenna output Udirect using (9.2.42) one writes

Udirect =
√

P0satD0𝜒pol𝜒a(1 − 𝜒 ret)FRHCP(𝜃
e)ei𝛹RHCP(𝜃

e)e−i𝜓
direct

(9.4.36)

With this expression the term under the square root is the total received power in
the direction where the RHCP pattern reaches unity. For a GNSS user antenna this
direction normally is the zenith. Then we show that the direct signal is proportional
to the RHCP antenna pattern component. This is so because the satellite signal is
RHCP. We assume a high degree of rotational symmetry of the user antenna pattern
with respect to azimuth. For this reason, the antenna pattern FRHCP(𝜃

e) and phase
pattern 𝛹RHCP(𝜃

e) are only functions of elevation angle and not azimuth. Finally,
with (9.4.36) the term 𝜓direct is the carrier phase path delay for the signal arriving
from the satellite.

A similar expression for the reflected signal reads

Urefl =
√

P0satD0𝜒pol𝜒a(1 − 𝜒 ret)

×

[||RRHCP
|| ei𝜓R;RHCPFRHCP(−𝜃

e)ei𝛹RHCP(−𝜃
e)

+|RLHCP|ei𝜓R;LHCP𝛼crossFLHCP(−𝜃
e)ei𝛹LHCP(−𝜃

e)

]
e−i(𝜓

direct+Δ𝜓path)

(9.4.37)

Here we have the same square root of the total received power for zenith as with
expression (9.4.36). The sum of contributions from RHCP and LHCP reflected sig-
nals is shown in brackets. Each contribution is proportional to the corresponding
antenna pattern reading for directions below horizon. The modules and phases of
the reflection coefficients RRHCP(LHCP) are shown explicitly. Finally we have added
an extra path delay, Δ𝜓path, to the exponent of the reflected signal.

Now we turn to expression (9.4.15). It shows that the multipath carrier phase error
is a function of the relative amplitude of the reflected signal and extra phase delay
relative to the direct signal. Using (9.4.36) and (9.4.37), one writes

𝛼refl =
|Urefl||Udirect| (9.4.38)

Δ𝜓 refl = arg(Urefl) − arg(Udirect) (9.4.39)

One notes that even with the assumption made, there are too many unknowns in
expressions (9.4.38) and (9.4.39). These are the terms depending on soil reflection
coefficients. Also, a path delay −Δ𝜓path can be specified for the infinite flat surface
model. But in practice, a large or small flat surface would have some irregularities like
minor hills and gaps. These irregularities could easily be of the order of centimeters,
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which makes them sufficiently large compared to the wavelength. Therefore, strictly
speaking, the antenna height above the surface becomes uncertain in the wavelength
scale. This illustrates once again that the direct way of estimating multipath and elim-
inating the carrier phase error is so far impractical. The best one can do is find a way
to reduce the error by means of proper antenna design.

For estimation purposes, one may consider worst cases regarding multipath signal
strength. The first way would be to take the surface as a perfect conductor. Applying
tanΔe → ∞, with the results of the previous section one has RRHCP = 0, |RLHCP| = 1,
𝜓R;LHCP = 𝜋, and expressions (9.4.38) and (9.4.39) take the form

𝛼refl =
|Urefl||Udirect| = 𝛼crossFLHCP(−𝜃

e)

FRHCP(𝜃e)
(9.4.40)

Δ𝜓 refl = −Δ𝜓path + 𝜋 + 𝛹LHCP(−𝜃
e) − 𝛹RHCP(𝜃

e) (9.4.41)

Expression (9.4.40) has a simple meaning. It is the ratio of the antenna pattern reading
for a specific angle below the horizon to the reading for the same angle above horizon.
The LHCP component is taken for the first one and RHCP for the second. This ratio
sometimes is referred to as an antenna down- up ratio. In short, one may say that the
reflected signal magnitude at the antenna output related to the direct signal equals the
antenna down-up ratio. However, the expression (9.4.40) has certain disadvantages.
In particular as seen from Figures 9.2.7 and 9.2.9 the RHCP component of the antenna
pattern exceeds the LHCP component for the majority of directions below the horizon
except for the angular area close to nadir. Thus the expression (9.4.40) would be
an underestimate of the multipath error since only LHCP is taken into account for
directions below the horizon.

Another way to estimate 𝛼refl and Δ𝜓 refl would be to use the antenna pattern
F(𝜃, 𝜙) in the form of a square root of total power pattern (9.1.125). This would mean
that the antenna is considered to be perfectly matched with the direct and reflected
signals in terms of polarization and that the total relative reflected power equals unity.
We will follow this way. We introduce the antenna down-up ratio DU(𝜃e) as

DU(𝜃e) =
F(−𝜃e)
F(𝜃e)

(9.4.42)

Thus, (9.4.38) will read
𝛼refl = DU(𝜃e) (9.4.43)

We will see later that Δ𝜓path is rapidly changing as a function of elevation while the
phase patterns are somewhat smooth. Within the approximations made we omit the
antenna phase patterns and (9.4.41) reduces to

Δ𝜓 refl = −Δ𝜓path + 𝜋 (9.4.44)

These last two expressions along with (9.4.15) define the carrier phase multipath error
at the antenna output. We leave detailed discussion for the next section and proceed
with some estimates first.
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Figure 9.4.11 Approximation of down-up ratio
versus satellite elevation for typical receiving
GNSS antennas.

An antenna pattern as a whole and the down-up ratio in particular depend on many
features of the antenna design. We will not go into detail here, leaving some consider-
ations for Section 9.7. Instead we will look at typical data valid for most of the receiv-
ing antennas for high-precision GNSS positioning. The diagram in Figure 9.4.11
shows three curves. The first one (dashed line) is for a typical rover antenna. The
second one (solid line) is for a base station antenna with a choke ring ground plane
(see Section 9.2.1). The down-up ratios are plotted in dB units as a function of ele-
vation angle. We see that for the horizon direction the down-up ratio equals 0 dB.
This means that neither antenna can provide suppression for a reflected signal com-
ing from the horizon direction along with the direct signal. Then, for a reflected signal
coming from a small angle below the horizon, the direct signal should come from the
same small angle above the horizon. An antenna of the size adopted in GNSS prac-
tice cannot distinguish between two signals coming from almost the same direction.
Thus down-up values for very small elevations are small. As the satellite elevation
angle increases the angular difference between a direct and reflected signal increases
and the down-up ratio increases in absolute value providing more suppression of the
reflected signal. The way the down-up ratio changes with elevation could be rather
complex depending on the particular antenna type.We just show trends by linear func-
tions. As was mentioned in Section 9.2.1, normally an elevation mask of 10∘ is used
with the positioning algorithms. The down-up reading for 10∘ elevation is the ratio of
F−10∕F+10 readings introduced in Section 9.2.1. With typical antennas, the down-up
reading is about several dB with minus sign. Finally, for high elevation angles the
down-up reaches some typical values, which are about –15 dB for the rover antenna
and about –30 dB for the choke ring antenna. We will see in the next section that this
difference defines the actual accuracy of positioning with these two antenna types.
This is the practical reason to distinguish between rover and base station antennas as
discussed in Section 9.2.1

For the moment we estimate the multipath carrier phase errors using data from
Figure 9.4.11. For small relative amplitudes 𝛼refl the multipath carrier phase error
expressed in radians does not exceed 𝛼refl (Section 9.4.2). The 𝛼refl in turn equals
the down-up ratio. For rover antennas we take −15 dB as a good estimate for high
elevations. This amounts to 0.178 in relative units; therefore, the carrier phase error
will not exceed 0.178 radians or 10.2∘ for high elevated satellites. Taking a down-up
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value of –30 dB for the choke ring antenna gives 0.032 in relative units, which makes
1.8∘ multipath carrier phase error.

Now the question is: What kind of down-up ratio do we actually need? Let us take
a 1-mm positioning error in real time as the goal. Assuming that the DOP factor of
the satellite constellation geometry is 3, we will allow a multipath error of 0.33mm.
Converting from millimeters to radians, we multiply by 2𝜋∕𝜆 with 𝜆 = 20cm. This
gives an error of 0.01 radians, which corresponds to –40 dB down-up. Thus, for 1-mm
accuracy with RTK positioning, the down-up curve should have a quick drop from 0
up to −40 dB within the 10∘ angular sector. This is illustrated in Figure 9.4.11 by
the curve named “no multipath antenna” (thick solid line). See more considerations
on “no multipath antennas” in Counselman (1999). Such behavior means that the
antenna pattern rapidly increases for the top semisphere starting at the horizon and
rapidly decreases in value for angles within the bottom semisphere. As was men-
tioned already in Section 9.2.1, to achieve this kind of performance the antenna size
in wavelength scale should be noticeable. One may wish to check Lopez (2008),
Lopez (2010), and Thornberg et al. (2003) to learn of vertical array antennas with
total lengths exceeding 2m that actually realize this kind of behavior. A large ground
plane antenna has been presented by Tatarnikov and Astakhov (2013, 2014). See
additional discussion is Sections 9.7.4 and 9.7.7.

9.4.5 PCV and PCO Errors Due to Ground Multipath

We continue the discussion on ground reflections. For the moment our focus is carrier
phase path delay Δ𝜓path of the reflected signal. To estimate Δ𝜓path, it is convenient
to view the reflected signal as arriving at the antenna image rather than bouncing off
the reflective surface. From the right triangle in Figure 9.4.12, the path delay ΔL is

ΔL = 2h sin 𝜃e (9.4.45)

The carrier phase delay Δ𝜓path is

Δ𝜓path = kΔL (9.4.46)

Figure 9.4.12 Carrier phase path delay
difference for reflected signal versus direct signal.
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and from (9.4.44) we obtain

Δ𝜓 refl = −2kh sin 𝜃e + 𝜋 (9.4.47)

Here k is a wavenumber (9.1.32). Using (9.4.43) one writes the carrier phase error
(9.4.15) as

𝜓mult = arctan
DU(𝜃e) sin(Δ𝜓 refl)

1 + DU(𝜃e) cos(Δ𝜓 refl)
(9.4.48)

Here Δ𝜓 refl is defined by (9.4.47) (Elòsegui et al., 1995).
We estimate the behavior of 𝜓mult as a function of 𝜃e. We consider the practical

case with the antenna being 2m above the ground. With our assumed wavelength of
20 cm one has 2kh = 40𝜋. In expression (9.4.47), a slight change in sin 𝜃e is mul-
tiplied by a large value of 2kh and results in a large change in the trigonometric
functions argument in (9.4.48). Thus the multipath error 𝜓mult oscillates as a function
of the elevation angle 𝜃e. This error completes a period with an elevation angle incre-
ment Δ𝜃e, which provides 2𝜋 increment to the delay (9.4.47). Thus, one may write

|Δ𝜓 refl| ≈ |||||d𝜓
refl

d𝜃e

|||||Δ𝜃e = 2kh cos 𝜃eΔ𝜃e (9.4.49)

If Δ𝜓 refl = 2𝜋, then

Δ𝜃e ≈
𝜆

2h cos 𝜃e
(9.4.50)

Here, 𝜆 is a wavelength. We see that the period of the multipath error (9.4.48) is
inversely proportional to the antenna height and increases with satellite elevation.
For an antenna height of 2m above the ground and a wavelength of 20 cm one has
a period of carrier phase error oscillations of 3∘ for elevation around 10∘, 4∘ for 45∘

elevation and 32∘ for a satellite elevation of 85∘.
Regarding the magnitude of carrier phase error, we recall that for small eleva-

tion angles the antenna down-up ratio is about unity, and from (9.4.48) it follows
that the carrier phase error reaches its maximum value in such a case. For high ele-
vation angles, the antenna down-up is small and the carrier phase error is simply
proportional to the down-up value. The multipath carrier phase error (9.4.48) is plot-
ted in Figure 9.4.13 as a function of the elevation angle for the down-up curves
of Figure 9.4.11, assuming an antenna height of h = 2m. In regards to the curves
named “rover” and “base station” one may note that this type of behavior is normally
observed for the carrier phase residuals of positioning algorithms. The curve for “no
multipath antenna” shows almost zero values for 𝜃e > 10∘ as predictable.

The features discussed above can be viewed from another angle. Expression
(9.4.44) was derived by neglecting the antenna phase pattern. This is equivalent
to the assumption that the antenna had an ideal phase center. Expression (9.4.48)
then can be viewed as a phase pattern of a system comprised of an antenna and a
reflective surface. Indeed, in transmitting mode one is to invert the arriving rays to
departing ones in Figure 9.4.12. Then, in the far-field region the radiated field would
be the sum (interference) of direct and reflected waves resulting in the phase pattern
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Figure 9.4.13 Carrier phase multipath error
versus satellite elevation for typical receiving
GNSS antennas.

of (9.4.48). The same phase pattern will hold true for the receiving mode due to
reciprocity.

It is of interest to estimate an extra offset of the phase center due to thus defined
phase pattern. One writes

𝛹 (𝜃, 𝜙) = 𝜓mult(𝜃) (9.4.51)

and substitutes this into (9.3.28) to (9.3.30). Please note that we use zenith angle 𝜃
in (9.4.51) instead of elevation angle 𝜃e = 𝜋∕2 − 𝜃. One recognizes that the horizon-
tal offsets (9.3.28) and (9.3.29) are zero. This is due to an assumption of an ideal
rotational symmetry of the reflective surface with respect to the azimuth. The verti-
cal offset is plotted in Figure 9.4.14 as a function of height h of the antenna above
ground. Calculations are done using the three down-up curves of Figure 9.4.11. One
notes that within a practical range h of about 2m, a rover antenna provides a verti-
cal phase center offset instability of about ± 2 mm, and the choke ring base station
antenna about ±1 mm. “No multipath antenna” would show instability of much less
than 1mm. As the height h increases the phase pattern (9.4.51) would exhibit more
rapid variations versus 𝜃 (see (9.4.47)). These variations would be averaged out with
phase center offset calculations. Thus as height increases, the instabilities mentioned
above are less noticeable. However, one should recognize that this data characterizes

Figure 9.4.14 Phase center offset in vertical
coordinate caused by reflections from
undelaying terrain.
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just the mean phase center offset. Real-time variations are much larger since they are
proportional to the peak values in Figure 9.4.13 and the DOP factor.

9.5 TRANSMISSION LINES

Normally, an antenna is connected to the receiver by coaxial cable. Mismatch and
signal losses are phenomena to be accounted for. We discuss these phenomena in the
broader frame of transmission lines topics.

9.5.1 Transmission Line Basics

We begin by illustrating the difference between low-frequency connection, say two
wires connecting the computer with the wall outlet, and radio frequency connection.
A pair-wire line is commonly used for AC power supply. For distances inside a room
or a building one normally does not have to be concerned with the consistency of the
geometrical properties of the line, such as diameter of wires, distance between wires,
radius of wire bends, and the like. The only requirement is for the line to transfer AC
power of the desired amount. However, with GNSS antennas a specially designed
cable is used. The goal here is different, namely to obtain the match with an antenna
output and a receiver input.

In order to understand the difference, we look into the processes taking place inside
a line. Let us consider a segment of a transmission line. Many different types of lines
are in use. The derivations below are applicable to most of them. Since it is the goal to
look at what is going on between a GNSS user antenna and a receiver, a coaxial cable
is of primary interest. We assume that the cross section of the line is always the same.
A coaxial cable consists of an outer conductor, the shield, and an inner conductor, the
wire (Figure 9.5.1). These two conductors are separated by a dielectric filling. We
introduce the z coordinate along the line.

Let U(z, t) be the signal voltage across the line that is observed at the cross
section with coordinate z and at time instant t. For a coaxial cable U(z, t) is the
voltage between the shield and the wire. Note that if one connects the computer to
the wall outlet one has no doubts that the voltage at the computer input is the same
as at the outlet. However, in general this is not true; there is a change in voltage for

Figure 9.5.1 Coaxial cable with z coordinate
along the line.
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different positions along the line. At some particular time instant t the voltage U at
cross-section z1 is not the same as the voltage at cross-section z2. We want to stress
that the difference comes not from the conductor resistivity or from any other losses
like radiation from the line. For the moment, we will discuss a perfect loss-less line.
Signal losses in a line are discussed further with Section 9.5.3.

The signalU(z, t) propagates along the line in the form of an electromagnetic wave.
We write this wave in a real time-harmonic form (Section 9.1.2 ) as

U(z, t) = U0 cos
(
2𝜋
( t
T
−

z
𝛬

))
(9.5.1)

Here, U0 is the amplitude in volts, and T is the period of the voltage alternation in
seconds. We mark the wavelength in the line by 𝛬 to distinguish it with the free
space wavelength 𝜆. For coaxial cables and pair-wire lines,𝛬 coincides with (9.1.39),
where 𝜀 is the permittivity of the medium filling the line, and 𝜇 = 1. For coaxial
cable the typical values are 𝜀 = 2...4. Expression (9.5.1) in particular illustrates why
transmission lines work so differently in cases of an AC power supply and a GNSS
antenna connection. For instance, the frequency of AC power in Europe is 50 HZ.
Assuming a pair-wire line is filled with air, one has 𝛬 = 6 ⋅ 106 m. The distance the
voltage travels from the outlet to a computer is about say 2 to 3 m. If we take z equal
to zero or to 3m, and a wavelength of 6000 km, then indeed according to (9.5.1) the
voltages at the source and the recipient is the same at any instant in time. In the case
of GNSS signals at frequency f = 1.5 ⋅ 109 Hz one has 𝛬 = 10...15 cm. Thus, the
cable length is normally much greater than the wavelength in the line. Therefore, at
any time instant one may find completely different voltage values along the line.

We introduce a parameter

𝛽 =
2𝜋
𝛬

(9.5.2)

called propagation constant in the line. We rewrite (9.5.1) in a canonical form [see
(9.1.20)] as

U(z, t) = U0 cos(𝜔t − 𝛽z) (9.5.3)

Figure 9.5.2 represents a general view of a signal transmission via a line. There is
a signal source ( or a generator), and a signal recipient (or a load), connected by a
line. Note that we point the z axis from the load toward the generator and we assume

Figure 9.5.2 General schematic for a
transmission via a line.
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the load to be connected to the line at cross-section z = 0. As is normal with time
harmonic processes, we are mostly interested in amplitudes and phases of the voltage
alternation at different points of the line. For that purpose, we turn to complex nota-
tions. A wave traveling toward the load is called an incident. We write it in complex
form as

Uinc = Uinc
0
ei𝛽z (9.5.4)

Here,Uinc
0

is a complex amplitude containing amplitude and initial phase. Please note
that this wave is traveling in the opposite direction with respect to the z axis. That is
why the sign in the exponential term is positive. In general, it is not possible to make
an incident wave power that is totally absorbed by a load. Some portion of an incident
wave power would be reflected by a load and would propagate back in the form of a
reflected wave. This wave takes the form

Urefl = Urefl
0

e−i𝛽z (9.5.5)

Here, Urefl
0 is a complex amplitude. The minus sign in the exponential term indicates

the wave traveling in positive z direction. A basic quantity

𝛤 =
Urefl

0

Uinc
0

(9.5.6)

is called the reflection coefficient from the load. The value of this coefficient is a
function of the properties of the particular line and the particular load. The reflection
coefficient is the relative complex amplitude of a reflected wave versus an incident
wave. From this definition it follows that 0 < |𝛤 | < 1. Please note that this quan-
tity is complex. In general, the reflected wave has somewhat different amplitude and
different initial phase as compared to the incident wave.

We look at what kind of amplitude distribution occurs along the line when both
the incident and the reflected wave propagate. We introduce the total voltage U𝛴 as
a sum of an incident and reflected wave voltages and write

U𝛴 = Uinc
0 ei𝛽z + Urefl

0 e−i𝛽z = Uinc
0 ei𝛽z

(
1 + |𝛤 | ei𝜓𝛤 e−i2𝛽z) (9.5.7)

Here, the module and phase of reflection coefficient are shown explicitly. The module
of the total voltage U𝛴 shows amplitudes of the voltage at different cross sections of
the line, |U𝛴 | = |Uinc

0 ||1 + |𝛤 |ei(𝜓𝛤−2𝛽z)| (9.5.8)

One notes that the amplitudes are no longer the same as was the case when only the
incident wave propagated. The second factor on the right-hand side of (9.5.8) shows
that there is a time-invariant distribution of amplitudes along the line. This second
factor is analyzed the same way it was in expression (9.4.12).

Figure 9.5.3 shows two vectors in a complex plane. The first vector is unity and the
second has the magnitude |𝛤 | and the angle (𝜓𝛤 − 2𝛽z) with respect to the first one.
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Figure 9.5.3 Incident, reflected, and total voltage
vectors on a complex plane.

Figure 9.5.4 Traveling wave, standing wave, and
mixed wave voltages.

With a change in coordinate z, the second vector rotates making a complete circle
within the distance equal to half the wavelength 𝛬. We consider two special cases
first.

If𝛤 = 0, one is back to just an incident wave traveling. Here |U𝛴 | = |Uinc
0 | and the

amplitudes of the voltage alternation are the same along the line and equal to that of
the incident wave (top panel in Figure 9.5.4). This is referred to as the traveling wave
mode of a transmission line. It is the most desirable mode of operation. It should
be clear that with pure traveling wave mode, all the incident wave power is being
absorbed by the load.

Nowwe take |𝛤 | = 1. This would mean a complete reflection of the incident wave
back toward the generator. According to (9.5.8) the voltage achieves zero amplitudes
at cross sections which are called nodes that are located at zn coordinates such that

𝜓𝛤 − 2𝛽zn = (2n + 1)𝜋 (9.5.9)
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with n being an integer. There are cross sections where the amplitude of voltage oscil-
lation reaches its maximum value equal to 2|Uinc

0 |. These cross sections are called
loops or antinodes. They are located at coordinates zn where

𝜓𝛤 − 2𝛽zn = 2n𝜋 (9.5.10)

At all other points the amplitudes are between zero and 2|Uinc
0 | (see the middle

panel in Figure 9.5.4). This mode is referred to as a pure standing wave. No power
is absorbed by the load. As seen with expressions (9.5.9) and (9.5.10), the distance
between two successive loops or two nodes is one-half of the wavelength in the line.
Similarly, the distance between a loop and neighboring node is a quarter of the wave-
length. It is worth mentioning that the system of nodes and loops does not move along
the line as time advances. That is the reason this wave is called a standing wave.

In general cases, one has 0 < |𝛤 | < 1 and a system of minimum and maximum
amplitudes occurs. As seen in the bottom panel of the Figure 9.5.4 the voltage ampli-
tudes at minimums |Umin| is

|Umin| = ||Uinc
0
||(1 − |𝛤 |) (9.5.11)

The minimums occur at z, thus satisfying (9.5.9). The voltage amplitudes at the max-
imums are |Umax| = |Uinc

0 |(1 + |𝛤 |) (9.5.12)

The maximums are located where (9.5.10) holds. This described mode of a trans-
mission line operation is sometimes referred to as mixed waves mode. The power is
partly absorbed by the load and partly reflected back to the generator.

By definition, the voltage standing-wave ratio (VSWR) is a ratio of the voltage
alternation amplitudes at maximums and minimums. Employing (9.5.11) and
(9.5.12), one has

VSWR =
1 + |𝛤 |
1 − |𝛤 | (9.5.13)

For the traveling wave mode VSWR = 1; for standing wave VSWR = +∞. VSWR is
the parameter often shown in GNSS antenna specifications.

The traveling wave mode is often referred to as a perfect match of line and load,
while the pure standing wave mode is referred to as a complete mismatch between
line and load. The reason for looking for the lowest possible VSWR is not merely to
reduce the waste of power that will go back to the generator. In actuality, the generator
could be mismatched with the line as well. In that case, the wave would be going back
and forth inside the cable like between two partially reflecting mirrors. This situation
is known as a resonator. Vast variations of the line response as a function of signal
frequency may happen in this case. With the GNSS user antenna case the antenna
works as generator and the receiver is the signal recipient. For proper functionality,
the VSWR should be limited with both the antenna and the receiver sides. Normally
VSWR ≤ 2 is considered acceptable.



TRANSMISSION LINES 605

Finally we look at what is required to achieve a perfect match of a load with the
transmission line. The transmission line is characterized by a parameter known as
characteristic impedance. The term wave impedance is also in use. This impedance
is defined by the dimensions of the parts constituting the line and the materials of
which these parts are made. For coaxial cable the wave impedance is

Wcoax =
60√
𝜀
ln

D
d

(ohm) (9.5.14)

whereD is the diameter of the shield, d is the diameter of the wire, and 𝜀 is the permit-
tivity of the filling. With GNSS user equipment a standard value of wave impedance
is 50 ohms (𝛺) for the cable connecting the antenna with the receiver. Here a note
should be made similar to that made in Section 9.1.2 while discussing the intrin-
sic impedance of a medium. It would be erroneous to think of wave impedance as
resistivity the line provides to signal propagation. So far, we have been discussing
a loss-less cable. A characteristic or wave impedance of the line is a proportionality
coefficient between the traveling wave voltage and the electric current flowing on the
conductors. Similar to the derivation of (9.1.35), one may say that if the traveling
wave voltage amplitude is U0 then the power P the wave is carrying is

P = 1∕2|U0|2Wcoax (9.5.15)

We turn to the characterization of load. For each fixed frequency, the load could
be characterized by a parameter that is referred to as an input impedance Zload. This
impedance is measured in ohms. Normally it is a sum of two parts:

Zload = Rload + iXload (9.5.16)

The real part of the impedance Rload characterizes the ability of the load to absorb
electric power and use that power for purposes for which the load was originally
intended. This part is sometimes called active impedance. The imaginary part of the
impedance Xload characterizes the ability to store electric power inside the load with-
out utilizing it. It is called reactive impedance. It might be known from elementary
physics that an element that absorbs electric power is a resistor. Elements storing
the power could be capacitors or inductances. Whatever complicated load there is,
within some narrow frequency band it is equivalent to a mix of resistors, capacitors,
and inductances when viewed from the standpoint of input impedance.

The key equation that illustrates the relationship between the input impedance of
the load, the properties of the line, and the reflection coefficient is

𝛤 =
Zload −Wline

Zload +Wline
(9.5.17)

This expression is valid not only for coaxial cable but for lines of any kind. That is
why the designationWline is used for thewave impedance instead ofWcoax. Expression
(9.5.17) follows from Ohm’s law.
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From expression (9.5.17), the so-called matching conditions can be seen. We see
that 𝛤 = 0 holds if and only if two conditions are true:

Rload = Wline (9.5.18)

Xload = 0 (9.5.19)

In short, one says that for the load to be matched with the line, it should have purely
active impedance equal to the characteristic impedance of the line. In any other case
some mismatch would happen, which would result in a reflected wave, as mentioned
above.

Now we mention that, as seen from (9.5.17), reflections will occur if Zload changes
orWline changes. This justifies the requirement that high-quality coaxial cable be used
for GNSS applications, as Wline should always remain constant throughout the line.
Regarding the initial example of AC power transmission, it can be shown that if the
length of the line is negligible compared to the wavelength in the line, one does not
have to be concerned with Wline. That is the reason why normally the diameters of
the two wires used for AC power transmission or the distance between them is not
that important.

In regard to coaxial cable, from (9.5.14) we see that if we multiply D and d by the
same factor, then the characteristic impedance would not change. So from the stand-
point of matching conditions, one can say that thick cables with a large outer diameter
and very thin cables work the same. However, due to practical cable manufacturing
circumstances, in general, thicker cables would have less loss of signal. Cable signal
loss is discussed further in Section 9.5.3. Note, both D and d are to be much smaller
compared to the wavelength, otherwise, the higher order modes will propagate inside
the cable (Balanis, 1989).

9.5.2 Antenna Frequency Response

Now we will look at an antenna as a transmission line load in the transmitting mode.
The receiving mode will be treated using the reciprocity theorem.

The transmitting antenna generates an electromagnetic field in the surrounding
space. As discussed in Section 9.1.4, there are three distinctly different regions of
space from the standpoint of electromagnetic field properties. The region directly sur-
rounding the antenna is the near field. The near-field region is known as an area where
electromagnetic power is predominantly being stored. Then a radiating near-field
region follows. Here the electromagnetic field transforms from storing the energy
to radiating it. The far-field region is an area where mostly electromagnetic waves
exist. Electromagnetic waves transport the power from the antenna to outer space.
Just a short note regarding the AC power supply example of the previous section,
with a wavelength of 6000 km, the entire city is within the near-field region of the
AC power supply network. The radiated power in this region is negligible compared
to the power stored or consumed in the network. This is true especially since the
distances between wire conductors comprising a network are negligible compared to
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the wavelength. These are reasons why one normally does not have to account for the
network antenna properties.

In regard to antennas with dimensions comparable to or exceeding a wavelength,
the amount of stored power in the near-field region completely depends on the antenna
design and the frequency of a signal. This stored power contributes to what is called
the imaginary part of the antenna input impedance, or input reactanceXA(𝜔).We show
this as a function of frequency to emphasize that XA(𝜔) normally strongly depends on
frequency. Next, the power radiated into the far field is actually taken from the signal
source. So from that point of view, the antenna works like a resistor that absorbs
power from the input. This contributes to what is called the real part of the input
impedance RA(𝜔). This quantity also depends on frequency. We write the total input
impedance as

ZA(𝜔) = RA(𝜔) + iXA(𝜔) (9.5.20)

and apply the derivations of the previous section.
One has a transmission line loaded by an antenna with input impedance as in

(9.5.20). The incident wave traveling toward the antenna would be partially reflected
due to mismatch between the antenna and the line. The reflection coefficient 𝛤 is as
given by (9.5.17) with ZA(𝜔) introduced instead of Zload. The matching conditions
(9.5.18) and (9.5.19) take the form of

RA(𝜔) = Wline (9.5.21)

XA(𝜔) = 0 (9.5.22)

Obviously, these conditions hold only for a fixed frequency. But now one may
recall that each GNSS signal occupies a frequency band (see discussion at the
end of Section 9.1.2). It is not possible to make RA(𝜔) and XA(𝜔) strict constants
within some frequency range, such as GPS L1 or L2, for example. Moreover, the
second condition (9.5.22) is known as the so-called resonant condition. It could be
implemented by means of precise antenna tuning and would stay true only over a
negligibly small frequency range. That is why normally the antenna would not be
strictly matched with the line for the complete signal frequency band.

To overcome this difficulty one usually applies some practical requirements for
antenna mismatch within the desired band. Normally, the VSWR never reaches unity.
Therefore, a strict match with the line never happens. Instead, the VSWR is less than
some prerequired level, say less than 2 within the antenna frequency band. There
is rapid growth with frequency, i.e., mismatch, beyond that band. See actual data
regarding TA-5 antenna in Figure 9.7.20.

We turn to some numbers. For the given refection coefficient |𝛤 |, the amount of
the reflected power is |𝛤 |2. This power was designated as return loss 𝜒 ret in Section
9.2.4, thus

𝜒 ret = |𝛤 |2 (9.5.23)

For the typical requirements of VSWR to be less than 2, the inversion of (9.5.13)
gives |𝛤 | < 0.33 and 𝜒 ret ≈ −10dB as stated in Section 9.2.4. The same signal losses
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would be observed in the receiving mode by reciprocity. The useful received power
is then proportional to (1 − 𝜒 ret) and the loss of useful power is 10 log(1 − 𝜒 ret) =
−0.45dB as was stated previously.

We finalize this discussion with a note. If there are no limitations in terms of space
available for an antenna, one may achieve potentially any low VSWR within the
desired frequency band. However, with today’s technology due to the successes of
microelectronics, the receiver antenna is one of the bulkiest components of the equip-
ment. Thus the natural trend is antenna down-sizing. In this regard there exists the fun-
damental Chu limit (Chu, 1948) which states that antenna dimensions cannot bemade
less than a certain value, assuming a given VSWR and antenna efficiency (Section
9.2.4) within the desired frequency band. This limit cannot be overcome. From this
perspective the art of antenna design is to develop more compact GNSS antennas
approaching the Chu limit. One may mention that with the common microstrip patch
antennas discussed in Section 9.7.1, there is still a potential for down-sizing.

9.5.3 Cable Losses

While propagating along the cable the traveling wave always loses some of its
energy since a real-world body applies some resistance to electric currents. Losses
in the media filling the cable also apply. To account for all these losses, we rewrite
Equation (9.5.3) in the same manner as for the plane wave propagating through a
lossy medium (9.1.71):

U(z, t) = U0e
−𝛼z cos(𝜔t − 𝛽z) (9.5.24)

This equation shows that the traveling wave voltage exponentially decays with dis-
tance as z increases. The parameter 𝛼 is called attenuation constant (Section 9.1.3).
The power would decay as squared voltage. So, for power one has

P(z) = P0e
−2𝛼z (9.5.25)

Here, P0 is the traveling wave power at the source. The dB equivalent of
equation (9.5.25) is

10 log
P(L)
P0

[dB] = −20𝛼L log(e) (9.5.26)

We see that the power losses in dB at the output of the cable with length L are linearly
proportional to the length. For that reason, the attenuation constant is often used in
units of dB per meter. The conversion rule is

𝛼 [dB∕m] = 20 log(e)𝛼 (9.5.27)

Thus, cable losses 𝜒cable[dB] in dB within the cable of length L are

𝜒cable[dB] = 𝛼[dB∕m]L[m] (9.5.28)

The quantity 𝛼[dB∕m] is one of the most important parameters specified by cable
manufacturers.
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As a practical example, a medium quality cable connecting the GNSS antenna
with the receiver normally has about 0.5 dB/m losses. Typically, a 10-dB signal drop
is allowed between the antenna output and the receiver input, as such a drop would
not affect the signal-to noise ratio (which we will discuss in the next section). A
good estimate is 2 dB for losses in connectors. Actually this is an overestimate but it
is always reasonable to have some extra power available. The remaining 8 dB for
cable losses would give a permissible cable length of 16m, which is a practical
figure.

9.6 SIGNAL-TO-NOISE RATIO

We tend to think of the real-world data as being somewhat “noisy.” By “noise,” one
means a stochastic signal which appears “by itself,” thus damaging the useful signal.
By commonsense experience one knows that if the noise is too large compared to the
useful signal, no useful information would be extracted.With radio-receiving systems
like GNSS user equipment the received signal power itself is low. If there were no
noise, then the lack of signal power would be readily compensated by signal ampli-
fication. Instead what is of prime importance is a proportion between signal power
and noise power. In short, this proportion is commonly referred to as signal-to-noise
ratio (SNR). Indeed, any signal amplification will increase the signal power and the
“initial” noise power equally, keeping the SNR unchanged at its best. In actuality,
an unavoidable property of real-world bodies is that they absorb some signal power
impinging on them and generate extra noise. Consequently, special actions need to
be taken to prevent initial SNR from being decreased by signal processing. From this
standpoint, it is clear that the main objective must be to obtain the highest possible
SNR at the very first step, which is the antenna. In this section we are discussing noise
generation and signal and noise propagation through the user antenna. We will see
what needs to be done for no noticeable SNR degradation to occur after the antenna.
Practically relevant examples in regards to the cable running from antenna to receiver
will be included in the discussion. We finalize the section with estimates of SNR
observed at the receiver output.

9.6.1 Noise Temperature

Webegin with Figure 9.6.1. As shown here, an antenna receives the useful signal from
satellites along with noise coming from space. The antenna is a real-world body, thus
some signal loss and noise increase is observed. So at the very first step, a certain SNR
degradation is obtained. Then there may be a short piece of transmission line (cable).
Cables provide signal attenuation (Section 9.5.3) and more noise generation. Thus, a
natural desire is to exclude this cable and to move the first stage of amplification right
next to the antenna. This first stage has a special property. It is designed in such a way
that no further SNR degradation will occur. This first stage is known as a low-noise
amplifier (LNA). What is surrounded with the circle at the diagram is sometimes
referred to as an active GNSS antenna. Normally, the LNA is incorporated into the
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Figure 9.6.1 Block diagram for signal and noise
analysis with the receiving GNSS system.

same housing as the antenna itself. After that there is a cable that connects the antenna
with the receiver and, finally, the receiver circuitry.

We turn to electromagnetic noise characterization. According to the laws of fun-
damental physics, each body emits stochastic electromagnetic energy, also known as
noise. The power of noise is distributed over the entire radio frequency band starting
from the very low frequencies to infrared emissions. Over the range of GNSS fre-
quencies one may consider the power of the noise to be distributed homogeneously
over the spectrum. Let Sn stand for noise power per unit frequency band. This is
called noise power spectral density. The noise power Pn within the frequency range
Δf will be

Pn = SnΔf (9.6.1)

Due to homogeneous noise power spectral density, the larger the Δf the more noise
power there is. That is one of the reasons that the electronic receiving system should
be sensitive only over the desired frequency range and reject all other frequencies.
This desired frequency range is called a passband. This passband should be as close
as possible to the desired signal bandwidth. Another reason to limit the passband is
to suppress all the other signals arriving to the antenna except for the useful ones.
In the GNSS case, such are cell phone signals, satellite communication links, and
the like.

The value of Sn in (9.6.1) depends on the material of the body, the processes inside
the body, the size and shape of the body, and the temperature. We consider the tem-
perature measured in degrees Kelvin. A body at absolute zero degrees Kelvin will
not emit any power. At any temperature greater than absolute zero, a body will emit
some electromagnetic noise. But the dependence of Sn on the material and size of a
body makes the situation uncertain and inconvenient to use. The practical approach
to overcome this difficulty is as follows. A body is called an ideal blackbody if it
absorbs all the electromagnetic power arriving on it. This absorbed power generally
would cause the temperature of the body to increase. If we want the blackbody to be
in thermal balance with the environment, due to the fundamental energy conservation
law, the blackbody should emit the same electromagnetic power it absorbs. Hence,
one comes to the conclusion that the ability of the blackbody to emit electromag-
netic power should be a function of the actual temperature of the environment only
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and not the details of the blackbody construction. At radiofrequencies, the following
expression holds:

Sn,blackbody = kBTactual (9.6.2)

Here, Tactual is the actual temperature of the environment in the Kelvin scale. The pro-
portionality coefficient kB = 1.38 ⋅ 10−23[W∕o K] is the universal Boltzman constant.
The noise power generated by a blackbody within a frequency band Δf is

Pn,blackbody = kBTactualΔf (9.6.3)

Other bodies would emit a different noise power than an ideal blackbody. We turn to
noise emitted by a real body and make use of the blackbody approach.

The noise power spectral density Sn as emitted by a real body is commonly written
in the form

Sn = kBTn (9.6.4)

As opposed to (9.6.2), here Tn is referred to as the equivalent noise temperature of
a body. It is not a measure of actual temperature. Instead, Tn is a temperature that
an ideal blackbody should have in order to generate the same noise power as a real
body under consideration; thus the blackbody serves as a standard. The real body
might generate more or less noise as compared to the blackbody at a given tempera-
ture. Therefore, equivalent noise temperature Tn generally does not coincide with the
actual temperature of the environment. This noise is referred to as a thermal noise
because the noise power spectral density of an ideal blackbody is a function of only
the temperature. There could be other kinds of noise associated with electronic cir-
cuitry, but these are less significant to our considerations and we are omitting them.

Making use of (9.6.4) the noise power is

Pn = kBTnΔf (9.6.5)

An important note is to come at this point. The noise of interest is called white noise.
By definition, white noise is such a noise for which the following two statements hold:
(a) the power spectral density is homogeneous within the frequency range, and, (b)
the noise components are completely uncorrelated. An important property of white
noise is that the total noise power from several different sources is the sum of the
noise power of each source:

Pn,𝛴 =
∑
q

Pn,;q (9.6.6)

Here Pn,𝛴 is total noise power and Pn,q is the noise power of the qth source. Because
of the additivity property of (9.6.6) one may analyze noise sources separately.

9.6.2 Characterization of Noise Sources

We begin with external noise characterization. The main noise contributors are sky,
stars, sun, ground, and human activities. By sky noise we mean the noise whose
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sources are distributed in a continuous manner over the top semisphere with respect
to the user antenna. These sources are gases comprising the atmosphere and galactic
noises. By stars and sun noise, we mean the set of discrete sources which are seen
under specific angles above the local horizon. Certain stars are known to radiate large
amounts of noise power, but the sun is the largest noise radiator. By ground noise we
refer to all the noise power coming from underneath the user antenna. The materials
comprising the underlying surface contribute greatly to that noise. And finally there
is the human-made noise. This noise comes from human activity, such as industrial
noise, transportation noise, etc.

Following considerations of the antenna effective area (Section 9.2.5), one con-
cludes that the antenna response to different external noise sources generally depends
on their angular location with respect to the antenna pattern. The angular location of
the sources varies with time. Also, the physical temperature of the sky and the ground
surface vary with time of day and season. All this makes exact external noise calcula-
tions complex, but we will see later that the external noise contribution is significant
but not the largest. Thus, some averaged estimate would be of practical use. Using
materials of Lo and Lee (1993), the average external noise temperature Text received
by the user antenna could be adopted as

Text = 100K (9.6.7)

Next, we turn to antenna noise. The antenna is treated as a passive circuit or passive
unit. The term “passive” is used when referring to circuits or units that do not require
any external power source for their operation. A passive circuit or unit transforms the
signal by ideally keeping the signal power constant. In our case, an antenna and the
coaxial cable connecting the antenna with the receiver would be examples of passive
circuits. Due to resistance for electric currents, a passive circuit introduces power
losses to the signal and generates some noise. Let 𝜒 stand for the efficiency of the
circuit. The antenna efficiency has already been introduced in expression (9.2.33). In
general, the efficiency 𝜒 relates the signal power at the circuit input Pinput to that at
the output Poutput,signal,

Poutput,signal = 𝜒Pinput (9.6.8)

The efficiency 𝜒 equals to unity for the ideal case and is always less then unity for a
real-world unit.

As was mentioned already, the signal power absorption is always related to noise
generation. The relationship between the efficiency 𝜒 and noise power Pn is given
by the fundamental Nyquist theorem (Lo and Lee, 1993). For our case it could be
stated as follows: If the unit with efficiency 𝜒 is in thermodynamic balance with the
environment with temperature T0, then the noise power generated within frequency
band Δf is

Pn = kBT0(1 − 𝜒)Δf (9.6.9)
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For noise estimation purposes T0 always equals some standard value. This value is
adopted as 20∘ C or approximately 290 K. Thus we take

T0 = 290K (9.6.10)

Comparing (9.6.9) to (9.6.4), one writes the equivalent noise temperature of a passive
unit as

T𝜒 = T0(1 − 𝜒) (9.6.11)

We mark this temperature as T𝜒 to highlight that the noise is related to the efficiency
of the unit. The limiting case with 𝜒 = 1 has already been referred to as an ideal or
loss-less circuit. Noise power is zero. The other limiting case is 𝜒 = 0. Sometimes,
this is called a perfectly matched load because such a circuit totally absorbs all the
input power. The outcome of this circuit will be just noise with the equivalent noise
temperature of (9.6.10). Thus, the noise power generated by a perfectly matched load
equals that of a blackbody at standard temperature. For the antenna we take 𝜒a as
–1 dB or 0.8 in relative units as stated in Section 9.2.4. Equation (9.6.11) then yields
the antenna noise temperature Ta as

Ta = 58K (9.6.12)

Next, we consider losses in the cable which connects the antenna to the receiver. With
(9.5.28) for a cable having 𝛼 = 0.5dB∕m and L = 20 m one obtains 𝜒cable = −10dB
or 0.1 in relative units. It may sound surprising that we treat as typical a cable that
provides only 10% of the signal power to the output. But this is actually a typical
example, as discussed in Section 9.5.3. Later we will see why such functionality
does not lead to loss of signal quality. Using (9.6.11), one has an equivalent noise
temperature of the cable as

Tcable = 261K (9.6.13)

Now we turn to an active circuit. By “active” one commonly means a circuit
that requires an external power source for its operation. We take an amplifier as
an example. An amplifier increases the signal power by a gain factor Gamp, with
Gamp > 1. The signal power amplification is obtained at the expense of power con-
sumption from an external source. In most cases, this is a DC source. Signal power
transformation for the amplifier will look like

Poutput = GampPinput (9.6.14)

HerePinput andPoutput are input and output power, respectively. An amplifier is treated
differently than a passive circuit. There are four main processes taking place in paral-
lel inside an amplifier: the DC source power consumption, input power amplification,
some unavoidable input power absorption, and noise generation. Let us now discuss
the commonly adopted way to treat the amplifier.
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Let the amplifier noise power be generated right at the amplifier input and then
passed through a noise-less amplifier. Thus, instead of a noise powerPn at an amplifier
output, an equivalent noise power at an amplifier input P′

n is used. This P
′
n is related

to Pn as

P′
n =

Pn

Gamp
(9.6.15)

Then, one has three power terms passing together through a noise-less amplifier: the
signal power Psignal, the incoming noise power Pn,inc, and the equivalent noise power
of an amplifier P′

n. At the amplifier output, all three are amplified by a gain factor.
To characterize an amplifier one has to knowGamp and P

′
n. To measure these quan-

tities, two experiments are performed. The first could be called “signal measurement,”
where a strong signal source is applied to the amplifier input. Its power Psignal;1 is con-
sidered to be known and much larger than the noise. By measuring the output power
Poutput;1, one has

Gamp =
Poutput;1

Psignal;1
(9.6.16)

The second experiment is “noisemeasurement”, where one applies some known noise
power from a noise standard Pn,standard. The output power Poutput;2 is measured. This
output power is

Poutput;2 = Gamp

(
Pn,standard + P′

n

)
(9.6.17)

Thus

P′
n =

Poutput;2

Gamp
− Pn,standard (9.6.18)

Instead of power P′
n, it is common to characterize the amplifier with an amplifier

noise factor N. This parameter is often shown in GNSS user antenna documentation.
By definition,

N =
P′
n + Pn,standard

Pn,standard
(9.6.19)

Thus, with the above noise measurement experiment,

N =
Poutput;2

GampPn,standard
(9.6.20)

In practice, a perfectly matched load is used as a noise standard. Its noise power
equals to that of a blackbody, thus

Pn;standard = kBT0Δf (9.6.21)

Once N is known, and involving (9.6.18), (9.6.19), and (9.6.21), one has

P′
n = kBT0(N − 1)Δf (9.6.22)
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Comparing this expression to (9.6.5), one has equivalent noise temperature at the
amplifier input

Tamp = T0(N − 1) (9.6.23)

Today’s good LNAs of receiving GNSS antennas provide Gamp = 30dB (1000 times
in related units) andN = 1.5 dB, or 1.41 in related units. Using this figure, one obtains
from expression (9.6.23) the noise temperature of LNA

TLNA = 119K (9.6.24)

Thus, all the noise sources are known and we turn to signal and noise propagation
through the chain of the units of interest. Our focus will be on the role of LNA.

9.6.3 Signal and Noise Propagation through a Chain of Circuits

First, let us consider an amplifier with gainG1 and noise factorN1. LetPs be incoming
signal power and Pn;inc be incoming noise power. The SNR of the incoming signal is

SNRinc =
Ps

Pn;inc
(9.6.25)

At point 0 (Figure 9.6.2, left panel) we add the equivalent noise power of the amplifier
P′
n;1 related to noise factor N1 as shown by (9.6.22). Then we allow both signal and

the total noise to propagate through a noise-less amplifier in accordance with above.
At the output (point 1) one has an SNR in the form

SNR1 =
PsG1(

Pn;inc + P′
n;1

)
G1

=
Ps

Pn;inc + P′
n;1

(9.6.26)

This SNR is degraded compared to that of the incoming signal (9.6.25) due to the
noise generated by the amplifier.

Next, consider a chain of two amplifiers (Figure 9.6.2, middle panel). Let the gains
of the amplifiers be G1,2, respectively. The input of the chain is point 0, the input of
the second amplifier is point 1, and the output of the chain is point 2. Total noise
power at point 2 is

Pn;2 = G2

[
G1

(
Pn;inc + P′

n;1

)
+ P′

n;2

]
(9.6.27)

This expression is constructed as follows. We take the incoming noise power and add
the equivalent noise power of the first amplifier P′

n;1. This gives the total noise power

Figure 9.6.2 Signal and noise propagation through a chain of amplifiers.
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at point 0. Then we allow this noise to propagate through the noise-less amplifier with
gain G1. This simply means multiplying the sum of two powers in parenthesis by the
gain. Thus we have the noise power at point 1 that is coming from the first amplifier.
Next we add the equivalent noise power P′

n;2 of the second amplifier. This gives a total
noise power at point 1(see the term in brackets in (9.6.27)) and then we multiply this
by a gain G2 and get finally the noise power at point 2. In a straightforward manner
one has the signal power at point 2, which is just the product of the incoming signal
power and the two gains

Ps;2 = G2G1Ps (9.6.28)

Now we construct signal-to-noise ratio at the output (point 2),

SNR2 =
Ps;2

Pn;2
=

G2G1Ps;0

G2

[
G1

(
Pn;0 + P′

n;1

)
+ P′

n;2

] =
Ps;0(

Pn;0 + P′
n;1

)
+ 1

G1
P′
n;2

(9.6.29)

We see that if the gain of the first amplifier is large enough such that

1
G1

P′
n;2 << Pn;0 + P′

n;1 (9.6.30)

then the SNR at the chain output does not depend on the second amplifier,

SNR2 ≈
Ps

Pn;inc + P′
n;1

= SNR1 (9.6.31)

This SNR is defined by the incoming signal and noise powers and by the noise power
of the first amplifier only.

Thus, for the incoming SNR not to degrade significantly, the first amplifier is to
have the large gain and the smallest possible noise factor. That is what the LNA is
all about. Special techniques are known to meet both of these requirements. One
may verify that for LNA with about 30 dB gain (or 1000 times in relative units) the
inequality (9.6.30) really holds unless the noise of the second amplifier is extremely
large.

Now we perform the same analysis for the chain of Q amplifiers (see the right
panel in Figure 9.6.2). Similarly as above, one has the total noise power at the output

Pn;Q = GQ

[
GQ−1

[
⋅ ⋅ ⋅G2

[
G1

[
Pn;inc + P′

n;1

]
+ P′

n;2

]
+ ⋅ ⋅ ⋅P′

n;Q−1

]
+ P′

n;Q

]
(9.6.32)

Here, Gq and P′
n;q are a gain and an equivalent noise power of the qth amplifier,

respectively. Please note that the only noise power that is multiplied by all the gains
is the sum of the incoming noise power and the first amplifier. The total signal power
at the output is

Ps;Q = GQGQ−1 …G2G1Ps (9.6.33)
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For the SNR at the output, one writes

(SNRQ)
−1 =

GQGQ−1 …G2G1[Pn;inc + P′
n;1] + GQGQ−1 …G2P

′
n;2 +…GQP

′
n;Q

GQGQ−1 …G2G1Ps

=
Pn;inc + P′

n;1

Ps
+

P′
n;2

G1Ps
+

P′
n;3

G2G1Ps
+…

P′
n;Q

GQ−1 …G2G1Ps
(9.6.34)

If G1 >> 1, then

SNRQ ≈
Ps

Pn;inc + P′
n;1

SNR1 (9.6.35)

is equal to the SNR observed after the first amplifier. The noise temperature Tchain of
a chain will look like

Tchain =

[(
N1 − 1

)
+

N2 − 1

G1
+

N3 − 1

G2G1
+…

NQ − 1

GQ−1 …G2G1

]
T0 (9.6.36)

Here, Nq, with q = 1,… ,Q, is a noise factor of the qth amplifier. Expression (9.6.36)
is known as Friis’ formula. Under conditions already mentioned, we neglect all the
terms in brackets in (9.6.36) except for the first one and obtain

Tchain = T1 (9.6.37)

Thus, the noise temperature of a chain equals that of the first amplifier.
Let us turn to an example relevant to practical GNSS antenna use. Let the LNA be

connected to the cable with efficiency 𝜒 (Figure 9.6.3, left panel). Our goal is to find
conditions for the SNR at the output of a chain to coincide with that at the output of
LNA. We write the total noise power at the output of the chain as

Pn;2 = 𝜒G1(Pn;inc + P′
n;1) + Pn;𝜒 (9.6.38)

Here, one has the sum of incoming noise power and the equivalent noise power of
the first amplifier that is amplified by the gain factor G1 and then absorbed by the
efficiency factor 𝜒 . Also, a noise of a circuit with efficiency 𝜒 is generated. The
signal power at the chain output is

Ps;2 = 𝜒G1Ps (9.6.39)

Figure 9.6.3 Signal and noise propagation through a cable run with amplifier insert.



618 GNSS RECEIVER ANTENNAS

It is just the incoming signal power that is amplified first and partially absorbed after-
ward. The SNR at the output is

SNR2 =
Ps;2

Pn;2
=

𝜒G1Ps

𝜒G1

(
Pn;inc + P′

n;1

)
+ Pn;𝜒

=
𝜒Ps

𝜒
(
Pn;inc + P′

n;1

)
+

1
G1

Pn;𝜒

(9.6.40)
Then, similar to the derivations of above, if the gain G1 is sufficiently large, one may
neglect the second term in the denominator, and the common factor 𝜒 cancels. Thus,
the cable “disappears,” and SNR2 will take the form of (9.6.31) and will not depend
on the properties of the cable.

However, one notes that the actual condition to neglect the second term in the
denominator in (9.6.40) reads

𝜒G1

(
Pn;inc + P′

n;1

)
>> kBT0(1 − 𝜒)Δf (9.6.41)

Here, we have introduced the noise power of a cable from (9.6.9). Thus, if the cable
run is too long, then 𝜒 → 0 and the left-hand side in (9.6.41) diminishes, however
large the gain G1 is. The cable will work as a perfectly matched load with SNR at the
output tending to be zero. This situation may occur with long cables that are typical
with GNSS reference network antenna installations.

To overcome this difficulty one is to consider a chain shown in the right panel in
Figure 9.6.3. Here the first amplifier, the LNA, is connected via cable to the second
one. At the output of a chain (point 3) one has

SNR3 =
Ps;3

Pn;3
=

G2𝜒G1Ps;0

G2𝜒G1

(
Pn;0 + P′

n;1

)
+ G2

(
Pn;𝜒 + P′

n;2

)
=

Ps;0(
Pn;0 + P′

n;1

)
+ 1
𝜒G1

(
Pn;𝜒 + P′

n;2

) (9.6.42)

This SNR equals to (9.6.31) if

Pn;0 + P′
n;1 >>

1
𝜒G1

(
Pn;𝜒 + P′

n;2

)
(9.6.43)

The second amplifier “disappears” along with the cable, from SNR standpoint. The
noise power at the output (point 3) will be

Pn;3 ≈ G2𝜒G1(Pn;0 + P′
n;1) (9.6.44)

It is now proportional to the gainG2 ( along with the signal!). Thus, one may continue
the cable run with a line amplifier insert, provided that initial noise amplified by G2
is much larger than the noise contribution of the next step. One is to note, of course,
that the larger the losses to be compensated, the larger the gains and the smaller the
noise figures of the amplifiers must be.
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To conclude this discussion we need to mention that instead of efficiency 𝜒 of a
passive circuit, one may operate with an equivalent gain G such that

G = 𝜒 < 1 (9.6.45)
and with noise factor

N =
1
𝜒

(9.6.46)

This way is adopted in literature such that a chain of active and passive circuits are
analyzed in a unified format employing Friis’ formula (9.6.36) and SNR of (9.6.34).
We prefer not do that, however, and keep the efficiency 𝜒 for passive circuits.

9.6.4 SNR of the GNSS Receiving System

We combine all derivations to estimate the SNR that is normally observed at the
receiver input. In order to obtain the respective function we look again at Figure 9.6.1,
assume there is no cable between the antenna and LNA, take expression (9.2.42) for
the signal power at the antenna output, and neglect polarization losses and mismatch.
The expression for the SNRr;input at the receiver input will look like

SNRr.input =
10−16D0F

2(𝜃, 𝜙)𝜒aGLNA𝜒cable

Δf kB[(Text𝜒a + T0(1 − 𝜒a) + T0(NLNA − 1))
GLNA𝜒cable + T0(1 − 𝜒cable)]

(9.6.47)

In the numerator we have the power received by the antenna (9.2.42), amplified by
the factor of LNA gain,GLNA, and then partially lost due to attenuation in the cable. In
the denominator, we express the noise powers via equivalent noise temperatures. The
common kB and frequency bandwidth Δf terms were factored out. What remains in
the brackets is actually the overall noise temperature of the chain: the first term is an
external noise with the temperature Text attenuated by a factor of antenna efficiency
𝜒a, the second term is the noise generated by the antenna due to efficiency 𝜒a, and the
third term is LNA noise. These three terms are amplified by the LNA via the factor
GLNA and then attenuated by the cable. The last term is the cable noise, taking the
efficiency 𝜒cable into account.

We introduce T𝛴 as the noise temperature of an active antenna, which is comprised
of external noise, antenna noise, and LNA noise. One has

T𝛴 = Text𝜒a + T0(1 − 𝜒a) + T0(NLNA − 1) (9.6.48)

All terms of this expression have been discussed already. Now we summarize numer-
ical values. We take (9.6.7), (9.6.12), and (9.6.24) and get

T𝛴 = 257K (9.6.49)

Assuming an LNA gain of 30 dB or 1000 times in relative units, we get
T𝛴GLNA𝜒cable = 25, 700K. Compared to this figure the noise generated by a cable
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as expressed by (9.6.13) is about 100 times less. This result is expected. It is the
large LNA gain that plays the major role here. Once we neglect the cable noise in
the denominator of (9.6.47), we immediately arrive at

SNRR.input =
10−16D0F

2(𝜃, 𝜙)𝜒a

Δf kB[Text𝜒a + T0(1 − 𝜒a) + T0(NLNA − 1)]
= SNRA.output (9.6.50)

The SNRA;input stands for the SNR at the output of the active antenna.
First we conclude what has been mentioned already: Even under rather hard con-

ditions of 0.1 cable efficiency (a 90% power loss), a big LNA gain keeps the SNR
unchanged. Then we see that the SNR does not actually depend on the LNA gain
GLNA; the gain just has to be large. Recall the initial discussions in Section 9.1.7:
a ± 2 dB, which looks like a relatively large variation in terms of absolute power, is
not important for SNR.

We now arrive at the final point. Instead of using the SNR in terms of power, some
another quantity is often used. The term

S𝛴 = kBT𝛴 (9.6.51)

represents the power spectral density of an active antenna noise. SNR in the form of

SNR = 10 log

(
10−16D0F

2 (𝜃, 𝜙)𝜒a

S𝛴

)
(9.6.52)

is considered to have dimensions [dB ⋅ Hz]. This ratio is adopted as the signal quality
indicator at the antenna output. By way of derivations from the previous section, one
may state that, with a properly designed system, this value should stay unchanged
throughout signal transformations. Using 6 dB directivity for the antenna (4 in rela-
tive units) and collecting all the numbers above, the formulae (9.6.52) yields SNR ≈
50[dB ⋅ Hz] for zenith direction. This is a typical figure normally reported by a GNSS
receiver.

9.7 ANTENNA TYPES

This section provides an overview of antenna types adopted by current GNSS receiv-
ing technology. Some details about derivations can be found in the Appendices. For
basics about the electromagnetic instrumentation involved, the reader is referred
again to Balanis (1989).

9.7.1 Patch Antennas

Microstrip patch antennas remain one of the most common types for GNSS survey-
ing due to their compact profile and manufacturing simplicity. These antennas have
been the focus of antenna developers for more than three decades. For guidance on
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theory and design of these antennas the reader is referred toWaterhouse (2003), Pozar
and Schaubert (1995), Garg et al. (2001), and Kumar and Ray (2003). Exact com-
puter simulations using electromagnetics software packages are in broad use with
designers. However, the main features of patch antenna performance relevant for
GNSS applications can be illustrated with a simplified approach known as single
cavity mode approximation. This approach is chosen below. Details of derivations
are shown in Appendix G. Within the scope of the discussion the main disadvantage
of the single-mode approximation is that an antenna bandwidth appears to be about
two times larger than actually achievable. More accurate formulas to estimate the
antenna Q factor can be found in Garg et al. (2001).

We start with a linear polarized antenna. It consists of the dielectric substrate 1,
the metal patch 2, and ground plane 3 (the left panel in Figure 9.7.1). The patch is
connected to the probe 4, which in turn is connected to the inner conductor of the
coaxial feed 5 via a hole in the ground plane. Another option is that the probe 4 is
connected to the microstrip line 6 (right panel in the figure). For circular polarized
antennas, it is common to choose a patch of rectangular or circular shape. We will
stay with the rectangular shape because it is easier to analyze and implement. The
main features of circular patch functionality are similar to those of rectangular ones.
Designations of antenna constitutive parameters are seen in the figure. Here, ax is
the patch size along the symmetry axis where the probe is located (x axis), ay is the
patch size along the y axis perpendicular to the x axis, 𝜀 is permittivity of substrate,
h is substrate thickness, xpr is the probe offset from the center of symmetry, and rpr
is the probe radius. The substrate thickness h normally is several hundredths of the
free space wavelength, and substrate permittivity 𝜀 is normally about 3 to 4, reaching
about 30 with compact designs.

A microstrip patch antenna is of the resonant type. In its classical implementation
it works within a narrow frequency band around the resonant frequency. Within this
frequency band, the E⃗ - and H⃗-field distribution in space immediately surrounding
the patch takes a certain special form referred to as a TM10 cavity mode. Spatial
distribution of the E⃗ field is schematically illustrated in Figure 9.7.2 (left panel). In

Figure 9.7.1 Linear polarized microstrip patch antenna.
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Figure 9.7.2 TM10 cavity mode of patch antenna.

the space between a patch and a ground plane the vector E⃗ is perpendicular to the two
surfaces. Resonance occurs when

ax ≈
𝜆0

2
√
𝜀

(9.7.1)

The symbol 𝜆0 is the free space wavelength at resonant frequency. Similarly, as in
previous sections, we consider the transmitting mode of the antenna. In transmitting
mode, the antenna radiates power into free space through the slots parallel to the y
axis. These slots aremarked as 7, 7′ in the top-left panel in Figure 9.7.2 and are formed
by the patch edges and the ground plane. The E-field distribution along said slots is
homogeneous (bottom-left panel. The E-field distribution along the slots formed by
patch edges parallel to the x axis and the ground plane is antiphase (dashed line in
top-left panel). Power radiation via these slots is neglected. The electric current j⃗
associated with the resonant mode and flowing at the patch is illustrated in the right
panel in Figure 9.7.2. This current is homogeneous with respect to the y axis and takes
the form of half a cosine-like wave with respect to the x axis. The radiated field has
the dominant component of the vector E⃗ parallel to the x axis.

The input impedance of the antenna is (see Appendix G)

Zinp =
1

G + iB
+ iXL (9.7.2)

with

G =
2G𝛴

sin2
(
𝜋

ax
xpr

) (9.7.3)

B =

2

{
B𝛴 +

axay
𝜂04kh

[
k2𝜀 −

(
𝜋

ax

)2
]}

sin2
(
𝜋

ax
xpr

) (9.7.4)
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In these expressions, k is a free space wavenumber (9.1.32), 𝜂0 is free space intrinsic
impedance (9.1.14), and

Y𝛴 = G𝛴 + iB𝛴 (9.7.5)

is radiating admittance of a slot (Garg et al., 2001) with

G𝛴 =
1
2

kay
𝜂0

(
1 −

(kh)2

24

)
(9.7.6)

B𝛴 =
1
2𝜋

kay
𝜂0

(3.135 − 2 log(kh)) (9.7.7)

The last term in (9.7.2) is the inductance of a probe

XL =
1
2𝜋
𝜂0kh(0.1159 − ln(k

√
𝜀rpr)) (9.7.8)

Expression (9.7.2) shows that input impedance exhibits a frequency response similar
to that of a parallel resonant circuit. EquatingB of (9.7.4) to zero at resonant frequency
f0 and solving with respect to ax yields

ax =
𝜆0

2
√
𝜀

⎡⎢⎢⎢⎣
√√√√√1 +

(
2

𝜋
√
𝜀

h
𝜆0

(
3.135 − 2 log

(
2𝜋h
𝜆0

)))2

−
2

𝜋
√
𝜀

h
𝜆0

(
3.135 − 2 log

(
2𝜋h
𝜆0

))]
(9.7.9)

This expression shows that the resonant size is slightly less compared to (9.7.1) due to
capacitance (9.7.7). With substrate thickness h << 𝜆0, the maximal active impedance
reached at resonant frequency is

Rinp max[ohm]
= G−1

𝛴
≈ 60

𝜆0
ay

sin2
(
𝜋

ax
xpr

)
(9.7.10)

This expression defines the probe displacement xpr, which is required to match the
antenna with the feeder. The antenna Q factor is defined by frequency bandwidth Δf
where the active impedance exceeds 1∕2Rinp max. This bandwidth is given by

Δf

f0 [%]

=
1
Q
100 =

4h

𝜆0
√
𝜀
100 (9.7.11)

Thus the bandwidth is set up by substrate parameters. For typical GNSS applications,
assuming 𝜆0 = 20cm, h = 5mm, and 𝜀 = 4, expression (9.7.11) gives 5% bandwidth.
In actuality an antenna with such parameters possesses slightly less than 3% band-
width.
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Figure 9.7.3 Coordinate frame for calculation
of patch antenna far field.

The nonnormalized antenna pattern in terms of the 𝜃th and the 𝜙th components is

F𝜃 = Nx cos 𝜃 cos𝜙 + Ny cos 𝜃 sin𝜙 − Nz sin 𝜃 (9.7.12)

F𝜙 = Nx sin𝜙 − Ny cos𝜙 (9.7.13)

Here 𝜃 is the zenith angle and 𝜙 is the azimuth counted from the x axis as shown in
Figure 9.7.3. With these expressions,

Nx = −I
4ay

kh𝜂0 sin

(
𝜋

ax
xpr

)
(G + iB)

cos u

1 −
(2u
𝜋

)2 sin vv sinw (9.7.14)

Ny = 0 (9.7.15)

Nz = I

⎡⎢⎢⎢⎣2he
ikxpr sin 𝜃 cos𝜙 +

8 (𝜀 − 1) kaxay

𝜂0𝜋
2 sin

(
𝜋

ax
xpr
)
(G + iB)

u cos u

1 −
(
2u
𝜋

)2 sin v
v

⎤⎥⎥⎥⎦
sinw
w

(9.7.16)

The symbol I denotes a probe current, and

u =
kax
2

sin 𝜃 cos𝜙 (9.7.17)

v =
kay
2

sin 𝜃 sin𝜙 (9.7.18)

w = kh cos 𝜃 (9.7.19)

As seen from (9.7.12) to (9.7.19), in the plane 𝜙 = 0 or 𝜋, the component F𝜙 equals
zero and the only remaining component is F𝜃 . This component belongs to the plane,
and in the direction 𝜃 = 0, this component is parallel to the x axis where the probe
is located. This is the principal polarization component. There is no cross-polarized
component F𝜙 in this plane. In general, it is common with linear polarized antennas
to distinguish E and H planes of symmetry. The E plane is a plane that contains the
principal polarization component of vector E⃗. The same is true for H plane in regard
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Figure 9.7.4 Patch antenna pattern.

to vector H⃗. For the current case, the plane defined by 𝜙 = 0 and 𝜙 = 𝜋 is the E plane
of the antenna and the plane 𝜙 = 𝜋∕2 and 𝜙 = 3𝜋∕2 is the H plane. The principal
polarization component of the E field in the latter plane is F𝜙. This component is
parallel to the x axis; however, within that plane we generally have F𝜃 ≠ 0. This is a
cross-polarized component. In other planes with respect to azimuth 𝜙, both principal
and cross-polarized components are also observed.

The E-plane patterns calculated using the above expressions are illustrated in
Figure 9.7.4 for three antennas. These antennas differ by substrates permittivity.
The substrates thickness h is 0.025𝜆0 or 5mm if one takes 𝜆0 = 20cm. The patch
is assumed to be square with dimensions ax = ay given by (9.7.9). The values are
0.464, 0.24, and 0.163𝜆0, respectively. In each case the probe location is chosen by
(9.7.10) to match with a 50-𝛺 feeder. As seen with the plots, the E-plane patterns
(left panel) are not symmetric with respect to the zenith direction 𝜃 = 0. This is due
to radiation of the probe which is offset from the center of symmetry. An antenna
with air substrate 𝜀 = 1 possesses a narrower pattern compared to others; the pattern
of this antenna is significantly nonsymmetrical and has a deep drop. This property,
along with the large size of this antenna, limits its use in GNSS applications in spite
of having the largest bandwidth according to (9.7.11). As permittivity 𝜀 growths, the
patch size decreases, the probe approaches the center of symmetry, and the pattern
becomes smoother and wider. One is to note that the changes just mentioned are
accompanied by an antenna bandwidth (9.7.11) decrease.

Right panel in Figure 9.7.4 illustrates the same patterns for the H plane. The
principal polarization components are shown as solid lines and cross-polarized com-
ponents are shown as dashed lines. The cross-polarized component equals zero for
the zenith direction as was already mentioned. However, this component is growing
in the directions closer to the horizon (𝜃 = 90∘). With substrate permittivity growth,
the cross-polarized component intensity also increases.

For correct interpretation of the antenna patterns just described, one is to note
that formulas (9.7.14) to (9.7.16) are derived using the antenna ground plane
approximation as an unbounded plane. With a ground plane of finite size, the pattern
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Figure 9.7.5 Circular polarized patch antenna with one, two, and four probes excita-
tion.

reading in the E plane decreases by an extra 6 dB in directions close to horizon
(𝜃 = 90∘). This is explained further in Section 9.7.3.

To achieve a circular polarization one must excite two similar cavity modes (TM10
and TM01) with respect to the x and y axes of symmetry. These two modes are said to
be orthogonal as the power balances [expressions (G.4) and (G.6) of Appendix G] of
these modes are independent of each other. One possible way to achieve the excitation
of the two modes is to use one probe located near a diagonal of the rectangular patch
(Figure 9.7.5, left panel). The patch dimensions ax and ay are then to be chosen as

ax,y = a(1 ∓ Δf∕(2f0)) (9.7.20)

Here, a is resonant size (9.7.9) for given 𝜆0 andΔf∕f0 is a relative bandwidth (9.7.11).
The patch currents associated with these two resonant modes are shown schematically
in the left panel in Figure 9.7.5 as block arrows. Using expression (G.17), and as was
done for the TM01 mode, one may make sure that under conditions (9.7.20), the patch
current parallel to the y axis is 90∘ delayed in phase compared to the one parallel to
the x axis. By choosing proper displacements of probe xpr and ypr, the magnitudes of
the E-field components associated with these currents are made equal to each other
for the zenith direction. Thus, an RHCP field is achieved in zenith. However, the
bandwidth with such an antenna is limited not by mismatch but rather by polarization
properties. The frequency bandwidth within which the axial ratio is greater than 0.7
is about half compared to (9.7.11). Also, such an antenna possesses a phase center
offset in the horizontal plane. This is due to the probe displacement from the vertical
axis of symmetry.

Another way to achieve circular polarization is to use a square patch with the size
defined by (9.7.9) with either two (middle panel, Figure 9.7.5) or four (right panel,
Figure 9.7.5) excitation probes located at symmetry axes. Probes are equally offset
from the center. Probes 1 and 2 in the middle panel excite two orthogonal resonant
modes with respect to x and y axes. The same holds with pairs of probes 1, 1′ and
2, 2′ in the right panel. The electric current amplitudes of the probes are to be equal
to each other. Probe 2 in the middle panel is to be 90∘ phase delayed with respect to
probe 1. This is achieved by employing a feed network connected to the probes. With
four probes excitation, the probe currents are to have 90∘ progressive phase delay.
The drawback of the two-probe version is that the pattern is not exactly symmetrical
with respect to the vertical axis as has been discussed already. This is associated with
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Figure 9.7.6 Two magnetic current segments as
a model of patch antenna radiation.

the phase center offset in the horizontal plane, whereas with the four-probe excitation
the antenna possesses an exact rotational symmetry.

If one neglects the antenna pattern symmetry consideration, then a useful simpli-
fied estimate for the pattern holds. Asmentioned, with linear polarizedmode the main
radiation comes from slots 7, 7′ in Figure 9.7.2. These slots could be modeled, see
Lier and Jacobsen (1983), as equivalent magnetic current segments placed onto the
ground plane (Figure 9.7.6). For details of the magnetic current definition the reader
is referred to Appendix E. In the E plane the radiation pattern of these currents is

F(𝜃) = cos
(
k
ax
2
sin 𝜃

)
(9.7.21)

Here, the ground plane approximation is assumed as an unbounded plane and thus,
this expression is valid for −𝜋∕2 ≤ 𝜃 ≤ 𝜋∕2. As an example, let the desired pattern
roll-off from the zenith to the horizon be 10 dB. Then, as was mentioned already
for the unbounded ground plane model, the roll-off is 6 dB less making it equal to
4 dB. Expression (9.7.21) then gives the antenna patch size ax ≈ 𝜆∕4 and from (9.7.1)
the permittivity of the substrate is 𝜀 ≈ 4. These are typical figures for a GNSS user
antenna.

As was mentioned previously, patch antennas are narrowband. In their canonical
implementation they are not suitable for dual-frequency L1/L2 functionality, which
is required for real-time positioning. One way to overcome this difficulty is to arrange
L1 and L2 antenna elements in planar concentric format. As an example, Figure 9.7.7

Figure 9.7.7 Dual frequency concentric patch
antenna board of Legant antenna.
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illustrates the dual-frequency Legant antenna board. This antenna was designed in the
mid-90s at Javad Positioning Systems (JPS) under the leadership of V. Filippov, in
which D. Tatarnikov participated as a senior scientist. The diameter of the antenna is
150mm, the inner shorted circular patch serves for L1 GPS/GLONASS signals, and
the outer ring with the inner shorted wall is for L2 signals. This antenna has been
registered as Legant by JPS and later by Topcon Corp. The board was also used with
Regant and CR3 choke ring antennas. Other considerations for dual-frequency con-
centric patch antennas for applications to GNSS positioning can be found in Boccia
et al. (2007) and Basilio et al. (2007).

With an increasing demand to reduce the size of compact integrated units intended
for field applications, the stacked multifrequency patch antennas have become of
interest. Various design approaches are known and could be potentially employed.
The related discussion can be found in Kumar and Ray (2003) and Rao et al. (2013),
Gao et al. (2014) and Chen et al. (2012). The Topcon PGA1 dual-frequency antenna
stack is shown in Figure 9.7.8 as a practical example. Top and bottom patch antennas
are for GPS/GLONASS L1 and L2 frequencies, respectively. The patch of the bot-
tom antenna serves at the same time as a ground plane for the top antenna. Both patch
antennas are fabricated with ceramic substrates of 5mm thickness. The LNA board is
located directly under the stack. This board also contains the microstrip feed network.
The footprint of the bottom portion is 90 × 90 mm. This stack has been manufactured
for more than a decade.

With the GNSS frequency bandwidth extension for Galileo and Compass sys-
tems and L5 and L3 signals of GPS and GLONASS, the substrate thickness h of
the patch antenna is to be increased. As seen with (9.7.11), for a 10% relative band-
width assuming 𝜀 = 4 and a wavelength 𝜆 of 20 cm, one has h = 1cm. In actuality,
this is an underestimate as mentioned previously. To cover 12% of the lower GNSS
band (see discussion at the end of Section 9.1.2 ) the substrate thickness increases up
to 2 cm. Such thick substrates would contribute to antenna weight and cause manu-
facturing complications. As an alternative, light-weight metal structures simulating
dielectric properties can be considered. Such structures are referred to as artificial
dielectrics. Designs relevant to GNSS applications have been patented by Tatarnikov

Figure 9.7.8 PGA1 antenna stack of Topcon
Corp.
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Figure 9.7.9 Full-wave GNSS Fence antenna
of Topcon Corp.

et al. (2008a, 2013b). Details of treatment presented in Tatarnikov (2008b, 2009) are
summarized in Appendix H.

As an example, Figure 9.7.9 illustrates the Topcon Fence antenna covering the
entire GNSS band. Such antennas are sometimes referred to as a full-wave antenna.
The antenna is a stack of two patch antennas. The stack has a total height of 22mm,
and the equivalent dielectric constant of artificial substrates is about 4. The weight of
the stack is 150 g.

9.7.2 Other Types of Antennas

A variety of antennas have been developed for different applications of GNSS posi-
tioning. The reader can find a detailed discussion of these antennas in Rao et al.
(2013), Chen et al. (2012) and references therein. For satellite surveying, however,
only a limited number of antenna types have been adopted so far, as there are strict
limitations in terms of size and weight. At the same time, as was mentioned in pre-
vious sections, given the frequency bandwidth the loss factor generally appears too
severe when downsizing the antenna. The SNR degradation associated with increased
antenna noise temperature is undesirable for RTK algorithms, as it leads to cycle slips
and problems with ambiguity fixing. This is particularly true for low elevated satel-
lites. Thus, one may say that for survey applications the art of antenna designers is to
create compact low-loss antennas. Last but not least, cost efficiency is also a factor.
One is to note a remarkable modification of the spiral antenna known as Pinwheel.
The reader is referred to Kunysz (2000) and Rao et al. (2013) for details.

9.7.3 Flat Metal Ground Planes

Generally, the purpose of the ground plane is to decrease the antenna gain for
directions below the horizon, thus suppressing multipath coming from underneath.
Different types of ground planes adopted in receiving GNSS antenna designs are
discussed in this and two subsequent sections. In order to avoid confusion, the
following terminology is used: the antenna installed over a ground plane is referred
to as an antenna element, and a combination of the antenna element and a ground
plane is referred to as an antenna system.
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Figure 9.7.10 Two-dimensional models of a flat metal ground plane.

A flat metal ground plane is the most common arrangement with GNSS user
antenna designs. The details of ground plane functionality can differ considerably,
depending on the antenna element type. We begin with low profile antenna elements,
such as patch elements.

Useful estimates of the ground plane performance can be derived from the
two-dimensional model seen in Figure 9.7.10. It shows a ground plane in the form
of a strip of size (width) L. The strip is infinite in the direction perpendicular to
the drawing. The ground plane is excited by the magnetic line current placed at the
center (left panel). This current is referred to as a source. Without a ground plane, the
source has an omnidirectional pattern in the x-z plane. The ground plane is assumed
to be perfectly conducting.

The thus-defined problem is canonical with electromagnetic wave diffraction the-
ory.Wewill employ the edgewaves approach of Ufimtsev (1962, 2003) in a simplified
format. Following his approach, one considers the electric currents induced at the
ground plane surface by the source. The electric current is a sum of two terms: phys-
ical optics (PO) current and edge waves current. The PO current is the portion of
a current that occurs if the ground plane is an entire unbounded plane, and the edge
waves current is excited by the ground plane edges. However, estimates in Tatarnikov
(2008c) have shown that the edge waves current provides comparatively small correc-
tion for the case when the ground plane is of the order of half a wavelength or larger.
For this model, we neglect the edge wave’s current contribution. The PO current j⃗e

has an explicit form (Appendix E):

j⃗e = Um k
4𝜂0

2H(2)
0 (k|x|)x⃗0 (9.7.22)

Here, Um is the source amplitude and H(2)
0 (s) is the zeroth-order Hankel function

of the second kind. Using the first term of the Hankel function asymptotic form for
large argument (E.43), it is seen that the current (9.7.22) decays as (k|x|)−1∕2 for
large distances from the source. This is an important point to remember. The total
radiated field is a sum of the radiation of a source in free space and that of the current
(9.7.22). This latter radiation can be represented as radiation of the currents (9.7.22)
flowing through an unbounded plane minus the radiation of tails, located at |x| > L.
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For these tails, the asymptotic form of (E.43) holds. Employing the asymptotic form,
one obtains the expression for the radiation pattern

F(𝜃e) =

{(
2
0

)
−

2√
𝜋
ei(𝜋∕4)

(
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−𝜋 ≤ 𝜃e < 0

)
(9.7.23)

This pattern is normalized to that of the source radiating in free space.
For directions not too close to grazing the ground plane (𝜃e = 0, 𝜋), such as when

k(L∕2) (1 ∓ cos 𝜃e) is not too small, keeping in (9.7.23) the first term of the asymptotic
expansion (F.7) of the Fresnel integral, one comes to the expression

F(𝜃e) =
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0 < 𝜃e ≤ 𝜋

−𝜋 ≤ 𝜃e < 0

)
(9.7.24)

This expression says that for directions of top semisphere (𝜃e > 0), the radiation
is almost doubled with respect to the free space radiation of the source. Thus, for
high enough elevation angles the ground plane works almost like a perfect mirror.
Next, there are two diffraction waves originating from the ground plane edges. The
amplitudes of these waves are of the order of (kL)−1∕2. For directions above the
ground plane (𝜃e > 0), these diffraction waves contribute to pattern “waving.” For
directions below the ground plane (𝜃e < 0), the radiation pattern is defined by these
two waves.

For 𝜃e = 0, one is to use the equation (F.6) with expression (9.7.23) to find out
that F(0) = 1 holds. In other words, the radiation in the direction grazing the ground
plane is 1/2 magnitude (–6 dB) related to what would be observed if the ground plane
was unbounded. This was mentioned already in Section 9.7.1.

Nowwe turn to themodel of the patch antenna element in the form of twomagnetic
line currents (Figure 9.7.6). We now refer to these currents as the source. The cor-
responding two-dimensional model is shown in the right panel in Figure 9.7.10. We
rewrite the expression (9.7.21) for the radiation pattern of the source using elevation
angle 𝜃e for convenience:

F∞(𝜃e) = cos
(
k
ax
2
cos 𝜃e

)
(9.7.25)

We denote this pattern now as F∞(𝜃e) to indicate that this pattern holds with the
ground plane model in the form of an unbounded plane. For a ground plane of finite
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size L, assuming that the magnetic line currents are not too close to the ground plane
edges, derivations similar to those used with (9.7.23) show that

F(𝜃e) =

{(
2
0

)
F∞(𝜃e) − F∞(0)
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(9.7.26)

with 0 < 𝜃e ≤ 𝜋∕2 and −𝜋∕2 ≤ 𝜃e < 0. Thus the radiation in the bottom half-space
−𝜋 ≤ 𝜃e < 0 is proportional to the source pattern in the direction grazing the ground
plane [F∞(0) term in 9.7.26]. This illustrates the collision mentioned in Section 9.2.1,
i.e., to decrease the antenna gain for directions below the horizon with the given
ground plane size, one is to decrease F∞(0) which is not permissible from the stand-
point of low elevated satellites tracking.

The pattern of (9.7.26) and the down-up ratio is illustrated in Figure 9.7.11 for a
number of the ground planes with different L. The down-up ratio is defined as

DU(𝜃e) =
F(−𝜃e)
F(𝜃e)

(9.7.27)

A patch length ax equal to 0.25 wavelengths is used in (9.7.25). One may mention
that the down-up ratios for the ground plane sizes of 0.5 and 1 wavelengths are almost
same. As such, an increase in the ground plane size from about 0.5 to 1 wavelength
would not provide a significant advantage in terms of multipath protection. As the
size L grows, the down-up ratio grows in absolute value, thus it improves. However,
the field in the bottom half-space decreases as (kL)−1∕2 versus L. Thus, such down-up
improvement versus L is not that fast. From this standpoint, a significant increase in
the ground plane size up to 1m and more as sometimes suggested, may not be recog-
nized as a way to noticeably improve multipath protection. On the other hand, more

Figure 9.7.11 Radiation pattern and down-up ratio of patch antenna element over a flat
metal ground plane.
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accurate estimates of the edge waves contribution show that with a ground plane
size L less than 1/2 wavelength, the down-up ratio rapidly degrades as L decreases
(Tatarnikov 2008c). Antenna systems with such small flat metal ground planes gen-
erally do not meet the regular requirements of GNSS positioning accuracy.

It is to be noted that, staying within the PO approximation to the currents,
the expression (9.7.26) gives a correct approximation to the pattern of a real
3-dimentional ground plane (disk). This gives value to the considerations given
above and holds true except for narrow angular sector close to nadir direction. The
reason for the difference is that with the 2-dimensional model, the excitation of
the ground plane edges by the current (9.7.22) decays as (kL)−1∕2 with L increases.
This results in the field in nadir direction having the same order of magnitude as a
function of L. For a disk the current would decay as 𝜌−1 following the field intensities
decrease in the far-field region. Here, 𝜌 is the distance from the source, but the
perimeter of the ground plane would grow proportionally to the ground plane radius.
Thus, for sufficiently large ground planes, the contribution from the field diffracted
over the edges in nadir direction would stay constant within the PO approximation.
This contribution would be proportional to the illumination of the ground plane
edges by the antenna element, or, in other words, to the antenna element pattern
reading in the direction grazing the ground plane. This, once again, illustrates that a
significant increase, within practically reasonable margins, of the flat metal ground
plane size might not be a practical solution for improving multipath mitigation.

All of this suggests that a practically reasonable ground plane size is within 0.5 to 1
wavelength range. As seen in Figure 9.7.11, to achieve the down-up ratio of –15 dB
for medium and high elevated satellites, a ground plane of about half-wave size is
sufficient. With the lowest GNSS frequency this is about 13 to 14 cm. Commercially
available rover antenna designs for field applications confirm this.

One is to note that in order to mitigate the conflict between low elevation gain and
multipath protection, different kinds of ground plane “endings” have been suggested.
Such endings are a kind of frame around the ground plane edges. The purpose of the
frame is to decrease the amount of power diffracted over the edges in the direction
underneath the antenna See Popugaev and Wansch (2014), Li et al. (2005), Timoshin
and Soloviev. (2000), Westfall and Stephenson (1999), and Maqsood et al. (2013) for
more detail.

Now we turn to another antenna element type that is referred to as cross dipoles.
First, consider the Hertzian dipole raised some distance h over an infinite metal plane
(Figure 9.7.12). Introducing the image (Appendix E) and using expression (9.1.79),
one writes the total magnetic field intensity at the ground plane surface in the form

Hy = 2IL
1
4𝜋

( 1
r2

+
ik
r

) h
r
e−ikr (9.7.28)

Figure 9.7.12 Hertzian dipole over flat metal
ground plane.
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where r =
√
h2 + x2. It follows that for x >> h, Hy ∼ x−2 holds. Employing the

boundary condition (E.44) of Appendix E, one concludes that for a large enough
distance x the electric current induced at the ground plane surface decays as x−2.
The same derivations hold for the dipole placed perpendicular to the drawing plane.
The cross-dipole antenna element normally is installed at a height h = 𝜆∕4 over
the ground plane. Thus, the currents induced at the ground plane will decay as 𝜌−2,
with distance 𝜌 counted from the cross-dipole footprint. This is faster than in the
case of low profile antennas. This illustrates that potential advantages for multipath
protection could be achieved using a cross-dipole antenna element over a sufficiently
large flat metal ground plane. See Counselman (1999) and Counselman and Stein-
brecher (1987) for a discussion of one of the first antenna systems developed for
high-precision applications.

9.7.4 Impedance Ground Planes

We consider the two-dimensional problem of Figure 9.7.10 but now assume that the
strip of width L supports the impedance boundary condition (E.48). We say the strip
forms an impedance surface. It is assumed that there is some structure underneath the
strip that creates the surface impedance ZS. More on these types of structures is given
below.

For the moment we take the limit L → ∞, thus turning to an infinite impedance
plane. Then, the excitation problem of the left panel in Figure 9.7.10 is solved using
the expansion of an incident field into a spectrum of plane waves. The derivation tech-
nique has been known since the first work of the German physicist A. Sommerfeld,
and it is named after him. A complete treatment of the technique can be found in
Felsen and Marcuvitz (2003). We are looking for the case when ZS is pure imaginary
with a negative (capacitive) imaginary portion. The result is

E𝜏 ≈ −
Um√
2𝜋

kei(3𝜋∕4)
𝜂0
ZS

e−ikx

(kx)3∕2
(9.7.29)

F∞(𝜃e) =

(
1 +

Zs
𝜂0

)
sin 𝜃e

sin 𝜃e + Zs
𝜂0

(9.7.30)

The symbol E𝜏 denotes a component of the electrical field tangential to the ground
plane at distances x from the source such that kx ≫ 1, and F∞(𝜃e) is the normalized
radiation pattern. Details of derivation for the case and related discussion can be found
in Tatarnikov et al. (2005). We note that the field intensity decays as (kx)−3∕2, which
is faster than in the case where the surface is a perfect conductor. One may say that an
impedance surface “forces” the radiation to leave faster with distance from the source
than it would if the surface was a flat conductive one. Thus, with a ground plane of
finite size L, less power will reach the ground plane edges and diffract over them in the
directions underneath. This suggests that antenna systems with capacitive impedance
ground planes have better multipath protection compared to flat metal ones. Next, as
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seen in (9.7.29), in order to decrease the fields further one is to make the impedance
ZS high in absolute value. One says that the ground plane is to realize a high capacitive
impedance surface (HCIS). Finally, as seen in (9.7.30), the natural drawback of this
approach is that the HCIS generally contributes to the narrowing of the radiation
pattern. In the limit of an infinite plane, the initially omnidirectional source will have a
null in the direction grazing the ground plane (𝜃e = 0). This narrowing is undesirable,
as it may result in difficulties with low elevation satellite tracking.

These facts are known in the antenna community. HCIS is used in many antenna
applications. In the current literature, artificial magnetic conductor (AMC) and per-
fect magnetic conductor (PMC) terms are used as a substitute for HCIS. However, a
somewhat old-fashioned HCIS seems preferable at the moment to indicate that we are
talking capacitive impedance and to differentiate with PMC, which is strictly valid at
the limit ZS → ∞.

Similar to flat conductive ground planes, the art of antenna design is to establish
the best proportion between multipath suppression capabilities and antenna gain for
low elevation angles. Commonly known and adopted is a choke ring ground plane.
Details of this remarkable antenna design can be found in Tranquilla et al. (1994),
and see Figures 9.2.6 and 9.2.7 regarding image and radiation patterns. With the
choke ring ground plane, the impedance surface passes through the choke groove
openings (dashed line in the left panel in Figure 9.7.13). In order to form capacitive
surface impedance, the groove depth is slightly larger than a quarter of the wave-
length. The frequency response of the imaginary portion of ZS is schematically shown
in the right panel of the figure. The frequency fC is known as a cut-off frequency.
At frequencies below fC, a so-called surface wave propagates along the impedance
surface, destroying the ground plane functionality. A large variation of antenna per-
formance characteristics is observed at frequencies approaching fC. In actual designs
fC is slightly below the GPS L5 frequency. On the other hand, the impedance ZS has to
be large in absolute value. The operational frequency band of the antenna is between
1160 and 1610MHz. Approaching 1610MHz (the upper limit of the upper GNSS
band, see Section 9.1.2), the impedance generally degrades. In order to provide more
consistent surface impedance over the GNSS band, a dual-depth choke ring has been

Figure 9.7.13 Impedance structure of choke grooves and frequency response (schemat-
ically).
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Figure 9.7.14 Impedance structures of mushrooms and straight pins.

developed by JPS company (Ashjaee et al., 2001). In that design, a diaphragm is
inserted into the grooves such that it is transparent for the signals of the lower GNSS
band and shorted for the upper band.

Another structure that provides capacitive impedance is sometimes referred to
as mushrooms (Sievenpiper et al., 1999). This structure, seen in the left panel in
Figure 9.7.14, is a dense grid of metal plates (patches) shorted to the ground plate by
vertical standoffs. Normally, standoffs would be formed by plated vias with printed
board technology. The height of the plates over the ground plate is of the order of
1/10 of the wavelength. GNSS receiving antennas with the mushrooms ground planes
are presented by McKinzie et al., (2002), Baracco et al., (2008), Bao et al., (2006),
Baggen et al., (2008), and Rao and Rosario (2011).

An easy-to-make structure with broadband response is composed of straight pins
as discussed in King et al., (1983) and Tatarnikov et al. (2011a). The pin length is to
slightly exceed a quarter of the free space wavelength 𝜆. The pins are arranged in a
regular grid with 0.1 to 0.2𝜆 spacing (right panel in Figure 9.7.14).

With the intention of keeping the advantages of the HCIS ground plane in terms
of multipath protection and at the same time increasing the antenna system gain for
directions close to the horizon, a nonplanar HCIS ground plane is considered. Initial
developments were published in Kunysz (2003). These developments resulted in the
conical pyramidal choke ring antenna of NovAtel and Leica Geosystems. The details
can be found in Rao et al. (2013). In the laboratory of Topcon Moscow Center, con-
vex impedance structures have been analyzed, resulting in the design described in
Tatarnikov et al. (2011,a,b, 2013a). The main features could be expressed as follows.
Consider the left panel in Figure 9.7.15. Intuitively, it is clear that if the radius R of
the HCIS curvature is small enough, then the antenna system pattern would tend to be
that of an antenna element without the ground plane with broad coverage of directions
in the top semisphere but with weak multipath protection. On the other hand, with R

Figure 9.7.15 Schematic view and performance characteristics of convex impedance
ground plane.
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increase the pattern would tend to be that of a planar HCIS with potentially good mul-
tipath protection but with decreased gain for low elevation satellites. However, as R
increases the antenna system gain toward low elevation angles degrades slowly, stay-
ing almost constant within a practically reasonable range of R. At the same time, the
down-up ratio improves rapidly. This is illustrated in the right panel in Figure 9.7.15.
The plots are calculated assuming the HCIS is in the form of a complete sphere to
simplify the estimates. The bottom portion of the sphere does not provide a signifi-
cant contribution since only a small portion of radiated power reaches this area due
to the “forcing” effect of HCIS as mentioned above.

Thus, a variety of the ground plane designs could be suggested that possess both
improved gain toward low elevation satellites and improved multipath protection
when compared to commonly adopted values. As an example, Figure 9.7.16 shows
the PN-A5 antenna of Topcon Corporation. The pin structurementioned above is used
to form the HCIS. The ground plane has a shape of a half-sphere with the external
diameter of the ground plane chosen to fit commonly adopted radomes recommended
by the International GNSS Service (IGS). In Figure 9.7.17 the antenna patterns of the
PN-A5 antenna are shown. One might compare the patterns with those of traditional

Figure 9.7.16 PN-A5 antenna of Topcon
Corp.

Figure 9.7.17 Radiation patterns of PN-A5 antenna.
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Figure 9.7.18 SNR versus satellite elevation for PN-A5 antenna compared to standard
choke ring antenna.

choke ring seen in Figure 9.2.7. The type of improvements in signal strength offered
by the convex design is illustrated in Figures 9.7.18. The figures show SNR values
versus satellite elevation as reported by a geodetic receiver. For the GPS C/A-code
(left panel), the increase in SNR for low elevations is about 4dB and for P2-code
(right panel) it is up to 10 dB when compared to the CR4 choke ring antenna. One
may note a decrease in SNR for high elevations in the case of the PN-A5 antenna.
This is in agreement with the main antenna gain features discussed in Section 9.2:
With antenna pattern broadening, the zenith gain decreases, provided that all the loss
factors stay unchanged. Such a decrease in the zenith gain does not affect the satellite
tracking capabilities as the signal power is high in this direction.

Another feature to be mentioned regarding this design is phase center stability in
the vertical coordinate as a function of frequency. The measured data is illustrated
in Figure 9.7.19 in comparison to the CR4 choke ring antenna of Topcon, which is a
version of the original JPL design. It is seen that the cut-off frequency of the common
choke ring antenna is slightly below the lowest frequency of the GNSS band, which
is 1160MHz. See related discussion in regards to Figure 9.7.13 above. Approach-
ing the cut-off frequency the phase center displacement of the choke ring antenna
is of the order of centimeters. On the other hand, the phase center displacement of
PN-A5 is below 5mm within the entire GNSS range. One should mention that the

Figure 9.7.19 Phase center offset in vertical
coordinate for PN-A5 antenna versus
frequency compared to that of CR4 choke ring.
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Figure 9.7.20 TA-5 antenna element of Topcon. Corp.

IGS-type radome contributes to an extra displacement versus frequency of the order
of a half-centimeter. This feature of the radome will most likely be addressed with
further developments.

A specially designed antenna element is used with PN-A5. This antenna element is
TA-5 of Topcon Corp. The element continues the line of volumetric low-loss geodetic
antenna designs initially represented by the Dorne and Margolin antenna. The TA-5
element is a cup comprising an array of convex patches (Figure 9.7.20; Tatarnikov
et al., 2013c). The main features of the electromagnetic background as provided in
Tatarnikov et al. (2009a) are summarized in Appendix I. The excitation unit 3 in
Figure 9.7.20 is electromagnetically coupled with the array of patches 2. The VSWR
observed at the input of one of two linear polarized channels of the excitation unit is
shown in the right panel of the figure. Here, VSWR ≤ 2 within the frequency range
that exceeds 40%.

Pins HCIS, being a light-weight broadband structure, potentially allows consider-
ation of large impedance ground plane antennas. With such antennas, the down-up
ratio approaches the curve named “no multipath antenna” in Section 9.4.4. in regards
to Figure 9.4.11. Thus, millimeter accuracy of real-time positioning can be addressed.

As mentioned above, placing an antenna element straight onto a plane HCIS of
sufficiently large size might not be recognized as a solution because of antenna pat-
tern narrowing. On the other hand, from a geometrical optics perspective it might be
clear that by raising an antenna element above the ground plane (Figure 9.7.21), one
would generally increase the illumination of the space below the horizon. By doing so,

Figure 9.7.21 Antenna element raised against
HCIS ground plane (schematically).



640 GNSS RECEIVER ANTENNAS

the multipath rejection capabilities of the ground plane would degrade. However,
as was discussed in Tatarnikov and Astakhov (2013), for a ground plane of suf-
ficiently large size with height h increasing, the antenna system gain toward low
elevations grows (improves) rapidly while multipath rejection capabilities (down-up
ratio) remains almost unchanged. This has served as justification for the consideration
of large ground planes. An increase of height hmight be accompanied by antenna pat-
tern disturbances in the top semisphere. It has been shown in the referenced paper that
the disturbances are small if the antenna element possesses its own down-up ratio in
nadir direction of –12 to –15 dB or better. The image in the left panel in Figure 9.7.22
shows a scaled model operating at 5700MHz. Here the HCIS is formed by pins. The
diameter of the ground plane is about 71 cm (13.5𝜆) and a microstrip patch antenna
with a local flat ground plane serves as the antenna element. Such an antenna ele-
ment has a down-up ratio of –15 dB in the direction toward the impedance surface.
The right panel in the figure shows the measured radiation pattern of this system. As
seen, the antenna pattern reading for 12∘ elevation is about –9 dB, down-up at 12∘

elevation is better than −20 dB, and the antenna pattern reading in nadir direction is
less than −40 dB relative to the zenith. A receiving GNSS antenna system realizing
this principle is shown in Figure 9.7.23. The antenna system comprises a straight pin
ground plane with a total diameter of 3m and an antenna element mounted at a height

Figure 9.7.22 Scaled model and radiation pattern of large impedance ground plane
antenna system operating at 5700MHz.

Figure 9.7.23 GNSS receiving antenna with
large impedance ground plane.
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of about 7 to 8 cm. One can say that the requirements for the antenna element men-
tioned above are met by the majority of commercially available GNSS antennas for
geodesy and surveying. Different types of such antennas have been tested as antenna
elements, yielding practically the same results. Shown in the image is the choke ring
antenna element.

The actual precision of GNSS positioning in real time is illustrated by tests con-
ducted at an open-sky test range. Three short baselines of about 30m length were
involved: (a) between two standard choke ring antennas as base and rover, (b) between
two large impedance ground plane antennas seen in Figure 9.7.23, and c) zero base-
line. In the latter case, two geodetic-grade GNSS receivers are connected to one
antenna via a splitter. A zero baseline is free frommultipath errors and illustrates sys-
tem noise level. Real-time errors in the vertical coordinate for these three cases are
shown in Figure 9.7.24. In each plot, the results of system noise smoothing by mov-
ing window of 10 samples are illustrated by a thick line. As seen, for large impedance
ground plane antennas the remaining multipath error falls below system noise and is

Figure 9.7.24 Real-time error in vertical coordinate for the antenna with large
impedance ground plane (b) compared to standard choke ring (a) and zero baseline (c).
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estimated to be ±1.5 to 2mm. More details in regard to this antenna system perfor-
mance can be found in Tatarnikov and Astakhov (2014), Mader et al. (2014).

The above designs employed surfaces and structures that formed a capacitive
impedance. For the case of inductive impedance, a surface wave is excited as has
been mentioned. However, a ground plane composed of a structure supporting the
surface wave propagation could also be considered. This has been presented by
Sciré-Scapppuzo and Makarov (2009).

9.7.5 Vertical Choke Rings and Compact Rover Antenna

Rather than arranging choke grooves in a planar format as discussed above, one may
consider grooves arranged in a vertical stack. This is the vertical choke ring antenna
discussed by Lee et al. (2004). Similar considerations have been applied by Souti-
aguine et al. (2004), resulting in another design solution.

The insert in Figure 9.7.25 shows an array of two magnetic line currents perpen-
dicular to the drawing plane. If the distance d between currents is small compared to
the wavelength and the currents amplitudes U1,2 are related as

U2 = U1e
i(𝜋−kd) (9.7.31)

then the radiation pattern is a classical cardioid

f (𝜃) =
1 + cos(𝜃)

2
(9.7.32)

shown in Figure 9.7.25. As seen from the plot, the radiation in the nadir direction
(𝜃 ≈ 𝜋) is suppressed. The left panel in Figure 9.7.26 shows a stack of two patch
antennas. Patch 1 is active and connected to the LNA in the receiving GNSS case. A
choke groove underneath patch 1 is filled with dielectric. In order to form capacitive
impedance, the groove depth slightly exceeds a quarter of the wavelength into the
media filling. Thus, this groove is implemented in the form of patch antenna 2
with the total size being near resonance (9.7.1). This arrangement was referred to
as antiantenna in Soutiaguine et al. (2004) and Tatarnikov et al. (2005). The patch

Figure 9.7.25 Cardioid pattern of two
omnidirectional sources arranged in a vertical
stack.
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Figure 9.7.26 Single-frequency antenna stack employing antiantenna approach.

antenna 2 is passive. It is excited by patch 1 by means of electromagnetic coupling.
The system is tuned in such away that the cardioid pattern of (9.7.32) is approximated.

This approach allows one to overcome the limitation mentioned in Section 9.7.3.
Namely, the minimally allowed ground plane size is about half the wavelength.
The antiantenna replacing the ground plane is smaller by a factor of

√
𝜀. Here

𝜀 is the permittivity of the medium filling patch antenna 2. Thus, a compact
multipath-protected rover antenna could be considered. As an example, the right
panel in Figure 9.7.26 illustrates a single-frequency L1 antenna by Topcon Corp.
The antenna was developed in the early 2000s and was intended for code-differential
techniques for geo-information systems (GIS). To provide a bandwidth sufficient for
GPS/GLONASS functionality, the antiantenna substrate is formed by metal comb
boards in accordance with Tatarnikov et al. (2008a) (see discussion in Section 9.7.1
and Appendix H). The antenna does not require any ground plane.

In order to provide dual-frequency functionality, a four-patch structure has been
developed. In the left panel in Figure 9.7.27 the patches 1 and 2 are active and patches

Figure 9.7.27 MGA8 dual-frequency antenna stack of Topcon Corp. employing
antiantenna approach.
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1′ and 2′ are passive. Practical example of this approach is illustrated in the right
panel of the figure. This quadri-patch system is utilized in the MGA8 antenna pre-
sented in Section 9.2.1. With this structure, capacitive substrates discussed in Section
9.7.1 are employed. The structure inscribes into a sphere of 8.5 cm diameter. It has
been mentioned in connection with Figure 9.2.9 that this antenna provides multipath
suppression of about 20 dB in the directions close to nadir. The antenna is about 40%
less in size compared to typical patch antenna implementations with flat metal ground
planes. The permittivity of the artificial substrates employed with the last two designs
is about 4 to 6.

9.7.6 Semitransparent Ground Planes

As discussed above, GNSS antennas with planar ground planes are subject to a
conflict—the necessity to keep antenna gain for low elevations at acceptable level
leads to illuminating the ground plane edges by comparatively strong fields, which
in turn increases radiation in the directions below the horizon. In the receiving
mode this manifests itself as a multipath error. A potential way to solve the conflict
relates to the use of a thin sheet of resisting materials with the ground plane.
Intuitively, if the material possesses some resistivity, then the wave traveling toward
the edges would be partly absorbed. Such thin resistive sheets are known as R-cards.
Electromagnetics related to using R-cards in ground plane design is presented in
Rojas et al. (1995). An optimized structure of a GNSS antenna ground plane is
patented by Westfall (1997). The Zephyr antenna of Trimble Navigation has been
presented by Krantz et al. (2001).

In other developments, one considers a grid of conductors with impedances Z
imbedded into the grid (Figure 9.7.28). If the grid is dense, as is the case when a
unit cell is small compared to the wavelength, the grid performs like a homogeneous
thin sheet. In general, Z could be arbitrary complex. With pure resistive Z a resistive
sheet is realized.

A dense grid can be analyzed employing averaged boundary conditions of the kind
presented in Kontorovich et al. (1987), leading to the following:

E⃗+
𝜏 = E⃗−

𝜏 = E⃗𝜏 (9.7.33)

Ẑg[n⃗0, H⃗
+
𝜏 − H⃗−

𝜏 ] = Ẑgj⃗
e
S = E⃗𝜏 (9.7.34)

The superscripts +∕− denote the field intensities at the top and bottom sides of
the thin sheet approximating the grid, 𝜏 marks the field components tangential

Figure 9.7.28 Thin sheet in a form of a net with
embedded impedances.
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to the sheet, j⃗eS is the electrical current induced at the sheet, and Ẑg is called grid
impedance, a tensor operator in the general case (see Tretyakov, 2003, for details).
The mechanism of the wave interacting with such a material may be referred to
as semitransparency. Namely, the wave radiated by the source is partly reflected
by the sheet and partly penetrates it. The potential performance of semitransparent
ground planes with pure imaginary or complex imbedded impedance Z has been
initially discussed in Tatarnikov (2008d) and is further summarized in Tatarnikov
(2012). For the two-dimensional model seen in the left panel in Figure 9.7.10, with
semitransparent ground plane, the PO approximation to the averaged electric current
reads as

j⃗eS ≈ x⃗0U
m k
4𝜂0

2H(2)
0 (kx)Q(q) (9.7.35)

where

q =
√
2e−i(𝜋∕4)

Zg
W0

√
kx (9.7.36)

Q(q) = 1 − iqe−q
2√

𝜋(1 ∓𝛷(±iq)); Im(q)>∕<0 (9.7.37)

and

𝛷(q) =
2√
𝜋∫

q

0
e−t

2
dt (9.7.38)

is the probability integral. These expressions show that for ImZg ≤ 0 the current
decays as (kx)−3∕2, which is faster than for a perfectly conductive case. For ImZg > 0,
the current grows due to initial surface wave formation and then rapidly vanishes.
Thus, a complex Zg potentially offers more flexibility in terms of current control.
More details and an implementation example related to GNSS antenna design can be
found in Tatarnikov (2012).

9.7.7 Array Antennas

An array antenna consists of a group of antennas, referred to as antenna elements that
operate simultaneously. Figure 9.7.29 shows 2N+1 antenna elements, indicated by

Figure 9.7.29 Linear array antenna.
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thick dots and placed at increment d along the x axis. We take the total number of
elements as odd for simplicity. The case using an even number of elements is treated
similarly. Let all the antenna elements be of the same type, let f (𝜃) be the radiation
pattern of one antenna element, and let all the antenna elements be excited by complex
voltagesUq, with q = −N,… ,N, applied to their inputs. Consider a direction in space
identified by the angle 𝜃. We now employ the approach already discussed in Section
9.1.4. Consider an observation point P in the far-field region of the antenna. In that
case the directions of the waves propagating to the antenna elements are essentially
parallel. The signal from the qth antenna element will arrive with a phase delay or
advance equal to kqd sin 𝜃, where k is a wavenumber. Thus, the total signal from the
array is

F(𝜃) = f (𝜃)
N∑

q=−N

Uqe
ikqd sin(𝜃) (9.7.39)

This expression is known as pattern multiplication theorem. It shows that the array
pattern is a product of two terms: the radiation pattern of an antenna element and the
array factor. We designate the array factor as S(𝜃) and write

S(𝜃) =
N∑

q=N

Uqe
ikqd sin(𝜃) (9.7.40)

In order to illustrate the array factor, let all the antenna elements be excited with the
same amplitudes and with linear progressive phase shift as a function of the location
of the antenna element within the array, such that

Uq = e−iq𝜓 𝜓 = const (9.7.41)

Substituting this expression into (9.7.40) and summing the geometrical progression
yields

S(𝜃) =

sin

(
(2N + 1)

kd sin 𝜃 − 𝜓

2

)
sin

(
kd sin 𝜃 − 𝜓

2

) (9.7.42)

We take the direction in space for which the path delays of different antenna elements
are compensated by the phase shift 𝜓 , such that

𝜓 = kd sin 𝜃0 (9.7.43)

In that direction, the array factor (9.7.42) reaches amaximal value equal to the number
of elements 2N + 1. This is referred to as the main beam of the array. The phase shift
𝜓 is controlled by an array feeding system. By changing 𝜓 , the main beam moves as
a function of 𝜃 according to (9.7.43). This is referred to as beam steering.
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The beam steering capability of an array is illustrated in Figure 9.7.29 for three val-
ues of 𝜃0. The array factor (9.7.42) is plotted by thick dashed lines. We have adopted
2N + 1 = 11 elements and an interelements spacing of d = 0.5𝜆. The elevation angle
𝜃e is used instead of zenith angle 𝜃. One is to note that if an array forms a beam in
broadside direction 𝜃0 = 0 (top panel), the width of the beam Δ𝜃0 is inversely pro-
portional to the total length of the array. From (9.7.42) it follows that [see Mailloux
(2005) and Van Trees (2002) for details]

Δ𝜃0 ≈ 51∘
𝜆

(2N + 1)d
(9.7.44)

While steering the beam off the broadside direction, generally the beam width grows.
This is driven by the size of the projection of the total length of an array onto the main
beam direction (see Figure 9.7.29 and the middle panel in Figure 9.7.30) such that
the beam width obeys

Δ𝜃 ≈
Δ𝜃0
cos 𝜃

(9.7.45)

The main beam is surrounded by local maximums referred to as side lobes. With the
array factor (9.7.42), the largest side lobe level is about–13 dB.

However, with beam steering another phenomenon occurs in addition to just the
widening of the beam. If for a given orientation of the main beam 𝜃0 an integer p

Figure 9.7.30 Radiation patterns of the
11-elements linear array.
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could be found such that |sin 𝜃0 + p(𝜆∕d)| ≤ 1, then another beam would be formed
in the direction 𝜃p such that

sin 𝜃p = sin 𝜃0 + p
𝜆

d
(9.7.46)

This beam is referred to as a grating lobe.With d = 0.5𝜆, if themain beam is steered to
𝜃 = 90∘, the grating lobe is observed at 𝜃 = −90∘. The bottom panel in Figure 9.7.30
shows the case where the main beam is steered to 10∘ elevation with respect to the
array. Grating lobe formation in the direction of 𝜃e = 180∘ is seen.

The array above is referred to as linear since all the elements are aligned in one
direction. In order to provide beam steering within the semisphere, planar arrays
are used. Array factor derivations for planar arrays is straightforward. The reader
is referred to Mailloux (2005) and Van Trees (2002) for details.

However, it is to be noted that with the pattern multiplication theorem the electro-
magnetic coupling of antenna elements is totally neglected. This coupling manifests
itself as antenna element mismatch with the feeding lines, the mismatch being a func-
tion of themain beam direction and the antenna element locationwithin the array. Due
to this coupling, the radiation pattern of antenna element varies as a function of the
element location. Moreover, normally a vast mismatch of the array elements with the
feeding lines is observed when the main beam, or a grating lobe, is oriented in the
direction close to grazing the array. This is known as scan blindness. Fundamental
guidance accounting for all these effects is available. The reader is referred to Hansen
(2009), Amitay et al. (1972), and Mailloux (2005). The multiplication theorem is in
broad use just as a first-order estimate.

Regarding GNSS receiving antennas, it is of interest to check the capability of an
array to suppress multipath signals coming from underneath the ground plane. We
return to Figure 9.7.29 but now view the array elements as magnetic line currents
arranged on a ground plane of size L. Following the derivations of Section 9.7.3 one
comes to the expression for the radiation pattern of an element displaced by a factor
of qd from the origin

Fq(𝜃
e) = eikqd cos 𝜃

e

×

{(
2
0

)
−

2√
𝜋
ei(𝜋∕4)

(
sin

𝜃e

2 ∫
∞√
k[(L∕2)+qd](1+cos 𝜃e)

e−it
2
dt

+

(
+1
−1

)
cos

𝜃e

2 ∫
∞√
k[(L∕2)−qd](1−cos 𝜃e)

e−it
2
dt

)}
(9.7.47)

with 0 < 𝜃e ≤ 𝜋 and −𝜋 ≤ 𝜃e < 0, respectively. We see that this pattern is a function
of the distances of the elements to the ground plane edges. Thus, strictly speaking, the
pattern multiplication theorem (9.7.39) does not hold for this case. In order to calcu-
late the array pattern, one is to multiply the pattern (9.7.47) by the excitation voltage
Uq (9.7.41), (9.7.43) and sum up all the patterns. That way, the solid thin curves in
Figure 9.7.30 are obtained. It is assumed that the ground plane of size L equals six
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wavelengths. One may say that the ground plane edges provide a minor contribution
to the pattern in the top semisphere. However, the excitation of the ground plane edges
defines the pattern readings in the directions underneath the array. In this regard, when
the main beam is steered toward low elevations, the illumination of the array edges
grows. As seen in the bottom panel in Figure 9.7.30, the down-up ratio for 10∘ is
of the order of several dB. Thus, the array does not offer significant advantages in
multipath protection compared to a single element.

Beam steering is just a particular case of a more broad area of array techniques
known as beamforming. The reader is referred to Van Trees (2002) for general guid-
ance. By proper choice of excitation voltages in (9.7.39), an array may form several
independent beams or perform a null steering rather than beam steering. The latter is
of special interest for GNSS applications.

By null steering one means a situation where an array pattern exhibits a deep drop,
a null, in the direction of an undesired signal. Thus, an intentional or unintentional
interference could be mitigated along with multipath arrivals from directions in the
top hemisphere. In general, a planar array is capable of forming several independent
nulls. If the direction of undesired signal arrival was known, then the corresponding
pattern could be synthesized employing one of the deterministic procedures known
as conventional beamformers. However, this is normally not the case.

For unknown directions of arrival, a correlation of time series of desired and actual
signals is estimated and employed. This potentially has an advantage of not only esti-
mating the direction of arrival but also helping with the resolution of close arrivals.
The corresponding techniques are referred to as adaptive processing, optimum pro-
cessing, or space-time adaptive processing. A complete treatment of the approach
goes beyond the scope of this discussion. The reader is referred to Van Trees (2002),
Gupta and Moore (2001) and Rao et al. (2013) for additional detail.

Getting back to mitigation of ground reflections as of the largest error source
for high-precision positioning, one is to note that significant advantages have been
achieved using vertical arrays instead of horizontal ones. The insert in Figure 9.7.31
shows a vertical array of five elements. The elements are supposed to be omni-
directional. The interelements spacing is 1/4 of the wavelength. Let the excitation
voltages be

Uq = e−ikqdcos
(
𝜋
q

5

)
; q = −2,… , 2 (9.7.48)

This means that the elements are excited by a wave traveling upward. The excitation
of the first and last element is suppressed. The corresponding radiation pattern shown

Figure 9.7.31 Radiation pattern of the vertical
5-element array.
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in Figure 9.7.31 covers the entire top semisphere with a sharp drop, i.e., cut-off, while
crossing the horizon. This is what is required to approach a “no-multipath” antenna, as
discussed in previous sections. More accurate synthesis of such an array is presented
in Counselman (1999).

However, as mentioned, the array factor estimates suffer from a “lack of electro-
magnetic.” Developments and optimizations performed with electromagnetic com-
puter simulation software have resulted into the remarkable vertical array antenna of
Lopez (2010). The array is slightly over 2m high, which is more than 10 wavelengths,
and about 10 cm in diameter. It provides about 40 dB of groundmultipath suppression
starting at 5∘ below the horizon.

As a further development, one may consider a spherical array rather than verti-
cal. A spherical array potentially offers an advantage of having both a good degree
of suppression of multipath signals coming from underneath and a beamforming or
null-steering capability with respect to the azimuth. Thus, multipath coming from the
top semisphere may also be mitigated. A related discussion is presented in Tatarnikov
and Astakhov (2012). As an example, Figure 9.7.32 shows an image of one merid-
ional ring of such an array antenna. Experimentally, the measured pattern is shown
in the right panel in the figure. Multipath suppression is 20 dB starting at 10∘. The
diameter of the ring is 65 cm.

9.7.8 Antenna Manufacturing Issues

In the manufacturing of antennas for high-precision positioning the main focus is on
consistency and reliability of antenna calibration data. This is particularly true when
the antenna comprises an ensemble of small parts, such as capacitive substrates or
pins structures, as seen in Figure 9.7.9 and 9.7.16. Practical experience has shown
that one of the most sensitive indicators is stability of the antenna phase center in the
horizontal plane.

Figure 9.7.32 Experimental sample and radiation pattern of a meridional ring of spher-
ical array.
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Figure 9.7.33 PN-A5 antenna installed at
rotational robot.

A convenient tool to ensure consistency of manufacturing is the absolute antenna
calibration procedure described in Wübbena et al. (1996, 2000). In order to measure
the phase center offset in the horizontal plane, a robot rotating the antenna under
test with respect to the vertical axis has been used. Figure 9.7.33 shows such a robot
installed on the roof top of the antenna manufacturing facility. Applying a one-axis
limitation to the procedure just referenced allows achieving an accuracy of horizontal
phase center offset measurements in the order of 0.3 to 0.4mmwithin a few rotations.
The corresponding software has been developed by I. Soutiaguine of Topcon Center.





APPENDIX A

GENERAL BACKGROUND

This appendix provides mathematical and statistical material that is handy to have
available in a classroom situation to support key derivations or conclusions given in
the main chapters. The appendix begins with a listing of expressions from spherical
trigonometry. The rotation matrices are given along with brief definitions of positive
and negative rotations. The sections on eigenvalues, matrix partitioning, Cholesky
decomposition, partial minimization, rank one update, linearization, and statistics
contain primary reference material for the least-squares Chapters 2 and 3. The sub-
section on the distribution of simple functions of random variables primarily supports
these chapters also.

A.1 SPHERICAL TRIGONOMETRY

The sides of a spherical triangle are defined by great circles. A great circle is an
intersection of the sphere with a plane that passes through the center of the sphere.
It follows from geometric consideration of the special properties of the sphere that
great circles are normal sections and geodesic lines. Figure A.1.1 shows a spherical
triangle with corners (A, B, C), sides (a, b, c), and angles (𝛼, 𝛽, 𝛾). Notice that the
sequence of the elements in the respective triplets is consistent, counterclockwise
in this case. The sides of the spherical triangle are given in angular units. In many
applications, one of the vertices of the spherical triangle represents the North or South
Pole. Documentation of the expressions listed below is readily available from the
mathematical literature. Complete derivations can be found in Sigl (1977).
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Figure A.1.1 Spherical triangle.

Law of Sine

sin a
sin 𝛼

=
sin b
sin 𝛽

(A.1.1)

sin a
sin 𝛼

=
sin c
sin 𝛾

(A.1.2)

Law of Cosine for Sides

cos a = cos b cos c + sin b sin c cos 𝛼

cos b = cos c cos a + sin c sin a cos 𝛽

cos c = cos a cos b + sin a sin b cos 𝛾

(A.1.3)

Law of Cosine for Angles

cos 𝛼 = − cos 𝛽 cos 𝛾 + sin 𝛽 sin 𝛾 cos a

cos 𝛽 = − cos 𝛾 cos 𝛼 + sin 𝛾 sin 𝛼 cos b

cos 𝛾 = − cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽 cos c

(A.1.4)

Five Argument Formulas

sin a cos 𝛽 = cos b sin c − sin b cos c cos 𝛼

sin b cos 𝛾 = cos c sin a − sin c cos a cos 𝛽

sin c cos 𝛼 = cos a sin b − sin a cos b cos 𝛾

(A.1.5)
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sin a cos 𝛾 = cos c sin b − sin c cos b cos 𝛼

sin b cos 𝛼 = cos a sin c − sin a cos c cos 𝛽

sin c cos 𝛽 = cos b sin a − sin b cos a cos 𝛾

(A.1.6)

sin 𝛼 cos b = cos 𝛽 sin 𝛾 + sin 𝛽 cos 𝛾 cos a

sin 𝛽 cos c = cos 𝛾 sin 𝛼 + sin 𝛾 cos 𝛼 cos b

sin 𝛾 cos a = cos 𝛼 sin 𝛽 + sin 𝛼 cos 𝛽 cos c

(A.1.7)

sin 𝛼 cos c = cos 𝛾 sin 𝛽 + sin 𝛾 cos 𝛽 cos a

sin 𝛽 cos a = cos 𝛼 sin 𝛾 + sin 𝛼 cos 𝛾 cos b

sin 𝛾 cos b = cos 𝛽 sin 𝛼 + sin 𝛽 cos 𝛼 cos c

(A.1.8)

Four Argument Formulas

sin 𝛼 cot 𝛽 = cot b sin c − cos c cos 𝛼

sin 𝛼 cot 𝛾 = cot c sin b − cos b cos 𝛼

sin 𝛽 cot 𝛾 = cot c sin a − cos a cos 𝛽

sin 𝛽 cot 𝛼 = cot a sin c − cos c cos 𝛽

sin 𝛾 cot 𝛼 = cot a sin b − cos b cos 𝛾

sin 𝛾 cot 𝛽 = cot b sin a − cos a cos 𝛾

(A.1.9)

Gauss (Delambre, Mollweide) Formulas—not all permutations listed

sin
𝛼

2
sin

b + c
2

= sin
a
2
cos

𝛽 − 𝛾

2
(A.1.10)

sin
𝛼

2
cos

b + c
2

= cos
a
2
cos

𝛽 + 𝛾

2
(A.1.11)

cos
𝛼

2
sin

b − c
2

= sin
a
2
sin

𝛽 − 𝛾

2
(A.1.12)

cos
𝛼

2
cos

b − c
2

= cos
a
2
sin

𝛽 + 𝛾

2
(A.1.13)

Napier Analogies—not all permutations listed

tan
a + b
2

= tan
c
2

cos
𝛼 − 𝛽

2

cos
𝛼 + 𝛽

2

tan
a − b
2

= tan
c
2

sin
𝛼 − 𝛽

2

sin
𝛼 + 𝛽

2

(A.1.14)
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tan
𝛼 + 𝛽

2
= cot

𝛾

2

cos
a − b
2

cos
a + b
2

tan
𝛼 − 𝛽

2
= cot

𝛾

2

sin
a − b
2

sin
a + b
2

(A.1.15)

Half Angle Formulas
s = (a + b + c)∕2 (A.1.16)

k =

√
sin(s − a) sin(s − b) sin(s − c)

sin s
(A.1.17)

tan
𝛼

2
=

k
sin(s − a)

tan
𝛽

2
=

k
sin(s − b)

tan
𝛾

2
=

k
sin(s − c)

(A.1.18)

Half Side Formulas
𝜎 = (𝛼 + 𝛽 + 𝛾)∕2 (A.1.19)

k′ =

√
cos(𝜎 − 𝛼) cos(𝜎 − 𝛽) cos(𝜎 − 𝛾)

− cos 𝜎
(A.1.20)

tan
a
2
=

cos(𝜎 − 𝛼)

k′

tan
b
2
=

cos(𝜎 − 𝛽)

k′

tan
c
2
=

cos(𝜎 − 𝛾)

k′

(A.1.21)

L’Huilier-Serret Formulas

M =

√√√√√√ tan
s − a
2

⋅ tan
s − b
2

⋅ tan
s − c
2

tan
s
2

(A.1.22)

tan
𝜀

4
= M ⋅ tan

s
2

(A.1.23)
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tan
(
𝛼

2
−
𝜀

4

)
= M ⋅ cot

s − a
2

tan

(
𝛽

2
−
𝜀

4

)
= M ⋅ cot

s − b
2

tan
(𝛾
2
−
𝜀

4

)
= M ⋅ cot

s − c
2

(A.1.24)

The symbol 𝜀 denotes the spherical angular excess. The area of spherical triangle can
be expressed as

Δ = 𝜀 r2 (A.1.25)

where r denotes the radius of the sphere.

A.2 ROTATION MATRICES

Rotations between coordinate systems are very conveniently expressed in terms of
rotation matrices. The rotation matrices

R1(𝜃) =
⎡⎢⎢⎣
1 0 0
0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

⎤⎥⎥⎦ (A.2.1)

R2(𝜃) =
⎡⎢⎢⎣
cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃

⎤⎥⎥⎦ (A.2.2)

R3(𝜃) =
⎡⎢⎢⎣
cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎦ (A.2.3)

describe rotations by the angle 𝜃 of a right-handed coordinate system around the first,
second, and third axes, respectively. The rotation angle is positive for a counterclock-
wise rotation, as viewed from the positive end of the axis about which the rotation
takes place. The result of successive rotations depends on the specific sequence of
the individual rotations. An exception to this rule is differentially small rotations for
which the sequence of rotations does not matter.

A.3 LINEAR ALGEBRA

In general, in science and engineering we find nonlinear mathematical relationships
between the observations and other quantities such as coordinates, height, area, and
volume. One may only think about the common occurrence of expressing a distance
observation as a function of Cartesian coordinates. Seldom is there a natural linear
relation between observations as there is in spirit leveling. Least-squares adjustment
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and statistical treatment require that nonlinear mathematical relations be linearized.
The result is a set of linear equations that is the starting point for further development
which involves such elements as eigenvalues and eigenvectors, matrix partitioning,
and Cholesky decomposition. Fortunately, using linear algebra in this context does
not require memorization of proofs and theorems.

A.3.1 Determinants and Matrix Inverse

Let the elements of a matrix A be denoted by aij, where the subscript i denotes the
row and j the column. A u × u square matrix A has a uniquely defined determinant,
denoted by |A|, and said to be of order u. The determinant of a 1 × 1 matrix equals
the matrix element. The determinant of A is expressed as a function of determinants
of submatrices of size (u − 1) × (u − 1), (u − 2) × (u − 2), etc. until the size 2
or 1 is reached. The determinant is conveniently expressed in terms of minors and
cofactors.

The minor can be computed for each element of the matrix. It is equal to the deter-
minant after the respective row and column have been deleted. For example, theminor
for i = 1 and j = 2 is

m12 =

||||||||
a21 a23 · · · a2u
a31 a33 · · · a3u
⋮ ⋮ · · · ⋮
au1 au3 · · · auu

|||||||| (A.3.1)

The cofactor cij is equal to plus or minus the minor, depending on the subscripts i
and j,

cij = (−1)i+jmij (A.3.2)

The determinant of A can now be expressed as

|A | =
u∑
j=1

akj ckj (A.3.3)

The subscript k is fixed in (A.3.3) but can be any value between 1and u, i.e., the deter-
minant can be computed based on the minors for any one of the u rows or columns.
Of course, the determinant (A.3.1) can be expressed as a function of determinants of
matrixes of size (u − 2) × (u − 2), etc.

Determinants have many useful properties. For example, the rank of a matrix
equals the order of the largest nonsingular square submatrix, i.e., the largest order
for a nonzero determinant that can be found. The determinant is zero and the matrix
is singular if the columns or rows of A are linearly dependent. The inverse of the
square matrix can be expressed as

A−1 =
1|A|CT (A.3.4)
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where C is the cofactor matrix consisting of the elements cij given in (A.3.2). The
product of the matrix and its inverse equals the identity matrix, i.e., AA−1 = I and
A−1A = I. These simple relations do not hold for generalized matrix inverses that can
be computed for singular or even rectangular matrices. Information on generalized
inverses is available in the standard mathematical literature. Given that A, B, and C
are nonsingular square matrices, the inverse of a product

(ABC)−1 = C−1B−1A−1 (A.3.5)

equals the product of the switched factors and their inverses.
Computation techniques for inverting nonsingular square matrices abound in

linear algebra textbooks. In many cases the matrices to be inverted show a definite
pattern and are often sparsely populated. When solving large systems of equations,
it might be necessary to take advantage of these patterns in order to reduce the
computation load. Some applications might produce ill-conditioned and numerically
near-singular matrices that require special attention. Very useful subroutines for
dealing with large and patterned matrices for geodetic applications are given in
Milbert (1984).

A.3.2 Eigenvalues and Eigenvectors

Let A denote a u × u matrix and x be a u × 1 vector. If x fulfills the equation

Ax= 𝜆x (A.3.6)

it is called an eigenvector, and the scalar 𝜆 is the corresponding eigenvalue.
Equation (A.3.6) can be rewritten as

(A − 𝜆I)x = 0 (A.3.7)

If x0 denotes a solution of (A.3.7) and 𝛼 is a scalar, then 𝛼x0 is also a solution. It
follows that (A.3.7) provides only the direction of the eigenvector. There exists a
nontrivial solution for x if the determinant is zero, i.e.,

|A − 𝜆I| = 0 (A.3.8)

This is the characteristic equation. It is a polynomial of the uth order in 𝜆, providing
u solutions 𝜆i, with i = 1,… , u. Some of the eigenvalues can be zero, real, or even
complex. Equation (A.3.7) provides an eigenvector xi for each eigenvalue 𝜆i.

For a symmetric matrix, all eigenvalues are real. Although the characteristic
equation might have multiple solutions, the number of zero eigenvalues is equal to
the rank defect of the matrix. The eigenvectors are mutually orthogonal,

xTi xj = 0 (A.3.9)
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For positive definite matrices all eigenvalues are real and positive. Let the normalized
eigenvectors xi∕‖xi‖ be denoted by ei; we can then arrange the normalized eigenvec-
tors into the matrix

E = [e1 e2 · · · eu] (A.3.10)

The matrix E is an orthonormal matrix with the property

ET = E−1 (A.3.11)

Positive definite matrices play an important role in least-squares estimation.

A.3.3 Eigenvalue Decomposition

Consider again a u × u matrix A and the respective matrix E that consists of lin-
early independent normalized eigenvectors. The product of these two matrices can
be written as

AE = [Ae1 Ae2 · · · Aeu]

= [𝜆1e1 𝜆2e2 · · · 𝜆ueu]

= E𝜦 (A.3.12)

where 𝜦 is a diagonal matrix with eigenvalues 𝜆i at the diagonal. Multiplying this
equation by ET from the right and making use of (A.3.11), one gets the well-known
eigenvalue decomposition

A = E𝜦ET (A.3.13)

Multiplying (A.3.12) from the left with ET gives

ETAE = 𝜦 (A.3.14)

This form expresses the diagonalization theorem, i.e., multiplying the matrix A from
the right by E and from the left by ET gives a diagonal matrix with nonzero diagonal
elements. Multiplying this equation from the left and the right by 𝜦−1∕2 and setting
D = E𝜦−1∕2, we obtain

DTAD = I (A.3.15)

Taking the inverse of (A.3.14) and applying rules (A.3.5) and (A.3.11) gives

ETA−1E = 𝜦−1 (A.3.16)

If the u × umatrix A is positive semidefinite with rank R(A) = r < u, an equation
similar to (A.3.14) can be found. Consider the matrix

E = [uFruGu−r] (A.3.17)

where the column of F consists of the normalized eigenvectors that pertain to the r
nonzero eigenvalues. The submatrix G consists of u − r eigenvectors that pertain to
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the u − r zero eigenvalues. The columns of F andG span the column and null space
of the matrix A, respectively. Because of (A.3.6) and zero eigenvalues it follows that
A G = 0. Therefore,

ETAE =

[
ET

GT

]
A[F G] =

[
FTAF 0
0 0

]
=

[
𝜦 0
0 0

]
(A.3.18)

where the diagonal submatrix 𝜦 contains r nonzero eigenvalues. Setting
D=(F𝜦−1∕2 ⋮ G) it follows that

DTAD =

[
I 0
0 0

]
(A.3.19)

in which case I is the r × r identity matrix.

A.3.4 Quadratic Forms

Let A denote a u × u matrix and x a vector of size u; then xTAx = v is a quadratic
form. The matrix A is called positive semidefinite if xTAx ≥ 0 for all x. In the special
case that

xTAx > 0 (A.3.20)

is valid for all x, the matrix A is positive definite. The properties of such a matrix
include:

1. R(A) = u (full rank).

2. aij > 0 for all i.

3. The inverse A−1 is positive definite.

4. If B is an n × u matrix with rank u < n, then the matrix BTAB is positive
definite. This property can readily be used to quickly generate a positive definite
matrix. Assume a B matrix with full column rank, take A= I and compute the
product BTAB. If R(B) = r < u, then BTAB is positive semidefinite.

5. Let D be a q × q matrix formed by deleting u − p rows and the corresponding
u − p columns of A. Then D is positive definite.

A necessary and sufficient condition for a symmetric matrix to be positive definite is
that the principal minor determinants be positive; i.e.,

a11 > 0,
||||a11 a12
a21 a22

|||| > 0 … , |A| > 0 (A.3.21)

or that all eigenvalues are real and positive. This latter condition is often useful in
verifying computationally that a particular matrix is positive definite. By computing
the eigenvalues one can ascertain whether or not the matrix is singular. The number
of zero eigenvalues equals the rank deficiency. Extremely small eigenvalues might
indicate a near-singularity or ill-conditioning of the matrix. In such numerical com-
putations the impact of rounding errors and other numerical considerations must be
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taken into account when making judgments about singularity or near-singularity of
a matrix.

If A is positive definite, then xTAx = v represents the equation of a u-dimensional
ellipsoid expressed in a Cartesian coordinate system (x). The center of the ellipsoid
is at x = 0. The rotation transformation

x = Ey (A.3.22)

expresses the quadratic form in the (y) coordinate system,

yTETAEy = v (A.3.23)

Since the matrix E consists of normalized eigenvectors we can use (A.3.14) to obtain
the simple expressions

yT𝜦 y = y21 𝜆1 + y22 𝜆2 + · · · + y2u 𝜆u = v (A.3.24)

This expression can be written as

y21
v∕𝜆1

+
y22

v∕𝜆2
+ · · · +

y2u
v∕𝜆u

= 1 (A.3.25)

This is the equation for the u-dimensional ellipsoid in the principal axes form, i.e., the
coordinate system (y) coincides with the principal axes of the hyperellipsoid, and the
lengths of the principal axes are proportional to the reciprocal of the square root of
the eigenvalues. All eigenvalues are positive because the matrixA is positive definite.
Equation (A.3.22) also determines the orientation between the (x) and (y) coordinate
systems. If A has a rank defect, the dimension of the hyperellipsoid is R(A) = r < u.

Differentiation of a quadratic form is a common method for determining the min-
imum in least squares. Let the vectors x and y be of dimension u and let the u × u
matrix A contain constants. Consider the quadratic form

w = xTA y = yTATx (A.3.26)

Because (A.3.26) is a 1 × 1 matrix, the expression can be transposed. This fact is
used frequently to simplify expressions when deriving least-squares solutions. The
total differential dw is

dw =
𝜕w
𝜕x

dx + 𝜕w
𝜕y

dy (A.3.27)

The vectors dx and dy contain the differentials of the components of x and y, respec-
tively. From (A.3.27) and (A.3.26) it follows that

dw = yTATdx + xTA dy (A.3.28)

If the matrix A is symmetric, then the total differential of

𝜙 = xTAx (A.3.29)
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is of interest. The partial derivatives are written in form of u equations as

𝜕𝜙

𝜕x
≡
[
𝜕𝜙

𝜕x1
· · ·

𝜕𝜙

𝜕xu

]T
= 2 Ax (A.3.30)

The partial derivatives 𝜕𝜙∕𝜕xk at the kth component can readily be verified as

𝜕xTAx
𝜕xk

=
𝜕

𝜕xk

(
u∑
j=1

u∑
i=1

xixjaij

)

=
u∑
j=1

xjakj +
u∑
i=1

xiaik = 2
u∑
j=1

akjxj

= (2Ax)k (A.3.31)

because A is symmetric.
Equation (A.3.30) is used for deriving least-squares solutions, which requires

locating the stationary point or the minimum for a quadratic function. The procedure
is to take the partial derivatives with respect to all variables and equate them to
zero. While the details of the least-squares derivations are given in Chapter 2, the
following example serves to demonstrate the principle of minimization using matrix
notation.

Let B denote an n × u rectangular matrix with n > u, � is a vector of size n, and
P an n × n symmetric weight matrix that can include the special case P = I. The
elements of B, �, and P are constants. The least-squares solution of

v = Bx + � (A.3.32)

requires determining x such that 𝜙(x) ≡ vTPv = min. Actually, equation (A.3.32)
can be identified as the observation equation adjustment, but this association is not
relevant for the current exercise. First, we compute the vector of partial derivatives,

𝜕vTPv
𝜕x

=
𝜕

𝜕x

[
(Bx + �)TP(Bx + �)

]
=

𝜕

𝜕x
( xT BT PBx + 2�T PBx + �TP�)

= 2BT PBx + 2BTP� (A.3.33)

One can readily see how (A.3.30) was used to differentiate the first term.
Equation (A.3.28) applies to the differentiation of the second term. The derivative of
the third term is zero because it is a constant. Next, as is done in all minimization
problems in calculus, we equate the partial derivatives to zero,

𝜕vTPv
𝜕x

= 2BT PBx + 2BTP� = 0 (A.3.34)
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The matrix equation (A.3.34) represents u equations to be solved for the u unknowns
x. As is customary, we denote the solution by x̂,

x̂ = −(BTPB)−1 BTP� (A.3.35)

to emphasize that it is the least-squares solution that minimizes vTPv. As is further
known from calculus, the condition (A.3.34) strictly speaking assures only that a
stationary point has been found and that higher order derivatives would be needed to
verify that a minimum has been identified. Using the properties of positive definite
matrices one can readily verify that indeed a minimum has been achieved instead of
computing and checking second-order derivatives. Finally, let us note that if B has
full column rank then BT PB is a positive definite matrix.

Let us now consider a more general construction called a quadratic function. It is
a sum of the quadratic form and a linear form

𝜙(x) = xTAx + 2gTx + c (A.3.36)

where the matrix A is positive definite, g is a u-dimensional vector, and c is a con-
stant. The least-squares problem can be obviously expressed as (A.3.36). Note that a
function is called convex if the segment connecting any two points on the graph of the
function lies above the graph. The function (A.3.36) is convex in its variables, because
the matrixA is positive definite. It achieves a unique minimum at the point x̂ obtained
by equating the partial derivatives to zero, similar to (A.3.34), i.e., 2Ax + 2g = 0
which results in the expression

x̂ = −A−1g (A.3.37)

Let us substitute the expression g = −Ax̂ into (A.3.36); then add and subtract the
expression x̂TAx̂, we obtain the following expression:

𝜙(x) = (x− x̂)TA(x− x̂) + c − x̂TAx̂

≡ (x− x̂)TA(x− x̂) + c′ (A.3.38)

It proves the following statement. The quadratic function is equal to the quadratic
form over the variables (x− x̂) up to the constant c′, not affecting the vector (A.3.37),
minimizing it.

A.3.5 Matrix Partitioning

Consider the following partitioning of the nonsingular square matrix N,

N =

[
N11 N12
N21 N22

]
(A.3.39)

where N11 and N22 are square matrices, although not necessarily of the same size.
Let Q denote the partitioned inverse matrix
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Q = N−1 =

[
Q11 Q12
Q21 Q22

]
(A.3.40)

such that the sizes of the Nij and Qij, respectively, are the same. Equations (A.3.39)
and (A.3.40) imply the four relations

N11Q11 + N12Q21 = I (A.3.41)

N11Q12 + N12Q22 = 0 (A.3.42)

N21Q11 + N22Q21 = 0 (A.3.43)

N21Q12 + N22Q22 = I (A.3.44)

The solutions for the submatrices Qi j are carried out according to the standard rules
for solving a system of linear equations, with the restriction that the inverse is defined
only for square submatrices. Multiplying (A.3.41) from the left by N21N

−1
11 and sub-

tracting the product from (A.3.43) gives

Q21 = −
(
N22 −N21N

−1
11N12

)−1N21N
−1
11 (A.3.45)

Multiplying (A.3.42) from the left by N21N
−1
11 and subtracting the product from

(A.3.44) gives
Q22 =

(
N22 − N21N

−1
11N12

)−1
(A.3.46)

Substituting (A.3.46) in (A.3.42) gives

Q12 = −N−1
11N12

(
N22 − N21N

−1
11N12

)−1
(A.3.47)

Substituting (A.3.45) in (A.3.41) gives

Q11 = N−1
11 +N−1

11N12

(
N22 −N21N

−1
11N12

)−1N21N
−1
11 (A.3.48)

An alternative solution for Q11, Q12, Q21, and Q22 is readily obtained. Multiplying
(A.3.43)from the left by N12N

−1
22 and subtracting the product from (A.3.41) gives

Q11 =
(
N11 − N12N

−1
22N21

)−1
(A.3.49)

Substituting (A.3.49) in (A.3.43) gives

Q21 = −N−1
22N21

(
N11 − N12N

−1
22N21

)−1
(A.3.50)

Premultiplying (A.3.44) by N12N
−1
22 and subtracting (A.3.42) gives

Q12 = −
(
N11 −N12N

−1
22N21

)−1N12N
−1
22 (A.3.51)

Substituting (A.3.51) in (A.3.44) gives

Q22 = N−1
22 +N−1

22N21

(
N11 −N12N

−1
22N21

)−1 N12N
−1
22 (A.3.52)
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Usually the matrix partitioning technique is used to reduce the size of large matri-
ces that must be inverted or to derive alternative expressions. Because these matrix
identities are frequently used, and because they look somewhat puzzling unless one
is aware of the simple solutions given above, they are summarized here again to be
viewed at a glance,[
N−1

11+N−1
11N12

(
N22 −N21N

−1
11N12

)−1N21N
−1
11 −N−1

11N12

(
N22 − N21N

−1
11N12

)−1
−
(
N22 − N21N

−1
11N12

)−1N21N
−1
11

(
N22 − N21N

−1
11N12

)−1
]

=

[ (
N11 −N12N

−1
22N21

)−1
−
(
N11 −N12N

−1
22N21

)−1N12N
−1
22

−N−1
22N21

(
N11− N12N

−1
22N21

)−1 N−1
22 +N−1

22N21

(
N11−N12N

−1
22N21

)−1 N12N
−1
22

]
(A.3.53)

A.3.6 Cholesky Decomposition

For positive definite matrices the Cholesky decomposition, also known as the square
root method, is an efficient way to solve systems of equations and to invert a positive
definite matrix. A u × u positive definite matrix N can be decomposed as the product
of a lower triangular matrix L and an upper triangular matrix LT ,

N=LLT (A.3.54)

with L being called the Cholesky factor. If E is an orthonormal matrix with property
(A.3.11) then B = LE is also a Cholesky factor because LEETLT = LLT .

The lower and upper triangular matrices have several useful properties. For
example, the eigenvalues of the triangular matrix equal the diagonal elements. The
determinant of a triangular matrix equals the product of the diagonal elements.
Because the determinant of a matrix product is equal to the product of the deter-
minants of the factors, it follows that N is singular if any one of the diagonal
elements of L is zero. This fact can be used conveniently during the computation of
L to eliminate parameters that cause a singularity or observations that are linearly
dependent.

The Cholesky algorithm provides the instruction for computing the lower triangu-
lar matrix L. The elements of L are

ljk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√√√√njj −
j−1∑
m=1

l2jm for k = j

1
lkk

(
njk −

k−1∑
m=1

ljmlkm

)
for k < j

0 for k > j

(A.3.55)

where 1 ≤ j ≤ u, 1 ≤ k ≤ u, and u is the size ofN. The Cholesky algorithm preserves
the pattern of leading zeros in the rows and columns of N, as can be readily verified.
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For example, if the first x elements in row y of N are zero, then the first x elements in
row y of L are also zero. Taking advantage of this fact speeds up the computation of
L for a large system that exhibits significant patterns of leading zeros. The algorithm
(A.3.55) begins with the element l11. Subsequently, the columns (or rows) can be
computed sequentially from 1 to u, whereby previously computed columns (or rows)
remain unchanged while the next one is computed.

The triangular matrix L can readily be partitioned according to partition (A.3.39)
as

L =

[
L11 0
L21 L22

]
(A.3.56)

and then N of (A.3.54) can be written in terms of submatrices as

N =

[
L11L

T
11 L11L

T
21

L21L
T
11 L21L

T
21 + L22L

T
22

]
(A.3.57)

Applying (A.3.46) to (A.3.57), the inverse of Q22 in (A.3.40) becomes

Q−1
22 = L22L

T
22 (A.3.58)

Depending on the application one might group the parameters such that (A.3.58) can
be used directly in subsequent computations, i.e., the needed inverse Q−1

22 is a simple
function of the Cholesky factors that had been computed previously.

Straightforward calculations using (A.3.39) and (A.3.57) give

N11 = L11L
T
11 (A.3.59)

L21 =
(
L−111N

T
21

)T
(A.3.60)

Q−1
22 = L22L

T
22 = N22 − L21L

T
21 = N22 −N21N11

−1NT
21 (A.3.61)

The diagonal elements of L are not necessarily unity. Consider a unitriangular
matrixGwith elements taken from L such that gjk = ljk∕lkk and a new diagonal matrix
D such that djj = l2jj, then

L = G
√
D (A.3.62)

N = LLT = GDGT (A.3.63)

Because N is a positive definite matrix, the diagonal elements of G are +1.
Assume that we wish to solve the system of equations

Nx = u (A.3.64)

An initial thought might be to compute the inverse of N and compute x = N−1u.
However, the unknown x can be solved without explicitly inverting the matrix and
thus reduce the computational load. Instead, the first step in solving x is to substitute
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(A.3.54) for N and premultiply the resulting equation with L−1, obtaining the trian-
gular equations

LTx = L−1u (A.3.65)

Denoting the right-hand side of (A.3.65) by cu, then multiplying from the left by L
and replacing LLTx by u, we obtain the two equations

Lcu = u (A.3.66)

LTx = cu (A.3.67)

We first solve cu from (A.3.66), called the forward solution, starting with the first ele-
ment. Using the thus computed cu, the back solution (A.3.67) yields the parameters x,
starting with the last element.

In least squares, the auxiliary quantity

l = −cTucu = −(L−1u)T (L−1u) = −uTN−1u (A.3.68)

is needed to compute vTPv (see Table 2.5.1). This term is always needed because it
relates to the chi-square test that assesses the quality of the adjustment. The Cholesky
algorithm provides l from cu without explicitly using the inverses of N and L.

Computing the inverse requires a much bigger computational effort than merely
solving the system of equations. In computing the inverse, the first step is to make u
solutions of the type (A.3.66) to obtain the columns of C,

LC = I (A.3.69)

where I is the u × u identity matrix. This is followed by u solutions of the type
(A.3.67), using the columns of C for cu, to obtain the respective u columns of the
inverse of N.

The Cholesky factor L can be used directly to compute uncorrelated observations.
From (A.3.54) it follows that premultiplying N with L−1 and postmultiplying it with
the transpose gives the identity matrix. Therefore, the Cholesky factor L can be used
in ways similar to the matrix D in (A.3.15). Let L now denote the Cholesky factor of
the covariance matrix of the observations 𝜮�b

, then the transformation (2.7.10) can
be written as

L−1v = L−1Ax + L−1� (A.3.70)

Denoting the transformed observations by a bar, we get

v = Ax + � (A.3.71)

L � = � (A.3.72)

LA𝛼 = A𝛼 (A.3.73)
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The subscript 𝛼 in (A.3.73) indicates the column. The matrix A and the vector � can
be computed directly from the forward solutions (A.3.73) and (A.3.72) using L. The
inverse L−1 is not required explicitly. Upon completion of the adjustment the residuals
follow from

Lv = v (A.3.74)

It is at times advantageous to work with decorrelated observations. Examples are
horizontal angle observations or even GPS vectors. Decorrelated observations can
be added one at a time to the adjustment, whereas correlated observations should be
added by sets. See also Section 2.8.6 for a discussion of decorrelated redundancy
numbers.

A.3.7 Partial Minimization of Quadratic Functions

Let w(x, y) be the quadratic function of two vector variables, n-dimensional vector x
and m-dimensional vector y

w(x, y) = xTAx + 2yTBx + yTDy + 2xTg + 2yTh + c (A.3.75)

where all matrices and vectors have appropriate dimensions, c is a scalar, and the
matrix

N =

[
A BT

B D

]
(A.3.76)

is positive definite. Then the solution to the minimization problem

min
x , y

w(x, y) (A.3.77)

is expressed as

z∗ =
[
x∗

y∗

]
= −N−1k k =

[
g
h

]
(A.3.78)

The solution (A.3.78) does not depend on the scalar value c. We can solve the prob-
lem using matrix partitioning expressions (A.3.53). Another way, sometimes more
convenient, yet mathematically equivalent consists in dividing of the minimization
operation into two sequentially applied minimizations, over the variable y and over
the variable x

min
x , y

w(x, y) = min
x

[
min
y

w (x, y)
]

(A.3.79)

Denoting the expression in the brackets by v(x),

v(x) = min
y

w(x, y) (A.3.80)

we come to the expression
min
x , y

w(x, y) = min
x

v(x) (A.3.81)
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Let y(x) be the value of y minimizing the function (A.3.80) given fixed value x. It is
called the argument of the conditional minimum. Equating to zero the vector of the
first partial derivatives 𝜕w(x, y)∕𝜕y = 2Dy + 2Bx + 2h = 𝟎 and get

y(x) = −D-1(Bx + h) (A.3.82)

Now taking into account expressions (A.3.80) and (A.3.82) and obtain

v(x) = w
(
x , y(x)

)
= xTAx − 2

(
D−1(Bx + h)

)TBx
+
(
D−1(Bx + h)

)TDD−1(Bx + h) + 2xTg − 2
(
D−1(Bx + h)

)Th + c

= xTAx − (Bx + h)TD−1(Bx + h) + 2xTg + c

= xT (A − BTD−1B)x + 2xT (g − BTD-1h) + c (A.3.83)

with c = c + hTD-1h. Therefore, the function v(x) is quadratic with the matrix part
A − BTD−1B and the vector 2(g − BTD−1h) as linear part. It takes its minimum at
the point

x∗ = −(A − BTD−1B)−1(g − BTD−1h) (A.3.84)

Finally, substituting (A.3.84) into the expression for the argument of the conditional
minimum (A.3.82), we obtain

y∗ = y(x∗) = −D−1(Bx∗ + h)

= D−1B(A − BTD−1B)−1g − (D−1 +D−1B(A − BTD−1B)−1BTD−1)h
(A.3.85)

Note again that expressions (A.3.84) and (A.3.85) can be obtained as result of
block-wise inversion of the matrix N in expression (A.3.78).

If the quadratic function is expressed in the form

w(x, y) = (z − z)TM(z − z)

= (x − x)TA(x − x) + 2(y − y)TB(x − x) + (y − y)TD(y − y) (A.3.86)

then the argument of the conditional minimum takes the form

y(x) = y −D−1B(x − x) (A.3.87)

and the quadratic function v(x) is expressed as

v(x) = min
y

w(x, y) = w
(
x , y(x)

)
= (x − x)T (A − BTD−1B)(x − x) (A.3.88)

As it follows from (A.3.88), the function v(x) takes its real-valued minimum at the
point x and, after substitution into (A.3.87), the argument of the conditional minimum
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becomes y(x) = y − D−1B(x − x) = y. The last result is obviously predictable since
the vector z minimizes the quadratic function (A.3.86). But, if the variable x takes
values from the integer-valued space Zn, not from n-dimensional real-valued space
Rn, the minimization of the function v(x) is impossible in the explicit closed form.
Instead, the integer-valued search must be applied. After the integer search is per-
formed and integer-valued minimizer x̂ is found, the expression (A.3.87) completes
computations resulting in the real-valued vector y(x̂) = y −D−1B(x̂ − x).

Consider another case of the quadratic function, used in ambiguity fixing algo-
rithms. Let it be expressed in the form

w(x, y) = (Ex +Gy − a)TD(Ex +Gy − a) (A.3.89)

with the positive definite matrixD. Then the argument of conditional minimum takes
the form

y(x) = −(GTDG)−1GTD(Ex − a) (A.3.90)

and after substituting it into (A.3.89) we have the function v(x) taking the form

v(x) = min
y

w(x, y) = w
(
x , y(x)

)
=
(
Ex +Gy (x) − a

)TD(Ex +Gy(x) − a
)

=
(
Ex − a −G(GTDG)−1GTD(Ex − a)

)TD
×
(
Ex − a −G(GTDE)−1GTD(Ex − a)

)
=
(
Ex − a

)T(D − DG(GTDG)−1GTD
)
(Ex − a)

= (Ex − a)T𝛱y(Ex − a)

= xTET𝛱yEx − 2xTET𝛱ya (A.3.91)

with
𝛱y = D −DG(GTDG)−1GTD (A.3.92)

Note again, that if the variable x takes values from the integer valued space Zn, mini-
mization of the function v(x) is performed using the integer-valued search explained
in the Section 6.5. After the integer search is performed and integer-valued mini-
mizer x̂ is found, the expression (A.3.90) completes the computations resulting in the
real-valued vector y(x̂).

It is assumed that the matrix (A − BTD−1B) in expressions (A.3.83) and (A.3.88)
is positive definite. The matrix ET𝛱yE in the expression (A.3.91) is also assumed to
be positive definite.

Let the matrix N allow Cholesky decomposition expressed in the block form as

N =

[
L 0
K M

] [
LT KT

0 MT

]
(A.3.93)
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Using (A.3.61) we readily have

(A − BTD−1B) = MMT (A.3.94)

which means that the matrix inversion (A − BTD−1B)−1 in the expression (A.3.84)
can be replaced with the forward and backward solutions with matrices M and MT ,
respectively, as explained in expressions (A.3.66) and (A.3.67) of Section A.3.6.

Now consider the structured least-squares problem

Aiyi + Bix=bi i = 1,… ,N (A.3.95)

The vector x is n-dimensional, each vector yi has the dimension mi, and each vector
bi has dimension li . The matrices have appropriate size. The block-diagonal system
(A.3.95) with coordinating blocks is schematically shown below:

⎡⎢⎢⎢⎣
A1 B1

A2 B2
⋱ ⋮

AN BN

⎤⎥⎥⎥⎦ ×
⎡⎢⎢⎢⎢⎢⎣

y1
y2
⋮
yN
x

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
b1
b2
⋮
bN

⎤⎥⎥⎥⎦ (A.3.96)

The least-squares problem for the system (A.3.96) reads as

min
x,y1,…,yN

w(x, y1,… , yN) = min
x,y1,…,yN

N∑
i=1

‖Aiyi + Bix − bi‖2 (A.3.97)

We show how the partial minimization approach leads to a decomposition of the
structured least squares into the series of separate minimization problems and one
“coordinating” minimization problem. The same way as it is done in (A.3.79), we
can rewrite (A.3.97) in the form

min
x,y1,…,yN

N∑
i=1

‖‖Aiyi + Bix − bi
‖‖2 = min

x

[
min

y1,…,yN

N∑
i=1

‖‖Aiyi + Bix − bi
‖‖2
]

(A.3.98)

The internal minimum in (A.3.98) as a function of x is denoted by v(x). It is split into
N-independent minimizations

v(x)= min
y1,…,yN

N∑
i=1

‖‖Aiyi + Bix − bi
‖‖2 = N∑

i=1

[
min
yi
‖‖Aiyi + Bix − bi

‖‖2] (A.3.99)

Let
yi(x) = −(Ai

TAi)
−1Ai

T (bi − Bix) (A.3.100)
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be the argument of the conditional minimum. Then

v(x) =
N∑
i=1

‖‖Aiyi (x) + Bix − bi
‖‖2

=
N∑
i=1

‖‖ − Ai

(
Ai

TAi

)−1
Ai

T (bi − Bx)yi(x) + Bix − bi
‖‖2

=
N∑
i=1

‖‖𝛱i

(
bi − Bix

) ‖‖2 (A.3.101)

is the quadratic function of x with

𝛱i = Ili − Ai(Ai
TAi)

−1Ai
T (𝛱i)

2 = 𝛱i (A.3.102)

being the projection matrices. Then the vector x∗ minimizing the function (A.3.101)
is calculated as

x∗ =

(
N∑
i=1

Bi
T𝛱iBi

)−1 N∑
i=1

Bi
T𝛱ibi (A.3.103)

Therefore, a sufficient condition for solvability of problem (A.3.97) is non-singularity
(actually, positive definiteness) of the matricesAi

TAi and
∑N

i=1Bi
T𝛱iBi. The solution

consists of two stages. First, the coordinating problem is solved resulting in (A.3.103).
Then the series of solutions yi

∗ = yi(x
∗) is calculated according to (A.3.100).

The partial minimization approach can be used for decomposition of structured
least-squares problems of a form more general than (A.3.96). It can be applied in
cases when the pattern of the matrix is organized in such a way that fixing of certain
group of variables (coordinating variables) splits the minimization problem into a
series of independent minimization subproblems. The coordinating problem

min
x

v(x) (A.3.104)

is solved first, followed by series of independent minimization subproblems. The
technique of partial minimization is referred to in the geodetic literature as Helmert
blocking or Helmert-Wolf blocking (Wolf, 1978). During the readjustment of the
NAD 1983 the technique was implemented to optimize the adjustment methodology
and execution (Schwarz and Wade, 1990).

A.3.8 QR Decomposition

This subsection introduces onemore matrix decomposition. Let J be the n × mmatrix
with full column rank, which means its columns j1, j2,… , jm are linearly independent.
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The QR decomposition of the matrix J is defined as follows:

J = QR R =

[
U

n−m0m

]
(A.3.105)

where the n × n matrix Q is orthonormal and the m × m matrix U is upper triangu-
lar. Two main applications of this decomposition [also called factorization because
(A.3.105) expresses J as a product of two matrix factors] are

1. Calculation of the Cholesky decomposition of matrix JTJ without its explicit
calculation. From (A.3.105) it follows

JTJ = RTQTQR = RTR = UTU = LLT (A.3.106)

with L being defined as L = UT .

2. Calculation of the annulator matrix. Partitioning of the matrixQT into two parts,

QT =

[
G
F

]
(A.3.107)

gives [
GJ
FJ

]
= QTJ = R =

[
U

(n−m)0m

]
(A.3.108)

which proves that FJ=(n−m)0m and the (n − m) × n matrix F annulates the
matrix J.

The matrix J will now be processed column by column. A sequence of orthonor-
mal matricesQ(k) will be constructed to operate on J to reduce the number of nonzero
entries. The superscript (k) denotes the step of the algorithm, while the subscript k
enumerates the columns of matrix J. Let us start with the first column j1 and construct
the orthonormal matrix Q(1), called the Hausholder matrix, as follows:

Q(1) = In − 2𝜏1h1h
T
1 (A.3.109)

where the column vector h1 is defined as

h1 = j1 + 𝛼1e1 (A.3.110)

e1 = (1, 0,… , 0)T (A.3.111)

and scalar parameters 𝛼1 and 𝜏1 are chosen to satisfy the following conditions:

Q(1)j1 = ‖j1‖e1 (A.3.112)

1

hT
1h1

= 𝜏1 (A.3.113)
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The last condition guaranties that the matrix (A.3.109) is orthonormal.We can readily
verify that

Q(1)TQ(1) = In − 4𝜏1h1h
T
1 + 4𝜏21h

T
1h1h1h

T
1 = In (A.3.114)

The symbol In is used to denote the n × n identity matrix. Moreover, we have
Q(1)h1 = h1 − 2𝜏1h1h

T
1h1 = −h1 and Q(1)x = x for each vector x satisfying the

condition hT
1x = 0. The last two conditions mean that Q(1) defines the mirror

reflection relative to the plane hT
1x = 0. Also, note that the orthonormal matrix Q(1)

is symmetric which means that it is involutory: Q(1)Q(1) = In.
Now it follows from (A.3.109) and (A.3.110) that

Q(1)j1 = j1 − 2𝜏1(j1 + 𝛼1e1)(j1 + 𝛼1e1)
T j1

= j1 − 2𝜏1j1(‖‖j1‖‖2 + 𝛼1j11) − 2𝜏1𝛼1e1(‖‖j1‖‖2 + 𝛼1j11)
= [1 − 2𝜏1(‖‖j1‖‖2 + 𝛼1j11)]j1 − 2𝜏1𝛼1e1(‖‖j1‖‖2 + 𝛼1j11) (A.3.115)

Let us choose the parameter 𝛼1 such that the term in brackets in the last expression
becomes zero,

1 − 2𝜏1
(‖j1‖2 + 𝛼1j11) = 0 (A.3.116)

Then it follows from (A.3.115) that

Q(1)j1 = −2𝜏1𝛼1e1
(‖j1‖2 + 𝛼1j11) (A.3.117)

and the combination of conditions (A.3.113) and (A.3.116) gives

hT
1h1 = ‖j1‖2+2𝛼1j11 + 𝛼21 =

1
𝜏1

= 2
(‖j1‖2 + 𝛼1j11) (A.3.118)

It follows from the last equality that 𝛼21 = ‖j1‖2 or
𝛼1= ± ‖j1‖ (A.3.119)

Finally, the combination of (A.3.116), (A.3.117), and (A.3.119) gives

Q(1)j1 = ∓‖j1‖e1 (A.3.120)

which means that the orthonormal matrix Q(1) transforms the vector j1 into ‖j1‖e1 if
we choose 𝛼1= − ‖j1‖, and it transforms j1 into −‖j1‖e1 if 𝛼1=‖j1‖. In both cases
only the first entry of the transformed vector is nonzero. Thus, we have

Q(1)J =

⎡⎢⎢⎢⎣
∓ ‖‖j1‖‖ ∗ · · · ∗

0
⋮
0

J(2)

⎤⎥⎥⎥⎦ (A.3.121)



676 GENERAL BACKGROUND

where the symbol ∗ denotes some nonzero scalars, and J(2) is some (n − 1) × (m − 1)
matrix. Both sign options are possible in (A.3.119), but for the sake of numerical
stability it is worthwhile to choose the sign of 𝛼1 coinciding with the sign of the
scalar j11 in order to reduce the probability of having small values ‖j1‖2 + 𝛼1j11 in
(A.3.118).

Then we construct the matrix

Q(2) =

⎡⎢⎢⎢⎣
1 0 · · · 0
0
⋮
0

In−1 − 2𝜏2h2h
T
2

⎤⎥⎥⎥⎦ (A.3.122)

which, when multiplied from left with matrix (A.3.121), leaves its first row and the
first column unchanged and thus reducing the first column of matrix J(2) into a form
similar to (A.3.120). Applying m transformations gives

Q(m) · · ·Q(2)Q(1)J =

[
U

n−m0m

]
(A.3.123)

The last condition defines the matrix Q in (A.3.105) as

Q = Q(1)Q(2) · · ·Q(m) (A.3.124)

In the last equality we took into account that Q(k) = Q(k)T .
This completes the description of the QR decomposition as a series of mirror

orthonormal transformation converting the n × mmatrix J into upper triangular form
(A.3.105).

A.3.9 Rank One Update of Cholesky Decomposition

For the overdetermined system
Jx = b (A.3.125)

consider the least-squares problem

(Jx − b)T (Jx − b) → min (A.3.126)
resulting in the solution

x∗ = (JTJ)−1JTb (A.3.127)

where the n × m (n > m) matrix J is supposed to have a full rank. When looking for
outliers affecting the right-hand side vector b, the overdetermined system (A.3.125)
can be solved repeatedly with a different number of equations. Namely, we may want
to strike one of the equations from the system (A.3.125) or add one equation, changing
the dimension n by one to either n − 1 or n + 1. Let

jTx = b (A.3.128)
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be an equation to be stricken or added to the system (A.3.125). In the first case the
term JTJ in (A.3.127) will be changed to JTJ − jjT , and in the second case it will
be changed to JTJ + jjT . Also, the term JTb will be changed to JTb ∓ jb. Aim-
ing to apply the Cholesky decomposition to the solution (A.3.127) we consider the
following problem: given a positive definite matrix JTJ in the form of Cholesky
decomposition

JTJ = LLT (A.3.129)

find the Cholesky decomposition of the new matrix JTJ + 𝛼jjT ,

JTJ + 𝛼jjT = LL
T

(A.3.130)

where 𝛼 = ±1. Obvious straightforward calculation of (A.3.130) takes the number
of calculations proportional to m3. We are looking for a less computationally inten-
sive way, assuming that decomposition (A.3.129) is already done. The matrix update
𝛼jjT has a rank of one. Calculating the decomposition (A.3.130), given the decom-
position (A.3.129), is called the rank one update of Cholesky decomposition (Yang,
1977; Golub and Van Loan, 1996). The algorithm described in this subsection has a
computational complexity proportional to m2.

Let us express (A.3.130) in the equivalent form

[
j L

]
D

[
jT

LT

]
= LL

T
(A.3.131)

where the (m + 1) × (m + 1) diagonal matrix D has the form

D =

[
𝛼 0Tm
0m Im

]
(A.3.132)

and the m × (m + 1) matrix
[
j L

]
has the pattern

[
j L

]
=

⎡⎢⎢⎢⎣
∗ ∗ 0 0 · · · 0
∗ ∗ ∗ 0 · · · 0
⋮ · · · · · ·
∗ ∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎦ (A.3.133)

The symbol ∗ denotes an arbitrary nonzero value. The idea of the algorithm con-
sists of sequential application of simple orthonormal transformations Q(k) and upper
triangular transformations U(k) to reduce (A.3.133) into the form

[
j L

]
Q(1)U(1)Q(2)U(2) · · ·Q(m)U(m) =

[
0 L(m)

]
=

⎡⎢⎢⎢⎣
0 ∗ 0 0 · · · 0
0 ∗ ∗ 0 · · · 0
⋮ · · · · · ·
0 ∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎦
(A.3.134)
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such that

JTJ + 𝛼jjT =
[
0 L(m)

]
D(m)

[
0T

L(m)
T

]
(A.3.135)

where the matrix D(m) is diagonal.
Let Q(1) be the orthonormal matrix of the form

Q(1) =

⎡⎢⎢⎢⎢⎢⎣

c1 −s1 0 0
s1 c1 0 0
0 0 1

⋱
0 0 1

⎤⎥⎥⎥⎥⎥⎦
(A.3.136)

where the numbers c1 and s1, c
2
1 + s21 = 1 are chosen in such a way as to reduce the

first row of the matrix (A.3.133) into the following form,(
j1 l11 0 · · · 0

)
Q(1) =

(
0 l11 0 · · · 0

)
(A.3.137)

In the last expression j1 and l11 are the only two nonzero entries marked by ∗ in the
first row of the matrix pattern (A.3.133). Straightforward calculations give

l11 =
√

j21 + l211, c1 =
l11

l11
, s1 = −

j1

l11
(A.3.138)

The matrix (A.3.136) is called the Givens matrix, or the planar rotation matrix
because only two coordinates are involved in the orthonormal transformation. Let us
denote [

j L
]
Q(1) =

⎡⎢⎢⎢⎣
0 l11 0 0 · · · 0
∗ ∗ ∗ 0 · · · 0
⋮ · · · · · ·
∗ ∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎦ =
[
j(1) L

(1)
]

(A.3.139)

Since Q(1) is orthonormal, we can rewrite (A.3.131) in the equivalent form

[
j L

]
D

[
jT

LT

]
=
[
j L

]
Q(1)Q(1)TDQ(1)Q(1)T

[
jT

LT

]

=
[
j(1) L

(1)
]
Q(1)TDQ(1)T

⎡⎢⎢⎣
j(1)

T

L
(1)T

⎤⎥⎥⎦ (A.3.140)

where the matrix Q(1)TDQ(1) is no longer diagonal. Instead, it has the form

Q(1)TDQ(1) =

⎡⎢⎢⎢⎢⎢⎣

g1 e1 0 0
e1 h1 0 0
0 0 1

⋱
0 0 1

⎤⎥⎥⎥⎥⎥⎦
(A.3.141)



LINEAR ALGEBRA 679

where straightforward calculations give

g1 = 𝛼c21 + s21, h1 = 𝛼s21 + c21, e1 = (1 − 𝛼)c1s1 (A.3.142)

Thematrix (A.3.141) is then expressed in the form ofUDUT decomposition which
is similar to Cholesky decomposition, but has an upper triangular matrix U and a
diagonal matrix D. Thus, we have

Q(1)TDQ(1) = U(1)D(1)U(1)T (A.3.143)
where

U(1) =

⎡⎢⎢⎢⎢⎢⎣

1 𝛾1 0 0
0 1 0 0
0 0 1

⋱
0 0 1

⎤⎥⎥⎥⎥⎥⎦
D(1) =

⎡⎢⎢⎢⎢⎢⎣

𝛼1 0 0 0
0 𝛽1 0 0
0 0 1

⋱
0 0 1

⎤⎥⎥⎥⎥⎥⎦
(A.3.144)

with coefficients 𝛼1, 𝛽1, and 𝛾1 defined as

𝛽1 = 𝛼s21 + c21, 𝛾1 =
(1 − 𝛼)c1s1

𝛽1
𝛼1 = 𝛼c21 + s21 − 𝛾

2
1𝛽1 (A.3.145)

which can be checked by a direct substitution using expressions (A.3.141) and
(A.3.142). To complete the first step, denote

[
j(1) L

(1)
]
U(1) =

⎡⎢⎢⎢⎣
0 l11 0 0 · · · 0
∗ ∗ ∗ 0 · · · 0
⋮ · · · · · ·
∗ ∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎦ =
[
j(1) L(1)

]
(A.3.146)

where multiplication of the matrix
[
j(1) L

(1)
]
by the matrix U(1) having the form

(A.3.144) does not change the column j(1), changing only the first column of matrix

L
(1)
, however, leaving its first entry l11 unchanged. Thus, the first step of the transfor-

mations is completed with the representation

JTJ + 𝛼jjT =
[
j(1) L(1)

]
D(1)

[
j(1)

L(1)

]
(A.3.147)

where thematrixD(1) is diagonal and thematrix L(1) has a pattern shown in the expres-
sion (A.3.146). The computational complexity of this step is proportional to m.

The second step is aimed to zero the second entry of the column j(1). To accomplish
this goal we construct the orthonormal matrix

Q(2) =

⎡⎢⎢⎢⎢⎢⎣

c2 0 −s2 0
0 1 0 0
s2 0 c2

⋱
0 0 1

⎤⎥⎥⎥⎥⎥⎦
(A.3.148)
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and the upper triangular and diagonal matrices

U(2) =

⎡⎢⎢⎢⎢⎢⎣

1 0 𝛾2 0
0 1 0 0
0 0 1

⋱
0 0 1

⎤⎥⎥⎥⎥⎥⎦
D(2) =

⎡⎢⎢⎢⎢⎢⎣

𝛼2 0 0 0
0 𝛽1 0 0
0 0 𝛽2

⋱
0 0 1

⎤⎥⎥⎥⎥⎥⎦
(A.3.149)

resulting in a representation similar to (A.3.147),

JTJ + 𝛼jjT =
[
j(2) L(2)

]
D(2)

[
j(2)

L(2)

]
(A.3.150)

where

[
j(2) L(2)

]
=
[
j(1) L(1)

]
Q(2)U(2) =

⎡⎢⎢⎢⎣
0 l11 0 0 · · · 0
0 ∗ l22 0 · · · 0
⋮ · · · · · ·
∗ ∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎦ (A.3.151)

Multiplication of the matrix
[
j(1) L(1)

]
by the matrixQ(2) does not spoil the first zero

entry in vector j(1), while setting zero in the second entry of j(2). Also, multiplication
by the matrix U(2) does not spoil the two zero entries of column j(2). This follows
from the structure of matrices (A.3.148) and (A.3.149).

The updating process is repeated resulting in the representation

JTJ + 𝛼jjT =
[
0m L(m)

]
D(m)

[
0Tm
L(m)

]
(A.3.152)

at the end of the mth step. Each step takes the number of calculations proportional to
m. Thus, the total computational complexity of the rank one update is estimated as
m2. The matrix D(m) is (m + 1) × (m + 1) diagonal,

D(m) =

[
𝛼m 0Tm
0m D

]
D =

⎡⎢⎢⎣
𝛽1

⋱
𝛽m

⎤⎥⎥⎦ (A.3.153)

where the values 𝛽i > 0 if and only if the matrix JTJ + 𝛼jjT is positive definite. Obvi-
ously this is true if 𝛼 = 1. However, it can lose positive definiteness if 𝛼 = −1. A
positive diagonalD allows us to judge whether JTJ + 𝛼jjT is positive definite. Finally,
if it is true, the algorithm completes with the answer

L=L(m)D1∕2 (A.3.154)

Otherwise, if one of 𝛽i is zero (negative values are impossible) we stop with the con-
clusion that the system (A.3.125) became underdetermined after exclusion of one
equation.
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To complete calculation of the new solution (A.3.127) note that

x∗ = (LL
T
)−1(JTb + 𝛼jb) (A.3.155)

The explicit matrix inversion in (A.3.155) is not computed in practice, instead
it is replaced by the forward and backward substitution solutions described in
equations (A.3.66) and (A.3.67). The straightforward calculations of (A.3.127)
would take nm2 arithmetic operations to compute the matrix JTJ and another m3

operations to compute the Cholesky decomposition. The rank one update takes m2

operations. Forward and backward solutions take another m2 operations. Therefore,
the rank one update saves computations if the number m is large.

A.4 LINEARIZATION

Observations are often related by nonlinear functions of unknown parameters. The
adjustment algorithm uses a linear functional relationship between the observations
and the parameters and uses iterations to account for the nonlinearity. To perform an
adjustment, one must therefore linearize these relationships. Expanding the functions
in a Taylor series and retaining only the linear terms accomplishes this. Consider the
nonlinear function

y = f (x) (A.4.1)

which has one variable x. The Taylor series expansion of this function is

y = f (xo) +
𝜕y

𝜕x

||||x0dx + 1
2!
𝜕2y

𝜕x2

|||||x0dx2 + · · · (A.4.2)

The linear portion is given by the first two terms

y = f (xo) +
𝜕y

𝜕x

||||x0dx (A.4.3)

The derivative is evaluated at the point of expansion x0. At the point of expansion, the
nonlinear function is tangent to the linearized function. The functions separate by

𝜀 = y − y (A.4.4)

as x departs from the expansion point x0. The linear form (A.4.3) is a sufficiently
accurate approximation of the nonlinear relation (A.4.1) only in the vicinity of the
point of expansion.

Typically, an application contains more than one parameter. The above concept
of linearization, therefore, is generalized to higher dimensions. The expansion of a
two-variable function

z = f (x, y) (A.4.5)
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is
z = f (x0, y0) +

𝜕z
𝜕x

||||x0, y0dx + 𝜕z
𝜕y

||||x0, y0dy + · · · (A.4.6)

The point of expansion is P(x = x0, y = y0). The linearized form

z = f (x0, y0) +
𝜕z
𝜕x

||||x0, y0dx + 𝜕z
𝜕y

||||x0, y0dy (A.4.7)

represents the tangent plane on the surface (A.4.5) at the expansion point. A general-
ization for the expansion of multivariable functions is readily seen. If n functions are
related to u variables as in

y = f(x) =

⎡⎢⎢⎢⎣
f1 (x)
f2(x)
⋮

fn(x)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
f1
(
x1, x2, · · · , xu

)
f2(x1, x2, · · · , xu)

⋮
fn(x1, x2, · · · , xu)

⎤⎥⎥⎥⎦ (A.4.8)

the linearized form is
y = f(x0) +

𝜕f
𝜕x

||||x0dx (A.4.9)

where

𝜕f
𝜕x

= nGu =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕f1
𝜕x1

𝜕f1
𝜕x2

· · ·
𝜕f1
𝜕xu

𝜕f2
𝜕x1

𝜕f2
𝜕x2

· · ·
𝜕f2
𝜕xu

⋮ ⋮ · · · ⋮
𝜕fn
𝜕x1

𝜕fn
𝜕x2

· · ·
𝜕fn
𝜕xu

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.4.10)

The point of expansion is P(x = x0). Every component of y is differentiated with
respect to every variable. Thus, the matrixG has as many columns as there are param-
eters, and as many rows as there are components in y. The components of f(x0) are
equal to the respective functions evaluated at x0.

Although linearization is a general mathematical concept, it is needed in least-
squares adjustment in surveying, geodesy, and navigation because the mathemati-
cal models are typically nonlinear. Apart from linear regression, the mathematical
relationships that relate observations and parameters are typically nonlinear in engi-
neering and science. Well-known exceptions are leveling networks and GNSS vector
network as discussed in other parts of this book. In these rare cases the linearization
and the concept of point of expansion are not needed. In nonlinear mathematical
models, however, the point of expansion is defined by assumed values for the param-
eters. During the iterations the point of expansion moves closer to the true value
of the parameters. The adjustment is said to have converged if additional iterations
do not change the results. It follows that under normal circumstances the vector
dx in (A.4.9), representing the difference between the adjusted and approximate
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parameters, is very small during the last iteration. Therefore, any higher order terms
truncated in (A.4.9) are negligible, indeed. In terms of notation dx is identical to the
x in (A.3.32). The details of adjustments are discussed in Chapters 2 and 3.

A.5 STATISTICS

We briefly summarize statistical aspects in this section that are sufficient for under-
standing routine applications of statistics in adjustments, in particular the derivation
of the distribution of vTPv and the basic test for accessing the validity of an adjust-
ment. One-dimensional distributions, hypothesis testing, distributions of simple func-
tions of random variables, multivariate normal distribution, and variance-covariance
propagation are addressed. The reader is referred for in-depth treatment of statistics
to the standard statistical literature.

To start with, let as review some basic terminology: An observation, or a statistical
event, is the outcome of a statistical experiment such as throwing a dice or measuring
an angle or a distance. A random variable is the outcome of an event. The random
variable is denoted by a tilde. Thus, x̃ is a random variable and x̃ is a vector of random
variables. However, we will often not use the tilde to simplify the notation when it
is unambiguous as to which symbol represents the random variable. The population
is the totality of all events. It includes all possible values that the random variable
can have. The population is described by a finite set of parameters, called the pop-
ulation parameters. The normal distribution, e.g., describes such a population and
is completely specified by the mean and the variance. A sample is a subset of the
population. For example, if the same distance is measured 10 times, then these 10
measurements are a sample of all the possible measurements. A statistics represents
an estimate of the population parameters or functions of these parameters. It is com-
puted from a sample. For example, the 10 measurements of the same distance can
be used to estimate the mean and the variance of the normal distribution. Probability
is related to the frequency of occurrence of a specific event. Each value of the ran-
dom variable has an associated probability. The probability density function relates
the probability to the possible values of the random variable.

A.5.1 One-Dimensional Distributions

The chi-square, normal, t, and F distributions are listed. These are, of course, the
most basic distribution and are merely listed for the convenience of the student. In
addition, we introduce the mean and the variance.

Probability Density and Accumulative Probability: If f (x) denotes the proba-
bility density function, then

P(a ≤ x̃ ≤ b) = ∫
b

a
f (x) dx (A.5.1)

is the probability that the random variable x̃ assumes a value in the interval [a, b].
For f (x) to be a probability function of the random variable x̃, it has to fulfill certain
conditions. First, f (x) must be a nonnegative function, because there is always an
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outcome of an experiment, i.e., the observation can be positive, negative, or even zero.
Second, the probability that a sample (observation) is one of all possible outcomes
should be 1. Thus the density function f (x) must fulfill the following conditions:

f (x) ≥ 0 (A.5.2)

∫
∞

−∞
f (x) dx = 1 (A.5.3)

The integration is taken over the whole range (population) of the random variable.
Conditions (A.5.2)and (A.5.3) imply that the density function is zero at minus infinity
and plus infinity. The probability

P(x̃ ≤ x) = F(x) = ∫
x

−∞
f (t) dt (A.5.4)

is called the cumulative distribution function. It is a nondecreasing function because
of condition (A.5.2).

Mean: The mean, also called the expected value of a continuously distributed
random variable, is defined as

𝜇x = E(x̃) = ∫
∞

−∞
x f (x) dx (A.5.5)

The mean is a function of the density function of the random variable. The integration
is extended over thewhole population. Equation (A.5.5) is the analogy to theweighted
mean in the case of discrete distributions.

Variance: The variance is defined by

𝜎2x = E(x̃ − 𝜇x)
2 = ∫

∞

−∞
(x − 𝜇x)

2 f (x) dx (A.5.6)

The variance measures the spread of the probability density in the sense that it gives
the expected value of the squared deviations from the mean. A small variance there-
fore indicates that most of the probability density is located around the mean.

Chi-Square Distribution: The chi-square density function is given by

f (x) =

{
1

2r∕2 𝛤 (r∕2)
x(r∕2)−1 e−x∕2 x > 0

0 elsewhere
(A.5.7)

The symbol r denotes a positive integer and is called the degree of freedom. Themean,
also called the expected value, equals r, and the variance equals 2r. The degree of
freedom is sufficient to describe completely the chi-square distribution. The symbol
𝛤 denotes the well-known gamma function, which is dealt with in books on advanced
calculus and can be written as

𝛤 (g) = (g − 1)! (A.5.8)

𝛤
(
g +

1
2

)
=

√
𝜋

22g
𝛤 (2g)
𝛤 (g)

(A.5.9)
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Figure A.5.1 Chi-square distribution of various degrees of freedom.

for positive integer g. Examples of the chi-square distribution for small degrees of
freedom are given in Figure A.5.1. The probability that the random variable x̃ is less
than w𝛼 is

P(x̃ < w𝛼) = ∫
w𝛼

0
f (x) dx = 1 − 𝛼 (A.5.10)

Regarding notation, equation (A.5.10) implies that to the right ofw𝛼 there is the prob-
ability 𝛼; the integration from w𝛼 to infinity equals 𝛼. If the random variable x̃ has a
chi-square distribution with r degrees of freedom, then we use the notation x̃ ∼ 𝜒2

r .
The distribution (A.5.7) ismore precisely called the central chi-square distribution.

The noncentral chi-square is a generalization of this distribution. The density function
does not have a simple closed form; it consists of an infinite sum of terms. If x̃ has a
noncentral chi-square distribution, this is expressed by x̃ ∼ 𝜒2

r, 𝜆 where 𝜆 denotes the
noncentrality parameter. The mean is

E(x̃) = r + 𝜆 (A.5.11)

as opposed to just r for the central chi-square distribution.
Normal Distribution: The density function of the normal distribution is

f (x) =
1

𝜎
√
2𝜋

e−(x−𝜇)
2∕2𝜎2 −∞ < x < ∞ (A.5.12)

where 𝜇 and 𝜎2 denote the mean and the variance. The notation x̃ ∼ n(𝜇, 𝜎2) is usu-
ally used. The two parameters 𝜇 and 𝜎 completely describe the normal distribution.
See Figure A.5.2. The normal distribution has the following characteristics:

1. The distribution is symmetric about the mean.

2. The maximum density is at the mean.

3. For small variances, the maximum density is larger and the slopes are steeper
than in the case of large variances.

4. The inflection points are at x = 𝜇 ± 𝜎.
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Figure A.5.2 Normal density function.

If x̃ ∼ n(𝜇, 𝜎2), then the transformed variable

w̃ =
x̃ − 𝜇
𝜎

∼ n(0, 1) (A.5.13)

has a normal distribution with zero mean and unit variance. The random variable w̃
is said to have a standardized normal distribution. The density function for w̃ is

f (w) =
1√
2𝜋

e−w
2∕2 −∞ < w < ∞ (A.5.14)

The probability that the random variable x̃ is less than w𝛼 is

P (x̃ < w𝛼) = ∫
w𝛼

0
f (w) dw (A.5.15)

Table A.5.1 lists selected values that are frequently quoted. For a normal distribu-
tion, in about 68% of all cases the observations fall within one standard deviation
from the mean, and only every 370th observation deviates from the mean by more
than 3𝜎. Therefore, the 3𝜎 value is sometimes taken as the limit to what is regarded
as random error. Any larger deviation from the mean is usually considered a blun-
der. Statistically, large errors cannot be avoided, but their occurrence is unlikely. The
3𝜎 criterion is not necessarily applicable in least-squares adjustments because the
adjusted random variables are multivariate distributed and are correlated.

TABLE A.5.1 Selected Values from the Normal Distribution

x 𝜎 2𝜎 3𝜎 0.674𝜎 1.645𝜎 1.960𝜎

N(x) − N(−x) 0.6827 0.9544 0.9973 0.5 0.90 0.95
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t Distribution: Assume that w̃ ∼ n(0, 1) and 𝜐̃ ∼ 𝜒2
r are two stochastically inde-

pendent random variables with unit normal and chi-square distribution, respectively.
The random variable

t̃ =
w̃√
𝜐̃∕r

(A.5.16)

has a t distribution with r degrees of freedom. The distribution function is

f (tr) =
𝛤 [(r + 1)∕2]√
𝜋r 𝛤 (r∕2)

[
1 +

t2

r

]−(r+1)∕2
−∞ < t <∞ (A.5.17)

The density function (A.5.17) is symmetric with respect to t = 0. See Figure A.5.3.
Furthermore, if r = ∞ then the t distribution is identical to the standardized normal
distribution

t∞ = n(0, 1) (A.5.18)

The density in the vicinity of the mean (zero) is smaller than for the unit normal
distribution, whereas the reverse is true at the extremities of the distribution. The t
distribution converges rapidly toward the normal distribution. If the random variable
w̃ ∼ n(𝛿, 1) is normal distributed with unit variance but with a nonzero mean, then
the function (A.5.16) has a noncentral t distribution with r degrees of freedom and a
noncentrality parameter 𝛿.

F Distribution: Consider two stochastically independent random variables, ũ ∼
𝜒2
r1
and 𝜐̃ ∼ 𝜒2

r2
, distributed as chi-square with r1 and r2 degrees of freedom, respec-

tively. The random variable

F̃ =
ũ∕r1
𝜐̃∕r2

(A.5.19)

has the density function

f (Fr1, r2
) =

𝛤 [(r1 + r2)∕2] (r1∕r2)
r1∕2

𝛤 (r1∕2) 𝛤 (r2∕2)
F(r1∕2)−1

(1 + r1F∕r2)(r1+r2)∕2
0 < F < ∞ (A.5.20)

Figure A.5.3 Probability density function of the t distribution.
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This is theF distribution with r1 and r2 degrees of freedom. Themean, or the expected
value, is

E(Fr1, r2
) =

r2
r2 − 2

(A.5.21)

for r2 > 2. Care should always be taken to identify the sequence of degrees of free-
dom properly since the density function is not symmetric in these variables. See
Figure A.5.4. The following relationship

Fr1, r2, 𝛼
=

1
Fr2, r1, 1−𝛼

(A.5.22)

holds. The F distribution is related to the chi-square and the t distributions as follows:

𝜒2
r

r
∼ Fr,∞ (A.5.23)

t2r ∼ F1, r (A.5.24)

If ũ ∼ 𝜒2
r1, 𝜆

has a noncentral chi-square distribution with r1 degrees of freedom and
a noncentrality parameter 𝜆, then the function F in (A.5.19) has a noncentral F dis-
tribution with r1 and r2 degrees of freedom and noncentrality parameter 𝜆. The mean
for the noncentral distribution is

E(Fr1, r2, 𝜆
) =

r2
r2 − 2

(
1 +

𝜆

r1

)
(A.5.25)

A.5.2 Distribution of Simple Functions

There are several functions of random variables that are useful in least-squares esti-
mation. Assume that (x̃1, x̃2, · · · , x̃n) are n stochastically independent variables, each
having a normal distribution, with differentmeans𝜇i and variances 𝜎

2
i . Then the linear

function
ỹ = k1x̃1 + k2x̃2 + · · · + knx̃n (A.5.26)

Figure A.5.4 F distribution.
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is distributed as

ỹ ∼ n

(
n∑
i

ki𝜇i,
n∑
i

k2i 𝜎
2
i

)
(A.5.27)

If the random variable w̃ has a standardized normal distribution w̃ ∼ (0, 1), then the
square of the standardized normal distribution

𝜐̃ = w̃2 ∼ 𝜒2
1 (A.5.28)

has a chi-square distribution with one degree of freedom.
Assume that (x̃1, x̃2,… , x̃n) are n stochastically independent random variables,

each having a chi-square distribution with differing ri degrees of freedom. Then the
random variable

ỹ = x̃1 + x̃2 +…+ x̃n (A.5.29)

is distributed
ỹ ∼ 𝜒2∑

ri
(A.5.30)

The degree of freedom equals the sum of the individual degrees of freedom.
Assume (x̃1, x̃2,… , x̃n) are n stochastically independent random variables, each

having a normal distribution. The means are nonzero. Then

ỹ ∼
∑

w̃2 =
n∑ (

x̃i − 𝜇i
𝜎i

)2

∼ 𝜒2
n (A.5.31)

Assume that (x̃1, x̃2,… , x̃n) are n stochastically independent normal random vari-
ables with different means μi and variances 𝜎2i . Then the sum of squares

ỹ =
∑

x̃2i ∼ 𝜒2
n, 𝜆 (A.5.32)

has a noncentral chi-square distribution. The degree of freedom is n and the noncen-
trality parameter is

𝜆 =
∑ 𝜇2i

𝜎2i

(A.5.33)

A.5.3 Hypothesis Tests

A hypothesis is a statement about the parameters of a distribution. A test of a hypoth-
esis is a rule that, based on the sample values, leads to a decision to accept or reject the
null hypothesis. A test statistic is computed from the sample values (the observations)
and from the specifications of the null hypothesis. If the test statistic falls within a
critical region, the null hypothesis is rejected. For example, ṽTPṽ is a test statistic
having a chi-square distribution. The computed test statistic is v̂TPv̂. The specifica-
tion of the zero hypothesis could be that the a posteriori and a priori variance of unit
weight are the same.
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If the null hypothesis H0 is true, the computed value may fall inside the critical
region because the sample statistic is computed from sample values (observations).
There is a probability 𝛼 that this can happen. One speaks of a type-I error if the
hypothesis H0 is rejected although it is true; the probability of a type-I error is 𝛼,
which, incidentally, is also the significance level of the test. However, there is a prob-
ability that the sample statistics falls in the critical region whenH0 is false (and hence
H1 is true). That probability is denoted by 1 − 𝛽 and represents the area under the den-
sity function f (t|H1) from t𝛼 to ∞ in Figure A.5.5. If the alternative hypothesis H1
is true and the sample statistic does not fall in the critical region, one would mistak-
enly accept H0 and commit a type-II error. The probability of committing a type-II
error is 𝛽.

Figure A.5.5 displays the probability density functions of the test statistics under
the specifications of the null hypothesis H0 and the alternative hypothesis H1. The
figure also shows the critical region for which the null hypothesis is rejected, and
the alternative hypothesis is accepted if the computed sample statistics t falls in that
region. Thus, reject H0 if

t > t𝛼 (A.5.34)

The shape and location of the density function of the test statistics under the alter-
native hypothesis depend on the specifications of the alternative hypothesis. Thus,
the probability of a type-II error, 𝛽, depends on the specifications of H1. A desir-
able approach in statistical testing would be to minimize the probability of both types
of errors. However, this is not practical, because all distributions of the alternative
hypotheses, which, in general, are of the noncentral type, would have to be com-
puted. Figure A.5.5 shows that the probability 𝛽 increases as 𝛼 decreases. A common
procedure is to fix the probability of a type-I error to, say, 𝛼 = 0.05, and not com-
pute 𝛽.

Figure A.5.5 Example of probability distributions of test statistics and critical region.
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The rule (A.5.34) is a one-tail test in the upper end of the distribution. Depending
on the situation, it might be desirable to employ a two-tail test. In that case the null
hypothesis is rejected if |t| > t𝛼∕2 (A.5.35)

and the distribution under H0 is symmetric. It is rejected if

t > t𝛼∕2 (A.5.36)

t < t1−𝛼∕2 (A.5.37)

and the distribution is not symmetric. The critical regions are at both tails of the
distribution, with each tail covering a probability area of 𝛼∕2.

However, much effort has gone into research as to how the magnitude of 𝛽 can be
controlled (Baarda, 1968). After all, committing a type-II error implies accepting the
null hypothesis even though the alternative hypothesis is true. For example, it could
mean that it has been concluded that no deformation took place even though actual
deformations occurred. Such an error could be costly in many respects. In Section
2.8.2 some consideration is given to the type-II error in regards to blunder detec-
tion and internal and external reliability, again based on Baarda’s work. Section 6.5.3
considers type-II errors in regard to ambiguity fixing.

The goodness-of-fit test is a simple and useful example of statistical testing.
Assume we wish to test a series of observations to determine whether they come
from a certain population with a specified distribution. We subdivide the observation
series into n bins. Let ni denote the number of observations in bin i. The subdivision
should be such that ni ≥ 5. Compute for each bin the expected number di of
observations based on the hypothetical distribution. It can be shown that

𝜒2 =
n∑
i=1

(ni − di)
2

di
(A.5.38)

is distributed approximately as 𝜒2
n−1. The zero hypothesis states that the sample is

from the specified distribution. Reject H0 at a 100𝛼% significance level if

𝜒2 > 𝜒2
n−1, 𝛼 (A.5.39)

This test could be used to verify that normalized residuals belong to n(0, 1).

A.5.4 Multivariate Distributions

Any function f (x1, x2,… , xn) of n continuous variables x̃i can be a joint multivariate
density function provided that

f (x1, x2,… , xn) ≥ 0 (A.5.40)

∫
∞

−∞
· · · ∫

∞

−∞
f (x1, x2,… , xn) dx1 · · · dxn = 1 (A.5.41)
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It follows as a natural extension from (A.5.4) that

P(x̃1 < a1,… , x̃n < an) = ∫
a1

−∞
· · ·∫

an

−∞
f (x1, x2,… , xn) dx1 · · · dxn (A.5.42)

The marginal density of a subset of random variables (x1, x2,… , xp) is

g(x1, x2,… , xp) = ∫
∞

−∞
· · · ∫

∞

−∞
f (x1, x2,… , xn) dxp+1 dxp+2 · · · d xn (A.5.43)

Stochastic Independence: The concept of stochastic independence is required
when dealing with multivariate distributions. Two sets of random variables,
(x̃1,… , x̃p) and (x̃p+1,… , x̃n), are stochastically independent if the joint density func-
tion can be written as a product of the two respective marginal density functions, e.g.,

f (x1, x2,… , xn) = g1(x1, x2,… , xp) g2(xp+1, xp+2,… , xn) (A.5.44)

Vector of Means: The expected value for the individual parameter xi is

𝜇xi = E(x̃i) = ∫
∞

−∞
· · · ∫

∞

−∞
xi f (x1, x2,… , xn) dx1 dx2 · · · dxn (A.5.45)

In vector notation the expected values of all parameters are

E(x̃) =
[
E
(
x̃1
)

· · · E(x̃n)
]T

(A.5.46)

Variance: The variance of an individual parameter is given by

𝜎2xi = E(x̃i − 𝜇xi )
2 = ∫

∞

−∞
· · · ∫

∞

−∞
(xi − 𝜇xi )

2 f (x1, x2,… , xn) dx1 · · · dxn
(A.5.47)

Covariance: For multivariate distributions, another quantity called the covariance
becomes important. The covariance describes the statistical relationship between two
random variables. The covariance is

𝜎xi, xj = E[(xi − 𝜇xi ) (xj − 𝜇xj)]

= ∫
∞

−∞
· · · ∫

∞

−∞
(xi − 𝜇xi ) (xj − 𝜇xj ) f (x1, x2,… , xn) dx1 · · · dxn (A.5.48)

Whereas the variance is always larger than or equal to zero, the covariance can be
negative, positive, or even zero.

Correlation Coefficients: The correlation coefficient of two random variables is
defined as

𝜌xi,xj =
E[(x̃i − 𝜇xi) (x̃j − 𝜇xj )]

𝜎xi𝜎xj
=
𝜎xi,xj

𝜎xi𝜎xj
(A.5.49)
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Therefore, the correlation coefficient equals the covariance divided by the respective
standard deviations. An important property of the correlation coefficient is that

−1 ≤ 𝜌xi,xj ≤ 1 (A.5.50)

If two random variables are stochastically independent, then the covariance (and thus
the correlation coefficient) is zero. By making use of (A.5.44) for the density function
of stochastically independent random variables, we can write (A.5.48) as

𝜎xi,xj = ∫
∞

−∞ ∫
∞

−∞
(xi − 𝜇xi) (xj − 𝜇xj ) gi(xi)gj(xj) dxi dxj

= ∫
∞

−∞
(xi − 𝜇xi )gi(xi) dxi∫

∞

−∞
(xj − 𝜇xj ) gj(xj) dxj (A.5.51)

These integrals are zero because of the definition of the mean. The converse, i.e., zero
correlation, implies stochastic independence is valid only for the multivariate normal
distribution.

Variance-CovarianceMatrix: Equations (A.5.45), (A.5.48), and (A.5.49) can be
used to express the variances, covariances, and correlations for all components in the
random vector x̃. Consider the random vector

x̃ − 𝝁x =
[
x̃1 − 𝜇x1 · · · x̃n − 𝜇xn

]T
(A.5.52)

then the (n × n) variance-covariance matrix 𝜮x and correlation matrix C are

𝜮x = E
[
(x̃ − 𝝁x) (x̃ − 𝝁x)

T
]
= E

[
x̃ x̃T − 𝝁x𝝁

T
x

]
(A.5.53)

𝜮x =

⎡⎢⎢⎢⎣
𝜎2x1 𝜎x1,x2 · · · 𝜎x1,xn

· · · 𝜎x2,xn
⋱ ⋮

sym 𝜎2xn

⎤⎥⎥⎥⎦ C =

⎡⎢⎢⎢⎣
1 𝜌x1,x2 · · · 𝜌x1,xn

· · · 𝜌x2,xn
⋱ ⋮

sym 1

⎤⎥⎥⎥⎦ (A.5.54)

The variance-covariance matrix is symmetric because switching the subscripts in
(A.5.48) only switches factors. The expectation operator E is applied to each matrix
element. The variance-covariance matrix is often referred to simply as covariance
matrix for the sake of brevity. The correlation matrix is also symmetric, the diagonal
elements equal 1, and the off-diagonal elements range from −1 to +1.

A.5.5 Variance-Covariance Propagation

The purpose of variance-covariance propagation is to compute the variances and
covariances of linear functions of random variables. Nonlinear functions must first be
linearized. Variance-covariance propagation is applicable to single random variables
or to vectors of random variables.

Propagation: Usually we are more interested in a linear function of the random
variables than in the random variables themselves. Typical examples are the adjusted
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coordinates used to compute distances and angles. From the definition of the mean,
it follows that for a constant c

E(c) = c∫
∞

−∞
f (x)dx = c (A.5.55)

and
E (cx̃) = cE(x̃) (A.5.56)

The expected value (mean) of a constant equals the constant. Because the mean is a
constant, it follows that

E [E(x̃)] = 𝜇x (A.5.57)

Relations (A.5.55) and (A.5.56) also hold for multivariate density functions, as can
be seen from (A.5.45). Let ỹ = x̃1 + x̃2 be a linear function of random variables, then

E(x̃1 + x̃2) = ∫
∞

−∞ ∫
∞

−∞
(x1 + x2) f (x1, x2) dx1 dx2

= ∫
∞

−∞ ∫
∞

−∞
x1 f (x1, x2) dx1 dx2 + ∫

∞

−∞ ∫
∞

−∞
x2 f (x1, x2) dx1 dx2

= E (x̃1) + E (x̃2) (A.5.58)

Thus, the expected value of the sum of two random variables equals the sum of the
individual expected values. By combining (A.5.55) and (A.5.58), we can compute the
expected value of a general linear function of random variables. Thus, if the elements
of the n × u matrix A and the vector a0 are constants and

ỹ = a0 + Ax̃ (A.5.59)
then the expected value is

E (ỹ) = a0 + AE(x̃) (A.5.60)

This is the law for propagating the mean. The law of variance-covariance propagation
is as follows:

𝜮y ≡ E
[
(ỹ − 𝝁y) (ỹ − 𝝁y)

T
]

= E
{
[ỹ − E(ỹ)] [ỹ − E(ỹ)]T

}
= E

{
[ỹ − a0 − AE(x̃)] [ỹ − a0 − AE(x̃)]T

}
= E

{
[Ax̃ − AE(x̃)] [Ax̃ − AE(x̃)]T

}
= AE

{
[x̃ − E(x̃)] [x̃ − E(x̃)]T

}
AT

= A𝜮xA
T (A.5.61)

The first line in expression (A.5.61) is the general expression for the variance-
covariance matrix of the random variable ỹ according to definition (A.5.53); 𝝁y is the
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expected value of ỹ. The third line follows by substituting (A.5.60) for the expected
value of ỹ. Equation (A.5.59) has been substituted in the third line for ỹ, and, finally,
the A matrix has been factored out. Thus the variance-covariance matrix of the
random variable ỹ is obtained by pre- and postmultiplying the variance-covariance
matrix of the original random variable x̃ by the coefficient matrix A and its transpose.
The constant term a0 cancels. This is the law of variance-covariance propagation
for linear functions of random variables. The covariance matrix 𝜮y is a full matrix
in general.

A.5.6 Multivariate Normal Distribution

This section considers some details specifically for the multivariate normal dis-
tribution. The multivariate normal distribution is especially appealing because
the marginal distributions derived from multivariate normal distributions are also
normally distributed. An extensive treatment of this distribution is, once again, found
in the standard statistical literature. In order to simplify notation, the tilde is not used
to identify random variables. The random nature of variables can be readily deduced
from the context.

Let x be a vector with n random components with a mean of

E(x) = 𝝁 (A.5.62)
and a covariance matrix of

E [(x − 𝝁)(x − 𝝁)T ] = n𝜮n (A.5.63)

If x has a multivariate normal distribution, then the multivariate density function is

f (x1,… , xn) =
1

(2𝜋)n∕2|𝜮|1∕2 e−(x−𝝁)T𝜮−1(x−𝝁)∕2 (A.5.64)

The mean and the covariance matrix completely describes the multivariate normal
distribution. The notation

nx1 ∼ Nn (n𝝁1, n𝜮n) (A.5.65)

is used. The dimension of the distribution is n.
In the following, some theorems on multivariate normal distributions are given

without proofs. These theorems are useful in deriving the distribution of vTPv and
some of the basic statistical tests in least-squares adjustments. If x is multivariate
normal

x ∼ N(𝝁, 𝜮) (A.5.66)
and

z = mDnx (A.5.67)

is a linear function of the random variable, where D is a m × n matrix of rank m ≤ n,
then Theorem 1 states that

z ∼ Nm (D 𝝁, D𝜮DT ) (A.5.68)
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is a multivariate normal distribution of dimension m. The mean and variance of the
random variable z follow from the laws for propagating the mean (A.5.60) and vari-
ance covariances (A.5.61).

If x is multivariate normal x ∼ N(𝝁, 𝜮), then Theorem 2 states that the marginal
distribution of any set of components of x is multivariate normal with means, vari-
ances, and covariances obtained by taking the proper component of 𝝁 and 𝜮. For
example, if

x =

[
x1
x2

]
∼ N

([
𝝁1
𝝁2

]
,

[
𝜮11 𝜮12
𝜮21 𝜮22

])
(A.5.69)

then the marginal distribution of x2 is

x2 ∼ N(𝝁2, 𝜮22) (A.5.70)

The same law holds, of course, if the set contains only one component, say xi. The
marginal distribution of xi is then

xi ∼ n (𝜇i, 𝜮
2
i ) (A.5.71)

If x is multivariate normal, Theorem 3 states that a necessary and sufficient con-
dition that two subsets of the random variables are stochastically independent is that
the covariances are zero. For example, if[

x1
x2

]
∼ N

([
𝝁1
𝝁2

]
,

[
𝜮11 0
0 𝜮22

])
(A.5.72)

then x1 and x2 are stochastically independent. If one set of normally distributed ran-
dom variables is uncorrelated with the remaining variables, the two sets are indepen-
dent. The proof of the above theorem follows from the fact that the density function
can be written as a product of f1(x1) and f2(x2) because of the special form of the
density function (A.5.64)



APPENDIX B

THE ELLIPSOID

The ellipsoid of rotation is a geometric structure for mathematical formulations and
computations. For example, the observables of the 3D geodetic model refer to the
ellipsoidal normal and the geodetic horizon, whereas the observables of the ellip-
soidal model are the angle between geodesics and the length of the geodesic on
the ellipsoidal surface. In the case of the conformal mapping model, the ellipsoidal
surface is mapped conformally. Details of these mathematical models are given in
Sections 4.5 and 4.6. Because the ellipsoid is important as a computational reference
and as a means to express position coordinates, the ellipsoid and the related geometry
are summarized here. Since only ellipsoids of rotation have been adopted in practi-
cal geodesy and triaxial ellipsoids have been limited to theoretical studies, we will
use the term ellipsoid for reasons of brevity to mean ellipsoid of rotation. Such an
ellipsoid is generated when rotating an ellipse around the semiminor axis.

The expressions for computing on the ellipsoidal surface and on the conformal
mapping plane are deeply rooted in differential geometry. Working expressions typ-
ically utilize series expansions that are simplified by truncating insignificant terms
(having specific applications in terms of position accuracy and area in mind). The
algebraic work necessary to arrive at working expressions is considerable and not at
all obvious to the novice. Prior to the introduction of electronic computers, there was
a strong interest in producing computationally efficient expressions. The expressions
have been extensively documented in the geodetic literature, although some of this
literature is now old and is even out of print. Many of the derivations are documented
in Leick (2002).

The mathematical literature offers plenty of excellent texts on differential geome-
try. Differential geometry of course deals in general terms with surfaces. While this

697
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section focuses on the ellipsoid, the universality of expressions will occasionally be
emphasized. The reader is advised to consult themathematical literature if amore pre-
cise and comprehensive exposition of differential geometry is desired than is offered
in the “tailored” approach of this appendix.

B.1 GEODETIC LATITUDE, LONGITUDE, AND HEIGHT

A popular way to give positions in 3D space is by means of geodetic latitude, geode-
tic longitude, and geodetic height. To be sure, these quantities are often referred to as
ellipsoidal latitude, ellipsoidal longitude, and ellipsoidal height. Regardless of what
one calls them, it is important to realize that they refer to an ellipsoid and not to a
sphere, and thus are conceptually and numerically different from spherical latitude,
longitude, and height. Another popular way of giving positions in space is Carte-
sian coordinates. It follows that the geodetic and Cartesian coordinate triplets are
mathematically related.

Figure B.1.1 shows an ellipse with semimajor axis a and semiminor axis b. In the
(𝜉, 𝜂) coordinate system, the equation of the ellipse has the familiar form

𝜉2

a2
+
𝜂2

b2
= 1 (B.1.1)

Two parameters are sufficient to define the ellipse. Often the semimajor axis a and the
flattening f , or a and the eccentricity e, are used to define an ellipse. These auxiliary
quantities are related by

f =
a − b
a

(B.1.2)

e2 = 2f − f 2 (B.1.3)

The figure also shows the tangent to the ellipse at some point A. The normal to this
tangent intersects the semiminor axis at point C. The symbol N is used to denote the
segment AC. The angle 𝜑 is the geodetic latitude and equals the angle between the
normal and the semimajor axis. It follows readily that

𝜉 = N cos𝜑 (B.1.4)

Figure B.1.1 Elements of the ellipse.
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η
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Upon stepping deeper into the geometry of the ellipse, it is found that

𝜂 = N(1 − e2) sin𝜑 (B.1.5)

and
N =

a

(1 − e2 sin2𝜑)1∕2
(B.1.6)

Additional interpretation of N will be given below. The symbol M in Figure B.1.1
denotes the segment AB taken along the normal, i.e., the perpendicular of the tangent.
M equals the radius of curvature of the ellipse at point A. Stepping again deeper into
the geometry of the ellipse, we find that the radius of curvature can be expressed as

M =
a (1 − e2)

(1 − e2 sin2𝜑)3∕2
(B.1.7)

Note that the variable in expressions (B.1.4) to (B.1.7) is the geodetic latitude.
Rotating the ellipse of Figure B.1.1 around the 𝜂 axis generates the ellipsoid of

rotation, or simply the ellipsoid. Figure B.1.2 shows such an ellipsoid and the asso-
ciated Cartesian and geodetic coordinates. The Cartesian coordinate system (x) =
(x, y, z) has its origin at the center of the ellipsoid, the z axis coincides with the semimi-
nor axis, and the x and y axes are located in the equatorial plane of the ellipsoid. The
directions of the x and z axes and the center of the ellipsoid are typically fixed by con-
ventions. The ellipsoidal normal through a space point P, i.e., a point on the physical
earth surface, intersects with the z axis because of the rotational symmetry of the ellip-
soid; however, it does not pass through the origin of the Cartesian coordinate system
because of the flattening of the ellipsoid. The length of the ellipsoidal normal from
P to the ellipsoid is the geodetic height h. The angle between the ellipsoidal normal

x

z

y

h

[m]

P(φ,λ,h)[m]
[E]

φ

λ

Figure B.1.2 Ellipsoid of rotation.
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and the equatorial plane is the geodetic latitude 𝜑 in accordance with the definition
given earlier.

According to the construction of the ellipsoid, any intersection of the ellipsoid
[E] with a plane that contains the z axis generates an ellipse that is called the geode-
tic meridian [m]. The geodetic longitude 𝜆 is then defined as the angle between two
geodetic meridian planes and counted positive eastward starting at the x axis. There-
fore, the triplet of geodetic coordinates (𝜑, 𝜆, h) completely describes the position of
a point in space.

The plane at spatial point P, which is perpendicular to the point’s ellipsoidal nor-
mal, defines the local geodetic horizon. This is the primary horizontal reference plane
in the 3D geodetic model. Notice the distinction between the local geodetic horizon
and the local astronomic horizon introduced elsewhere in this book (the latter is per-
pendicular to the plumb line at P).

Constant geodetic latitude and longitude lines trace the familiar lattice of merid-
ians and parallels on the surface [E]. In differential geometry, such lines are called
curvilinear lines [𝜑] and [𝜆], and (𝜑, 𝜆) are called curvilinear coordinates. It is to be
understood that the term curvilinear refers to a general surface and not just to the
ellipsoid. A plane that contains the surface normal, in this case the ellipsoidal surface
normal, is called a normal plane. The intersection of a normal plane with the surface
(the ellipsoid) is a normal section.

With this terminology, the geodetic meridians [𝜆] are simply normal sections gen-
erated by a normal plane that contains the z axis. Consider the special case of a normal
plane at P that is rotated with respect to the plane of the meridian by 90∘. This is
called the prime vertical normal plane. It also intersects the ellipsoid along a normal
section, denoted by [p𝜐]. The value N in (B.1.6) is the radius of curvature of that nor-
mal section [p𝜐]. In fact, the student of differential geometry will recognize (B.1.4)
as an application of the famous Meusnier theorem, which relates the radius of curva-
ture of a general surface curve to the radius of curvature of the normal section when
both curves have a common tangent. In this case, the general surface curve is the
parallel [𝜑].

Given the geometric interpretation of the radius of curvatures of the meridian and
the prime vertical normal sections, the curious student probably suspects the existence
of another important relationship. It is Euler’s equation which relates the radius of
curvature R of a normal section in general direction 𝛼 to the radius of curvature of
the meridian and primer vertical normal sections as

1
R

=
cos2 𝛼
M

+
sin2 𝛼
N

(B.1.8)

The symbol 𝛼 denotes the geodetic azimuth, i.e., the angle between two normal planes
having the ellipsoidal normal at P in common. This is precisely the azimuth used in
the 3D geodetic model. Equations (B.1.6), (B.1.7), and (B.1.8) imply M ≤ R ≤ N.
Deeper study of differential geometry would reveal that the directions of the meridian
and the prime vertical belong to the special group of directions that are perpendicular
to each other and for which the curvatures (reciprocal of radius of curvatures) take
on maximum and minimum values. These are the principal directions.
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Figure B.1.3 Sections on the ellipsoid.

Figure B.1.3 shows various intersections. The tangent plane [T] of the ellipsoidal
surface [E] at P (𝜑, 𝜆, h = 0) is spanned by the tangent vectors r𝜑 and r𝜆 of the merid-
ian [𝜆] and parallel [𝜑]. The nonnormal section [𝜑] and the normal section [p𝜐] have
the tangent r𝜆 in common. The azimuth 𝛼 of the general normal section [r] is the
angle between the respective normal planes or, equivalently, the angle in the tangent
plane between r𝜑 and rr. The angle between r𝜑 and r𝜆 is 90

∘ because they represent
the principal directions.

The Cartesian coordinates (x) = (x, y, z) can be expressed as a function of the
geodetic coordinates (𝜑, 𝜆, h) using (B.1.4) and (B.1.5), and the geometry shown in
Figure B.1.2, as follows:

x = (N + h) cos𝜑 cos 𝜆 (B.1.9)

y = (N + h) cos𝜑 sin 𝜆 (B.1.10)

z =
[
N(1 − e2) + h

]
sin𝜑 (B.1.11)

The inverse solution, i.e., expressing the triplet (𝜑, 𝜆, h) as a function of (x, y, z)
involves a nonlinear mathematical relationship. The longitude follows straightfor-
wardly from (B.1.9) and (B.1.10) as

tan 𝜆 =
y

x
(B.1.12)

One needs to pay attention to the quadrant of the longitude 𝜆. In geodesy the
longitude is typically positive eastward starting from the x axis and counting
from 0∘ to 360∘, i.e., 0∘ ≤ 𝜆 < 360∘. Others give east 0∘ ≤ 𝜆(E) ≤ 180∘ or west



702 THE ELLIPSOID

0∘ < 𝜆(W) < 180∘ longitudes counting from 0∘ to 180∘, respectively, or give
negative values in the region −180∘ < 𝜆 < 0∘. The geodetic latitude follows from
the nonlinear equation (B.1.11) using some iterative technique. For this purpose it is
convenient to rewrite (B.1.11) as

tan𝜑 =
z√

x2 + y2

(
1 +

e2N sin𝜑
z

)
(B.1.13)

and use

𝜑initial = tan−1
[

z(
1 − e2

)√
x2 + y2

]
(B.1.14)

on the right-hand side of (B.1.13) to start the iteration. The iteration stops after suc-
cessive solutions yield negligible changes in the geodetic latitude. After convergence,
the geodetic height follows from

h =

√
x2 + y2

cos𝜑
− N (B.1.15)

as can be readily verified.
The differential relations between the Cartesian and geodetic coordinates are

⎡⎢⎢⎣
dx
dy
dz

⎤⎥⎥⎦ = J(𝜑, 𝜆, h)
⎡⎢⎢⎣
d𝜑
d𝜆
dh

⎤⎥⎥⎦ (B.1.16)

with transformation matrix J(𝜑, 𝜆, h) being

J(𝜑, 𝜆, h) =

[
− (M + h) cos 𝜆 sin𝜑 −(N + h) cos𝜑 sin 𝜆 cos𝜑 cos 𝜆
−(M + h) sin 𝜆 sin𝜑 (N + h) cos𝜑 cos 𝜆 cos𝜑 sin 𝜆

(M + h) cos𝜑 0 sin𝜑

]
(B.1.17)

Obtaining the partial derivatives in such compact forms requires some algebraic work.
For these and other compact forms to be developed later, it is helpful to take note of
the following partial derivatives:

𝜕(N cos𝜑)
𝜕𝜑

= −M sin𝜑 (B.1.18)

𝜕(N sin𝜑)
𝜕𝜑

=
M cos𝜑

1 − e2
(B.1.19)

𝜕(M sin𝜑)
𝜕𝜑

=
M

N cos𝜑
[(2N − 3M) sin2𝜑 + N] (B.1.20)

𝜕(M cos𝜑)
𝜕𝜑

=
M
N
(2N − 3M) sin𝜑 (B.1.21)
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TABLE B.1.1 Dimensions of Important Ellipsoids

Datum Ellipsoid a [m] 1∕f

NAD27 Clarke 1866 6378206.4 294.9786982
WGS72 WGS72 6378135.0 298.26
NAD83 GRS80 6378137.0 298.257222101
WGS84 WGS84 6378137.0 298.257223563

It might be comforting to know that the formulations given above are all that is
needed to deal with the 3D geodetic model. Curvature is the only element that has thus
far been taken from the realm of differential geometry. The elements of the geodesic
or even conformal mapping have not yet been required. These facts account for the
relative mathematical simplicity of the 3D geodetic model.

Table B.1.1 lists the defining values of a sample of ellipsoids that are in use today
or have some historical relevancy. The size of the ellipsoid is usually identified
with a name. One speaks of a datum if the size of the ellipsoid and its location
with respect to the earth is defined. The semiaxes of a typical earth ellipsoid
differ by about a − b ≈ 21 km. If the ellipsoid is scaled to 1 m, this difference is
just 3 mm.

B.2 COMPUTATION OF THE ELLIPSOIDAL SURFACE

The two-dimensional ellipsoidal and conformal mappingmodels require the geodesic
line and the solution of geodesic triangles (triangles whose sides are geodesic lines)
on the ellipsoidal surface. Because the respective expressions are based on differen-
tial geometry, this section offers a brief summary of the relevant material. Several
expressions are given in general form and are valid for any smooth surface whose
second derivatives exist and are continuous. While (𝜑, 𝜆) continue to represent the
geodetic latitude and longitude of the ellipsoid, they could easily be more generally
interpreted as curvilinear coordinates on other surfaces.

B.2.1 Fundamental Coefficients

Equations (B.1.9) to (B.1.11) for the ellipsoid can be written in a compact and general
form as

r(𝜑, 𝜆) =
[
x (𝜑, 𝜆) y(𝜑, 𝜆) z(𝜑, 𝜆)

]T
(B.2.1)

In fact, we can view (B.2.1) as the equation of general surface whose second deriva-
tives exist and are continuous. The tangent vector to the 𝜆 curvilinear line is given by

r𝜑 =
𝜕r(𝜑, 𝜆)
𝜕𝜑

=

[
𝜕x (𝜑, 𝜆)
𝜕𝜑

𝜕y(𝜑, 𝜆)

𝜕𝜑

𝜕z(𝜑, 𝜆)
𝜕𝜑

]T
(B.2.2)

Similarly, the tangent vector to the 𝜑 curvilinear line is

r𝜆 =
𝜕r(𝜑, 𝜆)
𝜕𝜆

(B.2.3)



704 THE ELLIPSOID

The surface expression (B.2.1) can formally be expanded in a Taylor series. Let the
point of expansion be at r(𝜑, 𝜆) and let the differential increments be denoted as d𝜑
and d𝜆. Limiting the expansion to second-order terms gives

r(𝜑 + d𝜑, 𝜆 + d𝜆) = r(𝜑, 𝜆) + r𝜑d𝜑 + r𝜆d𝜆

+
1
2
{r𝜑𝜑 d𝜑2 + 2r𝜑𝜆 d𝜑 d𝜆 + r𝜆𝜆d𝜆

2} + · · · (B.2.4)

It can be readily visualized that the first part of this expression,

t(𝜑, 𝜆) = r(𝜑, 𝜆) + r𝜑 d𝜑 + r𝜆 d𝜆 (B.2.5)

represents the tangent plane [T]which is located at r(𝜑, 𝜆) and spanned by the vectors
r𝜑 and r𝜆. The total differential

dr = r𝜑 d𝜑 + r𝜆 d𝜆 (B.2.6)

is a vector in the tangent plane and represents the linearized surface distance on [E]
from p(𝜑, 𝜆) to P(𝜑 + d𝜑, 𝜆 + d𝜆). See Figure B.2.1. The square of the length of the
total differential is

ds2 = dr ⋅ dr

= r𝜑 ⋅ r𝜑 d𝜑2 + 2r𝜑 ⋅ r𝜆 d𝜑 d𝜆 + r𝜆 ⋅ r𝜆 d𝜆
2

= E d𝜑2 + 2F d𝜑 d𝜆 + G d𝜆2 (B.2.7)

This is the first fundamental form. The quantities E, F, G are called, since Gauss,
the first fundamental coefficients. Properties of the surface that can be expressed as
a function of the first fundamental coefficients are called intrinsic properties. The
totality of intrinsic properties of the surface is called the intrinsic geometry of the
surface. Using vector identities, one can verify that

EG − F2 = (r𝜑 ⋅ r𝜑)(r𝜆 ⋅ r𝜆) − (r𝜑 ⋅ r𝜆)
2 = (r

𝜑
× r𝜆) ⋅ (r𝜑 × r𝜆)

= ‖r
𝜑
× r𝜆‖ > 0 (B.2.8)

Figure B.2.1 The total differential.

[φ]

rφ

rλ

[T]

[λ]

dr
P(φ+dφ,λ+dλ)

[E]

P(φ,λ)
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and that E > 0 and G > 0. For orthogonal curvilinear lines, we have F = 0 because
r𝜑 ⋅ r𝜆 = 0. Evaluating the fundamental coefficients for the ellipsoidal surface [E]
gives

E = M2 (B.2.9)

F = 0 (B.2.10)

G = N2cos2𝜑 (B.2.11)

ds2 = M2d𝜑2 + N2cos2𝜑 d𝜆2 (B.2.12)

The last term in (B.2.4),

p =
1
2
{r𝜑𝜑 d𝜑2 + 2r𝜑𝜆 d𝜑 d𝜆 + r𝜆𝜆 d𝜆

2} (B.2.13)

represents the deviation of a second-order surface approximation from the tangent
plane. The vectors r𝜑𝜑 and r𝜆𝜆 contain the respective second partial derivative with
respect to 𝜆 and 𝜑, and r𝜑𝜆 contains the mixed derivatives. Introducing the surface
normal e as

e =
r𝜑 × r𝜆‖r𝜑 × r𝜆‖ =

r𝜑 × r𝜆√
EG − F2

(B.2.14)

then the orthogonal distance of the second-order approximation to the tangent plane is

d = −e ⋅ p

=
1
2
{−e ⋅ r𝜑𝜑 d𝜑2 − 2e ⋅ r𝜑𝜆 d𝜑 d𝜆 − e ⋅ r𝜆 𝜆 d𝜆

2}

=
1
2
{D d𝜑2 + 2D′ d𝜑 d𝜆 + D′′d𝜆2 (B.2.15)

Expression (B.2.15) is the second fundamental form and the elements (D,D′,D′′)
are called, since Gauss, the second fundamental coefficients. For the ellipsoid these
coefficients have the simple form

D = N cos2𝜑 (B.2.16)

D′ = 0 (B.2.17)

D′′ = M (B.2.18)

The partial derivatives (B.1.18) to (B.1.21) are very helpful in verifying this sim-
ple form.

B.2.2 Gauss Curvature

At every point of a smooth surface there are two perpendicular directions along
which the curvature attains a maximum and a minimum value. These are the principal
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directions. Denoting the respective principal radius of curvatures by R1 and R2, a
deeper study of differential geometry reveals

K ≡ 1
R1R2

=
DD′′ − D′2

EG − F2
=

1
MN

(B.2.19)

where K is called the Gauss curvature. The latter part of (B.2.19) expresses the value
of K for the ellipsoid. In general, if the curvilinear lines also happen to coincide with
the principal directions, then D′ = 0. It can be shown that the numerator DD′′ − D′2

can be expressed as a function of the first fundamental coefficients and their partial
derivatives.

Since the denominator in (B.2.19) is always positive, the numerator determines
the sign of K. A point is called elliptic if K > 0. In the neighborhood of an elliptic
point, the surface lies on one side of the tangent plane. A point is called hyperbolic
if K < 0. In the neighborhood of a hyperbolic point, the surface lies on both sides of
the tangent plane. A point is parabolic if K = 0, in which case the surface may lie on
either side of the tangent plane.

For K = 0 one of the values R1 and R2 must be infinite as follows from (B.2.19). If
this occurs at every point of the surface one family of the principal directions must be
straight lines. Examples are cylinders or cones. Such surfaces are called developable
surfaces and can be reshaped into a plane without stretching and tearing.

B.2.3 Elliptic Arc

If s denotes the length of the arc of the ellipse from the equator, or simply the ecliptic
arc, then

s = ∫
𝜑

0

√
E d𝜑 = ∫

𝜑

0
M d𝜑 (B.2.20)

There is no closed expression for the integral in (B.2.20). The following series expan-
sion (Snyder, 1979) is frequently used

s = a

[(
1 −

e2

4
−

3e4

64
−

5e6

256

)
𝜑 −

(
3e2

8
+

3e4

32
+

45e6

1024

)
sin 2𝜑

+

(
15e4

256
+

45e6

1024

)
sin 4𝜑

]
(B.2.21)

The inverse solution, i.e., given the elliptic arc with respect to the equator and
computing the geodetic latitude, is available iteratively starting with the initial value

𝜑initial =
s
a

(B.2.22)

B.2.4 Angle

An angle on a surface is defined as the angle between two tangents. The angle, there-
fore, is a measure in the tangent plane. Figure B.2.2 shows two curves, f1 and f2,
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[f1]

[φ]

rλ

[E]

[T]

P(φ,λ)

[λ]

f2(φ,λ)

f1(φ,λ)
[f2]

θ

dr1

dr2

rφ

Figure B.2.2 Definition of surface angle.

on the surface that could be implicitly defined as f1(𝜑, 𝜆) = 0 and f2(𝜑, 𝜆) = 0. The
differentials (d𝜑1, d𝜆1) and (d𝜑2, d𝜆2), which follow from differentiating these two
functions, determine the tangent vectors as

dr1 = r𝜑 d𝜑1 + r𝜆 d𝜆1 (B.2.23)

dr2 = r𝜑 d𝜑2 + r𝜆d𝜆2 (B.2.24)

Thus the expression for the angle becomes

cos 𝜃 =
dr1 ⋅ dr2‖dr1‖ ‖dr2‖

=
E d𝜑1 d𝜑2 + F(d𝜑1 d𝜆2 + d𝜑2 d𝜆1) + Gd𝜆1 d𝜆2√

Ed𝜑2
1 + 2F d𝜑1 d𝜆1 + G d𝜆21

√
E d𝜑2

2 + 2F d𝜑2 d𝜆2 + G d𝜆22

(B.2.25)

Equation (B.2.25) is useful in verifying the conformal property in mapping.

B.2.5 Isometric Latitude

The first fundamental form (B.2.12) relates a differential change of curvilinear coor-
dinates to the corresponding surface distance within first-order approximation. One
can readily visualize that on the equator a respective change in 𝜑 or 𝜆 by one arc
second traces about the same distance. This is not the case close to the pole because
of the convergence of the meridians. Consider a new curvilinear parameter q, which
is defined by the differential relation

dq ≡ M
N cos𝜑

d𝜑 (B.2.26)
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Figure B.2.3 Isometric latitude.

Substituting (B.2.26) in first fundamental form (B.2.12) gives

ds2 = N2cos2𝜑(dq2 + d𝜆2) (B.2.27)

Equation (B.2.27) clearly shows that the same changes in dq and d𝜆 cause the same
change ds at a given point. Integrating (B.2.26)gives

q = ln

[
tan

(
45∘ +

𝜑

2

) (
1 − e sin𝜑
1 + e sin𝜑

)e∕2
]

(B.2.28)

The new parameter q is called the isometric latitude. It is a function of the geodetic
latitude and reaches infinity at the pole. See Figure B.2.3. Because q is constant when
𝜑 is constant, the lines q = constant are parallels on the ellipsoid. Equal incremented
q parallels are spaced increasingly closer as one approaches the pole. The pair q and
𝜆 are called isometric curvilinear coordinates which trace, respectively, a lattice of
isometric curvilinear lines [q] and [𝜆] on the ellipsoid.

The inverse solution, i.e., given the isometric latitude q and computing the geodetic
latitude 𝜑, is solved though iterations. Equation (B.2.28) can be written as

tan
(
45∘ +

𝜑

2

)
= 𝜀q

(
1 + e sin𝜑
1 − e sin𝜑

)e∕2

(B.2.29)

The symbol 𝜀 denotes the base of the natural system of logarithms (𝜀 = 2.71828 · · ·).
It must not be confused with the eccentricity of the ellipsoid, which is assigned the
symbol e in this book. The iteration begins by taking e = 0 on the right side of
(B.2.29), giving

𝜑initial = 2 tan−1(𝜀q) −
𝜋

2
(B.2.30)

B.2.6 Differential Equation of the Geodesic

Probably the best-known property of the geodesic line (or simply the geodesic) is
that it is the shortest surface line between two points on the surface. This property
determines the differential equations of the geodesic. Differential geometry offers
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rφ

rλ

Rg

t

e

[S]

[c]

[g]
[T]

P(φ,λ)

α

Figure B.2.4 Geodesic curvature.

other equivalent definitions of the geodesic. Consider Figure B.2.4, which shows a
general surface [S], the tangent plane [T], and surface normal e at a point P(𝜑, 𝜆).
Let there be a curve [g] on [S] that passes through P(𝜑, 𝜆). The tangent on this space
curve is denoted by t. This tangent is located in the tangent plane spanned by r𝜑
and r𝜆. Next, project curve [g] orthogonally on the tangent plane in the differential
neighborhood of P(𝜑, 𝜆). This generates a curve [c] that is located in the tangent
plane and has the tangent t in common with [g]. Like any plane curve, the curve [c]
has a curvature at the point P(𝜑, 𝜆), which is denoted here by 𝜅g. This is the geodesic
curvature. It is related to the geodesic radius of curvature Rg by

𝜅g =
1
Rg

(B.2.31)

It can be shown that the geodesic curvature 𝜅g is a function of the first fundamental
coefficients and their derivatives.

The situation described above and depicted in Figure B.2.4 for P(𝜑, 𝜆) can be
conceptually repeated for every point of the curve [g], i.e., for every point one can
visualize the tangent plane and the orthogonal projection of [g] in the differential
neighborhood of the point of tangency. The curve [g] is a geodesic if the geodesic
curvature is zero at all these points, or, equivalently, the radius of the geodesic curva-
ture is infinite. Because the geodesic radius of curvature is infinite, the projection of
the geodesic on the tangent plane is a straight line in the differential neighborhood of
P(𝜑, 𝜆). This geometric definition of the geodesic is also sufficient to determine the
differential equations of [g].

Differential geometry offers yet another definition of the geodesic that is fre-
quently stated. Assume that expressions for the three Cartesian coordinates of [g]
are given as a function of some free parameter s. Differentiating each component
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once with respect to s gives the tangent vector t; differentiating twice gives another
vector called the principal normal of the curve [g]. It can be shown that the tangent
vector and the principal normal of the curve are perpendicular. Next, the curves [g]
and [c] can be viewed as curves on a general cylinder that is perpendicular to the
tangent plane. Viewed like that, the curves [c] and [g] represent a normal section and
a general section on the cylinder that have the tangent t in common. The respective
radii of curvature are related by Meusnier’s theorem. In this view the radius of curva-
ture of the normal section [c] is Rg. If Rg is to go to infinity, then Meusnier’s theorem
implies that the principal normal of [g] and the surface normal e coincide.

The definition of the geodesic does not restrict the geodesics to plane curves. In
fact, the geodesic will have, in general, curvature and torsion. However, the definition
lends itself to some interpretation of “straightness.” Consider a virtual surveyor who
operates a virtual theodolite on the ellipsoidal surface. A first step in operating an
actual theodolite is to level it, i.e., to align the vertical axis with the plumb line. In this
example, the virtual surveyor will align the vertical axis with the surface normal. He
is then tasked to stake out a straight line using differentially short sightings. He would
begin setting up the instrument at the initial (first) point and stake out the second point
using the azimuth ⌢𝛼. Next he would set up at the second point, backsight to the first
point, and turn an angle of 180∘ to stake out the third point, and so on. In the mind of
the virtual surveyor, he is staking out a straight line whereas he actually stakes out a
geodesic using differentially short sightings.

Let ⌢𝛼 denote the azimuth of the geodesic, i.e., the angle between the tangent on
the 𝜆 curvilinear line and the tangent on the geodesic as shown in Figure B.2.7, and
let ⌢s denote the length of the geodesic on [S]. Using the definition of the geodesic
given above, the differential equations for the geodesic on a general surface can be
developed as

d𝜑
d⌢s =

sin ⌢𝛼√
E

(B.2.32)

d𝜆
d⌢s =

cos ⌢𝛼√
G

(B.2.33)

d⌢𝛼
d⌢s =

1√
EG

(
𝜕
√
G

𝜕𝜑
cos ⌢𝛼 − 𝜕

√
E

𝜕𝜆
sin ⌢𝛼

)
(B.2.34)

In case of the ellipsoid [E] the respective equations are

d𝜑
d⌢s =

cos ⌢𝛼
M

(B.2.35)

d𝜆
d⌢s =

sin ⌢𝛼
N cos𝜑

(B.2.36)

d⌢𝛼
d⌢s =

1
N

tan𝜑 sin ⌢𝛼 (B.2.37)

Figure B.2.5 shows a geodesic triangle whose corners consist of the pole
P(𝜑 = 90∘) and the points P1(𝜑1, 𝜆1) and P2(𝜑2, 𝜆2). The sides of this triangle are
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s

P2(φ2,λ2)

P1(φ1,λ1)

λ2–λ1

[m]

[g]

[m]

P

α1

α2

Figure B.2.5 Geodesic triangle.

the meridians, which can be readily identified as geodesic lines, and the geodesic
line from P1 to P2. At the heart of the ellipsoidal computations are the so-called
direct and inverse problems. In the case of the direct problem, the geodetic latitude
and longitude at one station, say, P1(𝜑1, 𝜆1), and the geodesic azimuth and distance
(⌢𝛼1, ⌢s) to another point, are known; the geodetic latitude 𝜑2, longitude 𝜆2, and back
azimuth ⌢𝛼2 are required. Formerly, the direct solution is written as

⎡⎢⎢⎣
𝜑2
𝜆2⌢𝛼2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
d1

(
𝜑1, 𝜆1,

⌢𝛼1, ⌢s
)

d2(𝜑1, 𝜆1,
⌢𝛼1, ⌢s)

d3(𝜑1, 𝜆1,
⌢𝛼1, ⌢s)

⎤⎥⎥⎦ (B.2.38)

For the inverse problem, the geodetic latitudes and longitudes of P1(𝜑1, 𝜆1) and
P2(𝜑2, 𝜆2) are given, and the forward and back azimuths and the length of the
geodesic are required, i.e.,

⎡⎢⎢⎣
⌢s⌢𝛼1⌢𝛼2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
i1
(
𝜑1, 𝜆1, 𝜑2, 𝜆2

)
i2(𝜑1, 𝜆1, 𝜑2, 𝜆2)
i3(𝜑1, 𝜆1, 𝜑2, 𝜆2)

⎤⎥⎥⎦ (B.2.39)

Most solutions of (B.2.35) to (B.2.37) rely on extensive series expansions with
intermittent truncation of small terms. Various innovative approaches have been
implemented to keep the number of significant terms small and yet achieve accurate
solutions. Some solutions are valid only for short lines, while others apply to
intermediary long lines, or even to lines that go all around the ellipsoid.

B.2.7 The Gauss Midlatitude Solution

Table B.2.1 summarizes the Gauss midlatitude solution (Grossman, 1976,
pp. 101–106). The term midlatitude indicates that the point of expansion in
the series developments is mean latitude and/or longitude between P1(𝜑1, 𝜆1) and
P2(𝜑2, 𝜆2). The inverse solution begins by first evaluating the auxiliary expressions
shown in the first section of the table, followed by the expressions in the second
section. The first step for the direct solution requires the computation of approximate
geodetic latitude and longitude for station P2(𝜑2, 𝜆2) as indicated in the third section.
These initial coordinates are used to evaluate the auxiliary quantities of the first
section, which, in turn, are used to compute improved coordinates for station P2
from the remaining expressions of the third section. The direct solution is iterated
until convergence is achieved.

The linearized form of the inverse solution is important when computing
(adjusting) networks on the ellipsoid. The truncated expressions of the partial
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TABLE B.2.1 The Gauss Midlatitude Solution

Auxiliary Terms: Δ𝜑 = 𝜑2 − 𝜑1; Δ𝜆 = 𝜆2 − 𝜆1

𝜑 =
𝜑1 + 𝜑2

2
; t = tan𝜑; 𝜂2 =

e2

1 − e2
cos2𝜑; V2 = 1 + 𝜂2; f1 = 1∕M; f2 = 1∕N

f3 =
1
24

; f4 =
1 + 𝜂2 − 9𝜂2t2

24V4
; f5 =

1 − 2𝜂2

24
; f6 =

𝜂2(1 − t2)
8V4

; f7 =
1 + 𝜂2

12
;

f8 =
3 + 8𝜂2

24V4

Inverse Solution Given (𝜑1, 𝜆1, 𝜑2, 𝜆2), compute (⌢s, ⌢𝛼1, ⌢𝛼2)

⌢s sin ⌢𝛼 =
1
f2
Δ𝜆 cos𝜑

[
1 − f3(Δ𝜆 sin𝜑)2 + f4Δ𝜑

2
]

(a)

⌢s cos ⌢𝛼 =
1
f1
Δ𝜑 cos

Δ𝜆
2

[
1 + f5(Δ𝜆 cos𝜑)2 + f6Δ𝜑

2
]

(b)

Δ⌢𝛼 = Δ𝜆 sin𝜑
[
1 + f7(Δ𝜆 cos𝜑)2 + f8 Δ𝜑

2
]

(c)
⌢s =

√
(⌢s sin ⌢𝛼)2 + (⌢s cos ⌢𝛼)2 (d)

⌢𝛼 = tan−1
( ⌢s sin ⌢𝛼

⌢s cos ⌢𝛼

)
(e)

⌢𝛼1 = ⌢𝛼 − Δ⌢𝛼
2 (f)

⌢𝛼2 = ⌢𝛼 + Δ⌢𝛼
2

± 𝜋 (g)

Direct Solution Given (𝜑1, 𝜆1,
⌢s, ⌢𝛼1), compute (𝜑2, 𝜆2,

⌢𝛼2)

𝜆2 ≈ 𝜆1 +
⌢s sin ⌢𝛼1
N1 cos𝜑1

(h)

𝜑2 ≈ 𝜑1 +
⌢s cos ⌢𝛼1
M1

(i)

Iteration (𝜑1, 𝜆1, 𝜑2, 𝜆2): reevaluate auxiliary terms

Δ⌢𝛼 = Δ𝜆 sin𝜑
[
1 + f7(Δ𝜆 cos𝜑)2 + f8 Δ𝜑

2
]

(j)
⌢𝛼 = ⌢𝛼1 +

Δ⌢𝛼
2 (k)

⌢𝛼2 = ⌢𝛼 + Δ⌢𝛼
2

± 𝜋 (l)

𝜆2 = 𝜆1 + f2
⌢s sin ⌢𝛼
cos𝜑

[
1 + f3(Δ𝜆 sin𝜑)2 − f4Δ𝜑

2
]

(m)

𝜑2 = 𝜑1 + f1
⌢s cos ⌢𝛼

cos(Δ𝜆∕2)

[
1 − f5(Δ𝜆 cos𝜑)2 − f6Δ𝜑

2
]

(n)

derivatives in

d⌢s = 𝜕i1
𝜕𝜑1

d𝜑1 +
𝜕i1
𝜕𝜆1

d𝜆1 +
𝜕i1
𝜕𝜑2

d𝜑2 +
𝜕i1
𝜕𝜆2

d𝜆2 (B.2.40)

d⌢𝛼1 =
𝜕i2
𝜕𝜑1

d𝜑1 +
𝜕i2
𝜕𝜆1

d𝜆1 +
𝜕i2
𝜕𝜑2

d𝜑2 +
𝜕i2
𝜕𝜆2

d𝜆2 (B.2.41)

are listed in Table B.2.2.
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TABLE B.2.2 Partial Derivatives of the Geodesic on the Ellipsoid

d𝜑1 d𝜆1 d𝜑2 d𝜆2

d⌢s −M1 cos
⌢𝛼1 N2 cos𝜑2 sin

⌢𝛼2 −M2 cos
⌢𝛼2 −N2 cos𝜑2 sin

⌢𝛼2

d⌢𝛼1
M1 sin

⌢𝛼1⌢s
N2 cos𝜑2 cos

⌢𝛼2⌢s
M2 sin

⌢𝛼2⌢s −
N2 cos𝜑2 cos

⌢𝛼2⌢s

B.2.8 Angular Excess

The Gauss-Bonnet theorem of differential geometry provides an expression for the
sum of interior angles

⌢
𝛿i of a general polygon (continuous curvature) on a surface

v∑
i=1

⌢
𝛿i = (v − 2) ⋅ 𝜋 + ∫C

𝜅g ds + ∫ ∫area
K dA (B.2.42)

For the sum of the interior angles of a geodesic triangle one readily obtains

⌢
𝛿1 +

⌢
𝛿2 +

⌢
𝛿3 = 𝜋 + 𝜀 (B.2.43)

with

𝜀 = ∫ ∫area
K dA (B.2.44)

because 𝜅g = 0. The sum of the angles of the geodesic triangle differs from 𝜋 by
the double integral of the Gauss curvature taken over the area of the triangle. The
sum of the interior angles of a geodesic triangle is greater than, less than, or equal to
𝜋, depending on whether the Gauss curvature is positive, negative, or zero. There is
angular excess for the geodesic triangle on the ellipsoid because K > 0. On the unit
sphere, the excess in angular measurement is called the spherical excess. It equals the
area of the triangle, i.e., 𝜀 = A, because k = 1 on the unit sphere.

B.2.9 Transformation in a Small Region

The following is an example of what might be called a “similarity transformation” on
the ellipsoid. Consider a cluster of stations, i = 1,… ,m, each having two sets of coor-
dinates (𝜑o, i, 𝜆o, i) and (𝜑n, i, 𝜆n, i) on the same ellipsoid. The subscripts o and n may
be interpreted as “old” and “new.” The goal is to establish a simple transformation
between the coordinates.

The two-dimensional transformation is done with the tools developed in this
appendix. First, we compute the center of figure (𝜑c, 𝜆c) of the stations in the n
set by simply averaging latitudes and longitudes, respectively. Next, consider the
geodesics that connect the center of figure (𝜑c, 𝜆c) with the positions (𝜑n, i, 𝜆n, i).
The discrepancies (𝜑o, i − 𝜑n, i) and (𝜆o, i − 𝜆n, i) take on the role of observation
to be used to compute the transformation parameters by least squares. We define
four transformation parameters as follows: the translation of the center of figure
(d𝜑c, d𝜆c), the common azimuth rotation d⌢𝛼c at the center of figure, and common
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scale factor 1 − Δ for all geodesics going from the center of figure to the individual
points. Thus,

x = [d𝜆c d𝜑c Δ d⌢𝛼c]T (B.2.45)

Since the discrepancies (𝜑o, i − 𝜑n, i) and (𝜆o, i − 𝜆n, i) are small quantities, the
coefficients listed in Table B.2.2 represent the linear mathematical model of the
adjustment. The observation equations for the mixed adjustment model are

Δ⌢sci = −Mi cos
⌢𝛼ic (𝜑o, i − 𝜑n, i) −Mc cos

⌢𝛼ci d𝜑c

− Ni cos𝜑i sin
⌢𝛼ic (𝜆o, i − 𝜆n, i) + Ni cos𝜑i sin

⌢𝛼ic d𝜆c (B.2.46)

d⌢𝛼c =
Mc⌢sci

sin ⌢𝛼ci d𝜑c +
Mi⌢sci

sin ⌢𝛼ic (𝜑o, i − 𝜑n, i)

−
Ni⌢sci

cos𝜑i cos
⌢𝛼ic (𝜆o, i − 𝜆n, i) +

Ni⌢sci
cos𝜑i cos

⌢𝛼ic d𝜆c (B.2.47)

The respective submatrices of B, A, and w for station i are

𝜑n, i 𝜆n, i 𝜑o, i 𝜆o, i

B =
⎡⎢⎢⎣
Mi cos

⌢𝛼ic Ni cos𝜑i sin
⌢𝛼ic −Mi cos

⌢𝛼ic −Ni cos𝜑i sin
⌢𝛼ic

−
Mi⌢sci

sin ⌢𝛼ic
Ni⌢sic

cos𝜑i cos
⌢𝛼ci

Mi⌢sci
sin ⌢𝛼ic −

Ni⌢sci
cos𝜑i cos

⌢𝛼ic
⎤⎥⎥⎦

(B.2.48)

d𝜑c d𝜆c Δ d⌢𝛼c

A =

[
−Mc cos

⌢𝛼ci Ni cos𝜑i sin
⌢𝛼ic −⌢sci 0

Mc⌢sci sin
⌢𝛼ci Ni⌢sci cos𝜑i cos

⌢𝛼ic 0 −1

]
(B.2.49)

w =

[
−Mi cos

⌢𝛼ic(𝜑o,i − 𝜑n,i) −Ni cos𝜑i sin
⌢𝛼ic(𝜆o, i − 𝜆n, i)

Mi⌢sci sin
⌢𝛼ic(𝜑o, i − 𝜑n, i) − Ni⌢sci cos𝜑i cos

⌢𝛼ic(𝜆o, i − 𝜆n, i)

]
(B.2.50)

Once the adjusted transformation parameters are available, we can compute the posi-
tion of the adjusted center of figure and the length and azimuth for any geodesics as
follows:

𝜑o, c = 𝜑n, c + d𝜑c (B.2.51)

𝜆o, c = 𝜆n, c + d𝜆c (B.2.52)
⌢so, ci = ⌢sn, ci + Δ⌢sci (B.2.53)
⌢𝛼o, ci = ⌢𝛼n, ci + d⌢𝛼c (B.2.54)

With (B.2.51) through (B.2.54) the positions of stations in the o system can be
computed by using the direct solution given in Table B.2.1.



APPENDIX C

CONFORMAL MAPPING

The conformal property means that an angle between lines on the original equals the
angle of their images. One must keep in mind that an angle is defined as the angle
between tangents.

The first section begins with conformal mapping of planes using complex func-
tions. It serves two purposes. First, it demonstrates in a rather simple manner the
difference between conformality and similarity transformation. Second, it gives the
technique for transforming the isometric plane into one of the desired standard con-
formal mappings, such as the ones by Mercator or Lambert. The next section gives the
general formulation of conformality between general surfaces, making use of the first
fundamental coefficients. Section C.3 gives the details about the isometric plane, and
Section C.4 deals with those conformal mappings that are generally used in surveying.
The most important ones are the transverse Mercator mapping and the Lambert con-
formal mapping. For example, all but one of the U.S. state plane coordinate systems
are based on these mappings. An exception is a system in Alaska that uses the oblique
Mercator mapping. The latter is not discussed here.

Clearly, conformal mapping has a long history with many individuals having made
significant contributions. The historically inclined reader may consult the special-
ized literature for a full exposition of this interesting aspect. It might not be easy
to delineate individual contributions in all cases. This is in part true because con-
cepts were sometimes formulated before the appropriate mathematical tools became
available.

715
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C.1 CONFORMAL MAPPING OF PLANES

The complex number z can be given in one of the following three well-known equiv-
alent forms:

z = 𝜆 + iq = r(cos 𝜃 + i sin 𝜃) = rei𝜃 (C.1.1)

The symbols 𝜆 and q denote the real and imaginary parts, respectively, and are typ-
ically graphed as Cartesian coordinates. The polar form, the middle part of (C.1.1),
is specified by the magnitude r and the argument 𝜃. The third part of (C.1.1) is the
Euler form. The reader is referred to the mathematical literature to brush up on the
algebra with complex numbers, if necessary. A function of complex numbers such as

w = f (z) (C.1.2)

is called complex mapping. The variable z = 𝜆 + iq represents points on the original
which are to be mapped, and w = x + iy represents the respective images or the map.

x + iy = f (𝜆 + iq) (C.1.3)

Separating the real and imaginary parts, we can write

x = x(𝜆, q) (C.1.4)

y = y(𝜆, q) (C.1.5)

The derivative of the complex function (C.1.2) plays a key role in assuring that the
complex mapping is conformal. The image of the increment Δz is

Δw = f (z + Δz) − f (z) (C.1.6)

Analogous to computing the derivative for real functions, the derivative of a complex
function follows from the limit

dw
dz

≡ f ′(z) = lim
Δz→0

f (z + Δz) − f (z)

Δz
= lim

Δz→0

Δw
Δz

(C.1.7)

In contrast to the case of real functions, the increment Δz has a direction; one has
virtually an infinite number of possibilities of letting Δz go to zero. If the limit
exists and is independent of the manner in which Δz approaches zero, then the
function f (z) is called differentiable. It is proven in the mathematical literature that
the Cauchy-Riemann equations

𝜕x
𝜕𝜆

=
𝜕y

𝜕q
(C.1.8)

𝜕x
𝜕q

= −
𝜕y

𝜕𝜆
(C.1.9)
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represent necessary and sufficient conditions for the derivative to exist. In that case,
the actual derivative is given by

f ′(z) =
𝜕x
𝜕𝜆

+ i
𝜕y

𝜕𝜆
=
𝜕y

𝜕q
− i

𝜕x
𝜕q

(C.1.10)

In terms of interpreting (C.1.2) as conformal mapping, it is advantageous to rewrite
(C.1.7) using Euler’s form of complex numbers, i.e.,

Δz = |Δz|ei𝜃 (C.1.11)

Δw = |Δw| ei𝜑 (C.1.12)

f ′(z) = lim
Δz→0

|Δw| ei𝜑|Δz| ei𝜃
= lim

Δz→0

|Δw||Δz| ei(𝜑−𝜃) = |f ′(z)|ei𝛾 (C.1.13)

The symbols 𝜃 and𝜑 denote here the arguments of the respective differential numbers
Δz and Δw. Since the derivative exists (we will consider only functions that fulfill
the Cauchy-Riemann conditions), both the magnitude |f ′(z)| and the argument of the
derivative

𝛾 = 𝜑 − 𝜃 (C.1.14)

are independent of the manner in which Δz approaches zero. The mapping (C.1.2) in
the differential neighborhood of z is

|Δw| = |f ′(z)||Δz| (C.1.15)

According to (C.1.14), the argument of the image is

arg Δw = arg Δz + arg f ′(z) (C.1.16)

Equations (C.1.15) and (C.1.16) allow the following interpretation: for complex map-
ping w = f (z), assuming that the derivative exists, the length of an infinitesimal dis-
tance |Δz| on the original is scaled by the factor |f ′(z)|. This factor is solely a function
of z and is independent of the direction of Δz. Similarly, the difference in the direc-
tion of the original Δz and its image Δw, argΔw − arg Δz, is independent of the
direction of the original Δz because the argument arg f ′(z) is independent of Δz. Con-
sequently, two infinitesimal segments at z will be mapped into two images that enclose
the same angle, 𝜑1 − 𝜑2 = 𝜃1 − 𝜃2, or

𝜑1 − 𝜃1 = 𝛾 (C.1.17)

𝜑2 − 𝜃2 = 𝛾 (C.1.18)

Figure C.1.1 shows the mapping of two points in the differential neighborhood of
z. The differential figures (z2 − z − z1) and (w2 − w − w1) differ by translation, rota-
tion, and scale. The conformal mapping f (z) does not change the angles between
differentially located points; consequently, infinitesimally small figures are similar.
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z

wθ1
θ2

φ2

φ1

w2 = w + ∆w2

z2 = z + ∆z2

z1 – z + ∆z1

w1 = w + ∆w1
q

λ x

y

Figure C.1.1 Conformal mapping in differential neighborhood.

The scale factor of the mapping follows from (C.1.10):

k = |f ′(z)| = √(
𝜕x
𝜕𝜆

)2
+

(
𝜕y

𝜕𝜆

)2

=

√(
𝜕x
𝜕q

)2

+

(
𝜕y

𝜕q

)2

(C.1.19)

The rotation angle 𝛾 , which will later be identified as the meridian convergence,
follows from

tan 𝛾 =
𝜕y∕𝜕𝜆

𝜕x∕𝜕𝜆
= −

𝜕x∕𝜕q

𝜕y∕𝜕q
(C.1.20)

The following example should demonstrate the idea of conformal mapping. Using
z = 𝜆 + iq and w = x + iy the simple mapping function

w = z2 (C.1.21)

gives

x = 𝜆2 − q2 (C.1.22)

y = 2𝜆q (C.1.23)

Thus, the coordinates are x = 𝜆2 − q2 and y = 2𝜆q. The partial derivatives

𝜕x
𝜕𝜆

=
𝜕y

𝜕q
= 2𝜆 (C.1.24)

𝜕x
𝜕q

= −
𝜕y

𝜕𝜆
= −2q (C.1.25)

satisfy the Cauchy-Riemann equations and are continuous over the (𝜆, q) plane. The
derivative is

f ′(z) =
𝜕x
𝜕𝜆

+ i
𝜕y

𝜕𝜆
=
𝜕y

𝜕q
− i

𝜕x
𝜕q

= 2𝜆 + i2q (C.1.26)
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q

λ

y

x

λ = 1/2

λ = 1

q = 1

q = 1/2

λ = 1

λ = 1/2

q = 1

q = 1/2

original map

Figure C.1.2 Simple conformal mapping between planes.

Images of the lines 𝜆 = constant = c1 follow from the mapping equations (C.1.22)
and (C.1.23) upon setting 𝜆 = c1 and eliminating q,

y = ±
√

4c4
1 − 4c2

1x (C.1.27)

Similarly we obtain for the images of the lines q = constant = c2 as

y = ±
√

4c4
2 − 4c2

2x (C.1.28)

The scale in the differential neighborhood of z follows from (C.1.19) and (C.1.26) as

k = |f ′(z)| = √
4𝜆2 + 4q2 (C.1.29)

The rotation in the same differential neighborhood is, according to (C.1.16) and
(C.1.26),

arg f ′(z) = tan−1 q

𝜆
(C.1.30)

Figure C.1.2 shows this mapping. Mathematically, any lines parallel to the q or 𝜆
axes map into parabolas. Using differential calculus it can be readily verified that the
images of the parametric curves map into a family of orthogonal curves. The same
tools can be used to verify that the angle between the general lines f1(𝜆, q) = 0 and
f2(𝜆, q) = 0 will be the same on the map. Note that the scale and the rotation angle
vary continuously with location. The square and its image cannot be related by a
similarity transformation.

C.2 CONFORMAL MAPPING OF GENERAL SURFACES

The approach is to find conditions for the first fundamental coefficients to assure that
conformality is achieved. This general formulation is valid for conformal mapping of
any surface, e.g., mapping the ellipsoid on the sphere, sphere on a plane, ellipsoid on
a plane, etc.
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Let the surfaces [S] be expressed in terms of curvilinear coordinates (u, v),

x = x (u, v)
y = y(u, v)
z = z(u, v)

⎫⎪⎬⎪⎭ (C.2.1)

This surface is to be mapped conformally on the surface [S],

x = x′(u, v)
y = y′(u, v)
z = z′(u, v)

⎫⎪⎬⎪⎭ (C.2.2)

whose curvilinear coordinates are denoted by (u, v). The mapping equations

u = u(u, v) (C.2.3)

v = v(u, v) (C.2.4)

relate both sets of curvilinear coordinates. These mapping equations of course are not
arbitrary but must eventually be derived such that the mapping is conformal. Substi-
tuting these equations in the surface representation (C.2.2) gives

x = x (u, v)
y = y(u, v)
z = z(u, v)

⎫⎪⎬⎪⎭ (C.2.5)

Equations (C.2.5) express the image surface [S] as a function of the curvilinear
coordinates of the original surface [S]. The first fundamental forms (B.2.7) for both
surfaces are

ds2 = E du2 + 2F du dv + G dv2 (C.2.6)

ds2 = E du2 + 2F du dv + G dv2 (C.2.7)

The conformal property is given in terms of the condition on the first fundamental
coefficients

k2(u, v) ≡ E
E

=
F
F

=
G
G

(C.2.8)

That conditions (C.2.8) indeed assure conformality as can be verified by computing
the angle between the two curves f1(u, v) = 0 and f2(u, v) = 0 on [S] and between the
respective images on [S]. Equation (B.2.25) gives the angle on the original as

cos(ds1, ds2) =
E du1 du2 + F (du1 dv2 + du2 dv1) + G dv1 dv2√

E du2
1 + 2F du1 dv1 + G dv2

1

√
E du2

2 + 2F du2 dv2 + G dv2
2

(C.2.9)
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Since the image surface has been expressed in terms of curvilinear coordinates (u, v)
of the original, and since the functions f1(u, v) = 0 and f2(u, v) = 0 apply to the
mapped lines as well, it follows that the angle on the image is given by

cos(ds1, ds2) =
E du1 du2 + F(du1 dv2 + du2 dv1) + G dv1 dv2√

E du2
1 + 2F du1 dv1 + G dv2

1

√
E du2

2 + 2F du2 dv2 + G dv2
2

(C.2.10)

Replacing E, F, and G with k2E, k2G, and k2G, respectively, following (C.2.8), one
readily sees that

cos(ds1, ds2) = cos(ds1, ds2) (C.2.11)

and therefore the angle enclosed by the tangents on f1 and f2 is preserved. The point
scale factor for the mapping is

k(u, v) =
ds
ds

(C.2.12)

As an example, one might verify the general condition (C.2.8) for the simple
conformal mapping (C.1.21) between two planes. Following the general notation,
the equations for the original (C.2.1) have the simple form y = q and x = 𝜆.
The respective first fundamental coefficients are E = G = 1 and F = 0. The
expressions for the image surface (C.2.2) are x = x and y = y. Substituting the
mapping equations (C.1.22) and (C.1.23) into the image surface expressions gives
x = 𝜆2 − q2 and y = 2𝜆q. The first fundamental coefficients are E = G = 4𝜆2 + 4q2

and F = 0. It follows that the condition (C.2.8) is indeed fulfilled for this simple
mapping.

C.3 ISOMETRIC PLANE

An especially simple situation arises if the curvilinear coordinates (u, v) on the origi-
nal are isometric and orthogonal. The curvilinear coordinates (q, 𝜆), where q denotes
the isometric latitude given in (B.2.28), form such an isometric net on the ellipsoid.
The first fundamental form becomes, according to (B.2.27),

ds2 = N2 cos2𝜑 (dq2 + d𝜆2) (C.3.1)

which implies that E = G = N2 cos2𝜑 and F = 0. The first step in utilizing the iso-
metric curvilinear coordinates (q, 𝜆) for conformal mapping is to consider the map-
ping equations

x = 𝜆 (C.3.2)

y = q (C.3.3)
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and interpret (x, y) as Cartesian coordinates, i.e., the expressions for the image surface
simply are

x = 𝜆 (C.3.4)

y = q (C.3.5)

and E = G = 1 and F = 0. The first fundamental coefficients meet the condition
(C.2.8). The point scale factor for this mapping is

k2 =
dq2 + d𝜆2

E(dq2 + d𝜆2)
=

1
N2 cos2𝜑

(C.3.6)

We may, therefore, conclude that one way of creating a conformal mapping of a
general surface to a plane is to establish an isometric net on the original and then
interpret the isometric coordinates as Cartesian coordinates and call the result the
isometric mapping plane.

In a subsequent step, the isometric plane can be mapped conformally onto another
mapping plane by the analytic function

x + iy = f (𝜆 + iq) (C.3.7)

The implied mapping equations are

x = x(q, 𝜆) (C.3.8)

y = y(q, 𝜆) (C.3.9)

where (x, y) denote the coordinates in the final map. The point scale factor of such a
sequential conformal mapping equals the product of that of the individual mappings.
According to (C.2.12) and (C.1.19), we have

k =
dsIP

ds
ds

dsIP
= kIP ⋅ kIP→Map

=

√
(𝜕x∕𝜕𝜆)2 + (𝜕y∕𝜕𝜆)2

N cos𝜑
=

√
(𝜕x∕𝜕q)2 + (𝜕y∕𝜕q)2

N cos𝜑
(C.3.10)

Additional specifications that the complex function must fulfill will assure that a con-
formal map with the desired properties will be obtained.

C.4 POPULAR CONFORMAL MAPPINGS

The transverse Mercator and Lambert conformal mappings are the most popular
mappings used in geodetic computations. Not only do they serve as the basis for the
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U.S. state plane coordinate systems but they are also widely used by other countries
as the national mapping system. Since the respective mapping equations can be easily
programmed, these mappings are suitable for local mapping as well. The equatorial
Mercator mapping is presented first because it follows in such a straightforward man-
ner from the isometric plane. The transverse Mercator and the Lambert conformal
mapping will then be discussed. Finally, the polar conformal mapping is specified.
Most of the derivations related to this appendix are compiled in Leick (2002).

C.4.1 Equatorial Mercator

The equatorial Mercator mapping (EM) is a linear mapping of the isometric plane
such that the equator of the ellipsoid and its image on the map are of the same length.
See Figure C.4.1. This is accomplished by

x + iy = a(𝜆 + iq) (C.4.1)

where the symbol a denotes the semimajor axis of the ellipsoid. The mapping
equations become

x = a𝜆 (C.4.2)

y = aq (C.4.3)

This map is simply a magnification of the isometric plane. The meridians map into
straight lines that are parallel to the y axis; y is zero at the equator. The mapped
parallels are also straight lines and are parallel to the x axis, but spacing increases
toward the poles for the same latitude increment. The equator is mapped equidistantly.

The meridian convergence is zero because mapped meridians are parallel to the
y axis. Zero meridian convergence can be readily verified by applying expression
(C.1.20) to the mapping equations (C.4.2) and (C.4.3). The point scale factor is,
according to (C.3.10),

k =
a

N cos𝜑
(C.4.4)

This point scale factor does not depend on the longitude; k = 1 on the equator and the
value increases with latitude. This makes this mapping attractive for use in regions
close to the equator.

y

x Figure C.4.1 Equatorial Mercator map.
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Any meridian can serve as central meridian or zero meridian, with which the y
axis coincides. For example, the meridian, which passes through the middle of the
mapping area, can be the zero meridian at which x = 0. Furthermore, the point scale
factor must not be confused with the scale of a conventional map, which is the ratio of
a plotted distance over the mapped distance. The point scale factor is a characteristic
of the mapping and changes with location, whereas the scale of a map is dictated by
the size of the plotting paper and the area to be plotted.

The loxodrome is a curve that intersects consecutive meridians at the same
azimuth. It can be readily visualized that the loxodrome maps into a straight line for
the equatorial Mercator mapping.

C.4.2 Transverse Mercator

The specifications for the transverse Mercator mapping (TM) are as follows:

1. Apply conformal mapping conditions.
2. Adopt a central meridian 𝜆0 that passes more or less through the middle of the

area to be mapped. For reasons of convenience, relabel the longitudes starting
with 𝜆 = 0 at the central meridian.

3. Let the mapped central meridian coincide with the y axis of the map. Assign
x = 0 to the image of the central meridian.

4. The length of the mapped central meridian should be k0 times the length of the
corresponding elliptic arc, i.e., at the central meridian y = k0 s𝜑.

The derivation of the transverse Mercator mapping begins with the isometric plane
and a suitable complex function f for (C.3.7). Condition 4 specifies the image of the
central meridian and implies

0 + ik0s𝜑 = f (0 + iq) (C.4.5)

This function can be expanded in a Taylor series, which provides an opportunity to
impose the Cauchy-Riemann conditions on the partial derivatives. The general picture
of the transverse Mercator map is shown in Figure C.4.2. The image of the central

Figure C.4.2 Transverse Mercator map.
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TABLE C.4.1 Transverse Mercator Direct Mapping

x
k0N

= 𝜆 cos𝜑 +
𝜆3 cos3𝜑

6
(1 − t2 + 𝜂2) +

𝜆5cos5𝜑

120
(5 − 18t2 + t4 + 14𝜂2 − 58t2𝜂2) (a)

y

k0N
=

s
N

+
𝜆2

2
sin𝜑 cos𝜑 +

𝜆4

24
sin𝜑 cos3𝜑 (5 − t2 + 9𝜂2 + 4𝜂4)

+
𝜆6

720
sin𝜑 cos5𝜑 (61 − 58t2 + t4 + 270𝜂2 − 330t2𝜂2)

(b)

𝛾 = 𝜆 sin𝜑

[
1 +

𝜆2 cos2𝜑

3

(
1 + 3𝜂2 + 2𝜂4

)
+
𝜆4 cos4𝜑

15
(2 − t2)

]
(c)

meridian is a straight line; all other meridians are curved lines coming together at the
pole and being perpendicular to the image of the equator. The latter coincides with the
x axis. The mapped parallels are, of course, perpendicular to the mapped meridians;
however, they are not circles but mathematically complex curves.

The mapping equations for the direct mapping from P(𝜑, 𝜆) to P(x, y) are listed
in Table C.4.1. In these expressions, the longitude 𝜆 is counted positive to the east,
starting at the central meridian. All quantities that depend on the latitude must be
evaluated at 𝜑. Equation (B.1.6) gives the expression for the radius of curvature N of
the prime vertical section. The symbol s denotes the length of the elliptic arc from
the equator to 𝜑 as given by (B.2.21). The symbols t and 𝜂 are used for brevity and
mean:

t = tan 𝜑 (C.4.6)

𝜂2 =
e2

1 − e2
cos2𝜑 (C.4.7)

The inverse solution for mapping P(x, y) to P(𝜑, 𝜆) is given in Table C.4.2. All
latitude-dependent terms in this table must be evaluated for the so-called footpoint
latitude 𝜑f . The footpoint is a point on the central meridian obtained by drawing a
parallel to the x axis through the point P(x, y). Given the y coordinate, the foot-point
latitude can be computed iteratively from (B.2.21). Because of condition 4, the
following relation holds:

sf =
y

k0
(C.4.8)

where sf is the length of the central meridian from the equator to the footpoint. Sub-
stitute (C.4.8) in (B.2.22) and solve 𝜑f iteratively.

The expression for the point scale factor is

k
k0

= 1 +
𝜆2

2
cos2𝜑 (1 + 𝜂2)

+
𝜆4

24
cos4𝜑 (5 − 4t2 + 14𝜂2 + 13𝜂4 − 28t2𝜂2 + 4𝜂6 − 48t2𝜂4 − 24t2𝜂6)

+
𝜆6

720
cos6𝜑 (61 − 148t2 + 16t4) (C.4.9)
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TABLE C.4.2 Transverse Mercator Inverse Mapping

𝜑 = 𝜑f −
t
2
(1 + 𝜂2)

(
x

k0N

)2

+
t

24
(5 + 3t2 + 6𝜂2 − 6𝜂2t2 − 3𝜂4 − 9t2𝜂4)

(
x

k0N

)4

−
t

720
(61 + 90t2 + 45𝜂4 + 107𝜂2 − 162𝜂2t2 − 45t4𝜂2)

(
x

k0N

)6 (a)

𝜆 cos𝜑f =
x

k0N
−

1
6

(
x

k0N

)3

(1 + 2t2 + 𝜂2)

+
1

120

(
x

k0N

)5

(5 + 28t2 + 24t2 + 6𝜂2 + 8t2𝜂2)

(b)

This equation shows that the scale factor k increases primarily with longitude. In fact,
isoscale lines run more or less parallel to the image of the central meridian. Since the
mapping distortions increase as k departs from 1, the factor k0 is an important element
of design. By selecting k0 < 1, one allows some distortion at the central meridian for
the benefit of having less distortion away from the central meridian. In this way, the
longitudinal coverage of the area of a map can be extended given a level of acceptable
distortion.

The appearance of the TM mapping expressions reveals the fact that they have
been obtained from series expansions. Consequently, the expressions are accurate
only as long as the truncation errors are negligible. Note the symmetries with respect
to the central meridian, x(−𝜆) = −x(𝜆) and y(−𝜆) = y(𝜆), and the equator, y(−𝜑) =
−y(𝜑) and x(−𝜑) = x(𝜑). These TM expressions are also given in Thomas (1952,
pp. 96–103), who lists some additional higher-order terms.

The transverse Mercator mapping of the ellipsoidal as given above is attributed to
Gauss, who used his extensive developments in differential geometry to study con-
formal mapping of general surfaces. Other scientists further refined Gauss’s basic
developments in order to produce expressions suitable for calculation, which was
a necessity before computers became available. Most notable are contributions by
L. Krüger. Lee (1976) presents closed or exact formulas for the transverse Mercator
mapping with respect to the ellipsoid; these elliptical expressions were programmed
by Dozier (1980). Lee further discusses other variations of the transverse Merca-
tor mapping, in addition to one with constant scale factor along the mapped central
meridian presented here. Finally, it should be emphasized that Lambert (1772) already
gave expressions for the transverse Mercator mapping with respect to the sphere.

C.4.3 Lambert Conformal

The specifications for the Lambert conformal (LC) mapping are:

1. Apply conformal mapping conditions.

2. Adopt a central meridian 𝜆0 that passes more or less through the middle of the
area to be mapped. For reasons of convenience, relabel the longitudes, starting
with 𝜆 = 0 at the central meridian.
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3. Let the mapped central meridian coincide with the y axis of the map. Assign
x = 0 for the image of the central meridian.

4. Map the meridians into straight lines passing through the image of the pole;
map the parallels into concentric circles around the image of the pole. Select a
standard parallel 𝜑0 that passes more or less through the middle of the area to
be mapped. The length of the mapped standard parallel is k0 times the length
of the corresponding ellipsoidal parallel. The point scale factor along any
mapped parallel is constant. Start counting y = 0 at the image of the standard
parallel.

The general picture of the Lambert conformal map is shown in Figure C.4.3. The
mapping is singular at the pole, which is the reason why the angle of the mapped
meridian is 𝜆′, and not 𝜆, at the pole. Denoting the distance from the mapped parallel
to the pole by r, the pair (𝜆′, r) are polar coordinates that form a set of orthogonal
curvilinear lines on the map. The first fundamental form for this choice of coordi-
nates is

ds2 = dr2 + r2d𝜆′2 = r2

(
dr2

r2
+ d𝜆′2

)
(C.4.10)

We observe that (𝜆′, r) is not an isometric net. The same increments in dr and d𝜆′

result in different changes of ds. If we define the auxiliary coordinate

dq′ ≡ −
dr
r

(C.4.11)

mapped parallel φ

pole

P(x,y) = P(φ,λ)

mapped meridian λ

ce
nt

ra
l

m
er

id
ia

nr

r0k0

mapped standard parallel φ0

y

x

λ ≠ λ′

Figure C.4.3 Lambert conformal mapping.



728 CONFORMAL MAPPING

then (𝜆′, q′) indeed constitutes an isometric net in the mapping plane. The integration
of (C.4.11) gives

q′ = −∫
r

k0r

dr
r

= −(ln r − ln k0r0) = − ln
r

k0r0
(C.4.12)

At the standard parallel𝜑0 we have r = k0r0 and q′ = 0. The negative sign in (C.4.11)
takes care of the fact that q′ increases toward the pole, whereas r decreases. Equal
incremented quadrilaterals of (q′, 𝜆′) decrease as the pole is approached. The Lambert
conformal mapping is now specified by

𝜆′ + iq′ = 𝛼[𝜆 + i(q − q0)] (C.4.13)

where 𝛼 = sin𝜑0 and q0 is the isometric latitude of the standard parallel. The value
of the constant 𝛼 is derived on the basis of condition 4.

The expressions for the direct and inverse mapping are listed in Tables C.4.3 and
C.4.4. See Thomas (1952, p. 117) or Leick (2002) for a complete derivation. The
symbol 𝜀 = 2.71828… denotes the base of the natural system of logarithm and should
not be confused with the eccentricity e of the ellipsoid. The inverse solution gives the
isometric latitude first, which can then be readily converted to the geodetic latitude.

There is no series expansion involved. However, attention must be given to numer-
ical accuracy when converting q to 𝜑. The point scale factor is

k =
k0N0 cos𝜑0

N cos𝜑
𝜀−(q−q0) sin𝜑0 (C.4.14)

TABLE C.4.3 Lambert Conformal Direct Mapping

x = k0N0 cot𝜑0 𝜀
−Δq sin𝜑0 sin(𝜆 sin𝜑0) (a)

y = k0N0 cot𝜑0 [1 − 𝜀−Δq sin𝜑0 cos(𝜆 sin𝜑0)] (b)

𝛾 ≡ 𝜆′ = 𝜆 sin𝜑0 (c)

TABLE C.4.4 Lambert Conformal Inverse Mapping

tan 𝜆′ =
x

k0N0 cot𝜑0 − y
(a)

r =
k0N0 cot𝜑0 − y

cos 𝜆′
(b)

𝜆 =
𝜆′

sin𝜑0

(c)

Δq = −
1

sin𝜑0

ln

(
r

k0N0 cot𝜑0

)
(d)

q = q0 + Δq (e)
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TABLE C.4.5 Conversion from Two Standard Parallels to
One Standard Parallel

𝜑0 = sin−1

[
ln (N1 cos𝜑1) − ln (N2 cos𝜑2)

q2 − q1

]
(a)

k0 =
N1 cos 𝜑1

N0 cos 𝜑0

𝜀(q1−q0) sin𝜑0 =
N2 cos 𝜑2

N0 cos 𝜑0

𝜀(q2−q0) sin𝜑0 (b)

Note that (k0, 𝜑0) or, equivalently, (k0, q0) specifies the expressions for the Lambert
conformal mapping. The area of smallest distortion is along the image of the stan-
dard parallel in the east-west direction; as one departs from the standard parallel, the
distortions increase in the north-south direction. By selecting k0 < 1 it is possible to
reduce the distortions at the northern and southern extremities of the mapping area by
allowing some distortions in the vicinity of the standard parallel. Whenever k0 < 1
there are two parallels, one south and one north of the standard parallel, along which
the point scale factor k equals 1, i.e., these two parallels are mapped without distortion
in length.

The designer of the map has the choice of either specifying k0 and 𝜑0 or the two
parallels for which k = 1. In the latter case, one speaks of a two-standard-parallel
Lambert conformal mapping. If the Lambert conformal mapping is specified by two
standard parallels𝜑1 and𝜑2 with k1 = k2 = 1, then k0 and𝜑0 follow from the expres-
sion of Table C.4.5.

In the special case of𝜑0 = 90∘, the Lambert conformal mapping becomes the polar
conformal mapping. The expressions are obtained by noting the following mathemat-
ical limit:

F ≡ lim
𝜑0→90∘

N0(cos𝜑0)𝜀
q0 =

2a2

b

(1 − e
1 + e

)e∕2
(C.4.15)

where the symbols a and b denote the semiaxis of the ellipsoid and the general relation
b∕a =

√
1 − e2 has been used. Using (C.4.15), the equations for the polar conformal

mapping become

x = k0F𝜀−q sin 𝜆 (C.4.16)

y = k0F𝜀−q cos 𝜆 (C.4.17)

𝛾 = 𝜆 (C.4.18)

k =
k0 F𝜀−q

N cos𝜑
(C.4.19)

As is the case with the Lambert conformal mapping, the meridians are straight lines
radiating from the image of the pole and the parallels are concentric circles around the
pole. The y axis coincides with the 180∘ meridian. See Figure C.4.4 for details. There
is no particular advantage in selecting the central meridian of the area to be mapped
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y

x

λ = 180°

λ = 0 λ

Figure C.4.4 Polar conformal mapping.

as the zero meridian. One, therefore, will usually select the Greenwich meridian. The
point scale factor is k0 at the pole.

The polar conformal mapping is not a stereographic projection of the ellipsoid.
Only in the special case of e = 0 do the expressions given above transition to those
of the stereographic projection of the sphere (polar aspect) with the point of per-
spective being at the South Pole. The mapping is not only stereographic in the case
of the sphere (because it is projected from a single point of perspective), but it is
also azimuthal because the sphere is projected on the tangent plane. In the case of
the oblique aspect of the stereographic projection, the sphere is projected on the
tangent plane other than at the pole, with the center of projection being located on
the sphere diametrically opposite the point of tangency. The ellipsoidal form of the
oblique aspect is not perspective (no one single center of projection) in order to meet

TABLE C.4.6 Legend for U.S. State Plane Coordinate System Defining
Constants

Mapping
T Transverse Mercator
L Lambert conformal
O Oblique Mercator
UTM Universal transverse Mercator
1:M Scale reduction at central meridian

Conversion factors
Meters U.S. survey feet International feet
152,400.3048 500,000.0
213,360.0 700,000.0
304,800.6096 1,000,000.0
609,600.0 2,000,000.0
609,601.2192 2,000.000.0
914,401.8289 3,000,000.0
1. 3.28083333333
1. 3.28083989501
0.3048 1.
1200/3937 1.
0.30480060960 1.
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738 CONFORMAL MAPPING

the conformal property. Readers desiring information on oblique aspect mappings are
referred to the specialized literature.

In order to emphasize that the mappings discussed in this section are derived
from the conformality condition, the term mapping has been used consistently. For
example, we prefer to speak of transverse Mercator or Lambert conformal mapping
instead of the transverse Mercator or Lambert conformal projection. There is not one
single point of perspective for these mappings of the ellipsoid.

C.4.4 SPC and UTM

Each state and U.S. possession has a state plane coordinate system (SPC) defined
for use in surveying and mapping (Stem, 1989). Many of the state plane coordinate
systems use the transverse Mercator mapping. States with large east-west extent use
the Lambert conformal mapping. Many states divide their region into zones and
use both the transverse Mercator and the Lambert conformal mapping for individ-
ual zones. The exception to this scheme is the state plane coordinate system for the
panhandle of Alaska, for which the oblique Mercator mapping is used.

The defining constants for the U.S. state plane coordinate system of 1983 are given
in Tables C.4.6 and C.4.7. Table C.4.7 also contains the adopted values of false north
and false east and a four-digit code to identify the projection. The “origin” as given in
Table C.4.7 is not identical with the origin of the coordinate system in Figures C.4.2
and C.4.3. The state plane coordinates refer to the NAD83 ellipsoid. The specifica-
tions of the UTM mapping are given in Table C.4.8. These specifications must be
taken into account when using the mapping equations given in this appendix. The
National Geodetic Survey and other mapping agencies make software available on
the Internet for computing coordinates for the officially adopted mappings.

TABLE C.4.8 UTMMapping System Specifications

UTM zones 6∘ in longitude (exceptions exist)
Limits in latitude −80∘ < latitude < 80∘

Longitude of origin Central meridian of each zone
Latitude of origin 0∘ (equator)
Units Meter
False northing 0 m at equator, increases northward for northern hemisphere

10, 000, 000m at equator, decreases southward for
southern hemisphere

False easting 500, 000 m at the central meridian, decreasing westward
Central meridian scale 0.9996 (exceptions exist)
Zone numbers Starting with 1 centered 177∘ W and increasing eastward to

zone 60 entered at 177∘ E (exceptions exist)
Limits of zones and overlap Zones are bounded by meridians that are multiples of 6∘ W

and 6∘ E of Greenwich
Reference ellipsoid Depending on region and datum, e.g., GRS80 in United

State for NAD83
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It is the surveyor’s choice to use a state plane coordinate system or to generate a
local mapping by merely specifying k0 (usually 1) and the central meridian and/or the
standard parallel. In the latter case the mapping reductions are small. If, in addition,
a local ellipsoid is specified, then most of the reductions can be neglected for small
surveys. While these specifications might lead to a reduction in the computational
load, which, in view of modern computer power is not critical any longer, it increases
the probability that reductions are inadvertently neglected when they should not be.





APPENDIX D

VECTOR CALCULUS AND DELTA
FUNCTION

We provide an overview of vector calculus statements used throughout Chapter 9.
For a detailed treatment of the subject the reader is referred to specialized texts in
electromagnetic field theory such as Balanis (1989) or mathematics handbooks like
Korn and Korn (1968).

In order to characterize scalar and vector fields, we introduce coordinate systems.
A general treatment of orthogonal coordinates can be found in Morse and Feshbach
(1953). The three coordinate systems used most often are Cartesian, cylindrical, and
spherical. Cartesian coordinates are illustrated in Figure D.1.

Here one has three orthogonal axes — x, y, and z — with origin O. A standard
basis of three unit vectors corresponding to those axes is designated as (−→x 0,

−→y 0,
−→z 0).

Let vector
−→
A be measured by a sensor located at pointMwith coordinates (x, y, z). To

expand the vector
−→
A into a sum of Cartesian projections one first moves the basis unit

vectors (−→x 0,
−→y 0,

−→z 0) to the pointM. This is done by a parallel translation and is shown
as dashed arrows. Next, one projects the vector

−→
A onto those dashed axes. We denote

these projections as Ax(x, y, z, t),Ay(x, y, z, t), and Az(x, y, z, t). These projections in
general are functions of the coordinates (x, y, z) and time t. Thus one writes

−→
A (x, y, z, t) = Ax(x, y, z, t)

−→x 0 + Ay(x, y, z, t)
−→y 0 + Az(x, y, z, t)

−→z 0 (D.1)

The cylindrical coordinate system is shown in Figure D.2. One of the Cartesian
axis is designated as z. In the plane perpendicular to this axis are the polar coordinates
r and 𝜙, where r is the distance from the z axis and 𝜙 is the azimuth. At point M
with coordinates (r, 𝜙, z) the three basis vectors are −→r 0,

−→
𝜙0, and

−→z 0. Vector
−→r 0 is

741



742 VECTOR CALCULUS AND DELTA FUNCTION

Figure D.1 Vectors representation in Cartesian
coordinates.

Figure D.2 Vectors representation in cylindrical
coordinates.

a continuation of the radius vector in the plane perpendicular to the z axis. It points
outward, i.e., away from the z axis. The vector

−→
𝜙0 is tangential to the circle for which

z = const and r = const, and it points toward the increase of azimuth𝜑. The vector−→z 0

is a unit vector of the Cartesian axis z. The vector
−→
A as measured at point M(r, 𝜙, z)

can be written as

−→
A (r, 𝜙, z, t) = Ar(r, 𝜙, z, t)

−→r 0 + A𝜙(r, 𝜙, z, t)
−→
𝜙0 + Az(r, 𝜙, z, t)

−→z 0 (D.2)

At another point N, the vectors −→r 0 and
−→
𝜙0 are related to those at point M by

rotation.
Finally, the third coordinate system is the spherical one. It is shown in Figure D.3.

The coordinates of the observation point M are the radial distance r from the origin,
the polar angle 𝜃 (also referred to as zenith or inclination angle), and the azimuthal
angle 𝜙. The angle 𝜃 is counted from a fixed direction. In most GNSS antenna appli-
cations this direction points toward the local zenith. Thus 𝜃 varies within the range
0 ≤ 𝜃 ≤ 𝜋. The azimuth angle 𝜙 is counted from another fixed direction within the
plane perpendicular to the zenith direction, called the local horizon. This angle varies
within the range 0 ≤ 𝜙 ≤ 2𝜋. In geodetic and surveying applications the azimuth is
counted from the north direction and is typically denoted by 𝛼. At a point M with
coordinates (r, 𝜃, 𝜙) the three basis unit vectors are−→r 0, a continuation of radius vector
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Figure D.3 Vectors representation in spherical
coordinates.

−→r M pointing outward toward larger distances,
−→
𝜃 0 is tangential to the sphere r = const

and to the arc 𝜙 = const on that sphere. This vector points toward the increase of 𝜃.
Finally, vector

−→
𝜙0 is tangential to the circle 𝜃 = const, r = const and it points toward

the increase of azimuth 𝜙. The vector
−→
A as measured at point M(r, 𝜃, 𝜙) takes the

form

−→
A (r, 𝜃, 𝜙, t) = Ar(r, 𝜃, 𝜙, t)

−→r 0 + A𝜃(r, 𝜃, 𝜙, t)
−→
𝜃 0 + A𝜙(r, 𝜃, 𝜙, t)

−→
𝜙0 (D.3)

At any other point N the directions of all three basis unit vectors will change.
All the coordinate systems are right handed. This means that an observer located

on top of the third basis vector and looking at the origin will see the rotation from the
first vector toward the second one in a counterclockwise direction. For coordinates
and vector projection conversions between coordinate systems, the reader is referred
to Korn and Korn (1968) and Lo and Lee (1993).

In the complex amplitudes method, the vector projections do not depend on
time t but rather are complex values containing amplitudes and initial phases. We
briefly state some computation rules for such vectors. The absolute value, or the
module, is |−→A | = √|Ax|2 + |Ay|2 + |Az|2 (D.4)

The absolute value of the components |Ax,y,z| is called the module of projections as
defined by the common rules of complex algebra. The multiplication by a complex
number 𝛼 is

𝛼
−→
A = 𝛼Ax

−→x 0 + 𝛼Ay
−→y 0 + 𝛼Az

−→z 0 (D.5)

If two vectors are defined (measured) at the same spatial point, then the dot
product is

−→
A
−→
B
∗
= AxBx

∗ + AyBy
∗ + AzBz

∗ (D.6)

Here superscript ∗ means complex conjugate. In particular

−→
A
−→
A
∗
= |−→A |2 (D.7)
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A cross product is

[
−→
A ,

−→
B
∗
] =

|||||||
−→x 0

−→y 0
−→z 0

Ax Ay Az
Bx

∗ By
∗ Bz

∗

||||||| (D.8)

Here, || stands for determinant. For vectors with real values all said rules reduce to
common vector algebra.

Differential and integral vector operations are of much use. Particularly important
are the grad, div, rot, and∇2 operators. The latter is Laplacian. The designation curl is
also in use the in literature instead of rot. First, one is to note partial differentiation of
vector

−→
A with respect to parameters (either spatial coordinate or time). For instance,

𝜕

𝜕t
−→
A =

𝜕

𝜕t
Ax(x, y, z, t)

−→x 0 +
𝜕

𝜕t
Ay(x, y, z, t)

−→y 0 +
𝜕

𝜕t
Az(x, y, z, t)

−→z 0 (D.9)

With Cartesian coordinates, we obtain

grad u =
𝜕u
𝜕x

−→x 0 +
𝜕u
𝜕y

−→y 0 +
𝜕u
𝜕z

−→z 0 (D.10)

div
−→
A =

𝜕Ax

𝜕x
+
𝜕Ay

𝜕y
+
𝜕Az

𝜕z
(D.11)

rot
−→
A =

(
𝜕

𝜕y
Az −

𝜕

𝜕z
Ay

)
−→x 0 +

(
𝜕

𝜕z
Ax −

𝜕

𝜕x
Az

)
−→y 0 +

(
𝜕

𝜕x
Ay −

𝜕

𝜕y
Ax

)
−→z 0

(D.12)

∇2 =
𝜕2

𝜕x2
+
𝜕2

𝜕y2
+
𝜕2

𝜕z2
(D.13)

In cylindrical coordinates,

grad u =
𝜕u
𝜕r

−→r 0 +
1
r
𝜕u
𝜕𝜙

−→
𝜙 +

𝜕u
𝜕z

−→z 0 (D.14)

div
−→
A =

1
r
𝜕

𝜕r
(rAr) +

1
r

𝜕A𝜙
𝜕𝜙

+
𝜕Az

𝜕z
(D.15)

rot
−→
A =

1
r

(
𝜕Az

𝜕𝜙
−
𝜕A𝜙
𝜕z

)
−→r 0 +

(
𝜕Ar

𝜕z
−
𝜕Az

𝜕r

)
−→
𝜙0 +

(
1
r
𝜕

𝜕r

(
rA𝜙

)
−

1
r

𝜕Ar

𝜕𝜙

)
−→z 0

(D.16)

∇2 =
1
r
𝜕

𝜕r

(
r
𝜕

𝜕r

)
+

1
r2

𝜕2

𝜕𝜙2
+
𝜕2

𝜕z2
(D.17)

and in spherical coordinates,

grad u =
𝜕u
𝜕r

−→r 0 +
1
r
𝜕u
𝜕𝜃

−→
𝜃 0 +

1
r sin 𝜃

𝜕u
𝜕𝜙

−→
𝜙0 (D.18)
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div
−→
A =

1
r2
𝜕

𝜕r
(r2Ar) +

1
r sin 𝜃

𝜕

𝜕𝜃
(A𝜃 sin 𝜃) +

1
r sin 𝜃

𝜕A𝜙
𝜕𝜙

(D.19)

rot
−→
A =

1
r sin 𝜃

(
𝜕

𝜕𝜃

(
A𝜙 sin 𝜃

)
−
𝜕A𝜃
𝜕𝜙

)
−→r 0 +

1
r

(
1

sin 𝜃

𝜕Ar

𝜕𝜙
−
𝜕

𝜕r

(
rA𝜙

))−→
𝜃 0

+
1
r

(
𝜕

𝜕r

(
rA𝜃

)
−
𝜕Ar

𝜕𝜃

)
−→
𝜙0 (D.20)

∇2 =
1
r2
𝜕

𝜕r

(
r2
𝜕

𝜕r

)
+

1
r2 sin 𝜃

𝜕

𝜕𝜃

(
sin 𝜃

𝜕

𝜕𝜃

)
+

1

r2sin2𝜃

𝜕2

𝜕𝜙2
(D.21)

With these expressions u is an arbitrary scalar field and
−→
A is a vector field.

For vector flux calculation, one considers an imaginary closed surface S. The sur-
face is subdivided into a set of small segments (Figure D.4).

We introduce a differential vector d⃗S. This vector is perpendicular to S and points
outward of S. Its module dS equals the area of the segment. We expand the vector
−→
A into the component

−→
A 𝜏 tangential to S and into a normal component

−→
An. The

component
−→
An contributes to the flux through S. By definition, a flux through a

segment is
d𝛷 = An dS =

−→
A d⃗S (D.22)

The flux through the surface S is a sum (integral) over all segments

𝛷 = ∮S

−→
A d⃗S (D.23)

The flux through the surface of the sphere with radius r centered at the origin is
calculated using spherical coordinates. One has

d⃗S = −→r 0r
2 sin 𝜃 d𝜃 d𝜙 (D.24)

−→
A d⃗S = Arr

2 sin 𝜃 d𝜃 d𝜙 (D.25)

thus

𝛷 = ∫
𝜋

0 ∫
2𝜋

0
Ar(r, 𝜃, 𝜙)r

2 sin 𝜃 d𝜙d𝜃 (D.26)

Figure D.4 Calculation of a vector flux.
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With integral transformations, the Green’s, divergence and the Stokes’ theorems hold.
These are not used explicitly in Chapter 9. The reader is referred to Balanis (1989)
or Korn and Korn (1968) for details.

Dirac delta function 𝛿(x) is widely used to model sources of radiation. By defini-
tion, for an arbitrary function f (x)

∫
b

a
f (x′)𝛿(x − x′)dx′ =

{
f (x) if a < x < b

0 otherwise
(D.27)

In particular

∫
b

a
𝛿(x − x′)dx′ =

{
1 if a < x < b

0 otherwise
(D.28)

The delta function 𝛿(x − a) could be viewed as a limit Δx → 0 of a stepwise function
defined over the x axis, and being equal 1∕Δx if x belongs to the interval Δx centered
at a and otherwise equal to zero.



APPENDIX E

ELECTROMAGNETIC FIELD
GENERATED BY ARBITRARY SOURCES,
MAGNETIC CURRENTS, BOUNDARY
CONDITIONS, AND IMAGES

Consider a source represented by electric current density
−→
j e measured in

amperes/square meter. This vector characterizes the electric current distributed in
space and flowing through an imaginary unit surface area (Balanis (1989)). The
Maxwell equations with the source given read as follows:

rot
−→
H = i𝜔𝜀0

−→
E +

−→
j e (E.1)

rot
−→
E = −i𝜔𝜇0

−→
H (E.2)

We assume time harmonic fields with fixed angular frequency 𝜔. Medium is assumed
to be free space.

In order to solve these equations, the electric vector potential
−→
Ae is introduced by

the relationships

−→
H = rot

−→
Ae (E.3)

−→
E = −i𝜔𝜇0

−→
Ae +

1
i𝜔𝜀0

graddiv
−→
Ae (E.4)

The thus introduced vector potential satisfies the Helmholtz equation

∇2−→Ae + k2
−→
Ae = −

−→
j e (E.5)

The Laplacian ∇2 and grad and div operators are given in Appendix D, and k
is the wavenumber (9.1.32). Once (E.5) is solved, the magnetic field intensity is

747
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calculated employing (E.3). For a spatial area outside the source, instead of (E.4), one
may use

−→
E =

1
i𝜔𝜀0

rot
−→
H (E.6)

A solution to (E.5) is
−→
Ae =

1
4𝜋∫V

−→
j e
e−ik|−→r −−→r ′||−→r − −→r

′| dV ′ (E.7)

Here, both vectors
−→
j e and

−→
Ae are represented by Cartesian projections, and V is the

spatial area occupied by the source. The radius vector−→r points toward the observation
point M and radius vector −→r

′
points to the variable point of integration (Figure E.1,

left panel).
For the Hertzian dipole placed at the origin (Figure E.1, right panel) one writes

(E.7) in the form

−→
Ae =

1
4𝜋

−→
j e
e−ikr

r
ΔV =

1
4𝜋

jeSL
e−ikr

r
−→z 0 =

IL
4𝜋

e−ikr

r
−→z 0 (E.8)

Here, ΔV is the volume occupied by the dipole. This volume is written as a product
of cross-section S and length L. In order to transform to spherical coordinates at an
observation point M (see the right panel in Figure E.1) one has

−→z 0 =
−→r 0 cos 𝜃 −

−→
𝜃 0 sin 𝜃 (E.9)

Substituting (E.9) into (E.8) and then into (E.3) and (E.6), using expression (D.20)
for the rot operator yields (9.1.79) and (9.1.80).

For the far-field region, expressions (E.7), (E.3), and (E.6) simplify for an arbitrary
source. If r is much larger compared to wavelength 𝜆 and dimensions of the source,
then for the denominator of the integrand of (E.7), one can write

||−→r − −→r
′|| ≈ r (E.10)

Figure E.1 Calculation of fields radiated by an arbitrary source and Hertzian dipole.
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The exponent in (E.7) is treated as follows. First, Cartesian coordinates of an obser-
vation point are introduced by writing

x = rnx (E.11)

y = rny (E.12)

z = rnz (E.13)

Here,

nx = sin 𝜃 cos𝜙 (E.14)

ny = sin 𝜃 sin𝜙 (E.15)

nz = cos 𝜃 (E.16)

are directional cosines (projections) of the unit vector −→n 0 directed toward an obser-
vation point (Figure E.2).

Let the Cartesian coordinates of the variable point of integration be (x′, y′, z′).
Keeping the first term of the Tailor expansion with respect to r′∕r, one writes

|−→r − −→r
′| = √

(x − x′)2 + (y − y′)2 + (z − z′)2 =
√

r2 − 2(xx′ + yy′ + zz′) + r′2

≈ r

(
1 −

xx′ + yy′ + zz′

r2

)
= r − x′nx − y′ny − z′nz (E.17)

Hence, (E.7) could be rewritten in the form

−→
Ae =

1
4𝜋

e−ikr

r
−→
Ne (E.18)

Here,

Ne
x,y,z = ∫V

jex,y,z(x
′, y′, z′)eik(nxx

′+nyy
′+nzz

′)dV ′ (E.19)

are Cartesian coordinates of the auxiliary vector
−→
Ne, sometimes referred to as an

electric vector of radiation. We transfer from Cartesian to spherical projections of
−→
Ne

Figure E.2 Cartesian projections of a unit vector
directed toward observation point.
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using the transformation formulas of Lo and Lee (1993):

Ne
r = Ne

x sin 𝜃 cos𝜙 + Ne
y sin 𝜃 sin𝜙 + Ne

z cos 𝜃 (E.20)

Ne
𝜃
= Ne

x cos 𝜃 cos𝜙 + Ne
y cos 𝜃 sin𝜙 − Ne

z sin 𝜃 (E.21)

Ne
𝜙
= −Ne

x sin𝜙 + Ne
y cos𝜙 (E.22)

Finally, the expression for the vector
−→
Ae in the far-field region takes the form

−→
Ae =

1
4𝜋

e−ikr

r

(−→r 0N
e
r +

−→
𝜃 0N

e
𝜃
+
−→
𝜙0N

e
𝜙

)
(E.23)

This expression is substituted into (E.3) and further into (E.6). While calculating the
rot operators (D.20), one omits all the higher order terms with regard to 1∕r except
for the major one. This way one obtains the expressions

E𝜃 = −i
e−ikr

2𝜆r
𝜂0N

e
𝜃

(E.24)

E𝜙 = −i
e−ikr

2𝜆r
𝜂0N

e
𝜙

(E.25)

Er = Hr = 0 (E.26)

−→
H =

1
𝜂0

[−→r 0,
−→
E
]

(E.27)

Here 𝜂0 is given by (9.1.14). The Poynting vector (9.1.67) is

−→
𝛱 = 𝜂0

1
8𝜆2r2

(|Ne
𝜃
|2 + |Ne

𝜙
|2)−→r 0 (E.28)

In general, Ne
𝜃
and Ne

𝜙
are complex quantities. We write them in exponential form

Ne
𝜃,𝜙

(𝜃, 𝜙) = C𝜃,𝜙F𝜃,𝜙(𝜃, 𝜙)e
i𝛹𝜃,𝜙(𝜃,𝜙) (E.29)

Here, C𝜃,𝜙 are angular-independent constants, F𝜃,𝜙(𝜃, 𝜙) are real functions with
peak values equal to unity, and 𝛹𝜃,𝜙(𝜃, 𝜙) are angular-dependent phase functions.
Collecting all the constants into U𝜃,𝜙, one obtains (9.1.93) and (9.1.94).

As an example, we calculate the far field of the cross-dipole antenna radiating in
free space (Figure 9.2.12, right panel). For the dipole parallel to the x axis, the electric
current density is

jex = I0x cos
(
𝜋

2L
x
)
𝛿(y)𝛿(z) (E.30)

The symbol I0x denotes the current in the middle of the dipole, and L is the length of
one arm of the dipole. As to the use of delta functions, see Appendix D. Substituting
(E.30) into (E.19) and setting L = 𝜆∕4 yields

Ne
x = I0x

𝜆

𝜋
f
(
nx
)

(E.31)
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Figure E.3 Equivalence theorem.

The function f (u) is defined by (9.2.25). Similarly, for the dipole oriented along the
y axis, one has

Ne
y = I0y

𝜆

𝜋
f
(
ny
)

(E.32)

Substituting (E.31) and (E.32) into (E.21) and (E.22) and further into (E.24) and
(E.25), and setting I0y = −iI0x = −iI0, one arrives at (9.2.22).

Electric current source
−→
j e in (E.1) was assumed to be the actual conduction cur-

rent associated with electric charges motion. However, in many cases it is convenient
to replace the actual sources with equivalent ones. Equivalence is understood in such
a way that the

−→
E and

−→
H fields generated by actual and equivalent sources coincide

within the spatial area of interest. The approach originates from the Huygens princi-
ple. The exact statement is known as an equivalence theorem (Balanis, (1989)). Let
S be an imaginary closed surface containing all the sources of radiation and

−→
E 𝜏 and−→

H𝜏 be components of the original fields tangential to S. Then, fields outside S could
be viewed as radiation of equivalent electric and magnetic surface currents

−→
j e
S
and

−→
j m
S
, distributed on S and related to the original fields intensities as[−→n 0,

−→
H𝜏

]
=
−→
j e
S

(E.33)

−
[−→n 0,

−→
E 𝜏

]
=
−→
j m
S

(E.34)

Here −→n 0 is the unit normal vector to S pointing outside S (Figure E.3). This way, an
equivalent magnetic current is introduced.

Magnetic currents do not exist in a physical sense as there are no realizable mag-
netic charges. Equivalent magnetic currents are useful each time the electric field
intensity distribution is known or could be established from physical considerations
(e.g., magnetic line currents modeling the patch antenna radiation in Section 9.7.1).
With magnetic currents as sources, the Maxwell equations for free space read

rot
−→
H = i𝜔𝜀0

−→
E (E.35)

rot
−→
E = −i𝜔𝜇0

−→
H −

−→
j m (E.36)
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A solution to these equations could be accomplished by introducing the magnetic
vector potential

−→
E = rot

−→
Am (E.37)

and following the derivations carried out for electric currents. However,
Equations (E.1) and (E.2), (E.35) and (E.36) obey the duality principle such
that by changing

−→
j e → −

−→
j m,

−→
E →

−→
H , 𝜀0 → −𝜇0, a solution to an “electrical”

problem could be transferred into a related “magnetic” one.
Sometimes the main features of the electromagnetic phenomena can be captured

employing two-dimensional approximations, which simplifies the related problems
to a large extent. This approach is used in Section 9.7 in regard to ground planes.
Consider a homogeneous electric line current, infinitely long in the z direction and
placed at the origin of the coordinate frame such that

−→
j e = I0

−→z 0𝛿(x)𝛿(y) (E.38)

Here, I0 is the amplitude. Using cylindrical coordinates (Appendix D), and assuming
𝜕∕𝜕z = 0, the solution to (E.1) and (E.2) is

−→
H =

I0
4i
kH(2)

1 (kr)
−→
𝜙0 (E.39)

−→
E =

I0
4i

k2

i𝜔𝜀0
H(2)
0 (kr)−→z 0 (E.40)

By duality, fields excited by magnetic line current with amplitude U0 are

−→
E = −

U0

4i
kH(2)

1 (kr)
−→
𝜙0 (E.41)

−→
H =

U0

4i
k2

i𝜔𝜇0
H(2)
0 (kr)−→z 0 (E.42)

The medium was free space in both cases. With these expressions the H(2)
0,1(s) are

Hankel functions of zero and first order and second kind (Gradshteyn and Ryshik,
1994; Abramowitz and Stegun, 1972).

We analyze expressions (E.39) to (E.42) in the far-field region. Employing
asymptotic expansion for the large argument,

H(2)
n (s) ≈

√
2
𝜋s

⋅ e
−i
(
s−n 𝜋

2
− 𝜋

4

)
(E.43)

onemakes sure that the expressions describe cylindrical waves, withwavefronts being
concentric cylinders with respect to the z axis. These waves are locally plane ones
(see discussion on spherical waves in Section 9.1.4). The field intensities decay as
1∕

√
kr with distance r. Thus the total power flux through an imaginary cylinder with

unit length along the z axis stays independent of r.
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Real-world bodies consist of media with different 𝜀, 𝜇, and 𝜎. In most cases, a tran-
sition area between the media is a thin layer with a cross section of the order of atomic
dimensions. By neglecting such a layer the parameters 𝜀, 𝜇, and 𝜎 exhibit disconti-
nuities. Fields on both sides of the discontinuity are related by boundary conditions.
Takingmetals as perfect electric conductors (PEC), the following two conditions hold
at the boundary between air (free space) and PEC:

−→
j e
S
=
[−→n 0,

−→
H𝜏

]
(E.44)

−→
E 𝜏 = 0 (E.45)

Here,
−→
j e
S
is the density of the electric current induced at the PEC surface, subscript 𝜏

marks vector components tangential to the surface, and −→n 0 is the unit normal vector
directed from the PEC toward the air.

Perfect magnetic conductors do not exist in a physical sense due to the absence
of physical magnetic currents and charges. However, there are artificial media with
surfaces behaving like perfect magnetic conductors (PMC). At such surfaces, the fol-
lowing boundary conditions hold:

−→
j m
S
= −

[−→n 0,−→E 𝜏

]
(E.46)

−→
H𝜏 = 0 (E.47)

Here,
−→
j m
S
is the density of equivalent magnetic current induced at the PMC surface.

In a more general sense, the impedance boundary conditions

−→
E 𝜏 = ZS

[−→n 0,−→H𝜏

]
(E.48)

hold. Here, ZS is the surface impedance. It is assumed that there is a structure that
produces ZS (for examples see Sections 9.7.1, 9.7.4, and Appendix H). The boundary
conditions at the surface of PEC and PMC are particular cases of (E.48) with ZS = 0
and ZS → ∞, respectively. There are other types of boundary conditions, in particular
the ones used in Section 9.7.6.

Fields radiated by a source over a boundary can be calculated by replacing the
boundary by an image of a source. This approach simplifies to a large extent if the

Figure E.4 Images of the sources over PEC (left) and PMC (right) boundaries.
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boundary is an ideal infinite plane. In particular, if electric and magnetic dipoles
are placed at some distance h over the PEC or PMC boundary, then the images are
located at the same distance below the boundary. The phase relationships between
actual sources and the images are illustrated in Figure E.4 for PEC (left panel) and
PMC (right panel) boundaries. Using above derivations, one can make sure that the
boundary conditions (E.45) and (E.47) hold in respective cases. This explains why
the radiation of the magnetic line current gets doubled when the current is put onto
the PEC plane; see expression (9.7.24). As another example, substituting (E.42) into
(E.44) and accounting for the image leads to (9.7.22).



APPENDIX F

DIFFRACTION OVER HALF-PLANE

The cylindrical coordinate frame relevant for the problem is shown in Figure F.1.
The z axis coincides with the half-plane edge at the origin. An arbitrary point P is
characterized by a distance r and angle 𝛼. The values 𝛼 = 𝜋∕2 and 𝛼 = 3𝜋∕2 span
the local horizon, and 𝛼 = 𝜋 is the local zenith. The half-plane corresponds to angles
𝛼 = 0 and 𝛼 = 2𝜋. The incident plane wave is arriving from angle 𝛼inc is such that
𝜋∕2 < 𝛼inc < 3𝜋∕2. We will be looking for the fields observed at point A located at
a distance from the edge a >> 𝜆 and at the angle 𝛼 = 2𝜋 − 𝛼0.

The solution to the wave diffraction problem is known for two cases of incident
wave polarization. TheE polarization is when the vector

−→
E has only anEz component.

The H polarization occurs when the same holds for the vector
−→
H . The total field

observed at any point is (Ufimtsev, 1962)

Ez = E0z

[
u
(
r, 𝛼 − 𝛼inc

)
− u

(
r, 𝛼 + 𝛼inc

)]
(F.1)

with E polarization and

Hz = H0z

[
u
(
r, 𝛼 − 𝛼inc

)
+ u

(
r, 𝛼 + 𝛼inc

)]
(F.2)

with H polarization. Here, E0z and H0z are constants. For the angular region of inter-
est, i.e., 2𝜋 ≤ 𝛼 ≤ 3𝜋∕2 , the function u(r, 𝛼 ∓ 𝛼inc) is

u(r, 𝛼 − 𝛼inc) = v(r, 𝛼 − 𝛼inc) +

{
eikr cos(𝛼−𝛼

inc); 3𝜋∕2 ≤ 𝛼inc < 𝜋 − 𝛼0
0;𝜋 − 𝛼0 ≤ 𝛼inc ≤ 𝜋∕2

(F.3)
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u(r, 𝛼 + 𝛼inc) = v(r, 𝛼 + 𝛼inc) +

{
eikr cos(𝛼+𝛼

inc); 3𝜋∕2 ≤ 𝛼inc < 𝜋 + 𝛼0
0;𝜋 + 𝛼0 ≤ 𝛼inc ≤ 𝜋∕2

(F.4)

with function v(r, 𝜉) being

v(r, 𝜉) = eikr cos 𝜉
ei(𝜋∕4)√

𝜋 ∫
√
2kr cos(𝜉∕2)

∞ cos(𝜉∕2)
e−iq

2
dq (F.5)

Here, the lower limit of integration is always infinity with a sign equal to that of
cos(𝜉∕2). The integral at the right-hand side of (F.5) is known as the Fresnel integral
(Abramowitz and Stegun, 1972). For a zero argument the value is

∫
∞

0
e−iq

2
dq =

√
𝜋

2
e−i(𝜋∕4) (F.6)

If the argument is large enough, then the first term of the asymptotic expansion is

∫
∞

s
e−iq

2
dq ≈

e−is
2

2is
(F.7)

For s > 1, the error in (F.7) is less than 20% in module and less than 15∘ in phase. By
writing

eikr cos(𝛼−𝛼
inc) = e−ik(x(− cos 𝛼inc)+y(− sin 𝛼inc)) (F.8)

one recognizes the exponential term in (F.3) as a plane wave arriving from the direc-
tion 𝛼inc. Indeed, with expression (F.8), the Cartesian coordinates x, y are introduced
(Figure F.1). The wavefront in (F.8) is a plane,

(− cos 𝛼inc)x + (− sin 𝛼inc)y = const (F.9)

with a unit normal vector pointing in the direction of propagation as

−→n 0 = (− cos 𝛼inc)−→x 0 + (− sin 𝛼inc)−→y 0 (F.10)

Similarly, the exponential term in (F.4) is a plane wave reflected by the half-plane.

Figure F.1 Coordinate frame for diffraction over
half-plane.
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To construct an incident RHCP wave out of E and H polarized waves, one is to do
as follows: for very large distances from the half-plane, one neglects the contribution
of Fresnel integral in (F.4). For the H polarization, one employs (9.1.65) along with
(F.2), (F.8) and (D.12) to find the corresponding E field in the form

−→
E = H0z𝜂0

(
sin 𝛼inc−→x 0 − cos 𝛼inc−→y 0

)
e−ik(x(− cos 𝛼inc)+y(− sin 𝛼inc)) (F.11)

This vector is perpendicular to (F.10), as it should be for the plane wave. Thus,
for the sum of the E- and H-polarized waves to constitute an RHCP, one is to
set up

E0z =
1√
2
E0 (F.12)

H0z = i
1

𝜂0

√
2
E0 (F.13)

Here E0 is amplitude. Doing the same with (F.4) and employing (F.12) and (F.13),
one recognizes a reflected wave as LHCP.

At a point A by setting up 𝛼 = 2𝜋 − 𝛼0 in (F.3) and (F.4) one notes that if an inci-
dent wave crosses the line OB of Figure 9.4.3 while passing from angular sector I
to angular sector II (compare top-right and bottom-left panels), then the plane wave
contribution to the reflected field jumps to zero [see (F.4)]. However, due to (F.6)
the Fresnel integral compensates for this discontinuity and makes the total reflected
field continuous. The same is true with respect to the incident field and line OC
(bottom-left and bottom-right panels).

The contributions of the Fresnel integrals in (F.3) and (F.4) are called diffraction
waves. We are looking into these waves in the proximity of point A. Let an incident
wave direction of arrival be outside of the vicinity of lines OB and OC such that√
2kr

||||cos( 𝛼∓𝛼inc2

)|||| ≥ 1 holds. By using (F.7) with (F.5) and also (F.1) and (F.2), and

then calculating the vector
−→
E forH polarization and vector

−→
H for E polarization using

(9.1.65) and (9.1.66) and the rot operator in cylindrical coordinates given by (D.16),
one finds that the diffraction field is a collection of cylindrical waves originating from
the half-plane edge. These waves are locally plane ones. We do that in explicit form
for the case when the incident wave arrives within the angular sector III (bottom-right
panel in Figure 9.4.3). Accounting for (F.12) and (F.13) one finds that the second
terms in brackets in (F.1) and (F.2) constitute an LHCP field. Assuming the RHCP
antenna located at point A, this field is neglected. For the RHCP field the result is

−→
E

d,RHCP
= E0

e−ikr√
kr

e−i(𝜋∕4)

2
√
2
√
𝜋

1

sin

(
𝜃shadow − 𝜃e

2

) 1√
2
(−→z 0 + i−→𝜑0) (F.14)
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Here angles 𝜃shadow and 𝜃e are introduced according to (9.4.3) and (9.4.4). Note that
if there were no half-plane, then the incident wave would take the form

−→
E

inc
= E0e

−ikr cos(𝜃shadow−𝜃e) 1√
2

(−→z 0 + i−→𝜑0

)
(F.15)

Setting up the distance r = a in these last two expressions and comparing them in
magnitudes (modules), one gets (9.4.6), while comparison in phases yields (9.4.7).



APPENDIX G

SINGLE CAVITY MODE APPROXIMATION
WITH PATCH ANTENNA ANALYSIS

Consider the rectangular linear polarized patch antenna (Figure 9.7.1). The TM10
cavity mode is defined by expressions

−→
E = E0 sin

(
𝜋

ax
x

)
−→z 0 (G.1)

−→
H =

1
−i𝜔𝜇0

rot
−→
E = −E0 i

𝜋

ax

1
k𝜂0

cos

(
𝜋

ax
x

)
−→y 0 (G.2)

Here, E0 is the amplitude defined by the probe current, 𝜔 is the angular frequency,
and k is a free space wavenumber. The coordinate frame and antenna dimensions are
shown in Figure 9.7.1. Expressions (G.1) and(G.2) are valid for the area between the
patch and the ground plane, namely

⎧⎪⎨⎪⎩
−ax∕2 ≤ x ≤ ax∕2
−ay∕2 ≤ y ≤ ay∕2

0 ≤ z ≤ h

⎫⎪⎬⎪⎭ (G.3)

In order to define E0 as excited by the probe current, the power balance is considered,

Ppr = Pv + P𝛴 (G.4)

Here,

Ppr = −
1
2 ∫V

−→
j
∗

pr
−→
E dV (G.5)
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is power radiated by the probe,

Pv = i𝜔∫V

⎛⎜⎜⎜⎝
𝜇0
|||−→H|||2
2

−
𝜀0𝜀

|||−→E |||2
2

⎞⎟⎟⎟⎠ dV (G.6)

is power stored within the area (G.3) and

P𝛴 = ∫S𝛴

−→
𝛱d−→s (G.7)

is power radiated in free space. In these expressions V is the area (G.3), and S𝛴 is
the surface of the slots 7, 7′ in Figure 9.7.2. Substituting (G.1) and (G.2) into (G.6)
yields

Pv = −
i
4

axay
k𝜂0

(
k2𝜀 −

(
𝜋

ax

)2
)|E0|2h (G.8)

Since the probe radius rpr and substrate thickness h are much smaller compared to
the free space wavelength 𝜆, with (G.5), one takes the probe as a current filament and
writes −→

j pr = I𝛿(x − xpr)𝛿(y)
−→z 0 (G.9)

Here, I is the electric current of the probe. The delta functions were introduced in
Appendix D. Using (G.1) and (G.9) with (G.5) yields

Ppr = −
1
2

I∗E0h sin

(
𝜋

ax
xpr

)
(G.10)

The radiated power (G.7) is expressed as

P𝛴 = 2
|U|2Y∗

𝛴

2
(G.11)

Here, the voltage U at the patch edge located at x = ±ax∕2 is

U = E0h (G.12)

The symbol Y𝛴 denotes the radiating admittance (9.7.5). Substituting (G.8), (G.10),
and (G.11) into (G.4) and solving with respect to E0 yields

E0 = −
I sin

[
(𝜋∕ax)xpr

]
2
{
Y𝛴 + (iaxay)∕(4𝜂0kh) [k2𝜀 − (𝜋∕ax)2]

}
h

(G.13)

The total input power is expressed in the form

Pinp = Ppr + PL (G.14)
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Here, Ppr is defined by (G.10) with E0 defined by (G.13), and

PL = i
|I|2XL

2
(G.15)

is the power related to the probe inductance XL defined by (9.7.8). Writing the input
power (G.14) in the form

Pinp = 1∕2 |I|2Zinp (G.16)

one has the input impedance Zinp in the form of (9.7.2).
In order to calculate the antenna radiation pattern, one needs to account for the

following sources of radiation: probe current, patch current, and polarization currents
of the substrate. The probe current is given in (G.9). The patch current is related to
the magnetic field tangential to the patch by boundary conditions (E.44), yielding

−→
j patch = i

1
k𝜂0

𝜋

ax

I

sin
[
(𝜋∕ax)xpr

]
(G + iB)h

cos

(
𝜋

ax
x

)
𝛿(z − h)−→x 0 (G.17)

The polarization currents in the substrate are defined by [Balanis (1989)]

−→
j pol = i𝜔𝜀0(𝜀 − 1)

−→
E (G.18)

The term “polarization” in this case stands for the process of orientational polarization
in dielectrics. This is not to be confused with plane wave polarization as discussed in
Section 9.1.6. We assume that with compact designs, the substrate does not exceed
the limits of the patch. Using (G.13) with (G.1) and employing (9.7.3) and (9.7.4),
yields

−→
j pol = − i𝜔𝜀0(𝜀 − 1)

I

sin
[
(𝜋∕ax)xpr

]
(G + iB)h

sin

(
𝜋

ax
x

)
−→z 0 (G.19)

Vectors (G.9), (G.17), and (G.19) are substituted into (E.19) yielding (9.7.12) to
(9.7.16). An unbounded, perfectly conductive ground plane is taken into consider-
ation employing images approach (Appendix E).

To analyze the TM01 mode instead of (G.1), one is to write

−→
E = E0 sin

(
𝜋

ay
y

)
−→z 0 (G.20)

and perform the same derivations with the probe displaced along the y axis.





APPENDIX H

PATCH ANTENNAS WITH ARTIFICIAL
DIELECTRIC SUBSTRATES

Consider the left panel of the Figure H.1, showing a structure comprising top and
bottom metal planes with the dense periodic system of metal ribs attached to the
bottom plane (Silin and Sazonov, 1971). The characteristic equation for the wave
traveling in the x direction in the area 0 ≤ z ≤ d is

(kzd) tanh(kzd) = −i
Zs
𝜂0
kd (H.1)

Here, Zs is a surface impedance formed by the ribs,

Zs = −i𝜂0 tan(kb) (H.2)

Assuming b and d << 𝜆, the solution to (H.1) is

kz
2 = −k2

b
d

(H.3)

Thus,

kx
2 = k2

(
1 +

b
d

)
(H.4)

and the slowdown factor 𝛽, related to equivalent effective dielectric constant 𝜀eff of
an artificial medium, is

𝛽 =
√
𝜀eff =

√
1 +

b
d

(H.5)
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Figure H.1 Parallel plate waveguide partially filledwithmetal ribs and equivalent chain
circuit.

Thus, for a narrow gap d such that d ≪ b, a potentially high 𝜀eff can be achieved.
The same result can also be viewed differently. Let BC be the susceptance of a

capacitor formed by a rib and a top plane, and T be the spacing between the ribs.
One arrives at an equivalent chain circuit as seen in the right panel of the figure. The
characteristic equation for the chain is (Tretyakov, 2003)

cos(k𝛽T) = cos(kT) − BCW sin(kT)∕2 (H.6)

where W is the characteristic impedance of a line. For a patch antenna with width a,
the line can be viewed as a cut of a parallel plate waveguide with said width and filled
with air, thus

W = 𝜂0
h
a

(H.7)

Here h = b + d is the thickness of the substrate. For k𝛽T << 1, the solution to
(H.6) is

𝛽 =

√
1 +

BCW

kT
(H.8)

Thus, the chain is nondispersive and equivalent to a homogeneous medium. Calcula-
tions with the help of (H.6) show that for T ∼ 10−2𝜆 undesirable dispersion becomes
noticeable if 𝛽 ≈ 7...10 or larger. Such high 𝛽 values are probably beyond practical
interest for patch antennas in survey applications.

For circular polarized antennas, one might be interested in a two-dimensional
lattice of pins rather than ribs. Accurate simulations with method of moments
(Peterson et al., 1998) code have shown that, within practical limitations on pins
radii and spacing between pins, 𝜀eff ∼ 4 can be achieved. As an example, Figure H.2
shows a patch antenna stack covering the entire GNSS band. The height of the stack
is 35mm, and pin substrates with 𝜀eff ≈ 4 are utilized.

Further, with a TM10 cavity mode of a patch antenna, the pins located at the central
area of a patch are excited by comparatively weak fields [see expression (G.1)] and
thus can be removed.

Compare theQ factors of two equivalent circuits in Figure H.3. Here the left panel
corresponds to the “regular” patch antenna with dielectric substrate and slowdown
factor of 𝛽 =

√
𝜀; and 𝜀 is the permittivity of the substrate. Due to the symmetry of

the TM10 cavity mode with respect to the y axis of Figure 9.7.1, one is able to treat a
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Figure H.2 Full wave GNSS patch antenna
stack formed with pins substrates.

Figure H.3 Equivalent circuits for the patch antenna Q-factor estimates.

quarter-wavelength circuit shorted at one end. The radiating admittance G𝛴 is given
by (9.7.6), and susceptance (9.7.7) is neglected. For a square patch that is required
for circular polarized antenna, one writes ax = ay = a where a is defined by (9.7.1)
and uses this with (9.7.6). The length of the stub at the left panel in Figure H.3 is
a∕2. The characteristic impedance W𝛽 is taken similar to (H.7), but accounting for
the medium with a slowdown factor of 𝛽, thus

W𝛽 = W
1
𝛽

(H.9)

The Q factor of this circuit is given by (9.7.11). With the right panel in Figure H.3,
one assumes that the line is filled with air and W is given by (H.7). However, let the
same equivalent factor 𝛽 be achieved by introducing a capacitor with susceptance BC,
thus

a =
𝜆0

2𝛽
(H.10)

Here, 𝜆0 is the resonant wavelength. The resonant condition for this circuit reads

BCW|𝜔0 = cot
(
k
a
2

) |𝜔0 = cot

(
𝜋

2𝛽

)
(H.11)
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Figure H.4 General view and effective dielectric constant of a substrate versus consti-
tutive parameter of a patch antenna with capacitive frame.

All the quantities are taken at resonant frequency 𝜔0. For the Q factor, one has

Q =
1

2G𝛴
𝜔0

d
d𝜔

[
BC −

1
W

cot
(
k
a
2

)]
𝜔0

=
𝜆0
4h

⎡⎢⎢⎢⎣
2
𝜋
cot

(
𝜋

2𝛽

)
+

1

𝛽sin2
(
𝜋

2𝛽

)⎤⎥⎥⎥⎦
≈
𝜆0
4h
𝛽
8
𝜋2

(H.12)

When compared to (9.7.11), this estimate shows that the capacitive load provides a
slightly better Q factor than the dielectric substrate.

Now one considers a patch antenna with a substrate in the form of a capacitive
frame around a perimeter (Figure H.4, left panel). Each capacitor is formed by a
pair of metal legs coming from the patch and the ground plane. The homogenization
technique to estimate the effective dielectric permittivity 𝜀eff of such a substrate is
now described.

For linear polarization parallel to the x axis, we view the patch as a piece of
microstrip line aligned in the x direction. Similar to (H.8), one writes the equivalent
slowdown factor 𝛽1 in the line as

𝛽1 =

√
1 +

2BCW

kT
(H.13)

Here, it accounts for two rows of capacitors with susceptance BC. Next, consider the
system of capacitors parallel to the y axis. In this case, an equivalent circuit as seen
in the right panel in Figure H.3 holds. The difference with the above is that now the
line is filled with media having slowdown factor (H.13), and the wave impedance of
the lineW1 is

W1 = W
1
𝛽1

(H.14)

For T ≪ a the total number of capacitors aligned parallel to the y axis is ≈ a∕T , and
instead of (H.11), the resonant condition will read

BC
a
T
W1 = cot

(
k𝛽1

a
2

)
(H.15)
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Now we introduce the total equivalent slowdown factor 𝛽 =
√
𝜀eff , such that

𝛽 = 𝛽1𝛽2 (H.16)

and the patch size a is given by (H.10). Expressions (H.13), (H.15), and (H.16) define
𝛽 as a function of BC, h, and T . By introducing the constitutive parameter

𝛼 = BC𝜂0
h
T

(H.17)

and employing (H.7) and (H.10) with (H.13), one has

𝛽1 =

√
1 + 2𝛽1𝛽2𝛼

1
𝜋

(H.18)

Employing (H.14) with (H.15), one has

𝛼 = 𝛽1 cot

(
𝜋

1
2𝛽2

)
(H.19)

Substituting (H.19) in (H.18) and solving for 𝛽1 yields

𝛽1 =
1√

1 − (2𝛽2∕𝜋) cot(𝜋∕2𝛽2)
(H.20)

Substituting (H.20) in (H.19) and further using (H.16) with (H.20), one arrives at

𝛽 =
𝛽2√

1 − (2𝛽2∕𝜋) cot(𝜋∕2𝛽2)

𝛼 =
cot(𝜋∕2𝛽2)√

1 − (2𝛽2∕𝜋) cot(𝜋∕2𝛽2)
(H.21)

These expressions define 𝛽 as a function of 𝛼 in parametric formwith 𝛽2 as the param-
eter. We plot this as a function 𝜀eff (𝛼) in the right panel of Figure H.4. Assuming
(H.17), this curve gives effective dielectric permittivity 𝜀eff as a function of the con-
stitutive parameters of the structure.





APPENDIX I

CONVEX PATCH ARRAY GEODETIC
ANTENNA

Consider a two-dimensional patch (strip) of size L placed at a distance h over the
shorted end of a parallel plate waveguide of width D (Figure I.1).

Let the current distribution over the patch coincide with that of a TM10 cavity
mode (Appendix G), namely

−→
j = j0 cos

(
𝜋

L

(
x −

L
2

))
𝛿(z − h)−→x 0 (I.1)

The impedance Z is introduced by the relationship

P = 1∕2|j0|2Z (I.2)

Here, P is radiated power. Expanding the fields into a set of eigenmodes of a parallel
plate waveguide yields

Z = R + iXL − iXC (I.3)

where

R = 𝜂0

(
C0

)2
D

sin2(kh) (I.4)

XL = 𝜂0

(
C0

)2
D

1
2
sin(2kh) (I.5)

XC = 𝜂0
1
D

∞∑
n=2

|𝛤n|
k

(
Cn

)2(
1 − e−2|𝛤n|h) (I.6)
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Figure I.1 Two-dimensional model of a patch (strip)
in a parallel plate waveguide.

Cn = ∫
D∕2+L∕2

D∕2−L∕2
cos

(
𝜋

L

(
x −

D
2

))
cos(𝜒nx)dx (I.7)

𝜒n = n
𝜋

D
(I.8)

𝛤n =
√

k2 − 𝜒n
2 (I.9)

In these expressions it is assumed that D < 𝜆∕2 holds. Decreasing the patch size at
resonance is achieved by quasi-static capacitance (I.6). For h being of the order of

Figure I.2 Frequency response of the impedance Z associated with the patch.
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hundredths of the wavelength, the impedance (I.3) exhibits series resonance typical
of a patch at a small height over the ground plane. This is illustrated in the top panel
in Figure I.2 for h = 0.05𝜆. However, for h ≈ 𝜆∕8 the XL behavior versus frequency
in (I.5) becomes convex (see middle panel in Figure I.2). Thus, a substantial fre-
quency bandwidth expansion is achieved. With further h increases, the capacitance
(I.6) dominates (bottom panel).

The patch in the parallel plate waveguide is equivalent to an infinite array of
patches with narrow gaps between them. The above analysis suggests that there exists
an optimal height over the ground plane from the frequency bandwidth standpoint.
A three-dimensional analogy is a semispherical cup containing an array of coupled
convex patches as shown in Figure 9.7.20. The number of patches is chosen so as
to provide azimuthal variations of the radiation pattern below 0.1 dB. Optimization
techniques have resulted in a cup diameter of 84 mm, which is about one-third of the
wavelength at the lowest frequency of the GNSS band.
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702, 713, 718

Partial minimization of quadratic
functions, 82, 89, 117, 669

Perfect GNSS receiver antenna, 547,
555

Perigee, 208, 209, 238
Permutations, 330, 655
Phase center offset, 292, 562, 568, 573,

576, 590, 599, 626, 638
Phase center variations, 574
Phase center, 568, 569
Phase corrections, 364
Phase index of refraction, 500, 521, 528
Phase pattern, 535, 541, 542, 566, 567,

568
Phase velocity, 500, 521, 522
Phase windup, 264, 283, 430
Phasor, 525
Pinwheel antenna, 629
Planar array antenna, 645, 648
Plane wave, 518, 519, 520
Point of expansion, 18, 22, 34, 201, 681,

704, 711
Point positioning, 299
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Point scale factor, 199, 721, 723, 725,
727, 730

Polar conformal mapping, 729
Polar motion, 132, 144, 162, 205, 297
Polarization of a GNSS receiver

antenna, 560
Polynomial complexity, 353, 463
Position error, 57, 59,
Positive definite matrix, 43, 85, 661, 666
Power flux, 519, 522, 528
Power pattern, 532, 543
PPP, see Precise point positioning
Precession, 142, 146
Precipitable water vapor, 485
Precise point positioning, 357, 373
Precision, 14
Principal axes, 51, 662
Principal polarization, 542
PRN number, 229, 232, 233
Pseudoinverse, 41, 176
Pyramidal choke ring antenna, 636

QAM, see quadrature amplitude
modulation

QR decomposition, 464, 673
Quadrature amplitude modulation, 230
Quadrature phase shift keying, 229, 243

Radiation pattern, see antenna pattern
Random errors, 13
Random walk, 79
Rank one update, 461, 466, 676
R-card ground plane, 644
Real-time kinematics, 401
Receiver clock errors, 261, 272, 273,

278, 285, 294, 299, 320,364, 379,
420

Receiver hardware phase and code
delay, 264, 262, 272, 277, 358,
507

Receiver phase and code biases, 368
Recursive least squares, 81
Reduction of observations, 162, 164,

193, 194, 200, 205
Redundancy number, 62, 186

Relative antenna calibrations, 575
Relative positioning, 272, 273, 304
Relativistic correction, 229, 246, 277
Reparameterization, 170, 171, 278, 357,

368, 373, 416
Right ascension of ascending node, 209,

221
RINEX, 298
Rotation matrices, 136, 168, 267, 409,

657
Rover station, 366, 401, 412, 418, 419,

421, 422, 425, 426, 428–431,
435–437, 440, 455, 456, 459–461,
470, 473

RTK, see real-time kinematics

Satellite body-fixed coordinate system,
223

Satellite clock correction, 238, 262, 263,
278, 280, 299

Satellite hardware phase and code delay,
262, 273, 277, 264, 279, 507

Satellite identification, see PRN number
Satellite phase and code biases, 368
Scaled phase functions, 265
Schnorr-Euchner searching strategy, 355
Scintillation, 497
Semi-transparent ground plane, 644
Sequential adjustment, 33
Sidereal time, 148
Signal-to-noise ratio, 609, 615, 616,

617, 619, 638
Skin depth, 529
Solar radiation pressure, 208, 222
Solid earth tides, 130, 135
Somigliana formula, 162
Sparse matrix, 92, 107, 112, 121
Sparse signal, 458
Sparse vector, 457, 458
Sparseness, 456, 457, 462
SPCS, see State Plane Coordinate

Systems
Specular reflections, 587
spherical array antenna, 650
Spherical coordinates, 743
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Spherical excess, see angular excess
Spherical harmonics, 161, 568
Spherical triangle, 285, 506, 653
Spherical triangle, 711, 713
Spherical trigonometry, 162, 164, 285,

506, 653
spherical wave, 531, 532, 534
stacked patch antenna, 628
Standard deviation curve, 58
Standard ellipse, 37, 54, 56, 179, 183,

389
Standard parallel, 727, 729, 731
State plane coordinate system, 731, 738
Stochastic independence, 50, 692
Stochastic model, 14, 74, 307
Subscript notation, 259, 260, 269
Sunspot, 498
Surface normal, 705
Systematic errors, 13, 165

t distribution, 687
TAI, see International atomic time
Tangent vector, 701, 707
TEC unit, 298, 501
TEC, see total electron content
Tectonic plate motion, 133
Timing group delay, 278
Tipping curve calibration, 495
Topocentric coordinates, 219
Topocentric range, 264, 275
Total differential, 155, 662, 704
Total electron content, 477, 501
Transformations, 40, 41, 43 ,69, 136,

138, 140, 143, 158, 170, 178, 203,
214, 327,344, 386, 525

Transverse Mercator mapping, 724
Triple difference positioning, 308, 459
Tropospheric delay, 262, 264, 274, 294,

358, 361, 373, 406, 479
Tropospheric mapping function, 482
True anomaly, 209, 216, 240
True celestial coordinate system, 148
Type I/II error, 64, 67, 334, 690

UHF, see ultra-high frequency
Ultra high frequency, 401
UTC, see Coordinate universal time
UTM, 738

Variance factor, 184, 271, 392
Variance-covariance propagation, 20,

39, 48, 57, 76, 78, 308, 328, 693
Vector network, 174, 176
Vertical array antenna, 649, 650
Vertical impedance antenna, 642
Vertical network, 190
Voltage standing wave ratio, 604
Volumetric patch antenna, 639

Water vapor radiometer, 475
Wavelength, 521, 523, 525, 529
Weighted parameters, see observed

parameters

Yaw, 223

Z transformation, 327
Zephyr geodetic antenna, 644
Zero hypothesis, 46, 49, 51, 65, 71, 324,

334, 458, 689
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