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PREFACE

GPS Satellite Surveying has undergone a major revision in order to keep abreast with
new developments in GNSS and yet maintain its focus on geodesy and surveying.
All chapters have been reorganized in a more logical fashion. Because the GNSS
systems have developed significantly since the last edition of the book, we have
added new material on the GLONASS, Beidou, and Galileo systems, as well as on the
ongoing modernization of GPS. A separate chapter was included on recursive least
squares. Another chapter on RTK implementation was added that uses these recur-
sive least-squares algorithms to process across-receiver observation differences and is
capable of accepting observations from all GNSS systems. Examples are supported
by real data processing. A third new chapter was added on GNSS user antennas.
This chapter was prepared by an antenna expert to provide the necessary background
information and details to allow practicing engineers to select the right antenna for
a project. As to GNSS processing approaches, major new sections were added on
PPP-RTK and TCAR. Six new additional appendices were added containing in-depth
mathematical supplements for those readers who enjoy the mathematical rigor.

The original author of GPS Satellite Surveying, Alfred Leick, appreciates the con-
tributions of Lev Rapoport and Dmitry Tatarnikov and most cordially welcomes these
very qualified individuals as co-authors. All three of us wish to thank our fami-
lies for their outstanding support throughout our professional careers. Lev Rapoport
wishes to thank Javad GNSS for permission to use their receivers Triumph-1, Delta
TRE-G3T, and Delta Duo-G2D for data collection, and Dr. Javad Ashjaee for the
opportunity to get acquainted with GNSS technologies and observe its history through
the eyes of a company employee. Dmitry Tatarnikov wishes to thank his colleagues
at the Moscow Technology Center of Topcon for their contributions to the research,

XV



XVi PREFACE

development, and production of antennas, and the management of Topcon Corpo-
ration for support of this work. Alfred Leick expresses his sincere appreciation to
anybody contributing to this and any of the previous revisions of GPS Satellite Sur-
veying. We appreciate Tamrah Brown’s assistance in editing the draft in such a short
period of time.
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CHAPTER 1

INTRODUCTION

Over the last decade, the development and application of GNSS (global navigation
satellite system) has been unabatedly progressing. Not only is the modernization
of the U.S. GPS (global positioning system) in full swing, the Russian GLONASS
(Global’naya Navigatsionnaya Sputnikovaya Sistema) system has undergone a
remarkable recovery since its decline in the late 1990s to be now fully operational.
The first static and kinematic surveys with the Chinese Beidou system are being
published, and the signals of the European Galileo system are being evaluated.
While many individuals might look back on the exciting times they were fortunate
to experience since the launch of the first GPS satellite in 1978, there are many more
enthusiastic individuals gearing up for an even more exciting future of surveying
and navigation with GNSS. Yes, it seems like a long time has passed since sunset
admirers on top of Mount Wachusett, seeing a GPS antenna with cables connected
to a big “machine” in a station wagon were wondering if it would “take off,” or if
you were “on their side,” or regular folks in a parking lot approaching a car with a
“GPS” license plate were wondering if you had “such a thing.”

Much has been published on the subject of GNSS, primarily about GPS because
of its long history. Admirably efficient search engines uncover enormous amounts
of resources on the Internet to make an author wonder what else is there to write
about. We took the opportunity of updating GPS Satellite Surveying to add strength
by including two additional authors, while looking at rearranging the material in
a way that reflects the maturity and permanency of the subject and de-emphasizes
the news of the day or minor things that may have gotten the early pioneers of
GPS excited.

Perhaps the most visible outcome of the rearrangement of the material for this edi-
tion is that GNSS in earnest starts only in Chapter 5, which may come as a surprise to
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the unexpected reader. However, if was determined that first presenting the geodetic
and statistical foundations for GPS Satellite Surveying would be more efficient, and
then focusing on GNSS, thus taking advantage of having the prerequisites available
and not being side-tracked by explaining essential fill-in material. Therefore, there are
two chapters devoted to least-squares estimation, followed by a chapter on geodesy.
These three chapters clearly identify the traditional clientele this book tries to serve,
i.e., those who are interested in using GNSS for high-accuracy applications. The other
chapters cover GNSS systems, GNSS positioning, RTK (real-time kinematic), tropo-
sphere and ionosphere, and GNSS user antennas. There are nine appendices.

Chapter 2, least-squares adjustment, contains enough material to easily fill a reg-
ular 3-credit-hour college course on adjustments. The focus is on estimating param-
eters that do not depend on time. The material is presented in a very general form
independently of specific applications, although the classical adjustment of a geode-
tic or surveying network comes to mind as an example. The approach to the material
is fairly unique as compared to a regular course on least squares because it starts with
the mixed model in which the observations and the parameters are implicitly related.
This general approach allows for an efficient derivation of various other adjustment
models simply by appropriate specifications of certain matrices. Similarly, the gen-
eral linear hypothesis testing is a natural part of the approach. Of particular interest
to surveying applications are the sections on minimal and inner constraints, internal
and external reliability, and blunder detection.

Chapter 3, recursive least squares, represents new material that has been added to
this fourth revision. In particular in view of RTK application where the position of
the rover changes with time, it was deemed appropriate to add a dedicated chapter
in which the estimation of time-dependent parameters is the focus. Consequently, we
changed the notation using the argument of time consistently to emphasize the time
dependency. A strength of this chapter is that it explicitly deals with patterned matri-
ces as they occur in RTK and many other applications. Apart from the term “recursive
least squares,” other terms might be “first-order partitioning regression” or “Helmert
blocking,” that express the technique applied to these patterned matrices. Although
Chapters 2 and 3 are related since there is only one least-squares method, Chapter 3
stands on its own. It also could serve easily as a text for a regular 3-credit-hour college
course.

Chapter 4 is dedicated to geodesy. It provides details on reference frames, such
as the ITRF (international terrestrial reference frame), as well as the transformation
between such frames. The geodetic datum is a key element in this chapter, which is
defined as an ellipsoid of defined location, orientation, and size and an associated
set of deflection of the vertical and geoid undulations. Establishing the datum, in
particular measuring gravity to compute geoid undulations, is traditionally done by
geodesists. The fact that here it is assumed that all this foundational material is given
indicates that geodesy is treated not as a science by itself in this book but rather as an
enabling element that supports accurate GNSS applications. As the “model for all,”
we present the three-dimensional (3D) geodetic model, which is applicable to net-
works of any size and assumes that the geodetic datum is available. In addressing the
needs of surveying, the topic of conformal mapping of the ellipsoidal surface is treated
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in great detail. This includes, as a transitional product encountered along the way,
computations on the ellipsoidal surface. It is well known that computing on the con-
formal mapping plane is limited by the area covered by the network since distortions
increase with area. Additionally, the respective computations require the geodesic
line, which is mathematically complicated, and the respective expressions are a result
of lengthy but unattractive series expansions. Clearly, an attempt is made to point out
the preference of the 3D geodetic model when there is the opportunity to do so.

Chapter 5, finally, introduces the various GNSS systems. In order to provide back-
ground information on satellite motions, the chapter begins with an elementary dis-
cussion of satellite motions, the Kepler elements that describe such motions, and the
particularly simple theory of normal orbits, i.e., motion in a central gravity field. The
disturbing forces that cause satellites to deviate from normal orbits are discussed as
well. However, the material is not presented at the level of detail needed for accurate
satellite orbit determination. We assume that orbit determination will continue to be
handled by existing expert groups and that respective products will be available either
through the broadcast navigation message or the International GNSS Service (IGS)
and other agencies in the form of precise and/or ultra-rapid ephemeris and satellite
clock data. This chapter includes new material on GPS modernization and on the
GLONASS, Galileo, and Beidou systems. In the meantime, interface control docu-
ments are available for all these GNSS systems and posted on the Internet. The reader
is advised to consult these documents and similar publications that expertly address
the space segment.

Chapter 6 discusses in detail the various GNSS positioning approaches conve-
niently in “one place.” It begins with specifying the fundamental pseudorange and
carrier phase equations. All relevant functions of these observables are then grouped
and listed without much additional explanation. These functions are all well known;
exceptions might be the triple-frequency functions. We introduce the “across” ter-
minology in order to more easily identify the specific differencing. As such, we
have the across-receiver, across-satellite, and across-time observation (single) dif-
ferences, and then the traditional double-difference and triple-difference functions.
A separate section is dedicated to operational details. That section includes every-
thing one needs to know when carrying out high-accuracy positioning with GNSS.
We especially stress the “GNSS infrastructure” that has established itself to support
users. By this, we mean the totality of GNSS services provided by government agen-
cies, user groups, universities, and above all the IGS and the (mostly) free online
computing services. IGS provides products of interest to the sophisticated high-end
GNSS user, while the computation services are of most interest to those responsible
for processing field data. This is indeed a marvelous GNSS infrastructure that is of
tremendous utility.

As to the actual GNSS positioning approaches, Chapter 6 is concerned with three
types of approaches, each having been assigned a separate section. The first section
deals with navigation solution, which uses the broadcast ephemeris, and the tradi-
tional double-differencing technique with ambiguity fixing for accurate positioning.
The double differences are formed on the basis of the base station and base satellite
concept to conveniently identify the linear dependent double differences. We note that
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the reason for the popularity of the double-difference functions is the cancelation of
common mode errors, such as receiver and satellite clock errors and hardware delays,
as well as the tropospheric and ionospheric impacts on the carrier phases in the case
of short baselines. The formation of double-difference functions is briefly contrasted
with the equivalent undifferenced approach in which only the nonbase-station and
nonbase-satellite observation contains an ambiguity parameter, while each of the
others contains an epoch-dependent parameter. The latter approach results in a
large system of equations that can be efficiently solved by exploring the pattern of
the matrices.

In the second section, we discuss PPP (precise point positioning), CORS (con-
tinuous operating reference stations), and the classical differential correction that
applies to RTK and PPP-RTK, which has been gaining popularity. In the case of
PPP, the user operates one dual-frequency receiver and uses the precise ephemeris
and satellite clock corrections to determine accurate position; the known drawback
of the technique is long station occupation times. The use of the “classical” differ-
ential pseudorange and carrier phase correction is also well established, in particular
in RTK. The differential correction essentially represents the discrepancies of the
undifferenced observations computed at the reference stations. The user receives the
differential correction of one or several reference stations and effectively forms dou-
ble differences to determine its precise position. In the case of PPP-RTK, biases are
transmitted to the user. These biases represent the difference of the satellite biases
(clock error and hardware delay) and the base station bias (clock error and hard-
ware delay). The user applies the received biases to the observations and carries
out an ambiguity-fixed solution for precise point positioning. The advantage of the
PPP-RTK approach is that the biases only primarily depend on the changes of the
base station clock. Therefore, if the base station is equipped with an atomic clock,
the variability of the transmitted biases can be reduced. Using the classical differen-
tial correction, the RTK user needs to estimate (R — 1)(S — 1) ambiguities, where R
and S denote the number of receivers (reference plus rover) and satellites involved,
whereas the PPP-RTK user only needs to estimate (S — 1) ambiguities. In the case
of PPP-RTK, some of the work is shifted to the reference network since it computes
the biases relative to the base station, whereas the differential corrections refer to the
respective reference station and not a specific base station.

In the third section, we deal with TCAR (three carrier phase ambiguity resolu-
tions). This technique is an extension of the popular dual-frequency technique of
computing the wide-lane ambiguity first and independently from the actual position
solution. In the case of TCAR, one uses triple-frequency observations to resolve the
extra-wide-lane, wide-lane, and narrow-lane ambiguities first.

Additionally, a separate section is dedicated to ambiguity fixing. First, the popular
LAMBDA (least-squares ambiguity decorrelation adjustment) technique is discussed
in detail. This is followed by material on lattice reduction. It was deemed important
to add material to see how other disciplines deal with problems similar to ambiguity
fixing in GNSS, and in doing so remaining open-minded as to other possible efficient
solutions, in particular as the number of ambiguities increases when eventually all
visible satellites of all systems are being observed.



INTRODUCTION 5

Chapter 7 is dedicated to RTK. Since RTK includes static positioning as a
special case, it is considered the most general approach. The technique is applicable
to short baselines and long baselines if all effects are appropriately modeled.
The chapter refers to a practical implementation of RTK algorithms that uses
the formalism of recursive least squares given in Chapter 3, uses across-receiver
differences as opposed to double differences, and is designed to include observations
from all GNSS systems. Its recipes for software implementations are intended for
specialists in geodetic software design. All examples are illustrated by way of real
data processing.

Chapter 8 deals with the troposphere and ionosphere. The material is presented in
a separate chapter in order to emphasis the major contribution of GPS in sensing the
troposphere and ionosphere and, conversely, to understand the major efforts made to
correct the observations for ionospheric and tropospheric effects in positioning. In
addition to dealing with tropospheric refraction and various models for zenith delays
and vertical angle dependencies, some material on tropospheric absorption and water
vapor radiometers has been included. The chapter ends with a brief discussion on
global ionospheric models.

Chapter 9 represents a major addition to this edition of the book. It is well known
that multipath is affecting all GNSS positioning techniques, whether based on carrier
phases or pseudoranges, since it is directly related to the ability of the user antenna
to block reflected signals. Also realizing that geodesist and surveyors typically are
not experts in antenna design, it was thought that a dedicated chapter on GNSS user
antennas would provide an important addition to the book. We maintained the termi-
nology and (mostly) also the notion that is found in the antenna expert community in
the hope that it would make it easier for GPS Satellite Surveying readers to transition
to the respective antenna literature if needed. Existing texts are often found to be too
simple to be useful or too difficult for nonspecialists to understand. As an example
of our approach, the Maxwell equations appear in the first section of the chapter but
actually are not used explicitly except as support in the appendices. However, the
majority of expressions are thoroughly derived and the respective assumptions are
clearly identified. In several instances, however, it was deemed necessary to provide
additional references for the in-depth study of the subject.

Chapter 9 is subdivided into seven sections. These sections deal with elements of
electromagnetic fields and waves, antenna pattern and gain, phase center variation,
signal propagation through a chain of circuits, and various antenna types and man-
ufacturing issues and limitations. The material of this chapter is supplemented by
six appendices which contain advanced mathematical material and proofs in com-
pact form for readers who enjoy such mathematical depth. In general, the material is
presented with sufficient depth for the reader to appreciate the possibilities and lim-
itations of antenna design, to judge the performance of antennas, and to select the
right antenna for the task at hand, in particular for high-accuracy applications.

Depending on one’s view, one might consider GPS an old or new positioning and
timing technology. Considering that the first GPS satellite was launched in 1978,
one certainly can see it as old and well-established technology. However, given that
new applications of GPS, and now we need to say GNSS, are continuously being
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developed, it is certainly also fair to characterize this as new technology. Whatever the
reader’s view might be, it is impossible to trace back all instances of important devel-
opments in GNSS unless, of course, one is willing to write a dedicated book on the
history of GNSS. Nevertheless, the “pioneering years” of GPS were extremely uplift-
ing as progress could be measured by leaps and bounds, and results were achieved
at a level of quality that one had not expected. We present a brief, and probably sub-
jective, review with a slant toward surveying of the major events up to the year 2000.
Today, of course, progress continues to be made, in particular as other GNSS systems
become operational; the progress is, however, now smooth and less steep.

Table 1.1 lists some of the noteworthy events up to the year 2000. GPS made
its debut in surveying and geodesy with a big bang. During the summer of 1982,
the testing of the Macrometer receiver, developed by C. C. Counselman at M.I.T.,
verified a GPS surveying accuracy of 1 to 2 parts per million (ppm) of the station
separation. Baselines were measured repeatedly using several hours of observations
to study this new surveying technique and to gain initial experience with GPS. During
1983, a first-order network densification of more than 30 stations in the Eifel region
of Germany was observed (Bock et al., 1985). This project was a joint effort by the
State Surveying Office of North Rhein-Westfalia, a private U.S. firm, and scientists
from ML.LT. In early 1984, the geodetic network densification of Montgomery County
(Pennsylvania) was completed. The sole guidance of this project rested with a private
GPS surveying firm (Collins and Leick, 1985). Also in 1984, GPS was used at Stan-
ford University for a high-precision GPS engineering survey to support construction
for extending the Stanford linear accelerator (SLAC). Terrestrial observations (angles
and distances) were combined with GPS vectors. The Stanford project yielded a truly
millimeter-accurate GPS network, thus demonstrating, among other things, the high
quality of the Macrometer antenna. This accuracy could be verified through com-
parison with the alignment laser at the accelerator, which reproduces a straight line
within one-tenth of a millimeter (Ruland and Leick, 1985). Therefore, by the middle
of 1984, 1 to 2 ppm GPS surveying had been demonstrated beyond any doubt. No
visibility was required between the stations, and data processing could be done on
a microcomputer. Hands-on experience was sufficient to acquire most of the skills
needed to process the data—i.e., first-order geodetic network densification suddenly
became within the capability of individual surveyors.

President Reagan offered GPS free of charge for civilian aircraft navigation in
1983, once the system became fully operational. This announcement can be viewed
as the beginning of sharing arrangements of GPS for military and civilian users.

Engelis et al. (1985) computed accurate geoid undulation differences for the Eifel
network, demonstrating how GPS results can be combined with orthometric heights,
as well as what it takes to carry out such combinations accurately. New receivers
became available—e.g., the dual-frequency P-code receiver TI-4100 from Texas
Instruments—which was developed with the support of several federal agencies.
Ladd et al. (1985) reported on a survey using codeless dual-frequency receivers
and claimed 1 ppm in all three components of a vector in as little as 15 min of
observation time. Thus, the move toward rapid static surveying had begun. Around
1985, kinematic GPS became available (Remondi, 1985). Kinematic GPS refers
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TABLE 1.1 GPS Development and Performance at a Glance until 2000

1978 Launch of first GPS satellite
1982 Prototype Macrometer testing at M.I.T.
Hatch’s synergism paper
1983 Geodetic network densification (Eifel, Germany)
President Reagan offers GPS to the world “free of charge”
1984 Geodetic network densification (Montgomery County, Pennsylvania)
Engineering survey at Stanford
Remondi’s dissertation
1985 Precise geoid undulation differences for Eifel network
Codeless dual-band observations
Kinematic GPS surveying
Antenna swap for ambiguity initialization
First international symposium on precise positioning with GPS
1986 Challenger accident (January 28)
10 cm aircraft positioning
1987 JPL baseline repeatability tests to 0.2—0.04 ppm
1989 Launch of first Block II satellite
OTF solution
Wide area differential GPS (WADGPS) concepts
U.S. Coast Guard GPS Information Center (GPSIC)
1990 GEOID90 for NAD83 datum
1991 NGS ephemeris service
GIGO91 experiment (January 22—February 13)
1992 IGS campaign (June 21—September 23)
Initial solutions to deal with antispoofing (AS)
Narrow correlator spacing C/A-code receiver
Attitude determination system
1993 Real-time kinematic GPS
ACSM ad hoc committee on accuracy standards
Orange County GIS/cadastral densification
Initial operational capability (IOC) on December 8
1-2 ppb baseline repeatability
LAMBDA
1994 IGS service beginning January 1
Antispoofing implementation (January 31)
RTCM recommendations on differential GPS (Version 2.1)
National Spatial Reference System Committee (NGS)
Multiple (single-frequency) receiver experiments for OTF
Proposal to monitor the earth’s atmosphere with GPS (occultations)
1995 Full operational capability (FOC) on July 17
Precise point positioning (PPP) at JPL
1996 Presidential Decision Directive, first U.S. GPS policy
1998 Vice president announces second GPS civil signal at 1227.60 MHz
JPL’s automated GPS data analysis service via Internet
1999 Vice president announces GPS modernization initiative and third civil GPS signal
at 1176.45 MHz
IGDG (Internet-based global differential GPS) at JPL
2000 Selective availability set to zero
GPS Joint Program Office begins modifications to IIR-M and IIF satellites
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to ambiguity-fixed solutions that yield centimeter (and better) relative accuracy
for a moving antenna. The only constraint on the path of the moving antenna is
visibility of the same four (at least) satellites at both receivers. Remondi introduced
the antenna swapping technique to accomplish rapid initialization of ambiguities.
Antenna swapping made kinematic positioning in surveying more efficient.

The deployment of GPS satellites came to a sudden halt due to the tragic January
28, 1986, Challenger accident. Several years passed until the Delta II launch vehicle
was modified to carry GPS satellites. However, the theoretical developments contin-
ued at full speed. They were certainly facilitated by the publication of Remondi’s
(1984) dissertation, the very successful First International Symposium on Precise
Positioning with the Global Positioning System held at the National Geodetic Survey,
and a specialty conference on GPS held by the American Society of Civil Engineers
in Nashville in 1988.

Kinematic GPS was used for decimeter positioning of airplanes relative to
receivers on the ground (Mader, 1986; Krabill and Martin, 1987). The goal of
these tests was to reduce the need for traditional and expensive ground control in
photogrammetry. These early successes not only made it clear that precise airplane
positioning would play a major role in photogrammetry, but they also highlighted
the interest in positioning other remote sensing devices carried in airplanes.

Lichten and Border (1987) reported repeatability of 2—5 parts in 10® in all three
components for static baselines. Note that 1 part in 10® corresponds to I mm in
100km. Such highly accurate solutions require satellite positions of about 1 m
and better (we note that today’s orbit accuracy is in the range of 5cm). Because
accurate orbits were not yet available at the time, researchers were forced to estimate
improved GPS orbits simultaneously with baseline estimation. The need for a precise
orbital service became apparent. Other limitations, such as the uncertainty in the
tropospheric delay over long baselines, also became apparent and created an interest
in exploring water vapor radiometers to measure the wet part of the troposphere
along the path of the satellite transmissions. The geophysical community requires
high baseline accuracy for obvious reasons, e.g., slow-moving crustal motions can
be detected earlier with more accurate baseline observations. However, the GPS
positioning capability of a few parts in 10% was also noticed by surveyors for its
potential to change well-established methods of spatial referencing and geodetic
network design.

Perhaps the year 1989 could be labeled the year when “modern GPS” position-
ing began in earnest. This was the year when the first production satellite, Block
II, was launched. Seeber and Wiibbena (1989) discussed a kinematic technique that
used carrier phases and resolved the ambiguity “on-the-way.” This technique used
to be called on-the-fly (OTF) ambiguity resolution, meaning there is no static ini-
tialization required to resolve the ambiguities, but the technique is now considered
part of RTK. The navigation community began in 1989 to take advantage of relative
positioning, in order to eliminate errors common to co-observing receivers and make
attempts to extend the distance in relative positioning. Brown (1989) referred to it as
extended differential GPS, but it is more frequently referred to as wide area differen-
tial GPS (WADGPS). Many efforts were made to standardize real-time differential
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GPS procedures, resulting in several publications by the Radio Technical Commis-
sion for Maritime Services. The U.S. Coast Guard established the GPS Information
Center (GPSIC) to serve nonmilitary user needs for GPS information.

The introduction of the geoid model GEOID90 in reference to the NADS3
datum represented a major advancement that helped combine GPS (ellipsoidal) and
orthometric height differences and paved the way for replacing much of leveling by
GPS-determined heights. More recent geoid models are available.

During 1991 and 1992, the geodetic community embarked on major efforts to
explore the limits of GPS on a global scale. The efforts began with the GIG91 [GPS
experiment for International Earth Rotation Service (IERS) and Geodynamics] cam-
paign and continued the following year resulting in very accurate polar motion coordi-
nates and earth rotation parameters. Geocentric coordinates were obtained that agreed
with those derived from satellite laser ranging within 10 to 15 cm, and ambiguities
could be fixed on a global scale providing daily repeatability of about 1 part in 10°.
Such results are possible because of the truly global distribution of the tracking sta-
tions. The primary purpose of the IGS campaign was to prove that the scientific
community is able to produce high-accuracy orbits on an operational basis. The cam-
paign was successful beyond all expectations, confirming that the concept of IGS is
possible. The IGS service formally began January 1, 1994.

For many years, users worried about the impact of antispoofing (AS) on the prac-
tical uses of GPS. AS implies switching from the known P-code to the encrypted
Y-code, expressed by the notation P(Y). The purpose of AS is to make the P-codes
available only to authorized (military) users. The anxiety about AS was consider-
ably relieved when Hatch et al. (1992) reported on the code-aided squaring technique
to be used when AS is active. Most manufacturers developed proprietary solutions
for dealing with AS. When AS was implemented on January 31, 1994, it presented
no insurmountable hindrance to the continued use of GPS. GPS users became even
less dependent on AS with the introduction of accurate narrow correlator spacing
C/A-code receivers (van Dierendonck et al., 1992), since the C/A-code is not subject
to AS measures. By providing a second civil code on L2, eventually a third one on L5,
and adding new military codes, GPS modernization will make the P(Y)-code encryp-
tion a nonissue for civilian applications, and at the same time, provide enhanced
performance to civilian and military users.

A major milestone in the development of GPS was achieved on December 8, 1993,
when the initial operational capability (IOC) was declared when 24 satellites (Blocks
I, II, ITA) became successfully operational. The implication of IOC was that commer-
cial, national, and international civil users could henceforth rely on the availability of
the SPS (Standard Positioning Service). Full operational capability (FOC) would be
declared on July 17, 1995, when 24 satellites of the type Blocks II and ITA became
operational. Also, Teunissen (1993) introduced the least-squares ambiguity decorre-
lation adjustment (LAMBDA), which is now widely used.

The determination of attitude/orientation using GPS has drawn attention for
quite some time. Qin et al. (1992) report on a commercial product for atti-
tude determination. Talbot (1993) reports on a real-time kinematic centimeter
accuracy surveying system. Lachapelle et al. (1994) experiment with multiple
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(single-frequency) receiver configurations in order to accelerate the on-the-fly
ambiguity resolution by means of imposing length constraints and conditions
between the ambiguities. While much attention was given to monitoring the iono-
sphere with dual-frequency and single-frequency code or carrier phase observations,
Kursinski (1997) discusses the applicability of radio occultation techniques to use
GPS in a general earth’s atmospheric monitoring system (which could provide high
vertical-resolution profiles of atmospheric temperature across the globe).

The surveying community promptly responded to the opportunities and challenges
that came with GPS. The American Congress on Surveying and Mapping (ACSM)
tasked an ad hoc committee in 1993 to study the accuracy standards to be used in
the era of GPS. The committee addressed questions concerning relative and abso-
lute accuracy standards. The National Geodetic Survey (NGS) enlisted the advice of
experts regarding the shape and content of the geodetic reference frame; these efforts
eventually resulted in the continuously operating reference stations (CORS). Orange
County (California) established 2000 plus stations to support geographic information
systems (GIS) and cadastral activities. There are many other examples.

Zumberge et al. (1998a,b) report single-point positioning at the couple-of- cen-
timeters level for static receivers and at the subdecimeter level for moving receivers.
This technique became available at the Jet Propulsion Laboratory (JPL) around 1995.
The technique that requires dual-frequency observations, a precise ephemeris, and
precise clock corrections is referred to as precise point positioning (PPP). These
remarkable results were achieved with postprocessed ephemerides at a time when
selective availability (SA) was still active. Since 1998, JPL has offered automated
data processing and analysis for PPP on the Internet (Zumberge, 1998). Since 1999,
JPL has operated an Internet-based dual-frequency global differential GPS system
(IGDG). This system determines satellite orbits, satellite clock corrections, and earth
orientation parameters in real time and makes corrections available via the Internet
for real-time positioning. A website at JPL demonstrates RTK positioning at the sub-
decimeter for several receiver locations.

Finally, during 1998 and 1999, major decisions were announced regarding the
modernization of GPS. In 2000, SA was set to zero as per Presidential Directive.
When active, SA entails an intentional falsification of the satellite clock (SA-dither)
and the broadcast satellite ephemeris (SA-epsilon); when active it is effectively an
intentional denial to civilian users of the full capability of GPS.



CHAPTER 2

LEAST-SQUARES ADJUSTMENTS

Least-squares adjustment is useful for estimating parameters and carrying out
objective quality control of measurements by processing observations according to a
mathematical model and well-defined rules. The objectivity of least-squares quality
control is especially useful in surveying when depositing or exchanging observations
or verifying the internal accuracy of a survey. Least-squares solutions require
redundant observations, i.e., more observations are required than are necessary to
determine a set of unknowns exactly. This chapter contains compact but complete
derivations of least-squares algorithms. For additional in-depth study of adjustments
we recommend Grafarend (2006).

First, the statistical nature of measurements is analyzed, followed by a discussion
of stochastic and mathematical models. The mixed adjustment model is derived in
detail, and the observation equation and the condition equation models are deduced
from the mixed model through appropriate specification. The cases of observed and
weighted parameters are presented as well. A special section is devoted to mini-
mal and inner constraint solutions and to those quantities that remain invariant with
respect to a change in minimal constraints. Whenever the goal is to perform quality
control on the observations, minimal or inner constraint solutions are especially rel-
evant. Statistical testing is important for judging the quality of observations or the
outcome of an adjustment. A separate section deals with statistics in least-squares
adjustments. The chapter ends with a presentation of additional quality measures,
such as internal and external reliability and blunder detection and a brief exposition
of Kalman filtering.

In Chapter 3 the least-squares solution is treated in terms of recursive least squares.
While both chapters deal with the “same least-squares” principle, the material in
Chapter 3 is given in a form that is more suitable for application when the parameters
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change with time. Chapter 2 is more geared to applications in surveying and geodesy
when the parameters usually are not a function of time, such as a typical survey net-
work, leveling network, or a deformation or photogrammetric survey. We like to stress
that the treatment starts with the mixed model in which the observations and param-
eters are implicitly related. Other models are derived by respective specifications.

2.1 ELEMENTARY CONSIDERATIONS

Objective quality control of observations is necessary when dealing with any kind of
measurements such as angles, distances, pseudoranges, carrier phases, and the geo-
potential. It is best to separate conceptually quality control of observations and
precision or accuracy of parameters. It is unfortunate that least-squares adjustment
is often associated only with high-precision surveying, although it may be as
important to discover a 10 m blunder in a low-precision survey as a 1 cm blunder in
a high-precision survey.

Least-squares adjustment allows the combination of different types of observa-
tions (such as angles, distances, and height differences) into one solution and permits
simultaneous statistical analysis. For example, there is no need to treat traverses, inter-
sections, and resections separately. Since these geometric figures consist of angle and
distance measurements, the least-squares rules apply to all of them, regardless of the
specific arrangements of the observations or the geometric shape they represent.

Least-squares adjustment simulation is a useful tool to plan a survey and to ensure
that accuracy specifications will be met once the actual observations have been made.
Simulations allow the observation selection to be optimized when alternatives exist.
For example, should one primarily measure angles or rely on distances? Consider-
ing the available instrumentation, what is the optimal use of the equipment under the
constraints of the project? Experienced surveyors often answer these questions intu-
itively. Even in these cases, an objective verification using least-squares simulation
and the concept of internal and external reliability of networks is a welcome assurance
to those who carry responsibility for the project.

2.1.1 Statistical Nature of Surveying Measurements

Assume that a distance of 100 m is measured repeatedly with a tape that has cen-
timeter divisions. A likely outcome of these measurements could be 99.99, 100.02,
100.00, 100.01, etc. Because of the centimeter subdivision of the tape, the surveyor
is likely to record the observations to two decimal places. The result therefore is a
series of numbers ending with two decimal places. One could wrongly conclude that
this measurement process belongs to the realm of discrete statistics yielding discrete
outcomes with two decimal places. In reality, however, the series is given two decimal
places because of the centimeter division of the tape and the fact that the surveyor did
not choose to estimate the millimeters. Imagining a reading device that allows us to
read the tape to as many decimal places as desired, we readily see that the process of
measuring a distance belongs to the realm of continuous statistics. The same is true
for other types of measurements typically used in positioning. A classic textbook case
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for a discrete statistical process is the throwing of a die in which case the outcome is
limited to certain integers.

When measuring the distance, we recognize that any value x; could be obtained,
although experience tells us that values close to 100.00 are most likely. Values such
as 99.90 or 100.25 are very unlikely when measured with care. Assume that n mea-
surements have been made and that they have been grouped into bins of length Ax,
with bin i containing n; observations. Graphing the bins in a coordinate system of
relative frequency n,;/n versus x; gives the histogram. For surveying measurements,
the smoothed step function of the rectangular bins typically has a bell-like shape. The
maximum occurs around the sample mean. The larger the deviation from the mean,
the smaller the relative frequency, i.e., the probability that such a measurement will
actually be obtained. A goodness-of-fit test would normally confirm the hypothe-
sis that the observations have a normal distribution. Thus, the typical measurement
process in surveying follows the statistical law of normal distribution.

2.1.2 Observational Errors

Field observations are not perfect, and neither are the recordings and management of
observations. The measurement process suffers from several error sources. Repeated
measurements do not yield identical numerical values because of random measure-
ment errors. These errors are usually small, and the probability of a positive or a
negative error of a given magnitude is the same (equal frequency of occurrence). Ran-
dom errors are inherent in the nature of measurements and can never be completely
overcome. Random errors are dealt with in least-squares adjustment.

Systematic errors are errors that vary systematically in sign and/or magnitude.
Examples are a tape that is 10 cm too short or the failure to correct for vertical or lat-
eral refraction in angular measurement. Systematic errors are particularly dangerous
because they tend to accumulate. Adequate instrument calibration, care when observ-
ing, such as double centering, and observing under various external conditions help
avoid systematic errors. If the errors are known, the observations can be corrected
before making the adjustment; otherwise, one might attempt to model and estimate
these errors. Discovering and dealing with systematic errors requires a great deal of
experience with the data. Success is not at all guaranteed.

Blunders are usually large errors resulting from carelessness. Examples of blun-
ders are counting errors in a whole tape length, transposing digits when recording field
observations, continuing measurements after upsetting the tripod, and so on. Blun-
ders can largely be avoided through careful observation, although there can never
be absolute certainty that all blunders have been avoided or eliminated. Therefore,
an important part of least-squares adjustment is to discover and remove remaining
blunders in the observations.

2.1.3 Accuracy and Precision

Accuracy refers to the closeness of the observations (or the quantities derived from
the observations) to the true value. Precision refers to the closeness of repeated obser-
vations (or quantities derived from repeated sets of observations) to the sample mean.
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4

density fix)

Figure 2.1.1 Accuracy and precision.

Figure 2.1.1 shows four density functions that represent four distinctly different mea-
surement processes of the same quantity. Curves 1 and 2 are symmetric with respect
to the true value x;. These measurements have a high accuracy because the sample
mean coincides or is very close to the true value. However, the shapes of both curves
are quite different. Curve 1 is tall and narrow, whereas curve 2 is short and broad.
The observations of process 1 are clustered closely around the mean (true value),
whereas the spread of observations around the mean is larger for process 2. Larger
deviations from the true value occur more frequently for process 2 than for process 1.
Thus, process 1 is more precise than process 2; however, both processes are equally
accurate. Curves 3 and 4 are symmetric with respect to the sample mean xg, which
differs from the true value x;. Both sequences have equally low accuracy, but the pre-
cision of process 3 is higher than that of process 4. The difference x; — xg is caused
by a systematic error. An increase in the number of observations does not reduce this
difference.

2.2 STOCHASTIC AND MATHEMATICAL MODELS

This chapter requires some background in statistics. Section A.5 in Appendix A
provides selected statistical material that is relevant in what follows. Of particular
importance is the law of variance—covariance propagation given in Section A.5.5.
It allows computing variances of functions of observations or variances of estimated
parameters which are also stochastic quantities.

Least-squares adjustment deals with two equally important components: the
stochastic model and the mathematical model. Both components are indispensable
and contribute to the adjustment algorithm (Figure 2.2.1). We denote the vector
of observation with £, and the number of observations by n. The observations are
Landom variables, thus the complete notation for the n X 1 vector of observations is
£,,. To simplify the notation, we do not use the tilde in connection with £,,. The true
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Figure 2.2.1 Elements of least-squares adjustment.

value of the observations, i.e., the mean of the population is estimated from the
sample measurements. Since each observation belongs to a different population, the
sample size is usually 1. The variances of these distributions comprise the stochastic
model. This model introduces information about the precision of the observations
(or accuracy if only random errors are present). The variance-covariance matrix X,
expresses the stochastic model. In many cases, the observations are not correlated
and the variance-covariance matrix is diagonal. Occasionally, when so-called derived
observations are used which are the outcome of a previous adjustment, or when
linear combinations of original observations are adjusted, the variance-covariance
matrix contains off-diagonal elements. Because in surveying the observations are
normal distributed, the vector of observations has a multivariate normal distribution.
We use the notation (A.5.65)

g, ~N (e,, zeb) 22.1)

where £ is the vector mean of the population, and X ¢, 18 the variance-covariance
matrix (A.5.54) or (A.5.63). The cofactor matrix of the observations er and the
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weight matrix P are defined by

1
er = ) Zeb (222)
O
0
P=Q,' =o; z,! (2.2.3)

Typically we do not use a subscript to identify P as the weight matrix of the observa-
tions. The symbol aé denotes the a priori variance of unit weight. It relates the weight
matrix and the inverted covariance matrix. An important capability of least-squares
adjustment is the estimation of o-é from observations. We denote that estimate by 6'3
and it is the a posteriori variance of unit weight. If the a priori and a posteriori vari-
ances of unit weight are statistically equal, the adjustment is said to be correct. More
on this fundamental statistical test and its implications will follow in later sections.
In general, the a priori variance of unit weight o-é is set to 1, i.e., the weight matrix
is equated with the inverse of the variance-covariance matrix of the observations.
The term variance of unit weight is derived from the fact that if the variance of an
observation equals 63, then the weight for this observation equals unity. The spe-
cial cases where P equals the identify matrix, P = I, frequently allow a simple and
geometrically intuitive interpretation of the minimization.

The mathematical model expresses a simplification of existing physical reality.
It attempts to mathematically express the relations between observations and param-
eters (unknowns) such as coordinates, heights, and refraction coefficients. Least-
squares adjustment is a very general tool that can be used whenever a relationship
between observations and parameters has been established. Even though the math-
ematical model is well known for many routine applications, there are always new
cases that require a new mathematical model. Finding the right mathematical model
can be a challenge.

Much research has gone into establishing a mathematical formulation that is gen-
eral enough to deal with all types of globally distributed measurement in a unified
model. The collection of observations might include distances, angles, heights, grav-
ity anomalies, gravity gradients, geopotential differences, astronomical observations,
and GPS observations. The mathematical models become simpler if one does not deal
with all types of observations at the same time but instead uses additional external
information. See Chapter 4 for a detailed discussion on the 3D geodetic model.

A popular approach is to reduce (modify) the original observations to be compat-
ible with the mathematical model. These are the model observations. For example,
if measured vertical angles are used, the mathematical model must include refraction
parameters. On the other hand, the original measurements can be corrected for refrac-
tion using an atmospheric refraction model. The thus reduced observations refer to
a simpler model that does not require refraction parameters. The more reductions
are applied to the original observation, the less general the respective mathematical
model is. The final form of the model also depends on the purpose of the adjustment.
For example, if the objective is to study refraction, one needs refraction parameters
in the model. In surveying applications where the objective typically is to determine
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location, one prefers not to deal with refraction parameters explicitly. The relation
between observations and parameterization is central to the success of estimation
and at times requires much attention.
In the most general case, the observations and the parameters are related by an
implicit nonlinear function:
fix,,¢,)=0 (2.2.4)

This is the mixed adjustment model. The subscript a is to be read as “adjusted.”
The symbol £, denotes then n X 1 vector of adjusted observations, and the vector X,
contains u adjusted parameters. There are r nonlinear mathematical functions in f.
Often the observations are explicitly related to the parameters, such as in

0, =f(x,) (2.2.5)

This is the observation equation model. A further variation is the absence of any
parameters as in
fi£,)=0 (2.2.6)

This is the condition equation model.

The application usually dictates which model might be preferred. Selecting
another model might require a mathematically more involved formulation. In the
case of a leveling network, e.g., the observation equation model and the condition
equation model can be applied with equal ease.

The observation equation model has the major advantage in that each observation
adds one equation. This allows the observation equation model to be implemented
relatively easily and generally in software. One does not have to identify independent
loop closures, etc.

Figure 2.2.1 indicates some of the outcomes from the adjustment. Statistical tests
are available to verify the acceptance of the adjustment or aid in discovering and
removing blunders. The adjustment provides probability regions for the estimated
parameters and allows variance-covariance propagation to determine functions of the
estimated parameters and the respective standard deviations. Of particular interest is
the ability of the least-squares adjustment to perform internal and external reliability
analysis, in order to quantify marginally detectable blunders and to determine their
potential influence on the estimated parameters.

Statistical concepts enter the least-squares adjustment in two distinct ways. The
actual least-squares solution merely requires the existence of the variance-covariance
matrix; there is no need to specify a particular distribution for the observations. If
statistical tests are required, then the distribution of the observations must be known.
In most cases, one indeed desires to carry out some statistical testing.

2.3 MIXED MODEL

Observations or functions of observations are always random variables. Typically, a
random variable is denoted by a tilde, as is done in Section A.5. In order to simplify
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the notation, the tilde will not be used in this chapter to identify random variables.
A caret is used to identify quantities estimated by least squares, i.e., those quantities
that are a solution of a specific minimization. Caret quantities are always random
variables because they are functions of observations. To simplify the notation even
further, the caret symbol is used consistently only in connection with the parameter X.

In the mixed adjustment model, the observations and the parameters are implicitly
related. If £, denotes the vector of n adjusted observations and x,, denotes u adjusted
parameters (unknowns), the nonlinear mathematical model is given by

f,, x,)=0 (2.3.1)
The total number of equations in (2.3.1) is denoted by r. The stochastic model is
P=o; Z;bl (2.3.2)

where P denotes the n X n weight matrix, and X ¢, denotes the covariance matrix
of the observations. The objective is to estimate the parameters. It should be noted
that the observations are stochastic (random) variables and that the parameters are
deterministic quantities. The parameters exist, but their values are unknown. The
estimated parameters, however, will be functions of the observations and therefore
random variables.

2.3.1 Linearization

Regular least-squares formulations require that the mathematical model is linear.
Nonlinear models, therefore, must be linearized. If we let X, denote a vector of known
approximate values of the parameters, then the parameter corrections X are

X=X,—X, (2.3.3)
If ¢, denotes the vector of observations, then the residuals are defined by
v=~,-¢, (2.3.4)
With (2.3.3) and (2.3.4) the mathematical model can be written as
fl, +v,xy+x)=10 (2.3.5)
The nonlinear mathematical model is linearized around the known point of expansion
(£, X), giving
an nV1 + ,Au uxl + rW] = 0 (236)

where

_of

B=2
0l |x,.¢,

(2.3.7)
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A= (2.3.8)
ox Xo: £,

See Appendix A for linearization of multivariable functions. The coefficient matri-
ces must be evaluated at the point of expansion, which consists of observations and
approximate parameters. The discrepancies w must be evaluated for the same point
of expansion. The better the approximate values X, the smaller the parameter cor-
rections X.

2.3.2 Minimization and Solution

The least-squares estimate X is based on the minimization of the function v’ Pv.
A solution is obtained by introducing a vector of Lagrange multipliers, kK, and mini-
mizing the function

o, k,x) = v Pv — 2kT (Bv + Ax + w) (2.3.10)

Equation (2.3.10) is a function of three variables, namely, v, k, and X. A necessary
condition for the minimum is that the partial derivatives must be zero. It can be readily
shown that this condition is also sufficient. Differentiating (2.3.10) following the rules
of Appendix A and setting the partial derivatives to zero gives

19 _py_Bk=0 2.3.11)
2 0v

10b _ oo 4o

20k_BV+AX+W_0 (2.3.12)
1 0¢ Ti

100 _ _ari = 2.3.1
> 0 (2.3.13)

The solution of (2.3.11) to (2.3.13) starts with the recognition that P is a square matrix
and can be inverted. Thus, the expression for the residuals follows from (2.3.11):

v=pP ' -BTk (2.3.14)

Substituting (2.3.14) into (2.3.12), we obtain the solution for the Lagrange multiplier:

k=-M"'Ax+w) (2.3.15)
with
M, =B, P, B (23.16)

Finally, the estimate X follows from (2.3.13) and (2.3.15)

x=—(ATM'A)'ATM W (2.3.17)
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The estimates X and V are independent of the a priori variance of unit weight. The
first step is to compute the parameters X from (2.3.17), then the Lagrange multipliers
k from (2.3.15), followed by the residuals ¥ (2.3.14). The adjusted parameters and
adjusted observations follow from (2.3.3) and (2.3.4).

The caret symbol in ¥, IA( and X indicates that all three estimated values follow
from minimizing v/ Pv. However, as stated earlier, the caret is only used consistently
for the estimated parameters X in order to simplify the notation.

2.3.3 Cofactor Matrices

Equation (2.3.9) shows that w is a random variable because it is a function of the
observation £;,. With (2.3.2), the law of variance-covariance propagation (A.5.61),
and the use of B in (2.3.7), the cofactor matrix Q,, becomes
Q,=BP'B"=M (2.3.18)
From (2.3.18) and (2.3.17) it follows that
Q= (A'"M'A)”" (2.3.19)
Combining (2.3.14) through (2.3.17) the expression for the residuals becomes
v=|PB'M A (ATMA) AT - PBTM | W (2.3.20)
It follows from the law of variance propagation (A.5.61) and (2.3.18) that
Q=P 'B'M" [M-A(A'M'A)" AT| M~'BP! (2.321)
The adjusted observations are
L, =4,+Vv

=6+ [PBIMIAATM A AT PV W 2322)

Because
oL

- =1+P'B'MAA'M A A B -PB'MT'B (2323
b

it follows that
Qea = er - Qv (2324)

where the inverse of P has been replaced by er according to (2.2.3).
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2.3.4 A Posteriori Variance of Unit Weight
The minimum of v Pv follows from (2.3.14), (2.3.15), and (2.3.17) as

VP =w! M - M AATMA) T AT w (2.3.25)
The expected value of this random variable is
E(V'Pv) = E(Trv'Pv)
= E{Tr|w (M~ - M A(ATMA) ATV w | |
= E{Te| (M~ - M A(ATM A) AT | |
= Trf [M—l ~MAATMA) T ATM [E(wwT) | 23.26)
The trace (Tr) of a matrix equals the sum of its diagonal elements. In the first part of
(2.3.26), the property that the trace of a 1 X 1 matrix equals the matrix element itself
is used. Next, the matrix products are switched, leaving the trace invariant. In the last
part of the equation, the expectation operator and the trace are switched. The expected

value E (WWT) can be readily computed. Per definition, the expected value of the
residuals

Ewv)=0 (2.3.27)

is zero because the residuals represent random errors for which positive and negative

errors of the same magnitude occur with the same probability. It follows from (2.3.6)
that

E(w) = —AX (2.3.28)

Note that x in (2.3.28) or (2.3.6) is not a random variable. In this expression, X simply

denotes the vector of unknown parameters that have fixed values, even though the
values are not known. The estimate X is a random variable because it is a function
of the observations. By using (A.5.53) for the definition of the covariance matrix
(2.3.18) and using (2.3.28), it follows that

E(ww') =X, + EWEwW)"
= oM + Axx"A" (2.3.29)

Substituting (2.3.29) into (2.3.26) yields the expected value for v7 Pv:
E(V'Pv) =3 Te{ I, - M'A(ATM~'A) AT |

=oo(r—u) (2.3.30)
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The difference r — u is called the degree of freedom and equals the number of
redundant equations in the model (2.3.1). Strictly, the degree of freedom is r — R(A)
because the second matrix in (2.3.30) is idempotent. The symbol R(A) denotes the
rank of the matrix A. The a posteriori variance of unit weight is computed from

AT A
2= PV (23.31)
r—u
Using (2.3.30), we see that
E(6;) =0 (2.3.32)

The expected value of the a posteriori variance of unit weight equals the a priori
variance of unit weight.
Finally, the estimated covariance matrices are

. =61Q, (2.3.33)
z, =6Q, (2.3.34)
x, =6;Q, (2.3.35)

With equation (2.3.24) it follows that
2, =2, -Z%, (2.3.36)

Because the diagonal elements of all three covariance matrices in (2.3.36) are posi-
tive, it follows that the variances of the adjusted observations are smaller than those of
the original observations. The difference is a function of the geometry of the adjust-
ment, as implied by the covariance matrix X

2.3.5 lterations

Because the mathematical model is generally nonlinear, the least-squares solution
must be iterated. Recall that (2.3.1) is true only for (£,, X,). Since neither of these
quantities is known before the adjustment, the initial point of expansion is chosen as
(€, X). For the i th iteration, the linearized model can be written

B

VitA, g XitW, o =0 (2.3.37)

Xoi» £oi X0i- Lo

where the point of expansion (€, X;) represents the previous solution. The symbols
£,; and x,,; denote the adjusted observations and adjusted parameters for the current
(i th) solution. They are computed from

(2.3.38)
ai — Xoi (2.3.39)
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once the least-squares solution of (2.3.37) has been obtained. The iteration starts with
£y, = £, and X, = X,. If the adjustment converges properly, then both v; and X; con-
verge to zero, or, stated differently, £,; and x ; converge toward £, and X, respectively.
The quantity v; does not equal the residuals. The residuals express the random dif-
ference between the adjusted observations and the original observations according to
(2.3.4). Defining

v,=£,—%, (2.3.40)

it follows from (2.3.38) that
Vi = Vi + (fb - eOi) (2341)
Substituting this expression into (2.3.37) gives

B Vl +A Xl + Wx()i’e()i + oni’e()i (fh - »eol) = 0 (2.3.42)

Xoi- Loi Xo1- Loi

The formulation (2.3.42) assures that the vector v; converges toward the vector of
residuals v. The last term in (2.3.42) will be zero for the first iteration when £y, = £,.
The iteration has converged if

viPv,—vIPv_ | <¢ (2.3.43)

where ¢ is a small positive number.

2.4 SEQUENTIAL MIXED MODEL

Assume that observations are made in two groups, with the second group consisting
of one or several observations. Both groups have a common set of parameters. The
two mixed adjustment models can be written as

f(0,.x)=0
fy(Lyy. X,) =0 (2.4.1)

Both sets of observations should be uncorrelated, and the a priori variance of unit
weight should be the same for both groups, i.e.,

-1
P=[P1 0]=a§ [21 0 ] (24.2)

0 P, 0oz

The number of observations in £, and ¢,, are n; and n,, respectively; and r; and r,
are the number of equations in the models f, and f,, respectively. The linearization
of (2.4.1) yields

B,v, +AX+w, =0 (2.4.3)
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where

of,

Bl =
ok, Lipx,
of.
o, Lo x,

The function to be minimized is

Al_

A2=

of,
ox
ox

Lipx,

ezb,xo

w, =f(£y,. Xo)

w, = F,(£y, X)

2k} (B,v, + A X +w,)

The solution is obtained by setting the partial derivatives of (2.4.6) to zero,

1 d¢

2 0v,
10¢

2 0v,
109 _
20x
1 0¢

-Alk, -ATk, =0

e =BIV1 +A1X+W1 =0

2 ok,
199
2 ok,

(2.4.5)

(2.4.6)

2.4.7)

(2.4.8)

(2.4.9)

(2.4.10)

(2.4.11)

and solving for v,, v,, k;, k,, and x. Equations (2.4.7) and (2.4.8) give the

residuals

v, =P1_lBlTk1
v, =PEIng2

Combining (2.4.12) and (2.4.10) yields

Mk +Ax+w, =0

where

M, =B,P;'Bf

is an r; X r; symmetric matrix. The Lagrange multiplier becomes

k, = -M;'Ax - M;'w,

(2.4.12)
(2.4.13)

(2.4.14)

(2.4.15)

(2.4.16)
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Equations (2.4.9) and (2.4.11) become, after combination with (2.4.16) and
(2.4.13),

AM'AX+AM;'w, - ATk, =0 (2.4.17)
B,P;'Blk, + A, x +w, =0 (2.4.18)

By using
M, = B,P;'B) (2.4.19)

we can write equations (2.4.17) and (2.4.18) in matrix form:

Alm'a, AT [ %] _ [-ATM;'w,
[ A 7R R el s (2.4.20)

Equation (2.4.20) shows how the normal matrix of the first group must be augmented
in order to find the solution of both groups. The whole matrix can be inverted in one
step to give the solution for X and k. Alternatively, one can compute the inverse using
the matrix partitioning techniques of Section A.3.5, giving

x=-Q ,AIM'w, - Q,w, (2.4.21)
k, = Q, ATM;'w, — Qy,w, (2.4.22)
Setting
N, =A"M'A, (2.4.23)
N, =A’M;'A, (2.4.24)

then using (A.3.53),
Q,=Q, =N, +N,)"' =N;' —N;'Al[M, + A,N;'AT] AN (2425)
Q, = Q! =N;'Al [M, + AN AT (2.4.26)
Q,, = - [M, + AN, AL (2.4.27)

Substituting Q;, and Q, into (2.4.21) gives the sequential solution for the param-
eters. We denote the solution of the first group by an asterisk and the contribution of
the second group by A. In that notation, the estimated parameters of the first group
are denoted by X*, which is simplified to x*. Thus,

X=x"+Ax (2.4.28)
Comparing (2.4.21) and (2.3.17) the sequential solution becomes

x*=-N;"ATM'w, (2.4.29)
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and
Ax = -N7'Al [M, + ANT'AT 7 (Anx* +wy) (2.4.30)

Similarly, the expression for the Lagrange multiplier k, is
ky = —[M, + AN AT (Ayx* +w,) (2.4.31)

A different form for the solution of the augmented system (2.4.20) is obtained by
using alternative relations of the matrix partitioning inverse expressions (A.3.45) to
(A.3.52). It follows readily that

X=-(N,+N) " (A[M;'w, + AIM;'w,)
=—(N, +N)™' (- N x* + ATM;'w,)
=x* = (N, + N,)™" (Nx* + ATM; 'w,) (2.4.32)

The procedure implied by the first line in (2.4.32) is called the method of adding
normal equations. The contributions of the new observations are simply added
appropriately.

The cofactor matrix Q, of the parameters can be written in sequential form as

Q. =0Q.-0Q.A! [M,+A,Q.A!] " AQ.
=Q,. +AQ, (2.4.33)

where Q.. is the cofactor matrix of the first group of observations and equals Nl_l.
The contribution of the second group of observations to the cofactor matrix is

AQ, = -Q.Al[M, +A,Q.A]] "' A,Q,. (2.4.34)
The change AQ, can be computed without having the actual observations of the sec-

ond group. This is relevant in simulation studies.
The computation of v/ Pv proceeds as usual

vIPv=vIP\v, +V.P,v,
=—kiw, —kjw, (2.4.35)

The second part of (2.4.35) follows from (2.4.9) to (2.4.13). Using (2.4.16) for k|,
(2.4.28) for X, (2.4.30) for Ax, and (2.4.31) for k,, then the sequential solution
becomes

vIPv = v'Pv* + AV Pv
= VIPV* + (A" +wy)! [M, + ANT'AL T At +wy)  (24.36)

with vI Pv* being obtained from (2.3.25) for the first group only.
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The a posteriori variance of unit weight is computed in the usual way:

T
o2 = _VvPv (2.4.37)
rt+r—u

where r| and r, are the number of equations in (2.4.1). The letter u denotes, again,
the number of parameters.
The second set of observations contributes to all residuals. From (2.4.12), (2.4.16),
and (2.4.28) we obtain
v, =V +Av,
=-P;'BIM;' (A\x* +w,) - P;'B/M;'A, Ax (2.4.38)
The expression for v, follows from (2.4.13) and (2.4.31),
v, = -P;'BIT (Ax* + w,) (2.4.39)

where X
T=(M,+A,N;'A])" (2.4.40)

The cofactor matrices for the residuals follow, again, from the law of variance-
covariance propagation. The residuals v, are a function of w; and w,, according to
(2.4.38). Substituting the expressions for x* and Ax, we obtain from (2.4.38)

9

L Py'BIM; (1~ ANTATMT + AN ALTANT ATMT) - 2441
1

P

M -P;'BTM;'AN;'AIT (2.4.42)

ow,

Applying the law of covariance propagation to w, and w, of (2.4.5) and knowing
that the observations are uncorrelated gives

m, 0 ] (2.4.43)

le, wy = [ 0 M2
By using the partial derivatives (2.4.41) and (2.4.42), expression (2.4.43), and the law

of variance-covariance propagation, we obtain, after some algebraic computations,
the cofactor matrices:

Q, =Q, +4Q, (2.4.44)
where
— — — T — — — — — T
Q, =P;'BIM;' (P{'B]) — (P'BIM{'A|)N;" (PT'BIM['A,)" (2.4.45)

AQ, = (Py'BIM;'AN['AT) T(P;'BIM;'AN;'A] )T (2.4.46)
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The partial derivatives of v, with respect to w; and w, follow from (2.4.39),

ov,

=P;'BI TAN;'AT M;! (2.4.47)
ow|
ov.
=2 _p'BIT (2.4.48)
ow,

By using, again, the law of variance—covariance propagation and (2.4.43), we obtain
the cofactor for v,:

Q, =P;'BITB,P;' (2.4.49)

V2

The estimated variance—covariance matrix is

A

_ A2
2, =6)Q,, (2.4.50)
The variance—covariance matrix of the adjusted observations is, as usual,

2, =%, - 2%, (2.4.51)

As for iterations, one has to make sure that all groups are evaluated for the same
approximate parameters. If the first system is iterated, the approximate coordinates
for the last iteration must be used as expansion points for the second group. Because
there are no observations common to both groups, the iteration with respect to the
observations can be done individually for each group.

Occasionally, it is desirable to remove a set of observations from an existing
solution. Consider again the uncorrelated case in which the set of observations to
be removed is not correlated with the other sets. The procedure is readily seen from
(2.4.32), which shows how normal equations are added. When observations are
removed, the respective parts of the normal matrix and the right-hand term must be
subtracted. Equation (2.4.32) becomes

X=—(ATM['A, — ATM'A,)” (AT M w, — AT M, w)
-1
= -[alM7'A, AL (- M)A AT M W, + AT (- M wy| (2452)
One only has to use a negative weight matrix of the group of observations that is

being removed, because
-M, =B,(-P;')B] (2.4.53)

Observations can be removed sequentially following (2.4.30).

The sequential solution can be used in quite a general manner. One can add or
remove any number of groups sequentially. A group may consist of a single observa-
tion. Given the solution for i — 1 groups, some of the relevant expressions that include
all i groups of observations are

AR, =-Q_ AT (M, +AQ,_ A7) Ax_, +w,) (2.4.55)
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viPv,=v'Pv_, + Av' Py, (2.4.56)
AVIPY, = Ax_ +w) (M, +AQ_A") " (Ax,_, +w) (2.4.57)
Q,=0Q_,-Q_Al (M, +AiQi—1AiT)_1AiQi—l (2.4.58)

Every sequential solution is equivalent to a one-step adjustment that contains the
same observations. The sequential solution requires the inverse of the normal matrix.
Because computing the inverse of the normal matrix requires many more compu-
tations than merely solving the system of normal equations, one might sometimes
prefer to use the one-step solution instead of the sequential approach.

2.5 MODEL SPECIFICATIONS

The mixed model and the sequential mixed model are the base models from which
other solutions can be conveniently derived by appropriate specifications. All of the
following models can, of course, be derived separately and independently, i.e., one
starts with a minimization of the type (2.3.10), applies partial differentiation, and
solves the equations. We first specify the popular observation equation model and
then the condition equation model. We then use the sequential solutions and specify a
number of very useful specialized cases such as observation equations with observed
parameters or observation equations with condition on the parameter.

2.5.1 Observation Equation Model

Often there is an explicit relationship between the observations and the parameters,
such as
£, =f(x,) (2.5.1)

This is the observation equation model. Comparing both mathematical models (2.3.1)
and (2.5.1), and taking the definition of the matrix B (2.3.7) into account, we see that
the observation equation model follows from the mixed model using the specification

=_I (2.5.2)
EE W=f(X0)_£b =£0—eb (253)

It is customary to denote the discrepancy by £ instead of w when dealing with the
observation equation model. The symbol £, equals the value of the observations as
computed from the approximate parameters X,. The point of expansion for the lin-
earization is X; the observation vector is not involved in the iteration because of the
explicit form of (2.5.1). The linearized observation equations model is

nvl = nA xl + nel (254)

uu

These equations are called the observation equations. There is one equation for each
observation in (2.5.4).



30 LEAST-SQUARES ADJUSTMENTS

2.5.2 Condition Equation Model

If the observations are related by a nonlinear function without parameters, we speak
of the condition equation model. It is written as

fe,)=0 (2.5.5)

By comparing this with the mixed model (2.3.1), and applying the definition of the A
matrix (2.3.8) we see that the condition equation model follows upon the specification

A=0 (2.5.6)

The linear equations
B, v, +,w, =0 (2.5.7)

r=nn

are called the condition equations. The iteration for the model (2.5.7) is analogous to a
mixed model with the added simplification that there is no A matrix and no parameter
vector X.

The significance of these three models (observation, condition, and mixed) is that a
specific adjustment problem can often be formulated more easily in one of the models.
Clearly, that model should be chosen. There are situations in which it is equally easy
to use any of the models. A typical example is the adjustment of a level network.
Most of the time, however, the observation equation model is preferred, because the
simple rule “one observation, one equation” is suitable for setting up general software.
Table 2.5.1 lists the important expressions for all three models.

2.5.3 Mixed Model with Observation Equations

The algorithms developed in the previous section can be used to incorporate exte-
rior information about parameters. This includes weighted functions of parameters,
weighted individual parameters, and conditions on parameters. These model exten-
sions make it possible to incorporate new types of observations that directly refer
to the parameters, to specify parameters in order to avoid singularity of the normal
equations, or to incorporate the results of prior adjustments. For example, evaluating
conditions between the parameters is the basis for hypothesis testing. These cases
are obtained by specifying the coefficient matrices A and B of the mixed model. For
example, the mixed models (2.4.1) can be specified as

fi€, x,) =0 (258
by, =F(x,)
The linearized form is
Byv,+Ax+w, =0 (2.5.9)
v, =Ax+4, (2.5.10)

The specifications are B, = —[ and £, = w,.
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2.5.4 Sequential Observation Equation Model

For the observation equation model we obtain

bla=hx) 2.5.11)
£2a = fZ(Xa)
with the linearized form being

The stochastic model is given by the matrices P, and P,. With proper choice of the
elements of A, and P,, it is possible to introduce a variety of relations about the
parameters.

As a first case, consider nonlinear functions of parameters. The design matrix A,
contains the partial derivatives, and £, contains the observed value of the function.
This is the case of weighted functions of parameters. Examples are the area or volume
of geometric figures as computed from coordinates, angles in geodetic networks,
and differences between parameters (coordinates). Each function contributes one
equation to (2.5.10) or (2.5.13). The respective expressions are listed in Table 2.5.2
and require no further discussion.

As a second case, consider information about individual parameters. This is a spe-
cial case of the general method discussed above. Each row of A, contains a zero
with the exception of one position, which contains a 1. The number of rows in the
A, matrix corresponds to the number of weighted parameters. The expressions of
Table 2.5.2 are still valid for this case. If information enters into the adjustment in
this manner, one speaks of the method of weighted parameters.

2.5.5 Observation Equation Model with Observed Parameters

Consider the case when all parameters are observed and weighted. The specifications
for the elements of (2.5.13) are as follows:

£, =X, (2.5.14)
£y, =X, (2.5.15)
A, =1 (2.5.16)
£, =Fy(xy) — £y, = Xy — X, (2.5.17)

The symbols X, and X, denote the observed parameters and approximate parame-
ters. During the iterations, X, converges toward the solution, whereas X, remains
unchanged just as does the vector £,,. Another special case occurs when the vec-
tor £, is zero, which implies that the current values for the approximate parameters
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TABLE 2.5.3 Observed Parameters for the case
of Observation Equation Model

P, 0
'ela = fl(xa) £2a =Xa pP= [ 01 PZ]
v, =Ax+¥ v,=x+£, €, =x,-x,

N1 =A1TP1A1 Nz =P2
u =AP¢L, u, =P,t,

X=—=(N,+P) ' (u, +P,L,)
Qx = (Nl -'-‘,2)_1

serve as observations of the parameters. This can generally be done if the intent is to
define the coordinate system by assigning weights to the current approximate param-
eters. Table 2.5.3 summarizes the solution for weighted parameters for observation
equations. The parameters are weighted simply by adding the respective weights to
the diagonal elements of the normal matrix. The parameters not weighted have a zero
in the respective diagonal elements of P,. This is a convenient way of weighting a
subset of parameters. Parameters can be fixed by assigning a large weight. Often the
specification P, = I and £,, = 0, or X,, = X, is used as a way to stabilize an ill condi-
tioned system of equations. In the context of least squares this means that the current
point of expansion is equally weighted.

It is not necessary that the second group of observations represent the observed
parameters. Table 2.5.4 shows the case in which the first group consists of the
observed parameters. This approach has the unique feature that all observations
can be added to the adjustment in a sequential manner; the first solution is not
redundant since it is based solely on the values of the observed parameters. It is
important, once again, to distinguish the roles of the observed parameters X;, and the
approximations X,. Because in most cases the P; matrix will be diagonal, no matrix
inverse computation is required. The size of the matrix T (Table 2.5.2) equals the
number of observations in the second group. Thus, if one observation is added at a
time, only a 1 X 1 matrix must be inverted. The residuals can be computed directly
from the mathematical model as desired.

2.5.6 Mixed Model with Conditions

A third case pertains to the role of the weight matrix of the parameters. The weight
matrix expresses the quality of the information known about the observed parameters.
For the adjustment to be meaningful, one must make every attempt to obtain a weight
matrix that truly reflects the quality of the additional information. Low weights, or,
equivalently, large variances, imply low precision. Even low-weighted parameters
can have, occasionally, a positive effect on the quality of the least-squares solution. If
the parameters or functions of the parameters are introduced with an infinitely large
weight, one speaks of conditions between parameters. The only specifications for
implementing conditions are

P;'=0 (2.5.18)
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TABLE 2.5.4 Sequential Solution without
Inverting the Normal Matrix. Case: Observation

Equation Model

£,=x, p_|P 0
’6211 = f2a(Xn) - 0 P2

v, =x+£,
£, =x,-x,
v,=Ax+£,

N, =P, N2=A;P2A2
u =Pt u,=APL,

X ==Xy —X,)
Q = Pl_l
viPv, =0
X =X+ A%,
vIPv, =Vv'Pv_, + Av'Pv,_,
Q=Q_,+4Q,,
T=(P'+AQ_A!)"
Ax; | = _Qi—lAzTT(Ai)A(i—l +4)
AVPY_ = AKX _ +L)TAX_ +£)
AQH = _Qi—lA;rTAiQi—l
and
P, = (2.5.19)
The respective mathematical models are
fl,.x)=0
1E1a- X%, (2.5.20)
9(x,) =0
ith
e Byv, +Ax+w, =0 (2.521)
2.5.7 Observation Equation Model with Conditions
Similar to the previous case we have for the observation equation model,
£, =fx
ta = F06) (2.5.23)
gx,) =0
with v, =Ax+2, (2.5.24)
Ax+£6,=0 (2.5.25)
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Table 2.5.5 contains the expression of the sequential solution with conditions
between parameters. If (2.5.19) is used to impose the conditions, the largest numbers
that can still be represented in the computer should be used. In most situations,
it will be readily clear what constitutes a large weight; the weight must simply
be large enough so that the respective observations or parameters do not change
during the adjustment. For sequential solution, the solution of the first group must
exist. Conditions cannot be imposed sequentially to eliminate a singularity in the
first group, e.g., conditions should not be used sequentially to define the coordinate
system. A one-step solution is given by (2.4.32).

The a posteriori variance of unit weight is always computed from the final set
of residuals. The degree of freedom increases by 1 for every observed parameter
function, weighted parameter, or condition. In nonlinear adjustments the linearized
condition must always be evaluated for the current point of expansion, i.e., the point
of expansion of the last iteration.

The expressions in Table 2.5.2 and Table 2.5.5 are almost identical. The only dif-
ference is that the matrix T contains the matrix M, in Table 2.5.2.

2.6 MINIMAL AND INNER CONSTRAINTS

This section deals with the implementation of minimal and inner constraints to the
observation equation model. The symbol r denotes the rank of the design matrix,
R(,A,) = R(ATPA) = r < u. Note that the use of the symbol r in this context is
entirely different from its use in the mixed model, where r denotes the number of
equations. The rank deficiency of u — r is generally caused by a lack of coordinate
system definition. For example, a network of distances is invariant with respect to
translation and rotation, a network of angles is invariant with respect to translation,
rotation, and scaling, and a level network (consisting of measured height differences)
is invariant with respect to a translation in the vertical. The rank deficiency is dealt
with by specifying u — r conditions of the parameters. Much of the theory of inner
and minimal constraint solution is discussed by Pope (1971). The main reason for
dealing with minimal and inner constraint solutions is that this type of adjustment is
important for the quality control of observations. Inner constraint solutions have the
additional advantage that the standard ellipses (ellipsoids) represent the geometry as
implied by the A and P matrices.

The formulation of the least-squares adjustment for the observation equation
model in the presence of a rank deficiency is

nvl = nAuXB +n£l (261)
P = SZZ; (2.6.2)
B x;=0 (2.6.3)

The subscript B indicates that the solution of the parameters X depends on the special
condition implied by the B matrix in (2.6.3). This is the observation equation model
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with conditions between the parameters that was treated in Section 2.5. The one-step
solution is given by (2.4.20),

A'PA B"| [ x; -A"P¢

2| = 2.6.4

“at 511 =1 @64
The matrix on the left side of (2.6.4) is a nonsingular matrix if the conditions (2.6.3)
are linearly independent, i.e., the (u — r) X u matrix B has full row rank, and the rows
are linear-independent of the rows of the design matrix A. A general expression for
the inverse is obtained from

[ATPA BT] [QB ST]

)
B ol||ls R =[0 l] (26.5)

This matrix equation gives the following four equations of submatrices:

A'PAQ, +B'S =1 (2.6.6)
ATPAS” +B'R=10 (2.6.7)
BQ, =0 (2.6.8)
BS' =1 (2.6.9)

The solution of these equations requires the introduction of the (# — r) X u matrix E,
whose rows span the null space of the design matrix A or the null space of the normal
matrix. There is a matrix E such that

(A"PA)E" =0 (2.6.10)

or
AE" =0 or EA" =0 (2.6.11)

Because the rows of B are linearly independent of the rows of A, the (u — r) X (u —r)
matrix BE” has full rank and thus can be inverted. Multiplying (2.6.6) by E from the
left and using (2.6.11), we get
s=(EB")'E (2.6.12)
This expression also satisfies (2.6.9). Substituting S into (2.6.7) gives
ATPAE" (BE")™' +B"R =0 (2.6.13)

Because of (2.6.10), this expression becomes

B'R=0 (2.6.14)
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Because B has full rank, it follows that the matrix R = 0. Thus,

E"(BE")
(EBCT);;_IE <0 ) (2.6.15)

A’PA B"|'
B o| ~

Substituting expression (2.6.12) for S into (2.6.6) gives the nonsymmetric matrix
T,=A'PAQ,=1-B"(EB")"'E (2.6.16)
This expression is modified with the help of (2.6.8), (2.6.10), and (2.6.16),
(a'PA+B"B)|Q, +E(BE")"' (EB")'E| =1 (2.6.17)
It can be solved for Qp:
Q,=(A"PA+B'B)"' —E" (EB"BE")'E (2.6.18)

The least-squares solution of X subject to condition (2.6.3) is, according to (2.6.4),
(2.6.5), and (2.6.15),
Xy =—QA"PL (2.6.19)

The cofactor matrix of the parameters follows from the law of variance-covariance
propagation

Q. = QA'PAQ; = Q, (2.6.20)
The latter part of (2.6.20) follows from (2.6.16) upon multiplying from the left by Q,

and using (2.6.8). Multiplying (2.6.16) from the right by A”PA and using (2.6.11)
gives
ATPA = ATPAQ,;A’PA (2.6.21)

The relation implied in (2.6.20) is
Q,A'PAQ; = Q, (2.6.22)
There are u — r conditions required to solve the least-squares problem, i.e., the
minimal number of conditions is equal to the rank defect of the design (or normal)
matrix. Any solution derived in this manner is called a minimal constraint solution.
There are obviously many different sets of minimal constraints possible for the same

adjustment. The only prerequisite on the B matrix is that it have full row rank and
that its rows be linearly independent of A. Assume that

Cx.=0 (2.6.23)

is an alternative set of conditions. The solution X- follows from the expressions given
by simply replacing the matrix B by C. The pertinent expressions are

Xc=-QA"PL (2.6.24)
Q.= (A’PA+C’c)” —E"(ECT CE")"'E (2.6.25)
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T.=A'PAQ.=1-C" (EC")"'E (2.6.26)
A'PAQ.A'PA =A"PA (2.6.27)
QA"PAQ. = Q, (2.6.28)

The solutions pertaining to the various alternative sets of conditions are all related.
In particular,

Xy =ToXc (2.6.29)
Q; =T,Q.T; (2.6.30)
Xe=TCxg (2.6.31)
Q. =T.Q,T, (2.6.32)

Equations (2.6.29) to (2.6.32) constitute the transformation of minimal control, i.e.,
they relate the adjusted parameters and the covariance matrix for different mini-
mal constraints. These transformation expressions are readily proven. For example,
by using (2.6.24), (2.6.16), (2.6.26), and (2.6.11), we obtain

Tixc=-T,QA"Pe
= -Q,A" PAQ A" P?
= -, |1-C" (EC”)'E|a"PL
=—-Q,A"P?
=Xp (2.6.33)
With (2.6.26), (2.6.21), and (2.6.28), it follows that
TLQ,;T. = Q,A"PAQA" PAQ,
= QA" PAQ,
=Q. (2.6.34)
Instead of using the general condition (2.6.23), we can use the condition
Exp, =0 (2.6.35)

The rows of E are linearly independent of A because of (2.6.11). Thus, replacing the
matrix C by E in (2.6.24) through (2.6.32) gives this special solution:

xp=-Q,A"P¢ (2.6.36)
Q,=(A"PA+E'E)” - E" (EETEE")"'E (2.6.37)
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T,=A"PAQ,=1-E" (EE")"'E (2.6.38)
A'PAQ,A"PA = A"PA (2.6.39)
Q,A’PAQ, = Q, (2.6.40)
X5 = ThXp (2.6.41)

Q, =T.Q,T, (2.6.42)

Xp = ThXg (2.6.43)

Q, =T.Q;T, (2.6.44)

The solution (2.6.36) is called the inner constraint solution. The matrix Tp in (2.6.38)
is symmetric. The matrix Qj is a generalized inverse, called the pseudoinverse of the
normal matrix; the following notation is used:

Q,=N"=(A"PA)" (2.6.45)

The pseudoinverse of the normal matrix is computed from available algorithms
of generalized matrix inverses or, equivalently, by finding the E matrix and using
equation (2.6.37). For typical applications in surveying, the matrix E can be readily
identified. Because of (2.6.11) the solution (2.6.36) can also be written as

%,=—(ATPA+E"E)"'ATPe (2.6.46)
Note that the covariance matrix of the adjusted parameters is
2, =6Qpcp (2.6.47)

depending on whether constraint (2.6.3), (2.6.23), or (2.6.35) is used.

The inner constraint solution is yet another minimal constraint solution, although it
has some special features. It can be shown that among all possible minimal constraint
solutions, the inner constraint solution also minimizes the sum of the squares of the
parameters, i.e.,

x"x = minimum (2.6.48)

This property can be used to obtain a geometric interpretation of the inner constraints.
For example, it can be shown that the approximate parameters X, and the adjusted
parameters X can be related by a similarity transformation whose least-squares esti-
mates of translation and rotation are zero. For inner constraint solutions, the standard
ellipses show the geometry of the network and are not affected by the definition of the
coordinate system. It can also be shown that the trace of Qp is the smallest compared
to the trace of the other cofactor matrices. All minimal constraint solutions yield the
same adjusted observations, a posteriori variance of unit weight, covariance matrices
for residuals, and the same values for estimable functions of the parameters and their
variances. The next section presents a further explanation of quantities invariant with
respect to changes in minimal constraints.
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2.7 STATISTICS IN LEAST-SQUARES ADJUSTMENT

If the observations have a multivariate normal distribution as in (2.2.1) and the weight
matrix P is the inverse of the variances-covariance matrix as in (2.2.3), we can carry
out an adjustment and make objective statements about the data. We first develop the
fundamental chi-squared test. Because this test is of such importance, the derivations
are given in detail. Next, another test is developed for testing the sequential solution
and applied to the testing of a general linear hypothesis. Ellipses of standard deviation,
also called error ellipses for short, are very popular in surveying to express positioning
accuracy. Therefore, these probability regions are derived and detailed geometric and
statistical interpretation is provided.

2.7.1 Fundamental Test

The derivation of the distribution is based on the assumption that the observations
have a multivariate normal distribution. The dimension of the distribution equals the
number of observations. In the subsequent derivations the observation equation model
is used. However, these statistical derivations could just as well have been carried out
with the mixed model.
The observation equations are
v=Ax+¢,-¢,

=AX+¢ 2.7.1)

A first assumption is that the residuals are randomly distributed, i.e., the probabil-
ity for a positive or negative residual of the equal magnitude is the same. From this
assumption it follows that

Ewv)=0 (2.7.2)

Because x and £, are constant vectors, it further follows that the mean and variance-
covariance matrix, respectively, are

E(€,) = £, + Ax 2.73)
E(w') = E{ €, — Eey)] [£, ~ E(eb)]T} =Z, =o P (2.7.4)

The second basic assumption refers to the type of distribution of the observations.
It is assumed that the distribution is multivariate normal. Using the mean (2.7.3) and
the covariance matrix (2.7.4), the n-dimensional multivariate normal distribution of
£,, is written as

£, ~N, (& +Ax, Z,) (2.7.5)

Alternative expressions are
£~N,(-Ax.Z,) (2.7.6)
v~N,(0.2,,) =N, (0.05P) 2.7.7)
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By applying two orthogonal transformations we can conveniently derive v’ Pv.
If 2, happens to be nondiagonal, one can always find observations that are stochas-
tically independent and have a unit variate normal distribution. As discussed in
Appendix A, for a positive definite matrix P there exists a nonsingular matrix D
such that

D=EA"'? (2.7.8)
D'P'D=1 (2.7.9)
D'v=D"Ax+D"¢ (2.7.10)
V=Ax+¢ (2.7.11)
£=D"0,-D"¢,=¢,-2¢, (2.7.12)
EWV)=D"E(v)=0 (2.7.13)

>, =0D'P'D =0}l (2.7.14)
v~N, (0,001 (2.7.15)

The columns of the orthogonal matrix E consist of the normalized eigenvectors of P~ ;
A is a diagonal matrix having the eigenvalues of P! at the diagonal. The quadratic
form v7 Pv remains invariant under this transformation because

R=vIPv =V AV2ETPEA?v =V A2 A1 AV v =V'v (2.7.16)

If the covariance matrix X ¢, has a rank defect, then one could use matrix F of (A.3.17)
for the transformation. The dimension of the transformed observations Zb equals the
rank of the covariance matrix.

In the next step, the parameters are transformed to a new set that is stochastically
independent. To keep the generality, let the matrix A in (2.7.11) have less than full
column rank, i.e., R(A) = r < u. Let the matrix F be an n X r matrix whose columns
constitute an orthonormal basis for the column space of A. One such choice for the

—T
columns of F may be to take the normalized eigenvectors of AA . Let G be an
n X (n — r) matrix, such that [F G] is orthogonal and such that the columns of G

—T
constitute an orthonormal basis to the n — r-dimensional null space of AA . Such a

matrix always exists. There is no need to compute this matrix explicitly. With these
specifications we obtain

F F'’F F'G| _[1. 0
[ GT] [F G]= [GTF G’ G] = [ 0 n_rln_r] (2.7.17)
[F G|[F G| =FF' +GG" =1 (2.7.18)
AG=0 (2.7.19)

G'A=0 (2.7.20)
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The required transformation is

=4 TET] T1 _

ZT] v= gr] Ax + [gr] £ (2.7.21)
or, equivalently,

[F'v] _[F"Ax] , |F'e

_GT V] = 0 ] + lGTZ (2.7.22)

Labeling the newly transformed observations by z, i.e.,

=-

-
v, = EZIZI] _ [F OAX] + [2] (2.7.24)

22

F'¢

— 2.7.23
G'7 ( )

we can write (2.7.22) as

There are r random variables in Z; and n — r random variables in Z,. The quadratic
form again remains invariant under the orthogonal transformation, since

v.v, =V (FF' +GG")v

according to (2.7.18). The actual quadratic form is obtained from (2.7.24),

=T
R=V,

— — T —
v.=(FAx+z,) (FAx+z)+2zlz, (2.7.26)
The least-squares solution requires that R be minimized by variation of the parame-
ters. Generally, equating partial derivatives with respect to X to zero and solving the
resulting equations gives the minimum. The special form of (2.7.26) permits a much
simpler approach. The expressions on the right side of equation (2.7.26) consist of the
sum of two positive terms (sum of squares). Because only the first term is a function
of the parameters x, the minimum is achieved if the first term is zero, i.e.,

T A 2

-F, A, X =2 (2.7.27)

Note that the caret identifies the estimated parameters. Consequently, the estimate of
the quadratic form is

R=2)z, (2.7.28)
Because there are r < u equations for the u parameters in (2.7.27), there always
exists a solution for X. The simplest approach is to equate u — r parameters to zero.
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This would be identical to having these u — r parameters treated as constants in the
adjustment. They could be left out when setting up the design matrix and, thus, the
singularity problem would be avoided altogether. Equation (2.7.27) can be solved
subject to u — r general conditions between the parameters. The resulting solution
is a minimal constraint solution. If the particular condition (2.6.35) is applied, one
obtains the inner constraint solution. If A has no rank defect, then the system (2.7.27)
consists of u equations for # unknowns.

The estimate for the quadratic form (2.7.28) does not depend on the parameters
X and, thus, is invariant with respect to the selection of the minimal constraints for
finding the least-square estimate of X. Moreover, the residuals themselves are inde-
pendent of the minimal constraints. Substituting the solution (2.7.27) into (2.7.22)

gives
FT 2 0
G’ V= G'7 (2.7.29)

Since the matrix [F G] is orthonormal, the expression for the residuals becomes

0

v=[F G [ GTZ] = GG'¢ (2.7.30)

Thus, the residuals are independent of the specific solution for X. The matrix G
depends only on the structure of the design matrix A. By applying the law of variance-
covariance propagation to (2.7.30), we clearly see that the covariance matrix of the
adjusted residuals, and thus the covariance matrix of the adjusted observations, does
not depend on the specific set of minimal constraints. Note that the transformation
(2.7.10) does not invalidate these statements since the D matrix is not related to the
parameters.

Returning to the derivation of the distribution of v? Pv, we find from (2.7.23) that

(2.7.31)

E@) = [—FTZx]

0

using (2.7.20) and the fact that E(Z) = -Ax according to (2.7.11). Making use of
(2.7.15) the covariance matrix is

F’ F'F F'Gg I 0
. =0 [GT] IF G| =0 [GTF GTG] =0, [0 I] (2.7.32)

Since a linear transformation of a random variable with multivariate normal distri-
bution results in another multivariate normal distribution according to (A.5.68), it
follows that Z is distributed as

.
Z~N, <[‘F OAX] o2 [(') 7 ]) (2.733)

n—r-n—r



46 LEAST-SQUARES ADJUSTMENTS

The random variables z; and z, are stochastically independent, as are the individual
components. From equation (A.5.71) it follows that

z,~N,_. (0,03 (2.7.34)
Thus
2 ~n(0,07) (2.7.35)
2 n(0,1) (2.7.36)
0y

are unit variate normal distributed. As listed in Appendix A.5.2, the square of a stan-
dardized normal distributed variable has a chi-square distribution with one degree of
freedom. In addition, the sum of chi-square distributed variables is also a chi-square
distribution with a degree of freedom equal to the sum of the individual degrees of
freedom. Using these functions of random variables, it follows that v’ Pv

n—-r 2

R T
R %% i
R_Z22_y2 2, (2.7.37)
% % i=1 %

has a chi-square distribution with n — r degrees of freedom.

Combining the result of (2.7.37) with the expression for the a posteriori variance
of unit weight of Table 2.5.1, we obtain the formulation for a fundamental statistical
test in least-squares estimation:

a2
T (o}

v ’;" =20-n~ ik, (2.7.38)
% %

Note that n — r is the degree of freedom of the adjustment. If there is no rank defi-
ciency in the design matrix, the degree of freedom is n — u. Based on the statistics
(2.7.38), the test can be performed to find out whether the adjustment is distorted.
The formulation of the hypothesis is as follows:

HO:O-

=}

(2.7.39)
(2.7.40)

SN O

H
=}

SN O

H1§0'

The zero hypothesis states that the a priori variance of unit weight statistically equals
the a posteriori variance of unit weight. Recall that the a posteriori variance of unit
weight is a random variable; the adjustment makes a sample value available for this
quantity on the basis of the observations (the samples). Both variances of unit weight
do not have to be numerically equal but they should be statistically equal in the sense
of (2.3.32). If the zero hypothesis is accepted, the adjustment is judged to be correct.
If the numerical value

~2
0 v/ Pv
/%/2 = _(; (n — r) = 3 (2741)

% %
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TABLE 2.7.1 Selected Values for Chi-Square

Probability «
Degree of
Freedom (DF) 0.975 0.950 0.050 0.025
1 0.00 0.00 3.84 5.02
0.83 1.15 11.07 12.833
10 3.25 3.94 18.31 20.48
20 9.59 10.85 31.41 34.17
50 32.36 34.76 67.50 71.42
100 74.22 77.93 124.34 129.56
is such that
1< Xoiap (2.7.42)
2 2
X> Xprap (2.7.43)

then the zero hypothesis is rejected. The significance level a, i.e., the probability of a
type-I error, or the probability of rejecting the zero hypothesis even though it is true,
is generally fixed to 0.05. Here the significance level is the sum of the probabilities
in both tails. Table 2.7.1 lists selected values from the chi-square distribution ){%_m.
Rejection of the zero hypothesis is taken to indicate that something is wrong with
the adjustment. The cause for rejection remains to be clarified. Figure 2.7.1 shows
the limits for the a posteriori variance of unit weight as a function of the degree of
freedom given the significance level @ = 0.05.

a posteriori variance

0 1 L 1 i
0 200 400 600 800 1000
degree of freedom

Figure 2.7.1 Limits on the a posteriori variance of unit weight. The figure refers to
a = 0.05.
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The probability § of the type-II error, i.e., the probability of rejecting the alterna-
tive hypothesis and accepting the zero hypothesis even though the alternative hypoth-
esis is true, is generally not computed. Type-II errors are considered in Section 2.8.2
in regards to reliability and in Section 6.5.3 in regards to discernibility of estimated
ambiguity sets.

2.7.2 Testing Sequential Least Squares

The test statistics for testing groups of observations is based on v/ Pv* and the change
AvTPv. According to Table 2.5.2 we have

AVIPY = (A, x* + £,)" TAX* + £,)
=2ziTz, (2.7.44)

The new random variable z; is a function of observations £; and ¢,. Applying the
laws of propagation of mean and variance, one finds

z =7 (2.7.46)
z;~N(0,63T") (2.7.47)

Carrying out the orthonormal transformation yields a random vector whose compo-
nents are stochastically independent and normally distributed. By standardizing these
distributions and summing the squares of these random variables, it follows that

T z'Tz
L bl S (2.7.48)
% %

has a chi-square distribution with n, degrees of freedom, where 7, equals the num-
ber of observations in the second group. The random variables (2.7.48) and (2.7.38)
are stochastically independent. To prove this, consider the new random variable z =
[z, 2, 2z;]", which is a linear function of the random variables £ (first group) and
£,, according to equations (2.7.10), (2.7.23), and (2.7.44). By using the covariance
matrix (2.4.2) and applying variance-covariance propagation, we find that the covari-
ances between the Z; are zero. Because the distribution of the Z is multivariate normal,
it follows that the random variables 2; are stochastically independent. Since Av’ Pv
is a function of z; only, it follows that v/ Pv in (2.7.38), which is only a function of
z,, and Av’ Py in (2.7.48) are stochastically independent. Thus, it is permissible to
form the following ratio of random variables:

AVIPv(n, —r)

vIPv*(n,) e (2749

which has an F distribution.
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TABLE 2.7.2 Selected Values for F

n

n, 1 2 3 4

5 6.61 5.79 5.41 5.19
10 4.96 4.10 3.71 3.48
20 4.35 3.49 3.10 2.87
60 4.00 3.15 2.76 2.53
120 3.92 3.07 2.68 2.45
00 3.84 3.00 2.60 2.37

Thus the fundamental test in sequential adjustment is based on the F' distribution.
The zero hypothesis states that the second group of observations does not distort
the adjustment, or that there is no indication that something is wrong with the second
group of observations. The alternative hypothesis states that there is an indication that
the second group of observations contains errors. The zero hypothesis is rejected, and
the alternative hypothesis is accepted if

F< Fnz,n]—r, I—a/2 (2.7.50)
F>F, wrap (2.7.51)

Table 2.7.2 lists selected values from the F distribution as a function of the degrees
of freedom and probability. The tabulation refers to the parameters as specified in

Fnl, ny, 0.05°

2.7.3 General Linear Hypothesis

The general linear hypothesis deals with linear conditions between parameters. Non-
linear conditions are first linearized. The basic idea is to test the change Av” Py for its
statistical significance. Any of the three adjustment models can be used to carry out
the general linear hypothesis test. For the observation equation model with additional
conditions between the parameters, one has

Vl = AIX + El (2752)
Equation (2.7.53) expresses the zero hypothesis H,,. The solution of the combined
adjustment is found in Table 2.5.5. Adjusting (2.7.52) alone results in v Pv*, which

has a chi-square distribution with n — r degrees of freedom according to (2.7.48). The
change Av’ Py resulting from the condition (2.7.53) is

AV Pv = (A,x* + £,)" T(AX* + £,) (2.7.54)
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The expression in (2.7.54) differs from (2.7.44) in two respects. First, the matrix T
differs, i.e., the matrix T in (2.7.54) does not contain the P, matrix. Second, the quan-
tity £, is not a random variable. These differences, however, do not matter in the proof
of stochastic independence of vI Pv* and Av’Pv. Analogously to (2.7.44), we can
express the change Av? Pv in (2.7.54) as a function of a new random variable z;. The
proof for stochastic independence follows the same lines of thought as given before
(for the case of additional observations). Thus, just as (2.7.49) is the basis for testing
two groups of observations, the basic test for the general linear hypothesis (2.7.53) is

AVIPv(n, —r) P (2755)
vI Py* n, np,np—r e

A small Av”Pv implies that the null hypothesis (2.7.53) is acceptable, i.e., the con-
ditions are in agreement with the observations. The conditions do not impose any
distortions on the adjustment. The rejection criterion is based on the one-tail test at
the upper end of the distribution. Thus, reject H, at a 100a% significance level if

F>F, yra (2.7.56)
The general formulation of the null hypothesis in (2.7.53) makes it possible to
test any hypothesis on the parameters, so long as the hypothesis can be expressed
in a mathematical equation. Nonlinear hypotheses must first be linearized. Simple
hypotheses could be used to test whether an individual parameter has a certain numer-
ical value, whether two parameters are equal, whether the distance between two sta-
tions has a certain length, whether an angle has a certain size, etc. For example,
consider the hypothesis

Hy : x—x;=0 (2.7.57)
H :x—-x;#0 (2.7.58)

The zero hypothesis states that the parameters equal a certain (true) value X,. From
(2.7.53) it follows that A, = I and £, = —x;. Using these specifications we can use
T = N in (2.7.54), and the statistic (2.7.55) becomes

X —=xp)INE" - x7)

%) ron=r,a
O'Or

(2.7.59)

where the a posteriori variance of unit weight (first group only) has been substituted
for vI Pv*. Once the adjustment of the first group (2.7.52) is completed, the values
for the adjusted parameters and the a posteriori variance of unit weight are entered
in (2.7.59), and the fraction is computed and compared with the F value (taking the
proper degrees of freedom and the desired significance level into account). Rejection
or acceptance of the zero hypothesis follows rule (2.7.56).

Note that one of the degrees of freedom in (2.7.59) is r = R(N) < u, instead of u,
which equals the number of parameters, even though equation (2.7.57) expresses u
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conditions. Because of the possible rank defect of the normal matrix N, the distri-
bution of Av?Pv in (2.7.54) is a chi-square distribution with r degrees of freedom.
Consider the derivation leading to (2.7.48). The u components of Z; are transformed
to r stochastically independent unit variate normal distributions that are then squared
and summed to yield the distribution of Av’ Pv. The interpretation is that (2.7.57) rep-
resents one hypothesis on all parameters X, and not u# hypotheses on the # components
on X.

Expression (2.7.59) can be used to define the r-dimensional confidence region.
Replace the particular X, by the unknown parameter X, and drop the asterisk; then

()?—X)TN()?—X) Frony-r.a
P <F,, .. =/ F,, dF=1—-a (2.7.60)
~2 Sy, >l
ol 0

The probability region described by the expression on the left side of
equation (2.7.60) is an R(N)-dimensional ellipsoid. The probability region is
an ellipsoid because the normal matrix N is positive definite or, at least, semipositive
definite. If one identifies the center of the ellipsoid with X, then there is (1 — a)
probability that the unknown point X lies within the ellipsoid. The orientation and
the size of this ellipsoid are a function of the eigenvectors and eigenvalues of the
normal matrix, the rank of the normal matrix, and the degree of freedom. Consider
the orthonormal transformation

z=F'(x-%) (2.7.61)
with F as specified in (A.3.17) and containing the normalized eigenvectors of N, then
F'NF = A (2.7.62)

with A containing the r eigenvalues of N, and

2
&-=x)"NE-x)=2"Az = 2 22 Z (2.7.63)

=1 (1/\/_)

Combining equations (2.7.60) and (2.7.63), we can write the r-dimensional ellipsoid,
or the r-dimensional confidence region, in the principal axes form:

Z2 Z2
P ! e - <l|=1-a (2764)
(6-0 rFr,n—r,(x/A]) (60 rFr,n—r,a/ir)

The confidence region is centered at X. Whenever the zero hypothesis H, of (2.7.57)
is accepted, the point X falls within the confidence region. The probability that the
ellipsoid contains the true parameters X, is 1 — a. For these reasons, one naturally
would like the ellipsoid to be small. Equation (2.7.64) shows that the semimajor axes
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are proportional to the inverse of the eigenvalues of the normal matrix. It is exactly this
relationship that makes us choose the eigenvalues of N as large as possible, provided
that we have a choice through appropriate network design variation. As an eigenvalue
approaches zero, the respective axis of the confidence ellipsoid approaches infinity;
this is an undesirable situation, both from a statistical point of view and because of
the numerical difficulties encountered during the inversion of the normal matrix.

2.7.4 Ellipses as Confidence Regions

Confidence ellipses are statements of precision. They are frequently used in con-
nection with two-dimensional networks in order to make the directional precision
of station location visible. Ellipses of confidence follow by limiting the hypothesis
(2.7.57) to two parameters, i.e., the Cartesian coordinates of a station. Of course, in a
three-dimensional network one can compute three-dimensional ellipsoids or several
ellipses, e.g., one for the horizontal and others for the vertical. Confidence ellipses
or ellipsoids are not limited to the specific application of networks. However, in net-
works the confidence regions can be referenced with respect to the coordinate system
of the network and thus can provide an integrated view of the geometry of the confi-
dence regions and the network.
Consider the following hypothesis:
Hy:X;—X;7=0 (2.7.65)
where the notation
X = x| (2.7.66)

is used. The symbols x; and x, denote the Cartesian coordinates of a two-dimensional
network station P;. The test of this hypothesis follows the outline given in the previous
section. The A, matrix is of size 2 X u because there are two separate equations in the
hypothesis and u components in X. The elements of A, are zero except those elements
of rows 1 and 2, which correspond to the respective positions of x; and x, in X. With
these specifications it follows that

Q,=AN"'Al = [ T qWZ] (2.7.67)

qxz X qxz

where Q; contains the respective elements of the inverse of the normal matrix. With
these specifications T = Ql._1 and expression (2.7.55) becomes

1 . 1,
—&-x'Q; & = X;1) ~ Fa ey (2.7.68)
26

Given the significance level a, the hypothesis test can be carried out. The two-
dimensional confidence region is

()A(,' —Xl')TQi_l ()?l _Xi) Fynra
e <Fyporal = / Fyp,dF=1—a (2.7.69)
O'O 0




STATISTICS IN LEAST-SQUARES ADJUSTMENT 53

The size of the confidence ellipses defined by (2.7.69) depends on the degree of free-
dom of the adjustment and the significance level. The ellipses are centered at the
adjusted position and delimit the (1 — ) probability area for the true position. The
principal axis form of (2.7.69) is obtained through orthogonal transformation. Let R,
denote the matrix whose rows are the orthonormal eigenvectors of Q;, then

R/ Q'R = A7' (2.7.70)

according to (A.3.16). The matrix A; is diagonal and contains the eigenvalues /ll.Q and
A9 of Q. With

z, =R/ (X, — X)) (2.7.71)
Expression (2.7.69) becomes
) i, RN
(o) (o)
F2,n—r,nt
= /0 Fy, ,dF =1-«a (2.7.72)

For F,,_, . = 1/2, the ellipse is called the standard ellipse or the error ellipse. Thus,
the probability enclosed by the standard ellipse is a function of the degree of freedom
n — r and is computed as follows:

1/2
P(standard ellipse) = / Fy,_rdF (2.7.73)
0

The magnification factor, \/2F, ,_, ., as a function of the probability and the degree
of freedom, is shown in Table 2.7.3. The table shows immediately that a small degree
of freedom requires a large magnification factor to obtain, e.g., 95% probability.
It is seen that in the range of small degrees of freedom, an increase in the degree
of freedom rapidly decreases the magnification factor, whereas with a large degree
of freedom, any additional observations cause only a minor reduction of the mag-
nification factor. After a degree of freedom of about 8 or 10, the decrease in the
magnification factor slows down noticeably. Thus, based on the speed of decreasing
magnification factor, a degree of 10 appears optimal, considering the expense of addi-
tional observations and the little gain derived from them in the statistical sense. For a
degree of freedom of 10, the magnification factor is about 3 to cover 95% probability.

The hypothesis (2.7.65) can readily be generalized to three dimensions encom-
passing the Cartesian coordinates of a three-dimensional network station. The
magnification factor of the respective standard ellipsoid is 4/3F} ,,_,. , for it to con-
tain (1 — a) probability. Similarly, the standard deviation of an individual coordinate
is converted to a (1 —a) probability confidence interval by multiplication with
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TABLE 2.7.3 Magnification Factor for Standard Ellipses

Probability 1 — «

n—r 95% 98% 99%

1 20.00 50.00 100.00
2 6.16 9.90 14.10
3 4.37 6.14 7.85
4 3.73 4.93 6.00
5 3.40 4.35 5.15
6 3.21 4.01 4.67
8 2.99 3.64 4.16
10 2.86 3.44 3.89
12 2.79 332 3.72
15 2.71 3.20 3.57
20 2.64 3.09 3.42
30 2.58 2.99 3.28
50 2.52 291 3.18
100 2.49 2.85 3.11
) 2.45 2.80 3.03

\/F1 -y These magnification factors are shown in Figure 2.7.2 for a = 0.05. For
higher degrees of freedom, the magnification factors converge toward the respective
chi-square values because of the relationship r F, ,, = 72

For drawing the confidence ellipse at station P;, we need the rotation angle ¢
between the (x;) and (z;) coordinate systems as well as the semimajor and semiminor
axis of the ellipse. Let (y;) denote the translated (x;) coordinate system through the
adjusted point X;; then (2.7.71) becomes

z,=Ry, (2.7.74)

The eigenvectors of Q; determine the directions of the semiaxes, and the eigenval-
ues determine their lengths. Rather than computing the vectors explicitly, we choose
to compute the rotation angle @ by comparing coefficients from quadratic forms.
Figure 2.7.3 shows the rotational relation

| cos @ sin @
z, = [_ sin @ cos (p] y; (2.7.75)

and (2.7.70) and (2.7.74) give the two quadratic forms

yiQy, =27z (2.7.76)
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Figure 2.7.2 Magnification factors for confidence regions. The values refer to @ = 0.05.
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We substitute (2.7.75) into the right-hand side of (2.7.76) and the matrix elements
of Q; of (2.7.67) into the left-hand side and compare the coefficient of y; y, on both
sides, giving

. 2qx1,x2
sin 2¢p = ———— (2.7.77)
A= a3

The eigenvalues follow directly from the characteristic equation

qx, — Ve xy,x,

Q, - 29 =
| | qxz _ AQ

= (q,, — 49)(q,, — 4%) - qﬁm =0 (2.7.78)

X1,Xp
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Figure 2.7.4 Defining elements of standard
ellipse.

The solution of the quadratic equation is

20 = I ;qu ! (2.7.79)
2= w _ % (2.7.80)
W= \/(qx1 -4, +4q3, 1, (2.7.81)
sin 2 = quthz (2.7.82)
cos 2¢ = % (2.7.83)

The terms sin 2¢ and cos 2¢ determine the quadrant of ¢.

Figure 2.7.4 shows the defining elements of the standard ellipse. Recall
equation (2.7.72) regarding the interpretation of the standard ellipses as a confidence
region. In any adjustment, any two parameters can comprise X;, regardless of the
geometric meaning of the parameters. Examples are the intercept and slope in the
fitting of a straight line or ambiguity parameters in the case of GPS carrier phase
solutions. The components X; can always be interpreted as Cartesian coordinates for
drawing the standard ellipse and thus can give a graphical display of the covariance.
In surveying networks, the vectors X; contain coordinates of stations in a well-defined
coordinate system. If X; represents latitude and longitude or northing and casting,
the horizontal standard ellipse is computed. If X; contains the vertical coordinate and
easting, then the standard ellipse in the prime vertical is obtained.

Because the shape of the standard ellipses and ellipsoids depends on the geometry
of the network through the design matrix and the weight matrix, the geometric inter-
pretation is enhanced if the network and the standard ellipses are displayed together.
Occasionally, users prefer to compute coordinate differences and their covariance
matrix and plot relative standard ellipses.

2.7.5 Properties of Standard Ellipses

The positional error p of a station is directly related to the standard ellipse, as seen
in Figure 2.7.5. The positional error is the standard deviation of a station in a certain



STATISTICS IN LEAST-SQUARES ADJUSTMENT 57

direction, say . It is identical with the standard deviation of the distance to a known
(fixed) station along the same direction y, as computed from the linearized distance
equation and variance-covariance propagation. The linear function is

r=2z; cos y +2z, sin y (2.7.84)

Because of equations (2.7.70) and (2.7.71), the distribution of the random variable z;
is multivariate normal with

B e R (G

The variance of the random variable r follows from the law of variance-covariance
propagation:

62 = a® cos’y + b* sin’ y (2.7.86)

The variance (2.7.86) is geometrically related to the standard ellipse. Let the ellipse
be projected onto the direction y. The point of tangency is denoted by P,. Because
the equation of the ellipse is

2z B
= + i 1 (2.7.87)
the slope of the tangent is
dz za*
— = ——— = —tan 2.7.88
dZ2 Z]b2 v ( )

See Figure 2.7.5 regarding the relation of the slope of the tangent and the angle .
The second part of (2.7.88) yields

Z . Z
% sin y — % cos w =0 (2.7.89)

Figure 2.7.5 Position error.
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This equation relates the coordinates of the point of tangency P, to the slope of the
tangent. The length p of the projection of the ellipse is according to the figure,

P =2 COS W +Zzgp SIn y (2.7.90)

Next, equation (2.7.89) is squared and then multiplied with a?b?, and the result is
added to the square of (2.7.90), giving

p? = a? cos? y + b? sin® y (2.7.91)

By comparing this expression with (2.7.86), it follows that 6, = p, i.e., the stan-
dard deviation in a certain direction is equal to the projection of the standard ellipse
onto that direction. Therefore, the standard ellipse is not a standard deviation curve.
Figure 2.7.6 shows the continuous standard deviation curve. We see that for narrow
ellipses there are only small segments of the standard deviations that are close to the
length of the semiminor axis. The standard deviation increases rapidly as the direc-
tion y moves away from the minor axis. Therefore, an extremely narrow ellipse is
not desirable if the overall accuracy for the station position is important.

As a by-product of the property discussed, we see that the standard deviations of
the parameter x; and x,

8, = 6or/qr (2.7.92)
8., = 60r/1, (2.7.93)

are the projections of the ellipse in the directions of the x; and x, axes. This is shown
in Figure 2.7.7. Equations (2.7.92) and (2.7.93) follow from the fact that the diago-
nal elements of the covariance matrix are the variances of the respective parameters.

standard deviation

m\(

ellipse

Figure 2.7.6 Standard deviation curve.
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Figure 2.7.7 Characteristics of the standard deviation ellipse.

Equation (2.7.91) confirms for y = 0 and y = 90° that the axes a and b equal the
maximum and minimum standard deviations, respectively. The rectangle formed by
the semisides 6, and 6., encloses the ellipse. This rectangle can be used as an approx-
imation for the ellipses. The diagonal itself is sometimes referred to as the mean

position error &,
& =1/83, + 65, = 6074y, + s, (2.7.94)

The points of contact between the ellipse and the rectangle in Figure 2.7.7 are
functions of the correlation coefficients. For these points, the tangent on the ellipse is
either horizontal or vertical in the (y;) coordinate system. The equation of the ellipse
in the (y) system is, according to (2.7.69),

-1
Qx| qx],XZ] [yl] — ~2 2.7.95
b1 ] [qxl,xz qx, vl 0 (27:93)

By replacing the matrix by its inverse, the expression becomes

sz _Qxl,xz Y1 — _ 2 82 2.7.96
by 2 [_qxlaxz gy, Y2 (93092, = 95.12)5 (2.7.96)
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Evaluating the left-hand side and dividing both sides by ¢, ¢, gives

2 2
YooY, 2indy,
_1 + _2 — $ = constant (2.7.97)
qx] QJCZ q.X] qu

from which it follows that

dy,  (2n/ay) = (1045, / \/Ax, 45,

i _ (2.7.98)

dys  (2vapy, 2, /T G,) — (291 /4y,

Consider the tangent for which the slope is infinity. The equation of this tangent line is

Y2 = 604/, (2.7.99)
Substituting this expression into the denominator of (2.7.98) and equating it to zero
gives
601/4x,Px,.
OVTertun N (2.7.100)
V49, 9x, qx,
which yields the y, coordinate for the point of tangency:
Y1 =60 \/bx, Px.x, = Ox, P, xy (2.7.101)
The equation for the horizontal tangent is
Y1 = 604/, (2.7.102)
It follows from the numerator of (2.7.98) that
Y2 = 601/bx, Pxy xy = Ox, Py v,y (2.7.103)

Figure 2.7.7 shows that the standard ellipse becomes narrower the higher the correla-
tion. For correlation plus or minus 1 (linear dependence), the ellipse degenerates into
the diagonal of the rectangle. The ellipse becomes a circle if a = b, or o, =0,,, and
=0.

pX|,X2

2.7.6 Other Measures of Precision

In surveying and geodesy, the most popular measure of precision is the standard
deviation. The confidence regions are usually expressed in terms of ellipses and
ellipsoids of standard deviation. These figures are often scaled to contain 95%
probability or higher. Because GPS is a popular tool for both surveying and
navigation, several of the measures of precision used in navigation are becoming
increasingly popular in surveying. Examples include the dilution of precision (DOP)
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numbers. The DOPs are discussed in detail in Section 6.3.2. Other single-number
measures refer to circular or spherical confidence regions for which the eigenvalues
of the cofactor matrix have the same magnitude. In these cases, the standard devia-
tions of the coordinates and the semiaxes are of the same size. See equation (2.7.72).
When the standard deviations are not equal, these measures become a function of
the ratio of the semiaxes. The derivation of the following measures and additional
interpretation are given in Greenwalt and Shultz (1962).

The radius of a circle that contains 50% probability is called the circular error
probable (CEP). This function is usually approximated by segments of straight lines.
The expression

CEP = 0.5887(6)(1 + 8x2) (2.7.104)

is, strictly speaking, valid in the region o,;, / 6., = 0.2, but it is the function used
most often. The 90% probability region

CMAS = 1.8227 x CEP (2.7.105)

is called the circular map accuracy standard. The mean position error (2.7.94) is also
called the mean square positional error (MSPE), or the distance root mean square

(DRMS), i.e.,
DRMS = /62 + 62, (2.7.106)

This measure contains 64 to 77% probability. The related measure
2DRMS = 2 x DRMS (2.7.107)

contains about 95 to 98% probability.
The three-dimensional equivalent of CEP is the spherical error probable (SEP),
defined as

SEP = 0.5127 (8,, +6,, + 6,,) (2.7.108)

Expression (2.7.108) is, strictly speaking, valid in the region o,;, / 6,,.x = 0.35. The
corresponding 90% probability region,

SAS = 1.626 X SEP (2.7.109)

is called the spherical accuracy standard (SAS). The mean radial spherical error

(MRSE) is defined as
MRSE = /67, + 6% + 6, (2.7.110)

and contains about 61% probability.

These measures of precision are sometimes used to capture the achieved or antic-
ipated precision conveniently using single numbers. However, the geometry of the
adjustment seldom produces covariance matrices that yield circular distribution. Con-
sequently, the probability levels contained in these measures of precision inevitably
are a function of the correlations between the parameters.
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2.8 RELIABILITY

Small residuals are not necessarily an indication of a quality adjustment. Equally
important is the knowledge that all blunders in the data have been identified and
removed and that remaining small blunders in the observations do not adversely
impact the adjusted parameters. Reliability refers to the controllability of observa-
tions, i.e., the ability to detect blunders and to estimate the effects that undetected
blunders may have on a solution. The theory outlined here follows that of Baarda
(1967, 1968) and Kok (1984).

2.8.1 Redundancy Numbers

Following the expressions in Table 2.5.1 the residuals for the observation equation
model are
v=QP¢ (2.8.1)

with a cofactor matrix for the residuals
Q =P '-AN'A" (2.8.2)
Compute the trace
Tr(Q,P) = Tr(I - AN~'A’P)
=n-Tr(N"'A’PA)
=n-—u (2.8.3)

A more general expression is obtained by noting that the matrix AN~'A”P is idem-
potent. The trace of an idempotent matrix equals the rank of that matrix. Thus,

Tr(AN"'A'P) =R(A'PA) =RA)=r<u (2.8.4)
Thus, from equations (2.8.3) and (2.8.4)
Tr(Q,P) = Tr(QP,) = n — R(A) (2.8.5)

By denoting the diagonal element of the matrix Q, P by r;, we can write

n

Y r;=n-REA) (2.8.6)

i=1

The sum of the diagonal elements of Q, P equals the degree of freedom. The element
r; is called the redundancy number for the observation i. It is the contribution of the
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i th observation to the degree of freedom. If the weight matrix P is diagonal, this is
usually the case when original observations are adjusted, then

I = 4q,Di (2.8.7)

where ¢; is the diagonal element of the cofactor matrix Q,, and p; denotes the weight
of the i th observation. Equation (2.8.2) implies the inequality

0<q < L (2.8.8)

T b
Multiplying by p; gives the bounds for the redundancy numbers,
0<r <l (2.8.9)
Considering the general relation
Q =Q,-Q, (2.8.10)

given in Table 2.5.1 and the specification (2.8.7) for the redundancy number r; as
the diagonal element of Q, P, it follows that if the redundancy number is close to 1,
then the variance of the residuals is close to the variance of the observations, and the
variance of the adjusted observations is close to zero. If the redundancy number is
close to zero, then the variance of the residuals is close to zero, and the variance of
the adjusted observations is close to the variance of the observations.

Intuitively, it is expected that the variance of the residuals and the variance of
the observations are close; for this case, the noise in the residuals equals that of the
observations, and the adjusted observations are determined with high precision. Thus
the case of r; close to 1 is preferred, and it is said that the gain of the adjustment is high.
If r; is close to zero, one expects the noise in the residuals to be small. Thus, small
residuals as compared to the expected noise of the observations are not necessarily
desirable. Because the inequality (2.8.9) is a result of the geometry as represented
by the design matrix A, small residuals can be an indication of a weak part of the
network.

Because the weight matrix P is considered diagonal, i.e.,

o
pi=— (2.8.11)
G;
it follows that

L= 5 /r (2.8.12)




64 LEAST-SQUARES ADJUSTMENTS

From (2.8.6) it follows that the average redundancy number is

_n—RA)
B n

av (2.8.13)
The higher the degree of freedom, the closer the average redundancy number is to 1.
However, as seen from Table 2.7.3, the gain, in terms of probability enclosed by the
standard ellipses, reduces noticeably after a certain degree of freedom.

2.8.2 Controlling Type-Il Error for a Single Blunder

Baarda’s (1967) development of the concept of reliability of networks is based on
un-Studentized hypothesis tests, which means that the a priori variance of unit weight
is assumed to be known. Consequently, the a priori variance of unit weight (not the a
posteriori variance of unit weight) is used in this section. The alternative hypothesis
H,, specifies that the observations contain one blunder, that the blunder be located at
observation i, and that its magnitude is V. Thus the adjusted residuals for the case of
the alternative hypothesis are

V|H, =V - Q,Pe,V, (2.8.14)

where ,
e=[0 - 01 0 - 0] (2.8.15)

denotes an n X 1 vector containing 1 in position i and zero elsewhere. The expected
value and the covariance matrix are

EW|H,) = -Q,Pe,V, (2.8.16)
Zm =2,=0Q, (2.8.17)

It follows from (A.5.65) that
V|H,~N(-Q,/Pe;V,;0Q,) (2.8.18)

Since P is a diagonal matrix, the individual residuals are distributed as
bilH, ~ n(=qpiVi.054;) (2.8.19)

according to (A.5.71). Standardizing gives

_ v;|H, —q:p;V;
wH, = ——~n| ——,1
50\/‘7;’ 50\/‘7;’
_\/CI_iPiVi
=n| —,1 (2.8.20)
)
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or
v;1H —Vibin/4i
H, : :|—~n(—\/—1> 2.821)
Gv,- 0
The zero hypothesis, which states that there is no blunder, is
b; | Ho
Hy:wy=——~n(0,1) (2.8.22)

Vi

The noncentrality parameter in (2.8.21), i.e., the mean of the noncentral normal dis-
tribution, is denoted by 6; and is

_ _Vipi\/CTi _ _Vi\/ri

o =
0] 0

(2.8.23)

1

The parameter 6; is a translation parameter of the normal distribution. The situation
is shown in Figure 2.8.1. The probability of committing an error of the first kind, i.e.,
of accepting the alternative hypothesis, equals the significance level a of the test

ta/2
P(Jwy| < lyj2) = / n0,Ndx=1-a (2.8.24)
_Za/Z
or H—a/2 Sl
P(lwy| 2 ta/2) = / n(0, 1) dx +/ n0,)dx=«a (2.8.25)
—00 la/z

In 100 a% of the cases, the observations are rejected and remeasurement or inves-
tigations for error sources are performed, even though the observations are correct

00,1 ng;,1)  ndy,1)

K

| critical region -*
‘a2 3i B

“4— critical region
Il- o2 0

Figure 2.8.1 Defining the noncentrality.
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(they do not contain a blunder). From Figure 2.8.1 it is seen that the probability f; of
a type-Il error, i.e., the probability of rejecting the alternative hypothesis (and accept-
ing the zero hypothesis) even though the alternative hypothesis is correct, depends
on the noncentrality factor 6;. Because the blunder V; is not known, the noncentral-
ity factor is not known either. As a practical matter one can proceed in the reverse:
one can assume an acceptable probability f; for the error of the second kind and
compute the respective noncentrality parameter 6,. This parameter in turn is used
to compute the lower limit for the blunder, which can still be detected. The figure
shows that

Ia/Z
P(lw| < ta)2) = / n(; D > o (2.8.26)
“la/2

If
5 < 6, (2.8.27)

Substituting equation (2.8.23) into (2.8.27) gives the limit for the marginally
detectable blunder, given the probability levels a and f:

60
|Voi | > ——o, (2.8.28)

l

Equations (2.8.26) and (2.8.28) state that in 100(1 — ;)% of the cases, blunders
greater than those given in (2.8.28) are detected. In 1008,% of the cases, blunders
greater than those given in (2.8.28) remain undetected. The larger the redundancy
number, the smaller is the marginally detectable blunder (for the same 6, and o;).
It is important to recognize that the marginally detectable blunders (2.8.28) are based
on adopted probabilities of type-I and type-II errors for the normal distribution.
The probability levels a and f, refer to the one-dimensional test (2.8.22) of the
individual residual v;, with the noncentrality being 6,. The assumption is that only
one blunder at a time is present. The geometry is shown in Figure 2.8.1. It is readily
clear that there is a simple functional relationship 6, = 6,(a, f,) between two normal
distributions. Table 2.8.1 contains selected probability levels and the respective
oy values.

TABLE 2.8.1 Selected Probability Levels in Reliability

a ﬂo 60
0.05 0.20 2.80
0.025 0.20 3.1
0.001 0.20 4.12
0.05 0.10 324
0.025 0.10 3.52

0.001 0.10 4.57
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The chi-square test (2.7.38) of the a posteriori variance of unit weight 6'5 is
also sensitive to the blunder V,. In fact, the blunder will cause a noncentrality of
o; for the chi-square distribution of the alternative hypothesis. One can choose
the probabilities a,; and f,; for this multidimensional chi-square test such that
0o = Ocni (@cpis Pepi» 1 — ). The factor 6, depends on the degree of freedom because
the chi-square distribution depends on it. Baarda’s B method suggests equal trace-
ability of errors through one-dimensional tests of individual residuals, v;, and the
multidimensional test of the a posteriori variance of unit weight &é. This is achieved
by requiring that the one-dimensional test and the multidimensional test have the
same type-II error, i.e., fiy = fip;. Under this condition there exists a relationship
between the probability of type-II error, the significance levels, and the degree
of freedom expressed symbolically by &, = 6,(a, fy) = Spi(@epis fo- 7 — ). The B
method assures equal traceability but implies different significance levels for the
one-dimensional and multidimensional tests. For details see Baarda (1968, p. 25).
In practical applications one chooses the factor o, on the basis of a reasonable value
for a and 6, from Table 2.8.1.

2.8.3 Internal Reliability

Even though the one-dimensional test assumes that only one blunder exists in a
set of observations, the limit (2.8.28) is usually computed for all observations. The
marginally detectable errors, computed for all observations, are viewed as a measure
of the capability of the network to detect blunders with probability (1 — f;). They
constitute the internal reliability of the network. Because the marginally detectable
errors (2.8.28) do not depend on the observations or on the residuals, they can be
computed as soon as the configuration of the network and the stochastic model are
known. If the limits (2.8.28) are of about the same size, the observations are equally
well checked, and the internal reliability is said to be consistent. The emphasis is
then on the variability of the marginally detectable blunders rather than on their
magnitude. A typical value is 6, = 4.

2.8.4 Absorption

According to (2.8.1) the residuals in the presence of one blunder are
v=QP¢-eV) (2.8.29)
The impact on the residual of observation i is
Vv, = -nV; (2.8.30)

Equation (2.8.30) is used to estimate the blunders that might cause large residuals.
Solving for V; gives

V\}i V;k + VVi V;
Vi=c—r———— v —— (2.8.31)

1
T T T
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because v < V;, where v¥ denotes the residual without the effect of the blunder.
The computation (2.8.31) provides only estimates of possible blunders. Because the
matrix Q,P is not a diagonal matrix, a specific blunder has an impact on all residuals.
If several blunders are present, their effects overlap and one blunder can mask others;
a blunder may cause rejection of a good observation.

Equation (2.8.30) demonstrates that the residuals in least-squares adjustments
are not robust with respect to blunders in the sense that the effect of a blunder on
the residuals is smaller than the blunder itself, because r varies between 0 and 1.
The absorption, i.e., the portion of the blunder that propagates into the estimated
parameters and falsifies the solution, is
A =1 -r)V;

L 1

(2.8.32)

The factor (1 — r;) is called the absorption number. The larger the redundancy num-
ber, the less is a blunder absorbed, i.e., the less falsification. If r; = 1, the observa-
tion is called fully controlled, because the residual completely reflects the blunder.
A zero redundancy implies uncontrolled observations in that a blunder enters into the
solution with its full size. Observations with small redundancy numbers might have
small residuals and instill false security in the analyst. Substituting V; from (2.8.31)
expresses the absorption as a function of the residuals:

1—r
A =— r'r’v,- (2.8.33)
l

The residuals can be looked on as the visible parts of errors. The factor in (2.8.33) is
required to compute the invisible part from the residuals.

2.8.5 External Reliability

A good and homogeneous internal reliability does not automatically guarantee reli-
able coordinates. What are the effects of undetectable blunders on the parameters?
In deformation analysis, where changes in parameters between adjustments of differ-
ent epochs indicate existing deformations, it is particularly important that the impact
of blunders on the parameters be minimal. The influence of each of the marginally
detectable errors on the parameters of the adjustment or on functions of the parame-
ters is called external reliability. The estimated parameters in the presence of a blunder
are, for the observation equation model,

x=-N"'A"P(-eV, (2.8.34)
The effect of the blunder in observation i is

Vx =N"'A"Pe,V, (2.8.35)
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The shifts Vx are sometimes called local external reliability. The blunder affects all
parameters. The impact of the marginally detectable blunder V; is

Vx,; =N"'A"PeV,, (2.8.36)

Because there are n observations, one can compute n vectors (2.8.36), showing the
impact of each marginal detectable blunder on the parameters. Graphical representa-
tions of these effects can be very helpful in the analysis. The problem with (2.8.36) is
that the effect on the coordinates depends on the definition (minimal constraints) of
the coordinate system. Baarda (1968) suggested the following alternative expression:

VxI NVx,,
2= U= (2.8.37)
%
By substituting (2.8.36) and (2.8.28), we can write this equation as
Vo€ PAN'A"Pe v, V2elP(I-QPe;, Vip(l-r)

b= S— = — (2.8.38)

% % %

or |
2 _tThio

iy =—— 8 (2.8.39)

The values 4; are a measure of global external reliability. There is one such value for
each observation. If the A; are the same order of magnitude, the network is homoge-
neous with respect to external reliability. If r; is small, the external reliability factor
becomes large and the global falsification caused by a blunder can be significant.
It follows that very small redundancy numbers are not desirable. The global exter-
nal reliability number (2.8.39) and the absorption number (2.8.33) have the same
dependency on the redundancy numbers.

2.8.6 Correlated Cases

The derivations for detectable blunders, internal reliability, absorption, and external
reliability assume uncorrelated observations for which the covariance matrix X, is
diagonal. Correlated observations are decorrelated by the transformation (2.7.10).
It can be readily verified that the redundancy numbers for the decorrelated observa-
tions £ are

7= (Q;P), = (I-D"AN"'A"D) (2.8.40)
In many applications, the covariance matrix X, is of block-diagonal form. For
example, for GPS vector observations, this matrix consists of 3 x 3 full block-

diagonal matrices if the correlations between the vectors are neglected. In this case,
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the matrix D is also block-diagonal and the redundancy numbers can be computed
vector by vector from (2.8.40). The sum of the redundancy numbers for the three
vector components varies between 0 and 3. Since, in general, the matrix D has a
full rank, the degree of freedom (n — r) of the adjustment does not change. Once
the redundancy numbers 7; are available, the marginal detectable blunders VO,.,
the absorption numbers Kl- and other reliability values can be computed for the
decorrelated observations. These quantities, in turn, can be transformed back into
the physical observation space by premultiplication with the matrix (DT)_I.

2.9 BLUNDER DETECTION

Errors (blunders) made during the recording of field observations, data transfer, the
computation, etc., can be costly and time-consuming to find and eliminate. Blunder
detection can be carried out before the adjustment or as part of the adjustment. Before
the adjustment, the discrepancies (angle and/or distance of simple figures such as tri-
angles and traverses) are analyzed. A priori blunder detection is helpful in detecting
extra-large blunders caused by, e.g., erroneous station numbering. Blunder detection
in conjunction with the adjustment is based on the analysis of the residuals. The
problem with using least-squares adjustments when blunders are present is that the
adjustments tend to hide (reduce) their impact and distribute their effects more or less
throughout the entire network [see (2.8.29) and (2.8.30), noting that the redundancy
number varies between zero and 1]. The prerequisite for any blunder-detection pro-
cedure is the availability of a set of redundant observations. Only observations with
redundancy numbers greater than zero can be controlled.

It is important to understand that if a residual does not pass a statistical test, this
does not mean that there is a blunder in that observation. The observation is merely
flagged so that it can be examined and a decision about its retention or rejection can
be made. Blind rejection is never recommended. A blunder in one observation usually
affects the residuals in other observations. Therefore, the tests will often flag other
observations in addition to the ones containing blunders. If one or more observations
are flagged, the search begins to determine if there is a blunder.

The first step is to check the field notes to confirm that no error occurred during the
transfer of the observations to the computer file, and that all observations are reason-
able “at face value.” If a blunder is not located, the network should be broken down
into smaller networks, and each one should be adjusted separately. At the extreme,
the entire network may be broken down into triangles or other simple geometric enti-
ties, such as traverses, and adjusted separately. Alternatively, the observations can be
added sequentially, one at a time, until the blunder is found. This procedure starts with
weights assigned to all parameters. The observations are then added sequentially. The
sum of the normalized residuals squared is then inspected for unusually large vari-
ations. When searching for blunders, the coordinate system should be defined by
minimal constraints.

Blunder detection in conjunction with the adjustment takes advantage of the
total redundancy and the strength provided by the overall geometry of the network,
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and thus is more sensitive to smaller blunders. Only if the existence of a blunder is
indicated does action need to be taken to locate the blunder. The flagged observations
are the best hint where to look for errors and thus avoid unnecessary and disorganized
searching of the whole observation data set.

2.9.1 Tau Test

The 7 test was introduced by Pope (1976). The test belongs to the group of Studen-
tized tests, which make use of the a posteriori variance of unit weight as estimated
from the observations. The test statistic is

oyV;

' T (2.9.1)

A ~ n—r
vi O-OO-i\/r_i

The symbol 7,_, denotes the 7 distribution with n — r degrees of freedom. It is related

to Student’s 7 by
\Vn—rt,_,._
T = ol (2.9.2)

n—r—1+1¢

n—r—1

For an infinite degree of freedom the 7 distribution converges toward the Student
distribution or the standardized normal distribution, i.e., 7o, = ¢, = n(0, 1).

Pope’s blunder rejection procedure tests the hypothesis v; ~ n(0, 6v, /6,). The
hypothesis is rejected, i.e., the observation is flagged for further investigation and
possibly rejection, if

|7l > ¢ (2.9.3)

The critical value c is based on a preselected significance level. For large systems,
the redundancy numbers are often replaced by the average value according to
equation (2.8.13), in order to reduce computation time; thus

(o1} v

= Vi (2.9.4)

6o o\ (n—r)/n

could be used instead of (2.9.1).

2.9.2 Data Snooping

Baarda’s data snooping applies to the testing of individual residuals as well. The
theory assumes that only one blunder be present in the set of observations. Applying
a series of one-dimensional tests, i.e., testing consecutively all residuals, is called
a data snooping strategy. Baarda’s test belongs to the group of un-Studentized tests
which assume that the a priori variance of unit weight is known. The zero hypothesis
(2.8.22) is written as

V.
n; = — ~n(0,1) (2.9.5)

l ‘70\/51'
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At a significant level of 5%, the critical value is 1.96. The critical value for this test is
not a function of the number of observations in the adjustment. The statistic (2.9.5)
uses the a priori value ¢y and not the a posteriori estimate 6.

Both the 7 and the data snooping procedures work best for iterative solutions.
At each iteration step, the observation with the largest blunder should be removed.
Since least-squares attempts to distribute blunders, several correct observations might
receive large residuals and might be flagged mistakenly.

2.9.3 Changing Weights of Observations

This method, although not based on rigorous statistical theory, is an automated
method whereby blunders are detected and their effects on the adjustment minimized
(or even eliminated). The advantage that this method has, compared to previous
methods, is that it locates and potentially eliminates the blunders automatically.
The method examines the residuals per iteration. If the magnitude of a residual is
outside a defined range, the weight of the corresponding observation is reduced. The
process of reweighting and readjusting continues until the solution converges, i.e.,
no weights are being changed. The criteria for judging the residuals and choice for
the reweighting function are somewhat arbitrary. For example, a simple strategy for
selection of the new weights at iteration k + 1 could be

e~kil3oi if [viil > 3o;

. (2.9.6)
l lf Ivk’il S 30'1

Pi+1,i = Pr.i

where o; denotes the standard deviation of observation i.

The method works efficiently for networks with high redundancy. If the initial
approximate parameters are inaccurate, it is possible that correct observations are
deweighted after the first iteration because the nonlinearity of the adjustment can
cause large residuals. To avoid unnecessary rejection and reweighting, one might not
change the weights during the first iteration. Proper use of this method requires some
experience. All observations whose weights are changed must be investigated, and
the cause for the deweighting must be established.

2.10 EXAMPLES

In the following, we use plane two-dimensional networks to demonstrate the geom-
etry of adjustments. As mentioned above, the geometry of a least-squares adjust-
ment is the result of the combined effects of the stochastic model (weight matrix
P—representing the quality of the observations) and the mathematical model (design
matrix A—representing the geometry of the network and the spatial distribution of
the observations). For the purpose of these examples, it is not necessary to be con-
cerned about the physical realization of two-dimensional networks. The experienced
reader might think of such networks as being located on the conformal mapping plane
and that all model observations have been computed accordingly.
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We will use the observation equation model summarized in Table 2.5.1. Assume
there is a set of n observations, such as distances and angles that determine the points
of a network. For a two-dimensional network of s stations, there could be as many
as u = 2s unknown coordinates. Let the parameter vector X, consist of coordinates
only, i.e., we do not parameterize refraction, centering errors, etc. To be specific, X,
contains only coordinates that are to be estimated. Coordinates of known stations are
constants and not included in x,,. The mathematical mode £, = f(x,) is very simple
in this case. The n components of f will contain the functions:

dy = \/(x,- —x)2 + (v, = ¥)? (2.10.1)
@y = tan™ X _ tan~! 2 (2.10.2)
Ve = Vi Vi =i

In these expressions the subscripts i, j, and k identify the network points. The notation
a;; implies that the angle is measured at station 7, from j to k in a clockwise sense.
The ordering of the components in f does not matter, as long as the same order is
maintained with respect to the rows of A and diagonal elements of P.

Although the f(x,) have been expressed in terms of X, the components typically
depend only on a subset of the coordinates. The relevant partial derivatives in a row
of A are for distances and angles:

= k=) =G =x) Y=y x—x

. . . (2.10.3)
dik dik dik dik
=X YTy TN T
R
y y J y
Ve=Y V=Y X=X Y~
A Tyt T Tk (2.10.4)

2 2 2 2
dkj dlf/' dkj dk./'
Other elements are zero. The column location for these partials depends on the
sequence in X,,. In general, if « is the a th component of £;, and f the f th component
of x,,, then the element a, s of Ais

oL
Ay p = a (2.10.5)
’ 0xﬂ

The partial derivatives and the discrepancy £, must be evaluated for the approximate
coordinates Xj,.

Example 1: This example demonstrates the impact of changes in the stochastic
model. Figure 2.10.1 shows a traverse connecting two known stations. Three
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Figure 2.10.1 Impact of changing the stochastic model.

solutions are given. In all cases, the distances are of the same length and observed
with the same accuracy. The angle observations are 180° and measured with the
same accuracy but are changed by a common factor for each solution. If we declare
the solutions with the smallest ellipses in Figure 2.10.1 as the base solutions with
observational standard deviation of ¢, then the other solutions use 26, and 40,
respectively. The shape of the ellipses elongates as the standard deviation of the
angles increases.

Example 2: This example demonstrates the impact of changing network geometry
using a resection. Four known stations lie exactly on an imaginary circle with radius
r. The coordinates of the new station are determined by angle measurements, i.e., no
distances are involved. For the first solution, the unknown station is located at the
center of the circle. In subsequent solutions its location moves to 0.5r, 0.9, 1.1r, and
1.5r from the center while retaining the same standard deviation for the angle obser-
vations in each case. Figure 2.10.2 shows that the ellipses become more elongated
the closer the unknown station moves to the circle. The solution is singular if the new
station is located exactly on the circle.

Example 3: Three cases are given that demonstrate how different definitions of the
coordinate system affect the ellipses of standard deviation. All cases refer to the same
plane network using the same observed angles and distances and the same respec-
tive standard deviations of the observations. A plane network that contains angle
and distance observations requires three minimal constraints. Simply holding three
coordinates fixed imposes such minimal constraints. The particular coordinates are
constants and are not included in the parameter vector X,,, and, consequently, there are
no columns in the A matrix that pertain to these three coordinates. Inner constraints
offer another possibility of defining the coordinate system.

Figure 2.10.3 shows the results of two different minimal constraints. The coor-
dinates of station 2 are fixed in both cases. In the first case, we hold one of the
coordinates of station 1 fixed. This results in a degenerated ellipse (straight line) at
station 1 and a regular ellipse at station 3. In the second case, we hold one of the coor-
dinates of station 3 fixed. The result is a degenerated ellipse at station 3 and a regular
ellipse at station 1. The ellipses of standard deviation change significantly due to the
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EXAMPLES

Figure 2.10.3 Changing minimal constraints.
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change in minimal constraints. Clearly, if one were to specify the quality of a sur-
vey in terms of ellipses of standard deviation, one must also consider the underlying
minimal constraints. The figure also shows that the adjusted coordinates for stations
1 and 3 differ in both cases, although the internal shape of the adjusted network 1-2-3

is the same.

The inner constraint solution, which is a special case of the minimal constraint
solutions, has the property that no individual coordinates need to be held fixed.
All coordinates become adjustable; for s stations of a plane network, the vector X,
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Figure 2.10.4 Inner constraint solution.

contains 2s coordinate parameters. The ellipses reflect the geometry of the network,
the distribution of the observations, and their standard deviations. Section 2.6
contains the theory of inner constraints. The elements for drawing the ellipses are
taken from the cofactor matrix (2.6.37) and equation (2.6.46) gives the adjusted
parameters. A first step is to find a matrix E that fulfills AE” = 0 according to
(2.6.11). The number of rows of E equals the rank defect of A. For trilateration
networks with distances and angles we have

cee 10 - 10 e
E={--- 0 1 --- 0 1 .- (2.10.6)
B A A | A

Four constraints are required for triangulation networks that contain only angle obser-
vations. In addition to fixing translation and rotation, triangulation networks also
require scaling information. The E matrix for such networks is

E= o e 0 b 0 (2.10.7)
i X Ty X Ve X
_xl. yl “e e xj yj “e e _xk yk

The inner constraint solution is shown in Figure 2.10.4. Every station has an ellipse.
The minimal constraint solutions and the inner constraint solution give the same esti-
mates for residuals, a posteriori variance of unit weight, and redundancy numbers.
While the estimated parameters (station coordinates) and their covariance matrix dif-
fer for these solutions, the same result is obtained when using these quantities in
covariance propagation to compute other observables and their standard deviations.
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Figure 2.10.5 Weighting approximate coordinates to define the coordinate system.

Example 4: Weighting all approximate coordinates can also provide the coordinate
system definition. Table 2.5.3 contains expressions that include a priori weights on the
parameters. If the purpose of the adjustment is to control the quality of the observa-
tions, it is important that the weights of the approximate coordinate are small enough
to allow observations to adjust freely. For example, if the approximate coordinates
are accurate to 1 m, one can use a standard deviation of, say, 1 to 2 m, or even larger.
Ideally, of course, the weight should reflect our knowledge of the approximate coor-
dinates by using meaningful standard deviation. One may prefer to use large standard
deviations just to make sure that the internal geometry of the network solution is not
affected.

Figure 2.10.5 shows all ellipses for the case when each approximate station coor-
dinate is assigned a standard deviation of 10 m. The ellipse at each network point is
approximately circular. The size of the ellipses is in the range of the a priori coordi-
nate standard deviations. The ellipses in the figure imply a scale factor of 10° when
compared to those in Figures 2.10.3 and 2.10.4, which roughly corresponds to the
ratio of the variances of the approximate coordinates over the average variance of the
observations.

The weighted parameter approach is also a convenient way of imposing minimal
constraints. Only a subset of three approximate coordinates needs to be weighted in
the case of a plane angle and distance network.

2.11 KALMAN FILTERING

Least-squares solutions are often applied to surveying networks whose network
points refer to monuments that are fixed to the ground. When using the sequential
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least-squares approach (2.4.54) to (2.4.58), the parameters X are typically treated as
a time invariant. The subscript i in these expressions identifies the set of additional
observations added to the previous solution that contains the sets 1 <i <i— 1. Each
set of observations merely updates X, resulting in a more accurate determination of
the fixed monuments.

We generalize the sequential least-squares formulation by allowing the parame-
ter vector X to change with time. For example, the vector X might now contain the
three-dimensional coordinates of a moving receiver, the coordinates of satellites, tro-
pospheric delay of signals, or other time-varying parameters. We assume that the
dynamic model between parameters of adjacent epochs follows the system of linear
equations

X (=) =Dy X,_| + W, (2.11.1)

We have used the subscript k, instead of i, to emphasize that it now indicates the
epoch. The matrix @,_, is called the parameter transition matrix. The random vector
w, is the system process noise and is distributed as w; ~ N(0, ka). The notation (—)
indicates the predicted value. Thus,

X (=) =D, X +w, (2.11.2)

X, (—) is the predicted parameter vector at epoch k, based on the estimated parameter
X;_ (=) from the previous epoch and the dynamic model. The solution that generated
X;_, also generated the respective cofactor matrix Q,_;. The observation equations
for epoch k are given in the familiar form

Vk =A,(Xk+£k (2113)

with v, ~ N0, Q[k).

The first step in arriving at the Kalman filter formulation is to apply variance-
covariance propagation to (2.11.1) to predict the parameter cofactor matrix at the
next epoch,

Q- =9,_,Q_,9_ +Q, (2.11.4)

Expression (2.11.4) assumes that the random variables £, and w are uncorrelated.
The various observation sets £, are also uncorrelated, as implied by (2.4.2). The sec-
ond step involves updating the predicted parameters X, (—), based on the observations
£,.. Following the sequential least-squares formulation (2.4.54) to (2.4.58), we obtain

T, =[Q, +AQ, A" (2.11.5)
X =%(-) - K [AX(-) + 4] (2.11.6)
Q, =[I-KA]Q(-) (2.11.7)

vIPv, =v! Pv,_| + [A X, (=) + £]" T, [AX(-) + £,] (2.11.8)
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where the matrix
K, = Q.(—)A[ T, (2.11.9)

is called the Kalman gain matrix.

If the parameter x; ; depends only on the past (previous) solution x;, we speak of
a first-order Markov process. If noise w; has a normal distribution, we talk about a
first-order Gauss-Markov process,

Xir1 = @X + Wy (2.11.10)
with w; ~ n(O, qwk). In many applications a useful choice for ¢ is
p=e"l" (2.11.11)

which implies that the variable x is exponentially correlated, i.e., the autocorrelation
function is decreasing exponentially (Gelb, 1974, p. 81). The symbol = denotes the
correlation time, and 7 denotes the time difference between epochs k + 1 and k. The
variance of the process noise for correlation time 7 is

Gy, = E(wpwy) = %[1 —e 217 g, (2.11.12)

with g, being the variance of the process noise (Gelb, 1974, p. 82). The quantities
(7, q;) could be initially determined from data by fitting a sample mean and sample
autocorrelation function.

As 7 approaches zero, then ¢ = 0. This describes the pure white noise model with
no correlation from epoch to epoch. In that case x can be thought of as a random
constant, which is a nondynamic quantity.

As 7 approaches infinity, we obtain the pure random walk. Applying 1’Hospital
rule for computing the limit or using series expansion, we obtain ¢ = 1 and ¢,, =
Tq,. The random noises wy, are uncorrelated.

In general, both the dynamic model (2.11.1) and the observation model (2.11.3)
are nonlinear. The extended Kalman filter formulation (Gelb, 1974, p. 187) applies
to this general case. The reader is urged to consult that reference or other specialized
literature for additional details on Kalman filtering.






CHAPTER 3

RECURSIVE LEAST SQUARES

In many applications of least-squares adjustments the measurements are taken
sequentially at discrete epochs in time. Five arrangements are addressed in this
chapter: The first case deals with estimation of static parameters. A static parameter
represents a time-invariant quantity. In sequential estimation, each new measurement
improves the previous estimate of the static parameters. Other cases include param-
eters that depend on time. Two types of time-dependent parameters are considered.
First, we consider time-varying parameters that are not constrained by a dynamic
model. They can vary arbitrarily and take independent values at two adjacent epochs.
Parameters of the other type represent sequential states of a discrete dynamic process
that is subject to a dynamic model. The dynamic model can be of linear or nonlinear
functional relationship connecting two sequential states representing parameters at
two adjacent time instances. The sequential measurements and estimated parameters
are used to update the sequential estimates. For example, in some applications the
physical nature of the problem imposes dynamic constraints on the rover coordinates.
Another example is across-receiver difference ionospheric delays. Since they do
not completely vanish for long baselines, the residual ionospheric delays are slow
time-varying parameters that can be constrained by a dynamic model.

The second case discussed in this chapter refers to the mixed problem of estimat-
ing both static and arbitrary varying parameters. For example, in real-time kinematics
processing of short baselines the carrier phase ambiguities are constant parameters,
whereas the time-varying parameters are the rover coordinates which can vary arbi-
trarily. The third case introduces a dynamic dependence between discrete time epochs
of time-varying parameters. The fourth case combines the first and third cases by deal-
ing with a dynamic system that connects sequential states and contains time-invariant
parameters. The fifth model is the most general one in that it contains all the features

81
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of the fourth model but, in addition, also includes time-varying parameters that are
not constrained by a dynamic model. In real-time kinematic processing the most
general case includes estimation of static ambiguity parameters, arbitrarily varying
across-receiver clock shift, residual ionosphere subject to certain dynamic model, and
corrections to the rover position that can be either arbitrarily varying, or subject to a
dynamic model.

For each of the five models the batch solutions and real-time sequential solutions
are provided. The derivations make use of partial minimization of quadratic forms and
of the Cholesky decomposition. Appendix A provides details on both techniques.

The focus of adjustment in Chapter 2 is on static parameters and respective models
such as the observation equation model, the mixed model, and the condition equation
model. Therefore, the first case relates directly to the observation equation model
and the sequential solution discussed in the previous chapter. However, this chapter
is exclusively devoted to formulating recursive least squares where time-dependent
parameters play the major role. New notation, which shows the time argument explic-
itly, reflects this focus on time. Additionally, not every matrix or vector is represented
by bold letters, as is done in Chapter 2. Only those vectors and matrices that pertain
to all sequential time instances are in bold.

3.1 STATIC PARAMETER

Let y be a real-valued parameter to be estimated. It is subject to the linear measure-
ment model
W(t)y = b(t) (3.1.1)

where ¢ denotes the sequential time instant or the epoch. The matrix W(¢) has dimen-
sions m(t) X n, so the real-valued vector y is n-dimensional, i.e., y € R", and b(t) €
R™_ Let y* be the true value of the parameter and b*(f) be the true value of the
observables, then both obviously satisfying the identity

W(ty* = b*(1) (3.1.2)

An additive noise with zero mean value and known covariance matrix disturbs the
observables vector in such a way that

b()=b*(t)+e(t) E((®)=0 E(e()e*() = C(1), (3.1.3)

where E(-) denotes the mathematic expectation, and the covariance matrix of the
observations C(#) is positive definite and allows the Cholesky decomposition

C(t) = LegLey, (3.1.4)

with the lower triangle matrix L. Note that two forms of the Cholesky decom-

- T
positions are possible: C = LCLE and C = L-DL. In the last case the low triangle
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matrix Zc has unit diagonal entries and the matrix D = diag(d,,d,, ..., d,) is diag-
onal with positive diagonal entries. Obviously L, = ZCDI/ 2 and the form (3.1.4) of
the Cholesky decomposition implies the square root calculations. Either of two forms
can be used depending on which one is more convenient.

We assume that the measurements are sequentially accumulated for time instances
t=1,..., where ¢ is the finite time of the accumulation period. The least-squares
principle as applied in Chapter 2 minimizes the weighted sum of squares:

t/

10.7) = Y, W@y = b)) ¢ W)y - b)) » min (3.1.5)

t=1

The matrix inverse C~!(f) exists since the covariance matrix C(¢) is positive defi-
nite. Taking (3.1.4) into account, the value I(y, ') in the equivalent form is

l’

Iy,1) = 2 (Lg(lt) W)y — Lg(lt)b(t))T(LE(ll)W(t)y - Lg(lt)b(t)) (3.1.6)
k=1

After introduction of notations

W) = L, W) b(1) = Li(,b(0) (3.1.7)

rewrite the last expression in the form

ll

16,7) = Y (W) y—bm)" (W) y - b)) (3.1.8)

t=1

We now give the problem (3.1.8) a slightly different interpretation. Let M(1") =
m(l)+---+ m(?') be the total number of all accumulated measurements and let
W(¢') be the M(') X n matrix composed of matrices W(t), t=1,...,¢ as shown
below,
W)
wiy=|"® (3.1.9)

W&t’)

Similarly, the vector b(f) € RM®) is composed of the vectors of accumulated
measurements,

b(1)
b(2)

b() = (3.1.10)

E(}’)
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The minimization problem (3.1.8) is now equivalent to the following problem:
1,7y = (W )y — b)) (W(')y — b(/')) — min (3.1.11)

Assume that the matrix W(t’ ) has full column rank,
rank(W(r)) = n (3.1.12)

A necessary but not sufficient condition of (3.1.12) is M(¢') > n. Once the condition
(3.1.12) holds for a certain time instant ¢, it will remain valid for larger values ¢/ > '.
We call (3.1.12) the observability condition as it guarantees that the parameter y can
be estimated from the observables accumulated up to the time instant #. The best
estimate of y is defined as solution to the problem (3.1.11) which is

¥ = (W W)W (b() (3.1.13)

In application of geodesy and real-time navigation, measurements are not all taken
at the same time. Instead, they are taken epoch by epoch in an incremental manner.
According to this measurement mode, we may want to obtain the best approxima-
tion (3.1.13) also epoch by epoch, successively refining the estimate due to better
averaging of measurement errors. We have

—_T — _1—T —
y'+1)= (W ({+DW(E +1) W (/+ Db/ +1)
= (W W)+ W @+ DWE + 1)

—T — —T —
X (W @by +W (' + Db + 1)) (3.1.14)

Let us denote p

D)y =W (HW() = > Wi ow) (3.1.15)

t=1

Then according to (3.1.14), and taking into account (3.1.15), one obtains
the expression

—T — P —
Y + D) =D'( + (W (b)Y +W (' + Db/ + 1))
=D7'(/' + 1)(D()y(f") + W + Db + D)
D¢ + 1) (D(r’ () =W (7 + DWE + Dy()
—T —
AW (@ + DB+ 1))
=y)+D7'(/ + DW (¢ + DB + 1) — W + Dy())  (3.1.16)

The expression (3.1.16) takes the form of sequentially updating the estimate y(¢'). It is
also called “incremental update” as the estimate y(¢') is incremented by a correction in
(3.1.16). The first term y(¢') is called projection to the next time instant. It means that
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the first guess for the next estimate y(z' + 1) is that it coincides with the previous esti-
mate y(¢') until new measurements are available. The second term is called correction.
It linearly depends on the disagreement of the previous estimate y(¢') with new mea-
surement model: b(¢' + 1) — W(' + 1)y(¢') = 0. This disagreement is called residual
r(? + 1) =b( + 1) = W(' + 1)y(#"). So, in order to calculate the next estimate of the
parameter, we have to calculate the residual vector and update the previous estimate
of the parameter with the residual premultiplied by the matrix D' + DW( + 1):

r(7 + 1) = b +1) =W + y()

@+ D=L @ +1)
cos _ (3.1.17)
D/ +1)=D)+W ( + DW(E +1)
Y& + 1) =y(@)+ D' + DW({ + Dr( + 1)
The algorithm (3.1.17) starts with initial data
y0)=0 D0)=0 (3.1.18)

Here, and further below, the symbol 0 denotes the zero vector or the zero matrix of
the appropriate dimensions.

Let us present the recursive scheme (3.1.17) in a more computationally effective
form. The linear systems with a symmetric positive definite matrix

Dy=b D=D" D>0 (3.1.19)

can be rewritten using the Cholesky decomposition LLTy = b; see expressions
(A.3.54) and (A.3.55) of Appendix A. The system with factorized matrix is further
equivalent to two systems, (A.3.66) and (A.3.67), presented below for convenience

Lz=0b (3.1.20)
LTy=z (3.1.21)

Forward and backward solution runs, explained in Appendix A, solve the linear sys-
tems (3.1.20) and (3.1.21), respectively. They are denoted by linear operators,

z=F,b (3.1.22)

and
y=B;z (3.1.23)

respectively. Forward and backward runs are equivalent to calculations z = L™'b and
y = (LT)7'z, respectively. Forward and backward runs can be applied to matrices,
assuming that they are applied to all matrix columns sequentially.

Note again, that when writing the expression z = L~!'b, we usually do not have
in mind the explicit calculation of the matrix inverse. Instead, we are interested in
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TABLE 3.1.1 Algorithm 1: Estimating Static Parameters

Compute the residual vector rt+ 1) =b+1)— W+ 1)y@)
C(t+1)= Ly, LT
Cholesky decomposition of the matrix @+ D= LewrnLegan
C(t + 1) and forward substitution rt+1)=F LC(M)r(t +1)
calculations —
Wie+1) = FLcmnW(t +1)
—T —_
Update the matrix D(¢ + 1) and its Dt+1)=D®O+W @+ HW(E+1)
Cholesky decomposition D(t+1) = Lp,, LlT)(1+1)
—T
Optimal estimate ye+1)=y0+By, (FLDMW (t+ D+ 1))

the solution of the system Lz = b, which is given by an explicit formula z = F; b,
provided that the matrix L is a lower triangular.

Thus far we have used the symbol ' to denote the last time instant. Expressions
(3.1.17) relate the optimal estimate corresponding to the time instant ' + 1 to the
previous optimal estimate and the new measurement. In what follows we use the sym-
bol ¢ to denote the last time instant when describing sequential recursive numerical
schemes. We complete the description of the incremental least squares by summariz-
ing the steps of the algorithm. Being initialized with x(0) = 0, D(0) = 0, and ¢ = 0,
the algorithm proceeds as listed in Table 3.1.1.

Let us present the normal system update step in the more convenient form by
describing how to directly calculate the Cholesky decomposition of the matrix
D(t + 1) given D(t) = LD(,)LE([):
D+ 1)=D@) + W (t+ DW(t+ 1)

D(1)

_ -1
- LD(t) (1 +L D D)

—T — _
W+ WG+ D(Lh,) ™) L
= Lpg (1 + W'+ DW( + D)L, (3.1.24)

where _
Wie+1) = Frp,W t+1) (3.1.25)

Let E =1+ W' (t+ 1)W(z + 1) and Ly, be its Cholesky factor

LgLL=E (3.1.26)
Then it follows from (3.1.25) that

Lp41y = LpyLe (3.1.27)
The calculations (3.1.24) can now be replaced by the following steps:

A —T
a. Wie+1) = Frp,W (t+1)
b. E=1+WI(t+ D)W+ 1)
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c. LgLL =E
d. LD(t+1) = LD(t)LE

This concludes the description of Algorithm 1. The multiplicative representation
(3.1.27) of the Cholesky factor update improves the numerical stability in the case
of an ill-conditioned matrix D(¢"). The observability condition (3.1.12) guarantees
nonsingularity of the matrix. The matrix can be either nonsingular or singular,
while the conditioning number can be considered a continuous measure of singu-
larity. The greater the conditioning number, the closer the matrix is to singularity.
Ill-conditioning can occur at early epochs. Note that the observability concept
originates from control theory, where it means possibility to recover the system state
from the observed measurements.

3.2 STATIC PARAMETERS AND ARBITRARY TIME-VARYING
VARIABLES

Let x(#) and y be parameters to be estimated with dimensions n(¢) and n, respectively.
Let the parameters be subject to the linear measurement model

J()x(t) + W(t)y = b(t) (3.2.1)

for sequential time instances 7 = 1, ..., 7. Let the matrices J(¢) and W(z) have dimen-
sions m(t) X n(t) and m(f) X n, respectively. Note that the parameters x(7) are time
dependent, while y is time invariant. Each model contains correspondent parameters
x(¢) and y. The parameter y is common for all models. Define

J(t) = L, J(®) (3.2.2)

along with (3.1.7), and define the M(') x (N(¢') + n) matrix J(t’ ) and the M(¢)-
dimensional vector b(#)

7 0 - 0 WO

Ji) = (_) J(.Z) (_) W@ (32.3)
_6 6 7(';') W&t’)
_Z(l)

b(/) = E(:z) (3.2.4)
E(.t’)
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4 4
where M() = ) m(t) and N(') = ) n(1).
=1 =1
Let us consider the least-squares solution,
I1x(1), ..., x(@),y,t)

t/

= Y JOx(0) + W)y — b)) C (O Ox() + W)y — b(r) > min  (3.2.5)

t=1

which is equivalent to the problem

I1(x(1), ..., x(1"),y,1)

-~

=Y (T0x@) + Wty — b)) (J0)x(t) + W()y — b)) — min  (3.2.6)
Py
for the same reason why (3.1.5) is equivalent to (3.1.8). Let
x(1)
xi)=| : (3.2.7)
x(t")
Z({) = (XS,)> (3.2.8)

be the N(¢')-dimensional vector of the variables x(1),...,x(¢) and N(')+
n-dimensional vector of the variables x(1),...,x(¢"), y, respectively. The problem
(3.2.6) is in turn equivalent to the problem

1z, 1) = (J&HZ(") - b)) (J()Z(') - b(i")) — min (3.2.9)
Let us denote
D) =d ()
L L
7 (I 0 0 7 (HW(1)
0 712 - 0 7 QW)
- 5 5 5 : (3.2.10)
-T — T —
0 0 T @Iy T W)
—T = —T = —T , = ! —T —
W (D) W (2Q)JQ2) W (I YW (W)
=1
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-T —
J (DHb()
P .........................
R(/Y=dJ b({) = : (3.2.11)

then the solution to problem (3.2.9) satisfies the linear equation

D{HZ() = R({) (3.2.12)
which has the solution .
Z(Yy=D ()R() (3.2.13)
Let
D(/) = LD(I,)LLT)(I,) (3.2.14)

be the Cholesky decomposition, where matrix Lp s is the (N @) +n) X (N({") +n)
low triangle matrix.
Let us present the problem (3.2.9) in the form I(X(¢), y,#') — min and note that

min I(X(¢),y,!) = min <minI(X(t’),y, t’)) = min/(y,?) (3.2.15)
X,y y X(t") y

See Section A.3.7 of Appendix A for details on partial minimization of quadratic
forms. Given fixed y, the internal minimum in (3.2.15) can be split into a sequence
of independent minimization problems:
1(x(0) = (J () x(1) + W(D)y — B(z))T(i(t)x(t) + W)y - b(1)) — m(i? (3.2.16)
x(r

each having the solution

T — -1_r — —
x(y, 1) = (J (t)J(t)) J (0(b () - W@)y) (3.2.17)

which can also be seen from (3.2.10), (3.2.11), and (3.2.12) after substituting the fixed

-T =
vector y into (3.2.12), taking the term J (f)W(¢)y to the right-hand side of (3.2.12),
and solving the resulting block-diagonal linear system:
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7Ty o o || [7"0pay-7" @way]

0 7 i) .. 0 x| |7 @) -T @Wey
L [

|0 0 S AGV(] _x(t )_ |J (D) =T (YW ()y

(3.2.18)

which is split into ¢’ separated linear systems. Substituting (3.2.17) into (3.2.15) we
arrive at the following problem:

_ - er - — N
minl(.#) = Y (T0(7 070)™'7 b0 - Waow) + Wy - b))

t=1

x (707 @70)™'7 0 (b - W) + W - b))
/4 _ . _ _ _ o T
=Y (b - W(t)y)T<I ~T0(T ©I) 1JT(t)>
=1

x (1=T0/(7 @I0) ™7 @) (b - W) (3.2.19)

The matrix I1(t)=1- j(t)(jT (1) j(t))_]j T(t) is symmetric and idempotent
since IT>(t) = IT(¢). It is the matrix of orthogonal projection on the orthogonal
complement to the space spanned on the columns of the matrix J(@o). Actually,
I =70 -1 ©7@0) "7 07(t) = 0 which means the columns of the
matrix J(f) are mapped to 0. On the other hand, every vector i orthogonal to J(1)
is mapped to itself: TT(tyh = h—J(t)(7' (1)7@®)"'7 (6)h = h. The matrix II(r) is
singular. Taking the idempotent property into consideration, the last expression for
I(y, ") takes the form

4

Iv.ty = Y (b(0) = W) T@) (b 1) - W) (3.2.20)

=1
and the problem /(y, #') — min has the solution
W) = (b)) 'R() (3.221)

where
tl

b)) = Z WOT IEOW@) (3.2.22)
=1

and
tl

R() =Y W) m(n)b(r) (3.2.23)

t=1
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The matrix D(t’ ) is supposed to be nonsmgular in (3.2.21). For the case ¥ =1 we
have D(l) = W(I)TH (1H)W(1) and the matrix D( 1) is singular due to the singularity
of the matrix IT(1). The necessary conditions for nonsingularity of D({yare? > 1
and

W W) # WO T()W(t) (3.2.24)

for at least one value r. Conditions (3.2.24) are necessary since their violation
leads to the singularity of D(t’ ). Actually, #' =1 leads to the singularity of b«
as shown above. Further, if W()T II(HW(1) = W) IT()W() for all ¢, then
D(t’) =t W(l)TH (l)W(l) which is singular. On the other hand, conditions (3.2.24)
are not sufficient in the general case.

Nonsingularity of the matrix D(7') will be called observability of the system
{J(),w(),...,J@@), W(')}. Tt guarantees that the parameter y can be estimated
from the system (3.2.1) for r=1,...,7. In order to recover parameters x(r) we

need also nonsingularity of the matrices 7T(t)7(t). The observability condition is
met if a sufficient number of linearly independent measurements are available. For
example, for the problem of carrier phase ambiguity estimation and resolution along
with estimation of the time-varying (kinematic) position x(¢) using carrier phase
observations only, observability is met if the number of satellites is greater or equal
to 4 and at least two sets of measurements are received, i.e., ¢ > 2. On the other
hand, observability is met at the single epoch if pseudorange observations are used
along with carrier phases. Conditions (3.2.24) will be met because the movement
of satellites ensures that the directional cosine matrix J(#) changes in time. On the
other hand, if there are only two measurements, which are separated in time by
just one second, the matrices J(1) and J(2) “almost” coincide. This means that the
matrix D(¢') is “nearly” singular or, actually it is ill-conditioned. As time increases
the satellite constellation changes and the computed direction cosine matrices will
change, eventually leading to an improved conditioning number. Accumulation of a
larger number of time-varying independent measurements leads to improvement of
observability.

Now let us give a practical way to compute the matrix I1(¢). First, compute the

T =
Cholesky decomposition of the matrix J (£)J(t),

7 0J(@) = Lm)Lj() (3.2.25)

where L~ . is n X n lower triangular, then compute J T(t) =

J(t) J( )
InHn=1- J nJ T(t). The updated vector y(¢' + 1) in the recursive form using (3.2.21)

and (3.2.23) is

J (#). Finally compute

yi' + 1) =0 +1)"'R(I + 1)
=D + D)) (RE)+ W + DI + Db’ + 1))
= D¢ + D) (DY) + W + DT + Db/ + 1))
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= O + D) 'OE + Dy(@) =W + DT + DW(E + D)
+WE + DI + Db + 1))

=y(t") + O + D)W + DI + D)(b(/ + 1) = W' + Dy(t'))
(3.2.26)

The algorithm starts with y(0) =0, D0)=0,r=0. A complete description of the
incremental least squares is summarized in Table 3.2.1.

Let us now look at the recursive algorithm for estimation of vectors y(f + 1),
x(t + 1) from a slightly different point of view. Note that the data can be processed
postmission after accumulating a complete data set. The batch least-squares adjust-
ment leads to a large linear system with a sparse matrix showing a specific pattern.
Applying the sparse matrix decomposition technique we will prove that the recursive
estimate (3.2.26) can be obtained as Cholesky decomposition of the incrementally
updated large-scale matrix of the linear system and incrementally performed forward
solution, followed by only a single step backward solution. By performing the full

TABLE 3.2.1 Algorithm 2: Estimating Static Parameters and Arbitrary Time-Varying
Variables

Cit+1)= LC(r+|)Lg(,+1)
Cholesky decomposition of the bt+1)= F, b+1)
covariance matrix and forward | __ oy
substitution calculations W+ 1)=F Legst) W@ie+1)
Je+1)=F,  Jat+1)

C(t+1)

Cholesky decomposition of the jT(t + l)j t+DH=1L;

LT
_r _ DTy
matrix J (t+ 1)J(z+ 1) and

forward substitution
calculations

~, -7
T+ =F, T @+1)

Projection matrix

O+ =1-J¢+ DT+ 1)

Update the matrix ﬁ(z)

De+1D)=DO)+ Wi+ DTHI+ DWW+ 1)

Cholesky decomposition of b

A 7. T
D+ 1) = LD(’+1>L13(¢+1>

Residual vector

Fe+1)=bt+1)— Wt + Dy@®)

Update the estimate y(z + 1)

e+ 1) =y

B F
L Lo+

fJ(r+1>( )W(t, + ])TH(I, + 1)7(t + ]))

Second residual vector

P+ =bl+1)— Wi+ Dyt+1)

Compute estimate x(z + 1)

x(t+1) = BL7<r+1)7T(t +DFE+1)
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backward solution we can improve the estimates x(¢) using future observables b(z')
corresponding to ¢ > ¢, which is possible in batch processing. This construction
allows for a deeper understanding of the recursive least squares and its connection
to batch least squares.

Let us present the matrix D(¢') in the expression (3.2.10) in the form

D)

7" (1T 0 0 7w

0 7 272 0 7 QW)

-T '_ -T '_

0 0 T @iy T @W)
—T = —T = —T - ! —T —
W (DI W (2)JQ2) W (I YW W)
| =1
— L
J MJA) 0 - 0 J (WD)

0

0 c
—T7 =
W (I |

and apply formulas (A.3.59) to (A.3.61). We have
[ L, 0 0]
0
L) = O v

Wzl )

-1

(3.2.27)

(3.2.28)

where M is the lower triangular matrix of the Cholesky decomposition of the matrix

(3.2.29)

7" 272 0 0 7 QW) |
0 7 3I3) 0 7 3WE3)
0 0 7 (I 7 (W'
PN B o EWT(t)W(t)—WT(l)j(l)
W 2J2) W 3)J3) W (I &~
I (7" (WIW) T W) |
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Sequential application of formulas (A.3.59) to (A.3.61) by induction finally gives the
following representation:

[ L?(l) O PR 0 O T
0 Lj(z) e 0 0
L(l") = O O . Lj.([/) 0
—T = —T = —T
W (D)J(D) W (2)J(2) 1 W () i)
7 \~! T \~ T NorT N\l
X(Li(l)) X<L7(2)) Xj(t )(L ,))
(32.30)
where L(f') is a Cholesky factor of the matrix
a —T — —T — T — =T —
D (W W) - W 0T 0J®) T (W) (3.2.31)
=1

which is equal to ﬁ(t’ ) according to (3.2.22). Now, according to the expressions
(3.2.13) and (3.2.14) we have

x(1)

Z(t,) = = BL(II)(FL(II)R(ZJ)) (3.2.32)

(1)
y()

Let us first calculate V(i) = F;,R(7'). We have V(') = (/' (1), ... vI(Z), w ("))
Taking into account the structure of the matrix (3.2.30), sequentially calculate

W0) = (L)™' 7 (0b() (3.2.33)

forz =1,...,7. The last equation of the system L(t')V(¢') = R(f") gives

~

Z gonol LT )"v(t) + LW = ZWT(t)Z(r) (3.2.34)
=1

=1

resulting in

/_A/—lt,_T_ e T \~I
w(t') = (L(1")) ;W O b -W (t)f(f)(Ly(t)) (1)

tl
N —T - —T - -1 -1=-T -
= (La")™! ;W O b(t) - W (t)J(t)(LjT( ) (L) 0b®
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t’

— - T Tea(7T \~! 177 T

= (L") Z}W (f)(I—J(I)(Lj(t)) Ly~ T (0)b(1)
1=

tl
= (L))" Z W' ()T (Hb() (3.2.35)
=1

Then calculate the backward solution Z(#') = B L(t,)V(t’ ). Taking into account the
structure of the matrix (3.2.30), one obtains

y(@) =L@ )
= A" A Y W O bo)
t=1

-1
= &) | T W 0 Tk + W (I

=
= A7) A B Dy = D+ W (OB
= (L") AT Oy - 1)
— W OHIEOWEWE = 1)+ W @I
= (' = 1)+ @) L)W OO - WA - 1) (3.2.36)

and

30 = (LT )7 000 = Ly, )T OW o)

= (L;-(I))_l <(Lf(¢))_17T(t)E(t) - (Lj(t))_le(l)W(t)y(t,)>

=8, (F, 7 0G0 -Woxy) (3.2.37)
with ¢ = 1, ...,7. The previous two expressions coincide with (3.2.26) and (3.2.17)
obtained earlier.

What is the major difference between (3.2.37) and (3.2.17)? In Equation (3.2.37)
we used the estimate y(¢') which is available after all #/ measurements are received. In
other words, we calculate the estimate x(¢) for ¢ < ¢ based on measurements received
after the time instant . That is possible only in the case of offline or postsession pro-
cessing. In applications to satellite surveying this means that the surveyor collects raw
data in the field as long as needed, based on experience of about how long the mea-
surement session should be under certain conditions. Then, during the postsession
processing in the office, the surveyor can assume that all data is available simulta-
neously. This assumption makes it possible to establish an explicit dependence of
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earlier estimates on the later received data without breaking the causal link. In con-
trast, when working in real time, we can rely only on measurements received at time
instances r = 1, ..., when calculating the estimate x(¢'). For this reason the esti-
mate x(¢z + 1) in Algorithm 2 depends on the earlier obtained estimate y(z + 1). In
other words, real-time operation dictates the following calculation order:

y(1),x(1),¥(2),x(2), ..., ¥(2), x(1), ... (3.2.38)

while postsession processing mode suggests both calculation schemes: the scheme
(3.2.38) and the scheme
Y@, x(1),x(2), .., x(t") (3.2.39)

In this section we derived the recursive least-squares algorithm allowing the update
of estimates of the static parameter and parameters arbitrarily varying in time. Using
the Cholesky decomposition of sparse matrices, we established a connection between
recursive processing and batch processing.

3.3 DYNAMIC CONSTRAINTS

In the previous section, the measurement model (3.2.1) contained time-varying vari-
ables x(¢) which were independent of each other for different values ¢. In this section
we considered the more complex case of dynamic dependency of the variable x(7) on
the variable x(z — 1).

Consider the discrete dynamic system

x(t) = F(t)x(t — 1) + &(1) (3.3.1)

with the n-dimensional state vector x(7) and the m(f)-dimensional observation vector
b(t), connected to the state by the linear relationship

b(t) = H()x(t) + £(1) (3.3.2)

The matrices F(¢) and H(¢) have dimensions n X n and m(t) X n, respectively. The
stochastic processes {£(f)} and {&(¢)} are zero centered, stationary, independent of
each other, and have covariance matrices

E(EME" (1)) =0, E(e(e’ ) =R (3.3.3)

Also, E(E®)ET(s)) = 0 and E(e(t)e” (s)) = 0 for the case when ¢ # s. In order to com-
plete description, define the initial data

x(0)=xy+1n (3.34)

which is supposed to be known up to the random vector #, which is independent of
the vectors {&(¢)} and {&(¢)}, and has the covariance matrix

E(nn" () =C (3.3.5)
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Assuming the above specifications, it is assumed that the motion of the system is in
accordance with (3.3.1), where the random vector &(#) describes the uncertainty of
the model, which differs from the real system just for this vector. In other words, a
random vector describes the inaccuracy of our knowledge of the real system. Being
aware of the limitations of such a description, we continue finding a solution only for
applications where this assumption is justified.

Output of the system (3.3.2) is considered as a measurement of a physical quantity
b(t), linearly dependent on the state x(¢), and measured subject to the random mea-
surement error £(¢). The estimation problem is to recover the trajectory of the system
{x(¥)} based on the results of successive measurements {b(f)} using the description
(3.3.1)to (3.3.5).

The least-squares problem is constructed as a minimization of the quadratic func-
tion of variables {x(7), ..., x(¢')} as follows:

l/

1(x(0), x(1), ..., x(t"), 1) = Z () — F(Ox(r — 1)) Q7" (x(r) = F(t)x(1 — 1))
t=1

/

+ 3 (b(t) = HOx(t) R (b(1) = HOx(1))
=1

+ (x(0) — x0) " C71(x(0) = xp) (3.3.6)

The measurements are collected at time instants # = 1, ..., #. This criterion is the
weighted sum of squared residuals of relations (3.3.1), (3.3.2), and (3.3.4). Weighing
using the positive definite inverses to the covariance matrices allows taking into
account the variance of the entries of the uncertainty vectors as well as correlations
between them. This particular weighing uses the inverse of covariance matrices,
while other weighing is also possible. Matrices Q, R, and C are supposed to be
positive definite. The estimate {x(r)}, r=1,...,7 giving the least value to the
criterion (3.3.6), is considered the best estimate,

= min
x(0),x(1)

min

RCOROR X1, 1) (3.3.7)

,“',)C(l

In order to reflect the fact that each of the vectors x(#) of the best estimate
depends on all measurements vectors b(1), ..., b(t"), we will be using the notation
X(t,b(1),...,b(")). Sometimes the notation expressing dependency on b(1), ..., b(1")
will be omitted if this does not lead to misunderstandings.

In applications to real-time estimation, it is necessary to obtain the best estimate
of the state as soon as measurements become available. In this case, the state x(r)
is estimated based on the measurements b(1), ..., b(t), while the next state x(¢ + 1)
is estimated based on one more measurement b(1),...,b(t + 1). Let us denote for
the sake of brevity x*(f) = X(¢, b(1), ..., b(t)). Using the next measurement b(t + 1)
allows for obtaining the next estimate x*(¢ + 1) and, if necessary, allows for increasing
accuracy of earlier obtained estimate x*(¢) because, generally,

x*(1) = &(t, b(1), ..., b(®)) # 3, (1), ..., b(t), b(t + 1)) (3.3.8)
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In order to obtain sequential estimates x*(f) based on sequential measurements
b(1),...,b(r) one can solve problems like (3.3.7) for ¢/ = r. However, it is possible
to obtain subsequent estimates x*(¢ + 1) based on previously obtained estimate x*(¢)
and a “new” measurement b(t + 1).

Further, it is possible to consider the least-squares problem of the form similar to
(3.3.6). The difference is that least-squares approach is more general in that it allows
a weight matrices that is not necessarily an inverse of a covariance matrix and is
arbitrary nonnegative definite with no statistical meaning:

1(x(0), x(1), ... ,.x(7'), 1) = Z (x(t) — F(t)x(t — D) WX () (x(t) — F(t)x(t — 1))
=1

t/

+ ) (b(t) = HOx(e) W (1) (b () = H(t)x(1))
t=1
+ (0(0) — x0) T WO1)(x(0) — x) (3.3.9)

The only restriction on the choice of the matrices W*(¢), W?(¢), W? is that the
problem (3.3.9) has a unique solution. The solution of (3.3.9) will be understood as
a solution having the lowest Euclidean norm.

In the following we use the dynamic programming approach and derive the recur-
sive relations for Bellman functions (Bellman and Kalaba,1966). In optimal control
theory, the Bellman functions describe the dependence of the optimal value of the cost
function on the initial state of the dynamic process. Assume that we start the dynamic
process with the state x(0) = x’ and apply the optimal control strategy. The cost
function subject to minimization takes its minimum value denoted by v(x") because
this value depends on the initial state. Another choice x(0) = x”” gives another opti-
mal value v(x”"). Thus, we introduce a conditional minimum since the optimal value
depends on the initial state. The Bellman functions explicitly express this dependency.
Bellman showed that optimization of a discrete dynamic process can be stated in the
recursive form. The relationship that connects values of the Bellman function in two
sequential time instances is called the Bellman equation.

Let us denote ||z||%4, = zI'Wz and rewrite the problem formulation (3.3.7) in the
form

I

min:min[ min  I(x(0),x(1), ..., x(7), )
x() | x(0),x(1),....x(#"—1)

4

= min | 3 [e() = F@u( = DI,
=1

min i
x(¢') | x(0),x(1),....x(¢'—1)

/

+Zl 10 = HOx®)ll-, + [1%0) = xolI7., (33.10)
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Denoting the expression in square brackets by
I/

v x@)= min Sl = F@x = DI,

x(0),x(1),....x(7 =1) p—

+ 2 1Ib (1) = HOXOI%_, + [160) = xolI%, (33.11)
t=1

the problem (3.3.10) can be written in the form

I nip = min V(' x(1")) (3.3.12)
Xy

Note that the last term ||b(¢') — H(# )x(¥' )sze—l in the second sum of (3.3.11) depends
on ¢’ and the variable x(z") and does not depend on the variables x(0), x(1), ..., x(z' — 1)
for which the minimum is taken. Therefore, the expression (3.3.11) can be rewritten as

I/
(', x(1) = x(1) = F(Ox(t = DI
xy= - omin Z‘” () = Fx(t = DI
/-1

+ D lIb() = HOxI, + [1x(0) = 12,
t=1

+lb(") = H@ @), (33.13)

The problem (3.3.13) is similar to problem (3.3.7) but contains one variable x(¢")
less in definition of the minimum. Another difference of (3.3.13) compared to (3.3.7)
is that the problem (3.3.13) defines the relative minimum, which depends on the vari-
able x(r"). Aiming to apply mathematical induction, consider minimization over the
variable x(#' — 1) in (3.3.13) as a separate operation,

I

Z ke (6) = F(o)x(e = DI,
=1

x(0),x( l ) ,,,,, x(t’

-1

+Z1 160 = HOXOlI3-, + 1X(0) = xo 117,

l

= min Z llx (@) = Fxe = DI,

X' =1) x(O)x(l) x(t’ )| &

-1

+ Zl b (0) = HOxDll -, + 16(0) = xo117._,
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/-1 /-1
= min | o omin ;ux(t) F(oa(t = DI, +Z||b(r)—H(r)x(r>||R1
+ [ 0 = xl[ -1 [+ () = FG& (@ = DI, (3.3.14)

Again, denote the internal minimum in the expression (3.3.14) as
-1

V(i = Lx(f — 1) = 2 I = Foxe = DI,

XO)x(D(=2) prt

+ Db = HOxOlo, + IO = x 2, | (3.3.15)

then rewrite (3.3.13), taking into account expressions (3.3.14) and (3.3.15), in the
form
v, x(t)) = {nm (v = 1,x(t" = 1)) + |Ix(¢") = F( )x(d' — 1)||2Q_1)
+16( = 1) = H({)x(( )||R_I (3.3.16)
Continuing the transformation of taking the minimum over the set of variables
x(0),x(1), ..., x(#' —2) in expression (3.3.15) into the operation of taking the suc-
cessive minima, we obtain by induction a sequence of functions, called conditional

optimum Bellman functions, in accordance with the following recursive relations:

v(0,(0)) = [1x(0) = xoIZ._,
v(1,x(1) = min (w(0,x(0) + [lx(1) = FOXO)llg ) + l1b(h) = HDx(DIl

V120 = min (v( = Lx(t = D) + 1) = o = DI, )

+ b0 — HOxI} -,

v, x(t)) = IIllIl (v(t = Lx(t = D)+ ||x(t') — F{")x(t' — 1)“271)

+l1b() = HEOI2 (33.17)
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Along with the definition of the function v(z, x(¢)), the value x(t — 1, x(¢)), which
minimizes the function v(zr — 1, x(t — 1)) + [|x(?) — F(t)x(t — l)||2Q_1 over the variable
x(t — 1) under fixed value of the vector x(¢), is defined. These estimates are called
conditionally optimal since they are defined under condition that x(7) is fixed. In
order to find a complete set of optimal estimates %(0),%(1),...,%(:"), one needs
to find a minimum of v(’, x(¢')), achieved at the point X(¢'), and use the recursive
relations

X-D=x(t-1,20) t=1,"'-1,..,1 (3.3.18)

These recursive relations allow for sequential definition of the optimal estimate in
reverse order, starting with (). We summarize the above construction in the follow-
ing statement:

Statement 3.3.1. The solution of the optimal estimation problem (3.3.7) is equiva-
lent to minimizing the function v(t', x(t")) in the variable x(t"), resulting in the optimal
estimate (1. This function is defined by the recursive relations (3.3.17). The remain-
ing components of the sequence (f' — 1),3(t' — 2), ..., x(0) of optimal estimates are
obtained recursively in accordance with relations (3.3.18).

The above describes batch measurement processing, which is applied after receiv-
ing a complete set of measurements b(1), ...,b(s"). In this case, as has been men-
tioned, all the components of the sequence {%(r)} depend on the full set of mea-
surements: X(r) = X(t, b(1), ..., b(t")). The processing is called batch processing as
opposed to real-time processing in which case the measurements are obtained sequen-
tially. An estimate of the component of the sequence of state vectors should also be
obtained sequentially in real time, starting with x*(1) (obviously, x*(0) = x(0)) and
the total number of measurements (end time instant) is unknown in advance. There-
fore, a practical interest consists in obtaining of recursive relations for computing
the next estimate x*(#) using the previous one x*(r — 1), and not vice versa. After

receiving a new measurement b(¢) and an estimate x*(t) = x(¢, b(1), ..., b(t)), one can
specify earlier obtained estimates x*(f — 1), x*(¢f — 2), - - - using the relations (3.3.18)
obtaining X(t — 1), X(f — 2), ..., but usually this does make much practical sense.

Inductive application of the expression (A.3.38) of Section A.3.4 to expressions
(3.3.17) proves the following statement:

Statement 3.3.2. The functions v(t, x) are quadratic in their arguments. Condition-
ally optimal estimates x(t — 1, x(t)) are linearly dependent on x(t).

When working in real time, the optimal estimate x*(#) must be obtained immedi-
ately after a measurement b(¢) is received. Having a measurement b(f), one can use
the 1" step of the recursive scheme (3.3.17) for construction of the function v(z, x(£)).
The measurement b(7) will be the last one among the measurements available at the
tth step. The optimal estimate x*(¢) of the vector x(f) is calculated on the base of
measurements b(1), ..., b(¢). Setting ¢ = ¢ in the expression (3.3.12), one obtains that
x*(f) minimizes the function v(z, x(#)) which is quadratic according to Statement 3.3.2.
Further, according to the expression (A.3.38) we have
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v(t, x(1)) = (x(t) — x*(£)) T D(t)(x(t) — x* (1)) (3.3.19)

where D(¢) is a positive definite matrix. Specifically, the equation (3.3.19) is correct
up to the constant value, which does not affect the argument of the minimum.

Our goal now is construction of the computational scheme for the recursive cal-
culation of matrix D(¢) based on matrix D(¢ — 1), and the vector of optimal estimate
x*(f) on the basis of vector x*(r — 1) for all r = 1, 2, ..., starting with

D(0) = C™' and x*(0) = x, (3.3.20)
In the initial data conditions formulation (3.3.20), we took into account that
(0, x(0)) = (x(0) — x5)" C~ (x(0) — x;) (3.3.21)
Therefore, assuming that the function
vt —1Lx(t—1) = (x(t = 1) =x*(t — D)!D@ - D)(x(t = 1) = x*(t— 1)) (3.3.22)

is known, obtain the expressions for function (3.3.19). Consider the function of the
variable x(# — 1) subject to minimization in (3.3.17), and denote it by g(x(t — 1)), then

q(x(t = 1)) = vt = Lx(r = 1)) + [|lx(2) — F(1)x(t — 1)|I2Q_1
=x(t—1)=x*t—1)D@t - D(x(t—1) —x*(t = 1))
+ [lx(2) — F(0)x(t — 1)||2Q_1 (3.3.23)
Expanding the parentheses in the last expression and selecting the quadratic and linear
parts, with respect to the variable x(z — 1), one obtains
q(x(t = 1)) = x"(t = DO = 1) + FT(1)Q™ ' F(t)x(t — 1)
—2xT(t = DDt = Dx*(t = 1) + FT () Q™' x())
+x(007'x() + ¢ (33.24)
where the scalar ¢ = x*7(r — DD(t — D)x*(r — 1) does not affect the minimization

result in the variable x(# — 1). Now given the vector x(¢), the argument of the minimum
of the function g(x(¢ — 1)) is defined by the expression

x(t = 1,x(0)) = (Dt — 1) + FT(0)Q7' F(1))"\(D(t — 1)x*(t — 1) + FT (D0~ x(1))
(3.3.25)
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Substituting (3.3.25) into (3.3.24) and taking into account (3.3.17), we obtain

v(t,x(1) = q(x(t = 1,x(0)) + |b(2) = HOXD)II>_,
=—(D(t— Dx*(t = D)+ F'0)Q~'x(1)" (D — 1) + FT(Q ™' F(r))™"
X (D(t = Dx*(t = 1) + F' (00~ x(1) + [|b(1) = HOxD)|I,_,
+xT (07 'x(1) + ¢ (3.3.26)

Further, selecting quadratic and linear parts with respect to the variable x(¢) in the last
expression, obtain

vt x(0)) =x" (1) [0 = Q7' F () (PG - 1) + FT Q™' F(t)) ' FT(nQ™!
+H" () R H(1)] x(1)
=2 [Q7'F () (Dt — 1)+ F'(t)Q™ ' F(1))"'D(r — 1)x*(t — 1)
+H" (OR™'b(0)] + ¢ (3.3.27)

where the constant ¢, which is different from those in the expression (3.3.24), does
not affect further calculations and can be omitted. It follows from expression (3.3.27)
that

D=0 -0 'FiD - 1)+ F Q0 'F®) ' FT (0™ + H ()R~ H(r)
(3.3.28)
The function v(z, x(¢)) achieves its minimum at the point

) =D"'(0) [0 FO)D(t - 1)+ F'()Q™'F(1))"'D(t — Dx*(t - 1)
+H" (R b(1)] (3.3.29)

Expressions (3.3.28) and (3.3.29) complete a description of the recursive scheme for
updating the matrix D(¢) and the vector of the optimal estimate x*(¢), starting with
initial data D(0) = C~!, x(0) = X(0).

In the following we present these equations in the more convenient form. Let us
denote

D(t)= Q' - Q7' F)D( - 1) + FT (00~ F(0) ' FT (0! (3.3.30)

and
xt) =F@x*(t—1) (3.3.31)

and transform the expression for the matrix

O 'FOMD( - 1)+ FT(1)Q'F()"'D(t - 1)
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in (3.3.29):
Q" 'F)D(t — 1)+ F'(nQ ™' F(1))"'D(t — 1)
=Q7'"F() - Q'F() + Q"' F()(D(: — 1) + F'(nQ ™' F(1))'D(t — 1)
= Q7 'F() - Q'F0[I — (D — 1)+ F'()Q ™' F(1))'D(t - 1)]
=Q'F() - Q"' FD( - 1)+ F ()Q ™' F(1))™
x (D@ - 1)+ F'()Q™'F(t) - D(t — 1))
= Q7'F() - Q' FOD(t — 1) + F (00~ F() ' FT()Q ™' F(r) = D()F (1)

(3.3.32)
Then, as follows from expressions (3.3.28)—(3.3.31), we obtain
D(t) = D(t) + H' ()R H() (3.3.33)
and
(1) =D\ (¥) [E(I)F(t)x*(t - 1)+ H (OR™"b(v)]
=D~ ()[D@)x(t) + HT ()R~ b(1))
=D~ ()[(D(t) — HT ()R~ H(t))X(t) + H" ()R~ b(1)] (3.3.34)

Expanding parentheses in the last expression, we arrive at the final expression
x*(1) = X(1) + D' (HT ()R~ (b(1) — H()xX(t)) (3.3.35)

Expressions (3.3.30), (3.3.31), (3.3.33), and (3.3.35) give a more compact repre-
sentation of the recursive estimation scheme. Each " step of the recursive scheme
can be presented as projection (or extrapolation) and correction (or update). Expres-
sions (3.3.30) and (3.3.31) define projection; expressions (3.3.33) and (3.3.35) define
correction. The last expression (3.3.35) is a sum of projected estimate x(¢) and cor-
rection calculated based on the residual (or disagreement vector) between the new
measurement b(f) and the projected or expected measurement H(2)x(t).

Now, look at the expression (3.3.28) and recall expressions (A.3.59) to (A.3.61)
for block-wise Cholesky decomposition. Let us construct the 2n X 2n matrix

_[Pe-D+FT®Q'Fry  -FT(nQ™!
G(t) - [ _Q_IF(I) Q—l + HT(t)R_lH([)] (3336)
and apply Cholesky decomposition to it:
Lo K'®
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where the matrices L(¢) and M () are lower triangle and the matrix K(¢) is dense. From
(3.3.37) it directly follows that

D(t— 1)+ F'(HQ~'F, = L(OLT (1)
LOKT ()= -FT Q™! (3.3.38)

O~ '+ HT(ORT'H(®) — K(OKT (t) = M()M™ (1)
or

Dt - 1)+ F')Q7'F(t) = L)L (1)
K'(t) = —F 1, (FT()Q™")
0" +H' OR'H(t) - F')Q™' (D@ — 1) + FT(nQ~'F(1))™' ™' F(1)
=M®OMT (1) (3.3.39)
where F, is the forward run operator defined in (3.1.22). It follows from the last

expression that
D) = M(H)M™ (¢) (3.3.40)

which is an alternative form for updating the matrix D(¢). In other words, first the
matrix G(t) is calculated and decomposed according to (3.3.37), then the matrix
D(¢) is calculated according to the last expression. Now, look at either expression
(3.3.29) or (3.3.35), both being equivalent. Taking into account (3.3.39), they can be
presented as
o =M 0) M)
x [07'FO () W) ™' D = Dx*(r = 1) + H' (OR ™' b(1)]
= By (Fyp (=K ()F 1 ;,(D(t — Dx*(t — 1)) + HT(OR™'b(1))) (3.341)
and
X () = X0 + M @) M) H (OR™ (b(1) = HOX(1)
= X(1) + By (Fpsy(H (DR (b(1) — H(OX(1)))) (3.3.42)
respectively.

For the sake of simplicity suppose that the covariance matrices Q and R do not
depend on ¢ and are decomposed by Cholesky as

0= LQLg R=LgLy (3.3.43)

Note that FT(Q~'F(1) = (F, 1o F 1)) 'F 1,F(1). Similar identities hold for other terms
including R~
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TABLE 3.3.1 Algorithm 3: Dynamic Constraints

Extend the n X n symmetric D) ‘ 0
matrix D(7) to 2n X 2n f)(t) =[-
adding zero matrix blocks 0 10

Fi+1)= F F@t+1)

Perform forward substitution ﬁ(z +1)=F LRH (t+1)
calculations with Cholesky 5 D=F b |
factors L, and Ly (t+1)=F,blt+1)

Q_I = BLQFLQ(I)

Compute the updating matrix | A(f+1) =] b2

Gt+ D) =DO)+ A+ 1)

Compu'te the 2n X 2n extended D)+ F (t+ DEG+1) i -8, (Ft+ 1)

matrix = - s e — Q,,,,,,,,; 77777777
B, (F(t+ 1)) Q'+ H(t+ DHG+ 1)

Cholesky decomposition of | o _|LU+D 0 {Lie+ D K@+ D
Gu+1 Ke+D)  Ma+D|| 0 M@+1)

Updated matrix D(¢ + 1) D+ 1) =Mt+ DM ¢t +1)

Projected estimate x(t+ 1) =F(t+ Dx*(9)

Residual Fe+ D) =bt+1)—HGt+ DX+ 1)

Updated estimate Xt +1) =x(t + 1) + By, (FM(HI)(ET(I + Drt+1)))

Let us present the matrix update scheme D(f) — D(¢ + 1) in a more visually clear
form, dividing it into steps presented in Algorithm 3. Starting with D(0) = C~,
x*(0) = xy, and t = 0, the algorithm proceeds as described in Table 3.3.1.

When working not in real time, then after the last #'th measurement is received
and the last optimal estimated x*(¢") = (') is obtained, one can make the “backward
run” using expression (3.3.25) for t = ¢/, ..., 1. The factorized representation of that
expression is

20 =L e+ D)W+ 1) [DOx@) + FT (¢ + DO '5(1 + 1)] (3.3.44)

It is assumed that vectors x*(¢ + 1) and matrices L(z + 1) and D() are calculated and
stored in the memory during the “forward run”.

Let us make some remarks about solvability of the problem (3.3.6) and (3.3.7).
When formulating the problem of optimal estimation, the existence of a unique
solution was implicitly assumed. It means that the quadratic part of the functional
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1(x(0),x(1), ..., x(¢"),7") has a positive definite matrix. Positive semidefiniteness
obviously follows from expression (3.3.6). The positive definiteness requirement
imposes additional conditions on the matrices F(¢), H(¢), and D(0). Positive defi-
niteness of the quadratic part of I(x(0),x(1),...,x(#"),7') is equivalent to positive
definiteness of all matrices D(¢) of the quadratic parts of the Bellman functions.
Direct verification of positive definiteness of those matrices when executing the
recursive estimation scheme also means checking the solvability of the estimation
problem. A more careful analysis shows that the matrix G(1) is positive definite
if the matrix D(0) is positive definite, which is positive definite due to the con-
dition D(0) = C~! since the matrix C is positive definite. Positive definiteness of
G(1) implies positive definiteness of the matrix D(1). Inductively continuing, one
comes to the conclusion about positive definiteness of all matrices D(¢). Thus, the
solvability of problem (3.3.7) for finite # is a consequence of the positive definite
choice of the initial condition D(0). However, the conditionality of the matrix of the
quadratic function I(x(0), x(1), ..., x(¢'), ') could worsen as ¢’ increases. This would
mean a “consequent loss” of the property of positive definiteness of the matrix
G(1) as t increases. Preservation of positive definiteness of G(¢) means so called
“observability” of the system (3.3.1) with respect to the output (3.3.2). Observability
analysis of the system (3.3.1) with respect to the output (3.3.2) in the time-varying
case, when the matrices F(#) and H(¢) are dependent on ¢, can only be numerically
performed. Observability analysis is reduced to the estimation of the conditionality
of matrices D(¢) as they are sequentially calculated.

Now we will derive the recursive estimate x*(z + 1) assuming that the whole set
of measurements b(1),...,b(t") is available simultaneously and applying the batch
processing. Consider the optimal estimation problem with respect to all variables
x(0), x(1), ..., x(r") simultaneously. Then, using the Cholesky decomposition of the
large sparse matrix, obtain the same recursive estimation equations.

Represent the quadratic function (3.3.6) in the form (A.3.36) and denote
x (1)

/

X' = (3.3.45)

x(t")
Then, the solution of the problem (3.3.7) has the form

R = @O0,bQ1), ... ,bE N AL, ... b, .o R, ), ... b )T
(3.3.46)
and satisfies the system of linear equations

/

A'X =" =/ (3.3.47)

with a matrix A” and the right-hand side schematically drawn in Figure 3.3.1.

The superscript ¢ will be omitted if it does not lead to misunderstanding. The
matrix A has a block tridiagonal structure. It is called also a “band-like” matrix as
the nonzero entries are grouped into a band located around a diagonal, forming a
narrow band of a width 3n comparing with total dimension #'n of the matrix when ' >
3. The right hand side vector has form (C~'x(0), H'(D)R™'b(1), ..., HT ()R~'b(1")).
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o
| g (0} [amt (1))
HFMEFD | g
o'
—0'F HTRTHA :
O F(l) (MRHD) | (2)0 i T
LFT(0'F(2)
o
A (2 HI2RB(2)
—OF2) TR H(2) ey
+FET(30 ' F(H) |
x -=3
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SHTE—DRHE -1 —F(0 =1 Hir-nr!
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+H (1" \RH() <M}

Figure 3.3.1 Schematic structure of the linear system (3.3.47).

The Cholesky decomposition of a band-like matrix preserves the band-like pattern of
the lower triangle part of the matrix A. Define

A=LL" (3.3.48)

where the lower triangle matrix L has the form shown in Figure 3.3.2. Now
sequentially apply formulas (A.3.59) to (A.3.61) to the decomposition (3.3.48).
The off-diagonal block entries are expressed as —Q~'F(t)(LT(¢))~! due to the
expression (A.3.60) and expressions —Q~ 1 F(¢) for off-diagonal blocks of the matrix
in Figure 3.3.1.

Let L(¢) be the block-diagonal entries of this matrix. In the following we prove that
these are exactly the same matrices as described in the lower triangle representation
(3.3.37) of matrix G(¢) defined in (3.3.36). Furthermore, as it follows from the expres-
sion for the first diagonal block of the matrix A, we have C~!' + FT(1)Q~'F(1) =
D(0) + FT(1)Q~'F(1) = L(1)LT (1), which corresponds to the expression (3.3.37) for
t=1.

For the second diagonal block entry of the matrix A we have

O '+ HT(HR'H) + FT(2)07'F(2)

=0 'FAYL ()" @) FT (O™ + L)LY (2)
= Q0 'F(HMD©O) + FT(HO'F()) ' FT(HO~ ' + L)LT (2) (3.3.49)
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L(1)

o FO(Lm) | L(2)

@R | L3)

—OFEN L)) | L(4)

L(1")

o FE@) | e

Figure 3.3.2 Band-like structure of the matrix in the Cholesky decomposition (3.3.48).

which together with (3.3.28) gives
L)LT(2) =D(1) + FT(2)07'F(2) (3.3.50)

This expression corresponds to (3.3.39) for = 2. Continuing until # = 7/, we obtain
that lower triangle matrices L(f), defined earlier in (3.3.37) and used in the recursive
scheme (3.3.39), are exactly diagonal block entries of the lower triangle matrix L in
the decomposition (3.3.48). Next we find the expression for the last #/ + 1 th diagonal
block entry of the matrix L. We have

O~ '+ HI(H)R™'H()
=0 'FYD{ - 1)+ FI(HO'F( ) ' FT(H o + MO MT ()  (3.3.51)

which gives
MM () = D) (3.3.52)

Therefore, the last diagonal block entry of the matrix L is the lower diagonal block
of the Cholesky decomposition (3.3.37). We have proven the following:

Statement 3.3.3. The recursive scheme (3.3.37), (3.3.40) for calculation of
matrices L(f), t = 1,...,t, M(t") is equivalent to Cholesky decomposition (3.3.48)
of matrix A of the quadratic function (3.3.6).
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Let us now apply the forward and backward run formulas (A.3.66), and (A.3.67)
to solve the system (3.3.47),

LZ=r

Ty (3.3.53)

Let us take the vector Z as Z = (z7(0),z (1), ...,z" ()" and the right-hand side vec-
tor ras r = (r'(0), ¥ (1), ..., rT(¢))T. Taking into account the structure of the matrix
L shown in Figure 3.3.2, and applying block-wise forward run, we can present the
solution of the first half of the system (3.3.53) with respect to Z in the form

2(0) = (L(1)"'r(0)
Z2(1) = @)~ () + 0~ FA)LT (1)) 2(0))

2@ =)= L)' - )+ Q7'FE@ - D)WL - 1)z - 2))
2 = M) () + QT FE LT () 2 - 1)) (3.3.54)

Then, applying the block-wise backward substitution, the solution of the second half
of the system (3.3.53) with respect to X becomes

()= MT@) ()
-1 =L'E) @ - 1)+ @) FL(HOT i)

2(0) = (LT (1)~ (z(0) + (L)' FI (DO %(1)) (3.3.55)

The sequential application of expressions (3.3.54) and (3.3.55) gives the optimal esti-
mate X('), t =0,1,...,¢. Moreover, it was established earlier that (') = x*(¢). If
we are interested only in the estimate x*(¢'), then it is sufficient to make only one
first step of the backward run after the forward run (3.3.54) has been carried out,
i, x*(t") = (MT(t"))"'z(¢"). Consider two problems of (3.3.7) formulated with ¢ — 1
and 7 measurements. Let A"~ and A” be correspondent matrices. Let the Cholesky
decomposition

A = T (3.3.56)

be already calculated. Then, for calculation of the decomposition
A =L@ (3.3.57)

itis sufficient to calculate the block entries L(¢'), K(¢"), and M(¢") of the decomposition
(3.3.48) (see Figure 3.3.2); the superscript #’ is omitted because all other block entries
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of matrices L = L and L ~! coincide. In order to calculate the block L(?") let us use
the decomposition

LOLT(¢y=D({ - 1)+ FT (/O 'F()
=M - DMV - 1)+ FL(HQ F(!) (3.3.58)

Then we obtain
Ky =-0 '"F( )L (7)™ (3.3.59)

For calculating the matrix M(1") we use the identity for the last lower diagonal block
of identity (3.3.48):

MM + Q' FA)(LAHL' ()" FT()0™" = 0~ + HT ()R H()
(3.3.60)
The Cholesky decomposition

MOMT() =0 ' + H'()R'H({) — KK (1) (3.3.61)

completes the calculations.

Now, we establish the connections between estimates x*(¢') and x*(¢ — 1) which
were calculated at the first step of the recursive schemes (3.3.55) when solving prob-
lem (3.3.7) for measurements collected at time instants 1, ..., ', and solving problem
(3.3.7) for measurements collected at time instants 1,...,# — 1. Also, we need to
establish connections with the recursive scheme (3.3.41). Let z*(# — 1) and z*(¢') be
vectors calculated at the last step (step ¢ — 1 in the case of ¢/ — 1 measurements and
step ¢ in the case of ' measurements) of the scheme (3.3.54). It follows from the first
expression of (3.3.55) that

oI\ P INTN=1 s gt
() =M ()T (3.3.62)
x*(ti _ 1) — (Mt l(t/ _ l)T) IZ*([I _ 1)

We take note of the fact that according to (3.3.54) the vector z(¢' — 1), obtained
at step ¢ — 1 of the numerical scheme for the case of /' measurements, is connected
with z*(#' — 1) by the relationship

W — 1) = L) 'M (- D - 1) (3.3.63)
Combination of (3.3.62) and (3.3.63) and the first expression of (3.3.55) gives

Xy = M) ME) T HT R BE) + QT FEHWLT ) 2 - 1))
=MT@ ) M) H (R
+ 07 PO (@) @) M - D - 1)
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= M" (@)~ M) HT(OR b
+ 07 PO )T @) M - DM - D = 1)

=M@ ME) T HT ORI - KE)LE) ' DE - Dx* (' - 1))
(3.3.64)

which coincides with (3.3.41) for r = . Therefore, we came to the following impor-
tant statement:

Statement 3.3.4. Sequential computation of block entries of the Cholesky decom-
positions of the large-scale sparse matrix of the problem (3.3.6) and (3.3.7) gives the
same results and the same formulas (3.3.41) (or (3.3.42)) and (3.3.40) as obtained
for the recursive optimal estimation when using the Bellman functions approach.

In this section we derived the recursive least-squares algorithm to estimate
parameters subject to dynamic constraints. Using the Cholesky decomposition for
the band-like matrix, we established a connection between recursive processing
and batch processing. We proved that the recursive Algorithm 3 can be obtained
as Cholesky decomposition of a continuously increasing band-like matrix and
continuously performed forward solution, followed by only a single step backward
solution. Performing the full backward solution is equivalent to batch processing.

3.4 STATIC PARAMETERS AND DYNAMIC CONSTRAINTS

The estimation problem is generalized by combining the cases described in Sections
3.2 and 3.3. We consider the dynamic system (3.3.1), which connects two sequential
state vectors x(t) = F()x(t — 1) + &(7), and an extension of the measurement model
(3.3.2),

b(t) = H(Ox(t) + W(t)y + (1) (3.4.1)

The extended model incorporates time-varying parameter x(¢) and a time-invariant
p-dimensional parameter y. The matrix W(¢) has dimensions m(f) by p. Actually, we
can formally assume a “very slow” dynamics for parameter y, and write dynamics
equations as

Y =yt =1+ &1 (3.4.2)

where the error &'(¢) is zero. The last requirement can be taken into account in the
form E(&' (H)&'(1)T) — 0, i.e., its covariance matrix must take smallest possible value
but not destroy the computational stability. However, this approach meets obvious
objections when implementing in practice. The numerical scheme described in the
previous section assumes the inverse of the covariance matrix, which is not invertible
in this case. We can write

tme’m e’ o\ _(Q 0
E <§’(l)§T(I) é’(l‘)é’T(I)> - <O O) (343)
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A possible solution would be the introduction of small error & (f) with “near zero”
covariance matrix. However, instead of introducing this kind of modification and
dealing with the necessity to prove correctness and convergence as diagonal entries
tend to zero, we derive a special form of the estimation algorithm for the problems
(3.3.1) and (3.4.1). We consider the parameter y as constant, not “slow varying.” The
uncertainty of the initial data is described by conditions (3.3.4) and (3.3.5). The esti-
mation problem consists of recovering the trajectory {x(¢)} and the constant vector
y using sequential measurements {b(f)} and models (3.3.1), and (3.4.1) and specifi-
cations (3.3.3) to (3.3.5). Least-squares criterion minimizes the quadratic function of
the variables x(¢), t = 0, ..., ¢ and y defined by the expression

1(x(0), x(1), ..., x(t"), y,1")
= Y ) = Foxte = Do + Y [|b(0) = H@Ox(t) = WD)y |-
=1 =1

[[%(0) = x| 7 (3.4.4)

where ¢ is the number of accumulated measurements. That is, the weighted sum of
squared residuals of the relationships (3.3.1), (3.4.1), and (3.3.4) is minimized. The
best estimation {&(z,b(1),...,b(#")},t=0,....¢, and $(b(1),...,b(')) minimizes
the criterion (3.4.4), solving the problem
I, = min I1(x(0), x(1), ..., x({), v, 1) (3.4.5)
x(0),x(1),...x(¢),y
which generalizes the early considered problems (3.1.5) and (3.3.7).

Notation identifying dependency of the optimal estimate on the measurements
(b(1), ..., b(t") will be omitted if it does not lead to misunderstanding. As done in
the previous section, denote x*(r) = x(¢, b(1), ..., b(t)) and y*(¢) = 3(b(1), ..., b(1)).
Let us derive the recursive relationships for obtaining estimates x*(r) and y*(z) on
the base of earlier obtained estimates x*(¢ — 1), y*(t — 1), and the measurement b(z).
Rewrite the problem (3.4.5) in the equivalent form

I, =min[ min  I(x(0),x(1),...,x(#),y, )] (3.4.6)

Y x(0)x(1),...x(¢")
and consider y fixed, the internal minimization problem in (3.4.6) over the variables
x(0), x(1), ..., x(¢), ¢ is

LoinO) = i 1(x(0), x(1), ..., x(t"), y, 7' 3.4.7
min() o (x(0), x(1), ..., x(1), y, ') (3.4.7)

Changing the order of minimization operations in the last expression, one arrives at

the following equivalent formulation of problem (3.4.7):

I (y) = mi i 1(x(0), x(1), ..., x(£), v,
min() = min | omin GO 20



114 RECURSIVE LEAST SQUARES

= Z Hx(t) F()x(t — 1)”

x(t’) x(O)x(l) ..... x(z’ 1)

+ ; |lp® - Hoxte) - W(t)y”Z_I +[ro- x0||"’c_1 (34.8)
Then denote
v(t,x(t),y) = o z ”x () — F()x(t — 1)”
+ Z‘ |p () = Hot - W(t)y”z_l + [ - x0||2C_l (3.4.9)

and problem (3.4.8) takes the following form:
Lin ) = minv(t', x(1"), y) (3.4.10)
x(t)

The last term ||b(t") — H( )x(') — W(' )y”i—l in the second summation operation
of expression (3.4.9) does not depend on the variables x(0), ..., x(#' — 1) and, there-
fore, the expression can be rewritten as

Wt (), y) = o ZHX(I)—F(t)x(t—l)H

+ tz_‘j o @ = o - W(t)y”i_l +[Jx@ - x()”f:_l
=1

”b(t’) —H{)x({) - W(t’)yH;l (3.4.11)

Repeating the reasoning of the previous section, one arrives at the sequence of the
Bellman functions, all of which also depend on the variable y (excluding v(0, x(0)),
which depending only on x(0)),

(0, x(0)) = [lx(0) = xo|I2._,
v(l, x(1),y) = mln (v(0, x(1)) + [Ix(1) — F(l)X(0)||2 )
+ [1b(1) = H(Dx(1) = W(yll 5
v(2,x(2),y) = mln (v(1,x(1), ) + [Ix(2) — F(2)X(I)IIZQ,1)

+16(2) ~ H2)x(2) = W)y ll7.
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V(.x(0).3) = min (vt = Lx(t = 1D.) + llx0) = Fo(e = DI, )

+ [1b() = Hox(t) = Wyl

v@wwxw=£@h@W—Lﬂf—DJHWAw—FMkw—lm;J

+ ||b(t") — H()x(1") — W(I')y”;_l (3.4.12)

The value of the estimate x(f — 1), which minimizes the first term of the function
v(t, x(t),y), given the variables x(¢) and y, is denoted by x(¢ — 1, x(¢), y) and called the
conditionally optimal estimate. In order to find the whole set of optimal estimates
%(0),%(1), ..., x("),9 one needs to find the minimum of the function v(¢', x(¢'), y)
reached at the point £('), $, and exploit the recursive expressions

M—D=x(t—- 150,95 t=11—-1--1 (3.4.13)

These relationships allow for sequentially obtaining the components of the optimal
estimate in the reverse order. Note again that the first function v(¢, x(¢'), y) is mini-
mized over two variables x(¢") and y, resulting in the estimates 2(¢') and 9. The optimal
estimate y is then substituted into all expressions (3.4.13). The following statement
summarizes the construction described above:

Statement 3.4.1. The solution of the optimal estimation problem (3.4.5) is equiva-
lent to minimization of the function v(t', x(t"), y) over the variables x(t'), y resulting in
optimal estimates X(t'), . The function v(', x(t"), y) is obtained using recursive rela-
tionships (3.4.12). All other components of the sequence (' — 1), X' —2), ..., %(0)
of optimal estimates are obtained according to relationships (3.4.13).

What is described above is “batch processing” applied to the whole set of mea-
surements b(1), ..., b(¢") after they have been received. When working in real time,
optimal estimate of the sequence of state vectors must be obtained sequentially as the
measurements become available, and the total number of measurements ¢’ is unknown
beforehand. Therefore, of practical importance are recursive relationships for calcu-
lation of the next estimate x*(¢), y*(¢) using the previous estimate x*(' — 1), y*(t' — 1)
and the measurement b(r). After the measurement b(¢) has been received and the
new estimate x*(¢'), y*(f' — 1) has been calculated, earlier obtained estimates x( —
1), x(t — 2),...,x(0) can be updated using the “backward run” relationships (3.4.13).
However, that cannot be carried out when working in real time. Only some lim-
ited backward run depth 7 is available. In other words, the components x(t), x(f —
1),...,x(t = T + 1) are updated. This way of recursive processing can be considered
as “partial” batch processing of depth T and can be performed in real time.

The depth T is a constant. If 7 = 1, then we have the conventional recursive pro-
cessing. If T is not constant and 7' = ¢, then we have a batch processing implemented
as a forward run (calculation of Bellman functions (3.4.12)) and a backward run
(3.4.13).

Now we can derive the numerical scheme for recursive processing. Inductive appli-
cation of the expression (A.3.38) to relationships (3.4.12) gives the following result:
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Statement 3.4.2. The Bellman functions v(t,x(t),y), defined by relationships
(3.4.12) are quadratic functions of their variables. Conditionally optimal estimates
x(t — 1,x(2),y) are linearly dependent on x(t) and y.

In real-time operations, the optimal estimate x*(¢), y* must be obtained right after
receiving the measurement b(7). Having the measurement b(¢), one can use the 1
step of the recursive scheme (3.4.12) for constructing the function v(z, x(¢), y). The
measurement b(¢) is the last one received up to time instant r. We are looking for
the optimal estimate for x(¢) and y at the tth step having available measurements
b(1),...,b(r). Setting ' = t in expression (3.4.10), we see that the optimal estimate
x*(f), y* minimizes the function v(#, x(¢), y) which is quadratic due to Statement 3.4.2.
According to expression (A.3.38) we have

T ,
_(x®-x*®) |D"(® D )| (x()—x*®

where the matrix

D" D xy(t)] (3.4.15)

be = [DYX(z) D" (1)

is symmetric (D”(t) = D™ (¢)7) and positive definite. The equality (3.4.14) is valid
up to a constant not affecting the minimum point.

Our goal now is to derive a numerical scheme for calculating the matrix D(f) and
the optimal estimate x*(¢), y*(¢), based on the matrix D(z — 1), the estimates x*( — 1),
y*(t — 1), and the measurement vector b(¢). The initial conditions are

c' o
D(0) = [ 0 o] (3.4.16)
x*(0) = x, (3.4.17)
y(0)=0 (3.4.18)

The matrix D(0) is not positive definite which does not contradict our construction
since it will not be inversed. Assuming that we know the function

* T X Xy _
va_hxa_nJo=<x0—1%<x0—D> rf<r—n D(t-1)

y=y@—-1) D*t-1) D”t-1)
x(t—1)—x"@t—-1)
X < Yy —1) > (3.4.19)

we now derive expressions for the function (3.4.14). Consider the function of vari-
ables x(¢ — 1), x(¢), y, which is subject to minimization over the variable x(t — 1) in
expression (3.4.12), and denote it by g(x(t — 1), x(¢), y):

qx(r = 1), x(0). y) = v(t = 1x(t = 1).3) + [lx() = F@x(t = DI,

_(xt=D=x@-1D\ [D¥¢-1) D(t-1)
B y=y' (=1 D*(—-1) D”@t-1)
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- =x*(t—1
y <x(ty _;*(tx_(tl) )> + ||x(t) — F(£)x(t — 1)||2Q_1

xt=DY[D¥¢=1) 0 D¢=D)](xt=1)
- o 0 0 0 0
y D*i-1) 0 DYG-Df|

xt=DY[D"@c=1) 0 DYG=1)|(x -1
| 0 0 0 0
y D*t-1) 0 DYa¢-D|ly¢-1)
xt=DY [FT 00 'F@)y —FT0o~" 0](x(t—-1)
+1 x() -0 'F@») 0! 0 x(t) |+c
0

0 0 0 0
(3.4.20)

Making use of the expression (A.3.83) for the function of partial minimum, we obtain
the expression for the function

min g(x(z — 1), x(7), y)
x(t—1)

YOS 0
y Dt — D)Ix*(t — 1)+ Dt — D)y*(t — 1)

—07'F() T =1 -1
+ <ny(t - 1)T> (D™t =D+ F (nQ™ F(1)
x (D™ (1 = 1) x"(t — 1) + D (¢ — 1)y*(t - 1))} (3.4.21)

and finally, according to expression (3.4.12),

T 1
v(t, x(1), y) = <x;f)> { [Qo

-1
(5270 @, + -ty

x(-F' Q™" DY(t-1)} (x;f)>
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L (F0) [HOR!HO | H R W) x(t)
WIOR'H(t) W (OR™'W()

V) A : )
+2 .............. —
< y > { Dt — 1)Ix*(t = 1)+ D”(t — D)y*(t — 1)

(3.4.22)

In expression (3.4.22) the linear and quadratic parts of the vector variable (x(¢), y) are
now extracted. According to (3 4.22) and (3.4.14) we have

0'-0 lF(t)D (1= DFT (50! EQ F@®D (1 = DDY(t— 1)

D(/) = - DYt-1)-DY¢—-1)T
DY(:—1'D (- DFTo~' N_
-1 (t ET (10! B 1(t_ DD 1)

HT tRT'H®)  HT(HR™'W(r)

[WT(I)R YH(r) WT(O)R™ lW(t)] (3.4.23)
where _

D(it—-1)=D"@t- 1)+ F'(nQ7'F(r) (3.4.24)
and <x* (’)> =D 'Y (3.4.25)
YD) o

and

Q‘lF(t)E_l(t — (D™ (= Dx*(t = 1)+ Dt = D)y*(t — 1))

Y()=| +HT@OR'b()

Y(1)
Y@ =Dt - D)Ix*t— 1)+ D@ - y*(t—1)
-DV(t - I)TE_](I — DD™(t = Dx*(t = D)+ Dt — D)y*(t — 1))

+ WI(OR (1) (3.4.26)
Let
0 -0 ' F®D (- DFT0Q"' Q' F®D (1- DD (- 1)

D(t) = 1 - DYt-1)-D¢-1)T
D*(t-1D'D (- 1DFTno~' —
-1 t—DF (0 ‘ <D 1(t_ DD - 1)

D" (t) D' (t)

(3.4.27)
D (t) D" (t)
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and
x(t)=F@®x*(t—1) (3.4.28)

then the expression (3.4.23) takes the form

HT (OR™'H(r) | H'()R™'W(1)
WIOR'HG)  WIORIW()

D(r) = D(t) + (3.4.29)

Transform terms in the expressions (3.4.26) as

O FOD (1 = DD™(t — x*(t — 1)
= [07'"F() - Q"'F(t) + Q"' F&)(D™ (1 = 1) + FT(1)Q™'F(1)) "' D™ (1 — 1)
Xx*(t—1)
=[07'"F() - Q"'F(t) + Q"' F@&)(D™ (¢ = 1) + FT(1)Q™ ' F(1))™"
X (D™t — 1)+ F'(0Q™'F(t) - FT()Q™'F(1)] x*(t = 1)
= Q7 'F() - Q"' F()(D™(t = 1) + FT()Q™'F(t)) "' FT ()@~ ' F(t)x*(t — 1)
=D (OF)x*(—1) (3.4.30)

where expression for D () is taken from (3.4.27), and
D (1) =Dt 1)'D (t— DDt — 1)
=D —1)"D (t= Dt - 1) = D"t 1))
=Dt —1)"D (= DFT ()0~ 'Ft)=D"(t = 1)" (3.4.31)

Now Equation (3.4.25) can be rewritten as

O\ _ el s [m x (1) HT ()R~ b(1)
<y*(r>> =070 [D ® <y*(r— 1)) * (WT(r)R-lba))]

- X (0 HT OR'H®  HT(RT'W(©)
=b"® {D(t) <y*(t— 1)> B [WT(t)R“H(t)  WTORTIW(@)

10 H” ()R~ b(1)
% <y*(t - 1>> * <WT(r>R-1b<r>> }

_( X p-! HT ORT'H(@)  HT(OR'W()
- <y*(t— 1)> S {_ [WT(t)R—lH(r)  WIOR'W(@)

x(1) H” (1) R™'b(1)
% <y*(t - 1)) + <WT(t)R‘1b(t)>} (3.4.32)
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and finally

" - T -1

() = (6 2) +07'0 (s ) 00 = Hoowo - Wiy - 1y

(3.4.33)

Formulas (3.4.27)-(3.4.29), and (3.4.33) provide the full description of the recursive
estimation scheme.

In order to present expressions (3.4.23) [or (3.4.27) and (3.4.29)] in a conve-
nient and numerically stable form we will use the matrix decomposition technique
described in the previous subsections. Consider the (2n + p) X (2n + p) matrix

DY (t— 1)+ FT'()Q~'F(r) —FT(HQ™! DYt -1)
G = —-07'F(@r) O '+ H'OR'H®)  H'OR'W(®)
B O AYA T —1 Dyy(t - 1)
Dt -1) WIHR'H() TWEORWE)
(3.4.34)

Divide it into blocks according to (A.3.39) where

Ny, =D%(t - 1)+ FT(H)Q~'F(r)

Ny = (-FT (0" DY(t-1) (3.4.35)
N = O '"+HT ()R 'H(r) HT(OR™'W(r)
2= < WIOR'HGt:) — D -1+ WT(z)R—1W(t)>

and calculate its Cholesky decomposition

_[to o [t Ko
G = [K(t) M(t)] [ 0 MT(I)] (3.4.36)

It follows from (A.3.59) to (A.3.61) and (3.4.35) that

LOLT (1) = D(t) = Dt — 1) + FT ()0 F(1)

—_0o-! 3.4.37
K(t) = <DX)Q(,_F1(§)T> w0y (3430

and
D) = M(HOMT (r) (3.4.38)

Let us now look at the expression (3.4.33). Taking into account (3.4.38) we have
O\ _ [ *0 eyl (H OR
<y*(f)> - <y>k(t _ 1)) + (M (t)) M (t) (WT(I)R_1>
X (b(t) — H(H)x(t) — W()y*(t — 1)) (3.4.39)

Expressions (3.4.34), (3.4.36), (3.4.28), and (3.4.39) give full description of the recur-
sive estimation scheme of the parameters (x*(¢), y*()) in the decomposed form.
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For the sake of simplicity suppose that the covariance matrices Q and R do not
depend on ¢ and are decomposed by Cholesky as

0=1LgL), R=Lgly (3.4.40)

and also note that FT(Q~'F(t) = (F,F (t))TFLQF (#). Similar identities hold for
other terms, including R™'. Let us present the estimate update and the matrix
update scheme D(r — 1) — D(¢) in more visual form in Algorithm 4, described in
Table 3.4.1. Starting with D(0) = C~!, x*(0) = Xg, and y*(0) = 0, proceed from one
row to the next. Then, the recursive update of the optimal estimate is calculated
according to the formulas (3.4.28) and (3.4.39).

Now let us return to considering the same problem (3.4.5) but for batch pro-
cessing. Consider the quadratic function (3.4.4) and present it in the form (A.3.36).
Let us present the set of vectors x(0), x(1), ..., x(t'"), y in the form of the (' + 1)n +
p-dimensional vector

x(0)
X = x(st,) (3.4.41)
y
Then the solution to the problem (3.4.5) satisfies the linear system
AX=r (3.4.42)

which is schematically shown in Figure 3.4.1. The matrix A has the block band-wise
structure with a “bordering.” The right-hand side vector r has the form

a

!

r=|C"x, H () R7'B(1), ..., H ()R 'b(1"), Z WI(OR ' b(r) (3.4.43)

=1

The location of nonzero block entries of the matrix A and their content is shown
in the Figure 3.4.1. The factors of the Cholesky decomposition of matrix A have the
pattern that occupies the lower diagonal part of the matrix (Figure 3.4.2). As was
done in the Section 3.3, one can show that sequential calculation of the block entries
of the Cholesky decomposition of the large matrix A gives the same formulas for the
recursive estimation scheme as (3.4.25), (3.4.26), (3.4.34), and (3.4.38).

Statement 3.4.3. The sequential computation of block entries of the Cholesky
decompositions of the large sparse matrix of problems (3.4.4) and (3.4.5) gives
the same results and the same formulas (3.4.25), (3.4.26) and (3.4.34), (3.4.38)
as were obtained for the recursive optimal estimation using the Bellman functions
approach.

In this section, we derived the recursive least-squares algorithm allowing estima-
tion of parameters subject to dynamic constraint along with static parameters.
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Figure 3.4.1 Schematic structure of the band-like linear system (3.4.42).

HOR (1)

HT(2R Bi2)

Wi =R -1

HI(OR'E ()

S WT(OR Bt

L{l)
O Ey!
Q F(L) L)

- (L)

O AL) L(3)

~0 'R 1@y
L=
Lit")
—OFERL | M
0 K1) K(2) K =1) K1)

Figure 3.4.2 Band-like structure of the matrix in the Cholesky decomposition.



STATIC PARAMETER, PARAMETERS SUBJECT TO DYNAMIC CONSTRAINTS 125

3.5 STATIC PARAMETER, PARAMETERS SUBJECT TO DYNAMIC
CONSTRAINTS, AND ARBITRARY TIME-VARYING PARAMETERS

This section combines the results obtained in Sections 3.3 and 3.4. We consider
again the dynamic system (3.3.1) connecting two sequential state vectors: x(f) =
F(t)x(t — 1) + &(r) and extend the measurement model (3.4.1) to include arbitrary
time-varying parameter z(f)

b(t) = H®)x(t) + J(t)z(t) + W(t)y + () 3.5.1)

The model (3.5.1) connects the time-varying n-dimensional parameter x(#), which
satisfy the dynamic constraints (3.3.1), the arbitrary varying r(#)-dimensional param-
eter z(f), and the constant time-invariant p-dimensional parameter y. The matrix W(r)
has dimensions m(¢) by p. Let matrices H(¢) and J(¢) have dimensions m(¢) X n and
m(t) X r(t), respectively. The problem setup is completed by adding initial conditions
(3.3.4) and (3.3.5).

We present results omitting intermediate constructions that are similar to those of
Sections 3.2 and 3.4. For the sake of simplicity suppose that the covariance matrices
0 and R do not depend on k and are factorized by Cholesky as

0= LQLg R=LgL} (3.5.2)

and note that FT(Q~'F(1) = (FLQF(z))TFLQF(t). Similar identities hold for other
terms, including R~!. Starting with initial conditions

-1
D) = [CO 8] (3.5.3)
X0)=x, y(0)=0 (3.5.4)

the algorithm proceeds as described in Table 3.5.1.
This completes the description of the algorithms and the chapter. We provided five
algorithms for the following estimation problems:

1) Algorithm 1 solves the problem of estimating static parameters. It applies to the
processing of across-receiver, across-satellite pseudorange and carrier phase observ-
ables in the case of stationary antenna positions. The estimated parameters include
corrections to the antenna positions and the double differenced carrier phase ambi-
guities.

2) Algorithm 2 estimates arbitrary varying parameters and static parameters. It
applies to the processing of across-receiver observables for stationary or kinematic
processing situations. The across-receiver carrier phase ambiguities are static param-
eters. Across-receiver clock differences are considered arbitrarily varying parameters
taking independent values at adjacent epochs. The position corrections can be con-
sidered static parameters or arbitrarily varying parameters for stationary or kinematic
cases, respectively.
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3) Dynamic parameters estimation is not explicitly used when processing GNSS
observables, but the description of this case gives a basis for further considerations
of the fourth and fifth cases. On the other hand, Algorithm 3 pertains to the prob-
lem of integration of GNSS measurements and inertial measurements, which is not
addressed in this book.

4) Estimation of static parameters and parameters subject to dynamic con-
straints is handled by Algorithm 4. It applies to processing the across-receiver,
across-satellite observables for long baselines. The residual ionosphere is subject to
the dynamic model, while ambiguities and corrections to the stationary position are
static parameters.

5) Fifth case is the most general one and covers all previously considered cases of
static, dynamic, and arbitrarily varying parameters. Algorithm 5 applies to processing
the across-receiver or across-receiver, across-satellite observables for stationary or
kinematic positioning for short or long base lines, with or without dynamic model
applied to the corrections of the kinematic position.

In this chapter we established a connection between the recursive and batch pro-
cessing. We showed that all recursive algorithms, working in real time can be consid-
ered as continuously operating Cholesky decompositions of large matrices involved
into batch processing. To be specific, the Cholesky decomposition and the forward
solution run continuously. Only a single step backward solution is performed when
operating in real time. On the other hand, several steps of the backward solution can
be performed if the depth of memory allows it. Finally, by performing the whole
backward solution we complete the batch processing. Consideration of these algo-
rithms helps in better understanding the connection between real-time recursive and
postmission batch processing.



CHAPTER 4

GEODESY

Geodesy is the theoretical and practical framework for utilizing GNSS vector obser-
vations and classical terrestrial observations such as angles and distances. While
geodesy has much theoretical and mathematical depth, we limit this chapter to oper-
ational aspects of geodesy as needed to process GNSS observations and classical
terrestrial observations. Not to exclude fundamentals, we first discuss the interna-
tional terrestrial and celestial reference frames and then turn to the geodetic datum.
The 3D geodetic model plays a pivotal role in the subsequent discussion, followed
by the more historical 2D ellipsoidal model, and, last but not least, the popular 3D
conformal mapping models.

The precise definition of reference frames becomes more important as the accu-
racy of geodetic space techniques increases. There are three types of frames we are
concerned with—the earth-fixed international terrestrial reference frame (ITRF), the
geocentric space-fixed international celestial reference frame (ICRF), and the geode-
tic datum. Specialized literature considers the ITRF and ICRF as an implementa-
tion of theoretical constructions such as the international terrestrial reference system
(ITRS) and the geocentric celestial reference system (GCRS). In this chapter, we
do not make such a distinction. Given the demand of modern geodetic measurement
techniques on precise definitions of reference frames, it is certainly not an understate-
ment to say that the definition and maintenance of such frames has become a science
in itself, in particular in connection with properties of the deformable earth. Current
solutions have evolved over many years. The literature is rich in contributions that
document the interdisciplinary approach and depth needed to arrive at solutions.

The International Earth Rotation Service (IERS) is responsible for establishing
and maintaining the ITRF and ICRF frames, whereas typically a national geodetic
agency is responsible for establishing and maintaining the nation’s geodetic datum.
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The IERS relies on the cooperation of many research groups and agencies to accom-
plish its tasks. Examples of key participants are the U.S. Naval Observatory, the U.S.
National Geodetic Survey, the International GNSS Service (IGS), the International
Astronomical Union (IAU), and the International Union of Geodesy and Geophysics
(IUGG). Our recommended authoritative publications on the broad topic of reference
frames and time are Petit and Luzum (2010) and Kaplan (2005). The first addresses
IERS Conventions 2010 and is published as IERS Technical Note 36. Its 11 chapters
address all aspects of reference frames in great detail. The same wealth of informa-
tion and depth is found in the other reference, which is the U.S. Naval Observatory
Circular No. 179. These publications are available on the Internet. The reader is also
encouraged to visit the homepages of the various organizations and groups mentioned
above as they are highly recommended resources of additional information about the
topics of geodesy, reference frames, and time.

Accurate positioning within the ITRF and ICRF frames requires a number of
complex phenomena to be taken into account, such as polar motion, plate tectonic
movements, solid earth tides, ocean loading displacements, and precession and nuta-
tions. Since there are multiple reference frames, one needs to be able to transform
one reference frame to the other. Since much authoritative software is readily avail-
able at the homepages of the agencies and organizations mentioned above, we only
discuss mathematical expressions to the extent needed for a conceptual presentation
of the topic.

The geodetic datum makes the products of space geodesy accessible to practicing
surveyors. While most scientists prefer to work with geocentric Cartesian coordi-
nates, it is easier to interpret results in terms of ellipsoidal coordinates such as geode-
tic latitude, longitude, and height. Consequently, the issues of locating the origin of
the ellipsoid and its orientation arise, as well as the need to separate ellipsoidal heights
from orthometric heights and geoid undulations. The preferred choice is to use geo-
centric ellipsoids whose origin and orientation coincides with the ITRF. The location
and orientation of the ellipsoid, its size and shape, as well as the respective sets of
geoid undulations and deflection of the vertical are all part of the definition of a datum.

In order to understand the fundamental role of the geoid, we need to briefly look
at the dependency of observations on gravity. GNSS observations such as pseudo-
ranges and carrier phases depend only indirectly on gravity. For example, once the
orbit of the satellites has been computed and the ephemeris is available, there is no
need to further consider gravity. To make the GNSS even easier to use, the various
GNSS systems broadcast the ephemeris in a well-defined, earth-centered earth-fixed
(ECEF) coordinate system, such as the ITRF. Astronomic latitude, longitude, and
azimuth determinations with a theodolite using star observations, on the contrary,
refer to the instantaneous rotation axis, the instantaneous terrestrial equator of the
earth, and the local astronomic horizon (the plane perpendicular to the local plumb
line). For applications where accuracy really matters, it is typically the responsibil-
ity of the user to apply the necessary reductions or corrections to obtain positions
in an ECEF coordinate system. Even vertical and horizontal angles as measured by
surveyors with a theodolite or total station refer to the plumb line and the local astro-
nomic horizon. Another type of observation that depends on the plumb line is leveling.
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To deal with these types of observations that depend on the direction of gravity, we
need to ultimately link the geoid and the ellipsoid. The goal is to reduce observations
that depend on the direction of gravity to model observations that refer to the ellip-
soid by applying geoid undulation and deflection of the vertical corrections. These
“connecting elements” are part of the definition of the datum. For a modern datum
these elements are readily available; for example, check out the website of the U.S.
National Geodetic Survey for the case of NAD&3.

After reducing the observations for the general impact of gravity (and polar motion
if applicable), one obtains the model observations of the 3D geodetic model. This
model is the simplest, most versatile model for dealing with observations such as
angles, distance, and GNSS vectors. The 3D model will be presented in the form of
various parameterizations and applied to GNSS vector observations. We start out with
the minimal or inner constraint solution for vector networks, and then we generalize
the approach by combining GNSS networks and geodetic networks by also estimating
a differential scale and three rotation parameters. Several examples are presented.
Cases are chosen from the early days of GPS satellite surveying to demonstrate the
high accuracy achieved even when the GPS system was under construction.

Many surveyors prefer to work with “plane” coordinates. In order to arrive at
model observations to which the laws of plane trigonometry are applicable, two addi-
tional reductions must be made. The 3D model observations are further reduced
to ellipsoidal surface observations (2D ellipsoidal model observations). The latter
observations refer to angles between geodesic lines and the length of geodesic lines.
As an intermediary solution we briefly discuss adjustments on the ellipsoidal sur-
face. The ellipsoidal surface observations are then further reduced to the conformal
mapping plane (2D conformal model observations). The conformal mapping model
observations represent the angle between straight lines on the conformal mapping
plane and the straight line distances between mapped points. We discuss the Trans-
verse Mercator (TM) and the Lambert Conformal (LC) mapping in detail, as well as
respective adjustments of plane networks on the conformal mapping plane.

4.1 INTERNATIONAL TERRESTRIAL REFERENCE FRAME

A conventional terrestrial reference system (CTRS) must allow the combination
of products of space geodesy, such as coordinates and orientation parameters
of the deformable earth, into a unified data set. Such a reference system should
(a) be geocentric (whole earth, including oceans and atmosphere), (b) incorporate
corrections or procedures stemming from the relativistic theory of gravitation,
(c) maintain consistency in orientation with earlier definitions, and (d) have no
residual global rotation with respect to the crust as viewed over time. The practical
realization of such a system is the ITRF. Such a realization is generally referred to
as earth-centered earth-fixed (ECEF) coordinate system. To appreciate the demand
placed on a modern reference system, consider the fact that geodetic space techniques
can provide daily estimates of the center of mass at centimeter-level accuracy and
millimeter crustal motion determinations on a global scale. As mentioned above,
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the authoritative literature on international terrestrial and celestial reference frames
are Petit and Luzum (2010, Chapter 4) and Kaplan (2005). The IERS (International
Earth Rotation and Reference System Service) is responsible for the realizations of
the ITRF (www.iers.org). This section deals only with the major phenomena such
as polar motion, plate tectonic motions, solid earth tides, and ocean loading that
cause variations of coordinates in the terrestrial reference frame. We also discuss
transformations between terrestrial reference systems.

4.1.1 Polar Motion

The intersection of the earth’s instantaneous rotation axis and the crust moves in time
relative to the crust. This motion is called polar motion. Figure 4.1.1 shows polar
motion for the time period 2001-2003. The motion is somewhat periodic. There is
a major constituent of about 434 days, called the Chandler period. The amplitude
varies but does not seem to exceed 10 m. Several of the polar motion features can
be explained satisfactorily from a geophysical model of the earth; however, the fine
structures in polar motion are still subject to research.

To avoid variations in latitude and longitude of about 10 m due to polar motion, we
want to define a conventional terrestrial pole (CTP) that is fixed relative to the crust.
Originally, indeed, such a pole was defined as the center of the figure of polar motion

X—POLE IN ARCSECOND
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Figure 4.1.1 Polar motion, 2001-2003. The solid line represents the mean pole displace-
ment, 1900-2000 [Courtesy of the International Earth Orientation Service (IERS), Paris
Observatory].
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for the years 1900-1905. This definition, however, required several refinements as
the observation techniques improved over the years. The instantaneous rotation axis
is referenced to the CTP by the polar motion coordinates (x,, y,). The origin of the
polar motion coordinate system is at the CTP, the x axis is along the conventional zero
meridian, and the y axis is positive along the 270° meridian. As the figure indicates,
there appears to be “polar wander” (gradual shifting of the center of the figure of
somewhat periodic motions away from the CTP). The IERS website contains addi-
tional graphics on polar motion, plus data files for users.

The CTP is aligned with the direction of the third axis of the ITRF. The definition
of an ITRF becomes increasingly complicated because plate tectonic motions cause
observation stations to drift, and there are other temporal variations affecting coor-
dinates of a so-called “crust-fixed” coordinate system. As the tectonic plates move,
the fixed station coordinates of a global network become inconsistent with each other
over time. The solution is to define the reference frame by a consistent set of coor-
dinates and velocities for globally distributed stations at a specific epoch. The center
of mass of the earth is the natural choice for the origin of the ITRF because satellite
dynamics are sensitive to the center of mass (whole earth plus oceans and atmo-
sphere). As indicated above, the IERS maintains the ITRF using extraterrestrial data
from various sources, such as GNSS, very long baseline interferometry (VLBI), and
satellite laser ranging (SLR). Because the motions of the deformable earth are com-
plex, there is a need to identify the sites that are part of a particular ITRF definition.
Because of continued progress in data reduction techniques, the IERS computes ITRF
updates as needed. These solutions are designated by adding the year, e.g., ITRF96,
ITRF97, ITRF00, and ITRF2008.

The ITRF-type of reference frame is also called an ECEF frame, as already men-
tioned above. We denote an ECEF frame by (x) and the coordinate triplet by (x, y, z).
The z of the frame is the origin of the polar motion coordinate system. The x and y
axes define the terrestrial equatorial plane. In order to maintain continuity with older
realizations, the x axis lies in what may be loosely called the Greenwich meridian.

Historically speaking, the International Latitude Service (ILS) was created in
1895, shortly after polar motion had been verified observationally. It was the first
international group using globally distributed stations to monitor a reference frame.
This service evolved into the International Polar Motion Service (IPMS) in 1962.
The IERS was established in 1987 as a single international authority that, henceforth,
uses modern geodetic space techniques to establish and maintain reference frames.
GNSS systems are major contributors to the definition and maintenance of the
terrestrial reference frame, largely a result of strong international cooperation with
the IGS (International GNSS Service, see Section 6.2.7.1). The IGS began routine
operations in 1994 by providing GPS orbits, tracking data, and offering other data
products in support of geodetic and geophysical research.

4.1.2 Tectonic Plate Motion

Figure 4.1.2 shows tectonic plate motions. Even this simple overview of motions
over the global map makes clear that they are significant and should be appropriately
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Heflinetal.,2002.3

http://sideshow.jpl.nasa.gov/mbh/series.html

Figure 4.1.2 Observed motions of globally distributed stations.

Velocities for each site were determined from more than 11 years of GPS observations prior
to 2000. Results are shown in the ITRFOO reference frame with no net rotation of the crust.
The rigid plate motion is clearly visible and describes roughly 80% of observed motion. The
remaining 20% is nonrigid motion located in plate boundary zones and is associated with
seismic and volcanic activity. The most visible plate boundary zone on the map is southern
California (Courtesy of Mike Heflin, JPL).

taken into account when processing GNSS observations and producing coordinates.
At the JPL website, http://sideshow.jpl.nasa.gov/post/series.html, the latest update of
these motions can be seen. Also available at the site are time series of coordinates for
more than 2000 stations. The figure also indicates boundaries of major tectonic plates.
The rotations of these plates can be approximated by geophysical models based on
geological observations. DeMets et al. (1990) published their basic NUVEL-1 model,
which was subjected to a no-net rotation constraint by Argus and Gordon (1991) in
their model NNR-NUVEL-1, which in turn was further improved by DeMets et al.
(1994) in model NNR-NUVEL-1A. Additional improvements to the model (that also
include more plates) are found in DeMets et al. (2010). The smooth motions of these
major plates can be combined with actual observed motions at selected stations to
create a general station motion function.


http://sideshow.jpl.nasa.gov/mbh/series.html
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4.1.3 Solid Earth Tides

Tides are caused by the temporal variation of the gravitational attraction of the sun
and the moon on the earth due to orbital motion. While the ocean tides are very much
influenced by the coastal outlines and the shape of the near-coastal ocean floor, the
solid earth tides are accurately computable from relatively simple earth models. Their
periodicities can be directly derived from the motion of the celestial bodies, similar
to nutation. The solid earth tides generate periodic site displacement of stations that
depend on latitude. The tidal variation can be as much as 30 cm in the vertical and 5 cm
in the horizontal. Petit and Luzum (2010, Chapter 7) list the following expression:

>\ GM; ||ry||* 3 1
122 GM |Ir;| P {he(i(’f”e) ‘§)+3lz(r,--e)[rj—(rj-e)e]}
4.1.1)

In this expression, GMy; is the gravitational constant of the earth, GM,; is the grav-
itational constant for the moon (j = 2) and the sun (j = 3), e is the unit vector of
the station in the geocentric coordinate system (x), and r denotes the unit vector of
the celestial body; %, and [, are the nominal degree 2 Love and Shida numbers that
describe elastic properties of the earth model. Equation (4.1.1) gives the solid earth
tides accurate to at least 5 mm. Additional expressions concerning higher-order terms
or expressions for the permanent tide are found in the reference cited above.

4.1.4 Ocean Loading

Ocean loading refers to the deformation of the seafloor and coastal land as a result
of redistribution of ocean water during the ocean tides. The earth’s crust yields under
the weight of the tidal water. Petit and Luzum (2010, Chapter 7) list the following
expression for the site displacement components Ac (where the c refers to the radial,
west, and south component) at a particular site at time ¢,

Ac= Y fiAgcos@jt + g+ ;= D) 4.12)
J

The summation over j represents 11 tidal waves traditionally designated as semidi-
urnal M,, S,, N,, and K, the diurnal K, Oy, and P, and the long-periodic My, M,,,
and S,,. The symbols w; and y; denote the angular velocities and the fundamental
astronomic arguments at time # = O". The fundamental argument xj reflects the posi-
tion of the sun and the moon, and f; and u; depend on the longitude of the lunar node.
The station-specific amplitudes A, ; and phases ®; can be computed using ocean tide
models and coastal outline data. The IERS makes these values available for most
ITRF reference stations. Typically the M, loading deformations are the largest. The
total vertical motion can reach 10 cm while the horizontal motion is 2 cm or less. Free
ocean tide loading values for individual locations are provided by the Onsala Space
Observatory at http://holt.oso.chalmers.se/loading/.
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4.1.5 Relating of Nearly Aligned Frames

The transformation of three-dimensional coordinate systems has been given much
attention ever since geodetic satellite techniques made it possible to relate local
national datums and geocentric datums. Some of the pertinent work from that
early era is Veis (1960), Molodenskii et al. (1962), Badekas (1969), Vanicek and
Wells (1974), Leick and van Gelder (1975), and Soler and van Gelder (1987). We
assume that the Cartesian coordinates of points on the earth’s surface are available
in two systems. Historically speaking, this was not necessarily the case. Often it was
difficult to obtain the Cartesian coordinates in the local geodetic datum because the
geoid undulations (see Section 4.3.3) with respect to the local datum were not be
accurately known. We first deal with the seven-parameter similarity transformation.

Figure 4.1.3 shows the coordinate system (x) = (x, y, z), which is related to the
coordinate system (u) = (u, v, w) by the translation vector t = [Ax Ay Az]”
between the origins of the two coordinate systems and the small rotations (g, y, ®)
around the (u, v, w) axes, respectively. The transformation equation expressed in
the (x) coordinate system can be seen here:

t+(1+s)Ru—x=0 4.1.3)

where s denotes the differential scale factor between both systems and R is the product
of three consecutive orthogonal rotations around the axes of (u):

R = R;(0)R,(w)R,(¢) (4.1.4)

The symbol R; denotes the rotation matrix for a rotation around axis i (see Appendix
A.2). The angles (g, w, w) are positive for counterclockwise rotations about the
respective (i, v, w) axes, as viewed from the end of the positive axis. For nearly
aligned coordinate systems these rotation angles are small, allowing the following
simplification:

0 w -y
R=1+Q=I+|-0 0 ¢ (4.1.5)
v —-€ 0

Figure 4.1.3 Differential transformation between
Cartesian coordinate systems.
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implying R~' = R” within the same accuracy. Combining (4.1.3) and (4.1.5) gives
the linearized form
t+u+su+Qu—-x=0 (4.1.6)

For the purpose of distinguishing various approaches, we call this transformation
model 1. The seven transformation parameters (Ax, Ay, Az, s, €, y, w) can be esti-
mated by least squares. Both sets of Cartesian coordinates u and X are observations.
In general, equation (4.1.6) represents a mixed adjustment model f(€,,, x,) = 0 (see
Chapter 2 for an additional explanation of the mixed adjustment model). Each station
contributes three equations to (4.1.3).

A variation of (4.1.3), called model 2, is

t+u,+(1+s)RWU—-Uy) —x=0 4.1.7)

where Uy, is a vector in the system (u) to a point located somewhere within the network
that is to be transformed. A likely choice for u, might be the centroid. All other
notations are the same as in (4.1.3). If one follows the same procedure as described
for the previous model, i.e., omitting second-order terms in scale and rotation and
their products, then (4.1.7) becomes

t+u+sWU—-u)+QU-—-uy)—x=0 (4.1.8)

The third model, model 3, uses the same rotation point U, as model 2, but the rota-
tions are about the axes (n, e, u) of the local geodetic coordinate system at U. This
model thus refers to the local geodetic horizon coordinate system and to ellipsoidal
latitude, longitude, and height. Please see Section 4.4 for details on these elements
if needed. The n axis is tangent to the geodetic meridian, but the positive direction
is toward the south; the e axis is perpendicular to the meridian plane and is positive
eastward. The u axis is along the ellipsoidal normal with its positive direction upward,
forming a right-handed system with n and e. Similar to (4.1.7), one obtains

t+uy+(1+s)yM@u—-uy) —x=0 4.1.9)

If (1, &, a) denote positive rotations about the (1, e, u) axes and if (¢, 4y, hy) are
the geodetic coordinates for the point of rotation U, it can be verified that the M
matrix is

M = R (4R} (90 — g)R5(@)R, (&R, (11R,(90 — ¢¢)R5(4) (4.1.10)

Since the rotation angles (n, &, «) are differentially small, the matrix M simplifies to

Mg, @, 1, &, @) = aM, + EM + M, +1 (4.1.11)
where
0 sin g —COS @ Sin 4,
M,=| -sing, 0 COS @ COS A (4.1.12)

cos @y sin Ay —cos @ cos A 0
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0 0 —cos A
M.=| O 0 —sin 4 (4.1.13)
cos dy sin 4 0
[ 0 —Cos @ — sin @ sin A
M, = cos @ 0 sin @ cos 4, (4.1.14)
sin @y sin Ay —sin g cos 4, 0

If, again, second-order terms in scale and rotations and their products are neglected,
the model (4.1.9) becomes

t+u+sWW—-uy)+(1+s)M-hHu—-uy) —x=0 4.1.15)

Models 2 and 3 differ in that the rotations in model 3 are around the local geodetic
coordinate axes at U,. The rotations (, &, a) are (¢, y, w) are related as follows:

n 3
(04 [0

Models 1 and 2 use the same rotation angles. The translations for models 1 and 2 are
related as

according to (4.1.3) and (4.1.7). Only t,, i.e., the translation vector of the origin as
estimated from model 1, corresponds to the geometric vector between the origins of
the coordinate systems (x) and (u). The translational component of model 2, t,, is a
function of U, as shown in (4.1.17). Because models 2 and 3 use the same U, both
yield identical translational components. It is not necessary that all seven parame-
ters always be estimated. In small areas it might be sufficient to estimate only the
translation components.

4.1.6 ITRF and NAD83

Model 1 discussed above can readily be applied to transforming to ECEF coordinate
systems, which we simply call ITRFyy and ITRFzz. Following (4.1.3) and (4.1.5),
the transformation is given by

Xf, ITRFzz — tt + (l + Sl)(l - Q(et))Xt’ITRFyy (4.1.18)

The vector t, points to the origin of ITRFyy, i.e., it is the shift between the two frames,
whereg, = [¢, ¢, e.]" denotes three differential counterclockwise rotations around
the axes of the ITRFyy frame to establish parallelism with the ITRFzz frame. The
symbol s, denotes the differential scale change. Let ¢, denote the epoch of the refer-
ence frame, then
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t,=t, +1t(—1)

€ =&, +Et—1t)m (4.1.19)

masr
S, = 8y, + 85t — 1)

where t £ Sy t, ¢, and s are 14. transformation parameters and m =

to° ‘masr
4.84813681 - 1077 is a factor for converting milliarc seconds (mas) to radians. The
time rates of the translations, the rotations, and the differential scale are assumed to
be constant. If we further assume that the coordinate velocities are constant for the

same frame, then

X, IRTFyy = Xi, IRTEyy T (E = 10) V; 1RTFyy (4.1.20)

updates the coordinates from reference epoch f, to epoch ¢. Note that all quanti-
ties in (4.1.18) refer to the same epoch 7. Soler and Marshall (2002) give a more
general form that allows the reference epochs on the left and right to be different,
respectively.

Equation (4.1.20) readily indicates the difficulties inherent in performing accurate
transformation when the coordinates are subject to various changes. For example, the
coordinates and their velocities v can abruptly or gradually change due to coseismic
motions, and they can also nonlinearly change due to postseismic motions over a
time scale from days to decades. Because continuous crustal motion makes station
coordinates a function of time, and because of new observations and refinements in
processing algorithms and modeling, it is desirable to update the reference frames
occasionally. For example, modeling of solar radiation pressure, tropospheric delay,
satellite phase center, and ocean loading are the subject of continuous research and
refinement.

Table 4.1.1 summarizes transformation parameters between the various ITRF ref-
erence systems and the NAD83 (CORS96) system. The latter reference system covers
CONUS, is accessed primarily by the U.S. surveying community, and is also the
datum of the State Plane Coordinate Systems (Section C.4.4). Details on the method-
ology and the execution of the major readjustment resulting in the first realization of
NADS3 are given in Schwarz and Wade (1990). Two things should be pointed out
in this table. The first one is that column 6 is the sum of columns 1 to 5. This is a
result of the linearization of the transformation expressions and of neglecting higher
order terms of small quantities. The second one is to notice that the origin of NADS3
(CORS96) is offset from the center of mass by (0.99, —1.90, —0.53) meters in Carte-
sian coordinates. Typically, Department of Defense’s (DOD’s) publications on the
World Geodetic System 1984 (WGS84) contain a complete listing of transformation
parameters for all known local and national datums.

Continuing with focus on NADS83, the HTDP (horizontal time-dependent posi-
tioning) program, which is available for the National Geodetic Survey and online, is
an example of a geodetic-quality transformation program that takes known motions,
such as rigid plate tectonic motions and a large number of earthquake-related
coseismic and postseismic motions within a certain area of coverage, into account
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TABLE 4.1.1 Example of 14 Parameter Transformation between Frames

From ITRF2008 ITRF2005 ITRF2000 ITRF97 ITRF96 ITRF2008

To ITRF2005  ITRF2000  ITRF97 ITRF96 NAD83  NADS3

1) —0.0029 0.0007 0.0067  —0.00207  0.9910 0.99343
1(t)  —0.0009 —0.0011 0.0061  —0.00021 —1.9072  —1.90331
1.(1y) —0.0047 —0.0004 —0.0185 0.00995  —0.5129  —0.52655
) 0.000 0.000 0.000 0.12467  25.79 25.91467
£,(ty) 0.000 0.000 0.000 —0.22355 9.65 9.42645
£.(t,) 0.000 0.000 0.000 —0.06065  11.66 11.59935
s(ty) 0.94 0.16 1.55 —0.93496  0.00 1.71504
i 0.0003 —0.0002 0.0000 0.00069  0.0000 0.00079
i, 0.0000 0.0001 —0.0006  —0.00010  0.0000  —0.00060
i, 0.0000 —0.0018 —0.0014 0.00186  0.0000  —0.00134
£, 0.000 0.000 0.000 001347  0.0532 0.06667
£ 0.000 0.000 0.000 —0.01514  —0.7423  —0.75744
é 0.000 0.000 —0.020 0.00027  —0.0316  —0.05133
§ 0.00 0.08 0.01 —0.19201 0.00 —0.10201

Source: Pearson and Snay (2013).

aThe units are t[m], [m/yr], €[mas], £[mas/yr], s[ppb], and §[ppb/yr].The epoch is ty = 1997.00.
NADS3 is abbreviation for NAD83(CORS96).

(Pearson and Snay, 2013, HTDP User’s Guide). This program recognizes currently
about 30 different frames. Here are a few examples not listed in Table 4.1.1. The
IGS reprocessed observations from the ITRF2008 network stations but used better
antenna calibration data, calling it IGS08. While the resulting coordinates slightly
differ, the 14 transformation parameters to go from IGS08 to ITFR2008 are zero.
NADS3 (2011) results from processing old and more recent GPS observation using
the latest models for systematic errors, better refraction modeling, and so on. The
processing took place within the IGSO8 frame, and then the result was transformed
to NAD83 (CORS96) using the ITRF2008 to NADS83 (CORS96) parameters
listed in Table 4.1.1. Thus, the transformation between NAD83 (CORS96) and
NADS83 (2011) is the identity function. For areas beyond CONUS, there is NADS83
(PA11), the Pacific tectonic plate frame, and NAD83 (MA11), the Mariana tectonic
plate frame.

HTDP can carry out several important computations for all frames and any epoch,
including:

1. Horizontal crustal velocities. Input: position coordinates and their reference
frame. Output: velocity expressed in the same reference frame.
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2. Crustal displacement. Input: position coordinates and their reference frame, and
times ¢, and t,. Output: displacement during the time ¢, to t,, expressed in the
same frame.

3. Updating of position coordinates. Input: reference frame, coordinates and their
reference epoch ¢, reference epoch t, for which the coordinate values are
requested. Output: coordinates at epoch f,.

4. Transforming coordinates from one reference frame to another. Input: start-
ing reference frame, coordinates and their reference epoch ¢, desired reference
frame and reference time #,. Output: coordinates in desired reference frame at
epoch t,.

5. Transforming velocities from one reference frame to another. Input: velocity
vector and its reference frame, desired reference frame. Output: velocity vector
in desired reference frame.

4.2 INTERNATIONAL CELESTIAL REFERENCE SYSTEM

Historically, the equator, ecliptic, and pole of the rotation of the earth defined the
celestial reference frame. The present-day international celestial reference frame
(ICRF) is defined by the stable positions of extragalactic radio sources observed
by very long baseline interferometry (VLBI), and is maintained by the IERS.
Again, historically, we identify the directions of the instantaneous rotation axis
as the celestial ephemeris pole (CEP) and the normal of the ecliptic as the north
ecliptic pole (NEP). The CEP has recently obtained a companion called the celestial
intermediary pole (CIP), as will be explained below.

The angle between directions of both poles, or the obliquity, is about 23.5°,
which, by virtue of geometry, is also the angle between the instantaneous equator
and the ecliptic. As shown in Figure 4.2.1, the rotation axis can be visualized as
moving on a rippled cone whose axis coincides with the NEP. Mathematically,
the complete motion is split into a smooth long-periodic motion called lunisolar
precession and periodic motions called nutations. Precession and nutation therefore
refer to the motion of the earth’s instantaneous rotation axis in space. A more
differentiated definition in connection with the CIP is provided below. It takes about
26,000 years for the rotation axis to complete one motion around the cone. One
may view the nutations as ripples on the circular cone. The longest nutation has a
period of 18.6 years and also happens to have the largest amplitude of about 20”.
The cause for nutation is the ever-changing gravitational attraction of sun, moon,
earth, and planets. Newton’s law of gravitation states that the gravitational force
between two bodies is proportional to their masses and inversely proportional to the
square of their separation. Because of the orbital motions of the earth and the moon,
the earth-sun and earth-moon distances change continuously and periodically. As a
result, the nutations are periodic in time and reflect the periodic motions of the earth
and moon. There are also small planetary precessions stemming from a motion of
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Figure 4.2.1 Lunisolar precession and nutation. The spatial motion of the CEP is param-
eterized in terms of precession and nutation.

the ecliptic. Nonrigidity effects of the earth on the nutations can be observed with
today’s high-precision measurement systems. A spherical earth with homogeneous
density distribution would neither precess nor nutate.

Because the rotation axis moves in space, the coordinates of stars or extragalac-
tic radio sources change with time due to the motion of the coordinate system. An
international celestial reference frame (ICRF) has been defined for the fundamental
epoch

J2000.0 = January 1, 2000, 12h TT 4.2.1)

The letter “J” in J2000.0 indicates “Julian.” We treat the subject of time in greater
detail below. Let it suffice to simply state that TT represents terrestrial time, which is
realized by the international atomic time (TAI) as

TT = TAI + 32°.184 4.2.2)

We denote the respective coordinate system at this initial epoch J2000.0 by (X). The Z
axis coincides with the pole. The X axis lies in the equatorial plane and points toward
the vernal equinox. In reality, in order to maintain consistency the precise definition
of the first axis takes earlier definitions into consideration that were based on funda-
mental star catalogues. Because the ICRF is defined at a specific epoch J2000.0, the
directions of the axis of X are stable in space per the definition.

Consider two widely separated VLBI antennas on the surface of the earth that are
observing signals from a quasar. Because of the great distance to quasars, their direc-
tion is the same to any observer regardless where the observer is located on the earth’s
surface or where the earth happens to be in its orbit around the sun. VLBI observa-
tions allow one to relate the orientation of the baseline, and therefore the orientation
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of the earth, to the inertial directions to the quasars. Any variation in the earth’s daily
rotation, polar motion, or deficiencies in the adopted mathematical model of nuta-
tions, can be detected. The current ICRF solution includes about 600 extragalactic
radio sources. The details of VLBI are not discussed here but left to the specialized
literature. Let it be mentioned, though, that VLBI and GPS techniques have some
similarities. In fact, the early developments in accurate GPS baseline determination
very much benefited from existing experiences with VLBI.

4.2.1 Transforming Terrestrial and Celestial Frames

GNSS users typically do not get explicitly involved with transformations between
the ITRF and the ICRF described in this section because the satellite ephemeris is
generally provided in an ECEF reference frame such as the ITRF, or is provided in the
form of the broadcast ephemeris message from which satellite positions can readily
be extracted in an ECEF frame. However, those in the field of orbital determination
need to know about the ICRF because the motions of the satellites are described in an
inertial frame and, therefore, need to appropriately apply earth orientation parameters.

Because of increasing measurement accuracy of all major geodetic measurement
systems such as GPS, VLBI, and SLR, more accurate values for several nutation
coefficients have been determined, including nutations with periods shorter than two
days. Furthermore, it was recognized that GAST (Greenwich apparent sidereal time)
does not strictly represent the earth sidereal rotation angle since it depends on the
changing nutation in right ascension. However, it was important that a new measure
for the earth rotation angle be developed that is independent of nutation, in particular
since some of the current nutation coefficients might still be subject to change in the
future, and that therefore a new approach for transforming between ITRF and ICRF
was needed.

The latest algorithm for transforming ITRF to ICRF and vice versa is given in
Petit and Luzum (2010, Chapter 5) and Kaplan (2005). These documents also provide
useful background information, including a listing of the various IAU (International
Astronomical Union) resolutions that laid the framework for the new procedures.
Typically, when using expressions for precession and nutation, the computation load
is high because long trigonometric time series need to be evaluated, care must be
taken to use a sufficient number of terms, and all parameters must be properly identi-
fied and dealt with. The IAU maintains a SOFA (Standards of Fundamental Astron-
omy) service that maintains an authoritative set of algorithms and procedures and
makes respective software available (http://www.iausofa.org). Because any user is
very likely to take advantage of such free and authoritative software, and because all
mathematical expressions are also available in the above references, we only provide
some selected expressions as needed to understand the underlying model concepts.

As a result of implementing the IAU 2000/2006 resolutions, the definition of the
new pole, now called CIP (celestial intermediary pole), excludes nutations with a
period of less than two days (Figure 4.2.2). In view of including only a subset of
nutations, the new pole is called an intermediary pole. The plane perpendicular to the
direction of the thus defined CIP is called the intermediary CIP equatorial plane. On
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Figure 4.2.2 Conventional separation of nutation and polar motion. The units are cycles
per sidereal day.

this equatorial plane/equator, there are two longitude origins, the CIO (celestial inter-
mediary origin) and the TIO (terrestrial intermediary origin). The geocentric angle
between the CIO and the TIO at a given time ¢ is the ERA (earth rotation angle). The
ERA is a rigorous measure of the sidereal rotation of the earth and is not affected by
precession and nutation. The CIO is analogous to the equinox, which is the legacy
reference point for sidereal time, but it is not affected by precession and nutation
either.

For readers who are familiar with the old procedure and terminology, some clar-
ification might be needed. The acronym CIO was used in the past to identify the
conventional international origin of polar motion, which, loosely speaking, is defined
as the mean pole position of the instantaneous rotation axis with respect to the curst
for the period of about 1900 and 1905. Per definition, the z axis (semiminor axis of
the ellipsoid, Section 4.3.2) of the geodetic coordinate systems was aligned to this
direction during most of the past century until it was replaced by the BIH (Bureau
International de 1’Heure) conventional terrestrial pole (CTP) of 1984.0. Today, the
z axis of the ITRF approximates this direction and is defined by the set of adopted
station coordinates and epoch.

Once again, to benefit readers who are familiar with the old methods of trans-
forming between ITRF and ICRF using Greenwich apparent sidereal time (GAST),
the apparent equator, and the equinox, two identical algorithms have been designed.
They are referred to as CIO-based transformation and equinox-based transformation.

The CIO-based coordinate transformation from the I'TRF to the ICRF at time ¢ can
be stated as follows:

X = Q) R(r) W(t)x (4.2.3)
W() = R;(=s")R,(x,)R, (v,) 4.2.4)
R(1) = Ry(—ERA) (4.2.5)

Q(1) = Ry (~E)Ry(~d)R3(E)R;(s) (4.2.6)
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The matrix R; denotes a rotation around axis i (Appendix A). The symbols x,,,y,
denote the polar coordinates of the CIP, i.e., the pole whose definition excludes nuta-
tions with a period smaller than 2 days. The quantity s” represents a small additional
rotation that becomes necessary because of the new definition. As stated above, the
ERA (earth rotation angle) is the angle between CIO and TIO and represents a rigor-
ous measure of the sidereal rotation of the earth. The symbols E and d are functions
of precession and nutation, and s represents another rotation similar to s”. Looking at
(4.2.3) to (4.2.6), we see that the desired separation has taken place: the matrix Q(z)
depends only on precession and nutation, and R(¢) depends only on the rotation of
the earth.

The complete expression or polar motion, i.e., the coordinates of the CIP with
respect to the ITRF z axis, is the sum of three parts (Petit and Luzum, 2010, Chapter 5,
equation 5.11):

(xp’ yp) = (x’ y)IERS + (Ax’ Ay)ocean tides + (Ax’ Ay)librations (427)

The coordinates (x, y);zrg are the ones published and distributed by IERS. The
(AX, AY) peean rides term represents the diurnal and semidiurnal variation of pole coor-
dinates due to ocean tides, and (Ax, AY);ip,arions T€PrEsents the variation of pole coor-
dinates due to those nutations having a period of less than 2 days that are not part of
the TAU 2000 nutation model (and the definition of the CIP). Again, the SOFA ser-
vice provides software to compute the latter two types of pole variations as a function
of time.

The equinox-based transformation can be written as

X =B - P(1) N()R;(GAST) W()x (4.2.8)

Here, the matrix B represents a series of small but constant rotations, P(¢) and N(z)
are the precession and nutation matrices, respectively, and R;(GAST) is a rotation
around the third axis by the GAST angle. Once again, the SOFA service provides
software to compute all transformation matrices as a function of time.

It should be noted that the transformations (4.2.3) and (4.2.8) are identical. If the
respective transformation matrices in each expression were combined into one matrix,
then the elements of the two matrices would be identical. Consistent with these trans-
formations, expression (4.2.7) applies to computing the pole coordinates of the CIP
relative to the ITRF. If X is used to compute right ascension and declination, one
speaks of intermediary right ascension and intermediary declination.

In order to contrast the above new transformation procedures with the old
equinox-based transformation in which all nutation terms were used in the definition
of the ICRF pole, we summarize the latter briefly and provide at the same time
additional insight on some of the parameters used. It starts with (McCarthy, 1996,
p- 21; Mueller, 1969, p. 65)

X = P(t)N(t) R;(—GAST) R(1)x (4.2.9)
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where
R() =R, (y,)R,(x,) (4.2.10)
P(1) = R;(OR,(=0)R;(2) 4.2.11)
N(t) = R,(—€)R;(Ay)R, (€ + A¢) (4.2.12)
with
¢ =2306".2181r + 0".30188# + 0”.017998¢° (4.2.13)
7 =2306" 2181t + 1”.09468¢ + 0”.0182037 (4.2.14)
6 = 2004”3109t — 0" .426657> — 0041833 (4.2.15)
Ay = —17".1996 sin(2) + 0”.2062 sin(22)
—1"3187sin(2F = 2D +2Q) + - - - + dy (4.2.16)
Ae =9".2025 cos(£2) — 0”.0895 cos(202)
+0”.5736 coS(2F —2D +2Q) + - - - + de (4.2.17)
e = 84381".448 — 46" 8150t — 0”.00059#> + 0”.0018137 (4.2.18)

where ¢ is the time since J2000.0, expressed in Julian centuries of 36,525 days. The
arguments of the trigonometric terms in (4.2.16) and (4.2.17) are simple functions
of the fundamental periodic elements [, I, F, D, and £2, resulting in nutation peri-
ods that vary from 18.6 years to about 5 days (recall that this refers to the old set
of nutations). Of particular interest is £2, which appears as a trigonometric argument
in the first term of these equations. The largest nutation, which also has the longest
period (18.6 years), is a function of €2 only, which represents the rotation of the lunar
orbital plane around the ecliptic pole. This old set of nutations contains already more
than 100 entries. The amplitudes of the nutations are based on geophysical models of
the earth. However, because model imperfections became noticeable as the observa-
tion accuracy increased, the so-called celestial pole offsets dy and de were added to
(4.2.16) and (4.2.17). Eventually these newly determined offsets became part of the
IAU nutation model now in use.

The element €2 also describes the 18.6-year tidal period. Since tides and nutations
are caused by the same gravitational attraction, it is actually possible to transform the
mathematical series of nutations into the corresponding series of tides. Therefore, the
solid earth tide expression (4.1.1) could be developed into a series of sine and cosine
terms with arguments being simple functions of the fundamental periodic elements.
The expressions for the fundamental periodic elements are as follows:

| = Mean Anomaly of the Moon

= 134°.96340251 + 1717915923" 2178t + 31”.8792¢* + 0" 0516356 + - - -
(4.2.19)
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' = Mean Anomaly of the Sun

=357°.52910918 + 12596581".04817 — 0/'.5532/*> — 00001367 + - - -
(4.2.20)

F=L-Q

= 93°.27209062 + 1739527262" .8478¢ — 12”7512 — 0001037 + - - -
(4.2.21)

D = Mean Elongation of the Moon from the Sun

= 297°.85019547 + 1602961601”.2090¢ — 6”".3706:2 + 0”".006593¢* + - - -
(4.2.22)

£ = Mean Longitude of the Ascending Node of the Moon

= 125°.04455501 — 6962890” 2665t + 7" 47224 + 000770263 + - - -
(4.2.23)

The symbol L denotes the mean longitude of the moon. In these equations, the time
t is again measured in Julian centuries of 36,525 days since J2000.0,

(TT - 12000.0)
{ = [days] (4.2.24)
36,525

Since the Julian date (JD) of the fundamental epoch is

JD(J2000.0) = 2,451,545.0 TT (4.2.25)
the time ¢ can be computed as
JD + TT},, /24 — 2,451,545.0

t= (4.2.26)

36,525

The Julian date is a convenient counter for mean solar days. Conversion of any Gre-
gorian calendar date (Y = year, M = month, D = day) to JD is accomplished by the
following (van Flandern and Pulkkinen, 1979):

ID=367XY —TX[Y+(M+9)/121/4+275xM/9+D + 1,721,014 (4.2.27)

for Greenwich noon. This expression is valid for dates since March 1900. The expres-
sion is read as a Fortran-type statement; division by integers implies truncation of the
quotients (no decimals are carried). Note that D is an integer.

In order to compute the GAST needed in (4.2.9), we must have universal time
(UT1). The latter time is obtained from the UTC (coordinate universal time) of
the epoch of observation and the UT1-UTC correction. UTC and UT1 will be
discussed below. Suffice to say that the correction UT1-UTC is a by-product of
the observations and is available from IERS publications. GAST can be computed
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in three steps. First, we compute Greenwich mean sidereal time (GMST) at the
epoch O"UT1,

GMST gn i = 6"41™50°.54841 + 8640184°.812866T, + 0°.09310477
-6°.2x 10773 (4.2.28)

where T, = d,/36525 and d,, is the number of days elapsed since January 1, 2000,
12"UT1 (taking on values +0.5, +1.5, etc.). In the second step, we add the difference
in sidereal time that corresponds to UT1 hours of mean time,

GMST = GMST g7y + r[(UT1 — UTC) + UTC] (4.2.29)
r = 1.002737909350795 + 5.9006 x 107117, = 5.9 x 1071572 (4.2.30)

In step three, we apply the nutation to convert the mean sidereal time to apparent
sidereal time,

GAST = GMST + Ay cos e + 0”.00264 sin 2 + 0”.000063 sin 202 (4.2.31)

Equation (4.2.31) clearly shows that GAST is not a rigorous linear measure of the
earth rotation angle. The term Ay cose and the last two terms are nonlinear functions
of time. Obtaining a measure for the earth’s sidereal rotation that does not depend
on the nutations (which might still be subject to improvements in the future), was
therefore a major objective of the new definition of the CIP and the introduction of
the ERA.

The true celestial coordinate system (X), whose third axis coincides with instanta-
neous rotation axis and the X and Y axes span the true celestial equator, follows from

X = R3(=GAST)R, (y,)R,(x,)x (4.2.32)
The intermediary coordinate system (X),
X =R, (y,)R,y(x,)x (4.2.33)

is not completely crust-fixed, because the third axis moves with polar motion. (X) is
sometimes referred to as the instantaneous terrestrial coordinate system.

Using (X), the apparent right ascension and declination are computed from the
expression

a=tan' L (4.2.34)
X

§=tan~'—Z (4.2.35)

VX2 +7Y?

with 0° < a < 360°. Applying (4.2.34) and (4.2.35) to (x) gives the spherical longi-
tude A and latitude ¢, respectively. Whereas the zero right ascension is at the vernal
equinox and zero longitude is at the reference meridian, both increase counterclock-
wise when viewed from the third axis.
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4.2.2 Time Systems

Twenty-four hours of GAST represents the time for two consecutive transits of the
same meridian over the vernal equinox. Unfortunately, these “twenty-four” hours are
not suitable to define a constant time interval because of the nonlinear dependencies
seen in (4.2.31). The vernal equinox reference direction moves along the apparent
celestial equator by the time-varying amount Ay cos €. In addition, the earth’s daily
rotation varies. This rate variation can affect the length of day by about 1 ms, corre-
sponding to a length of 0.45 m on the equator; therefore, a more constant time scale
is needed.

Let us look how one could conceptually compute UT1-UTC and, as such, UT1 if
UTC is known. Assume that a geodetic space technique with a mathematical model
relating the observations £ and parameters

£=f(X, x, GAST, x,. y,) (4.2.36)

Avoiding the details of such solutions, one can readily imagine different types of
solutions, depending on which parameters are unknown and the type of observa-
tions available. For simplicity, let X (space object position) and X (observing station
position) be known, and the observations £ be taken at known UTC epochs. Then,
given sufficient observational strength, it is conceptually possible to solve (4.2.36)
for GAST and polar motion x,,, y,. We could then compute GMST from (4.2.31) and
substitute it into (4.2.29). The latter expression can be solved for the correction

AUT1 = UT1 - UTC (4.2.37)

A brief review on time might be in order. UTC is related to TAI as established
by atomic clocks. Briefly, at the 13th General Conference of Weights and Measures
(CGPM) in Paris in 1967, the definition of the atomic second, also called the inter-
national system (SI) second, was defined as the duration of 9,192,631,770 periods
of the radiation corresponding to the state-energy transition between two hyperfine
levels of the ground state of the cesium-133 atom. This definition made the atomic
second agree with the length of the ephemeris time (ET) second, to the extent that
measurement allowed. ET was the most stable time available around 1960 but is no
longer in use. ET was derived from orbital positions of the earth around the sun. Its
second was defined as a fraction of the year 1900. Because of the complicated gravi-
tational interactions between the earth and the moon, the potential loss of energy due
to tidal frictions, etc., the realization of ET was difficult. Its stability eventually did
not meet the demands of emerging measurement capabilities. It served as an interim
time system. Prior to ET, time was defined in terms of the earth rotation, the so-called
earth rotational time scales such as GMST. The rotational time scales were even less
constant because of the earth’s rotational variations. The rotational time scales and ET
were much less stable than atomic time. It takes a good cesium clock 20 to 30 million
years to gain or lose one second. Today’s modern atomic clocks perform even better.
Under the same environmental conditions, atomic transitions are identical from atom
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to atom and do not change their properties. Clocks based on such transitions should
generate the same time. The interested reader is referred to the literature for current
atomic clock performance and technology.

TALI is based on the SI second; its epoch is such that ET — TAI = 32°.184 on Jan-
uary 1, 1977. Because TAI is an atomic time scale, its epochs are related to state
transitions of atoms and not to the rotation of the earth. Even though atoms are suit-
able to define an extremely constant time scale, it could, in principle, happen that in
the distant future we would have noon, i.e., lunchtime at midnight TAI, just to exag-
gerate the point that an atomic clock is essentially a machine that is not sensitive to
the earth rotation. The hybrid time scale UTC avoids a possible divergence described
above and is highly stable at the same time. This is accomplished by using the SI
second as scale and changing the epoch labeling such that

|AUT1| < 0°.9 (4.2.38)

So, UTC follows UTI1. One-second adjustments are made on either June 30 or
December 31 if a change is warranted. The IERS determines the need for a leap
second and announces any forthcoming step adjustment. Figure 4.2.3 shows the
history of leap second adjustments. There is an ongoing discussion in the scientific
community about possible advantages of discontinuing to make leap second adjust-
ments. UT1-UTC shows annual and semiannual variations, as well as variations due
to zonal tides.

Simple graphics shows that the mean solar day is longer than the sidereal day by
about 24" /365 ~ 4™, The accurate ratio of universal day over sidereal day is given
in (4.2.30). UTC is the civilian time system that is broadcast on TV, on radio, and by
other time services.

35

30 1

25 4

leap seconds

20 A

10 T T T T T T
1972 1977 1982 1987 1992 1997 2002

time [year]

Figure 4.2.3 Leap second adjustments. [Data from IERS (2002)].
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The five corrections (UT1-UTC, polar motion x, and y,, and the celestial pole
offsets dy and de), are called the earth orientation parameters (EOP). The IERS mon-
itors and publishes these values. Modern space techniques allow these parameters to
be determined with centimeter accuracy. Visit the IERS homepage at www.IERS.org
to see ample graphical displays of the EOP parameters as a function of time.

Various laboratories and agencies operate several atomic clocks and produce their
own independent atomic time. For example, the time scale of the U.S. Naval Observa-
tory is called UTC (USNO), and the National Institute of Standards and Technology
(NIST) produces the UTC (NIST) scale. The IERS, which uses input from 200 plus
clocks and 60 plus different laboratories scattered around the world, computes TAI.
UTC and TAI differ only by the integer leap seconds. TAI is not adjusted, but UTC
is adjusted for leap seconds as discussed above.

The GPS satellites follow GPS time (GPST). This time scale is steered to be within
one microsecond (1 psec) of UTC (USNO). The initial epoch of GPST is O"UTC
January 6, 1980. Since that epoch, GPST has not been adjusted to account for leap
seconds. It follows that GPST — TAI = —19%, i.e., equal to the offset of TAI and UTC
at the initial GPST epoch. The GPS control center synchronizes the clocks of the
various space vehicles to GPST.

Finally, the Julian day date (JD) used in (4.2.27) is but a convenient continuous
counter of mean solar days from the beginning of the year 4713 B.c. By tradition, the
Julian day date begins at Greenwich noon 12"UT1. As such, the JD has nothing to
do with the Julian calendar that was created by Julius Caesar. It provided for the leap
year rule that declared a leap year of 366 days if the year’s numerical designation is
divisible by 4. This rule was later supplemented in the Gregorian calendar by speci-
fying that the centuries that are not divisible by 400 are not leap years. Accordingly,
the year 2000 was a leap year but the year 2100 will not be. The Gregorian calendar
reform also included that the day following October 4 (Julian calendar), 1582, was
labeled October 15 (Gregorian calendar). The proceedings of the conference to com-
memorate the 400th anniversary of the Gregorian calendar (Coyne et al., 1983) give
background information on the Gregorian calendar. The astronomic justification for
the leap year rules stems from the fact that the tropical year consists of 3659.24219879
mean solar days. The tropical year equals the time it takes the mean (fictitious) sun
to make two consecutive passages over the mean vernal equinox.

4.3 DATUM

The complete definition of a geodetic datum includes the size and shape of the ellip-
soid, its location and orientation, and its relation to the geoid by means of geoid
undulations and deflection of the vertical. The datum currently used in the United
States is NADS3, which was identified above as not being strictly a geocentric datum
and is being kept that way for practical reasons. In the discussion below we briefly
introduce the geoid and the ellipsoid. A discussion of geoid undulations and deflection
of the vertical follows, with emphasis on how to use these elements to reduce obser-
vations to the ellipsoidal normal and the geodetic horizon. Finally, the 3D geodetic
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model is introduced as a general and unified model that deals with observations in all
three dimensions and is also, mathematically speaking, the simplest of all.

4.3.1 Geoid

The geoid is a fundamental physical reference surface to which all observations refer
if they depend on gravity. Because its shape is a result of the mass distribution inside
the earth, the geoid is not only of interest to the measurement specialist but also to
scientists who study the interior of the earth. Consider two point masses m; and m,,
separated by a distance s. According to Newton’s law of gravitation, they attract each
other with the force
k2m] my
F=——7-—= “4.3.1)
$2

where k? is the universal gravitational constant. The attraction between the point
masses is symmetric and opposite in direction. As a matter of convenience, we con-
sider one mass to be the “attracting” mass and the other to be the “attracted” mass.
Furthermore, we assign to the attracted mass the unit mass (m, = 1) and denote the
attracting mass with m. The force equation then becomes

F=-2 4.3.2)

and we speak about the force between an attracting mass and a unit mass as being
attracted. Introducing an arbitrary coordinate system as seen in Figure 4.3.1, we
decompose the force vector into Cartesian components. Thus,

x=¢
F, cosa 2 s
F=|F,|=-F|cosp =_k_2m o (43.3)
F, cosy § e
S
z A A _F g Py.2)
R
y !
v /B o
Ty
/- S
PENG ¥78

\ 4

Figure 4.3.1 Components of the gravity vector.
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where

s=V@=-2+-m*+(—¢)? 4.34)

The negative sign in the decomposition indicates the convention that the force vector
points from the attracted mass toward the attracting mass. The coordinates (x, y, 2)
identify the location of the attracted mass in the specified coordinate system, and
(&, n, ¢) denotes the location of the attracting mass. The expression

y = km (4.3.5)

is called the potential of gravitation. It is a measure of the amount of work required to
transport the unit mass from its initial position, a distance s from the attracting mass,
to infinity. Integrating the force equation (4.3.2) gives

V:/ Fds:/ k—zmds:—k—m
N s N s

In vector notation, the potential of gravitation V and the gravitational force vector F
are related by

oo 2
_ Km (4.3.6)
S

S

Similar expressions can be written for F, and F’,. Thus, the gradient V' is
_[ovavav]" ,
grad V = [aa—ya—z =[F, F, F] (4.3.8)

From (4.3.5), it is apparent that the gravitational potential is only a function of the
separation of the masses and is independent of any coordinate system used to describe
the position of the attracting mass and the direction of the force vector F. The grav-
itational potential, however, completely characterizes the gravitational force at any
point by means of (4.3.8).

Because the potential is a scalar, the potential at a point is the sum of the individual
potentials,

Km;
v=Yv= S_’" (43.9)

Considering a solid body M rather than individual masses, a volume integral replaces
the discrete summation over the body,

V(x, y, z)=k2///d—m=k2///p—dv (4.3.10)
M S v S

where p denotes a density that varies throughout the body and v denotes the mass
volume.
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When deriving (4.3.10), we assumed that the body was at rest. In the case of the
earth, we must consider the rotation of the earth. Let the vector f denote the centrifugal
force acting on the unit mass. If the angular velocity of the earth’s rotation is w, then
the centrifugal force vector can be written

f=w’p=[w’x oy 0] 4.3.11)

The centrifugal force acts parallel to the equatorial plane and is directed away from
the axis of rotation. The vector p is the distance from the rotation axis. Using the
definition of the potential and having the z axis coincide with the rotation axis, we
obtain the centrifugal potential

D =)o’ (¥ +y°) (4.3.12)

Equation (4.3.12) can be verified by taking the gradient to get (4.3.11). Note again that
the centrifugal potential is a function only of the distance from the rotation axis and
is not affected by a particular coordinate system definition. The potential of gravity
W is the sum of the gravitational and centrifugal potentials

W, v, 2)=V+d= kz///”Tdv + %wz(xz +y?) (4.3.13)

The gravity force vector g is the gradient of the gravity potential

T

gx, y,z)=grad W = [a—W ow a—W] 4.3.14)

Jdx dy 0z

and represents the total force acting at a point as a result of the gravitational and cen-

trifugal forces. The magnitude ||g|| = g is called gravity. It is traditionally measured

in units of gals where 1 gal = 1 cm/ sec 2. The gravity increases as one moves from

the equator to the poles because of the decrease in centrifugal force. Approximate

values for gravity are gqqaor = 978 gal and g, = 983 gal. The units of gravity are

those of acceleration, implying the equivalence of force per unit mass and accel-

eration. Because of this, the gravity vector g is often termed gravity acceleration.

The direction of g at a point and the direction of the plumb line or the vertical
are the same.

Surfaces on which W(x, y, z) is a constant are called equipotential surfaces, or
level surfaces. These surfaces can principally be determined by evaluating (4.3.13)
if the density distribution and angular velocity are known. Of course, the density
distribution of the earth is not precisely known. Physical geodesy deals with theories
that allow estimation of the equipotential surface without explicit knowledge of the
density distribution. The geoid is defined to be a specific equipotential surface having
gravity potential

W, y, =W, (4.3.15)

In practice, this equipotential surface is chosen such that on the average it coincides
with the global ocean surface. This is a purely arbitrary specification chosen for ease
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equipotential

plumb line

Figure 4.3.2 Equipotential surfaces and the gravity force vector.

of physical interpretation. The geoid is per definition an equipotential surface, not
some ideal ocean surface.

There is an important relationship between the direction of the gravity force and
equipotential surfaces, demonstrated by Figure 4.3.2. The total differential of the
gravity potential at a point is

ow ow ow
dW = —dx + —dy + —d.
ox " dy Y 0z ¢

= [grad W] -dx =g - dx (4.3.16)

The quantity dW is the change in potential between two differentially separated points
P(x, vy, ) and P'(x + dx, y + dy, z + dz). If the vector dx is chosen such that P and
P’ occupy the same equipotential surface, then dW = 0 and

g-dx=0 (4.3.17)

Expression (4.3.17) implies that the direction of the gravity force vector at a point is
normal or perpendicular to the equipotential surface passing through the point.

The shapes of equipotential surfaces, which are related to the mass distribution
within the earth through (4.3.13), have no simple analytic expressions. The plumb
lines are normal to the equipotential surfaces and are space curves with finite radii
of curvature and torsion. The distance along a plumb line from the geoid to a point
is called the orthometric height H. The orthometric height is often misidentified as
the “height above sea level.” Possibly, confusion stems from the specification that the
geoid closely approximates the global ocean surface.
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Consider a differential line element dx along the plumb line ||dx|| = dH. By
noting that H is reckoned positive upward and g points downward, we can rewrite
(4.3.16) as

dw =g -dx

= g dH cos(g, dx) = g dH cos(180°) = —g dH (4.3.18)

This expression relates the change in potential to a change in the orthometric height.
This equation is central in the development of the theory of geometric leveling.

Writing (4.3.18) as
aw

=—— 4.3.19
8=""n ( )
it is obvious that the gravity g cannot be constant on the same equipotential surface
because the equipotential surfaces are neither regular nor concentric with respect to
the center of mass of the earth. This is illustrated in Figure 4.3.3, which shows two
differentially separate equipotential surfaces. It is observed that
dw

dw
== == 4.3.20
81 dH, * & aH, ( )

The astronomic latitude, longitude, and azimuth refer to the plumb line at the
observing station. Figure 4.3.4 shows an equipotential surface through a surface point

W +dw

Figure 4.3.3 Gravity on the equipotential surface.

plumb line

instantaneous
rotation axis

instantaneous
equator

equipotential surface
through P

Figure 4.3.4 Astronomic latitude.
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P and the instantaneous rotation axis and equator. The astronomic normal at point
P, also called the local vertical, is identical to the direction of the gravity force at
that point, which in turn is tangent to the plumb line. The astronomic latitude @ at
P is the angle subtended on the instantaneous equator by the astronomic normal.
The astronomic normal and the parallel line to the instantaneous rotation axis span
the astronomic meridian plane at point P. Note that the instantaneous rotation axis
and the astronomic normal may or may not intersect. The astronomic longitude A
is the angle subtended in the instantaneous equatorial plane between this astronomic
meridian and a reference meridian, nominally the Greenwich meridian.

The geopotential number C is simply the algebraic difference between the poten-
tials at the geoid and point P

C=W,-W (4.3.21)
From (4.3.18) it follows that
H
W=Ww,- / gdH (4.3.22)
0
or H
C=W,—-W-= / gdH (4.3.23)
0
or W c
H=_/ aw =/ dc (4.3.24)
w, 8 o &

Equation (4.3.23) shows how combining gravity observations and leveling yields
potential differences. The increment dH is obtained from spirit leveling, and the grav-
ity g is measured along the leveling path. Consider a leveling loop as an example.
Because one returns to the same point when leveling a loop, i.e., one returns to the
same equipotential surface, equation (4.3.23) implies that the integral (or the sum) of
the products g dH adds up to zero. Because g varies along the loop, the sum over the
leveled differences dH does not necessarily add up to zero.

The difference between the orthometric heights and the leveled heights is called
the orthometric correction. Expressions for computing the orthometric correction
from gravity are available in the specialized geodetic literature. An excellent
introduction to height systems is found in Heiskanen and Moritz (1967, Chapter 4).
Guidelines for accurate leveling are available from the NGS (Schomaker and Berry,
1981).

4.3.2 Ellipsoid of Rotation

The ellipsoid of rotation, called here simply the ellipsoid, is a relatively simple mathe-
matical figure that closely approximates the actual geoid. When using an ellipsoid for
geodetic purposes, we need to specify its shape, location, and orientation with respect
to the earth. The size and shape of the ellipsoid are defined by two parameters: the
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semimajor axis a and the flattening f. The flattening is related to the semiminor axis

b by
a—>b
= (4.3.25)
a

Appendix B contains the details of the mathematics of the ellipsoid and common val-
ues for a and b. The orientation and location of the ellipsoid often depend on when and
how it was established. In the presatellite era, the goal often was to establish a local
ellipsoid that best fit the geoid in a well-defined region, i.e., the area of a nation-state.
The third axis, of course, always pointed toward the North Pole and the first axis
in the direction of the Greenwich meridian. Using local ellipsoids as a reference
does have the advantage that some of the reductions (geoid undulation, deflection
of the vertical) can possibly be neglected, which is an important consideration when
the geoid is not accurately known. With today’s advanced geodetic satellite tech-
niques, in particular GPS, and accurate knowledge of the geoid, one prefers so-called
global ellipsoids that fit the geoid globally (whose center of figure is at the center of
mass, and whose axes coincide with the ITRF). The relationship between the Carte-
sian coordinates (x) = (x, y, z) and the geodetic coordinates (@) = (@, 4, h)is given
according to (B.1.9 to B.1.11),

x=(N+h)cos@cos A (4.3.26)
y= (N +h)cos @sin A 4.3.27)
z=[N(1—¢e*) + h]sing (4.3.28)

where the auxiliary quantities N and e are
a

N=— 4 (4.3.29)
1 —e2sin2g

> =2f — f? (4.3.30)

The transformation from (x) to (¢) is given in Appendix B. It is typically performed
iteratively.

4.3.3 Geoid Undulations and Deflections of the Vertical

One approach to estimate the geoid undulation is by measuring gravity or gravity
gradients at the surface of the earth. At least in principle, any observable that is a func-
tion of the gravity field can contribute to the determination of the geoid. Low-earth
orbiting satellites have successfully been used to determine the large structure of the
geoid. Satellite-to-satellite tracking is being used to determine the temporal variations
of the gravity field, and thus the geoid. The reader may want to check gravity mod-
els derived from the Gravity Recovery and Climate Experiment (GRACE) mission
which was launched in early 2002. Recent earth gravity solutions show high res-
olution of geoid features because more observations have become available and the
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observations have a better global coverage to allow estimation of higher degree spher-
ical harmonic coefficients. Pavlis et al. (2012) discuss one of the latest earth gravity
models, the EGM2008, which uses a spherical harmonic expansion up to degree and
order 2219 to represent the gravity field.

Actually, the gravity field or functions of the gravity field are typically expressed
in terms of a spherical harmonic expansion. For example, the geoid undulation N
could be expressed in the form (Lemoine et al., 1998, pp. 5—-11),

(s
_ oM
rr n=2

N (C_l ) Z (C,,, cosmi+S, sinmA)P, (cos8) (4.331)
r m=0

In this equation, the following notations are used:

N Geoid undulation. There should not be cause for confusion using the
same symbol for the geoid undulation (4.3.31) and the radius of
curvature of the prime vertical (4.3.29); both notations are traditional
in the geodetic literature.

@, A Latitude and longitude of station; 8 = 90 — ¢ is the colatitude.

Com» Sm Normalized spherical harmonic coefficients (geopotential coefficients),
of degree n and order m.

P, Associated Legendre functions.

r Geocentric distance of the station.

GM Product of the gravitational constant and the mass of the earth. GM is
identical to k>M used elsewhere in this book. Unfortunately, the
symbolism is not unique in the literature. We retain the symbols
typically used within the respective context.

y Normal gravity. Details are given below.

a Semimajor axis of the ellipsoid.

Figure 4.3.5 shows a map of a global geoid. Although this map is dated, it still repre-
sents the global features of the geoid accurately. The geoid undulation and deflections
of the vertical are related by differentiation, such as (Heiskanen and Moritz, 1967,
p. 112)

10N
=1 4.3.32
S= a0 (43:32)
1 oN

S o 4.3.33
1 rsinf oA ( )

Differentiating (4.3.31) gives

GM < (a\" O = - . dP,,,(cos 0)
£= —FZ<;) Z(C,,m cos A +5,,, sinmA) —o— (4.3.34)
n=2 m=0
o0 n
GM a\" = . = —

=g é(;) Y m(~C,,, sinmi +S5,, cosmAP,,(cosf)  (4.3.35)

m=0
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Figure 4.3.5 Geoid undulations of the EGM96 gravity field model computed relative to the GRS80 ellipsoid. The units are in meters [Courtesy
German Geodetic Research Institute (DGFI), Munich].
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Geoid undulations computed from expressions like (4.3.31) refer to a geocentric ellip-
soid with semimajor axis a. In order to obtain the geoid undulations and deflection
of the vertical for a nongeocentric ellipsoid, say the NAD83 datum, additional trans-
formations are needed (Soler et al., 2014). Typically, free software is available to
compute geoid undulations and deflection of the vertical for a specific datum.

The ellipsoid of rotation provides a simple and adequate model for the geometric
shape of the earth. It is the reference for geometric computations in two and three
dimensions, as discussed in the next sections. Assigning a gravitational field to the
ellipsoid that approximates the actual gravitational field of the earth extends the func-
tionality of the ellipsoid.

Merely a few specifications are needed to fix the gravity and gravitational potential
for an ellipsoid, then called a normal ellipsoid. We need to assign an appropriate mass
for the ellipsoid and assume that the ellipsoid rotates with the earth. Furthermore,
by means of mathematical conditions, the surface of the ellipsoid is defined to be an
equipotential surface of its own gravity field. Therefore, the plumb lines of this gravity
field intersect the ellipsoid perpendicularly. Because of this property, this gravity field
is called the normal gravity field, and the ellipsoid itself is sometimes also referred
to as the level ellipsoid.

It can be shown that the normal gravity potential U is completely specified by four
defining constants, which are symbolically expressed by

U=f(a, J,, GM, w) (4.3.36)

In addition to a and GM, which have already been introduced above, we need the
dynamical form factor J, and the angular velocity of the earth . The dynamic form
factor is a function of the principal moments of inertia of the earth (polar and equa-
torial moment of inertia) and is functionally related to the flattening of the ellipsoid.
One important definition of the four constants in (4.3.36) comprises the Geodetic
Reference System of 1980 (GRS80). The defining constants are listed in Table 4.3.1.
A full documentation of this reference system is available in Moritz (1984).

The normal gravitational potential does not depend on the longitude and is given
by a series of zonal spherical harmonics:

r

y = GM l1 - i Jz,,(g)znpz,,(cos 0)] 4.3.37)
n=1

TABLE 4.3.1 Constants for GRS80

Defining Constants Derived Constants
a=6378137m b =6356752.3141 m
GM = 3986005 x 10° m?/s? 1/f = 298.257222101
J, =108263x 107* m = 0.00344978600308

®=7292115x 107" rad/s 7, = 9.7803267715 m/s?
v, = 9.8321863685 m/s>
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Note that the subscript 2n is to be read “2 times n.” P,, denotes Legendre polyno-
mials. The coefficients J,, are a function of J, that can be readily computed. Several
useful expressions can be derived from (4.3.37). For example, the normal gravity,
defined as the magnitude of the gradient of the normal gravity field (normal gravita-
tional potential plus centrifugal potential), is given by Somigliana’s closed formula
(Heiskanen and Moritz, 1967, p. 70),

ay, cos > + by, sin*@

y (4.3.38)

Va? cos2@ + b2 sin 2@

The normal gravity at height & above the ellipsoid is given by (Heiskanen and Moritz,
1967, p. 79)

2 3
;/h—yz—ﬁ [1 +f+m+<—3f+§m)sin2 qo]h+ﬁ
a 2 a?

h* (4.3.39)
Equations (4.3.38) and (4.3.39) are often useful approximations of the actual gravity.

The value for the auxiliary quantity m in (4.3.39) is given in Table 4.3.1. The normal
gravity values for the poles and the equator, y, and y, are also listed in that table.

4.3.4 Reductions to the Ellipsoid

The primary purpose of this section is to introduce the deflection of the deflection
corrections (reduction) and the relation between orthometric and ellipsoidal heights
and geoid undulations. The objective is to apply these corrections to convert observed
terrestrial angles (azimuths) to angles (azimuths) between normal planes of the ellip-
soid, which can then serve as model observations in the three-dimensional geode-
tic model discussed below. Although precise astronomical latitude, longitude, and
azimuth observations are generally no longer a part of the surveyor’s tools because
of the wide use of GNSS applications, for the sake of completeness some very brief
remarks about these “old” techniques are in order.

We already stressed in connection with Figure 4.3.4 that the astronomical latitude
refers to the tangent of the instantaneous plumb line and the direction of the instan-
taneous rotation axis, i.e., the CEP or CIP. By the way, the distinction between the
latter two poles is not necessary when it comes to astronomical position determination
because of the lack of accuracy of the observation technique. Nevertheless, at least
for what used to be called first-order astronomic position determination, the polar
motion correction should be considered. The respective correction can certainly be
found in old textbooks, e.g., Mueller (1969, p. 87). Applying spherical trigonometry
we obtain

Dcrp =D +y,sin A —x, cos A
Actp = @ — (y,c0s A + x, sin A) tan @ (4.3.40)
Actp =A — (y,c08 A + x,sin A)/ cos D
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The observed latitude, longitude, and azimuth are (@, A, A), and the polar motion
coordinates are (x,, y,). The reduced astronomic quantities (Pcrp, Acrp, Acrp) are
those values which one would have observed if the instantaneous pole CEP (CIP) had
coincided with the CTP (ITRF) at the instant of observations.

Now we consider the condition that the semiminor axis of the ellipsoid and the
direction of the CTP should be parallel. This condition will show a relationship
between the reduced astronomic quantities (Dcrp, Actp, Actp) and the correspond-
ing ellipsoidal or geodetic quantities (¢, 4, @), and as such the reductions we are
looking for. The geometric relationships are shown in Figures 4.3.6 and 4.3.7. Both
figures are not drawn to scale in order to show small angles. The bottom part of
Figure 4.3.6 shows the ellipsoid and the ellipsoidal normal passing through a surface
point P; and intersecting a unit sphere centered at P; at point Z,. The line labeled
“equipotential surface” through P, should indeed indicate the equipotential surface
at Py; the line P; — Z, is normal to the equipotential surface. The points Z, Z,, CTP,

astronomic

ellipsoidal  normal
surface
normal

equipotential
surface
through P;

terrestrial equator

! CTP

Figure 4.3.6 Astronomic and ellipsoidal normal on a topocentric sphere of direction.
The astronomic normal is perpendicular to the equipotential surface at P,. The ellipsoidal nor-
mal passes through P,.
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Figure 4.3.7 Deflection of the vertical components.

and T are located on the unit sphere. The line P; — CTP is parallel to the semiminor
axis of the ellipsoid. The symbols have the following meaning:

Z, Astronomic zenith (sensed by instruments)

CTP Position of the conventional terrestrial pole (z axis of ITRF)
Z, Ellipsoidal zenith

T Target point (intersection P, — P, with sphere)

9 Observed zenith angle

Dcrp, Actp  Reduced astronomic latitude and longitude

Actp Reduced astronomic azimuth of 7" and surface point P,

@, A Ellipsoidal (geodetic) latitude and longitude

a Ellipsoidal (geodetic) azimuth of 7" and surface point P,

9 Ellipsoidal (geodetic) zenith angle

0 Total deflection of the vertical (not colatitude, same symbol)
£ Deflection of the vertical in the direction of azimuth

E n Deflection of the vertical components along the meridian and the

prime vertical

The azimuths Aqrp and « are angles between normal planes defined by the astronomic
and ellipsoidal normal at P, respectively. The intersections of these planes with the
unit sphere are great circles. By applying spherical trigonometry to the various trian-
gles in Figure 4.3.7, we eventually derive the following relations:

Acrp —a = (Actp — A)sing + ({sina — ncos a) cotd 4.3.41)
E=Dep— o 4.3.42)
n=(Actp — A cos@ (4.3.43)

9=9 +¢&cosa+nsina (4.3.44)
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These are indeed classical equations whose derivations can be found in most of the
geodetic literature, e.g., Heiskanen and Moritz (1967, p. 186). They are also given in
Leick (2002). Equation (4.3.41) is called the Laplace equation. It relates the reduced
astronomic azimuth and the geodetic azimuths of the target point. The deflection of
the vertical, or total deflection of the vertical, is the angle between the directions of
the plumb line and the ellipsoidal normal at the same point, i.e., the angle Z, — Z,.
Equations (4.3.42) and (4.3.43) define the deflection of the vertical components. By
convention, the deflection of the vertical is decomposed into two components, one
along the meridian and one along the prime vertical (orthogonal to the meridian).
The deflection components depend directly on the shape of the geoid in the region.
Because the deflections of the vertical are merely another manifestation of the irreg-
ularity of the gravity field, they are mathematically related to the geoid undulation.
See equations (4.3.34) and (4.3.35). Equation (4.3.44) relates the ellipsoidal and the
observed zenith angle (refraction not considered).

Several observations are made. First, equations (4.3.41) to (4.3.43) relate reduced
astronomic latitude, longitude, and azimuth to the respective ellipsoidal latitude, lon-
gitude, and azimuth by means of the deflection of the vertical. Second, the reduction
of a horizontal angle due to deflection of the vertical equals the difference of (4.3.41)
as applied to both intersecting line segments of the angle. If the zenith angles to
the target points are close to 90°, then the corrections are small and can possibly
be neglected. This is the reason why deflection of the vertical corrections to angles
in surveying can generally be ignored. Third, historically, equation (4.3.41) was used
as a condition between the reduced astronomic azimuth and the computed geodetic
azimuth to control systematic errors in a network. This can be better accomplished
now with GPS. Fourth, if surveyors were to compare the orientation of a GPS vector
with the astronomic azimuth derived from solar or Polaris observations, they must
expect a discrepancy indicated by (4.3.41). Fifth, if a surveyor were to stake out in
the field an azimuth computed from coordinates, the Laplace correction would have
to be considered. Sixth, finally, the last term in the Laplace equation (4.3.41) can
usually be dropped because of zenith angles close to 90°.

Equations (4.3.42) and (4.3.43) also show how to specify a local ellipsoid that
is tangent to the geoid at some centrally located station called the initial point, and
whose semiminor axis is still parallel to the CTP. If we specify that at the initial point
the reduced astronomic latitude, longitude, and azimuth equal the ellipsoidal latitude,
longitude, and azimuth, respectively, then we ensure parallelism of the semimajor axis
and the direction of the CTP; the geoid normal and the ellipsoidal normal coincide
at that initial point. If, in addition, we set the undulation to zero, then the ellipsoid
touches the geoid tangentially at the initial point. Thus the local ellipsoid will have
at the initial point

A= Acpp (4.3.46)

N=0 (4.3.48)
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Figure 4.3.8 Geoid undulation, orthometric, and ellipsoidal heights.

ellipsoid

Another important quantity linking the ellipsoid and the geoids is the geoid undu-
lation. The relationship between the ellipsoidal height 4, the orthometric height H,
and the geoid undulation N, is

h=H+N (4.3.49)

where N is the geoid undulation with respect to the specific ellipsoid. As shown in
Figure 4.3.8 the geoid undulation refers to a datum having a well-defined location,
orientation, and size of its reference ellipsoid. Once again, the geoid undulation N is
computable from expressions like (4.3.31) and is entirely different in meaning from
the radius of curvature (4.3.29), so that the traditional use of N for both quantities
does not cause confusion.

In regards to quality control of observations, the local ellipsoid can serve as a
convenient computation reference in 3-dimensional geodetic adjustments (see next
section) in case of small networks, such as local and regional surveys. In these cases,
it is not at all necessary to determine the size and shape of a best-fitting local ellipsoid.
It is sufficient to adopt the size and shape of any of the current geocentric ellipsoids.
Because the deflections of the vertical will be small in the region around the initial
point, they can be neglected. Any of the network stations can serve as an initial point
and its coordinates do not even have to be accurately known. Similar considerations
are valued in regards to the geoid undulations, which are also small because the local
ellipsoid is tangent to the geoid at the initial point. For the quality control purpose
of observations, the azimuth in (4.3.47) can be freely chosen in such cases, which is
yet another convenience. Therefore, the 3D geodetic model is attractive for a quick
quality control minimal constraint adjustment to see if the set of observations are
consistent, i.e., free of blunders.

4.4 3D GEODETIC MODEL

Once the angular observations have been corrected for the deflection of the vertical, it
is a simple matter to develop the mathematics for the 3D geodetic model. The reduced
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observations, i.e., the observables of the 3D geodetic model, are the geodetic azimuth
a, the geodetic horizontal angle 6, the geodetic vertical angle f (or the geodetic zenith
angle 9), and the slant distance s. Geometrically speaking, these observables refer to
the geodetic horizon and the ellipsoidal normal. The reduced horizontal angle is an
angle between two normal planes, defined by the target points and the ellipsoidal
normal at the observing station. The geodetic vertical angle is the angle between the
geodetic horizon and the line of sight to the target.

We assume that the vertical angle has been corrected for atmospheric refraction.
The model can be readily extended to include refraction parameters if needed. Thanks
to the availability of GNSS systems, we no longer depend on vertical angle observa-
tions to support the vertical dimension. The primary purpose of vertical angles in most
cases is to support the vertical dimension when adjusting slant distances (because
slant distances contribute primarily horizontal information, at least in flat terrain).

Figure 4.4.1 shows the local geodetic coordinate system (w) = (n, e, u), which
plays a central role in the development of the mathematical model. The axes n and e
span the local geodetic horizon (plane perpendicular to the ellipsoidal normal through
the point P, on the surface of the earth). The n axis points north, the e axis points east,
and the u axis coincides with the ellipsoidal normal (with the positive end outward
of the ellipsoid). The spatial orientation of the local geodetic coordinate system is
completely specified by the geodetic latitude ¢ and the geodetic longitude 4. Recall
that the z axis coincides with the direction of the CTP.

Figure 4.4.2 shows the geodetic azimuth and vertical angle (or zenith angle)
between points P; and P, in relation to the local geodetic coordinate system. One
should keep in mind that the symbol # still denotes the geodetic height of a point
above the ellipsoid, whereas the u coordinate refers to the height of the second
station P, above the local geodetic horizon of P,. It follows that

n = scos ficosa “4.4.1)
e =scosfsina 4.4.2)
u=ssinf 4.4.3)
z A
n u
‘\ ”
tangent 7€
P1(qp,\h)
9 >y

Figure 4.4.1 The local geodetic coordinate
system.
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The inverses of (4.4.1) to (4.4.3) are
= tan ! (5) (4.4.4)
n
p=90"-9=sin"' (%) (4.4.5)
s

s=Vn2+e?+u? (4.4.6)

The relationship between the local geodetic coordinate system and the geocentric
Cartesian system (x) is illustrated in Figure 4.4.1:

n Ax
—e|=R, (p—90°) R; (A— 180°)| Ay 4.4.7)
u Az

where R, and R; denote the rotation matrices given in Appendix A, and

Ax Xy — X
AX=|Ay|=|y—2 (4.4.8)
Az =7

Subscripts will be used when needed to clarify the use of symbols. For example,
the differencing operation A in (4.4.7) implies Ax = Ax;, = x, — x;. The same con-
vention is followed for other differences. A more complete notation for the local
geodetic coordinates is (1, e, u,) instead of (n, e, u), to emphasize that these com-
ponents refer to the geodetic horizon at P;. Similarly, a more unambiguous notation is
(a1, P1as 91,) instead of just (a, f, 9) or even (a;, f;, 9,), to emphasize that these
observables are taken at station P; to P,. For the slant distance, the subscripts do not
matter because s = 5| = 51, = 5y;.

Changing the sign of e in (4.4.7) and combining the rotation matrices R, and R;
one obtains

w = R(p, 1)AX (4.4.9)

with
—singpcosA —singsiniA cos @
R = —sin A cos A 0 4.4.10)
COS @ COoS A cos@sinA  sing
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Substituting (4.4.9) and (4.4.10) into (4.4.4) to (4.4.6) gives expressions for the
geodetic observables as functions of the geocentric Cartesian coordinate differences
and the geodetic position of P;:

B _1< —sind; Ax+cosi; Ay
a = tan

- - - (4.4.11)
—sing;cosA; Ax—sing;sini; Ay+cos@; Az

Ccos @, cos A; Ax + cos @, sin A, Ay + sin A
5, =sin-‘< 184 GromAasyT I Z) 4.4.12)

VAXZ + Ay? + AZ?
s = VAx2+ Ay? + AZ? (4.4.13)

Equations (4.4.11) to (4.4.13) are the backbone of the 3D geodetic model. Other
observations such as horizontal angles, heights, and height differences—even GPS
vectors—can be readily implemented. Equation (4.4.12) assumes that the vertical
angle has been corrected for refraction. One should take note of how little mathemat-
ics is required to derive these equations. Differential geometry is not required, and
neither is the geodesic line.

4.4.1 Partial Derivatives

Because (4.4.11) to (4.4.13) expressed the geodetic observables explicitly as a func-
tion of the coordinates, the observation equation adjustment model £, = f(x,,) can be
readily used. The 3D nonlinear model has the general form

ay = alxy, Y1, 21> X35 Y25 22) (4.4.14)
B = Bxy, yis 215 X3, Y2, 20) (4.4.15)
s = S(.xl, yl’ Zl’ )C2, yz, Zz) (4416)

The observables and parameters are {a;, f;, s} and {x|, ¥|, 2, X5, Yo, 25}, respec-
tively. To find the elements of the design matrix, we require the partial derivatives
with respect to the parameters. The general form is

]
dy,
da; g1 812 813 gia &5 &ie||dz dx,
dpy|=181 8n 83 : 8u 85 &eol||l |=I[G G| (44.17)
ds 831 8xn &33 84 835 &3 |92 dx,
dy,
_de_

withdx; = [dx; dy; dz;]". The partial derivatives are listed in Table 4.4.1. This par-
ticular form of the partial derivatives follows from Wolf (1963), after some additional
algebraic manipulations.
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TABLE 4.4.1 Partial Derivatives with Respect to Cartesian Coordinates

oa, —sin@, cos A, sina; +sin 4, cos o, @)
= —-—= - = a
8u ox, 814 5008 f,
oa, —sin g, sin 4, sina; — cos A, cos @,
81 = 6_ =815 = (b)
vy scos f
oa, cos @, sina;
e ©
1 1
_ 0B —s5C0s@ cos A +sinf Ax @
= ox, 824 = s2cos B,
_ 9B —scosgsind +sinf Ax ©
82 dy, 825 s2cos f,
_0B _ _ —ssing +sinf Az "
83 0z, 826 5% cos f,
_ 0s _ _ —Ax
81 = 50 T 8T @
1
ads —Ay
83 = W =835 = e (h)
I
ds -Az .
833 = 9z, = =836 = T 1)
1

4.4.2 Reparameterization

Often the geodetic latitude, longitude, and height are preferred as parameters instead
of the Cartesian components of (x). One reason for such a reparameterization is
that humans can visualize changes more readily in latitude, longitude, and height
than changes in geocentric coordinates. The required transformation is given
by (B.1.16).

— (M +h)cosising —(N+h)cos@psind cosq@cosi||dp
dx=|—-(M+h)sinAsingp (N+h)cospcosd cosgsini||dA
(M + h)cos @ 0 sin ¢ dh

de
=J|di (4.4.18)
dh

The expressions for the radius of curvatures M and N are given in (B.1.7) and
(B.1.6). The matrix J must be evaluated for the geodetic latitude and longitude of
the point under consideration; thus, J;(¢;, 4;, h;) and J,(@,, 4,, h,) denote the
transformation matrices for points P; and P,, respectively. Substituting (4.4.18) into
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(4.4.17), we obtain the parameterization in terms of geodetic latitude, longitude,
and height:

do,

di,
da, dh,
dp|=[GJ; : G| --- (4.4.19)
ds deg,

diy

| dh, |

To achieve a parameterization that is even easier to interpret, we transform the
differential changes in geodetic latitude and longitude parameters (d¢, dA) into cor-
responding changes (dn, de) in the local geodetic horizon. Keeping the geometric
interpretation of the radii of curvatures M and N as detailed in Appendix B, one can
further deduce that

M+h 0 0flde do
dw=| 0 (N+h)cosp O||dr|=H(p, h)|di (4.4.20)
0 0 1| dh dh

The components dw = [dn de du]” intuitively are related to the “horizontal” and
“vertical,” and because their units are length, the standard deviations of the parame-
ters can be readily visualized. The matrix H is evaluated for the station under consid-
eration. The final parameterization becomes

da; dw,
dp, |=A| --- (4.4.21)
ds dw,
with
app dp ap iy dis dye
A= [G]J]Hl_1 : GQJQHEI] =|ay ay ay 1 ay ay axy| (4.4.22)
dz) dzp  dzz Q34 d3s  dzg

The partial derivatives are listed in Table 4.4.2 (Wolf, 1963; Heiskanen and Moritz,
1967; Vincenty, 1979). Some of the partial derivatives have been expressed in terms
of the back azimuth a, = a,; and the back vertical angle f, = f,;, meaning azimuth
and vertical angle from station 2 to station 1. Early work on the 3D geodetic model
is found in Bruns (1878).

4.4.3 Implementation Considerations

The 3D geodetic model is easy to derive since only partial differentiation is required; it
is also easy to implement in software. Normally, the observations will be uncorrelated
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TABLE 4.4.2 Partial Derivatives with Respect to Local Geodetic Coordinates

oa, sin a, @ oa, cos )
= — = a = —_— = =
“n on;  scospf, 12 de, scos f
Jda
a;; = a—ul =0 (C)
1
o, sina, ) .
ay, = 0_r12 = " oos 5 [cos(@, — @,) + sin @, sin(4, — 4;) cote,] (d)
da, cosa, [cos(is — 4) — si (L — At 1
=—= cos(4, — 4,) — sin @, sin(4, — an
4 de,  5COS P 2 ! “ S % @
da;,  COSQ; COS@, . .
ae = 0_u2 = W[sm(&z — A)) + (sin @, cos(4, — 4,) — cos @, tan @,) tan | 6
d0f, sinf, cosa, d0f, sinf,sina,
= =" — = = — h
a1 on, s ® o2 oe, s ®
o O _cosh o
7 ou, s
o = 9h, _ TCose sin ¢, cos(4, — ;) + sin @, sin @, + sin §, cos f, cos a, )
7 on, scos f @
an = 9h, _ Zcose sin(4, — 4,) + sin f, cos §, sina, .
7 e, scos f (k)
0 = 9Ih, _ sin f, sin f, + sin ¢, sin @, + cos @, cos @, cos(4, — 4,) |
%7 Ju, scos f M
ds ds
ay = a_nl = —cos f, cos a, (m) as, = d_e, = —cos f§, cos @, (n)
ds . ds
azy = o, = —sinf, (0) Gy, = pr = —cos f}, cos , )
0s . ds .
Qs = 0_e2 = —cos f,sina, (@ Q3o = 0_142 = —sinp, (r)

and their contribution to the normal equations can be added one by one. The following
are some useful things to keep in mind when using this model:

e Point of Expansion: As in any nonlinear adjustment, the partial derivatives
must be evaluated at the current point of expansion (adjusted positions of the
previous iteration). This applies to coordinates, azimuths, and angles used to
express the mathematical functions of the partial derivatives.

e Reduction to the Mark: An advantage of the 3D geodetic model is that the
observations do not have to be reduced to the marks on the ground. When
computing £, from (4.4.11) to (4.4.13), use h + Ah instead of & for the station
heights. The symbol Ah denotes the height of the instrument or that of the
target above the mark on the ground. ¢, always denotes the measured value,
i.e., the geodetic observable that is not further reduced. After completion of
the adjustment, the adjusted observations £,, with respect to the marks on
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the ground, can be computed from the adjusted positions using % in (4.4.11)
to (4.4.13).

Minimal Constraints: The (@) or (w) parameterizations are particularly
useful for introducing height observations, height difference observations, or
minimal constraints by fixing or weighting individual coordinates. The set of
minimal constraints depends on the type of observations available within the
network. One choice for the minimal constraints might be to fix the coordinates
(@, A, h) of one station (translation), and the azimuth or the longitude or
latitude of another station (rotation in azimuth). One always must make sure
that the vertical component of the 3D network is determined by objections
observations or, e.g., by height constraints.

Transforming Postadjustment Results: If the adjustment happens to have
been carried out with the (x) parameterization, and it is, subsequently, deemed
necessary to transform the result into (¢) or (w) coordinates, then the transfor-
mations (4.4.18) and (4.4.20) can be used, for example:

dw =R dx (4.4.23)
where
R=H J' (4.4.24)

according to (4.4.10), (4.4.18), and (4.4.20). The law of variance-covariance
propagation provides the 3 X 3 covariance submatrices,

Zw=R Z,R" (4.4.25)
Zioam= J_lz(x) W H! (4.4.26)

Leveled Height Differences: If geoid undulation differences are available,
the leveled height differences can be corrected for the undulation differences
to yield ellipsoidal height differences. The respective elements of the design
matrix are 1 and —1. The accuracy of incorporating leveling data in this manner
is limited by our ability to compute accurate undulation differences.

Refraction: If vertical angles are observed for the purpose of providing an
accurate vertical dimension, it may be necessary to estimate vertical refraction
parameters. If this is done, we must be careful to avoid overparameterization by
introducing too many refraction parameters that could potentially absorb other
systematic effects not caused by refraction and/or result in an ill-conditioned
solution. However, it may be sufficient to correct the observations for refraction
using a standard model for the atmosphere.

In view of GPS capability, the importance of high-precision vertical angle
measurement is diminishing. The primary purpose of vertical angles is to give
sufficient height information to process the slant distances. Therefore, the types
of observations most likely to be used by the modern surveyors are horizontal
angles, slant distances, and GPS vectors.
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e Horizontal Angles: Horizontal angles, of course, are simply the difference of
two azimuths. Using the 2-1-3 subscript notation to identify an angle measured
at station 1 from station 2 to station 3, in a clockwise sense the mathematical
model for the geodetic angle 6,5 is

1 —sinA; Axp, +cosi; Ay,
5213 = tan T T T
—sing;cos A; Ax;, —sing;sinA; Ay, +cos@; Az,
o —sinA; Ax;;+cosi; Aypz
—sing;cos4; Ax;; —sing;sind; Ay;3+cos@; Az
(4.4.27)

The partial derivatives can be readily obtained from the coefficients a,; listed
in Table 4.4.2 by applying them to both line segments of the angles and then
subtracting.

e Height-Controlled 3D Adjustment: If the observations contain little or no ver-
tical information, i.e., if zenith angles and leveling data are not available, it is
still possible to adjust the network in three dimensions. The height parameters
h can be weighted using reasonable estimates for their a priori variances. This
is the so-called height-controlled three-dimensional adjustment.

A priori weights can also be assigned to the geodetic latitude and longitude or to the
local geodetic coordinates n and e. Weighting of parameters is a convenient method
for incorporating existing information about control stations into the adjustment.

4.4.4 GPS Vector Networks

Two receivers observing GNSS satellites provide the accurate vector between the sta-
tions, expressed in the reference frame of the ephemeris. One can, of course, assume
known coordinates for one station and simply add the vector to get the coordinates
of the other stations. The drawback of this simplified approach is that there is abso-
lutely no quality control. As surveyors would certainly agree, it is easy to mistakenly
set up the instrument over the wrong point; occasionally, a station is marked on the
ground by several flags, and each of them might have a distinct but different mean-
ing. Also, the GNSS might have provided an undetected biased solution by fixing
the wrong integer ambiguity due to poor satellite visibility condition and too short
of a station occupation time. Although processing software has become reliable to
flag such biased solutions, problems can occasionally go undetected. Therefore, it is
good practice to explore the redundancy of network observations to carry out objec-
tive quality control on GNSS vectors, as is done for terrestrial observations such as
angles and distances.

The carrier phase processing for two receivers gives not only the vector between
the stations but also the 3 X 3 covariance matrix of the coordinate differences. The
covariance matrix of all vector observations is block-diagonal, with 3 X 3 submatrices
along the diagonal. In the case of session solutions where R receivers observe the same
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satellites simultaneously, the results are (R — 1) independent vectors, and a3(R — 1) X
3(R — 1) covariance matrix. The covariance matrix is still block-diagonal, but the size
of the nonzero diagonal matrices is a function of R.

As mentioned above, a GNSS survey that has determined the relative locations of
a cluster of stations should be subjected to a minimal or inner constraint adjustment
for purposes of quality control. The network should not contain unconnected vectors
whose endpoints are not tied to other parts of the network. At the network level, the
quality of the derived vector observations can be assessed, the geometric strength
of the overall network can be analyzed, internal and external reliability can be com-
puted, and blunders may be discoverable and removable. For example, a blunder in
an antenna height will not be discovered when processing a single baseline, but it
will be noticeable in the network solution if stations are reoccupied independently.
Covariance propagation for computing distances, angles, or other functions of the
coordinates should be done, as usual, with the minimal or inner constraint solution.

The mathematical model is the standard observation equation model,

2, =fx,) (4.4.28)

where £, contains the adjusted observations and x,, denotes the adjusted station coor-
dinates. The mathematical model is linear if the parameterization of receiver positions
is in terms of Cartesian coordinates. In this case, the vector observation between sta-
tions k and m is modeled simply as

Axy, X — X,
Ay | = e = Vi (4.4.29)
AZkm Ik~ Zm

The relevant portion of the design matrix A for the model (4.4.29) is

X Yo Xm Ym Zm

100 -1 0 0
A,=|0 10 0 -1 0 (4.4.30)
001 0 0 -1

The design matrix looks like one for a leveling network. The coefficients are either
1, —1, or 0. Each vector contributes three rows. Because vector observations contain
information about the orientation and scale, one only needs to fix the translational
location of the polyhedron. Minimal constraints for fixing the origin can be imposed
by simply deleting the three coordinate parameters of one station, holding coordinates
of that particular station effectively fixed.

Inner constraints must fulfill the condition

Ex=0 (4.4.31)
according to (2.6.35), or, what amounts to the same condition

ETA =0 (4.4.32)
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It can be readily verified that
E=0Ll 55 5l -] (4.4.33)

fulfills these conditions. The matrix E consists of a row of 3 X 3 identity matrices.
There are as many identity matrices as there are stations in the network. The inner
constraint solution uses the pseudoinverse (2.6.37)

N*=A'PA+E"E)y"' —E"(EE'EE")"'E (4.4.34)

of the normal matrix. If one sets the approximate coordinates to zero, which can be
done since the mathematical model is linear, then the origin of the coordinate system
is at the centroid of the cluster of stations. For nonzero approximate coordinates,
the coordinates of the centroid remain invariant, i.e., the values are the same whether
computed from the approximate coordinates or the adjusted coordinates. The standard
ellipsoid reflects the true geometry of the network and the satellite constellation. See
Chapter 2 for a discussion on which quantities are variant or invariant with respect to
different choices of minimal constraints.

The GNSS-determined coordinates refer to the coordinate system of the satel-
lite positions (ephemeris). The broadcast ephemeris coordinate system is given in
WGS84, and the precise ephemeris is in ITRF. The latest realizations of these frames
agree at the centimeter level.

The primary result of a typical GNSS survey is best viewed as a polyhedron of sta-
tions whose relative positions have been accurately determined (to the centimeter or
even the millimeter level), but the translational position of the polyhedron is typically
known only at the meter level (point positioning with pseudoranges). The orientation
of the polyhedron is implied by the vector observations. The Cartesian coordinates
(or coordinate differences) of the GNSS survey can, of course, be converted to geode-
tic latitude, longitude, and height. If geoid undulations are available, the orthometric
heights (height differences) can be readily computed. The variance-covariance com-
ponents of the adjusted parameters can be transformed to the local geodetic system
for ease of interpretation using (4.4.25).

4.4.5 Transforming Terrestrial and Vector Networks

‘We make use of models 2 or 3 of Section 4.1.5 to transform nearly aligned coordinate
systems by estimating a scale and three rotation parameters. Assume that a network
of terrestrial observations is available that include horizontal angles, slant distances,
zenith angles, leveled height differences, and geoid undulations. Assume further that
the relative positions of some of these network stations have been determined by
GNSS vectors. As a first step one could carry out separate minimal or inner constraint
solutions for the terrestrial observations and the GPS vectors, as a matter of quality
control. When combining both sets of observations in one adjustment, the definition
of the coordinate systems might become important. Let us consider the case when
coordinates of some stations are known in the “local datum” (u) and that (u) does not
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coincide with (x), i.e., the coordinate system of the GNSS vectors. Let it be further
required that if the adjusted coordinates should be expressed in (u), i.e., the existing
local datum, then the following model

4, =fx,) (4.4.35)
Ly, =Fy(s, n, &, a, X,) (4.4.36)

might be applicable. The model (4.4.35) pertains to the terrestrial observations,
denoted here as the £; set. As a special case, these observations could consist of
merely the known local station coordinates which would then be treated as observed
parameters by the adjustment. Actually, if no terrestrial observations are available
and only the coordinates of local stations are known, then the mathematical model
(4.4.36) suffices. The GPS vector observations, i.e., the coordinate differences
obtained from carrier phase processing, are represented by £,. To clarify the notation
again, we note that X, (adjustment notation) refers to the station coordinates in the
geodetic system (u). The respective adjustment models are discussed in Chapter 2.

The additional parameters in (4.4.36) are the differential scale s and three rotation
angles n7, &, a.The rotation angles are small since the geodetic coordinate systems (u)
and (x) are nearly aligned. Because GNSS yields the coordinate differences, there is
no need to include a translation parameter t. Clearly, if £, in (4.4.35) does not contain
terrestrial observations at all, the known station coordinates in the (u) system can be
treated as observed parameters and thus allow estimation of scale and rotation param-
eters relative to these known coordinates. This is a simple method to incorporate the
GNSS vector observations into the existing local network.

The mathematical model (4.4.36) follows directly from the transformation expres-
sion (4.1.9). Applying this expression to the coordinate differences for stations k and
m yields

(1 + S)M(),O, ¢07 n, 5, C() (Uk - um) - (Xk —Xm) = 0 (4437)

The coordinate differences
X

m

=X, — X, (4.4.38)

represent the observed GPS vector between stations k and m. Thus, the mathematical
model (4.4.36) can be written as

Xiw = (L+)M(4g, @9, 1, &, a) (U —Uu,,) (4.4.39)

After substituting (4.1.11) into (4.4.39), we readily obtain the partial derivatives of the
design matrix. Table 4.4.3 lists the partial derivatives with respect to the station coor-
dinates for (a) Cartesian parameterization, (b) parameterization in terms of geodetic
latitude, longitude, and height, and (c) parameterization in terms of the local geode-
tic coordinate systems. The transformation matrices J and H referred to in the table
are those of (4.4.18) and (4.4.20). Table 4.4.4 contains the partial derivatives of the
transformation parameters.
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TABLE 4.4.3 Design Submatrix for Stations Occupied with Receivers

Parameterization Station m Station k

(u, v, w) 1+ M -1+ M

(@, 4, h) (I +s) MJ(o,, 4,) —(1+s) MJ(,, 4)

(n. e, u) (1+5) MJ(p,. 1,)H ' (@,) =1+ MI(p,, A)H ()

TABLE 4.4.4 Design Submatrix for the Transformation

Parameters
K n I3 a
u,—-u, M, (u,-u) M., -u) M,(u, —u)

4.4.6 GPS Network Examples

The following examples are included because they document some of the first appli-
cations of GPS, demonstrating an amazing accuracy that many doubted could be
achieved with satellite techniques, possibly because of prior exposure to the ear-
lier TRANSIT (the Navy navigation satellite system). Also, in those early days of
GPS satellite surveying there was no “GPS infrastructure” available to support GPS
applications, no experience existed for incorporating highly accurate 3-dimensional
vectors into existing geodetic networks, and the existing geodetic datums were nei-
ther geocentric nor were their axes parallel to the GPS reference system at the time. In
many cases there were no geoid undulations available to convert orthometric heights
to ellipsoidal heights.

In the following examples, only independent vectors between stations are con-
sidered, which means that if three receivers observe simultaneously, only two vectors
are used. The stochastic model does not include the mathematical correlation between
simultaneously observed vectors, although it should be used if available. The covari-
ance information came directly from baseline processing and does not accommodate
small uncertainties in eccentricity, i.e., inaccurate setting up of the antenna over the
mark. Only single-frequency carrier phases were available at the time the observa-
tions were made.

4.4.6.1 Montgomery County Geodetic Network During the Montgomery
County (Pennsylvania) geodetic network densification, the window of satellite visi-
bility was about 5 hours, just long enough to allow two sessions with the then state-of-
the-art static technique (Collins and Leick, 1985). The network (Figure 4.4.3) was
freely designed, taking advantage of the insensitivity of GPS to the shape of the
network (as compared to the many rules of classical triangulation and trilater-
ation). The longest baseline observed was about 42km. Six horizontal stations
with known geodetic latitude and longitude and seven vertical stations with
known orthometric height were available for tying the GPS survey to the existing
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A HORIZONTAL STATION
O VERTICAL STATION

Figure 4.4.3 Existing geodetic control and independent baselines.

geodetic networks. Accurate geoid information was, of course, not available at
the time.

Figure 4.4.4 shows two intersections of the ellipsoid of standard deviation for the
inner constraint least-squares solution. The top set of ellipses shows the horizontal
intersection (i.e., the ellipses of standard deviation in the geodetic horizon), and the
bottom set of ellipses shows the vertical intersection in the east-west direction. The
figure also shows the daily satellite visibility plot for the time and area of the project.
The dots in that figure represent the directions of the semimajor axis of the ellipsoids
of standard deviation for each station. These directions tend to be located around the
center of the satellite constellation. The standard ellipses show a systematic orien-
tation in both the horizontal and the vertical planes. This dependency of the shape
of the ellipses with the satellite constellation enters into the adjustment through the
3 X 3 correlation matrices. With a better distribution of the satellites over the hemi-
sphere, the alignments seen in Figure 4.4.4 for the horizontal ellipses would not occur.
Because satellites are observed above the horizon, the ellipses will still be stretched
along the vertical.

The coordinates of the polyhedron of stations are given in the coordinate system
of the broadcast ephemeris; at the time of the Montgomery County survey, this was
WGS72 (today this would be WGS84 or the latest ITRF). A minimal constraint was
specified by equating the geodetic latitude and longitude to the astronomic latitude
and longitude of station 29 and equating the ellipsoidal height and the orthometric
height. The ellipsoid defined in that manner is tangent to the geoid at station 29. By
comparing the resulting ellipsoidal heights with known orthometric heights at the
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vertical stations, we can construct a geoid undulation map (with respect to the thus
defined ellipsoid). The geoid undulations at other stations can be interpolated to give
orthometric height using the basic relation H = h — N.

The method described above can be generalized by not using the geodetic positions
instead of the astronomic position for station 29 to define minimal constraints. The
thus defined local ellipsoid is not tangent to the geoid at station 29. The undulations
with respect to such an ellipsoid are shown in Figure 4.4.5.

Alternatively, one can estimate the topocentric rotations (1, £, «)and ascale factor
implied by model 3 of (4.4.39). There are seven minimal constraints required in this
case, e.g., the geodetic latitude and longitude for two stations and the geodetic heights
for three stations distributed well over the network. If one were to use orthometric
heights for these three stations instead, the angles (&, #) would reflect the average
deflection of the vertical angles. Using orthometric heights would force the ellipsoid
to coincide locally with the geoid (as defined or implied by the orthometric heights
at the vertical stations). The rotation in azimuth « is determined by the azimuthal
difference between the two stations held fixed and the GPS vector between the same
stations. The scale factor is also determined by the two stations held fixed; it contains
the possible scale error of the existing geodetic network and the effect of a constant
but unknown undulation (i.e., geoid undulations with respect to the ellipsoid of the
existing geodetic network).

Simple geometric interpolation of geoid undulations has its limits, of course. For
example, any error in a given orthometric height will result inevitably in an erroneous

Figure 4.4.5 Geoid undulations with respect to the local ellipsoid. Units are in
centimeters.
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geoid feature. As a result, the orthometric heights computed from the interpolated
geoid undulations will be in error. Depending on the size of the survey area and the
“smoothness” of the geoid in that region, such erroneous geoid features might or
might not be discovered from data analysis. These difficulties can be avoided if an
accurate geoid model is available.

4.4.6.2 SLC Engineering Survey A GPS survey was carried out in 1984 to
support construction of the Stanford linear collider (SLC), with the objective of
achieving millimeter relative positional accuracy by combining GPS vectors with
terrestrial observations (Ruland and Leick, 1985). Because the network was only
4km long, the broadcast ephemeris errors as well as the impact of the troposphere
and ionosphere canceled. The position accuracy in such small networks is limited
by the carrier phase measurement accuracy, the phase center variation of the
receiver antenna, and the multipath. The Macrometer antenna was used, which
was known for its good multipath rejection property and accurate definition of the
phase center.

The network is shown in Figure 4.4.6. Stations 1, 10, 19, and 42 are along the
2-mile linear accelerator (linac); the remaining stations of the “loop” were to be deter-
mined with respect to these linac stations. The disadvantageous configuration of this
network, in regard to terrestrial observations such as angles and distances, is obvious.
In order to improve this configuration, one would have to add stations adjacent to the
linac; this would have been costly because of local topography and ongoing construc-
tion. Such a “degenerate” network configuration is acceptable for GPS positioning
because the accuracy of positioning depends primarily on the satellite configuration
and not on the shape of the network. Figure 4.4.7 shows the horizontal ellipses of
standard deviation and the satellite visibility plot for the inner constraint vector solu-
tion. The dark spot on the visibility plot represents the directions of the semimajor
axes of the standard ellipsoids.

This project offered an external standard for comparison. For the frequent realign-
ment of the linear accelerator, the linac laser alignment system had been installed.
This system is capable of determining positions perpendicular to the axis of the linac
to better than +0.1 mm over the total length of 3050 m. A comparison of the linac sta-
tions 1, 10, 19, and 42, as determined from the GPS vector solution with respect to the
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Figure 4.4.6 The SLC network configuration.
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Figure 4.4.7 Horizontal standard ellipses for GPS inner constraint solution and visibil-
ity plot.

linac alignment system, was done by means of a transformation. The discrepancies
did not exceed +1 mm for any of the four linac stations.

4.4.6.3 Orange County Densification The Orange County GPS survey con-
sisted of more than 7000 vectors linking 2000 plus stations at about a 0.5-mile spac-
ing. This survey was a major network densification carried out with GPS using several
crews operating at the same time. It was considered important to use adjustment
techniques to detect and remove blunders that could have resulted from misidenti-
fying stations or from not centering the antenna correctly. As to adjustment quality
control capabilities, detected outliers are the prime candidates for in-depth studies
and analysis to identify the cause for the outlier and then take corrective action.
Redundancy number and internal reliability plots appear useful to identify weak por-
tions of the network (which may result from a deweighting of observations during
automated blunder detection). The variance-covariance matrices of the vector obser-
vations resulting from individual baseline processing are the determining factor that
shapes most of the functions. The analysis begins with graphing the variances of these
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Figure 4.4.8 A priori precision of length of baseline (Permission by ASCE).

baselines, followed by various graphs related to the minimal constraint network solu-
tion. Other aspects of the solutions are given in Leick and Emmons (1994).

A priori Stochastic Information: The study begins with using the diagonal ele-
ments of the 3 X 3 variance-covariance matrices of the estimated vectors of the phase
processing step to compute the simple function

o, =1\/0} + 0L, + 07, (4.4.40)

where k identifies the vector. Other simple functions, such as the trace of the variance-
covariance matrix, can be used as well. Figure 4.4.8 displays o, as a function of the
length of the vectors. For longer lines, there appears to be a weak length dependency
of about 1:200,000. Several of the shorter baselines show larger-than-expected val-
ues. While it is not necessarily detrimental to include vectors with large variances in
an adjustment, they are unlikely to contribute to the strength of the network solu-
tion. Analyzing the averages of o, for all vectors of a particular station is useful
in discovering stations that might be connected exclusively by low-precision vector
observations.

Variance Factor: As to the minimal constraint network solution, Figures 4.4.9
and 4.4.10 show the square root of the estimated variance factor f for each vector k.
The factor is computed as

(4.4.41)

with
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Figure 4.4.9 Variance factor versus length of baseline (Permission by ASCE).

factor jk

Figure 4.4.10 Variance factor versus precision of baseline (Permission by ASCE).

where v, denote the decorrelated residuals and 7;;, 7;,, and 73 are the redundancy
numbers of the decorrelated vector components [see equation (2.8.40) regarding the
decorrelation of vector observations]. The estimates of f; are plotted in the Figures
4.4.9 and 4.4.10 as a function of the baseline length and a priori statistics o, (4.4.40).
The figures shows that the largest factors are associated with the shortest baselines
or with lines having small o, (which tend to be the shortest baselines). For short
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Figure 4.4.11 Applied scale factors (Permission by ASCE).

baselines the centering errors of the antenna and the separation of the electronic and
geometric center of the antenna are important; neither is reflected by the stochastic
model of the baselines.

The scale factors f; in Figure 4.4.11 are computed following the procedure of
automatically deweighting observations as discussed in Section 2.9.3 (i.e., if the ratio
of residual and standard deviation is beyond a threshold value, the scaling factor is
computed from an empirical rule and the residuals). All components of the vector are
multiplied with the same factor (the largest of three). These scale factors shown in
the graph were actually applied.

Redundancy Numbers: The vector redundancy number R, in (4.4.42) varies
between zero and 3. Values close to 3 indicate maximum contribution to the redun-
dancy and minimum contribution to the solution, i.e., the observation is literally
redundant. Such observations contribute little, if anything at all, to the adjustment
because other usually much more accurate observations determine the solution.
A redundancy of zero indicates an uncontrolled observation, which occurs, e.g.,
if a station is determined by one observation only. A small redundancy number
implies little contribution to the redundancy but a big contribution to the solution.
Such observations “overpower’ other observations and usually have small residuals.
As a consequence of their strength, blunders in these observations might not be
discovered.

The ordered redundancy numbers in Figure 4.4.12 exhibit a distinctly sharp
decrease for the smallest values. Inspection of the data indicates that such very small
redundancies occur whenever there is only one good vector observation left to a
particular station, while the other vectors to that station have been deweighted by
scaling the variance-covariance matrices as part of the automatic blunder detection
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Figure 4.4.12 Ordered vector redundancy (Permission by ASCE).

procedure. Typically, the scaled vectors have a high redundancy number, indicating
their diminished contribution. The only remaining unscaled observation contributes
the most; therefore, the respective residuals are very small, usually in the millimeter
range. Consequently, a danger of automated blunder detection and deweighting is
that parts of the network might become uncontrolled.

Figure 4.4.13 indicates that long vectors have large redundancy numbers. The
shapes in this figure suggest that it might be possible to identify vectors that can
be deleted from the adjustment without affecting the strength of the solution. The
steep slope suggests that the assembly of short baselines determines the shape of the
network. Mixing short and long baselines is useful only if long baselines have been
determined with accuracy comparable to that of shorter lines. This can be accom-
plished through longer observation times, using dual-frequency observations, and
processing with a precise ephemeris.

Internal Reliability: Internal reliability values are shown in Figure 4.4.14. These
values are a function of the internal reliability vector components

— 2 2 2
L=y +1+1, (4.4.43)

The internal reliability components are computed according to (2.8.28) for the decor-
related vector observations and are then transformed back to the physical observation
space. The values plotted use the factor 6, = 4.12. There is essentially a linear rela-
tionship between internal reliability and the quality of the observations as expressed
by o. The slope essentially equals &,. The outliers in this figure are associated with
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Figure 4.4.14 Internal reliability versus precision of baseline (Permission by ASCE).

small o}, and pertain to a group of “single vectors” that result when the other vectors
to the same station have been deweighted. The linear relationship makes it possible
to identify the outliers for further inspection and analysis. Furthermore, this linear
relationship nicely confirms that internal reliability is not a function of the shape of
the GPS network.
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Figure 4.4.15 Computed blunders versus residuals (Permission by ASCE).

Blunders and Absorption: Figure 4.4.15 shows blunders as predicted by the
respective residuals. As detailed in (2.8.31), a relationship exists between computed
blunders, residuals, and redundancies. The figure shows the blunder function

— 2 2 2
B, = /B, + B, + B, (4.4.44)

versus the residual function

V= \/vil + vzz + viB (4.4.45)

The computed blunder and the residuals refer to the physical observation space. This
relationship appears to be primarily linear with slope 1:1 (at least for the larger resid-
uals). The outliers seen for small residuals refer to the group of observations with
smallest redundancy numbers.

Figure 4.4.16 shows absorption versus redundancy. Absorption specifies that part
of a blunder is absorbed in the solution, i.e., absorption indicates falsification of the
solution. The values

A, =—-v,+ B, (4.4.46)

are plotted. As expected, the observations with lowest redundancy tend to absorb
the most. In an extreme case, the absorption is infinite for zero redundancy and zero
for a redundancy of 3 (vector observations). Clearly, very small redundancies reflect
insensitivity to blunders, which is not desirable.
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In summary, as is the case for terrestrial observation, it is not sufficient to limit
quality control to residuals and normalized residuals. It is equally important that
the quality of the network be presented in terms of redundancy and reliability mea-
sures. These functions are, among other things, useful in judging the consequences
of deweighting, in particular for large networks when those consequences are not
always readily apparent.

4.5 ELLIPSOIDAL MODEL

Computations on either the ellipsoidal surface or the conformal map are inherently
two dimensional. The stations are parameterized in terms of geodetic latitude and
longitude or conformal mapping coordinates. The third dimension, the height, does
not appear explicitly as a parameter but has been “used up” during the reduction of
the spatial observations to the ellipsoidal surface. Networks on the ellipsoidal sur-
face or the conformal map have historically been labeled “horizontal networks” and
treated separately from a one-dimensional “vertical network.” Such a separation was
justified at a time when the measurement tools could readily be separated into those
that measured primarily “horizontal information” and those that yielded primarily
“vertical information.” GNSS breaks this separation because it provides accurate
three-dimensional positions.

Because two-dimensional geodetic models have a long tradition of having been
the backbone of geodetic computations prior to the introduction of geodetic space
techniques, the respective solutions belong to the most classical of all geodetic
theories and are documented accordingly in the literature. Unfortunately, many of
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the references on this subject are out of print. We summarize the Gauss midlatitude
solution, the transverse Mercator mapping, and Lambert conformal mapping in
Appendices B and C. Supporting material from differential geometry is also provided
in order to appreciate the “roots and flavor” of the mathematics involved. Additional
derivations are available in Leick (2002), which was prepared to support lectures on
the subject. The following literature has been found helpful: Dozier (1980), Heck
(1987), Kneissl (1959), Grossman (1976), Hristow (1955), Lambert (1772), Lee
(1976), Snyder (1982), and Thomas (1952). Publication of many of these “classical”
references has been discontinued.

The ellipsoidal and conformal mapping expressions are generally given in the
form of mathematical series that are a result of multiple truncations at various steps
during the development. These truncations affect the computational accuracy of the
expressions and their applicability to areas of a certain size. The expressions given
here are sufficiently accurate for typical applications in surveying and geodesy. Some
terms may even be negligible when applied over small areas. For unusual applications
covering large areas, one might have to use more accurate expressions found in the
specialized literature. In all cases, however, given today’s powerful computers, one
should not be overly concerned about a few unnecessary algebraic operations.

There are only two types of observations that apply to computations on a surface:
azimuth (angle) and distance. The reductions, partial derivatives, and other quantities
that apply to angles can again be conveniently obtained by differencing the respective
expressions for azimuths.

Computations on the ellipsoid and the conformal mapping plane became popular
when K. F. Gauss significantly advanced the field of differential geometry and least
squares. Gauss used his many talents to develop geodetic computations on the ellip-
soidal surface and on the conformal map. The problem presented itself to Gauss when
he was asked to observe and compute a geodetic network in northern Germany. Since
the curvature of the ellipsoid changes with latitude, the mathematics of computing on
the ellipsoidal surface becomes mathematically cuambersome. For the conformal map-
ping approach, even more mathematical developments are needed. Both approaches
require a new element that has not been discussed thus far, the geodesic (the shortest
distance between two points on a surface). Developing expressions for the geodesic
on the ellipsoidal surface and its image on the map requires advanced mathematical
skills, primarily series expansions.

This section contains the mathematical formulations needed to carry out compu-
tations on the ellipsoidal surface. We introduce the geodesic line and reduce the 3D
geodetic observations to geodesic azimuth and distance. The direct and inverse solu-
tions are based on the Gauss midlatitude expressions. Finally, the partial derivatives
are given that allow a network adjustment on the ellipsoid.

4.5.1 Reduction of Observations

The geodetic azimuth a of Section 4.4 is the angle between two normal planes that
have the ellipsoidal normal in common; the geodetic horizontal angle ¢ is defined
similarly. These 3D model observations follow from the original observation after
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a correction is made for the deflection of the vertical. Spatial distances can be used
directly in the 3D model presented in Section 4.5. However, angles and distances must
be reduced further in order to obtain model observables on the ellipsoidal surface with
respect to the geodesic.

4.5.1.1 Angular Reduction to Geodesic Figure 4.5.1 shows the reduction
of azimuth. The geodetic azimuth, @, is shown in the figure as the azimuth of the
normal plane defined by the ellipsoidal normal of P, and the space point P,. See also
Figure 4.3.7. The representatives of these space points are located on their respective
ellipsoidal normals on the surface of the ellipsoid and are denoted by P’l and P’2.
The dotted line P} to P/ denotes the intersection of the normal plane containing
P, with the ellipsoid. The azimuth of the normal section defined by the ellipsoidal
normal at P; and the surface point P/, is «’. The angular difference (¢’ — ) is the
reduction in azimuth due to the height of P,; the expression is given in Table 4.5.1.
The height of the observing station P; does not affect the reduction because « is the
angle between planes.

The need for another angular reduction follows from Figure 4.5.2. Assume that two
ellipsoidal surface points P, and P, (labeled P’1 and P’2 in Figure 4.5.1) are located at
different latitudes. Line 1 is the normal section from P; to P, and line 2 indicates the
normal section from P, to P;. It can be readily seen that these two normal sections do

ellipsoidal
normal through
Py

—— ellipsoidal
normal through
Py

Figure 4.5.1 Normal section azimuth versus height of target.
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TABLE 4.5.1 Reducing Geodetic Azimuth to Geodesic Azimuth
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Figure 4.5.2 Normal sections on the ellipsoid.

not coincide because the curvature of the ellipsoidal meridian changes with latitude.
The question is, which of these two normal sections should be adopted for the compu-
tations? Introducing the geodesic, which connects these two points in a unique way,
solves this dilemma. There is only one geodesic from P, to P,. Figure 4.5.3 shows the
approximate geometric relationship between the normal sections and the geodesic.
The angular reduction (@ — «’) is required to get the azimuth @ of the geodesic. The
expression is listed in Table 4.5.1 (note that approximate values for azimuth @ and
length 5 of the geodesic are sufficient to evaluate the expressions on the right-hand
side of Table 4.5.1).

4.5.1.2 Distance Reduction to Geodesic The slant distance s (not to be con-
fused with the scale correction of Section 4.1.6 which uses the same symbol) must be
reduced to the length of a geodesic s. Figure 4.5.4 shows an ellipsoidal section along
the line of sight. The expression for the lengths § of the geodesic is typically based
on a spherical approximation of the ellipsoidal arc. At this level of approximation,
there is no need to distinguish between the lengths of the geodesic and the length of
the normal section. The radius R, which is evaluated according to Euler’s equation
(B.1.8) for the center of the line, provides the radius of curvature of the spherical
arc. The expressions in Table 4.5.2 relate the slant distance s to the lengths of the
geodesic 5.
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TABLE 4.5.2 Reducing Slant Distance to Geodesic
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One should note that computing the length of the geodesic requires knowledge of
the ellipsoidal heights. Using orthometric heights might introduce errors in distance
reduction. The height difference Ak = h, — hy in expression (e) of Table 4.5.2 must
be accurately known for lines with a large slope. Differentiating expression (f) gives

the approximate relation

45 ~ =2 ann 4.5.1)
S

where dAh represents the error in the height difference. Surveyors often reduce the
slant distance in the field to the local geodetic horizon using the elevation angle that is
measured together with the slant distance. For observations reduced in such a manner,
Ah is small (although not zero), but there is now a corresponding accuracy require-
ment for the measured elevation angle.

If both stations are located at about the same height 7, = h, = h
from (f)

> ONe obtains

S — 3‘\ hm
= — 452
B R (4.5.2)

This equation relates the relative error in distance reduction to the mean height of the
line. Table 4.5.3 shows that 6 m in height error causes a 1 ppm error in the reduction.
This accuracy is routinely achieved with GPS.

Since modern electronic distance measurement instruments are very accurate, it is
desirable to apply the height corrections consistently. It is good to remember the rule
of thumb that a 6 m error in height of the line causes a relative change in distance
of 1 ppm. We recognize that geodetic heights are required, not orthometric heights.
Since geoid undulations can be as large as 100 m, it is clear that they must be taken
into account for high-precision surveying.

4.5.2 Direct and Inverse Solutions on the Ellipsoid

The reductions discussed above produce the geodesic observables, i.e., the geodesic
azimuths @, the geodesic distance 5, and the angle between geodesics 5. At the heart
of computations on the ellipsoidal surface are the so-called direct and inverse prob-
lems, which are summarized in Table 4.5.4. For the direct problem, the geodetic

TABLE 4.5.3 Relative
Distance Error

My h,/R

6.37 1:1000000
63.7 1:100000
100 1:64000
500 1:13000
637 1:10000

1000 1:6300
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TABLE 4.5.4 Direct and Inverse Solutions on the

Ellipsoid
Direct Solution Inverse Solution
P(@), 4)), @}y, 5, Pi(@, 4)), Py (@, 4y)
! l
(@2, 4y, Qyy) @y, 515, 0yy)

latitude and longitude of one station, say, P,(¢,, 4,), and the geodesic azimuth @,
and geodesic distance §, to another point P, are given; the geodetic latitude and
longitude of station P,(¢,, 4,), and the back azimuth @,; must be computed. For the
inverse problem, the geodetic latitudes and longitudes of P,(¢;, 4,) and P,(¢,, 4,)
are given, and the forward and back azimuth and the length of the geodesic are
required. Note that §,, = 5,; but @;, # @, = 180°. There are many solutions avail-
able in the literature for the direct and inverse problems. Some of these solutions are
valid for geodesics that go all around the ellipsoid. We use the Gauss midlatitude
(GML) functions given in Table B.2.1 and use Table 4.5.4. Since the GML functions
are a result of series developments, they are subject to truncation errors in respec-
tive series expansions. The GML solution satisfies typical geodetic applications. In
the unlikely case that they are not sufficient because long lines are involved, one can
always replace them with other solutions that are valid for long geodesics.

4.5.3 Network Adjustment on the Ellipsoid

The geodesic azimuths, geodesic distances, and the angles between geodesics form
a network of stations on the ellipsoidal surface that can be adjusted using standard
least-squares techniques. The ellipsoidal network contains no explicit height infor-
mation, which was used during the transition of the 3D geodetic observables to the
geodesic observables on the ellipsoid. Conceptually, this is expressed by { ¢, A, h} —
{@, A} and {a, 6, B, s, Ah, AN} — {@&, &, 5}. The geodetic height 4 is no longer
a parameter, and geodesic observables do not include quantities that directly corre-
spond to the geodetic vertical angle, the geodetic height difference Ah, or the geoid
undulation difference AN.

Least-squares techniques are discussed in detail in Chapter 2. For discussion in
this section, we use the observation equation model

v=AX+ (£ —£,) 4.5.3)

In the familiar adjustment notation the symbol v denotes the residuals, A is the design
matrix, and X represents the corrections to the approximate parameters X,. The sym-
bol ¢, denotes the observations, in this case the geodesic observables, and £, repre-
sents the observables as computed from the approximate parameters

Xo=0L- @9 Ao -1 4.5.4)



CONFORMAL MAPPING MODEL 197

using the GML functions. If we further use the (2-1-3) subscript notation to denote
the angle measured at station 1 from station 2 to station 3 in a clockwise sense, then
the geodesic observables can be expressed as

@y = @y + Ay (4.5.5)
S213,17 =0y13,p + A3 — Aay, (4.5.6)
Elz =S (S127 R’ hl’ hz) (457)

In order to make the interpretation of the coordinate (parameter) shifts easier, it is
advantageous to reparameterize the parameters to northing (dn; = M; dg;) and east-
ing (de; = N, cos @;d A;). Using the partial derivatives in Table B.2.2, the observation
equations for the geodesic observables become

Sin 812’0 COS 821’0 Sin azl’o COS azl’o - -
Vo = — n = dey + — dny, — ———de, + (a5 o — 13 p)
S12,0 S12,0 $12,0 S12,0
4.5.8)
sina;z o sina, CosQz; () COSUy g
VS = — —_ P dnl + = - ~ del
$13,0 S12,0 $13,0 S12,0
sin@y; cos @y
———dn, + ———de,
S12,0 S12,0
sin &31 0 COS &31 0 ~ A
———dny — ————de3 + (63130 — 6213,5) (4.5.9)
S13,0 $13,0
V"S‘ = — COS alz’odnl + sin 0{21’0d6‘1 — COS (le’od}’lz —_ Slna21’0d62 + (S21,0 —_ Slz,b)

(4.5.10)

The quantities (a, Bo’ 5o) are computed by the inverse solution. The GLM functions
are particularly suitable for this purpose because the inverse solution is noniterative.
The results of the adjustment of the ellipsoidal network are the adjusted observations
(@, B,. 5,) and the adjusted coordinates

x,=[-- @i /li,a .. .]T (4.5.11)

The partial derivatives (4.5.8) to (4.5.10) are also a result of series expansion and

are, therefore, approximations and subject to truncation errors. The partial derivatives
and the GML functions must have the same level of accuracy.

4.6 CONFORMAL MAPPING MODEL

If the goal is to map the ellipsoid onto a plane in order to display the ellipsoidal surface
on the computer screen or to assemble overlays of spatial data, any mapping from the
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ellipsoid to the plane may be used. In conformal mapping, we map the ellipsoidal
surface conformally onto a plane. The conformal property preserves angles. Recall
that an angle between two curves, say, two geodesics on the ellipsoid, is defined as the
angle between the tangents on these curves. Therefore, conformal mapping preserves
the angle between the tangents of curves on the ellipsoid and the respective mapped
images. The conformal property makes conformal maps useful for computations in
surveying because the directional elements between the ellipsoid and the map have a
known relationship.

Users who prefer to work with plane mapping coordinates rather than geodetic
latitude and longitude can still use the 3D adjustment procedures developed earlier
in this chapter. The given mapping coordinates can be transformed to the ellipsoidal
and then used, together with heights, in the 3D geodetic adjustment. The adjusted
geodetic positions can subsequently be mapped to the conformal plane.

4.6.1 Reduction of Observations

Let (x, y) denote the Cartesian coordinate system in the mapping plane, and
P,(x;, ¥;) and P,(x,, y,) be the images of corresponding points on the ellipsoid.
Reduction of ellipsoidal surface observations to the conformal mapping plane means
converting geodesic observations (5, @) to the corresponding observables (d, ) on
the mapping plane. The symbol d denotes the length of the straight line connecting
the mapped points P, and P,, and 7 is the grid azimuth of this straight line. This
reduction is accomplished by means of the mapping elements (y, A¢, As), which
can be identified in Figure 4.6.1.

A couple of notes might be in order. First, consider the geodesic on the ellipsoid
between P, and P, to be mapped point by point; the result is the mapped geodesic as
shown in the figure. This image is a smooth but mathematically complicated curve.
Second, the length § of the geodesic on the ellipsoid is not equal to the length s of
the mapped geodesic. The latter does not enter any of the equations below and never
needs to be computed explicitly. Third, the straight line between the images P; and P,
is called the rectilinear chord. Fourth, the mapping plane should not be confused with

1

!

—

Figure 4.6.1 Mapping elements.
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the local astronomic or geodetic horizon. The mapping plane is simply the result of
mapping the ellipsoidal surface conformally into a plane. One can generate many such
mapping planes for the same ellipsoidal surface area. They all would be conformal
mappings.

Like any other curve on the ellipsoid, the ellipsoidal meridian can be mapped. Its
image may or may not be a straight line. In order to be general, the figure shows a
curved mapped meridian and its tangent. The angle between the y axis and the mapped
meridian is the meridian convergence y. It is one of the three mapping elements and is
generally counted positive in the counterclockwise sense. Because of the conformal
property, the geodetic azimuth of the geodesic is preserved during the mapping, and
it must be equal to the angle between the tangents on the mapped meridian and the
mapped geodesic as shown.

The symbols 7 and f denote the grid azimuth of the mapped geodesic and the
rectilinear chord, respectively. The second mapping element, At = T — ¢,

At=a—y—1 (4.6.1)

is called the arc-to-chord correction. It is related to the azimuth @ of the geodesic
on the ellipsoid, the grid azimuth 1 of the rectilinear chord, and the meridian conver-
gence y. _

The third mapping element, called the map distance reduction As = 5 — d, is the
difference in the length of the geodesic on the ellipsoid and the rectilinear chord.
Typically, one is not explicitly interested in the length of the projected geodesic s, but
actually needs the length of the rectilinear chord d. Since there is no specification in
conformal mapping as to the preservation of the lengths, the line scale factor

4.6.2)

can be arranged to express the third mapping element as
As =51 —k;) (4.6.3)

The line scale factor k; is a ratio of two finite values. It is not unity but is expected
to vary with the length of the line and its location within the mapping plane. The line
scale factor should not be confused with the point scale factor k, which is the ratio of
two differential line elements. See equation (C.2.12).

Let us compute the angle between two chords and two geodesics. The angle
between rectilinear chords on the map at station i can be written as

6=t — i +20 =T,y = Aty — (Ty iy — Aty ) + 27 (4.6.4)

This relation follows from plane geometry. The angle between the geodesics on either
the ellipsoid or their respective mapped images is

0= 1 — 0 +2x =T, +r,— T +y)+2x =T, ;41— T; i +27
(4.6.5)
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TABLE 4.6.1 Explicit Functions for Af and As in Terms of

Mapping Coordinates
T™: Al‘l _ (xz +2x1) (yz _yl) LC: Atl _ (2)71 +y2) (xl _xz)
6kR; 6kRS
L_s_ (1, 4,1
k, - 4 6\k kK, Kk
As=3(1—k,)
The difference :
AS;=06;—6; = Aty i1 — At (4.6.6)

is the angular arc-to-chord reduction. Equations (4.6.4) to (4.6.6) do not depend on
the meridian convergence.

The expressions for the meridian convergence are given in Appendix C for the
TM and LC mapping. The expressions for A¢ and As are listed in Table 4.6.1 as a
function of the mapping coordinates. Similar expressions are also available in terms
of geodetic latitude and longitude. However, such alternative expressions are really
not needed since one can always compute the latitudes and longitudes. The point scale
factor k serves merely as an auxiliary quantity to express k; in a compact form from
which As can be computed. The subscripts of k indicate the point of evaluation. In the
case of m, kis evaluated at the midpoint [(@; + ¢,)/2, (4; + 4,)/2]. It goes without
saying that the expressions in the table are a result of extensive series development
and respective truncations. More accurate expressions are available in the literature.

Even though the term “map distortion’” has many definitions, one associates a small
At and As with small distortions, meaning that the respective reductions in angle and
distance are small and perhaps even negligible. It is important to note that the mapping
elements change in size and sign with the location of the line and its orientation. In
order to keep Ar and As small, we limit the area represented in a single mapping plane
in size, thus the need for several mappings to cover large regions of the globe. In addi-
tion, the mapping elements are functions of elements specified by the designer of the
map, e.g., the factor k, the location of the central meridian, or the standard parallel.

4.6.2 Angular Excess

The angular reduction can be readily related to the ellipsoidal angular excess. The sum
of the interior angles of a polygon of rectilinear chords on the map (Figure 4.6.2) is

D 6= (n—2)x180° (4.6.7)

as follows from plane geometry. The sum of the interior angles of the corresponding
polygon on the ellipsoid consisting of geodesics is

D 6 =(n—-2)x180° +¢ (4.6.8)
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Pi Figure 4.6.2 Angle on the map.

where € denotes the ellipsoidal angular excess. It follows from (4.6.6) to (4.6.8) that
£= Y Aty — DAL, (4.6.9)

The angular excess can therefore be computed from either the sum of interior angles
between geodesics (4.6.8), or from the sum of angular arc-to-chord reductions (4.6.9),
or by expression (B.2.44), which uses the Gauss curvature.

4.6.3 Direct and Inverse Solutions on the Map

Having the grid azimuth 7 and the length of the rectilinear chord d or the angle 5
between rectilinear chords, the rules of plane trigonometry apply in a straightforward
manner. In case the geodetic latitude and longitude are given, one can use the mapping
equations to compute the map coordinates first. Thus, given P|(x;, y,), the direct
solution on the map is

- (4.6.10)
Y2 =1 +djpcostyy
and given P,(x;, y;) and P,(x,, y,), the inverse solution on the map is
dy, = \/(Xz —x)*+ (0 —y)?
- - X (4.6.11)
t12 = tan
Y2a—=N

4.6.4 Network Adjustment on the Map

The fact that plane trigonometry can be used makes network adjustments and compu-
tations on the conformal plane especially attractive. The observed geodesic azimuth,
angle, and distance (@, 3, s) are first corrected by (Af, A, As) to obtain the respec-
tive observables on the map. In regards to adjustments, the current point of expansion
(approximate coordinates) should be used for all computations at a specific iteration.
At any time during the computations, one may use geodetic latitude and longitude or
mapping coordinates as is convenient, since both sets are accurately related by the
mapping equations.
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Two approaches can be followed. Both require computation of the meridian con-
vergence y. The scheme shown in (4.6.12) suggests using the GML function to com-
pute the azimuth @, and length 5, and then computing the mapping elements At,,
according to (4.6.1) and As, by differencing the length of the geodesic line and the
rectilinear chord. Alternatively, we may also compute the line scale factor k; and com-
pute the mapping elements directly from the expressions in Table 4.6.1. Appendix C
provides the respective expressions for y and k;, either as a function of latitude and
longitude or in terms of mapping coordinates. Omitting for simplicity the subscript
zero to indicate the point of expansion, we can write

{P (@1, 415 X1, ¥1)s Po(@as 4y, X, ¥2)}
\
{(S12. @1p, 71s dyas 1)
\
Aty =ap =y — 1
As;, =5

{ (4.6.12)

12— d12 J

Using again the (2-1-3) subscript notation for angles and standard adjustment nota-
tion otherwise, the mapping observables 7,5 ,, 6,3 ;. and dy, , are

Ty =10 — 11 — Al (4.6.13)
5213,17 = 3213,b —Arj3+ Aty (4.6.14)
212,1; =51, — Aspy (4.6.15)

and the observation equations become

sint, cos 1y sint, cos 1y -

V; = — dyl — dxl i dy2 + — d)C2 + (tlz - tlz,b) (4616)

di dip dip dip

sint sint cost cost sint
vg=<_13_ _12) dy1—< _13___12) dy, + SN2

ds diy ds diy dia
CoS 1y, sint; cos 3 - -
12 di3 13

V7= —cosiypdy, — sinty,dx; +cosidy, + (dy, —dy. ) (4.6.18)

Just to be sure that there are no misunderstandings about the term plane, let us
review what created the situation that allows us to use plane trigonometry. The confor-
mal mapping model builds upon the 3D geodetic and 2D ellipsoidal models as visual-
ized by the transition of parameters {¢, 4, 1} = {@, A} — {x, y} and observables
{a, 6, B, s, Ah, AN} — ({a, 3, 5§} — ({t 8, d}. The height parameter and the
vertical observations are not present in the conformal mapping model.
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4.6.5 Similarity Revisited

In Appendix C, we state that interpreting the conformal property as a similarity
transformation between infinitesimally small figures is permissible. It is difficult
to understand such a statement because one typically does not think in terms of
infinitesimally small figures. We shed some light on this statement by transforming
two clusters of points that were generated with different conformal mappings and
look at the discrepancies. For example, if the discrepancies exceed a specified limit,
then a similarity transformation cannot be used to transform between both clusters
of points.

We construct a simple experiment to demonstrate the similarity transformation.
Let there be n equally spaced points on a geodesic circle on the ellipsoid whose center
is located at ¢, = 45° and at the central meridian. These points are mapped with the
transverse Mercator and Lambert conformal mapping functions using k, = 1. These
two sets of map coordinates are input to a least-squares solution that estimates the
parameters of a similarity transformation, i.e., two translations, one scale factor, and
one rotation angle. The coordinate residuals v, and v, for station i are used to com-
pute the station discrepancy d; = (v +v2)!/2. We use the average of the d; over all
the points as a measure of fit. The radius of the geodesic circle is incremented from
10 to 100 km for the solutions shown in Figure 4.6.3. The figure shows an optimal
situation because the circle is centered at the origin of the Lambert conformal map-
ping and at the central meridian of the Mercator mapping at the same latitude. With
ko = 1, the area around the center of the circle has the least distortion and the similar-
ity model fits relatively well. The 1 m average is reached just beyond a 50 km radius.
Both lines overlap in the figure.

Figure 4.6.4 shows discrepancies for different locations of the geodesic circle
within the mapping area while the radius remains constant at 10 km. For line 1 (LC),
the standard parallel of the Lambert conformal mapping shifts from 45° to 46° while
the center of the geodesic circle remains at latitude 45°. In the case of line 2 (TM),
the center of the geodesic circle moves from 0° (central meridian) to 1° in longitude,
while also maintaining a latitude of 45°. The lines in the figure diverge, indicating

0 T T T T
0 20 40 60 80 100

radius of geodesic circle [km]

average discrepancy [m]
N

Figure 4.6.3 Similarity transformation of two mapped geodesic circles as a function of
radius.
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Figure 4.6.4 Similarity transformation of two mapped geodesic circles as a function of
location.

that the distortions for both mapping are different and are a function of where the
points are located on the mapping plane.

4.7 SUMMARY

This chapter presented a brief summary of geodesy. Some readers might consider
it impossible to treat geodesy in just one chapter out of fear for an incomplete or
superficial treatment of the subject. In line with the overall objectives of this book, the
focus was on operational aspects of geodesy, avoiding long mathematical treatment
and instead referring to resources that are publically available on the Internet.

We began with a discussion of the fundamental ITRF and ICRF reference frames.
In particular, we explained the definition of the new ICRF pole, called CIP, and
provided two ways of transforming between ITRF and ICRF. Our operational view
assumes that a geodetic datum is in place, i.e., the locations and orientation of the
ellipsoid is known and the geoid undulations and deflection of the vertical are also
available for that datum. As an example we referred to the NADS3.

The 3G geodetic model, the ellipsoidal model, and the conformal mapping model
are a central part of this chapter. Table 4.7.1 provides a summary of notation used to
identify the various model observables. Figure 4.7.1 gives a summary of the type of
reductions required to generate the respective model observations. The right column
of boxes represents the reductions to be applied to the observations before the adjust-
ment. The left column of boxes are reductions to be added to the adjusted, but now
quality-controlled model observations, in order to obtain quality-controlled observa-
tions on the surface of earth that can be staked out or otherwise used by the surveyor
in physical space. Clearly, the respective corrections on the left and right side of the
figure are of the same magnitude but have the opposite sign.

The 3D model was identified to be, mathematically speaking, the simplest and yet
most versatile model because it is applicable to a network of any size and can deal
with 3-dimensional observations. It was further pointed out that the deflections of
the vertical corrections largely cancel for angle observations but need to be applied



TABLE 4.7.1 Summary of Model Notation

SUMMARY

3D Model

2D Ellipsoidal

Conformal Map

a geodetic azimuth

@ geodesic azimuth

B geodetic vertical angle
9 geodetic zenith angle

6 geodetic horizontal angle
between normal sections

5 geodesic angle between

geodesics

5 map angle between chords

7 grid north
T geodesic north

y meridian convergence

s slant distance

s geodesic length

s length of mapped geodesic

d length of chord
mapping plane conformal redli(c)tlon
to < mapping plane |« mapbin
ellipsoid model pping
plane
ellipsoid ellipsoidal reduction
to < surface < to
3D model ellipsoid
. polar motion
deflection < 3D geodetic | and
of the < < .
vertical model deflection
correction
A
| controlled original
" observations observations

Figure 4.7.1 Three model loops.

when accurate azimuth observations are involved. This model allows the integration
of classical terrestrial observations and GNSS vector observations without any further

reduction.

The other models are the 2-dimensional ellipsoidal surface and conformal map-
ping models. It was pointed out that any height information is used to reduce the 3D
observations to the ellipsoidal surface and that, consequently, no height parameters
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are included in 2D network adjustments. The ellipsoidal model is only of historical
interest in terms of network adjustments. However, this model is conceptually needed
to derive the conformal mapping model. After all, only 2D quantities from the ellip-
soidal surface can be mapped onto the 2D conformal mapping plane. Both 2D mod-
els are limited according to the size of the network. The ellipsoidal model requires
the geodesic line, and the respective expressions are a result of series expansions
and therefore suffer from truncation errors. The conformal mapping model not only
requires all of the geodesic line formalism but it also needs the conformality condi-
tion. The respective expressions also suffer from truncation errors that limit the size
and shape of the networks, but most of all can show large-scale distortions in certain
parts of the mapped area.

This chapter did not address physical geodesy in any significant detail. Physical
geodesy deals with those aspects that involve gravity directly. One could say that the
products of physical geodesy are geoid undulations and deflection of the vertical. But,
because of our operational approach, we simply assumed that these elements would
be available as part of the datum.

Also, leveling was not presented in detail. This technique depends on the direc-
tion of the plumb line. For example, much material could be added on the topic of
loop closure for orthometric heights. The lack of depth by which the vertical com-
ponent (leveling) was presented in this chapter is again justified on the basis of the
operational approach. It is assumed that sufficiently accurate geoid undulations are
available to convert orthometric heights to ellipsoidal heights, and that ellipsoidal
height produced by GNSS can be easily converted to orthometric heights. Readers
involved in high-accuracy vertical applications that require first-order leveling are
advised to contact their national surveying agencies for information on the respective
procedures and computation techniques.



CHAPTER 5

SATELLITE SYSTEMS

The satellite motions are introduced by means of normal orbits and the Kepler laws.
It follows a summary on the major orbital perturbation of these simple mathematical
motions. The first satellite system presented is the global positioning system (GPS).
We briefly review the status of the signal transmissions as of the year 2014, including
signal structure and navigation message. A section on the modernization of GPS
starts with a brief exposure to binary offset carrier modulation, followed by remarks
on the new codes L2C, L5, M, and L1C. The GLONASS system is discussed next
with emphasis on the broadcast navigation message and brief remarks on GLONASS
modernization. The other forthcoming systems, the European Galileo, the Japanese
QZSS, and the Chinese Beidou are highlighted next. The details on each satellite
system are available in various documents provided by the respective authorities on
the Internet. Consider the following references: SPS (2008), IS-GPS-200G (2012),
IS-GPS-705C (2012), IS-GPS-800C (2012), GLONASS (2008), Galileo (2010),
QZSS (2013), and Beidou (2013).

We do not address signal processing that takes place inside the receiver. The inter-
ested reader is referred to specialized texts such as Kaplan (1996), Parkinson et al.
(1996), Tsui (2005), Misra and Enge (2006), and Borre et al. (2007).

5.1 MOTION OF SATELLITES

The orbital motion of a satellite is a result of the earth’s gravitational attraction, as
well as a number of other forces acting on the satellite. The attraction of the sun and
the moon and the pressure on the satellite caused by impacting solar radiation par-
ticles are examples of such forces. For high-orbiting satellites, the atmospheric drag

207
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is negligible. Mathematically, the equations of motion for satellites are differential
equations that are solved by numerical integration over time. The integration begins
with initial conditions, such as the position and velocity of the satellite at some ini-
tial epoch. The computed (predicted) satellite positions can be compared with actual
observations. Possible discrepancies are useful to improve the modeled force func-
tions, the accuracy of computed satellite positions, or the estimated positions of the
observer.

5.1.1 Kepler Elements

Six Kepler elements are often used to describe the position of satellites in space. To
simplify attempts to study satellite motions, we study so-called normal orbits. For
normal orbits, the satellites move in an orbital plane that is fixed in space; the actual
path of the satellite in the orbital plane is an ellipse in the mathematically strict sense.
One focal point of the orbital ellipse is at the center of the earth. The conditions
leading to such a simple orbital motion are as follows:

1. The earth is treated as a point mass, or, equivalently, as a sphere with spherically
symmetric density distribution. The gravitational field of such a body is radially
symmetric; i.e., the plumb lines are all straight lines and point toward the center
of the sphere.

2. The mass of the satellite is negligible compared to the mass of the earth.

3. The motion of the satellite takes place in a vacuum; i.e., there is no atmospheric
drag acting on the satellite and no solar radiation pressure.

4. No sun, moon, or other celestial body exerts a gravitational attraction on the
satellite.

The orbital plane of a satellite moving under such conditions is shown in Figure 5.1.1.

The ellipse denotes the path of the satellite. The shape of the ellipse is determined by
the semimajor axis a and the semiminor axis b. The symbol e denotes the eccentricity

T A 753

orbital path

apogee ae F perigee q,

Figure 5.1.1 Coordinate systems in the orbital plane.
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of the ellipse. The ellipse is enclosed by an auxiliary circle with radius a. The principal
axes of the ellipse form the coordinate system (&, 7). S denotes the current position
of the satellite; the line SS’ is in the orbital plane and is parallel to the # axis. The
coordinate system (g, g,) is located in the orbital plane, with origin at the focal point
F of the ellipse that coincides with the center of the earth. The third axis g3, not shown
in the figure, completes the right-handed coordinate system. The geocentric distance
from the center of the earth to the satellite is denoted by r. The orbital locations closest
to and farthest from the focal point are called the perigee and apogee, respectively.
The true anomaly f and the eccentric anomaly E are measured counterclockwise, as
shown in Figure 5.1.1.

The orbital plane is shown in Figure 5.1.2 with respect to the true celestial coordi-
nate system. The center of the sphere of directions is located at the focal point F. The
X axis is in the direction of the vernal equinox, the Z axis coincides with the celes-
tial ephemeris pole, and Y is located at the equator, thus completing the right-handed
coordinate system. The intersection of the orbital plane with the equator is called the
nodal line. The point at which the satellite ascends the equator is the ascending node.
The right ascension of the ascending node is denoted by £2. The line of apsides con-
nects the focal point F' and the perigee. The angle subtended by the nodal line and
the line of apsides is called the argument of perigee w. The true anomaly f and the
argument of perigee w lie in the orbital plane. Finally, the angle between the orbital
plane and the equator is the inclination i. The figure shows that (€2, /) determines the
position of the orbital plane in the true celestial system, (£2, w, i) the orbital ellipse in
space, and (a, e, f) the position of the satellite within the orbital plane.

A Z=CEP
- -
. . satellite
!
'\. \ - .,,....., -
\\.__ i Frea : \I line Of apSideS

ascending node

orbital plane ' nodal line

Figure 5.1.2 Orbital plane on the sphere of direction.
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The six Kepler elements are {2, w, 7, a, e, f }. The true anomaly f is the only Kepler
element that is a function of time in the case of normal orbits; the remaining five
Kepler elements are constant. For actual satellite orbits, which are not subject to the
conditions of normal orbits, all Kepler elements are a function of time. They are called
osculating Kepler elements.

5.1.2 Normal Orbital Theory

Normal orbits are particularly useful for understanding and visualizing the spatial
motions of satellites. The solutions of the respective equations of motions can be
given by simple, analytical expressions. Since normal orbits are a function of the
central portion of the earth’s gravitational field (which is by far the largest force acting
on the satellite), normal orbits are indeed usable for orbital predictions over short
periods of time when low accuracy is sufficient. Thus, one of the popular uses of
normal orbits is for the construction of satellite visibility charts.
The normal motion of satellites is determined by Newton’s law of gravitation,

2
F=kn;M
r

(5.1.1)

In (5.1.1), M and m denote the mass of the earth and the satellite, respectively, k> is
the universal constant of gravitation, r is the geocentric distance to the satellite, and
F is the gravitational force between the two bodies. This force can also be written as

F =ma (5.1.2)

where a in this instance denotes the acceleration experienced by the satellite. Com-
bining (5.1.1) and (5.1.2) gives

2
= k—ZM (5.1.3)
v
This equation can be written in vector form as
i=-temL -, L (5.1.4)
3 3
where
u=KM (5.1.5)

is the earth’s gravitational constant. Including the earth’s atmosphere, it has the value
i = 3,986,005 x 108m3s~2. The vector r is directed from the central body (earth) to
the satellite. The sign has been chosen such that the acceleration is directed toward
the earth. The colinearity of the acceleration and the position vector as in (5.1.4) is a
characteristic of central gravity fields. A particle released from rest would fall along
a straight line toward the earth (straight plumb line).

Equation (5.1.4) is valid for the motion with respect to an inertial origin. In general,
one is interested in determining the motion of the satellite with respect to the earth.
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The modified equation of motion for accomplishing this is given by Escobal (1965,
p. 37) as
F= k(M +m)< (5.1.6)
T

Because m < M, the second term is often neglected and (5.1.6) becomes (5.1.4).
Figure 5.1.2 gives the position of the satellite in the (g) orbital plane coordinate
systemq@ =[q; ¢ gq;31" as
cos f
q=r|sinf (5.1.7)
0

Because the geocentric distance and the true anomaly are functions of time, the
derivative with respect to time, denoted by a dot, is

cosf —sinf
g =i|sinf [+ rf| cosf (5.1.8)
0 0

The second derivatives with respect to time are

cosf —sinf —sinf cosf
g =7 | sinf |+ 2if| cosf |+rf| cosf |—r(f)*|sinf (5.1.9)
0 0 0 0

The second derivative is written according to (5.1.4) and (5.1.7) as

_|cosf
F=_E |sinf (5.1.10)
}’2 0

Evaluating (5.1.9) and (5.1.10) at f = 0 (perigee) and substituting (5.1.10) for the
left-hand side of (5.1.9) gives

F—r()? = —& (5.1.11)
r
rf+2if =0 (5.1.12)
Equation (5.1.12) is developed further by multiplying with r and integrating
/(r2f+2r'rf) dt=C (5.1.13)
The result of the integration is

Pf+27f=C (5.1.14)
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as can be readily verified through differentiation. Combining both terms yields
Pf=h (5.1.15)

where £ is a new constant. Equation (5.1.15) is identified as an angular momentum
equation, implying that the angular momentum for the orbiting satellite is conserved.
In order to integrate (5.1.11), we define a new variable:

u= 1 (5.1.16)
r
By using equation (5.1.15) for dt / df, the differential of (5.1.16) becomes
du _dudrdt _ i (5.1.17)
df dr dr df h
Differentiating again gives
du_d ( i‘) dt i
—=—(-c)==-— 5.1.18
dfr  dt\ h/df u%h? ( )
or 5
P = —h2 Ll (5.1.19)
df?

By substituting (5.1.19) in (5.1.11), substituting f from (5.1.15) in (5.1.11), and
replacing r by u according to (5.1.16), equation (5.1.11) becomes

d*u H
—tu=— 5.1.20
a7 7 ( )
which can readily be integrated as
I u=ceosr+ ™ (5.1.21)
r h?

where C is a constant.
Equation (5.1.21) is the equation of an ellipse. This is verified by writing the
equation for the orbital ellipse in Figure 5.1.1 in the principal axis form:

S
;+b—2_1 (5.1.22)
where
E=ae+rcosf n=rsinf b>=a*(l-e?) (5.1.23)

The expression for b is valid for any ellipse. Substituting (5.1.23) into (5.1.22) and
solving the resulting second-order equation for r gives

1 1 e

o al=-) Tal=e) ¢

osf (5.1.24)
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with

¢ h =V pa(l — e2) (5.1.25)

T al -

the identity between the expression for the ellipse (5.1.24) and equation (5.1.21) is
established. Thus, the motion of a satellite under the condition of a normal orbit is
an ellipse. This is the content of Kepler’s first law. The focus of the ellipse is at the
center of mass.

Kepler’'s second law states that the geocentric vector r sweeps equal
areas during equal times. Because the area swept for the differential angle
df is

dA = %ﬁ df (5.1.26)

it follows from (5.1.15) and (5.1.25) that

A _ 1. fra = o) (5.1.27)

1
a2

which is a constant.
The derivation of Kepler’s third law requires the introduction of the eccentric
anomaly E. From Figure 5.1.1 we see that

q, =& —ae =a(cosE —e) (5.1.28)

where
E=a cosE (5.1.29)

The second coordinate follows from (5.1.22):

G =n= <1—§> b? (5.1.30)

a2
Substitute (5.1.29) in (5.1.30), then
g, =n=>b sinE (5.1.31)

With (5.1.28), (5.1.31), and b from (5.1.23), the geocentric satellite distance

becomes
r=1/q;+ ¢ = a(l — e cosE) (5.1.32)

Differentiating equations (5.1.32) and (5.1.24) gives

dr =ae sinE dE (5.1.33)

po e sinf df (5.1.34)
a(l—e?)
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Equating (5.1.34) and (5.1.33), using # and b from (5.1.23), (5.1.31), and (5.1.7), and
multiplying the resulting equation by r gives

rbdE = r* df (5.1.35)

Substituting b from (5.1.23) and (5.1.32) for r, replacing df by dt using (5.1.15),
using & from (5.1.25), and then integrating, we obtain

E t
/ (1—e¢ cosE)dEz/ ‘/% dt (5.1.36)
E=0 to a

Integrating both sides gives

E—esinE=M (5.1.37)
M = n(t — 1) (5.1.38)
n=q L (5.1.39)

a3

Equation (5.1.39) is Kepler’s third law. Equation (5.1.37) is called the Kepler
equation. The symbol n denotes the mean motion, M is the mean anomaly, and ¢,
denotes the time of perigee passage of the satellite. The mean anomaly M should not
be confused with the same symbol used for the mass of the central body in (5.1.1).
Let P denote the orbital period, i.e., the time required for one complete revolution,
then

_2z

P (5.1.40)

n
The mean motion n equals the average angular velocity of the satellite.
Equation (5.1.39) shows that the semimajor axis completely determines the
mean motion and thus the period of the orbit.

With the Kepler laws in place, one can identify alternative sets of Kepler ele-
ments, such as {Q,w,i,a,e,M} or {2,w,i,a,e, E}. Often the orbit is not specified
by the Kepler elements but by the vector r=[X Y Z]” =X and the velocity
F=[X Y Z]" =X, expressed in the true celestial coordinate system (X).
Figure 5.1.2 shows that

q=R;(@)R,() R;(D) X =Rx(2,i,0) X (5.1.41)
where R; denotes a rotation around axis i. The inverse transformation is
X= R;;(Q, i,w)q (5.1.42)
Differentiating (5.1.42) gives

X= R;,@(Q, i,w)q (5.1.43)
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Note that the elements of RqX are constants, because the orbital ellipse does not
change its position in space. Using b from (5.1.23), (5.1.28), and (5.1.31), it follows
that

a(COSE— e) r COSf
g=|aV1l-e2sinE|=|r sinf (5.1.44)
0 0
The velocity becomes
—sinE —sinf
y=_— " |\ _. =_na 14
q e cosE 1—e2cosE e +cosf (5.1.45)

0 Vi1-e? 0

The first part of (5.1.45) follows from (5.1.36), and the second part can be ver-
ified using known relations between the anomalies E and f. Equations (5.1.42)
to (5.1.45) transform the Kepler elements into Cartesian coordinates and their
velocities (X, X).

The transformation from (X, X) to Kepler elements starts with the computation of
the magnitude and direction of the angular momentum vector

h=XxX=[hy hy h," (5.1.46)

which is the vector form of (5.1.15). The various components of h are shown in
Figure 5.1.3. The right ascension of the ascending node and the inclination of the

o Z=CEP

P2

satellite

v

ascending node

orbital plane Pi

Figure 5.1.3 Angular momentum vector and Kepler elements. The angular momentum
vector is orthogonal to the orbital plane.
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orbital plane are, according to this figure,

/12 2
h hs +h
Q:tan_l< X > i =tan ! yx v

X 5.1.47
I ( )

Y

By defining the auxiliary coordinate system (p) such that the p, axis is along the
nodal line, p5 is along the angular momentum vector, and p, completes a right-handed
coordinate system, we obtain

p = R,()R5(2)X (5.1.48)

The sum of the argument of perigee and the true anomaly becomes

w+f=wm4<%> (5.1.49)
1

Thus far, the orbital plane and the orientation of the orbital ellipse have been deter-

mined. The shape and size of the ellipse depend on the velocity of the satellite. The
velocity, geocentric distance, and the magnitude of the angular momentum are

v=|IXIl r= Xl k= |h| (5.1.50)

The velocity expressed in the (g) coordinate system can be written as follows using
(5.1.24), (5.1.39), and (5.1.45):
V=4 + 4
2.2

= 1n a 2(sin2f+(32+26 cosf 4 cos? f)
—e

- H
a(l —e?)

:ﬂ(%_é) (5.1.51)

[2 + 2e cosf — (1 —e?)]

Equation (5.1.51) yields the expression for the semimajor axis

-
= 5.1.52
“ 2—-nm2/u ( )

With & from (5.1.25), it follows that

1/2
e=<1—ﬁi> (5.1.53)
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and (5.1.32), (5.1.44), and (5.1.45) give an expression for the eccentric anomaly

cosE = 4= sinE = q-q
ae e/ pua

(5.1.54)

These equations determine the quadrant of the eccentric anomaly. Having E, the true
anomaly follows from (5.1.44)

V1—e€? sinE

f=tan~! (5.1.55)

cosE—e

Finally, Kepler’s equation yields the mean anomaly
M=FE—¢ sinE (5.1.56)

Equations (5.1.47) to (5.1.56) comprise the transformation from (X,X) to the Kepler
elements.

Table 5.1.1 depicts six examples of trajectories for which the orbital eccentric-
ity is zero, e = 0. The satellite position X in the earth-centered earth-fixed (ECEF)
coordinate system can be readily computed from X by applying (4.2.32). We can
then compute spherical latitude and longitude (¢, 4) and the trajectories of the satel-
lites on the sphere. For reasons of convenience, we express the mean motion of the
satellites in revolutions per day, n = n / . The longitude difference between consec-
utive equatorial crossings can then be computed from

Al=x (1—§) (5.1.57)
n

Table 5.1.1 also lists the change in longitude of the trajectory over a 24 h period,

denoted by 6 4. The number in parentheses in the graphs indicates the number of

days plotted. In all cases the inclination is i = 65°. The maximum and minimum of

the trajectories occur at a latitude of i and —i, respectively.

Case 1, specified by n = 2, applies to GPS because the satellite orbits twice per
(sidereal) day. Case 2 has been constructed such that the trajectories intersect the
equator at 90°. In case 3, the point at which the trajectory touches, having common
vertical tangent, and the point of either maximum or minimum have the same lon-
gitude. The mean motion must be computed from a nonlinear equation, but n > 1 is
valid. In case 4, the satellite completes one orbital revolution in exactly one (sidereal)
day. Case 5 represents a retrograde motion with n < 1 but with the same properties as
case 3. In case 6, the common tangent at the extrema is vertical. The interested reader
may verify that

A=tan! [ cosi——sm® ) _1 G -1 (sné (5.1.58)
sin2i—sin? ¢ n sini
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and

dp  cos¢y/sinZi —sin2 ¢ _
—_— = n

= 5.1.59
dA 7 cosi—cos? ¢ ( )

is valid for all cases.

5.1.3 Satellite Visibility and Topocentric Motion

The topocentric motion of a satellite as seen by an observer on the surface of the earth
can be computed from existing expressions. Let X denote the geocentric position
of the satellite in the celestial coordinate system (X). These positions could have
been obtained from (5.1.42), in the case of normal motion or from the integration of
perturbed orbits discussed below. The position X can then be readily transformed
to crust-fixed coordinate system (x), giving Xy by applying (4.2.32). If we further
assume that the position of the observer on the ground in the crust-fixed coordinate
system is Xp, then the topocentric coordinate difference

can be substituted into Equations (4.4.11) to (4.4.13) to obtain the topocentric geode-
tic azimuth, elevation, and distance of the satellite. The geodetic latitude and longi-
tude in these expressions can be computed from Xp, if necessary. For low-accuracy
applications such as the creation of visibility charts it is sufficient to use spherical
approximations.

5.1.4 Perturbed Satellite Motion

The accurate determination of satellite positions must consider various disturbing
forces. Disturbing forces are all forces causing the satellite to deviate from the simple
normal orbit. The disturbances result primarily from the nonsphericity of the gravi-
tational potential, the attraction of the sun and the moon, the solar radiation pressure,
and other smaller forces acting on the satellites. For example, albedo is a force due to
electromagnetic radiation reflected by the earth. There could be thermal reradiation
forces caused by anisotropic radiation from the surface of the spacecraft. Additional
forces, such as residual atmospheric drag, affect satellites closer to the earth.
Several of the disturbing forces are computable; others, in particular the smaller
forces, require detailed modeling and are still subject to ongoing research. Knowing
the accurate location of the satellites and being able to treat satellite position coordi-
nates as known quantities is important in surveying. Most scientific applications of
GNSS demand the highest orbital accuracy, almost at the centimeter level. However,
even surveying benefits from such accurate orbits, e.g., in precise point positioning
with one receiver. See Section 6.6.1 for additional details on this technique. One of
the goals of the International GNSS Service (IGS) and its contributing agencies and
research groups is to refine orbital computation and modeling in order to make the
most accurate satellite ephemeris available to users. In this section, we provide only
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an introductory exposition of orbital determination. The details are found in the lit-
erature, going all the way back to the days of the first artificial satellites.

The equations of motion are expressed in an inertial (celestial) coordinate system,
corresponding to the epoch of the initial conditions. The initial conditions are either
(X, X) or the Kepler elements at a specified epoch. Because of the disturbing forces,
all Kepler elements are functions of time. The transformation given above can be used
to transform the initial conditions from (X,X) to Kepler elements and vice versa. The
equations of motion, as expressed in Cartesian coordinates, are

dX

X .1.61
= (5.1.61)
—=———+X,+ X, + X, + X 5.1.62
" ||X||3+ o+ X+ X, + Xgpp + ( )

These are six first-order differential equations. The symbol y denotes the geocen-
tric gravitational constant (5.1.5). The first term in (5.1.62) represents the acceleration
of the central gravity field that generates the normal orbits discussed in the previous
section. Compare (5.1.62) with (5.1.4). The remaining accelerations are discussed
briefly below. The simplest way to solve (5.1.61) and (5.1.62) is to carry out a simul-
taneous numerical integration. Most of the high-quality engineering or mathematical
software packages have such integration routines available. Kaula (1966) expresses
the equations of motion and the disturbing potential in terms of Kepler elements.
Kaula (1962) gives similar expressions for the disturbing functions of the sun and
the moon.

5.1.4.1 Gravitational Field of the Earth The acceleration of the noncentral
portion of the gravity field of the earth is given by

T
= [% 9R %] (5.1.63)
§ 0X dY oz
The disturbing potential R is
© n ud’
R= =< P, (cos) [C,, cosmA+S, sinmi 5.1.64
2220 ot Pun (c030) [,y - ] (5.1.64)
with
1 _ 2 9 m/2 (n+m)
P (cosg) = LS 0) d (cos2 0 —1Y' (5.1.65)

2"p! d(cos @)n+m)

P,=\2n+1P, (5.1.66)

—1/2
F,,m=< (n+ m)! ) P, (5.1.67)
22n+ 1) (n—m)!
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Equation (5.1.64) expresses the disturbing potential (as used in satellite orbital com-
putations) in terms of a spherical harmonic expansion. The symbol a, denotes the
mean earth radius, r is the geocentric distance to the satellite, and 6 and A are the
spherical co-latitude and longitude of the satellite position in the earth-fixed coordi-
nate system, i.e., X = X(r, 6, A). The positions in the celestial system (X) follow from
(4.2.32). an denotes the associated Legendre functions, which are known mathe-
matical functions of latitude. Enm and Enm are the spherical harmonic coefficients of
degree n and order m. The bar indicates fully normalized potential coefficients. Note
that the summation in (5.1.64) starts at n = 2. The term n = 0 equals the central com-
ponent of the gravitational field. It can be shown that the coefficients for n = 1 are
zero for coordinate systems whose origin is at the center of mass. Equation (5.1.64)
shows that the disturbing potential decreases exponentially with the power of n. The
high-order coefficients represent the detailed structure of the disturbing potential, and,
as such, the fine structure of the gravity field of the earth. Only the coefficients of
lower degree and order, say, up to degree and order 36, are significant for satellite
orbital computations. The higher the altitude of the satellite, the less the impact of
higher-order coefficients on orbital disturbances.

The largest coefficient in (5.1.64) is C,,. This coefficient represents the effect of
the flattening of the earth on the gravitational field. Its magnitude is about 1000 times
larger than any other spherical harmonic coefficient.

Useful insight into the orbital disturbance of the flattening of the earth is obtained
by considering only the effect C,,. An analytical expression is obtained if one
expresses the equations of motion (5.1.61) and (5.1.62) in terms of Kepler elements.
The actual derivation of such equations is beyond the scope of this book. The reader
is referred to Kaula (1966). Mueller (1964) offers the following result:

2
172
w:-(”) — % ) 30 (14 cos2i—15 sin2i) (5.1.69)
a(l-e)

a? 1—e2 2
2
1/2
) U / a, 3 |
“="\a ——v | 5/2 cosi (5.1.69)
a3 a (1 — e2) 2
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Figure 5.1.4 Impact of the earth’s flattening on the motion of the perigee and the nodal
line. The data refer to a = 26, 600 km.
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In these equations we have made the substitution Ezo =-J, \/g The variations of
the argument of perigee and the right ascension of the ascending node are shown in
Figure 5.1.4 as a function of the inclination. At the critical inclination of approxi-
mately 63.5° the perigee motion is stationary. The perigee and the node regress if
i > 63.5°. This orbital plane rotation is zero for polar orbits i = 90°. Equation (5.1.69)
is also useful for understanding the connection between the earth flattening and pre-
cession and the 18.6-year nutation/tidal period.

5.1.4.2 Acceleration due to the Sun and the Moon The lunar and solar
accelerations on the satellites are (Escobal, 1965, p. 37)

m

_ pmy (X=X X, (5.1.70)
B X, — XII3 [1X,,II3 o

X_Mms< XS_X X

m,

s =

- (5.1.71)
1X; — X||° IIXSII3>

m,
The commonly used values for the mass ratios are m,, /m, = 0.0123002 and
mg [ m, = 332,946. Mathematical expressions for the geocentric positions of the
moon X, and the sun X| are given, for example, in van Flandern and Pulkkinen
(1979).

5.1.4.3 Solar Radiation Pressure Solar radiation pressure (SRP) is a result
of the impact of light photons emitted from the sun on the satellite’s surface. The
basic parameters of the SRP are the effective area (surface normal to the incident
radiation), the surface reflectivity, the thermal state of the surface, the luminosity of
the sun, and the distance to the sun. Computing SRP requires the evaluation of sur-
face integrals over the illuminated regions, taking shadow into account. Even if these
regions are known, the evaluation of the surface integrals can still be difficult because
of the complex shape of the satellite. The ROCK4 and ROCK42 models represent
early attempts to take most of these complex relations and properties into consider-
ation for GPS Block I, Block II, and Block Ila satellites, respectively (Fliegel et al.,
1985; Fliegel and Gallini, 1989). Fliegel et al. (1992) describe an SRP force model
for geodetic applications. Springer et al. (1999) report on SRP model parameter esti-
mation on a satellite-by-satellite basis, as part of orbital determinations from heavily
overdetermined global networks. Ziebart et al. (2002) discuss a pixel array method
in connection with finite analysis, in order to even better delineate the illuminated
satellite surfaces and surface temperature distribution.

One of the earliest and simplest SRP models uses merely two parameters. Con-
sider the body-fixed coordinate system of Figure 5.1.5. The 7’ axis is aligned with
the antenna and points toward the center of the earth. The satellite finds this direction
and remains locked to it with the help of an earth limb sensor. The x’ axis is positive
toward the half plane that contains the sun. The y’ axis completes the right-handed
coordinate system and points along the solar panel axis. The satellites are always
oriented such that the y" axis remains perpendicular to the earth-satellite-sun plane.
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| fﬁi’, """""
A

Figure 5.1.5 The satellite body-fixed coordinate system.

The only motion of the spacecraft in this body-fixed frame is the rotation of the solar
panels around the y’ axis to make the surface of the solar panels perpendicular to the
direction of the sun. The direction of the sun is denoted by e in the figure.
In reference to this body-fixed coordinate system, a simple SRP model formula-
tion is
X, —X X, XX

X — sun + Y sun 5.1.72
st =PI X T <X 6172

sun

The symbol p denotes the SRP in the direction of the sun. With the sign convention of
(5.1.72), p should be positive. The other parameter is called the Y bias. The reasons
for its existence could be structural misalignments, thermal phenomena, or possibly
misalignment of the solar panels with the direction of the solar photon flux. The fact
that a Y bias exists demonstrates the complexity of accurate solar radiation pressure
modeling.

Table 5.1.2 shows the effects of the various perturbations over the period of one
day. The table shows the difference between two integrations, one containing the
specific orbital perturbation and the others turned off. It is found that SRP orbital dis-
turbance reaches close to 100 m in a day. This is very significant, considering that the
goal is centimeter orbital accuracy. Over a period of 1 to 2 weeks, the SRP disturbance
can grow to over 1 km.

5.1.4.4 Eclipse Transits and Yaw Maneuvers Orbital determination is
further complicated when satellites travel through the earth shadow region (eclipse),
which occurs twice per year when the sun is in or near the orbital plane. See
Figures 5.1.6 and 5.1.7 for a graphical presentation. The umbra is that portion of
the shadow cone that no light from the sun can reach. The penumbra is the region
of partial shadowing; it surrounds the umbra cone. While the satellite transits
through the shadow regions, the solar radiation force acting on the satellite is either
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TABLE 5.1.2 Effect of Perturbations on GPS Satellites over One Day*

Perturbation Radial Along Cross Total
Earth flattening 1335 12902 6101 14334
Moon 191 1317 361 1379
Sun 83 649 145 670
Cy,.5,, 32 175 9 178
SRP 29 87 3 92
CoorSpm 6 46 4 46
(n,m=3...8)

Source: Springer et al. (1999).
2The units are in meters.

Figure 5.1.6 Biannual eclipse periods.

zero (umbra) or changing (penumbra). These changes in force must be taken into
consideration in precise orbital computations. In addition, the thermal reradiation
forces change as the temperature of the satellite drops. GPS satellites move through
the shadow regions in less than 60 min, twice per day.

The shadow regions cause an additional problem for precise orbit determination.
The solar panels are orientated toward the sun by the attitude control system (ACS)
solar sensors that are mounted on the solar panels. The condition that the 7' axis
continuously points toward the center of the earth and the solar panels are continu-
ously normal to the satellite-sun direction, the satellite must yaw, i.e., rotate around
the 7’ axis, in addition to rotating the antennas around the y’ axis. While the satellite
passes through the shadow region, the ACS solar sensors do not receive sunlight
and, therefore, cannot maintain the exact alignment of the solar panels. The satellite
starts yawing in a somewhat unpredictable way. Errors in yaw cause errors in GPS
observations in two ways. First, the range correction from the center of the satellite
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satellite path

penumbra

Figure 5.1.7 Earth shadow regions.

antenna to the satellite’s center of mass becomes uncertain. Second, there is an
additional but unknown windup error. See Section 6.2.4 for more information on the
windup error.

Bar-Sever (1996) has investigated the GPS yaw attitude problem and the compen-
sation method in detail. During shadow, the output of the solar sensors is essentially
zero and the ACS is driven by the noise of the system. Even a small amount of noise
can trigger a significant yaw change. As a corrective action, a small bias signal is
added to the signals of the solar sensors, which amounts to a yaw of about 0.5°. As a
result, during the time when the sun can be observed, the yaw will be in error by that
amount. During eclipse times, the biased noise will yaw the satellite in the direction
of the bias, thus avoiding larger and erratic yaw motions. When the satellite leaves
the shadow region, the solar sensors provide the information to determine the correct
yaw angle. The yaw maneuvers carried out by the satellite from the time it enters the
shadow region to the time it leaves it are collectively called “the midnight maneu-
vers.” When the satellite is on the sun-earth axis and between the sun and the earth,
the ACS encounters a singularity because any yaw angle represents an optimal orien-
tation of the solar panels for this particular geometry. Any maneuvers that deal with
this situation are called “the noon maneuver.”

5.2 GLOBAL POSITIONING SYSTEM

Satellite-based positioning has been pursued since the 1960s. An early and very suc-
cessful satellite positioning system was the Navy navigation satellite system (TRAN-
SIT). Since its release for commercial use in 1967, the TRANSIT positioning system
was often used to determine widely spaced networks covering large regions—even the
globe. It was instrumental in establishing modern geocentric datums and in connect-
ing various national datums to a geocentric reference frame. The TRANSIT satellites
were orbiting in a polar plane at about 1100km altitude. The TRANSIT satellites
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were affected more by gravity field variations than the much higher-orbiting GPS
satellites. In addition, their transmissions at 150 and 400 MHz were more suscep-
tible to ionospheric delays and disturbances than the higher GPS frequencies. The
TRANSIT system was discontinued at the end of 1996.

5.2.1 General Description

The Navigation Satellite Timing and Ranging (NAVSTAR) GPS provides position-
ing and timing 24 hours per day, anywhere in the world, and under any weather
conditions. The U.S. government operates GPS. It is a dual-use system, with its pri-
mary purpose being to meet military needs for positioning and timing. Over the past
decades, the number of civilian applications has increased seemingly endlessly, and
this trend is continuing.

In short, the buildup of the satellite constellation began with the series Block
I satellites. These were concept validation satellites that did not have selective
availability (SA) or antispoofing (AS) capability. They were launched into three 63°
inclined orbital planes. Their positions within the planes were such that optimal
observing geometry was achieved over certain military proving grounds in the
continental United States. Eleven Block I satellites were launched between 1978
and 1985 (with one launch failure). Their average lifetime was 8 to 9 years. They
were designed to provide 3 to 4 days of positioning service without contact with the
ground control center. The launch of the second generation of GPS satellites, called
Block 1II, began in February 1989. In addition to radiation-hardened electronics,
these operational satellites had full SA/AS capability and carried a navigation
data message that was valid for 14 days. Additional modifications resulted in the
satellite called Block ITA. These satellites can provide about 6 weeks of positioning
service without contact from the control segment. Twenty-eight Block II/ITA
satellites were launched between 1989 and 1997 into six planes, 55° inclined. The
first third-generation GPS satellite, called Block IIR (R for replenishment), was
successfully launched in 1997. These satellites have the capability to determine their
orbits autonomously through UHF cross-link ranging and to generate their own
navigation message by onboard processing. They are able to measure ranges between
themselves and transmit observations to other satellites as well as to ground control.
In recent years, GPS has undergone a major modernization. Most importantly, the
GPS satellites are transmitting more signals that allow a better delineation of military
and civilian uses, and thus increase the performance of GPS even more. Table 5.2.1
shows the current and expected progression of the modernization.

The U.S. government’s current policy is to make GPS available in two services.
The precise positioning service (PPS) is available to the military and other autho-
rized users. The standard positioning service (SPS) is available to anyone. See SPS
(2008) for a detailed documentation of this service. Without going into detail, let it
suffice to say that PPS users have access to the encrypted P(Y)-codes (and M-codes
starting with Block IT R-M) on the L1 and L2 carriers, while SPS users can observe
the public codes L1 C/A, L1C, L2C, L5. The encryption of the P-codes began Jan-
uary 31, 1994. SPS positioning capability was degraded by SA measures, which
entailed an intentional dither of the satellite clocks and falsification of the navigation
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TABLE 5.2.1 Legacy and Modernization of GPS Signals.

I IIA, IIR IIR-M IIF GPS III
Signal 1978-2004  2005-2009  Since 2010  Expected in 2015
LI1C/A X X X X
L1P(Y) X X X X
LIM X X X
L2C X X X
L2 P(Y) X X X X
L2M X X X
L5 X X
LIC X

message. In keeping with the policy, SA was implemented on March 25, 1990, on all
Block II satellites. The level of degradation was reduced in September 1990 dur-
ing the Gulf conflict but was reactivated to its full level on July 1, 1991, until it
was discontinued on May 1, 2000. Starting with the Block II R-M, new military
signals, LIM and L2M are available. Providing comparable or better performance
than L1P(Y) and L2P(Y), the new military signals coexist with them and do not
interfere with old user equipment. Careful shaping of the spectrum, based on the spe-
cially designed M-code, prevents leakage of new signal power into the spectra of old
military signals.

Over time, both satellite and receiver technologies have improved significantly.
Whereas older receivers could observe the P(Y)-code more accurately than the
C/A-codes, this distinction has all but disappeared with modem receiver technology.
Dual-frequency P(Y)-code users have the advantage of being able to correct the
effect of the ionosphere on the signals. However, this simple classification of PPS
and SPS by no means characterizes how GPS is used today. Researchers have
devised various patented procedures that make it possible to observe or utilize the
encrypted P(Y)-codes effectively, and in doing so, make dual-frequency observations
available, at least to high-end receivers. In certain surveying applications where
the primary quantity of interest is the vector between nearby stations, intentional
degradation of SA could be overcome by differencing the observations between
stations and satellites. However, positioning with GPS works much better without
SA. Starting with the Block II R-M, dual-frequency observables are available
due to the new civil L2C code. The Block II F satellites (total number is four
at the beginning of 2014) start transmission of the third civil L5 signal, allow-
ing the development of triple carrier techniques for standalone and differential
positioning.

The six orbital planes of GPS are spaced evenly in right ascension and are
inclined by 55° with respect to the equator. Because of the flattening of the earth,
the nodal regression is about —0.04187° per day; an annual orbital adjustment keeps
the orbits close to their nominal location. Each orbital plane contains four satellites;
however, to optimize global satellite visibility, the satellites are not evenly spaced
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within the orbital plane. The orbits are nominally circular, with a semimajor axis of
about 26,660 km. Using Kepler’s third law (5.1.39), one obtains an orbital period
of slightly less than 12h. The satellites will complete two orbital revolutions in
one sidereal day. This means the satellites will rise about 4 min earlier each day.
Because the orbital period is an exact multiple of the period of the earth’s rotation,
the satellite trajectory on the earth (i.e., the trace of the geocentric satellite vector on
the earth’s surface) repeats itself each sidereal day.

Because of their high altitude, the GPS satellites can be viewed simultaneously
over large portions of the earth. Usually the satellites are observed only above a
certain altitude angle, called the mask angle. Typical values for the mask angle are
10 to 15°. At a low elevation angle, the tropospheric effects on the signal can be
especially severe and difficult to model accurately. Let € denote the mask angle, and
let a denote the geocentric angle of visibility for a spherical earth, then one can find
the relation (¢ = 0°, @ = 152°), (e = 5°, & = 142°), (¢ = 10°, a = 132°). The viewing
angle from the satellite to the limb of the earth is about 27°.

5.2.2 Satellite Transmissions at 2014

The IS-GPS-200G (2012) is the authoritative source for details on the GPS signal
structures, usage of these signals, and other information broadcasts by the satellites.
All satellite transmissions are coherently derived from the fundamental frequency of
10.23 MHz, made available by onboard atomic clocks. This is also true for the new
signals discussed further below. Multiplying the fundamental frequency by 154 gives
the frequency for the L1 carrier, f; = 1575.42 MHz, multiplying by 120 gives the
frequency of the L2 carrier, f, = 1227.60 MHz, and multiplying by 115 gives the fre-
quency f5 = 1176.45 MHz. The chipping (code) rate of the P(Y)-code is that of the
fundamental frequency, i.e., 10.23 MHz, whereas the chipping rate of the C/A-code
is 1.023 MHz (one-tenth of the fundamental frequency). The navigation message
(telemetry) is modulated on both the L1 and the L2 carriers at a chipping rate of
50 bps. It is different for modern signals as will be discussed later. It contains infor-
mation on the ephemerides of the satellites, GPS time, clock behavior, and system
status messages.

Onboard atomic clocks define the space vehicle time. Each satellite operates on its
own time system, i.e., all satellite transmissions such as the C/A-code, the P(Y)-codes,
and the navigation message are initiated by satellite time. The data in the navigation
message, however, are relative to GPS time. Time is maintained by the control seg-
ment and follows UTC(USNO) within specified limits. GPS time is a continuous time
scale and is not adjusted for leap seconds. The last common epoch between GPS time
and UTC(USNO) was midnight January 5-6, 1980. The navigation message contains
the necessary corrections to convert space vehicle time to GPS time. The largest unit
of GPS time is one week, defined as 604,800 sec. Additional details on the satellite
clock correction are given in Section 6.2.2.1.

The atomic clocks in the satellites are affected by both special relativity (the satel-
lite’s velocity) and general relativity (the difference in the gravitational potential at the
satellite’s position relative to the potential at the earth’s surface). Jorgensen (1986)
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gives a discussion in lay terms of these effects and identifies two distinct parts in
the relativity correction. The predominant portion is common to all satellites and
is independent of the orbital eccentricity. The respective relative frequency offset is
Af /f = —4.4647 x 107!, This offset corresponds to an increase in time of 38.3 ps
per day; the clocks in orbit appear to run faster. The apparent change in frequency is
Af =0.0045674 Hz at the fundamental frequency of 10.23 MHz. The frequency is
corrected by adjusting the frequency of the satellite clocks in the factory before launch
to 10.22999999543 MHz. The second portion of the relativistic effect is proportional
to the eccentricity of the satellite’s orbit. For exact circular orbits, this correction is
zero. For GPS orbits with an eccentricity of 0.02 this effect can be as large as 45 ns,
corresponding to a ranging error of about 14 m. This relativistic effect can be com-
puted from a simple mathematical expression that is a function of the semimajor axis,
the eccentricity, and the eccentric anomaly (see Section 6.2.2). In relative positioning
as typically carried out in surveying, the relativistic effects cancel for all practical
purposes.

The precision P(Y)-code is used for military navigation. It is a pseudorandom noise
(PRN) code which itself is the modulo-2 sum of two other pseudorandom codes. The
P(Y)-code does not repeat itself for 37 weeks. Thus, it is possible to assign weekly
portions of this code to the various satellites. As a result, all satellites can transmit
on the same carrier frequency and yet can be distinguished because of the mutually
exclusive code sequences being transmitted. All codes are initialized once per GPS
week at midnight from Saturday to Sunday, thus creating, in effect, the GPS week
as a major unit of time. The L1 and L2 carriers are both modulated with the same
P(Y)-code.

The period of the coarse/acquisition (C/A) code is merely 1 ms and consists of
1023 bits. Each satellite transmits a different set of C/A-codes. These codes are cur-
rently transmitted only on L1. The C/A-codes belong to the family of Gold codes,
which characteristically have low cross-correlation between all members. This prop-
erty makes it possible to rapidly distinguish among the signals received simultane-
ously from different satellites.

One of the satellite identification systems makes use of the PRN weekly number.
For example, if one refers to satellite PRN 13, one refers to the satellite that transmits
the thirteenth weekly portion of the PRN-code. The short version of PRN 13 is SV
13 (SV=space vehicle). Another identification system uses the space vehicle launch
number (SVN). For example, the identification of PRN 13 in terms of launch number
is NAVSTAR 9, or SVN 9.

5.2.2.1 Signal Structure In electronics, modulation is used for transferring a
low-frequency information signal to the radio frequency harmonic wave, which is
capable of traveling through space. The wave is called “carrier” because it is used
as a media for carrying information. The carrier is modulated by several codes and
the navigation (data) message. There are several commonly used digital modulation
methods: amplitude shift keying (ASK), frequency shift keying (FSK), and phase
shift keying (PSK). The PSK is distinguished further as binary PSK (BPSK), quadra-
ture PSK (QPSK or 4-PSK), 8-PSK, and binary offset carrier modulation (BOC).
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Figure 5.2.1 Digital modulation methods.

More complex modulation schemes referred to as quadrature amplitude modulation
(QAM), which combine ASK and PSK, are used in telecommunication. For example
16-QAM is represented by the constellation of 16 points on the complex plain, which
means different amplitudes and different phase shifts.

GPS uses BPSK, QPSK, and BOC. Figure 5.2.1 briefly demonstrates some of the
BPSK principles involved. The figure shows an arbitrary digital data stream consist-
ing of binary digits 0 and 1. These binary digits are also called chips, bits, codes,
or pulses. In the case of GPS, the digital data stream contains the navigation mes-
sage or the pseudorandom sequences of the codes. The code sequences look random
but actually follow a mathematical formula. ASK corresponds to an on/off operation.
The digit 1 might represent turning the carrier on and 0 might mean turning it off.
FSK implies transmission on one or the other frequency. The transmitting oscillator
is required to switch back and forth between two distinct frequencies. In the case of
PSK, the same carrier frequency is used, but the phase changes abruptly. With BPSK,
the phase shifts 0° and 180°.

Figure 5.2.2 shows two data streams. The sequence (a) could represent the navi-
gation data chipped rate of 50 bits per seconds (bps), and (b) could be the C/A-code
or the P(Y)-code chipped at the 1.023 MHz or 10.23 MHz, respectively. The times of
bit transition are aligned. The navigation message and the code streams have signif-
icantly different chipping rates. A chipping rate of 50 bps implies 50 opportunities
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Figure 5.2.2 Modulo-2 addition of binary data streams.

per second for the digital stream to change from 1 to 0 and vice versa. Within the
time of a telemetry chip there are 31,508,400 L1 cycles, 20,460 C/A-code chips, and
204,600 P(Y)-code chips. Looking at this in the distance domain, one telemetry chip
is 5950 km long, whereas the lengths of the C/A and P(Y)-codes are 293 and 29.3 m,
respectively. Thus, the P(Y)-code can change the carrier by 180° every 29.3 m, the
C/A-code every 293 m, and the telemetry every 5950 km.

One of the tasks to be accomplished is reading the navigation message at the
receiver. We need this information to compute the positions of the satellites. To
accomplish this, the data streams (a) and (b) in Figure 5.2.2 are modulo-2 added
before transmission at the satellite. Modulo-2 addition follows the rules

00=0, O0®l=1 160=1, 161=0 (5.2.1)

The result is labeled (c). The figure also shows the phase history of the transmitted
carrier. Whenever a binary 1 occurs in the 50 bps navigation data stream, the
modulo-2 addition inverts 20,460 adjacent digits of the C/A-code. A binary 1
becomes 0 and vice versa. A binary 0 leaves the next 20,460 C/A-codes unchanged.
Let the receiver reproduce the original code sequence that is shifted in time to match
the transmitted code. We can then modulo-2 add the receiver-generated code with the
received phase-modulated carrier. The sum is the demodulated 50 bps telemetry data
stream.

The BPSK modulation of the harmonic wave is more conveniently expressed as
multiplication. If we represent the binary signal by 1 and —1 instead of 0 and 1, the
BPSK modulation converts into a product with the harmonic wave. Conversion of the
binary {0, 1} signal b, following the modulo-2 addition rule (5.2.1), into the {1, —1}
signal s, following the multiplicationtule 1 - 1 =1,1-(-1)=—-1,(-1)- 1 = —1,and
(=1)-(=1) =1, is expressed as

s =¢"P (5.2.2)
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Here i is an imaginary unit and the complex exponent is defined as e™ = cosx +
i sin x. The last expression results in ¢” = 1, ¢! = —1, and

oT01®b2) _ ,inhy yizby (5.2.3)

The last identity states that sequential application of BPSK modulation is equivalent
to the product of the modulating codes. In what follows we assume that the conversion
(5.2.2) has already been done and two sequential BPSK modulations are expressed
as multiplication.

The modulo-2 addition method must be generalized because the L1 carrier is mod-
ulated by three data streams: the navigation data, the C/A-codes, and P(Y)-codes.
Thus, the task of superimposing both code streams and the navigation data stream
arises. Two sequential superimpositions are not unique, because the C/A-code and
the P(Y)-code have identical bit transition epochs (although their length is different).
The solution is called quadrature phase shift keying (QPSK). The carrier is split into
two parts, the inphase component (I) and the quadrature component (Q). The latter is
shifted by 90°. Each component is then binary phase modulated, the inphase compo-
nent is modulated by the P(Y)-code, and the quadrature component is modulated by
the C/A-code. Therefore, the C/A-code signal carrier lags the P(Y)-code carrier by
90°. For the L1 and L2 carriers we have

Sf (1) = ApPP())DP (1) cosrfit) + AcGP(t) DP(1) sin(2z fi1) 5.2.4)
Sg(t) = BpPP(t) DP(t) cosnfyt) (5.2.5)
In these equations, the superscript p identifies the PRN number of the satellite, Ap, A,
and B)p are the amplitudes (power) of P(Y)-codes and C/A-code, PP(t) is the pseudo-
random P(Y)-code, GP(t) is the C/A-code (Gold code), and DP(¢) is the telemetry
or navigation data stream. The products PP () D”(t) and G”(t) D (t) imply modulo-2
addition as suggested by (5.2.3).
In order to explain in greater detail how QPSK relates to (5.2.4), recall the complex
expression for the harmonic signal
A cos 2zft = Re(Ae™>™) (5.2.6)
The BPSK modulation of (5.2.6) by the signal (5.2.2) can be expressed as
As(f) cos 2xft = ARe(e"PW 27ty = ARe(e2/1+i70(0) (5.2.7)
Now rewrite (5.2.4) as
S’l’(t) = A Re( o270 z+mb’,’,(z)) + AcRe( eiznf'lz+m/z+mb”6(z)) (5.2.8)
PATP(F) = o7 Dy irbh()
where PP(t)DP(t) = " and GP(t) DP(t) = ¢""¢"". Further,

S’l’(t) — Re[eiznflz(APeinb’;,(z) +Aceinbp6(t)+i7r/2)] (5.2.9)
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Assume that A~ = Ap = A for the sake of simplicity, and consider the expression

A0 L AGTGOYI2 i the internal parentheses of (5.2.9). Denote

O(L(0), 1)) = 00 4 b Oin/2 (5.2.10)

taking values as shown in Table 5.2.2. The complex valued multiplier Q(b’;,(t), b’é(t))
can be considered as a QPSK modulation operator. Application of two z /2-shifted
BPSK modulations is equivalent to one QPSK operator multiplying (modulating) the
carrier wave .
S7(1) = ARe{ QW) (1), b(1)) 1"} (5.2.11)

Figure 5.2.3 shows the symbols constellation, which the BPSK operator B(b) = ¢
and QPSK operator Q(by, b,) occupy on the complex plane.

The P(Y)-code by itself is a modulo-2 sum of two pseudorandom data streams
X,(?) and X, (¢t — pT) as follows:

PP(1) = X, () X,(t — pT) (5.2.12)
0<p<36 (5.2.13)
% =10.23 MHz (5.2.14)

Expression (5.2.12) defines the code according to the PRN number p. Using (5.2.13),
one can define 37 mutually exclusive P(Y)-code sequences. At the beginning of the
GPS week, the P(Y)-codes are reset. Similarly, the C/A-codes are the modulo-2 sum
of two 1023 pseudorandom bit codes as follows:

G (1) = G, ()G, [t — NP(10T)] (5.2.15)
TABLE 5.2.2  QPSK Modulation Operator Q(5},5/,).
b,=0 b=1
b, =0 1+ —1+i
B.=1 1—i —1-i
Im Im
r Y r 3
0(1,0) © © 0(0,0)
Re Re
O O—> S
B(1) B(0)
o(L1 ° ° 00,1

Figure 5.2.3 B(b) and Q(b,,b,) constellations on the complex plane.
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GP(1) is 1023 bits long or has a 1 ms duration at a 1.023 Mbps bit rate. The G”(¢) chip
is 10 times as long as the X chip. The G,-code is selectively delayed by an integer
number of chips, expressed by the integer N?, to produce 36 unique Gold codes, one
for each of the 36 different P(Y)-codes.

The actual generation of the codes X, X,, G|, and G, is accomplished by a feed-
back shift register (FBSR). Such devices can generate a large variety of pseudo-
random codes. These codes look random over a certain interval, but the feedback
mechanism causes the codes to repeat after some time. Figure 5.2.4 shows a very
simple register. A block represents a stage register whose content is in either a one or
zero state. When the clock pulse is input to the register, each block has its state shifted
one block to the right. In this particular example, the output of the last two stages is
modulo-2 added, and the result is fed back into the first stage and modulo-2 added to
the old state to create the new state. The successive states of the individual blocks,
as the FBSR is stepped through a complete cycle, are shown in Table 5.2.3. The ele-
ments of the column represent the state of each block, and the successive columns
represent the behavior of the shift register as the succession of timing pulses cause it
to shift from state to state. In this example, the initial state is (0001). For n blocks,
2™ — 1 states are possible before repetition occurs. The output corresponds to the state
of the last block and would represent the PRN code, if it were generated by such a
four-stage FBSR.

The shift registers used in GPS code generation are much more complex. They
have many more feedback loops and many more blocks in the sequence. The
P(Y)-code is derived from two 12-stage shift registers, X;(¢) and X,(¢), having
15,345,000 and 15,345,037 stages (chips), respectively. Both registers continuously

clock
modulo-2
v v v out
X, » X, > X, X, —
Y A J
Figure 5.2.4 Simple FBSR.

TABLE 5.2.3 Output of FBSR.
X, 0 1 0 0 1 0 0 0
X, 0 0 1 0 1 1 0 0
X, 0 0 0 1 1 1 1 0
Xy 1 0 0 0 1 1 1 1
Output 1 0 0 0 1 1 1 1
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recycle. The modulo-2 sum of both registers has the length of 15,345,000 times
15,345,037 chips. At the chipping rate of 10.23 MHz, it takes 266.4 days to complete
the whole P(Y)-code cycle. It takes 1.5 s for the X, register to go through one cycle.
The X, cycles (epochs) are known as the Z count.

The bandwidth terminology is often used in connection with pseudorandom noise
modulation. Let 7 denote the duration of the chip (rectangular pulse), so then the
bandwidth is inverse proportional to 7. Therefore, shorter chips (pulses) require
greater bandwidth and vice versa. If we subject the rectangular pulse function to a
Fourier transform, we obtain the well-known sinc (sine-cardinal) function

2
i A
S(Af.f,) = %(%) (5.2.16)

The symbol Af is the difference with respect to the carrier frequency L1 or L2. The
code frequency 10.23 MHz or 1.023 MHz, respectively, is denoted by f... The factor
1 /f. serves as a normalizing (unit area) scalar. The top panel of Figure 5.2.5 shows
the power spectral density (5.2.16) for the C/A- and P(Y)-codes expressed in watts
per hertz (W/Hz). This symmetric function is zero at multiples of the code rate f,. The
first lobe stretches over the bandwidth, covering the range of +f, with respect to the
center frequency. The spectral portion signal beyond one bandwidth is filtered out at
the satellite and is not transmitted. Power ratios in electronics and in connection with
signals and antennas are expressed in terms of decibels (dB) on a logarithmic scale.
See Section 9.1.7 for additional detail on the dB scale. The power ratio in terms of
decibel units is defined as

P2
g[dB] =10 log 10}71 (5217)

Absolute power can be expressed with respect to a unit power P;. For example, the
units dABW or dBm imply P, = 1 Wor P, = 1 mW, respectively. Frequently, the rela-
tion
Vs
1

is seen. In (5.2.18), the symbols V| and V, denote voltages. Both decibel expres-
sions are related by the fact that the square of voltage divided by resistance
equals power. The bottom panel of Figure 5.2.5 shows the power spectral density
(5.2.16) for the C/A- and P(Y)-codes, expressed in decibels relative to watt per
hertz (ABW/Hz).

The power of the received GPS signals on the ground is lower than the background
noise (thermal noise). The specifications call for a minimum power at the user on
the earth of —160 dBW for the C/A-code, —163 dBW for the P(Y)-code on L1, and
—166 dBW for the P(Y)-code on L2. To track the signal, the receiver correlates the
incoming signal by a locally generated replica of the code and accumulates results
over certain time. This correlation and accumulation process results in a signal that
is well above the noise level.
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Figure 5.2.5 Power spectral densities of C/A (dashed line) and P(Y) codes (solid line).

Top panel is in W/Hz and bottom panel is in dBW/Hz.



GLOBAL POSITIONING SYSTEM 237

5.2.2.2 Navigation Message The Master Control Station, located near
Colorado Springs, uses data from a network of monitoring stations around the
world to monitor the satellite transmissions continuously, compute the broadcast
ephemerides, calibrate the satellite clocks, and periodically update the navigation
message. This “control segment” ensures that the SPS and PPS are available as
specified in SPS (2008).

The satellites transmit a navigation message that contains, among other things,
orbital data for computing the positions of all satellites. A complete message consists
of 25 frames, each containing 1500 bits. Each frame is subdivided into five 300-bit
subframes, and each subframe consists of 10 words of 30 bits each. At the 50 bps rate
it takes 6 seconds to transmit a subframe, 30 sec to complete a frame, and 12.5 min for
one complete transmission of the navigation message. The subframes 1, 2, and 3 are
transmitted with each frame. Subframes 4 and 5 are each subcommutated 25 times.
The 25 versions of subframes 4 and 5 are referred to as pages 1 through 25. Thus,
each of these pages repeats every 12.5 min.

Each subframe begins with the telemetry word (TLM) and the handover word
(HOW). The TLM begins with a preamble and otherwise contains only information
that is needed by the authorized user. The HOW is a truncation of the GPS time
of week (TOW). HOW, when multiplied by 4, gives the X count at the start of the
following subframe. As soon as a receiver has locked to the C/A-code, the HOW
word is extracted and is used to identify the X; count at the start of the following
subframe. In this way, the receiver knows exactly which part of the long P(Y)-code is
being transmitted. P(Y)-code tracking can then readily begin, thus the term handover
word. To lock rapidly to the P(Y)-code, the HOW is included on each subframe (see
Figure 5.2.6).

Since military missions might require the jamming of L1, there is a need for equip-
ment capable of acquiring the P(Y)-code directly without the C/A-code by authorized
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users. Such functionality is provided to authorized users of receivers equipped with
selective availability antispoofing modules (SAASM). All new military receivers
deployed after the end of September 2006 must use SAASM. SAASM does not
provide any additional antijam capability, because it uses exactly the same signal in
space as current GPS signals (power and modulation). The antijam capabilities will
be provided by the M-code, which is a part of GPS modernization available in the
Block II R-M.

GPS time is directly related to the X, counts of the P(Y)-code. The Z count is a
29-bit number that contains several pieces of timing information. It can be used to
extract the HOW, which relates to the X; count as discussed above, and the TOW,
which represents the number of seconds since the beginning of the GPS week. A
full week has 403,199 X, counts. The Z count gives the current GPS week number
(modulo-1024). The beginning of the GPS week is offset from midnight UTC by
the accumulated number of leap seconds since January 5-6, 1980, the beginning of
GPS time.

Subframe 1 contains the GPS week number, space vehicle accuracy and health
status, satellite clock correction terms ay, dgy, ay, and the clock reference time 7,
(Section 5.3.1), the differential group delay, T5p, and the issue of date clock (IODC)
term. The latter term is the issue number of the clock data set and can be used to
detect any change in the correction parameters. The messages are updated usually
every 4 h.

Subframes 2 and 3 contain the ephemeris parameters for the transmitting satellite.
The various elements are listed in Table 5.2.4. These elements are a result of
least-squares fitting of the predicted ephemeris over a well-specified interval of
time. The issue of the data ephemeris (IODE) term allows users to detect changes
in the ephemeris parameters. For each upload, the control center assigns a new
number. The IODE is given in both subframes. During the time of an upload, both

TABLE 5.2.4 Elements of Subframes 2 and 3.

M, Mean anomaly at reference time

An Mean motion difference from computed value

e Eccentricity

\/5 Square root of the semimajor axis

Q, Longitude of ascending node of orbit plane at beginning of week
iy Inclination angle at reference time

0} Argument of perigee

Q Rate of right ascension

IDOT Rate of inclination angle

C..CsC,.C.C.C,  Amplitude of second-order harmonic perturbations
t Ephemeris reference time

IODE Issue of data (ephemeris)
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IODEs will have different values. Users should download ephemeris data only
when both IODEs have the same value. The broadcast elements are used with
the algorithm of Table 5.2.5. The results are coordinates of the phase center of
the space vehicle’s antennas in the World Geodetic System of 1984 (WGS84).
The latter is an ECEF coordinate system that is very closely aligned with the
international terrestrial reference frame (ITRF). There is no need for an explicit polar
motion rotation, since the respective rotations are incorporated in the representation
parameters. However, when computing the topocentric distance, the user must
account for the rotation of the earth during the signal travel time from satellite
to receiver.

Subframes 4 and 5 contain special messages, ionospheric correction terms,
coefficients to convert GPS time to universal time coordinated (UTC), and almanac
data on pages 2-5 and 7-10 (subframe 4) and 1-24 (subframe 5). The ionospheric
terms are the eight coefficients {a,,f,} referenced in Table 8.4.3. For accurate
computation of UTC from GPS time, the message provides a constant offset term,
a linear polynomial term, the reference time ¢, and the current value of the leap
second. The almanac provides data to compute the positions of satellites other
than the transmitting satellite. It is a reduced-precision subset of the clock and
ephemeris parameters of subframes 1 to 3. For each satellite, the almanac contains
the following: 7,,, 6;, asos dgy s €, 0Q.a'/2, £, ® and M,,. The almanac reference time
is t,,. The correction to the inclination §; is given with respect to the fixed value
ip = 0.30 semicircles (= 54°). The clock polynomial coefficients ay, and a;, are
used to convert space vehicle (SV) time to GPS time, following equation (6.2.4). The
remaining elements of the almanac are identical to those listed in Table 5.2.4. The
algorithm of Table 5.2.4 applies, using zero for all elements that are not included in
the almanac and replacing the reference time ¢, by 7,,.

The mean anomaly, the longitude of the ascending node, the inclination, and UTC
(if desired) are formulated as polynomials in time; the time argument is GPS time.
The polynomial coefficients are, of course, a function of the epoch of expansion. The
respective epochs are f., f,., f,,, and ;.

The navigation message contains other information, such as the user range error
(URE). This measure equals the projection of the ephemeris curve fit errors onto the
user range and includes effects of satellite timing errors.

5.2.3 GPS Modernization Comprising Block IIM, Block IIF, and
Block 1l

GPS modernization becomes possible because of advances in technology in the
satellite and the receiver. The additional signals transmitted by modernized satellites
improve the antijamming capability, increase protection against antispoofing, shorten
the time to first fix, and provide a civilian “safety of life” signal (L5) within the
protected Aeronautical Radio Navigation Service (ARNS) frequency band. The
new L2C signals increase signal robustness and resistance to interference and
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TABLE 5.2.5 GPS Broadcast Ephemeris Algorithm.

u =3.986005 x 10'* m? /s Gravitational constant for WGS84
0, =72921151467 x 107 rad /s Earth’s rotation rate for WGS84
a= (\/5)2 Semimajor axis
ny = ﬂ% Computed mean motion—rad/s
&
tL=t—1t Time from ephemeris reference epoch
n=n,+ An Corrected mean motion
M, = M, + nt, Mean anomaly
M, =E,—e sinE, Kepler’s equation for eccentric anomaly
V1—-e2sinE,
fi=tan7!| — True anomaly
cosk, —e
, [ etcos S .

E, =cos™ | ————— Eccentricity anomaly

1+ e cosf,
¢ =fito Argument of latitude

ou, = C,; sin2¢, + C,. cos2¢,
or, = C, cos2¢ + C, sin2¢, Second harmonic perturbations
8ip = C,. cos2¢, + C;, sin2¢,

u, = ¢, + ouy Corrected argument of latitude
r,=a(l—ecosE)+ér, Corrected radius
i, =iy + 6i, + AIDOT) ¢, Corrected inclination
¥ =r, cos u .. . .
ke Tk Positions in orbital plane
y, =rk sinu,
Q=0+ (2 - Qe) t,— Qetoe Corrected longitude of ascending node
X, =X, COS& —y, cosi, sinf,
Vi =X, sin€ +y, cosi, cos Earth-fixed coordinates
7 =y, sing

Note: t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed
of light). Furthermore, ¢, shall be the actual total time difference between the time ¢ and the epoch time 7,
and must account for beginning or end of week crossovers. That is, if 7, is greater than 302,400, subtract
604,800 from #,. If #, is less than —302, 400 seconds, add 604,800 seconds to .
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allow longer integration times in the receiver to reduce tracking noise and increase
accuracy. The second civil frequency will eliminate the need to use inefficient squar-
ing, cross correlation, or other patented techniques currently used by civilians in
connection with L2. Once the GPS modernization is completed, the dual-frequency
or triple-frequency receivers are expected to be in common use and affordable to the
mass market.

At the same time, L1 and L2 are modulated with new military codes called the
M-codes. Although added to L1 and L2, they are spectrally separated from the civilian
codes and the old P(Y)-codes because they use more sophisticated binary modulation
called binary offset carrier (BOC) modulation. There is no military code planned
on LS.

The new L2C signal is described in IS-GPS-200G (2012), details on L5 signal are
found in IS-GPS-705C (2012), and a description of L1C is in IS-GPS-800C (2012).
For additional material, see Fontana et al. (2001a,b), Barker et al. (2000), and Pozzbon
etal. (2011).

5.2.3.1 Introducing Binary Offset Carrier (BOC) Modulation For con-
ventional rectangular spreading codes [which are the basis of the P(Y)-codes], the
C/A-code heritage signals, and the new L2C and L5 codes, the frequency bandwidth
is inversely proportional to the length of the chip. Modulating with faster chipping
rates to improve or add additional signals might be impractical because of frequency
bandwidth limitations. More advanced modulations have been studied recently that
better share existing frequency allocations with each other and with heritage sig-
nals by increasing spectral separation, and thus preserve the spectrum. Betz (2002)
describes binary-valued modulations, also referred to as binary offset carrier (BOC).
Block IIR-M and IIF satellites will transmit a new military M-code signal on L1 and
L2 that uses BOC. It is also used in Galileo and QZSS.

Definition of BOC is based on two frequencies, f,. denoting the chipping (code) rate
and f; denoting the subcarrier frequency. Both carriers are multiples of 1.023 MHz,
f; = ax1.023 MHz, f. = X 1.023 MHz, and the designation BOC(«, ) is used as
abbreviation. The complex envelope (i.e., the complex signal modulating the radio
frequency carrier) of BOC(a, /) is expressed in Betz (2002) as

S(t) = €90 Y ayp,g (t = knT, = ty)er (t = 1) (5.2.19)
k

where {a;} is the data-modulated spreading code, which is binary for the binary
modulation case, ch(t) is the subcarrier — a periodic function with period 27, and
Hyr, (1) 1s a “spreading symbol” — a rectangular pulse lasting from 0 to n7. Then n
is the number of half-periods of the subcarrier during which the spreading code value
remains the same, and the following relationships hold:

1 2 2a

f. = o f n= n (5.2.20)
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The normalized power spectral density of the BOC modulation is written as
(Betz, 2002)

tan(z Af /2f,) cos(z Af/f.)
fc( e Af

tan(z Af /2 f,) sin(z Af/f.)
G

2
> if nis odd

8.1 BF) = (5.2.21)

2
> if nis even

For example, the modulation BOC(10,5) uses the subcarrier frequency and the
spreading code rate of 10.23 and 5.115 MHz, respectively. Furthermore, the value
n = 1 corresponds to the case of BPSK. For example, BOC(5,10) is BPSK(10), i.e.,
the BPSK modulation with 10.23 MHz spreading rate which is used for P(Y)-code.
The modulation BOC(0.5, 1) is a BPSK(1) used for L1 C/A, having 1.023 MHz
spreading rate.

A characteristic difference between the BOC and the conventional rectangular
spreading code modulation is seen in the power spectral densities of Figure 5.2.7. The
densities for BOC, in this case BOC(10,5), are maximum at the nulls of the P(Y)-codes.
Such a property is important for increasing the spectral separation of modulations.
The sum of the number of mainlobes and sidelobes between the mainlobes is equal
to n, i.e., twice the ratio of the subcarrier frequency to the code rate (5.2.20). As in
conventional BPSK the zero crossings of each mainlobe are spaced by twice the code
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Figure 5.2.7 Spectra of signals, available in the L1 frequency band.
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rate, while the zero crossings of each sidelobe are spaced at the code rate. For example,
with n = 5 the BOC(5,2) modulations have three sidelobes between two mainlobes;
with n = 10 the BOC(5,1) modulations have eight sidelobes between two mainlobes.
In the case of n = 1 we have BOC(f. /2, f.) and equations (5.2.21) and (5.2.16) giving
the same power spectral density, as already noted.

5.2.3.2 Civil L2C Codes 1t is the first civilian-use signal to be transmitted on
a frequency other than L1, used for the C/A signal. The new L2 is shared between
civil and military signals. To increase GPS performance for civilian users, the new
space vehicles IIR-M and IIF have two additional civil ranging codes, L2CM (civil
moderate length) and L2CL (civil long). As is the case for L1, the new L2 carrier
consists of two BPSK modulated carrier components that are inphase quadrature with
each other. The inphase carrier continues to be BPSK modulated by the bit train that
is the modulo-2 sum of the military P(Y)-code and the legacy navigation data DP ().
There are three options available for BPSK modulating the quadrature carrier (also
called the L2C carrier or the new L2 civil signal):

1. Chip-by-chip time multiplex combinations of bit trains consisting of the
modulo-2 sum of the L2CM code and a new navigation message structure
D(t). The resultant bit trains are then combined with the L2CL code and used
to modulate the L2 quadrature carrier. The IIR-M space vehicles will have the
option of using the old navigation message DP(¢) instead of D(1).

2. Modulo-2 sum of the legacy C/A-code and legacy navigation data D”(t).
3. C/A-code with no navigation data.

The options are selectable by a ground command. The chipping rate for L2CM and
L2CL is 511.5kbps. L2CM is 10,230 chips long and lasts 20 ms, whereas L2CL
has 767,250 chips and lasts 1500 ms. L2CL is 75 times longer than L2CM. D(¢)
is the new navigation data message and has the same structure as the one adopted for
the new L5 civil signal. It is both more compact and more flexible than the legacy
message.

The spectra of signals available on the L2 band [L2C, L2 P(Y), and L2 M-code]
look the same as shown in Figure 5.2.7, excluding the TMBOC signal available only
on L1 as L1C. Note that the spectra of signals are shown zero centered which cor-
respond to the base-band representation, only reflecting the modulation. The actual
spectra reflecting their allocation in the radio-frequency (RF) signal are shifted from
zero to L1 or L2, depending on signals.

5.2.3.3 Civil L5 Code The carrier frequency of L5 is 1176.45 MHz, which is
the new third frequency. It is a civilian safety of life signal, and the frequency band
is protected by the International Telecommunication Union (ITU) for aeronautical
radionavigation service.

As is the case for L1, two LS carriers are inphase quadrature and each is
BPSK(10) modulated separately by bit trains. The bit train of the inphase component
is a modulo-2 sum of PRN codes and navigation data. The quadraphase code is a
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separate PRN code but has no navigation data. The chipping rate of the codes is
10.23 MHz. Each code is a modulo-2 sum of two subsequences, whose lengths are
8190 and 8191 chips that recycle to generate 10,230 chip codes. The navigation
data is encoded by the error correcting code, which improves availability of the
navigation data. The bandwidth of the L5 code is 24 MHz. Wider bandwidth provides
a higher accuracy of ranging. It also has higher transmitting power than L1 and L2,
approximately 3 dB.

5.2.3.4 M-Code One of the underlying objectives behind the GPS moderniza-
tion is the development of a new military signal, protecting military use of GPS by
the United States and its allies and preventing unauthorized use of GPS. On the other
hand, the peaceful use of the civil radionavigation service must be preserved.

The new military M-codes uses BOC(10,5), which means the subcarrier frequency
and the spreading code rate will be 10.23 and 5.115 MHz, respectively, as well as
quadrature phase modulated, i.e., they share the same carrier with the civilian signals.
The idea of spectrum separation preserving the legacy signals [civilian L1 C/A and
militaryL1/L2 P(Y)] and new signals (L1C and L2C), is illustrated in Figure 5.2.7.

5.2.3.5 Civil L1C Code The prospective L1C code occupying the L1 band will
be transmitted by Block I1I satellites. It is designed in such a way that it has very little
impact on the military M-code. The time-multiplexed BOC (TMBOC) combining
BOC(1,1) and BOC(6,1) used for L1C signal, has the spectral density estimated as

10 1
gric(df) = ﬁgBOC(l,l)(Af) + ﬁgBOC(6,1)(Af) (5.2.22)

where ggoci.1)(Af) and gpoce.1)(Af) are defined by (5.2.21) for f; = 1.023 MHz,
f.=1.023 MHz, f, =6.138 MHz, f, = 1.023 MHz, respectively. It is shown in
Figure 5.2.7 by the dashed line.

There are many sources of detailed description of this signal, see Macchi-Gernot
etal. (2010), for example, while the full description can be found in the IS-GPS-800C
(2012) document. The signal is composed of two channels: a pilot channel (denoted
by LIC,) and a data channel (denoted L1Cp) transmitted inphase quadrature. The
pilot channel combines a spreading code and an overlay, or secondary code, denoted
by L1C,,. The overlay code is generated using FBSR. It is transmitted at 100 bits/s
and contains 1800 bits, thus lasting 18 seconds. The overlay code is unique for each
PRN. The data channel includes a spreading code and a navigation message. The
spreading codes of the pilot and data channels are time synchronized. The spreading
codes are broadcasted at the same chipping rate as L1 C/A, that is, 1.023 Mchips/s.
On both the pilot and data channels, the spreading codes have a period of 10 ms,
and therefore contain 10,230 chips. The L1C spreading codes are generated using a
modified Weil code. We refer the reader to the Chapter 3.2.2.1.1 of the IS-GPS-800C
(2012) for more detail about the Weil code.

The modulation on L1C, (data channel) is a BOC(1,1). Its two main lobes are
centered at +1.023 MHz relative to the central frequency (see dashed line plot in
Figure 5.2.7) Therefore, a bandwidth of 4.092 MHz is needed to transmit most of
its power. The modulation on LIC, is a TMBOC, which consists of 29/33 chips
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modulated using a BOC(1,1) and others using a BOC(6,1). When BOC(6,1) is used,
the number of chips (and correspondingly the chipping rate) is increased by a fac-
tor of six compared to the BOC(1,1), for a time interval equivalent to one chip of
the original ranging code. This increased chipping rate has the effect of requiring an
increased sampling frequency to extract all the information, because the minimum
necessary bandwidth is 14.322 MHz; please look at the third side lobes of the dashed
line in Figure 5.2.7.

The L1C navigation message is transmitted on the data channel at 100 symbols per
second. The low-density parity-check code (LDPC) with the % code rate is used to
encode the navigation data. LDPC is one of the error correction codes, see Gallager
(1963). Code rate is defined as the ratio between the number of bits necessary to trans-
mit the information and the total number of bits. Encoding aims to improve reliability
and antierror protection. Therefore, despite the fact that the message is broadcasted
at twice the chipping rate than on L1 C/A, effectively the navigation message rate is
the same 50 symbols per second due to the % code rate.

5.3 GLONASS

The Russian GLONASS (Global’naya Navigatsionnaya Sputnikovaya Sistema)
global navigation satellite system traces its beginnings to 1982, when its first satellite
was launched. The time line of the space segment is shown in Figure 5.3.1 by a
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Figure 5.3.1 Operational satellites for GPS, GLONASS, Galileo, and Beidou systems by
years. Data from various Internet documents.
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dotted line. The number of GPS satellites is shown by a black line for comparison.
For technical information about GLONASS, see the interface control document
GLONASS (2008). Additional details on the system and its use, plus many references
to relevant publications on the subject, are available in RoBbach (2001), Zinoviev
(2005), and other papers published in proceedings at various scientific meetings.

Like GPS, GLONASS was intended to encompass at least 24 satellites. The nom-
inal orbits of the satellites are in 3 orbital planes separated by 120°; the satellites
are equally spaced within each plane with nominal inclination of 64.8°. The nominal
orbits are circular with each radius being about 25,500 km. This translates into an
orbital period of about 11 h and 15 min.

A major difference between GLONASS and GPS is that each GLONASS satellite
transmits at its own carrier frequency. Let p denote the channel number that is specific
to the satellite, then

f]p = 1602 + 0.5625p MHz (5.3.1)
fé’ = 1246 + 0.4375p MHz (5.3.2)
with ”
19
- =7 (5.3.3)

2

The original GLONASS signal structure used 1 < p < 24, covering a frequency
range in L1 from 1602.5625 to 1615.5 MHz. However, receivers have an interfer-
ence problem in the presence of mobile-satellite terminals that operate at the 1610 to
1621 MHz range. To avoid such interference, it has been suggested that the channel
numbers will be limited to —7 < p < 6 and that satellites located in antipodal slots
of the same orbital plane may transmit at the same frequency (GLONASS, 2008).
Currently, the L1 frequency covers the range from 1598.0625 to 1605.375 MHz and
L2 frequency covers the range from 1242.9375 to 1248.625 MHz.

The L1 and L2 frequencies are coherently derived from common onboard
frequency standard running at 5.0 MHz. In order to account for relativistic effects,
this value is adjusted to 4.99999999782 MHz. As is the case with GPS, there are
C/A-codes on L1 and P-codes on L1 and L2, although the code structures differ.
The satellite clocks are steered according to UTC(SU), where SU stands for Russia
(former Soviet Union). The GLONASS satellite clocks, therefore, are adjusted for
leap seconds.

Two different types of signals are transmitted by GLONASS satellites: Standard
precision (ST) and high precision (W) in both the L1 and L2 bands. The GLONASS
standard accuracy signal, also known as C/A-code, has a clock rate of 0.511 MHz and
is designed for use by civil users. The high accuracy signal (P-code) has a clock rate
of 5.11 MHz and is modulated by a special code that is only available to authorized
users.

The GLONASS broadcast navigation message contains satellite positions and
velocities in the PZ90 ECEF geodetic system and accelerations due to luni-solar
attraction at epoch #,. These data are updated every 30 min and serve as initial
conditions for orbital integration. The satellite ephemeris at the epoch 7, with
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|t, — ty| < 15 min is calculated by numerical integration of the differential equations
of motion (5.1.62). Because the integration time is short, it is sufficient to consider
a simplified force model for the acceleration of the gravitational field of the earth.
Since the gravitational potential of the earth is in first approximation rotationally
symmetric, the contributions of the tesseral harmonics m # 0 are neglected in
(5.1.64). Since C, > C,, for n > 2, we neglect the higher-order zonal harmonics.
With these simplifications the disturbing potential (5.1.64) becomes

uaz— — pa;
R= r—SCZOPz(cos 0)=— JoP5(cos 6)
2
ua 3 1
_ r; 7 <§ cos2 0 — 5) (5.3.4)

In expression (5.3.4), we switched from the fully normalized spherical harmonic coef-
ficients to regular ones and substituted the expression for the Legendre polynomial
P,(cos 0). Since Z = r cos 6, equation (5.3.4) can be rewritten as

2 2
_ Ha, 37 1

Recognizing that r = (X* + Y? + Z?)!/2, we can readily differentiate and compute
the acceleration Xg as per (5.1.63),

. a2 2 .
X=_;‘_3x—312”r;x (1-5%) + X, (53.6)
. a? 2 .
Y=—%Y—%J2%Y<I—Sf—2>+YS+m (53.7)
.. 7 3 yag 72 ..
2=-£7-2057(1-55 ) + 2., (5.3.8)

These equations are valid in the inertial system (X) and could be integrated. The
PZ90 reference system, however, is ECEF and rotates with the earth. It is possible to
rewrite these equations in the ECEF system (x). Since the integration interval is only
+15 min, we can neglect the change in precession, nutation, and polar motion and
only take the rotation of the earth around the z axis into consideration. The final form
of the satellite equation of motion then becomes

a? 2

% = _:‘_3x - %Jzﬂrsex <1 - 5%) + @2+ 2055 + Fyp (5.3.9)
2 2

.. H 3. Ha Z o

p==v-3 zr_;y (1 - 5§> + w3y + 2035 + V. (5.3.10)

2 2
. 3 Ha .
= —;4—32—512/4}’562<1—5i—2>+25+m (5.3.1D



248 SATELLITE SYSTEMS

Note that (%,,Z2),,,, are the accelerations of the sun and the moon given in the
PZ90 frame. These values are assumed constant when integrating over the +15
min interval. In order to maintain consistency, the values for u, a,, J,, and w;
should be adopted from GLONASS (2008). This document recommends a four-step
Runge-Kutta method for integration.

Various international observation campaigns have been conducted to establish
accurate transformation parameters between WGS84 and PZ90, with respect to the
ITRF. Efforts are continuing to include the precise GLONASS ephemeris into the
IGS products.

The GLONASS program is also undergoing modernization. The new series of
satellites are called GLONASS-M. GLONASS-M satellites have better onboard clock
stability and a civil code (also called L2C) available at the L2 frequency band. Starting
with GLONASS-K1, the first code division multiple access (CDMA) signal becomes
available at the frequency band L3 = 1201 MHz. GLONASS-K?2, planned for launch
starting in 2014, will provide CDMA codes on L1, L2, and L3 bands.

GLONASS satellites have been used successfully for accurate baseline determina-
tion since the mid-1990s (Leick et al., 1995). The additional difficulties encountered
in baseline processing because of the GLONASS satellites transmitting on different
carrier frequencies will be discussed in Chapter 7.

5.4 GALILEO

Galileo, the European global navigation satellite system, is designed to provide a
highly accurate, guaranteed, and global positioning service under civilian control that
is funded by civilian European institutions. It is interoperable with other global satel-
lite navigation systems. The full constellation is expected to consist of 27 operational
and 3 spare space vehicles, located in 3 orbital planes with inclination of 56°, and
nominal circular orbits with a semimajor axis of about 29,600 km.

On March 26, 2002, the European Council agreed on the launch of the Euro-
pean Civil Satellite Navigation Program, called Galileo. Basic approaches and critical
algorithms were tested by 2003. Two initial satellites, called GIOVE (Galileo In-Orbit
Validation Elements) were launched in 2005. They were built for the European Space
Agency (ESA) for testing Galileo technology in orbit and eventually to become two
satellites of the full Galileo constellation. Four additional satellites were launched by
2012. The full constellation of 30 satellites is planned for completion by 2020. The
number of Galileo satellites by years is shown in Figure 5.3.1 by a dual solid line.

It can be seen from Figure 5.4.1 that the Galileo E5A signals share the frequency
band with GPS LS. The adjacent region is reserved for Galileo ESB. At the World
Radio Conference (WRC) 2000 in Istanbul, Turkey, several decisions were made
that deal with the increasing demand for frequency space. For example, the WRC
expanded the bottom end of one of the radio navigation satellite services (RNSS)
bands to between 1164 and 1260 MHz, putting E5A, E5B, and LS5 under RNSS
protection. Galileo has also been assigned the range 1260 to 1300 MHz, labeled
E6, at the lower L-band region. At the upper L-band, the band labeled El has been
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Figure 5.4.1 Allocation of GPS, GLONASS, Galileo, Compass (Beidou), QZSS,
IRNSS, and SBAS frequency bands. The S-band (2492.028 MHz) IRNSS signal is not
presented.

reserved for Galileo and is centered at the GPS L1 band. Using BOC modulation
techniques, the Galileo signal has been constructed to have maximum spectral
density at both sides of the E1 band, but covering the whole EI band.

In order to make Galileo and GPS compatible, i.e., allow for the use of common
receiver components, the carrier frequency for Galileo E1 is 1575.42 MHz, which is
the same as GPS L1. Similarly, ESA and L5 use 1176.45 MHz as the common carrier
frequency. The modulation (inphase and quadraphase) codes and chipping rate for
the various carriers are summarized in Table 5.4.1

TABLE 5.4.1 Galileo Signal Parameters.

Receiver Ranging Code
Carrier Reference Chip rate
Signal  Frequency (MHz) Bandwidth (MHz)  (Mchip/s) Modulation
El 1575.420 24.552 2.046 BOC(2,2)
E6 1278.750 40.920 5.115 BOC(10,5), BPSK(5)
E5 1191.795 51.150 AItBOC(15,10)
E5a 1176.450 20.460 10.23

E5b 1207.140 20.460 10.23
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The Galileo ES5 signal employs a constant envelope alternate binary offset carrier
(AItBOC) modulation. The subcarrier waveforms are chosen in such a way that a
constant envelope at the transmitter is obtained. The result of this AItBOC modula-
tion is a split spectrum around the center frequency, as shown in Figure 5.4.1. Each
sideband comprises two pseudorandom codes modulated onto the orthogonal com-
ponents. The inphase components E5AI and ESBI carry the data modulation. The
quadrature components ESAQ and ESBQ are pilot signals. While being two parts of
the ES signal, the ESA and E5B signals can be processed independently by the user
receiver as though they were two separate QPSK signals with a carrier frequency of
1176.45 and 1207.14 MHz, respectively.

Galileo employs the same ephemerides structure as used by GPS. The user algo-
rithm for ephemeris determination is identical to one used for GPS (see Table 5.2.5).
The convolutional code with the code rate % is used to increase reliability of the
navigation data transmission.

5.5 QZSSs

The Japanese quasi zenith satellite system (QZSS) constellation consists of quasi-
zenith satellites orbiting the earth. The constellation buildup started in September
2010 with the launch of the first satellite Michibiki. It achieved full functionality in
late 201 1. During the initial phase of technical verification and application demonstra-
tion, the goal was to demonstrate that combining GPS and QZSS would significantly
improve positioning availability in urban canyon areas of Tokyo.

The government of Japan decided in 2011 to accelerate the QZSS deployment
to reach a four-satellite constellation by 2020, while aiming at a final seven-satellite
constellation. In March 2013, the Japanese Cabinet Office formally announced a large
contract award to Mitsubishi to build one geostationary satellite and two additional
quasi-zenith satellites. The three satellites are scheduled to be launched before 2018.
In addition, another contract was also signed with a special-purpose company (led
by NEC and supported by Mitsubishi UFJ Lease & Finance and Mitsubishi Electric
Corporation) to fund the design and construction of the ground control system, as
well as its verification and maintenance for a period of 15 years.

Three satellites are planned to be placed in highly elliptical orbit (HEO). The
perigee altitude is about 32,000 km and the apogee altitude is about 40,000 km, and
all of them will pass over the same “figure-8” ground as shown in Figure 5.5.1. The
system is designed so that at least one satellite out of three is always near zenith
over Japan. Given its orbit, each satellite appears almost overhead most of the time
(i.e., more than 12h a day with an elevation above 70°). This gives rise to the term
“quasi-zenith” for which the system is named. The design life of the quasi-zenith
satellites is 10 years. Table 5.5.1 lists the signals planned for QZSS.

The signals L1-C/A, L1C, L2C, and L5 are designed to be compatible with
existing GNSS receivers, in order to increase availability of both standalone and
high-precision carrier phase differential position services. For example, they allow
forming across-satellite, across-receiver mixed GPS-QZSS and Galileo-QZSS
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Figure 5.5.1 The QZSS ground track.

TABLE 5.5.1 QZSS Signal Parameters.

Receiver

Carrier Reference Ranging Code

Frequency Bandwidth (MHz) Chip rate
Signal (MHz) (approximate) (Mchip/s) Modulation
L1C/A 1575.42 24 1.023 BPSK(1)
L1C 1575.42 24 1.023 BOC(1,1)
L1-SAIF 1575.42 24 1.023 BPSK(1)
L2C 1227.60 24 1.023 BPSK(1)
LEX 1278.75 42 5.115 BPSK(5)

L5 1176.45 24 10.23 BPSK(10)
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differences. Experiments with receivers by Javad GNSS show successful resolution
of corresponding mixed double difference ambiguities (Rapoport, private commu-
nication). In other words, QZSS can be considered an extension of GPS for point
and high-precision services. The signal L1-SAIF (submeter-class augmentation with
integrity function) is intended to provide submeter augmentation and interoperability
with GPS and SBAS (satellite based augmentation system). The LEX signal is the
QZSS L-band experimental signal for high-precision service at the 3 cm level. It is
compatible with the Galileo E6 signal.

The multi-constellation GNSS interoperable signals L1 C/A, L1C, L2C, and L5
are to be provided free of charge. Compatibility is a mandatory requirement for the
QZSS system (working in the same frequency bands as other GNSS systems without
harmful interference). For GPS performance enhancement signals, a charging policy
for LI-SAIF and LEX signals is under consideration.

Compared to standalone GPS, the system combining GPS and QZSS will improve
positioning performance via correction data provided through submeter enhancement
signals L1-SAIF and LEX. The ephemeris algorithm is basically the same as used for
GPS and described in Table 5.2.4. Detailed descriptions can be found in QZSS (2013).
To increase reliability of the navigation data transmission, the LDPC code with the %
code rate is used.

5.6 BEIDOU

The Chinese Compass Navigation Satellite System (CNSS), also called Beidou-2,
is a satellite navigation system that will also be capable of providing positioning,
navigation, and timing services to users on a continuous worldwide basis. Since
beginning the upgrade in 1997 from a regional navigation system to a global system
and achieving formal approval by the government to develop and deploy Beidou-2
in 2004, the system is expected to provide global navigation services by 2020, sim-
ilar to GPS, GLONASS, or Galileo. The Beidou satellite constellation consists of
geostationary earth orbit (GEO), inclined geosynchronous satellite orbit (IGSO), and
medium-earth orbit (MEO) satellites.

When fully deployed, the space constellation will include 5 GEOs, 27 MEOs, and
3 IGSOs. The GEO satellites are operating at an altitude of 35,786 km and positioned
at 58.75°E, 80°E, 110.5°E, 140°E, and 160°E. The MEO satellites are operating at
orbital altitude of 21,528 km with an orbital inclination of 55°. The IGSO satellites
are at orbital altitude of 35,786 km with an inclination of 55° to the equatorial plane.

As of December 2011, the Beidou system provides initial operational service for
positioning navigation and timing services for the Asia-Pacific region with a con-
stellation of 10 satellites (5 GEOs and 5 IGSOs). During 2012, 5 additional satellites
(1 GEO satellite and 4 MEO satellites) were launched, increasing the number of satel-
lites of the constellation to 14. The number of launched Beidou satellites by years is
shown in Figure 5.3.1 by a double dashed line.

The Beidou signals are transmitted in three frequency bands: B1, B2 (which
equals to E5SB of Galileo), and B3. Parameters of the signals are summarized in
Table 5.6.1. For MEO and IGSO satellites, the ephemeris calculation algorithm is
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TABLE 5.6.1 Beidou Signal Parameters.

Receiver
Carrier Reference Ranging Code
Frequency Bandwidth (MHz) Chip rate
Signal (MHz) (approximate) (Mchip/s) Modulation
Bl 1561.098 4 2.046 BPSK(2)
B2 1207.14 24 10.23 BPSK(10)
B3 1268.52 24 10.23 BPSK(10)

the same as is used for GPS and is described in Table 5.2.4, and the only differ-
ence is in using the CGCS2000 constants: y = 3.986004418 x 10'* m3 /s? for the
earth universal gravitational constant and £, = 7.2921150 X 1073 rad /s for the earth
rotation rate.

For the GEO satellites, the two last steps of calculation differ from those described
in Table 5.2.4 as follows (Beidou, 2013, p. 34):

Q =0Q,+ 01— Qut, (5.6.1)
XGp = X} OS2y — y, cosiy sin &

Yor =X, SIn&2 —y, cosi; cos & (5.6.2)
gk =V, siniy

Xk ) 7\ | Fox
yi | = R3(L2,1)R, (‘g) Ve (5.6.3)
<k Gk

where matrices R, (¢) and R;(¢) are described in Appendix A.2.

The Beidou reference system is the China Geodetic Coordinate System 2000
(CGCS2000), which is aligned to the ITRS. Beidou has already gained much
attention from the geodetic and surveying community as a source for additional
observations, but also because it is a mixed constellation consisting of geosta-
tionary, inclined geosynchronous, and medium orbits. Shi et al. (2013) processed
dual-frequency phase observation of June 2011, at the time the constellation included
3 GEOs and 3 IGSOs, for precise relative positioning. Montenbruck et al. (2013)
used a March 2012 triple-frequency data set to provide an initial assessment of
the satellite system regarding satellite clock performance, precise absolute posi-
tioning, and baseline determination. Tang et al. (2014) evaluated epoch-by-epoch
processing of triple-frequency observations to investigate previously suggested
optimal triple-frequency processing strategies, such as TCAR (three-frequency
carrier ambiguity resolution), for baselines ranging from 2.5 m to 43 km. The impli-
cations of using a GPS-type of broadcast ephemeris format for the geostationary
and geosynchronous orbits was investigated by Du et al. (2014), who suggest an
18-element GEO broadcast.
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5.7 IRNSS

In May 2006, the Indian government approved development of the Indian Regional
Navigation Satellite System. The major objective was to have complete Indian control
over the space segment, ground segment, and user receivers. Seven satellites will
eventually complete the space segment of the IRNSS. Three of them will be GEOs
located at 32.5°, 83°, and 131.5° east longitude. Four of them will be IGSO in an
orbital plane with 29° inclination. Two IGSO satellites will cross the equator at 55°
east and two at 111.75° east. The IGSO satellites will have a “figure-8” ground track.
Because of low latitudes, a coverage with low-inclination satellites is optimal. The
constellation provides continuous radio visibility with the Indian control stations.

Seven satellites with the prefix “IRNSS-1" form the space segment of the IRNSS.
The first satellite, IRNSS-1A, was launched on July 1, 2013. It operates in L5
band (1176.45 MHz) and S band (2492.028 MHz). The second satellite IRNSS-1B
was launched on April 4, 2014, and placed in IGSO. In 2014, two more satellites,
IRNSS-1C and IRNSS-1D, will be launched. Three more satellites are planned for
launch at the beginning of 2015. Thus, by the middle of 2015, India is expected to
have the full IRNSS system installed.

IRNSS signals will provide two types of services: standard positioning ser-
vice (SPS) and restricted service (RS). Both SPS and RS will be carried on L5
(1176.45MHz) and S band (2492.08 = 243.6 X 10.23 MHz). The SPS signal will
be modulated by a BPSK(1) signal. The RS signal will use BOC(5,2) modulation.
An additional BOC pilot signal will be provided for the RS service (called an RS-P
signal), in order to improve acquisition and performance. Therefore, each of the
L5 and S bands will carry three signals: SPS, RS, and RS-P. The user receiver can
operate in single- and/or dual-frequency mode. Since an IRNSS interface control
document (ICD) has not yet been publicly released, we refer to the research paper by
Majithiya et al. (2011) for more detail. Thoelert et al. (2014) recorded and analyzed
the spectrum and modulated chip sequences of the signals transmitted by the first
IRNSS satellite using a 30 m high-gain antenna.

The IRNSS system is expected to provide absolute position accuracy of better than
10 m over India and better than 20 m in the Indian Ocean and territories surrounding
India, up to 1500 km beyond its boundary.

5.8 SBAS: WAAS, EGNOS, GAGAN, MSAS, AND SDCM

The U.S. Federal Aviation Administration (FAA) has developed the wide area aug-
mentation system (WAAS) to improve accuracy, integrity, and availability of GPS,
mainly for air navigation applications. A ground segment consists of a network of
wide area reference stations (WRS) located in the United States (including Alaska
and Hawaii), Canada, Mexico, and Puerto Rico. These ground stations monitor the
GPS signals and send information to wide area master stations (WMS) using a com-
munications network. The WMS generate sets of fast and slow corrections. The fast
corrections are useful for compensation of rapidly changing errors that affect the
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positions and clocks of GPS satellites. The slow corrections deal with long-term
ephemeris and clock errors, as well as ionospheric delay parameters. Once these
corrections have been generated, the WMSs send them to ground uplink stations
for transmission to the satellites of the WAAS space segment. The latter modulate
the correction on a GPS L1 carrier together with a C/A-code and then transmit to
the user. The corrections, therefore, are used in a one-way (satellite to user) manner
and can be applied instantly by any receiver inside the WAAS broadcast coverage
area. The space segment consists of multiple, multipurpose geostationary commu-
nication satellites. Because the transmissions of the SBAS space segment contain a
ranging code on L1, they effectively increase the number of satellites available for
positioning.

WAAS is one of several satellite-based augmentation systems (SBAS). Europe and
Asia are operating or developing their own SBAS: the European Geostationary Navi-
gation Overlay Service (EGNOS), the Indian GPS Aided Geo Augmented Navigation
(GAGAN), the Japanese Multifunctional Satellite Augmentation System (MSAS),
and the Russian System for Differential Correction and Monitoring (SDCM).

The SBAS satellites enable the users to produce code and carrier phase obser-
vations. Eventually, SBAS will be a dual-frequency system. An SBAS L5 interface
control document is under development and already circulating in the form of a draft.
The signal structure of L1 and L5 SBAS is very similar to those of GPS, but there are
differences. The GPS LS5 signal is designed with two channels, I and Q. The modu-
lation method is BPSK(10) in both channels with 10,230 code length. The I channel
is the data channel and the Q channel is data free. The WAAS L5 signal has only one
data channel. Another difference, of course, is the space segment. The SBAS sig-
nals are broadcasted from multi functional geostationary satellites and not dedicated
navigation satellites. As a result, the space-borne clock errors and orbital errors are
greater than those of GPS. However, combining GPS L1/L5, SBAS L1/L5 (providing
integrity data for GPS), and Galileo E1/ES observations in dual-band receivers will
enable robust high-precision positioning.

The SDCM system consists of three GEO satellites, Luch-5A, Luch-5B, and
Luch-5V, which transmit at GPS L1 frequency band, while serving to improve
GLONASS operation; see SDCM (2012).






CHAPTER 6

GNSS POSITIONING APPROACHES

New GNSS positioning and timing techniques continue to be developed and refined.
Whereas during the formative years the progress of GPS positioning was measured
by leaps and bounds at a breathtaking speed, the current developments are more
incremental in nature but, nevertheless, lead to noticeable refinements that result in
shortening of observation time, increase in accuracy, and increase in reliability. The
incremental improvements are due to the modernization of GPS, the repopulation of
the GLONASS satellite system, and the new Beidou, Galileo, and QZSS satellite sys-
tems. Equally important to continued improvement of GNSS positioning is the dedi-
cated efforts by many scientists and engineers to complete a GNSS infrastructure for
data collection, evaluation, and user service. Examples include the IGS (International
GNSS Service), which provides various intermediary products, antenna calibration
services, services that provide accurate information about the ionosphere and tropo-
sphere, and also processing services that accept user observations and deliver final
coordinates in any desired coordinate system.

The first section summarizes undifferenced pseudorange and carrier phase func-
tions between a single station and single satellite. This includes the triple-frequency
functions. This is followed by functions that include two stations. These are the sin-
gle differences, consisting of the across-receiver functions, across-satellite functions,
and across-time functions, followed by the traditional double-difference and triple-
difference functions.

The second section addresses operational details such as satellite clock correc-
tions, timing group delay, and intersignal corrections, cycle slips, phase windup cor-
rection, multipath, and phase center offset and phase center variation. The section
concludes with a discussion on the various services available to the user, in particular
the IGS.

257
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Section 6.3 deals with the navigation solution. It produces position and time
for a single user using pseudorange observations and the broadcast ephemeris.
We discuss the DOP (dilution of precision) factors and Bancroft’s closed-
form navigation solution is presented.

Section 6.4 deals with well-established techniques in surveying and geodesy, i.e.,
baseline determination using carrier phase observations to determine relative posi-
tioning between stations. The focus is on double differencing, although we briefly
talk about the equivalent undifferenced formulation. Although the ambiguity func-
tion technique does not seem to command the popularity of double differencing, it
will be discussed next. The section concludes with initial remarks about GLONASS
carrier phase processing.

Section 6.5 is dedicated to double-difference ambiguity fixing. It begins with look-
ing at the problem as a classical least-squares solution with conditions. The popular
LAMBDA (least-squares ambiguity decorrelation adjustment) approach for decorre-
lating the ambiguity parameters is presented in detail, although key references are
cited to document various statistical properties of the technique. Because ambigu-
ity fixing plays such a central role in accurate baseline determination, we widen the
scope of techniques and talk about lattice reduction in general.

Section 6.6 focuses on the support of networks for precise positioning. First the
traditional PPP (precise point positioning) is presented, which makes implicit use
of a global network, followed by the traditional use of CORS (continuing operating
reference stations) networks, which are typically at the national level. We then present
the differential correction, which contains ancillary data from a reference station and
is transmitted to the user. The main part of this section is on PPP-RTK and the content
of the various network corrections it uses. PPP-RTK has received a lot of attention in
recent years.

The last section deals with triple-frequency solutions. These types of solutions
are becoming relevant as more satellites of the various GNSS systems transmit on
three or more frequencies. The focus is on the extra capability provided by the third
frequency as compared to “classical” dual-frequency approaches.

6.1 OBSERVABLES

Pseudoranges and carrier phases are the basic GNSS observations (observables) used
for positioning and timing. Carrier phases are always required for accurate surveying
at the centimeter level. Obtaining these measurements involves advanced techniques
in electronics and digital signal processing. We discuss the pseudorange and carrier
phase equations in the form needed to process the observations as downloaded from
the receiver. The internal processing of the receiver that produces the pseudorange
or carrier phase observables starting satellite signals registered at the antenna is not
discussed. The reader is, instead, asked to consult the respective specialized literature
on internal receiver processing.

We begin with the derivation of the pseudorange and carrier phase equations
and express them in terms of various parameters. These basic observables are then
combined into various linear functions. For example, there are functions that do
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not contain first-order ionospheric terms, functions that are independent of the
receiver location, and functions that do not depend on either ionosphere or receiver
location. Other functions difference simultaneous observations across receivers,
across satellites, or across receivers and satellites. The latter are popularly known as
double differences. The triple difference, which is an across-time double difference,
is also given. In view of modern GNSS systems, we include, of course, relevant
triple-frequency functions.

All functions are provided essentially in the form of a list, thus allowing us to
bundle all relevant functions into one location in the book. Only minimal explanations
are provided for the functions since they are well known. However, each function
is given explicitly in terms of the original observables, making verification of the
function easy by simply substituting the original observable expressions.

We begin with explaining a consistent notation that makes it easy to follow the
text. The notational elements are summarized first. Consider the following special
functions:

fi2
A= —S 6.1.2

The subscripts are integers used to identify the satellite frequency f. Note that in this
particular case, there is no comma between the subscripts i and j on the left side of
the equations, and the sequence of the subscripts in y;; indicates the particular ratio
of respective frequencies squared. Similarly, 4;; denotes a wavelength of frequency
fi=1;-

In contrast to the use of double subscripts without comma for the special cases
above, it can also indicate a differencing operation as in

(‘),j,' =(®)y — (‘)_,' (6.1.3)

An example is P; = P; — P;, which can generally be read as the difference of two
pseudorange observations. Only for the specific cases of (6.1.1) and (6.1.2) do the
double subscripts without comma not indicate differencing.

Occasionally it is advantageous to indicate the specific station and satellite to
which an observation refers. This is done with the pk notation, as in P” Here, the
subscript k identifies the station and superscript p identifies the satelhte The numer-
ical value after the comma indicates the frequency. Thus, P’Z,l is the f; pseudorange
at station k to satellite p. This notation can be generalized by adding another comma
and subscript. For example, the notation I? k 1P identifies the ionospheric delay of the
f, pseudorange form receiver k to satellite p. Applying the pk notation to (6.1.3) gives
the across-receiver difference

(o)) = (o) — (o), (6.1.4)

which is the difference of simultaneous observations taken at station k and m to satel-
lite p. Other examples that include the frequency identifier are P} | =P/ — P’
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and P! , =P, ,— P’ . Applying the same differencing notation to superscripts, we
obtain the across-satellite difference,

(o)1 = (o)) — (o] 6.1.5)

in which case simultaneous observations taken at station k to satellites p and g are
differenced. An example is P = P — P{ . The across-time difference is

Ae)) = (o) (ty) — (o),(1)) (6.1.6)
The differencing operator A indicates differencing over time, and #; and ¢, indicate
the specific time epochs. Examples are APp =P (tz) -P (tl) and APP i Pp a4 (t2) —

PP a (tl) The latter example indicates the across-time and the across- satelllte dlffer—
ence of the f; pseudorange. The popular double difference is

q iz Pq

(o = (o), — (&), = (o)) — (o)} 6.1.7)

It is an across-receiver and across-satellite difference, or an across-satellite and
across-receiver difference. An example is P’;q = p? = P” a_ prd
m,1 km, 1 km 1 m,1

the double-differenced ionospheric delay of the f; pseudoranges, qu Lp Flnally, the
triple difference is

A(o)pl = ()r (1) = (o)1 (1) (6.1.8)

which is the across-time double difference.

A complete description of the pseudoranges and carrier phase observables and
their functions requires relations that relate the ionospheric delay of the pseudorange
and ionospheric carrier phase advance for signals traveling through the ionosphere.
The details of the ionosphere and troposphere are presented in Chapter 8. It is suffi-
cient to consider the following relations:

7
Lip=rlip= lel,P (6.1.9)
J
Ly =1l iy 6.1.10
Jo = V71 1,¢—J71,¢ (6.1.10)
J
Lig=%41,= ]%Ii,(p (6.1.11)
lip=-lig (6.1.12)

Equation (6.1.9) relates the ionospheric delays for pseudorange of frequencies f; and
J;- The factor yy; is given in (6.1.1). Equations (6.1.10) and (6.1.11) show the respec-
tive relations for the ionospheric advance of the carrier phase. The meaning of the
subscripts @ and @ is given below when the carrier phase equation is derived. It
suffices to know that ¢ expresses the carrier phase in radians and @ represents the
scaled carrier phase in units of meters. The factor 4; denotes the carrier wavelength of
frequency f;. Equation (6.1.12) states that the ionospheric effect on the pseudorange
and scaled carrier phase have the same magnitude but have opposite signs.
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The basic equations for pseudoranges and carrier phases are given next. We briefly
mention how to correct the pseudorange observations for the timing information such
as satellite clock errors, timing group delay, and intersignal correction, all of which
are available from the broadcast navigation message.

6.1.1 Undifferenced Functions

The basic equations for pseudoranges and carrier phases are derived first. As was
mentioned above, the basic observables are developed from the user’s point of view.
This means that any internal receiver software processing to convert satellite signals
registered by the receiver antenna to usable outcomes, i.e., pseudoranges and carrier
phases, is not discussed.

6.1.1.1 Pseudoranges Lettdenote the system time, such as GPST (GPS time).
GPS time is steered by the satellite operators to remain within one microsecond or
better of UTC(USNO) time, except for a leap second offset. Temporarily, the nominal
receiver time is denoted by 7 and the atomic clock time of a satellite by 7. These are
the time values the “hands” of a receiver or space vehicle clock would show. The
nominal times equal the true times plus small corrections. At any instant in time, we
have #(t) = t + dt and #(t) = t + dt. The implied sign convention is that the receiver
clock error equals the amount by which the receiver clock advances the true time and,
similarly, the satellite clock error equals the amount by which the satellite clock time
advances relative to the system time. Further, let 7 be the transit time of a signal, or the
travel time in a vacuum for a specific code to travel from the instant of transmission
at the satellite to the instant of reception by the receiver. The signal is recorded at the
receiver at the nominal time #(f), and transmitted at the nominal satellite time 1t — 7).
The pseudorange is then

P(1) = c[1(r) — 1(t — 7)] (6.1.13)

where ¢ denotes the velocity of light. Replacing the nominal times by the system time
and the respective clock corrections, we obtain

P(t)=clt+dt —(t—7+di(t — 7)] = ct + cdt — cdi(t — 1)
=p(t,t — 1)+ cdt — cdt (6.1.14)

In this expression, we have replaced the satellite clock error df(t — ) at the instant
t — 7 by the satellite clock error d#(¢) at instant . This approximation is sufficiently
accurate because of the high stability of the satellite clock and considering that 7 is
about 0.075 sec for GPS-like orbits. The vacuum distance cz is denoted by p(t, t — 7)
and is henceforth called the topocentric satellite distance.

The derivation of (6.1.14) applies to a vacuum. This equation must be supple-
mented with additional terms and further specified in order to arrive at a usable
pseudorange equation. Since the signal travels through the ionosphere, which acts
as a dispersive medium at GPS frequency causing a signal delay, it is necessary to
introduce a frequency identifier. We use a subscript to identify the frequency. The tro-
posphere acts as a nondispersive medium in this particular frequency range and also
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causes a signal delay. Because it is a nondispersive medium, a subscript to identify
the frequency is not needed for the tropospheric delay. Other effects to be considered
are delays caused by receiver antenna and internal receiver electronic/hardware
components, and multipath. Using a numerical subscript to identify the carrier
frequency, a more complete expression for the pseudorange observation can be
written as

P(1)=p(t, t —7)+cdt —cdt
- C(Atsv - TGD + ISCI,P) + Il,P + T - (dl,P - Dl,P)
—(al’P +A1,P)+M1,P+61,P (6115)

The term Atgy represents a satellite clock correction as determined by the satellite
control center that accounts for the difference of space vehicle time and GPS system
time, Tgp, is the time group delay, and ISC| p is called the intersignal correction.
The latter two corrections, of course, refer to signal delays within the satellite and
satellite antenna. All three corrections are available to the user via the navigation
message, thus making it possible for the user to correct the observed pseudoranges.
These terms are presented in the notation as used in the basic reference IS-GPS-200G
(2012). The values Atgy and Ty, are available per satellite, and ISC, p is given per
satellite frequency and code. Additional detail about these terms is found in Section
6.2.2.2.In view of correcting the observations by Atgy the satellite clock correction d7
assumes conceptually the role of a residual correction, i.e., anything not taken care of
by Atgy will go into d7. The ionospheric and tropospheric delays are identified by 1 LP
and T, respectively. Other relevant terms are the receiver and satellite hardware code
delays d; p and D p, the receiver and satellite antenna code center offsets a; p and
A, p, the multipath M p, and the random measurement noise € p. These additional
terms and their implications, as well as the degree of cancellation when differencing,
are discussed in detail below and in other chapters.

For subsequent discussions, it is convenient to assume that the pseudorange obser-
vations have been corrected for the known values Atgy, Tgp, and ISC p, and there-
fore, these terms do not have to be explicitly listed any longer on the right side of
the equation. Similarly, we assume that the receiver antenna and satellite antenna
code phase center offsets are either negligible or known from antenna calibrations
and the observed pseudorange can, therefore, be corrected. Also, in order keep the
notation to a minimum, we do not introduce new symbols for the corrected pseudor-
ange observations. Thus, we obtain the pseudorange equation in the form commonly
given

Pi=pt,t—t)+cdt—cdi+1,p+T+6 p+ep (6.1.16)

S1p=—dip+Dip+Mp (6.1.17)

The term 6, p combines the receiver and satellite hardware code delays and the multi-
path.

The pseudorange equation for the second frequency follows from (6.1.15) or
(6.1.16) by changing the subscripts to 2,
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Py()=p(t,t—t)+cdt+cdi+Lp+T+68p+6)p (6.1.18)
6y p==dyp+Dyp+Myp (6.1.19)

Two important differences should be noted. First, whereas the time group delay for
the first frequency is T5p in (6.1.15), the P, () pseudorange observation is corrected
for y,Tgp, whereby the ratio y,, is given in (6.1.1). The details for this change are
discussed in Section 6.2.2.1. Of course, the intersignal correction ISC, p is applied
instead of ISC, p. The other important difference is the ionospheric term I, p. It is
related to the first frequency ionospheric term /| p in (6.1.9). The tropospheric delay
term does not change because the troposphere is a nondispersive medium. Finally,
the lumped parameter 6, p combines the receiver and satellite hardware code delays
and multipath for the second frequency.

Recall that dt represents the remaining satellite clock error not accounted for by
the Azgy correction. Similarly, D, p and D, p denote the remaining satellite hardware
code delays not accounted for by T, ISCy p, and ISC, p.

6.1.1.2 Carrier Phases The carrier phase observation, measured at the receiver
at nominal time ¢, is the fractional carrier phase which was transmitted 7 seconds
earlier at the satellite and has traveled the topocentric geometric distance p(¢, t — 7).
Considering the carrier phase observation of the first frequency, its expression for a

vacuum is -
@1(0) = @) — @t — 1)+ N, (6.1.20)

A major difference compared to the respective pseudorange expression is the pres-
ence of the integer ambiguity term N,. It can be viewed as an initial integer constant
that does not change with time unless a cycle slip occurs. If a cycle slip occurs, the
observed carrier phase series continues with a different integer ambiguity value. We
say that the measurement ¢(¢) is ambiguous with respect to the integer constant. Occa-
sionally it is seen that V| is added to the left side of the equation. Since it is an arbitrary
constant, it does not matter whether the ambiguity parameter is placed on the left or
right side, only the sign changes, which is immaterial.

Equation (6.1.20) is developed further by recognizing that the derivative of a phase
with respect to time equals the frequency. Since the satellite clocks are very stable,
this derivative can be assumed constant for a short period of time, and we can write

ot — 7 +dt + Atgy) = @(t) — fit + [, df + f, Atgy (6.1.21)
giving the carrier phase equation in the form
@1(1) = ot + db) — @(t — 7 + di + Atgy) + N,

= (1) + fidt — (1) + f1 T — f dt — f, Atgy + N;

_ p(t’t_ T)

7 +fidt = fidt — f; Atgy + N, (6.1.22)
1

Note the use of Afgy in this expression. Applying this known satellite clock cor-
rection causes df to again assume the role of a residual satellite clock correction.
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The topocentric distance is introduced because f; = ¢/ A, where 4, is the wavelength
of the first frequency. We now add the hardware delays, the antenna offset terms, and
the multipath. Equation (6.1.22) becomes

pt,t—7

@ () = /1—) +fidt — fi(dt + Atgy) + N,
1

T

+ IW + i (dl,(p —Dl,q,) - (wl,q, - leq,) - (al,(p —Al,(p) +M1,¢ +£,
1

(6.1.23)

The subscript ¢ is used to indicate that the terms refer to the carrier phase and are
expressed units of radians. The ionospheric term is denoted by /; ,,. Because the tro-
posphere is a nondispersive medium, the tropospheric delay is the same for carrier
phases and pseudoranges. The receiver and satellite hardware phase delays are d ,
and D, ,. The symbols w , and W, , denote the antenna phase windup angle at the
receiver and satellite, respectively. The phase windup angles are a consequence of the
circular polarization of the transmissions. Details on the windup angle can be found
in Section 6.2.4 and Chapter 9. It is shown there that the phase windup angle tends to
cancel in baseline determination using double differences; this technique is discussed
further in this chapter. In certain applications the windup angles might be allowed to
be absorbed by the hardware delay terms. Finally, a; , and A| , denote the phase cen-
ter offsets at the receiver antenna and satellite antenna, respectively. In the following,
we assume again that these quantities are known from antenna calibration and that
the observations have been corrected accordingly. The standard form of the carrier
phase observation equation becomes

@)= A7'p(t, 1 = 1)+ Ny +fidt = fydi — AL p+ AT T+ 6, , + €, (6.1.24)
51’(0 = —(d1’¢ + WL(p) + (Dl,(p + Wl,(p) + Ml,(p (6125)

Note that the impact of the ionosphere on the carrier phase observation has been
parameterized in terms of the pseudorange ionospheric delay /; ,. As a matter of stan-
dardization, we generally prefer to express the ionospheric delay or advance using
I, p. Both ionospheric terms are related by (6.1.11). Both ionospheric terms have
opposite signs but the same magnitude when scaled to units of meters. Therefore,
the carrier phase advances as the signals travel through the ionosphere. More details
on the impact of the ionosphere on GPS signals is found in Chapter 8. Finally, the
equation for the carrier phase of the second frequency follows readily by changing
subscript 1 to 2.

We notice that both standard forms (6.1.16) and (6.1.24) make use of a lumped
parameter that combines the hardware delay and the multipath terms and, in the case
of the carrier phase equation, also the windup terms. This specific lumping of terms is
for convenience. Later, we will see that the hardware delays cancel in certain obser-
vation differences, whereas the multipath will never completely cancel. The windup
corrections will also be dealt with in more detail later. The time ¢ serves as common
time reference for code and phase measurements. The time error varies with each
epoch, whereas the hardware delays typically show little variation over time. As to
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terminology, the hardware delays d, ,, and D, , are often referred to as uncalibrated
phase delays (UPDs), consisting of receiver UPD and satellite UPD. Similarly, one
speaks of uncalibrated code delays (UCDs) when referring to d; p and D p.

Scaled carrier phase function: In many situations it is convenient to refer to the
scaled carrier phase equation by multiplying (6.1.24) by the wavelength,

S (N=he=ptt—1)+ AN, +cdt—cdi—1, p+T+8 45+ 4 (6.1.26)
810 =A"01,=—dip+Wi o)+ Do+ W) +M g (6.1.27)

The scaled phase @ (¢) is in units of meters. Similarly, the lumped parameter is scaled.
The scaling is indicated by the subscript ®.

Observables with station and satellite subscript and superscript notation: In
the above derivations, we used underbar and overbar to indicate the receiver and satel-
lite clock errors, respectively. No station or satellite identifier was used with the other
terms. In many situations, it might be desirable or even necessary to identify the spe-
cific station and satellite to which an observation refers. We use a subscript letter
to indicate the receiver and a superscript letter to identify the satellite as mentioned
above when explaining the general notation. Recall that the subscript is separated by
a comma from the frequency identification number, and the latter is separated again
by a comma from the observation-type identifier (if present). Because this notation
is used extensively throughout the book, we summarize the basic observables in this
expanded notation:

PL0=pl+edy—cdl + 1), ,+ T, +8, ,+€,, (6.1.28)

Sy p=—dip+ D5, + My, (6.1.29)
@ (O = A7 L+ NY +frdy —frd? = a7+ AT T8 e

(6.1.30)

81 p=~Wi1gp+Werg)+ (D + W ) +My (6.1.31)

D ()= M@ =P+ N +edy —cdl =T, +T) + 68, ,+e, 5 (6.1.32)

521,@ = )”1527,1@ = _(dk,l,dj + Wk,l,cb) + (Drl),(p + WZ,) + MZ,I,G) (6.1.33)

Note that the underbar and overbar are no longer needed in this notation. Certainly,
this subscript notation may appear as a distraction when the identification of specific
stations and satellites is not required. In such a case, we may use the simpler underbar
and overbar notation.

The next subsections contain a summary of popular functions of the basic observ-
ables. The expressions are grouped according to the terms present, starting with range
plus ionosphere, ionospheric free, ionosphere, and multipath. Another group has been
added for convenience. It contains several expressions in which the ambiguity terms
have been moved to the left side. These so-called ambiguity-corrected functions are
convenient when ambiguities have been resolved in prior computations. The last
subsection contains new notations for triple-frequency observations. All expressions
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given below can readily be verified by substituting the basic observables (6.1.16),
(6.1.24), or (6.1.26). The expressions are listed as a summary without additional
explanations. Whenever an expression is used later, the necessary explanations will
then be provided. Each expression is given a name for easy referencing.
6.1.1.3 Range plus lonosphere

RI2(p1. ¢3) = @1 — @3

= A p+ Ny +(f —f)dt — (fy — f)dt

= (L= \ri)li o+ A T + Sy + £r1 (6.1.34)
RI3(@y, @) = @1 + @,
+ _
= A szﬂ + Ny + N, + (fy +f)(dt — di)
bi +f
— (= 1)y + 2T + b3 + €py3 (6.1.35)
fi P
RIA(®D,, ®,) = ()]
e
=p + illez + Cdz - Cd;+ \/}/12]1’P + T+ 6RI4 + 6RI4 (6136)
RI5(Py, Py) = / P+ e Py
hH+h fi+h
:p+cd£_cd;+ \/7/1211’1)+T+5R15+6R15 (6.1.37)
6.1.1.4 Ionospheric-Free Functions
R1(P,,P,) = PIF12 = flz P fzz P
1-12) = = 1~ 2
VA e
=p+cdt—cdi+T+ 6 + &g (6.1.38)
I 5
R2(®,,®,) = DIF12 = 5 chl— —— P
fl _f2 f _f2
hH—h e

—p+cdt—cdt+c

N1+CﬁN12+T+5R2+6R2
1_2 172

(6.1.39)

2¢
. _02(17N1 +60N,) + T + 6y + 19
1 2

=p+Cd£—Cd;+A¢1F12N¢1F12+T+6R2+£R2 (6140)

R2(®,,®,, GPS) = p + cdt — cdt +

For GPS we have f; = 154f,, f, = 120f;, and f, = 10.23 MHz.
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2

L, it
=5 -

R3(py, @) =

fL=hF
! 12N + f1f22N12+Al_1T+5R3+8R3

= AT'p + fidt — fidi + |
1 ” =5 -5

(6.1.41)
6.1.1.5 lonospheric Functions
(@1, @3, P)) = @ — @y — Al_zlpl =Np—(1- \/712)/11_2111,10 +op+eép
(6.1.43)
I3(@1, @2) = @1 = /Y1202 =Ny = /YN = (L= y2)ly , + 03+ €3
(6.1.44)
4Dy, D)) = D) =Dy = 4N, = LN, = (L =y )]y p+ 64+ €44 (6.1.45)
IS(P, P)) =P =Py =1 =yl p+6;5+¢p (6.1.46)
16(D,, D,, @3) = RIA(D,, ©3) — RIND,, D,)
E<f1 fi >¢1+ fa @, - 5 @,
h=f h-h fi—f fi—f
filf, —13)
=113N13—)«12N12+ 172 3 11P+5[6+516 (6147)
fof3
6.1.1.6 Multipath Functions
Ml(®,, ®,, P|, P,) = HMWI12 = RI4 — RIS
- h @, - f @, - h P - ) P,
h—h hH—h fi+h h+h
= 212N12 + 5M1 + £M1 (6148)
M2(®,, ®,, P, P,) = AIF12 = R2 — R1
P SN S
= 1~ 2~ 1 2
=1 =5 i-1 =5
f1 fz g
] +C—Nl2+5M2+£M2 (6149)
f2 —f; -5



268 GNSS POSITIONING APPROACHES

M3((151,<1§2,P1)EP1+<1 2 —1)@51— @,

— 712 —712

= _)’INI + #(XINI - AzNz) + 6M3 + Ems (6150)
— /12

2 2
MA®D,, @y, P,) = P, — ( ALEN 1> @, + 2 ¢
l=7p =7
2712

= —AzNz +

(A N] _/12N2)+5M4+£M4 (6151)

M5(®,, @), ;) = (43— 43)P, + (,ﬁ —13)D, + (43— A])@
= (A3 = A3) N, + (47 = 43) ANy + (43 — A7) A3N3
+ 6M5 + Eps (6152)
M6(®,, @,, @;) = R2AD,, D,) — RAD,, D)

f? f? 3 f3
= D, — D, + )]
<f1 e fz—f32> gt Ren

h-fH h-f 5
= - N, +c—=2—N
C(ff—ff ff—ff) R

. —=—= N3+ Sy + s (6.1.53)

f ~f5
MT(Py, Py, P3) = (43— 13)Py + (A7 = 43) Py + (45 — A7) P3 = 8y + €47
(6.1.54)

6.1.1.7 Ambiguity-Corrected Functions

ACH(@y, @3) = (@12 = Ni)Ap = p+cdt —cdt +\/ 11, p

A A A Ip
AC2(py, @) = <1 - %) @+ /112402 + N, /112 =N+ (Vro— 1)/1—
1 i

+ 042 T Exc2 (6.1.56)

AC3(@y, ¢,, 93) = ACH(@y, @) — ACl (@, @3)
= (A1 — 413)@1 — A12@s + 41303 — Nipdyp + Nizdys

= (\/E— \/E)II,P + 5AC3 + EAC3 (6157)
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HACH @y, @) — LAC(@,, @3)
AC4((p1,§02, ¢3)E 1 1 2 3 2 3

hi=h
/112 ()’12 /123> 123 )’12 AZ?}
=1 [—(p— —+— )@+ —@3— —N;, + —N
13 A] 1 /11 13 2 13 3 ﬂl 12 2'3 23
=p+Cd£_Cd;+T+5AC4+£AC4 (6158)

The functions summarized above are expressed explicitly in terms of orig-
inal pseudorange and carrier phase observations. This makes it convenient to
determine the lumped parameter for a specific function or even apply variance
propagation. For a function (e), the lumped term &, and the function measure-
ment noise £, are obtained by applying the respective functions. For example,
if (o) =a®, +bd,, then 6, = ad,y +bd,q and e, = ae; g + be, o. Similarly,
one obtains the hardware delays d, = ad, o + bd, o, D, =aD, g +bD, 4, and
the multipath M, = aM, ¢ + bM, 4. If one assumes for the sake of approximate
estimation that the standard deviations for all carrier phases and pseudoranges across
the frequencies are, respectively, the same, and that they are uncorrelated, the law
of variance propagation (A.5.61) provides the standard deviation of the function as
6, = Va2 +b%c4 and o, = Va? + bcp if (8) =aP; + bP,. Similar expressions
are obtained for mixed functions of pseudoranges and carrier phases or when the
function contains more than two observables.

The various dual-frequency functions listed above trace their origins back to the
beginning of GPS. They were introduced during the time of rapid development of
GPS in the late 1970s and early 1980, with apparently no authorship attributed to
them in the literature. An exception is function (6.1.48), whose origin is generally
acknowledged to go back to Hatch (1982), Melbourne (1985), and Wiibbena (1985).
We will refer to this function simply as the HMW function. This function combines
pseudoranges and carrier phases of two frequencies. If it is necessary to clarify to
which specific frequencies an application refers, we identify the frequencies by num-
bers. For example, HMW12 would imply the first and second frequency observations
as used in (6.1.48). We are not aware of a triple-frequency function that is attributed
to a specific author. However, a nice summary of triple-frequency functions is given
in Simsky (2006), which we recommend for additional reading.

6.1.1.8 Triple-Frequency Subscript Notation When dealing with triple-
frequency observations, it is often convenient to use a more general notation. Let
i, j, and k be constants; then the triple-frequency carrier phase and pseudorange
functions can be written as

@ik = i@y + oy + ko3 (6.1.59)

o _ D+ LDy +kf3P5 c 0
ij, k) = N N = N i, jk
0.5 ifi+if+kfs ifi+if+kfy @0

(6.1.60)
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| fiPy +jfoPy + kf3P
Py = hEL ISP R T5Ps (6.1.61)
v ifi +ifh+kf

where the numerical subscripts identify the frequencies. In addition, we identify the
following primary

Jijn=1h +j]2 +kf;
Ao =7 6.1.62
(l,j.» ) f(.i,j,k) ( )
N(i,j,k) = lN] +]N2+kN3

and secondary

TEGIf +ilf+ k) )
Pjio = Jain
Gf 2+ G ) + (k)2
W= i j’f(szk) | (6.1.63)
L],
il + Uil + K1
Y6k = Jajn

functions. An even more general linear function can be formed that would include the
observation of four frequencies or even combine (6.1.60) and (6.1.61) into one general
linear function of pseudoranges and carrier phases. Here we prefer the notation that
includes only three frequencies and keeps the carrier phase and pseudorange func-
tions separate. In this notation, the expressions for the carrier phase and pseudorange
functions become

p - Pijwhy T
Pijb = 7 tNajn Hajndt —fijnd —— +5
(i,j,k) (i,,k) (i, j,k)
+ 6. j. k0 T €Gj 0 (6.1.64)
Q(l,j,k) = alél =+ a2¢2 =+ a3¢3

=p + A’(i,j,k)N(i,j,k) + Cdz - Cd; - ﬁ(i,j,k)ll,P + T + 6(i,j,k),¢ + S(l',j,k),d)
(6.1.65)

PG jy =P+ byPy + b3Py

The constants a,, and b,,, with m = 1,- - -, 3, can be those of (6.1.60) and (6.1.61).
If the factors 7, j, and k are integers, then the linear phase combinations preserve
the integer nature of the ambiguity as seen from (6.1.62). If a; +a, + a3 =1 and
by + by + by = 1, then the geometric terms and clock error terms are not scaled, i.e.,
remain unchanged compared to the equations for the original observations. This is
the case in (6.1.65) and (6.1.66).

In regard to the secondary functions (6.1.63), f; ; , is called the ionospheric
scale factor. For the special case of f; ; ;) = 0, the ionospheric-free functions are



OBSERVABLES 271

obtained as seen from (6.1.65) and (6.1.66). For the special case that 0p, = 0o and
op, = 0Op, with m = 1,---,3 and uncorrelated observations, /4(2”. o is called the
variance factor because

2 — 2 2
O-‘p(i,j,k) = Hi oo

2 — 2 2
Op s~ HajkCp (6.1.67)

Assuming that each scaled carrier phase observation has approximately the same
multipath M(bm =My with m=1,---,3, and making a similar assumption for the
pseudorange multipath, then v; ; ; is the multipath factor such that

Vii.joMo
V(l',j,k)MP (6.1.68)

Mg

max

IA

MPITI&X
represents the upper limit for the multipath of the respective function. This superposi-
tion of multipath assumes not only that the multipath for each of the three observations
is the same but also that the absolute values of the components are added.

As an example of the application of the triple-frequency notation, consider the
HMW function (6.1.48), which can be written as HMW12 =&, _, o) — Py ; o) Or
HMWI13 =@ _1y — P 01)-

6.1.2 Single Differences

Let two receivers observe the same satellites at the same nominal times. One can
then compute three types of differences among the observations. One difference is
the across-receiver difference, obtained when the observations of two stations and the
same satellites are differenced. Another difference, called the across-satellite differ-
ence, results from differencing observations from the same station and different satel-
lites. The third difference, called across-time difference, is the difference of observa-
tions from the same station and the same satellite at different epochs. Even if the
observations to a particular satellite are taken at the receivers at exactly the same
time, thus being truly simultaneous observations, the respective signals have left
the satellite at slightly different times because the respective topocentric satellite
distances differ.

6.1.2.1 Across-Receiver Functions The notation (6.1.4) is used to identify
the stations and the satellite to form the across-receiver difference. Note that the dou-
ble subscripts not separated by a comma indicate differencing across the stations.
Applying (6.1.16), (6.1.24), and (6.1.26), the across-receiver functions are

+ 717

km

P =0 +cdy,+1)

_ 4
km,1 km,1,P dkm,l,P +M +e

km,1,P km,1,P
fi

c

(6.1.69)

P 4
Tkm dkm,l,(p + Mkm,l,(p + gll:m,l,(p

(6.1.70)

fl 74 -1
(pzm,l = ?pll;n + Nkm,l +f1 dtkm - /11 Ikm,l,P +
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_ _ P P P P

d)llzm,l = ’11¢im,1 = P’;Zm + AN Fedty, =L p T~ Aot M, o F €

6.1.71)

o =V20, 6.1.72)
) ®

An important feature of this difference is that the satellite clock error d#’ and
the satellite hardware delay D‘; cancel. This cancellation occurs because the
satellite clock is very stable, making the satellite clock errors the same for these
near-simultaneous transmissions. Similarly, the satellite hardware delays can readily
be viewed as constant over such a short time period. The windup angles listed in
(6.1.25) and (6.1.27) have been omitted in these expressions and will also be omitted
in subsequent expressions for reasons of simplicity. The variance propagation
expressed by (6.1.72) assumes that the variances of the respective observations
are the same at both stations. This variance propagation expression is not always
given explicitly below because it can readily be obtained by applying the respective
function of the original observations as needed.

Equally important is noting the terms that do not cancel in the differencing. These
are the across-receiver differences of station clock errors, the ionospheric and tropo-
spheric delays, the receiver hardware delays, and multipath. It is noted that in relative
positioning over short distances, the tropospheric and ionospheric effects are, respec-
tively, almost the same at each station due to high spatial correlation and, therefore,
largely cancel in the differencing. This cancelation is important as it makes relative
positioning over short distances very efficient and practicable in surveying.

6.1.2.2 Across-Satellite Functions Using the notation in (6.1.5), with super-
scripts indicating the differencing, the across-satellite differences become

P = ul A0+ cdt?t + 17
’ C

wp T 7+ D’ff;, + M+ de’LP (6.1.73)

k,1,P

h fi
q _ q Pq Pq Pq q Pq q
oy = ?p’; + N+ fidrt + 1Y+ t +D + M ey, (6.174)

q _ P4 P4 P4 P4 4 P4 q
D = o+ N+ ed?! = 1Y+ T e (6.1.75)

It is readily seen that the single difference receiver clock error dt, and receiver hard-
ware delay d, cancel.

6.1.2.3 Across-Time Functions Differencing across time is indicated by the
A symbol, following the notation in (6.1.6). The relevant functions are

APZ’l = Ap] +cAdty —cAd + AIil,P +AT) + AM’;,LP + A“?Z,Lp (6.1.76)
AgP —f—‘Ap”+ Adt, — Adtp—f—‘AI” +f—1AT”+AMP + A€P
k1 = 2P hiddy - fi e e TR ke €l
(6.1.77)
— 4 P P
Ad)’;’l = Ap] + cAdt, — cAdi - AL+ AT, + AM], , + AE’ZJ@ (6.1.78)
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Po_oApP p »
Allk,l - 2AIk,l,P + AMk,l,P + AMk,l,cb + Ag’;,l,n (6.1.79)
Ay =21 <—A%_A§>A '12<'1%_/1% Agy +AM;, + Aes,  (6.1.80)
=7 -7\ o @y + AM; , + Ags 1.
A3 21 - /12 A3 /11 — /12

For differencing over long time intervals, the clock errors might not cancel. In
the expressions above, however, we have assumed that the hardware delays are
sufficiently stable to cancel. We have further assumed that no cycle slip occurred
between the two epochs, therefore the ambiguity cancels. These functions primarily
reflect the change of the topocentric satellite distance over time and are often
referred to as delta ranges. Equation (6.1.79) represents the time difference of the
ionospheric function (6.1.42). One can readily imagine the benefits to be derived
from possibly being able to model the ionospheric change Al 121 when the time
difference is small. An example might be cycle slip fixing. Likewise, some combi-
nations of single-difference functions have certain benefits. For example, applying
across-receiver and across-time differencing yields a model that is free of satellite
clock errors and depends on changes of receiver clocks, ionosphere, and troposphere.

Function (6.1.80) is a triple-frequency function, expressing the phase difference of
the third frequency as a function of the phase differences of the first and second fre-
quencies. In order to simplify the notation, we omitted the subscript and superscripts
to identify the station and satellite, respectively.

6.1.3 Double Differences

A double difference can be formed when two receivers observe two satellites simulta-
neously, or at least near simultaneously. One can either difference two across-receiver
differences or two across-satellite differences. In the notation of (6.1.7), the double
differences of the basic observables are

q +J1]Pq + TP‘I +MP‘I

q  _ q
PZm,l ~ FPkm ¢ km1,P km km,1,P + 5Jk)m,l,P (6.1.81)
q _fl q Pq S Pq S Pq P4 q
km,1 = " Flon + Nkm,l - ?Ikm,l,P + ?Tkm +Mkm,1,(p + gim,l,(p (6.1.82)
q  _ pq Pq 4 Pq Pq q
czjfm,l =Pm T A]Nkm,l Ikm,l,P + Tkm + Mkm,l,(b + glljm,l,cb (6.1.83)
a(.ign )= 20, (6.1.84)

The most important feature of the double-difference observation is the cancellation
of receiver clock errors, satellite clock errors, receiver hardware delays, and satellite
hardware delays. This almost “perfect” cancellation of unwanted errors and delays
has made the double-difference observation so popular among users. In addition,
since double differencing implies across-receiver differencing, the ionospheric and
tropospheric effects on the observations largely cancel in relative positioning over
short distances. Unfortunately, since the multipath is a function of the geometry
between receiver, satellite, and reflector surface, it does not cancel.
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The double-difference integer ambiguity N]’:,ZJ plays an important role in accurate
relative positioning. Estimating the ambiguity together with other parameters as a real
number is called the float solution. If thus estimated double-differenced ambiguities
can be successfully constrained to integers, one obtains the fixed solution. Because
of residual model errors such as residual ionosphere and troposphere, the estimated
ambiguities will, at best, be close to integers. Successfully imposing integer con-
straints adds strength to the solution because the number of parameters is reduced
and the correlations between parameters reduce as well. The art of accurate relative
positioning is inextricably related to successfully fixing the ambiguities. Much effort
has gone into extending the baseline length over which ambiguities can be fixed. At
the same time, much research has been carried out to develop algorithms that allow
the ambiguities to be fixed for short observation spans and short baselines. Being able
to relatively easily impose integer constraints on the estimated ambiguities is a major
strength of the double differencing approach.

All of the above functions can readily be applied to observations of the second
frequency by replacing the subscript 1 by 2. For example, in the across-frequency
double difference functions

g — pP g _ Pq Pq Pq Pq q
¢£m,12 = dj‘lzm,l - ¢Zm,2 - ’11Nkm,1 - AZNka - - 712)Ikm,1,1> + Mkm,lZ,cD + gim,IZ,lD
(6.1.85)

g — P4 q pqg P4 1 _ Pq Pq q
¢Zm,lS = ®Zm,l - ¢Zm,S - ﬂlNkm,l }’3Nkm,3 (1 y13)1km,l,P + Mkm,13,d7 + 61/<’m,13,d'>
(6.1.86)

the topocentric satellite distances and tropospheric delays cancel. The triple-
frequency observations provide three more double-differenced functions. Applying
the double-difference operation to (6.1.52), (6.1.57), and (6.1.58) gives

M, = (45 = 23) g + (A = 23) D, + (4 = 4]) D

= (A3 = )N 4 (A7 = A3) NP+ (A3 = A7) AsNPY

km,1 km,2 2 km,3
+ MZZ:,MS + EZ,q,,,Ms (6.1.87)
Pd = q q q Pq Pq
AC3km = ()’12 - 113) km,1 /112¢£m,2 + A’l3 m3 Nkm,lZﬁlz +Nkm,l3ﬁ]3
— Pq Pq q
= (V2 = V) ip ¥ Mg acs * €imacs (6.1.88)
A A A A
ACHT = g [Z2gpe (212 L 2B e 123 e
km 13 [ll km,1 )'1 /13 km,2 /13 km,3
/112 Pq j'23 Pq
_TlNkm,IZ + TSNkm,23
_ P Pq q
= Pim, T Mkm,AC4 + fimﬁa (6.1.89)

Apart from multipath, these functions depend on the ambiguities only, the ionosphere
and ambiguities, or the topocentric satellite distance and ambiguities.
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6.1.4 Triple Differences

The triple difference (6.1.8) is the difference of two double differences over time:

APy = Ap, + AL o+ AT+ AMT L+ A8y (6.1.90)
st =lagrvan oTartiam wadt o @1on
ADL = Ay, = AL o+ AT+ AML | + A8 o (6.1.92)
Oadlly = \/g"m (6.1.93)

The initial integer ambiguity cancels in triple differencing. Because of this cancela-
tion property, the triple-difference observable is probably the easiest observable to
process. Often, the triple-difference solution serves as a preprocessor to get good ini-
tial positions for a subsequent double-difference solution. The triple differences have
another advantage in that cycle slips are mapped as individual outliers in the residuals.
Individual outliers can usually be detected and removed.

6.2 OPERATIONAL DETAILS

Whether one develops and improves positioning algorithms, uses GNSS to support
research activities, or runs commercially available receivers in engineering applica-
tions, there are a number of operational details that one should know. It also helps
to know that a lot of what might be called the GNSS infrastructure is in place and
ready to be tapped. We begin with some topics of interest to developers of processing
techniques and then talk about services that are mostly free of charge and available
to the common user.

We briefly address the issue of computing the topocentric satellite distance the
GNSS signal travels from the time of emission at the satellite to reception at the user
receiver antenna. Detailed information is given on the timing group delay, satellite
clock correction, and intersignal corrections, all three of which are transmitted by the
navigation message. We then briefly discuss cycle slips in the carrier phase observ-
able, the phase windup correction resulting from the right-circular polarized nature
of the signals, and the “ever-present” multipath. Our discussion on service begins
with relative and absolute antenna calibration provided specifically by the National
Geodetic Service, and continues with a discussion of the International GNSS Service,
its products, and online computing series.

6.2.1 Computing the Topocentric Range

The pseudorange equation (6.1.28) and the carrier phase equation (6.1.30) require
computation of the topocentric distance /’11: There are two equivalent solutions avail-
able. In Section 7.3, the change of the topocentric distance during the travel time of
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the signal is computed explicitly. Here we present an iterative solution. In the inertial
coordinate system (X), the topocentric distance is expressed by

7 = X, (1) = X°@)| (6.2.1)

In this coordinate system, the receiver coordinates are a function of time due to
the earth’s rotation. If the receiver antenna and satellite ephemeris are given in the
terrestrial coordinate system, we must take the earth’s rotation into account when
computing the topocentric satellite distance. If 7 denotes the travel time for the signal,
then the earth rotates during that time by

=0, —-1")=0Q, (6.2.2)

where £, is the earth rotation rate. Neglecting polar motion, the topocentric distance
becomes

P, = X, = R (O)x ()| 6.2.3)

where R; is the orthonormal rotation matrix. Since 6 is a function of =,
equation (6.2.3) must be iterated. An initial estimate of the travel time is
7; = 0.075 sec. Then compute 0, from (6.2.2) and use this value in (6.2.3) to
obtain the initial value p; for the distance. For the second iteration, use 7, = p; /c in
(6.2.2) to get 8,. Continue the iteration until convergence is achieved. Typically, a
couple of iterations are sufficient.

6.2.2 Satellite Timing Considerations

There are three timing elements that are or will be transmitted with the GPS broad-
cast navigation message. They are the satellite clock correction Atgy, the timing
group delay Tgp, and the intersignal correction (ISC). The ISC was introduced
as part of the modernization of GPS signals and is related to the legacy timing
group delay. Therefore, all three timing elements are discussed in detail. Recom-
mended references are Hegarty et al. (2005), Tetewsky et al. (2009), and Feess
et al. (2013).

The control segment maintains GPS time (GPST) to within 1 psec of UTC (USNO)
according to the Interface Control Document (IS-GPS-200G, 2012), excluding the
occasional UTC leap-second jumps. The current full second offset is readily available
from various data services, if needed, allowing the user to convert between GPST and
UTC (USNO). Since the satellite transmissions are steered by the nominal time of the
individual satellite (satellite time), one needs to know the differences between GPS
time and the individual satellite time. In the notation and sign convention as used by
the interface control document, the time correction to the nominal space vehicle time
tgy 18

Atgy = agy + ap (fsy — loe) + apy(isy — 1o0)> + Aty (6.2.4)
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with
tgps = lgy — Algy (6.2.5)
and ) 5 .
Atg = —=+Jape sin E = ——2X'X (6.2.6)
C C
Algi,sec) ¥ —2e sin E (6.2.7)

The polynomial coefficients are transmitted in units of sec, sec/sec, and sec / sec?;
the clock data reference time ., is also broadcast in seconds in subframe 1 of the
navigation message. The value of gy must account for the beginning or end-of week
crossovers. That is, if (tgy — f,,.) is greater than 302,400, subtract 604,800 from tgy,. If
(tgy — toe) 1s less than —302, 400, add 604,800 to fgy. The symbol Aty is a small rel-
ativistic clock correction caused by the orbital eccentricity e. The symbol y denotes
the gravitational constant, a is the semimajor axis of the orbit, and E is the eccen-
tric anomaly. See Chapter 5, equation (5.1.54), for details on these elements. The
approximation (6.2.7) follows by taking a ~ 26, 600 km.

A major topic of this subsection is the intersignal corrections (ISC). Such correc-
tions will be available for the modernized GPS signals L1CA, L1P(Y), L1M, L2C,
L2P(Y), L2M, L5I, and L5Q, and transmitted with the new navigation message to
allow users to correct the observation. In order to provide full flexibility when deal-
ing with the modernized signal, we will adhere in this subsection to the notation used
in Tetewsky et al. (2009). This means that the third civil frequency will be referred
to as L5. It also means that the pseudorange on L1 is denoted by P py. A numeri-
cal subscript is again used before the comma to identify the frequency, and the code
identification is given after the comma. Omitting the windup terms, the pseudoranges
(6.1.16) and (6.1.18) can be written in this new notation as

P’LPY =p+cdt—cdt—c(Atgy =Ty py) + 1, py + T —dy py + Dy py + M, py
6.2.8)

P’Z’PY =p+cdt—cdt—c(Atgy =Ty py) + v12dy py + T —do py + Dy py + My py
(6.2.9)

‘We only need to focus on some of these terms in the context of this section. The satel-
lite clock correction is denoted by Afgy; df is viewed again as the residual satellite
clock error and can be omitted. The satellite hardware code delay of the L1 P-code
is now denoted by 7 py. This delay is the difference in time from the instant of sig-
nal generation by the satellite clock to the signal departure at the satellite antenna.
The delay, therefore, includes the time it needs to pass through the various electronic
components of the satellite including the path through the antenna. The delay is a
function of frequency and code type. Having introduced the hardware delay T py,
the term D) py is viewed as residual hardware delay and can be omitted. The same is
true for the L2 P-code parameters 7, py versus D, py. A prime is added to the pseudo-
range symbols on the left side to indicate that observations are raw, i.e., they have not
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been corrected for Afgy and the hardware delays T py and T, py. Any pseudorange
equations for any frequency and code can be written in the form (6.2.8) or (6.2.9).

6.2.2.1 Satellite Clock Correction and Timing Group Delay The satel-
lite clock correction Atgy has traditionally been computed by the GPS operator on
the basis of the ionospheric-free L1P(Y) and L2P(Y) pseudorange function. For this
purpose, we combine the linear dependent terms df and Atgy, i.e., we simply omit
the former. Recall that from the user’s perspective, the satellite clock error Atgy is
considered known and df represents a residual satellite clock error. Furthermore, the
user is expected to correct the observations for Atgy. The GPS operators, on the other
hand, need to determine the actual clock correction Atgy and there is, consequently,
no place for another clock term such as df. Also, the GPS operator uses the raw obser-
vations when attempting to determine Afgy. The mathematical model for the clock
correction is the second-order polynomial

Atgy = ay + a,(t — ty) + a,(t — 1,)* (6.2.10)

where ¢ is the reference time and a,, a,, and a, are the parameters to be determined
for a specific satellite, indicated by the subscript SV.
In this new notation, the ionospheric-free function (6.1.38) readily follows form
(6.2.8) and (6.2.9):
P, py = 102P) py 1
1=, 7= cdt—c [Atgy + 1=, (To.py = 72T, py)
12 Y12

+T —dy pys py + My py o py (6.2.11)

The topocentric satellite distance p has been moved to the left side, assuming that
the receivers are located at known stations. The subscript of the receiver hardware
delay d and multipath M refer to the specific choice of the ionospheric-free function.
The unknown satellite hardware delay term T, py — y1, T py is considered constant
over the time span  — f,. As a result, the constant a; in (6.2.10) and the hardware
delay term are linear dependent. We combine both terms into a new parameter but
label it again a, for simplicity to avoid introducing another temporary symbol. This
reparameterization can alternatively be accomplished by imposing the condition

Ty py = 12T py (6.2.12)
The ionospheric-free function can thus be written as
/ /
Py py =112 py

—p=cdt— c[ao +a(t —ty) +ar(t — t0)2]
I=yp

+T —d py2py + M py o py (6.2.13)

The receiver clock error, possibly the vertical tropospheric delay, and the polynomial
coefficients a, a;, and a, per satellite can now be estimated.
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Condition (6.2.12) can be arranged as T py = (T} py — T5 py)/(1 = y15). The
satellite manufacturer initially measures the difference T py — T, py in the lab-
oratory for each satellite. These measured values may be updated to reflect the
actual in-orbit delay difference for each satellite (IS-GPS-200G, 2012, Section
20.3.3.3.3.2). The scaled measured difference is traditionally denoted by T and
simply referred to as the timing group delay, i.e., Tgp = (T} py — T py)/(1 = 112).
With this understanding we can define

Top =T py (6.2.14)
and write (6.2.12) as
TZ,PY = ylZTGD (6.2.15)

Using this legacy Tgp notation leads to the familiar form of the pseudorange
equations:

P py=p+cdt—cdi—c(Atgy = Tgp) + 1y py + T —dy py + M, py  (6.2.16)

PIZ,PY = p+cdt—cdt — c(Atsy = y12Tgp) + vialy py + T = dy py + Mj py
(6.2.17)

The results of this traditional L1/L2 P-code dual-frequency calibration as discussed
briefly above are the common clock error, one per satellite and common to all signals
of that satellite, and one T, per satellite. Implicitly, the satellite hardware delay for
L2, T, py = 712 Tgp> is expressed as a scaled value of the timing group delay.

6.2.2.2 Intersignal Correction The modern version of the pseudorange
equation incorporates the ISC, which is the difference of the satellite hardware code
delays of the respective codes used in the ionospheric-free functions. Using (6.2.12)
and (6.2.14), the ISC for the pseudoranges involved in (6.2.11) becomes

ISCy py =T py = Th. py = (1 = 712)Ty py = (1 = ¥12)T6p (6.2.18)

The subscript of the intersignal function indicates that the ISC refers to the hard-
ware code delay of L2P(Y) relative to L1P(Y). Substituting (6.2.18) into (6.2.17),
the modernized form becomes

P py = p+cdt—cdt — c(Atgy = Tgp +ISCy py) + v1oly py + T = ds py + M) py

(6.2.19)
The hardware delays are expressed in terms of the unscaled legacy group delay and the
respective ISC. This form can readily be generalized to other pseudoranges. Consider,
for example, the L5 inphase pseudorange L5I:

P,5,1 =p+cdi—cdt—c(Atgy = Ts )+ 75l py + T —ds; + Ms;

=p+ Cdz - Cdi - C(Atsv - TGD + ISC5’I) + )/1511,}) + T - ds’] + MS,I
(6.2.20)
with ISCs ; = Tgp — T ;. The general form is

P;’x =p + Cd£ - Cd; bl C(Atsv bl TGD + ISCi,X) + 7liI],P + T — d(i,x),p + M(i,x),p
(6.2.21)
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with

Equation (6.2.21) applies to all pseudoranges and codes, even to the L1 pseudorange
(6.2.16), since ISC, py = 0.

The information for computing the satellite clock correction Afgy and Tgp has
traditionally been included in the navigation message and transmitted by the user. In
the modernized arrangement, the ISC will also be transmitted so that the user can
correct the observations for the common satellite clock correction and the known
delays:

Pi,x = P;,X + C(Atsv - TGD +ISC[,X) = p + Cdz - Cd;"' yllll,P + T - di,x +Mi,x
(6.2.23)

At = Atgy — Tgp + 1SC; (6.2.24)

P! =P +cAtgy =p+cdt—cdi—cTgp—c-ISCi, + vl p+ T —d; + M,
(6.2.25)

In (6.2.23) all three corrections were applied to the observation. The symbol A, | in
(6.2.24) denotes the known total clock error that is specific to frequency and code.
In (6.2.25), only a partial correction is carried out that includes the common clock
correction.

Ionospheric-Free and Ionospheric Functions: The ionospheric-free function for
the fully corrected pseudoranges is obtained in the familiar form

Piy =P

1-—

ix -
=ptcdt—cdi+T—d;,;,+M,,;,

(6.2.26)

Yij

It can readily be verified that the ionospheric delay cancels since y;yy; = v;. Using
partially corrected observations as defined in (6.2.25), the ionospheric-free function
looks like this:

P! —y.P' +¢-ISC;, —y.-c-ISC,
iy " Vilix 1 iy Vi 2 Tap = p+cdt —cdi
— 7
T —dy M, (6.2.27)

These general expressions are valid for all frequencies and code types. In the event
that L1P(Y) is used, note that ISC; py = 0.

Using the partially corrected function (6.2.25), and omitting for simplicity the mul-
tipath terms, the ionospheric function can be written as

P! — P/ ISC. —1ISC.. d.. —d.
Lpy=2—2 4o = Dy (6.2.28)
Y1i — Yy i =7 Yiu—"j
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/! /! /! /!
p LPY — p 2,PY ISC, py P LPY — P 2,PY dy py — dy py
I py = —c: = —Tep+—]—
-7y L=7p L= I=7p
P!, =P (T) py = Topy) — (dy py — d3 py)
_ _LPY opy Uipy 2,PY 1,pY — 92 py (6.2.29)
-7 I -y

Equation (6.2.29) represents the popular case that uses P’l' py and P’2’ py Pseudor-
anges. It follows from the general form by using ISC; py = 0 and y; = 1. The last
term represents the receiver and satellite hardware delays for P1Y and P2Y codes.
When estimating the ionosphere or the TEC (total electronic content) a Kalman filter
usually also estimates the difference in hardware delays. Also, ultimately, one might
need to consider variations in the hardware delays due to large diurnal and seasonal
temperature changes.

Estimating the ISCs: The intersignal delay for the L1 CA-code follows directly
by applying (6.2.23) and (6.2.25) to the P1-code and LICA pseudoranges, respec-
tively, and differencing both equations, and knowing that ISC; py = 0,

ISCZ’ CA = P’l’,PY - P// + (dl,PY - dzs CA) (6.2.30)

2,CA
Similarly, applying (6.2.25) to L2C and using (6.2.15) yields
ISCy ¢ = P’l”PY - Plzl,c + (1= A4)Tgp (6.2.31)

Applying the ionospheric function (6.2.28) to P py and Ps , to compute /; py, then
substituting (6.2.29) for I; py, and then making use of (6.2.18), gives

-y
_ 1/ 7 15 7 7
ISCsp = (P - PS,Q) - (PI,PY - P2,PY) + (I =7r5)7Tep

LPY T=711
-y
+ (), py = ds ) — 7 yi (dy py —dy py) (6.2.32)

Similar operations lead to the ISC for L5I,

1 -7
1SCs; = P’II,PY - P{sl,l 1 1 (Pll,,PY - P,Z,,PY) + (1 =7157T6p
I =75
+(dy py —dsp) = ?(a’l,PY —dy py) (6.2.33)
12

All ISCs have been expressed as a function of known timing group delay 7 and
are all relative to the common reference L1P(Y). See Feess et al. (2013) for a data
example.
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6.2.3 Cycle Slips

A cycle slip is a sudden jump in the carrier phase observable by an integer number
of cycles. The fractional portion of the phase is not affected by this discontinuity in
the observation sequence. Cycle slips are caused by the loss of lock of the phase lock
loops. Loss of lock may occur briefly between two epochs or may last several minutes
or more if the satellite signals cannot reach the antenna. If receiver software would
not attempt to correct for cycle slips, it would be a characteristic of a cycle slip that all
observations after the cycle slip would be shifted by the same integer. This situation
is demonstrated in Table 6.2.1, where a cycle slip is assumed to have occurred at
receiver k while observing satellite ¢ between the epochs i — 1 and i. The cycle slip
is denoted by A. Because the double differences are a function of observations at one
epoch, all double differences starting with epoch i are offset by the amount A. Only
one of the triple differences is affected by the cycle slip, because triple differences are
differences over time. For each additional slip there is one additional triple-difference
outlier and one additional step in the double-difference sequence. A cycle slip may
be limited to just one cycle or could be millions of cycles.

This simple relation can break down if the receiver software attempts to fix the slips
internally. Assume the receiver successfully corrects for a slip immediately following
the epoch of occurrence. The result is one outlier (not a step function) for double
differences and two outliers for the triple differences.

There is probably no best method for cycle slip removal, leaving lots of space for
optimization and innovation. For example, in the case of simple static applications,
one could fit polynomials, generate and analyze higher-order differences, visually
inspect the observation sequences using graphical tools, or introduce new ambiguity
parameters to be estimated whenever a slip might have occurred. The latter option is
very attractive in kinematic positioning.

It is best to inspect the discrepancies rather than the actual observations. The
observed double and triple differences show a large time variation that depends on
the Iength of the baseline and the satellites selected. These variations can mask small
slips. The discrepancies are the difference between the computed observations and
the actual observed values. If good approximate station coordinates are used, the dis-
crepancies are rather flat and allow even small slips to be detected.

For static positioning, one could begin with the triple-difference solution. The
affected triple-difference observations can be treated as observations with blunders

TABLE 6.2.1 Effect of Cycle Slips on Carrier Phase Differences.

Carrier Phase Double Difference | Triple Difference
A-2) | -2 [ ¢li=-2) | ehi-2) | -2 Agll(i=1,i-2)
@ i=1 | @h=1 | /i=1) eni=1) | gpri=1) Agpr(i,i=1)— A
@, (D) @) HOR N @i (@ — A Agpti+1,1)

A+ D [ G+ D | @/G+D+A | @hi+1) | @G+ 1) —A AQY (i +2,i+1)
PUi+2) | @h(i+2) | I+ +A | ¢(i+2) Ti42)-A

km
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and dealt with using the blunder detection techniques provided in Chapter 2. A simple
method is to change the weights of those triple-difference observations that have par-
ticularly large residuals. Once the least-squares solution has converged, the residuals
will indicate the size of the cycle slips. Not only is triple-difference processing a robust
technique for cycle slip detection, it also provides good station coordinates, which,
in turn, can be used as approximations in a subsequent double-difference solution.

Before computing the double-difference solution, the double-difference observa-
tions should be corrected for cycle slips identified from the triple-difference solution.
If only two receivers observe, it is not possible to identify the specific undifferenced
phase sequence where the cycle slip occurred from analysis of the double difference.
Consider the double differences

o= (0} - 03) - (¢ - &) (6.2.34)

for stations 1 and 2 and satellites 1 and p. The superscript p denoting the satellites
varies from 2 to S, the total number of satellites. Equation (6.2.34) shows that
a cycle slips in (p{ or (p; will affect all double differences for all satellites and
cannot be separately identified. The slips A} and —A; cause the same jump in the
double-difference observation. The same is true for slips in the phase from station 1
to satellite p and station 2 to satellite p. However, a slip in the latter phase sequences
affects only the double differences containing satellite p. Other double-difference
sequences are not affected.
For a session network, the double-difference observation is

o1, = (01 = o) = (& ~ ) (0235

The superscript p goes from 2 to S, and the subscript m runs from 2 to R. It is read-
ily seen that a cycle slip in qo} affects all double-difference observations, an error
in @) affects all double differences pertaining to the baseline 1 to m, an error in (,a’l7
affects all double differences containing satellite p, and an error in ¢, affects only
one series of double differences, namely, the one that contains station m and satel-
lite p. Thus, by analyzing the distribution of a blunder in all double differences at
the same epoch, we can identify the undifferenced phase observation sequence that
contains the blunder. This identification gets more complicated if several slips occur
at the same epoch. In session network processing, it is always necessary to carry out
cross checks. The same cycle slip must be verified in all relevant double differences
before it can be declared an actual cycle slip. Whenever a cycle slip occurs in the
undifferenced phase observations from the base station or to the base satellite, the
cycle slip enters several double-difference sequences. In classical double-difference
processing, it is not necessary that the undifferenced phase observations be corrected;
it is sufficient to limit the correction to the double-difference phase observations if
the final position computation is based on double differences. It is also possible to
use the geometry-free functions of the observables to detect cycle slips.

6.2.4 Phase Windup Correction

One must go back to the electromagnetic nature of GPS transmissions in order
to understand this correction, as has been done in Chapter 9. In short, the GPS
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Figure 6.2.1 Antenna rotation test with Javad dual-frequency receiver having two
antennae and single oscillator. Data source: Rapoport.

carrier waves are right circularly polarized (RCP). The electromagnetic wave may
be visualized as a rotating electric vector field that propagates from the satellite
antenna to the receiver antenna. The vector rotates 360° every spatial wavelength
or every temporal cycle of the wave. The observed carrier phase can be viewed as
the geometric angle between the instantaneous electric field vector at the receiving
antenna and some reference direction on the antenna. As the receiving antenna
rotates in azimuth, this measured phase changes. The same is true if the transmitting
antenna changes its orientation with respect to the receiver antenna. Since the phase
is measured in the plane of the receiving antenna, its value depends on the direction
of the line of sight to the satellite, in addition to the orientation of the antenna.

Figure 6.2.1 shows the results of a simple test to demonstrate RCP of GPS signals.
Two antennas, about 5 m apart, were connected to the same receiver and oscillator
and observations were recorded once per second. One of the antennas was rotated
360° in azimuth four times clockwise (as viewed looking down on the antenna), with
1 minute between the rotations, and then four times rotated counterclockwise, again
with 1 minute between the rotations. The carrier phase observations were differenced
and a linear trend was removed to account for the phase biases and a differential rate
(caused by the separation of the antennas). The figure shows the change in the single
differences for both L1 and L2. Each complete antenna rotation in azimuth causes a
change of one wavelength.

An introductory discussion of the carrier phase windup correction for rotating GPS
antennas is found in Tetewsky and Mullen (1997). Wu et al. (1993) derived the phase
windup correction expressions for a crossed dipole antenna, but their results are appli-
cable to cases that are more general. Following their derivations, at a given instant the
windup correction is expressed as a function of the directions of the dipoles and of
the line of sight to the satellite.

Let X and y denote the unit vectors in the direction of the two-dipole elements in
the receiving antenna in which the signal from the y-dipole element is delayed by
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90° relative to that from the x-dipole element. k is the unit vector pointing from the
satellite to the receiver. We consider a similar definition for X" and }7' at the satellite,
i.e., the current in the y'-dipole lags that in the x’- dipole by 90°. They define the effec-
tive dipole that represents the resultant of a crossed dipole antenna for the receiver
and the transmitter, respectively,

d=X—-kk-X)+kxy (6.2.36)
d =% -kk-%)-kxy (6.2.37)

The windup correction is (Wu et al., 1993, p. 95)

. _ d.-d
5@ = sign[k - (d' x d)]cos™! <—> (6.2.38)
'l lid|

At a given instant in time, the windup correction 6@ cannot be separated from the
undifferenced ambiguities, nor is it absorbed by the receiver clock error because it
is a function of the receiver and the satellite. In practical applications, it is therefore
sufficient to interpret X and ¥ as unit vectors along northing and easting and X’ and §’
as unit vectors in the satellite body coordinate system. Any additional windup error
resulting from this redefinition of the coordinate system will also be absorbed by the
undifferenced ambiguities. Taken over time, however, the values of 6¢ reflect the
change in orientation of the receiver and satellite antennas.

The value of the windup correction for across-receiver and double differences
has an interesting connection to spherical trigonometry. Consider a spherical tri-
angle whose vertices are given by the latitudes and longitudes of the receivers k
and m, and the satellite. In addition, we assume that GPS transmitting antennas are
pointing toward the center of the earth and that the ground receiver antennas are point-
ing upward. This assumption is usually met in the real world. It can be shown that
the across-receiver difference windup correction 8¢} = 6¢, — 8¢, is equal to the
spherical excess if the satellite appears on the left as viewed from station & to sta-
tion m, and it equals the negative spherical excess if the satellite appears to the right.
The double-differencing windup correction 6(p§31 equals the spherical excess of the
respective quadrilateral. The sign of the correction depends on the orientation of the
satellite with respect to the baseline. For details, refer to Wu et al. (1993).

The windup correction is negligible for short baselines because the spherical
excess of the respective triangles is small. Neglecting the windup correction might
cause problems when fixing the double-difference ambiguities, in particular for
longer lines. The float ambiguities absorb the constant part of the windup correction.
The variation of the windup correction over time might not be negligible in float
solutions of long baselines. Additional remarks about dealing with the windup
corrections are provided in Chapter 7.

There is no windup-type correction for the pseudoranges. Consider the simple case
of a rotating antenna that is at a constant distance from the transmitting source and
the antenna plane perpendicular to the direction of the transmitting source. Although
the measured phase would change due to the rotation of the antenna, the pseudorange
will not change because the distance is constant.
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6.2.5 Multipath

Once the satellite signals reach the earth’s surface, ideally they enter the antenna
directly. However, objects in the receiver’s vicinity may reflect some signals before
they enter the antenna, causing unwanted signatures in pseudorange and carrier phase
observations. Although the direct and reflected signals have a common emission time
at the satellite, the reflected signals are always delayed relative to the line-of-sight
signals because they travel longer paths. The amplitude (voltage) of the reflected
signal is always reduced because of attenuation. The attenuation depends on the
properties of the reflector material, the incident angle of the reflection, and the polar-
ization. In general, reflections with a very low incident angle have little attenuation. In
addition, the impact of multipath on the GPS observables depends on the sensitivity
of the antenna in terms of sensing signals from different directions, and the receiver’s
internal processing to mitigate multipath effects. Multipath is still one of the domi-
nating, if not the dominant, sources of error in GPS positioning. Chapter 9 provides
an in-depth treatment of the relationship of antenna properties and multipath effects.

Signals can be reflected at the satellite (satellite multipath) or in the surround-
ings of the receiver (receiver multipath). Satellite multipath is likely to cancel in the
single-difference observables for short baselines. Reflective objects for receivers on
the ground can be the earth’s surface itself (ground and water), buildings, trees, hills,
etc. Rooftops are known to be bad multipath environments because there are often
many vents and other reflective objects within the antenna’s field of view.

The impact of multipath on the carrier phases can be demonstrated using a planar
vertical reflection surface at distance d from the antenna (Georgiadou and Kleusberg,
1988; Bishop et al., 1985). The geometry is shown in Figure 6.2.2. We write the direct
line-of-sight carrier phase observable for receiver k and satellite p as

Sp=Acos @ (6.2.39)

In (6.2.39) we do not use the subscript k and superscript p in order to simplify the
notation. The symbols A and ¢ denote the amplitude (signal voltage) and the phase,
respectively. The reflected signal is written as

Sp = @A cos(p + 0), 0<a<l (6.2.40)

antenna
image

station k
—

Figure 6.2.2 Geometry for reflection on a vertical planar plane.
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The amplitude reduction factor (attenuation) is @ = A’ /A, where A’ is the amplitude
of the reflected signal. The total multipath phase shift is

0=2rfAr+ ¢ (6.2.41)

where f is the frequency, Az is the time delay, and ¢ is the fractional shift. The multi-
path delay shown in Figure 6.2.2 is the sum of the distances AB and BC, which equals
2d cos f. Converting this distance into cycles and then to radians gives

0= % cos f+ ¢ (6.2.42)

where A is the carrier wavelength. The composite signal at the antenna is the sum of
the direct and reflected signal,

S=S,+Sg =Rcos(p+y) (6.2.43)

It can be verified that the resultant carrier phase voltage R(A, @, 8) and the carrier
phase multipath delay y(a, 8) are

R(A, a,0) = A(1 + 2a cos 0 + a*)/? (6.2.44)
in 0

,0) = tan™! (&> 6.2.45

(@0 an 1+ acosf ( )

Regarding the notation, we used the symbols MZ,] and Mz,z in previous sections
to denote the total multipath, i.e., the multipath effect of all reflections on L1
and L2, respectively. If we consider the case of constant reflectivity, i.e., a is
constant, the maximum path delay is found when dy /00 = 0. This occurs at
O(y,,,) = £cos~! (—a), the maximum value being ,,,, = +sin~'a. The maximum
multipath carrier phase error is only a function of the amplitude attenuation in this
particular case. The largest value is +90° and occurs when a = 1. This maximum
corresponds to /4. If « < 1, then y can be approximated by « sin 6.

The multipath effect on pseudoranges depends among other things on the chipping
rate T of the codes and the receiver’s internal sampling interval S. A necessary step
for each receiver is to correlate the received signal with an internally generated code
replica. The offset in time that maximizes the correlation is a measure of the pseudo-
range. Avoiding the technical details, suffice it to say that time shifting the internal
code replica and determining the correlation for early, prompt, and late delays even-
tually determines the offset. The early and late delays differ from the prompt delay
by —S and S, respectively. When the early minus late correlation is zero, i.e., they
have the same amplitude, the prompt delay is used as a measure of the pseudorange.
Consult Kaplan (1996, p. 148) for additional details on the topic of code tracking
loops and correlation. For a single multipath signal, the correlation function consists
of the sum of two triangles, one for the direct signal and one for the multipath signal.
This is conceptually demonstrated in Figure 6.2.3. The solid thin line and the dashed
line represent the correlation functions of the direct and multipath signals, respec-
tively. The thick solid line indicates the combined correlation function, i.e., the sum
of the thin line and dashed line. The left figure refers to destructive reflection when the
reflected signal arrives out of phase with respect to the direct signal. The right figure
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destructive constructive

amplitude

q p

Figure 6.2.3 Correlation function in the presence of multipath. p denotes the time delay
of the multipath signal and ¢ is the multipath induced pseudorange error.

refers to constructive reflection when the reflected and direct signals are in phase. Let
the combined signal be sampled at the early and late delays. The figure shows that the
prompt delay would coincide with the maximum correlation for the direct signal and
indicate the correct pseudorange but will be in error by the multipath-induced range
error g for the combined signal. The resulting pseudorange measurement errors are
negative for destructive reflection and positive for constructive reflection, even though
the reflected signal always arrives later than the direct one.

The pseudorange multipath error further depends on whether the sampling interval
is greater or smaller than half the chipping period. Byun et al. (2002) provide the
following expressions. If S > 7'/2 (wide sampling), then

Atacos 2rfAt + ¢)

1+ acosafAr + ¢)

(T =S+ At)acosrafAr + ¢p)

Atp =1 2+ acosafAr + ¢)

(T + S+ At)acosQraf At + ¢p)
2 —acosafAr + ¢)

0 if At>T4+S+ A7,

if At<T-S+Arp

if T—S4+Arp<A7<S+A7p

if s+Atp<AT<T+S+A7rp

(6.2.46)
and if S < T'/2 (narrow sampling), then

([ Atacos QrfAT + ¢)

1 + acosQrfAr + ¢)

sa cosrf At + ¢) if S+A7p<AT<T-S+A7p

(T +S - At)acosQrafAtr + ¢p)
2 —acosafAr + ¢)

0 if At>T+S

if At <S4+ A7

Atp =4

if T—S+Atp<A7<T+S

(6.2.47)
The pseudorange multipath error is dp = ¢ A7p, and A7 denotes the time delay of the
multipath signal. The expressions are valid for the P-codes and the C/A-code as long
as the appropriate chipping period 7 is used.
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Figure 6.2.4 Pl-code pseudorange multipath delay envelope in the case of wide sam-
pling. T = 98nsec, S = 60nsec, a; = 0.1, ¢, = 0.

Figure 6.2.4 shows an example of the envelope for the Pl-code multipath
range error Azp, oscillations versus time delay Az for the wide-sampling case
S > T/2. As the phase varies by x, the multipath error changes from upper to lower
bounds and vice versa. The distinct regions of (6.2.46) are readily visible in the
figure. Figure 6.2.5 shows an example of the C/A-code multipath range error for
the narrow-sampling case S < 7/2. The main difference between the wide and
narrow sampling interval is that the latter has a constant peak at region 2. In fact,
shortening the sampling interval S has long been recognized as a means to reduce the
pseudorange multipath error. See the second component of (6.2.47), where S appears
as a factor. Comparing (6.2.46) and (6.2.47), we find that in region 1 the slopes of
the envelopes are the same for wide and narrow correlating. Narrow correlation
causes the bounds in region 2 to be smaller. Region 4, for which the multipath error
is zero, is reached earlier the narrower the sampling (given the same chipping rate).
The lower envelope in these figures corresponds to destructive reflection, while the
upper envelope refers to constructive reflection.
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Figure 6.2.5 C/A-code pseudorange multipath delay envelope in the case of narrow sam-
pling. T = 980nsec, S = 48nsec, a; = 0.1, ¢, = 0.
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The multipath frequency f,, depends on the variation of the phase delay 6, as can
be seen from (6.2.40), (6.2.45), (6.2.46), or (6.2.47). Differentiating (6.2.42) gives
the expression for the multipath frequency

f, = i% - 27‘1 sin B|| (6.2.48)
The multipath frequency is a function of the elevation angle and is proportional to
the distance d and the carrier frequency. For example, if we take f = 0.07 mrad/s
(= one-half of the satellite’s mean motion) and f = 45°, then the multipath period
is about 5 minutes if d = 10m and about 50 minutes if d = 1 m. The variation in the
satellite elevation angle causes the multipath frequency to become a function of time.
According to (6.2.48), the ratio of the multipath frequencies for L1 and L2 equals
that of the carrier frequencies, f,, | /f,,» = f1/f>-

As an example of a carrier phase multipath, consider a single multipath signal
and the ionospheric phase observable (6.1.44). The effect of the multipath for this
function is

Pyp =Y le
Mp =W — TV,
)

_1 a sin 0, S a sin 0,
= tan —— | = —=tan —_— (6.2.49)
I+ a cos 6, 5 1+ a cos 6,

Figure 6.2.6 shows that the multipath ¢,,» impacts the ionospheric observable in a
complicated manner. The amplitude of the cyclic phase variations is nearly propor-
tional to a. When analyzing the ionospheric observable in order to map the temporal

0.4
a=1 a=2/3
0.3
0.2 a=1/3
0.1
0
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Figure 6.2.6 Example of multipath on the ionospheric carrier phase observable from a
vertical planar surface.d = 10m, ¢, = ¢, = 0.
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Figure 6.2.7 Pseudorange multipath from a single reflection on a vertical planar sur-
face.a =0.1,d=54,, ¢, = ¢, =0.

variation of the ionospheric delay, the multipath signature (6.2.49) cannot be ignored.
In fact, the multipath variation of (6.2.45) might occasionally impact our ability to
fix the integer ambiguities, even for short baselines.

Figure 6.2.7 shows the effects of multipath on the pseudoranges P1 and P2, and the
ionospheric free function (6.1.38). We are using the expression for region 1 in (6.2.46)
or (6.2.47), since we consider the case of a nearby reflection. The time delay At is
a function of the satellite elevation angle and can be computed from (6.2.42). The
figures show the multipath for a satellite that rises (# = 0°) until it passes overhead
(f = 90°). The multipath is largest for a satellite in the horizon (reflection on vertical
surface). In the case of reflection from a horizontal surface, the multipath has a reverse
dependency, i.e., it is largest for satellites at the zenith, as can readily be verified.

Fenton et al. (1991) discuss one of the early implementations of narrow correla-
tion in C/A-code receivers. Narrow correlator technology and on-receiver processing
methods to reduce carrier phase and pseudorange multipath effects are extensively
documented in the literature, e.g., van Dierendonck et al. (1992), Meehan and Young
(1992), Veitsel et al. (1998), and Zhdanov et al. (2001). If the phase shift 6 changes
rapidly, one might even attempt to average the pseudorange measurements. In addi-
tion to sophisticated on-receiver signal processing, there are several external ways to
mitigate multipath.

1. Since multipath can also arrive from below the antenna (due to edge diffrac-
tion), a ground plate is helpful. The ground plate is usually a metallic surface
of circular or rectangular form.

2. Partial multipath rejection can be achieved by shaping the gain pattern of the
antenna. Since a lot of multipath arrives from reflections near the horizon, mul-
tipath may be sharply reduced by using antennas having low gain in these
directions.
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3. Improved multipath resistance is achieved with choke rings. These are metallic
circular grooves with quarter-wavelength depth.

4. Highly reflective surfaces change the polarization from right-hand circular (sig-
nal received directly from the GPS satellite) to left-hand circular. GPS antennas
that are designed to receive right-hand polarized signals will attenuate signals
of opposite polarization.

5. Arrays of antennas can also be used to mitigate multipath. Due to a different
multipath geometry, each antenna sees the multipath effect differently. Com-
bined processing of signals from all antennas allows multipath mitigation (Fu
et al., 2003). In a design proposed by Counselman, the antenna elements are
arranged along the vertical rather than the horizontal (Counselman, 1999).

6. Since the geometry between a GPS satellite and a receiver-reflector repeats
every sidereal day, multipath shows the same pattern between consecutive days.
Such repetition is useful to verify the presence of multipath by analyzing the
repeatability patterns and eventually model the multipath at the station. In rel-
ative positioning, the double-difference observable is affected by multipath at
both stations.

In practical applications, of course, the various satellite signals are reflected at differ-
ent objects. The attenuation properties of these objects generally vary; in some cases
attenuation might even depend on time. Since the angle of incident also affects atten-
uation, it can readily be appreciated that the multipath is a difficult error source with
which to deal. It is common practice not to observe satellites close to the horizon in
order reduce multipath.

Equations (6.1.50) and (6.1.51) are useful to gauge the multipath, in particular the
multipath effect on the pseudoranges, if dual-frequency observations are available.

6.2.6 Phase Center Offset and Variation

It is important that the satellite signals are modeled correctly at the satellite and at the
receiver. At the satellite one must take the separation of satellite antenna phase and
satellite center of mass into consideration. The user antenna phase center offset and
variation is generally dealt with in terms of relative and absolute antenna calibration
(see Chapter 9 for a more detailed treatment of phase center definition and its varia-
tion). The data on both the satellite antenna and the most important user antenna phase
center offsets are available from the IGS in the form of ANTEX (antenna exchange
format) files. This format was especially designed to be able to handle multiple satel-
lite systems, multiple frequencies per satellite system, and azimuth dependencies of
the phase center variations.

6.2.6.1 Satellite Phase Center Offset The satellite antenna phase center off-
sets are usually given in the satellite-fixed coordinate system (x) that is also used to
express solar radiation pressure (see Section 5.1.4.3). The origin of this coordinate
system is at the satellite’s center of mass. If @ denotes the unit vector pointing to the
sun, expressed in the ECEF coordinate system (x), then the axes of (x") are defined
by the unit vector k (pointing from the satellite toward the earth’s center, expressed
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in (x)), the vector j = (k X €)/|k X e | (pointing along the solar panel axis), and the
unit vector i = j X K that completes the right-handed coordinate system (also located
in the sun-satellite-earth plane). It can readily be verified that

Xy =X+l j kI X' (6.2.50)

where X, is the position of the satellite antenna and X . denotes the position of the
satellite’s center of mass.

The satellite phase center offsets must be determined for each satellite type. When
estimating the offsets from observations while the satellite is in orbit, the effect of
the offsets might be absorbed, at least in part, by other parameters. This might be the
case for the offset in direction k and the receiver clock error. See Mader and Czopek
(2001) as an example for calibrating the phase center of the satellite antenna for a
Block ITA antenna using ground measurements. The satellite antenna phase center
calibration data are available in the ANTEX files from IGS.

6.2.6.2 User Antenna Calibration In the past, the phase center offset and vari-
ations of most user antennas were calibrated relative to a reference antenna. This
procedure is called relative antenna calibration. Absolute antenna calibrations, where
the phase offset and variations are determined independently of a reference antenna,
were conducted only for those antennas used at reference stations for which per defi-
nition, the best accuracy is needed. However, as in recent years more absolute antenna
calibration facilities became available, the trend is moving toward using absolute
calibration.

The immediate reference point in positioning with GPS is the phase center of the
receiver antenna. Since the phase center cannot be accessed directly with tape, we
need to know the relationship between the phase center and an external antenna ref-
erence point (ARP) in order to relate the GPS-determined positions to a surveying
monument. Unfortunately, the phase center is not well defined. Its location varies
with the elevation angle of the arriving signal, and to a lesser extend it also depends
on the azimuth. The relationship between the ARP and the phase center, which is the
object of antenna calibration, is usually parameterized in terms of phase center offset
(PCO) and phase center variation (PCV). The largest offset is in height, which can be
as much as 10 cm. The PCO and the PCV also depend on the frequency.

For simplicity, imagine a perfect antenna that has an ARP and a phase center offset
that is well known. Imagine further that you connect a “phase meter” to the antenna
and that you move the transmitter along the surface of a sphere that is centered on the
phase center. In this ideal case, since the distance from the transmitter to the phase
center never changes, the output phase will always read a same constant amount. In
actuality, there is no perfect antenna, and that situation can never be realized. Instead,
one effectively moves a source along a sphere centered on a point that one selects
as an average phase center. Now instead of recording a constant phase, one detects
phase variations, primarily as a function of satellite elevation. Since the distance from
source to antenna is constant, these phase variations must be removed so that constant
geometric distance is represented by constant phase measurements. Had one picked
another phase center, we would get another set of phase variations. It follows that in
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general the PCO and PCVs must be used together and why different PCOs and PCV
sets will lead one back to the same ARP.

For a long observation series one might hope that the average location of the PCV
is well defined and that the position refers to the average phase center. For RTK appli-
cations there is certainly no such averaging possible. For short baselines where the
antennas at the end of the line see a satellite at approximately the same elevation
angle, orienting both antennas in the same direction can largely eliminate the PCO
and PCV. This elimination procedure works only for the same antenna types, however.
For large baselines or when mixing antenna types, an antenna calibration is neces-
sary and respective corrections must be applied. Antenna calibration is also important
when estimating tropospheric parameters, since both the PCV and the tropospheric
delay depend on the elevation angle.

Relative antenna calibration using field observations was, e.g., developed at the
NGS (Mader, 1999), which also made this service available to users. All test anten-
nas are calibrated with respect to the same reference antenna, which happens to be an
AOAD/M_T choke ring antenna. The basic idea is that if the same reference antenna
is always used for all calibrations, the PCO and PCV of the reference antenna cancel
when double-differencing observations of a new baseline and applying the calibrated
PCO and PCV to both antennas. This technique is accurate as long as the elevation
difference of a satellite, as seen from both antennas, is negligible since the PCV is
parameterized as a function of the elevation angle. Since the PCV amounts to about
only 1 to 2cm and varies only slightly and smoothly with elevation angle, relative
phase calibration is applicable to even reasonably long baselines. NGS uses a cali-
bration baseline of 5 m. The reference antenna and the test antenna are connected to
the same type of receiver, and both receivers use the same rubidium oscillator as an
external frequency standard. Since the test baseline is known, a common frequency
standard is used, and because the tropospheric and ionospheric effects cancel over
such a short baseline, the single-difference discrepancies over time are very flat and
can be modeled as

(‘-"1172,19 - (/’fz,o)i =7+af + “Z(ﬁf)z + “3(ﬁf)3 + “4(ﬁf)4 (6.2.51)

The subscript i denotes the epoch, the superscript p identifies the satellite having
elevation angle f;, and 7; is the remaining relative time delay (receiver clock error).
The coefficients a; to a, and 7; are estimated by observing all satellites from rising
to setting. The result of the relative calibration of the test antenna is then given by

Pantenna.pcv(B) = &1 + & f + a3p° +a,p* + & (62.52)

The symbol & denotes a translation such that @,,;.,.q. pev(90°) = 0. The remaining
clock difference estimate 7 is not included in (6.2.52). Both 7 and £ cancel in double
differencing. Recall that this calibration procedure is relative and therefore (6.2.52)
must be applied in the double-differencing mode. We further notice that the model
(6.2.52) does not include an azimuthal parameter. The calibration data is available in
the ANTINFO (antenna information format) files, which were formatted especially
for relative antenna calibration.
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Automated absolute and site-independent field calibration of GPS antennas in
real time is reported in Wiibbena et al. (2000), Schmitz et al. (2002), and references
listed therein. They use a precisely controlled three-axes robotic arm to determine
the absolute PCO and PCV as a function of elevation and azimuth. This real-time
calibration uses undifferenced observations from the test antenna that are differenced
over very short time intervals. Rapid changes of orientation of the calibration robot
allow the separation of PCV and any residual multipath effects. Several thousand
observations are taken at different robot positions. The calibration takes only a
few hours.

In order to better serve the high-accurate GNSS community, NGS has also devel-
oped an absolute calibration technique (Bilich and Mader, 2010). They move the
antenna to be tested on a two-axes robotic arm to view the satellite from different
angles. The antenna motion is relatively fast to allow separation of the antenna pattern
of the test antenna and the reference antenna and to eliminate errors such as multipath,
thus effectively producing absolute calibration. The procedure uses across-receiver,
across-time differencing to estimate the antenna calibration parameters. The cali-
bration baseline is about 5 m long, and current procedure requires both receivers to
be connected to a common clock. The calibration results are also reported in the
ANTEX format.

There are other approaches available for absolute antenna calibration. For
example, the antenna can be placed in an anechoic chamber. The interior of such
a chamber is lined with radiofrequency absorbent material that reduces signal
reflections or “echoes” to a minimum. A signal source antenna generates the signals.
Since the source antenna can transmit at different frequencies, these anechoic
chamber techniques are suitable for general antenna calibration.

The interested reader is requested to surf the Internet for examples of antenna
calibration and additional resources.

6.2.7 GNSS Services

There are numerous services available to help users get the best out of GNSS. One
such service is the antenna calibration at NGS mentioned above. Others include the
gridded hydrostatic and wet zenith delays available from the TU Vienna and the Uni-
versity of New Brunswick (Chapter 8), ocean loading coefficients from the Onsala
Space Observatory (Chapter 4), polar motion and earth rotation parameters from the
IERS (Chapter 4), geoid undulations from various geodetic agencies to convert ellip-
soidal eights to orthometric heights, and freeware such as LAMBDA (Section 6.5),
made available by the UT Delft. Here we briefly focus on two additional services that
have a major impact on the use of GNSS. The first service refers to the products pro-
vided by the IGS (International GNSS Service), and by the second service we mean
the various online services that process field observations to produce final positions
and related information.

6.2.7.1 IGS The International GNSS Service (IGS) is a response to a call by inter-
national users for an organizational structure that helps maximize the potential of
GNSS systems. It is a globally decentralized organization that is self-governed by its
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members and is without a central source of funding. The support comes from various
member organizations and agencies around the world called contributing organi-
zations. Established by the International Association of Geodesy (IAG) in 1993, it
officially began its operations on January 1, 1994, under the name International GPS
Service for Geodynamics. The current name has been in use since 2005 to convey a
stated goal of providing integration and service for all GNSS systems. Details about
this important open service, which is available to any GNSS user, including formal
statements of goals and objectives, are available at its website http://www.igs.org.

A governing board sets the IGS policies and exercises broad oversight of all IGS
functions. The executive arm of the board is the central bureau, which is located
at the JPL. There are over 400 globally distributed permanent GPS tracking sites.
Figure 6.2.8 shows a subset of participating sites. These stations operate continuously
and deliver data almost in real time to the data centers. There are currently 28 data
centers—4 global, 6 regional, 17 operational data centers, and 1 project data center.
These data centers provide efficient access and storage of data, data redundancy, and
data security at the same time. There are 12 analysis centers. These centers use the
global data sets to produce products of the highest quality. The analysis centers coop-
erate with an analysis center coordinator, whose main task is to combine the products
of the centers into a single product, which becomes the official IGS product. In addi-
tion, there are 28 associate analysis centers that produce information for regional
subnetworks, such as ionospheric information and station coordinate velocities.

Table 6.2.2 summarizes the various IGS products. The orbital accuracy in section
(1) of the table is RMS values computed from three geocentric coordinates as
compared with independently determined laser ranging results. The first accuracy
identifier given for the clocks is the RMS computed relative to the IGS time scale; the
latter is adjusted to GPS time in daily segments. The second accuracy identifier for
the clocks is the standard deviation computed by removing biases for each satellite,
which causes the standard deviation to be smaller than the RMS value. The real-time

Figure 6.2.8 IGS permanent tracking network in 2002. (Courtesy NASA/JPL/Caltech)
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TABLE 6.2.2 IGS Products Product Availability Standards and Quality of Service.

Product Component Accuracy Latency Updates

GPS Satellite Ephemeris and Satellite Clocks (1)

Ultra-rapid (predicted half) Orbits ~5cm Predicted 4x daily
Sat. clocks ~31s;1500 ps

Ultra-rapid (observed half) Orbits ~3cm 3-9 hours 4x daily
Sat. clocks ~150ps; ~50 ps

Rapid Orbits ~2.5cm 17-41 hours Daily
Sat. & sta. clocks  ~75ps; 25 ps

Final Orbits ~2cm 12-18 days  Weekly
Sat. clocks ~75ps; 20 ps

Real time Orbits ~5cm 25 sec Continuous
Sat. clocks 300 ps; 120 ps

Geocentric Coordinates and Velocities of IGS Tracking Stations

Final positions Horizontal 3 mm 11-17 days  Weekly
Vertical 6 mm

Final velocities Horizontal 2 mm/yr 11-17 days  Weekly
Vertical 3 mm/yr

Earth Rotation Parameters (2)

Ultra-rapid (predicted half) Polar motion ~200 pas Real time 4x daily
Polar motion rate ~300 pas/day
Length of day ~50 pas

Ultra-rapid (observed half) Polar motion ~50 pas 3-9 hours 4x daily
Polar motion rate ~250 pas/day
Length of day ~10 pas

Rapid Polar motion ~40 pas 17-41 hours Daily
Polar motion rate ~200 pas/day
Length of day ~10 pas

Final Polar motion ~30 pas 11-17 days  Weekly
Polar motion rate ~150 pas/day
Length of day ~0.01 pas

Atmospheric Parameters (3)

Final troposphere ~4mm for ZPD ~3 weeks Daily

Ionosphere TEC grid 2-8 TECU <11 days Weekly

Rapid iono TEC grid 2-9 TECU <24 hours  Daily

Source: Strategic Plan 2013-2016, www.igs.org.
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service (IGS-TRS) is the latest addition to the list of products. The service reached
full operating capability in 2013 and provides orbit estimates every 5 or 60 seconds
and satellite clock estimates every 5 seconds. It uses the Internet protocol NTRIP
(Network Transport of RTCM via Internet Protocol) to deliver data to users. Users
must run an NTRIP client application, which is available as open source software.
Because IGS focuses on all GNSS systems, similar products will be available for
other GNSS systems or will be available when these become operational. The first
addition will be GLONASS products.

Understanding section (2) of the table, it helps to interpret the angular measure-
ment unit. In units of radians we have 100 pas corresponding to 3.1 mm of equatorial
rotation, and in angular units 10 psec correspond to 4.6 mm of equatorial rotation. In
section (3), a TEC unit (TECU) corresponds to 10'¢ electrons per 1 m? column.

The IGS is also very instrumental in creating specialized standards for data formats
and promoting their universal acceptance. Examples include the series of receiver
independent exchange formats (RINEX), standard formats for orbital files (SP3), the
solution independent exchange format (SINEX), and the IONspheric Exchange for-
mat (IONEX). IGS, being what it is—a federation of voluntary participating agencies,
universities, and enthusiastic individual scientists—has made a truly outstanding con-
tribution to the development of GNSS applications. It is a vivid demonstration that
the high-accuracy focus on GNSS is understood and valued globally.

6.2.7.2 Online Computing Online GNSS positioning computing services are
probably the ones of most immediate interest to users who collect data in the field.
These computing services accept input data in common format such as RINEX and
use supplementary observations from existing CORS or IGS stations to produce the
best solution in a given geodetic frame. Since these services are still evolving and
adopt their services to ever-changing GNSS system constellations, it is best to obtain
the most up-to-date information from the respective websites. In order to become
familiar with these services and their products, it is best to submit test data sets. Test-
ing and verifying is the best way of finding out which of them best fits one’s needs.
Most of them render the service free of charge.

APPS (Automatic Precise Positioning Service, http://apps.gdgps.net) is operated
at the Jet Propulsion Laboratory, California, and is probably the oldest operating
online service. A popular service with the U.S. surveying community is OPUS
(Online Positioning User Service, http://www.ngs.noaa.gov/OPUS), operated by the
National Geodetic Survey. The SCOUT (Scripts Coordinate Update Tool, http://sopac
.ucsd.edu/cgi-bin/SCOUT.cgi) service is offered by Scripts Orbit and Permanent
Array Center (SOPAC), University of California, San Diego. It traces its origin to the
very significant geodetic activities in California in connection with earthquake mon-
itoring. A recent addition to online processing is CenterPoint RTX Post-Processing
by Trimble Navigation Limited (http://www.trimblertx.com). This service uses
the company’s proprietary worldwide CORS network. Other important services
are CSRS-PPP (Canadian Spatial Reference System Precise Point Positioning,
http://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php), GAPS (GPS Analysis
and Positioning Software; http://gaps.gge.unb.ca/), and the Australian AUSPOS
(http://www.ga.gov.au/bin/gps.pl), among others.
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6.3 NAVIGATION SOLUTION

The navigation solution, also frequently referred to simply as point positioning, is
the type of solution the GPS system was originally designed for, achieving position
accuracy of about 1m. The solution is available at any time, depending of course
on satellite visibility, anywhere on earth. This solution is frequently implemented
in nonsurveying products, such as general consumer products or low-accuracy
hand-held receivers, or is executed in the background as part of more elaborate
solutions.

The navigation solution estimates the receiver coordinates, of course understood
to be the receiver antenna coordinates and the receiver clock error using pseudor-
ange observables. Carrier phases can be used to smooth the pseudoranges. There are
several simplifying assumptions. The satellite positions at signal transmission times
are assumed known and available from the broadcast ephemeris. The satellite clock
corrections are also assumed to be available from the navigation message and must
be applied to the observations. As discussed in Section 6.2.2, the satellite clocks are
monitored by the control center, which models the clock offsets in terms of polyno-
mials in time, and provides an estimate for the time group delay and the intersignal
correction. The navigation solution does not estimate a separate satellite clock error.
The ionospheric and tropospheric delays are also computed from models as explained
in Chapter 8 and applied to the observations, and the hardware delays and multipath
are neglected.

6.3.1 Linearized Solution
The navigation solution is based on the pseudorange equation (6.1.28). Applying the
simplifying assumptions, we can write equations of the type

Py =X =Xl —cdn e, = p} =& + ¢ (6.3.1)

k,p
The position of the satellite at signal transmission is X, the receiver location is X, and
&, = c dty, is the receiver clock error expressed in units of meters. We use the notation
where the superscript denotes the satellite and the subscript denotes the receiver. The
four unknowns X, and &, can be computed using four pseudoranges measured simul-
taneously to four satellites. In case more satellites are observed at the same time, the
parameters are estimated by the least-squares method. The effect of the earth’s rota-
tion during the signal travel time must be taken into consideration when computing
the topocentric satellite distance pi following Section 6.2.1. Since the receiver clock
error &, is solved together with the position coordinates at each epoch, a relatively
inexpensive quartz crystal clock in the receiver is sufficient rather than an expensive
atomic clock.

As we can see, the basic requirement for a solution to exist is that four satellites
are visible at a given epoch. This visibility requirement is a key factor in the design of
constellations that aspire to provide global coverage at any time. Modifications of the
basic point positioning solution can be readily envisioned. For example, for applica-
tions on the ocean it might be possible to determine the ellipsoidal height sufficiently
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accurately from the height above the water and geoid undulation. Equation (6.3.1)
could be parameterized in terms of ellipsoidal latitude, longitude, and height using
transformations (4.3.26) through (4.3.30). Therefore, at least in principle, pseudor-
anges of three satellites are sufficient to determine horizontal position at sea. Other
variations, such as connecting the receiver to an accurate atomic clock, could make
the receiver clock parameter superfluous or permit a simple modeling of the receiver
clock error.

The point positioning accuracy depends on the accuracy of the data provided by
the navigation message, the receiver-satellite constellation geometry at the time of
observation, the quality of the available ionospheric and tropospheric delays, and the
actual measurement error. In practice, one prefers to observe all satellites in view
in order to achieve redundancy and the best geometry. Dual-frequency users can
use the ionospheric-free pseudorange function (6.1.38) to eliminate the effect of the
ionosphere.

If the ordered set of parameters is

x' =[dx, dy, dz &] (6.3.2)

then the design matrix follows from (6.3.1) after linearization around the nominal
station location X;

1
el 1
5 . 4 .
e 1 X=x Y-y -z
A= § el = ,- ,~ : (6.3.3)
e 1 Py P p

Xi0

The A matrix has as many rows as there are satellites observed, which typically
includes all satellites in view. The horizontal 1 X 3 vector ej{ contains the direction
cosines for the line from the nominal station location to the satellite. The expres-
sion for the least-squares estimate X = —(A” PA)"'A” P£ is given in Chapter 2. The
weight matrix P is typically diagonal with the diagonal elements reflecting a weight-
ing scheme that is a function of the satellite elevation angle.

We take note that the receiver clock estimate absorbs common mode errors of tro-
pospheric and ionospheric delays and hardware delays. In general, the propagation
media delays are a function of azimuth and elevation angle. For example, in the case
of the ionosphere we consider splitting the total delay into an average station com-
ponent /; p and a component 612 p that is a function of the direction of the satellite,
giving IZ p=Ip+ 51£ p- The tropospheric delay can conceptually be split in a simi-
lar manner. The receiver hardware delay is also a common error since it is the same
for every satellite observation. These common components can be combined with the
receiver clock error into a new epoch parameter &, as
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The symbols for ionosphere and the troposphere have no superscript p in this
equation in order to identify them as common components at station k. It follows
that unmodeled errors that are common to all observations at a particular station do
not affect the estimated epoch position. Thus, modeling of the ionosphere and tropo-
sphere is useful only if it reduces the variability with respect to the common portion.

6.3.2 DOPs and Singularities

It has become common practice to use DOP (dilution of precision) factors to describe
the effect of the receiver-satellite geometry on the accuracy of point positioning. The
DOP factors are simple functions of the diagonal elements of the covariance matrix
of the adjusted parameters, derived from the linearized model. In general,

o = o, DOP (6.3.5)

where o, denotes the standard deviation of the observed pseudoranges, and ¢ is a
one-number representation of the standard deviation of position and/or time. When
computing DOPs, the pseudorange observations are considered uncorrelated and of
the same accuracy, i.e., the weight matrix is P = I. The cofactor matrix of the adjusted
receiver position and receiver clock is

9x qu qx; QX.‘;‘

Q, =@A"A) " = & D e (6.3.6)
qZ qu
sym 7

It is often desirable to interpret results in the local geodetic coordinate system, which
consists of the coordinates northing n, easting e, and up u. We transform the cofactor
matrix (6.3.6) using (4.4.25). The result is

qn 9ne  9nu qné

Qw — qe Geu qglj (6 3 7)
9y qué
Sym qe

The DOP factors are functions of the diagonal elements of (6.3.6) or (6.3.7).
Table 6.3.1 shows the various dilution factors: vertical dilution of precision (VDOP)
for the height, horizontal dilution of precision (HDOP) for horizontal positions,

TABLE 6.3.1 DOP Expressions.

VDOP = /g,
HDOP = 4/q, +q,
PDOP = \/qn +q,+q,= \/q)C +4q,+4q,

TDOP = \/q_g
GDOP = /q, +q,+q, +4;
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positional dilution of precision (PDOP), time dilution of precision (TDOP), and geo-
metric dilution of precision (GDOP). The GDOP is a composite measure reflecting
the geometry of the position and the time estimate. The DOPs can be computed in
advance, given the approximate receiver location and a predicted satellite ephemeris.
The DOPs were useful for finding the best subset of satellites at the time when a
receiver had only four or five channels. They are still useful in identifying a tempo-
ral weakness in geometry in kinematic applications, in particular in the presence of
signal obstruction. As the constellation observed and the satellites approach a crit-
ical configuration, the columns of the design matrix become increasingly linearly
dependent, the DOP values increase, and the resulting positioning solution becomes
ill conditioned. We consider the case when all satellites, as viewed from the receiver
location, appear to be located on the surface of a circular cone (Figure 6.3.1) or in a
plane. The vertex of the cone in the figure is located at the receiver. The unit vector
€. denotes the axis of the cone. The relevant portion of the linearized pseudorange

equation is
dP’]Z = —eZ - dx;, (6.3.8)

where eZ is the unit vector given in (6.3.3). For all satellites that are located on the

cone, the dot product

ei

€

T =cos® (6.3.9)

axis

is constant. The unit vector ej{ represents the first three elements of row i of the
design matrix. Therefore, (6.3.9) expresses a perfect linear dependency of these three

Figure 6.3.1 Critical configuration on a circular cone.
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columns. The other critical configuration occurs when the satellites and the receiver
are located in the same plane. In this case, the first three columns of the design matrix
fulfill the cross-product vector function

el xe =n (6.3.10)

where n is perpendicular to the plane. This degenerate solution can readily be visu-
alized since the out-of-plane receiver location is not determined by the linearized
model.

Critical configurations usually do not last long because of the continuous
motion of the satellites. They present a problem only in continuous kinematic
applications or very short rapid static positioning. The more satellites available
with unobstructed line of sight, the less likely it is that a critical configuration will
ever occur.

6.3.3 Nonlinear Closed Solution

The closed-form point positioning solution has been treated in detail in Grafarend
and Shan (2002) and Awange and Grafarend (2002a,b). The reader might consult
these publications for an in-depth study of closed expressions, for derivations, and
additional references on the topic. Bancroft’s (1985) solution is a very early, if not
the first, closed-form solution. We merely summarize the solution using the notation
of Goad (1998). In order to achieve compact expressions, we define the following
product of two arbitrary vectors g and h as

(g, h)=g"Mh (6.3.11)
where M is the matrix p 0
_ |33
M= [0 —1] (6.3.12)

The relevant terms of the pseudorange (6.3.1) are
Pl +cdh = |Ix' = x| 1<i<4 (6.3.13)
Squaring both sides gives
(x'-x' = P2) = 2(x" - X, + Picd,) = — (X - X, — 2dt}) (6.3.14)
As can be verified, the four pseudorange equations can be written in the compact form

X

a—-BM [cdtk

] +AT=0 (6.3.15)
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1 X X
AR 6316
/X [X
=3 ([5]- [2])

where

al =[a! &® & o (6.3.18)
=01 11 1] (6.3.19)
X yl ! —P}{
2 2 2 _p2
B=|", ', % & (6.3.20)
x>y =P
X y4 2 _P2
The solution of (6.3.15) is
X/( _ -1
Cdtk] =MB (AT + ) (6.3.21)

We note, however, that A is also a function of the unknowns X and dz,. We substitute
(6.3.21) into (6.3.16), giving

(B™'t,B't)A* +2{(B't,B7'a) — 1} A+ (B"'a.B'a) =0  (6.3.22)

This is a quadratic equation of A. Substituting its roots into (6.3.21) gives two solu-
tions for the station coordinates X,. Converting the solution to geodetic coordinates
and inspecting the respective ellipsoidal heights readily identifies the valid solution.

6.4 RELATIVE POSITIONING

In relative positioning, the vector between two stations is determined when two
receivers observe simultaneously. If more than two receivers observe at the same
time, we speak of a session network consisting of all the co-observing stations.
Session solutions result in a set of correlated vectors between the stations. Our focus
will be on short baselines, in which case certain small terms can be neglected.

In relative positioning, one tends to use across-receiver observations, or double-
or triple-difference observations. In this subsection, we will deal with double
differencing for positioning static receivers as was developed when GPS became
available. In Section 6.6, the focus is on network-supported positioning using various
forms of differential corrections. Since across-receiver differencing is becoming
more popular, Chapter 7 is dedicated to using across-receiver differencing and
kinematic applications.

We begin by providing the closed-form solution for double-differenced pseudor-
anges by modifying the solution presented in the previous section. This is followed
by the linearized double-difference and triple-difference solutions. Several aspects of
relative positioning are discussed, in particular the impact of the accuracy of the fixed
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station on the baseline length, the question of what constitutes independent baselines
will be addressed, and we will have a look at innovative, but these days less important,
antenna swap methods to get a kinematic survey started.

Although double differencing is certainly a popular method for baseline determi-
nation, we briefly review the merits of undifferenced processing as proposed by Goad
(1985) and then discuss the ambiguity function technique as an alternative to double
differencing. The subsection closes with reviewing some peculiarities encountered
when processing GLONASS observations.

6.4.1 Nonlinear Double-Difference Pseudorange Solution

This solution is a modification of Bancroft’s solution presented in Section 6.3.3 but

applied to relative positioning. It assumes that the coordinates of one of the baseline

stations, station X;, and the positions of the satellite are known. The coordinates of the

other station, station X,,,, are to be determined using double-difference pseudoranges.
The double difference pseudorange equation (6.1.81) can be written as

q _ Pq q
Pim,l - ”XP _Xk“ - IIXP _Xm” - {”xq _Xk” - “Xq _Xm”} +Mkm,l,P + Eim,l,P
— P4 Pq q
= Fkm + Mkm,l,P + EZITI,I,P (6.4.1)

For short baselines, we neglect the double-difference ionospheric and tropospheric
terms, and also ignore the multipath. The hardware delays cancel as part of the double
differencing. Consider the three independent double differences that can be formed
from the observations of four satellites

P = I =Xl = I =X, = (I =Xl = X =X, ]l} 1<i<3 (64.2)

Let p denote the base satellite, in this case we have taken p = 4. Since the satellite
coordinates and the station coordinates X; are known, we can compute the auxiliary

quantity Q ' 4 '
O =P, = X =Xl + X = x| (6.4.3)

Comparing (6.4.2) and (6.4.3), we find that Q relates to the unknown X,, as
O = =IIX" = x,, [l + X" = x,,| (6.4.4)

Following Chaffee and Abel (1994), we translate the origin of the coordinate system
to satellite p o
X =x'—xP (6.4.5)

Noting that in the translated coordinate system X’ = 0, we obtain from (6.4.4)

~

P X, = (1% =X, (6.4.6)

Equations (6.4.6) and (6.3.13) are of the same form. Squaring (6.4.6) gives

~i

(XX = O0%) = 2(X X, + X, @) =0 (6.4.7)
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This equation can be verified using

AP=X, X, (6.4.8)
NERVAEY % (6.4.9)
2 w9 '

3! ;l El_
B=|3% ¥ 2 (6.4.10)

SR
T=[-0) -0 -0 6.4.11)
X"=B (At + @) (6.4.12)

Substituting (6.4.12) in (6.4.8) gives the quadratic equation for A,
(B't,B7't) —1)A* +2(B”'7,B"'a)A+ (B"'a,B'at) = 0 (6.4.13)

The two solutions for A are substituted in (6.4.12) to obtain two positions for Ym. The
ellipsoidal height can be used to decide which of the positions is correct. Once X,,, is
computed, the coordinates can be translated to X,, using (6.4.5).

The closed formulas can be generalized for more than four satellites. In this case,
the number of rows in B equals the number of satellites or the number of double
differences. We multiply (6.3.15) from the left with B” and set@ = BTa, B = BTB,
and7 =B'r. Equations (6.3.22) or (6.4.13) can then be rewritten in the bar notation
and solved for A.

6.4.2 Linearized Double- and Triple-Differenced Solutions

Relative positioning with carrier phases of short baselines is presented, assuming
again that one baseline station, in this case X;, is known. The key element in this
solution is dealing with the ambiguity parameters. Let there be R receivers observing
S satellites at 7" epochs to generate RST carrier phase observations. In many cases,
the data set might not be complete due to cycle slips and signal blockage. Let the
undifferenced phase observations y be ordered first by epoch, then by receiver, and
then by satellite. For epoch i, we have

v,=[ol) - &G - o) - @S0 (6.4.14)
L8]

y=|: (6.4.15)
Yr
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Regarding the stochastic model, we make the simplifying assumption that all carrier
phase observations are uncorrelated and are of the same accuracy. Thus, the complete
RST x RST cofactor matrix of the undifferenced phase observations is

Q,=o’l (6.4.16)

®

with o, denoting the standard deviation of the phase measurement expressed in
cycles.

The next task is to find the complete set of independent double-difference obser-
vations. We designate one station as the base station and one satellite as the base
satellite. Without loss of generality, let station 1 be the base station and satellite 1
be the base satellite. The session network of R stations is now thought of as consist-
ing of R — 1 baselines emanating from the base station. There are S — 1 independent
double differences for each baseline. Thus, a total of (R — 1)(S — 1) independent dou-
ble differences can be computed for the session network. On the basis of the ordered
observation vector (6.4.14) and the base station and base satellite ordering scheme,
an independent set of double differences for epoch i is

A=l - 5O - W2 - PBe| (6.4.17)
A1

A= (6.4.18)
AT

The transformation from RST undifferenced observations to (R — 1)(S— 1)T
double-differenced observations is
A=Dy (6.4.19)

where D is the (R — 1)(S — 1)T X RST transformation matrix having elements —1, 1,
and 0 arranged in a well-defined pattern that reflects the number of stations, satellites,
and epochs.

For the ordered vector of triple-difference observations,

V= [0+ L) o S+l o @2+ LD - @lSa+ L)
(6.4.20)
Vl
v=| : (6.4.21)
VT—l
we have
V=TA=TDy (6.4.22)

The matrix T also has elements —1, 1, and 0 arranged in a well-defined pattern.
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The double- and triple-difference observations are linear functions of the undif-
ferencedcarrier phases. By applying covariance propagation and taking the cofactor
matrix (6.4.16) into account, the respective cofactor matrices are

Q, =o,DD" (6.4.23)
Q, =7TQ,T" (6.4.24)

The double-difference cofactor matrix Q, is block-diagonal.The triple-difference
cofactor matrix Qy is band-diagonal for 7 > 3. The triple-difference observa-
tions between consecutive (adjacent) epochs are correlated. The inverse of the
triple-difference cofactor matrix, which is required in the least-squares solution, is a
full matrix.
The relevant terms of the double-difference carrier phase equation (6.1.82) are
I

W ==X =Xl = X =, = x4 =, + X =, 11}

+ NI+ MY 4 e

km,p km,p

=Ly enm e e (6.4.25)
The residual ionospheric and tropospheric terms are not explicitly listed in (6.4.25)
since they are expected to cancel over short baselines. Notice the presence of the
ambiguity term NZZ in (6.4.25) as compared to the expression (6.4.1) for pseudo-
ranges. Assuming that the station coordinates X, are known, the parameters to be
estimated are X,, and the double-difference ambiguities. There are (R — 1)(S - 1)
double-difference ambiguities if there are no cycle slips. The multipath Mf}i’q) is typ-
ically treated as a model error and ignored. A row of the design matrix consists of the
partial derivatives with respect to the coordinates of station m

w f
—tn Ler o) (6.4.26)

ox, ¢

and contains a 1 in the column of the respective double-difference ambiguity param-
eter, and zero elsewhere. The least-squares solution that estimates the parameters

= [);;"] (6.4.27)
b’ =[N2 .. NS oo N2 oS (6.4.28)

is called the double-difference float solution. If it is possible to also constrain the
estimated ambiguities to integers, then we speak of the fixed solution. See Section
6.4.5 for details on ambiguity fixing.
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The partial derivatives of triple differences follow from those of double differences
by differencing

q P q - q .

0@ 1 (s ) _ 9% 0@l (i)

o0x ox ox

m m m

(6.4.29)

since the triple difference is the difference of two double differences. The design
matrix of the triple difference contains no columns for the ambiguities because the
ambiguities cancel during the differencing across time.

As to software implementation, it is important to avoid repetitious computation
when computing the Q, and Qy matrices and fully explore the pattern of the D and
T matrices to avoid unnecessary zero multiplications. The respective approaches for
time- and space-saving software implementations are well known and not discussed
in detail here.

The above processing scheme also applies to dual-frequency or multifrequency
observations. For each frequency, there is a separate set of ambiguities to be esti-
mated. Similarly, one could transform dual-frequency observations to wide lanes and
narrow lanes and process these, taking advantage of being able to fix the wide-lane
ambiguities first. Also, relative positioning with pseudoranges and linearized model is
very similar to the one for carrier phases. Comparing (6.4.1) and (6.4.25), the major
difference is the lack of an ambiguity term in the pseudorange expression. Conse-
quently, there are no ambiguity parameters. The partial derivatives of the coordinates
station coordinates are P

km

=€ —el (6.4.30)
ox

m

Therefore, in the case of short baselines where the ionospheric and tropospheric
effects can be neglected and the multipath is omitted or suitably considered by weight-
ing the observations as a function of the satellite elevation angle, there are only three
parameters to be estimated in the double-difference pseudorange solutions.

A general remark is in order regarding cancelation of unmodeled errors in double
differencing. For short baselines, the errors common to both stations tend to can-
cel during differencing. Because the ionospheric and the tropospheric corrections
are highly correlated over short distances, most of their delays are common to both
stations. An exception might be a tropospheric correction of nearby stations with
significantly different elevations. It is useful to apply tropospheric and ionospheric
corrections from external sources if these provide accurate differential corrections
between the stations. If this is not the case, because, say, the assumed meteorological
data are not representative of the actual tropospheric conditions, it might be bet-
ter to apply no corrections and rely on common-mode elimination. Because of the
cancellation of most of the effects of the propagation media, the clock errors, and
hardware delays, the technique of relative positioning has become especially popular
in surveying. Although the double-difference ambiguity parameters might initially
be perceived as a nuisance, they provide a unique vehicle to improving the solution
if they can be successfully constrained to integers.



310 GNSS POSITIONING APPROACHES

6.4.3 Aspects of Relative Positioning

Although relative posting is well established, this subsection looks at some of the
things that one needs to be aware of. Even in relative positioning over short base-
lines, near singularities may occur when some satellite signals are blocked by obsta-
cles. Also, the user should be aware of the implications of holding one baseline
station fixed, i.e., be able to separate absolute positioning from relative positioning.
In session solutions, only independent baselines should be used. This subsection also
includes material on the antenna-swapping technique which, historically speaking,
helped jumpstart kinematic applications.

6.4.3.1 Singularities Similar to point positioning, there are also critical satellite
configurations to be concerned with in relative positioning. Whereas the satellites
cannot be located simultaneously on a perfectly circular cone as viewed from each of
the stations, however, the satellites could be located approximately on circular cones
in the case of short baselines, resulting in near singularities. Consider the relevant
portion of the double-difference pseudorange or scaled carrier phase equation

Pi,q,,=ﬂf—ﬂzt—[/’z_pfn]+"' (6.4.31)

Let us take station m to be the known location. Then the relevant part of the lineariza-
tion is
9 _ _al q _ [a4
dP}! = —€} - dx, + el -dx, = el -€}| -dx, +--- (6.4.32)

It can readily be verified that the direction vectors e;'( are related to the vectors of
direction €. from the center of the baseline as

e, =e.+¢ (6.4.33)
i are of the order O(b/ pi) The symbol b denotes the

where the components of &
length of the baseline. Using (6.4.33), equation (6.4.32) becomes

= fot el e~ l] -+ (6434

For the special case where the vertex of the circular cone (see Figure 6.3.1) is at the
center of the baseline, the condition

e .e

c axis

=cos @ (6.4.35)

is valid for all satellites on the cone. This means that the dot products

[ez - elc) + SZ - 61]:] Cuxis = [ Z - Si] "€ (6.4.36)

axis

are of the order O(b / pIIZ) Such a product applies to each double-difference observa-
tion. Therefore, we are dealing with a near-singular situation since the columns of
the double-difference design matrix are nearly dependent. The shorter the baseline,
the more likely it is that a near singularity is noticeable. As stated for the navigation
solution, if all satellites in view are observed and there are no line-of-sight obstruc-
tions, such near singularity does not occur.
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6.4.3.2 Impact of a Priori Position Error At least in the early days of GPS
satellite surveying, a frequent concern was the need for a priori knowledge of the geo-
centric station position of the fixed station, as well as the impact of ephemeris errors
on relative positioning. Of course, in today’s situation, if one starts the survey at a
known location with centimeter accuracy and uses the precise ephemeris, these con-
cerns are no longer valid. However, looking at the geometry of this problem helps us
understand why GPS provides accurate relative positions and less accurate geocentric
positions.

The answer to these concerns lies again in the linearized double-difference
equations. Without loss of generality, it is sufficient to investigate the difference
between one satellite and two ground stations. Scaled to distances, the relevant
portion of the double-difference equation is

P20y = pl(0) = (1) + - (6.4.37)

The linearized form is
dP)! = —€] - dx, + e, - dx,, + e, — €} ] - dx’ (6.4.38)

Next, we transform the coordinate corrections into their differences and sums. This

is accomplished by
dx, — dx,, = d(x, — x,,) = db (6.4.39)

dxk+dxm_d X, +X, _x
2 2 o

(6.4.40)

The difference (6.4.39) represents the change in the baseline vector, i.e., the change
in length and orientation of the baseline, and (6.4.40) represents the change in the
geocentric location of the baseline center. The latter can be interpreted as the trans-
latory uncertainty of the baseline, or the uncertainty of the fixed baseline station.
Transforming (6.4.38) to the difference and sum gives

aPl = =3lel +e}] b — e}~ €}] -dx.+ [e[ €l -’ (6441)

There is a characteristic difference in magnitude between the first bracket and the
others. Allowing an error of the order O(b/ pZ ), the first bracket simplifies to 2/, or
2e’,:. The second and third brackets are of opposite signs but of the same magnitude.
It is readily verified that the terms in the latter two brackets are of the order O(b/ p;’).
When the baseline vector is defined by

b=p) - p‘]: (6.4.42)
Equation (6.4.41) becomes, after neglecting the usual small terms,
b b
dek,‘i =—€/ .db+ ? ~dx, — 7 - dxP (6.4.43)

Equating the first two terms in (6.4.43), we get the relative impact of changes in the
baseline and the translatory position of the baseline from

ph-db=b-dx, (6.4.44)
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Similarly, changes in the baseline vector and ephemeris position are related by
ph-db= b-dx’ (6.4.45)

These relations are usually quoted in terms of absolute values, thereby neglecting the
cosine terms of the dot product. In this sense, a rule of thumb for relating baseline
accuracy, a priori geocentric position accuracy, and ephemeris accuracy is

labll _ lldx Il _ Jlax"|
b P Pn

Equation (6.4.46) shows that the accuracy requirements for the a priori geocentric
station coordinates and the satellite orbital positions are the same. The accuracy
requirement is a function of the baseline length. This means that for short baselines,
an accurate position of the reference station might not be required and that the sim-
ple point positioning might be sufficient. A 1000 km line can be measured to 1cm
if the ephemeris errors and the geocentric location error can be reduced to 0.2m,
according to this rule of thumb. Another interpretation is that the ratio of relative posi-
tioning capability db to absolute positioning capability dx, is about baseline length
over the topocentric satellite distance. Equation (6.4.46) explains that GPS observa-
tions from closely spaced receivers, as is the case for short baselines, do not provide
accurate geocentric locations but provide accurate relative locations, thus the prac-
tice of holding one station fixed in relative location determinations. Of course, it is
understood that any error in the coordinates of the fixed station propagates directly
into the coordinates of the newly determined stations, i.e., speaking in terms of geo-
centric coordinates, the new position can only be as good as the fixed position. Inner
constraint solutions of vector networks allow an objective assessment of the accuracy
of the relative positioning achieved. See Section 4.4.4.

(6.4.46)

6.4.3.3 Independent Baselines The ordering scheme of base station and base
satellite used for identifying the set of independent double-difference observations is
not the only scheme available; it has been used here because of its simplicity. An
example where the base station and base satellite scheme requires a slight modifica-
tion occurs when the base station does not observe at a certain epoch due to temporary
signal blockage. If station 1 does not observe, then the double difference 2;1 can be
computed for this particular epoch. Because of the relationship

q _ P4 q
o =di - (6.4.47)
the ambiguity Ngg is related to the base station ambiguities as
Pq _ APd Pq
N,y =Nj5 - N, (6.4.48)

Introduction of Ng;] as an additional parameter would create a singularity of the nor-
mal matrix because of the dependency expressed in (6.4.48). Instead of adding this
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new ambiguity, the base station ambiguities N7 and N'{ are given the coefficients
1 and —1, respectively, in the design matrix. The partial derivatives with respect to
the station coordinates can be computed as required by (6.4.47) and entered directly
into the design matrix, because the respective columns are already there. A similar
situation arises when the base satellite changes. The linear functions in this case are

Piom = Pion ~ Pl (6.4.49)
23 __ as13 12
N2 =NB _pNI2 (6.4.50)

The respective elements for the base satellite ambiguities in the design matrix are,
again, 1 and —1.

One must identify (R — 1)(S — 1) independent double-difference functions in net-
work solutions. In session networks that contain a mixture of long and short baselines,
it might be important to take advantage of short baselines because the respective
unmodeled errors (troposphere, ionosphere, and possibly orbit) are expected to be
small. Fixing the ambiguities to integers adds strength to the solution. This additional
strength gained by fixing the ambiguities of a short baseline may also make it possible
to fix the ambiguities for the next longer baseline, even though the ambiguity search
algorithms might not have been successful without that constraint. The technique is
sometimes referred to as “boot-strapping” from shorter to longer baselines. A suitable
procedure would be to take baselines in all combinations and order them by increasing
length and identify the set of independent baselines, starting with the shortest.

There are several schemes available to identify independent baselines and obser-
vations. Hilla and Jackson (2000) report using a tree structure and edges. Here we
follow the suggestion of Goad and Mueller (1988) because it highlights yet another
useful application of the Cholesky decomposition. Assume that matrix D of (6.4.19)
reflects the ordering suggested here, i.e., the first rows of D refer to the double dif-
ferences of the shortest baseline, the next set of rows refer to the second shortest
baseline, and so on. We write the cofactor matrix (6.4.23) as

Q, =o;DD" =lLL" (6.4.51)

where L denotes the Cholesky factor (A.3.54). The elements of the cofactor matrix
Q, are
q; = di(k)d;(k) (6.4.52)
k

where d,(k) denotes the ith row of the matrix D. It is readily verified that the ith and
Jth columns of Q, are linearly dependent if the ith and jth rows of D are linearly
dependent. In such a case, Q, is singular. This situation exists when two double
differences are linearly dependent. The diagonal element j of the Cholesky factor L
will be zero. Thus, one procedure for eliminating the dependent observations is to
carry out the computation of L and discard those double differences that cause a zero
on the diagonal. The matrix Q, can be computed row by row starting at the top, i.e.,
the double differences can be processed sequentially one at a time, from the top to the
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bottom. For each double difference, the respective row of L can be computed. In this
way, the dependent observations can be immediately discovered and removed. Only
the independent observations remain. The process ends as soon as the (R — 1)(S — 1)
double differences have been found.

If all receivers observe all satellites for all epochs, this identification process needs
to be carried out only once. The matrix L, since it is now available, can be used
to decorrelate the double differences. The corresponding residuals might be diffi-
cult to interpret but could be transformed to the original observational space using
L again.

6.4.3.4 Antenna Swap Technique In view of modern processing of multi-
frequency observations, the antenna swapping technique may today be perceived as
impractical, although when introduced by Remondi (1985) it was an innovative and
major step forward in making kinematic surveying practical at the time. Although
today multifrequency observations are processed recursively as explained in Chapter
7 and the transition to the kinematic survey is automatic as soon as the ambiguities
are fixed, let us step back for a moment to see how it used to be (at the time surveyors
mostly operated single-frequency receivers).

Basically, a kinematic survey requires an initialization. This means the double-
difference ambiguities are resolved first and then held fixed while other points are
being surveyed, assuming of course that no cycle slips occurred while the rover moves
or that cycle slips are repaired appropriately. A simple way for initial determination
of ambiguities is to occupy two known stations. The procedure works best for short
baselines where the ionospheric and tropospheric disturbances are negligible. The
double-difference equation (6.4.25) can be readily solved for the ambiguity

P _ P4 -1 pq
N =@ — 4 P (6.4.53)
when both receiver locations X, and x,, are known. Usually, simple rounding of the
computed values is sufficient to obtain the integers. Once the initial ambiguities are
known, the kinematic survey can begin. Let the subscripts k and m now denote the

fixed and the moving receiver, then
ol =g = 2@l — Ny (6.4.54)

If four satellites are observed simultaneously, there are three equations like (6.4.54)
available to compute the coordinates of the moving receiver X,,. If more than four
satellites are available, the usual least-squares approach is applicable and cycle slips
can be repaired from phase observations. In principle, if five satellites are observed
we can repair one slip per epoch; if six satellites are observed, two slips can occur at
the same time, etc.

Remondi (1985) introduced the antenna swap procedure in order to initialize the
ambiguities for kinematic surveying, requiring only one known station. Assume that
four or more satellites were observed at least for one epoch while receiver R, and its
antenna were located at station k and receiver R, and its antenna were at station .
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This is followed by the antenna swap, meaning that antenna R; moves to station m
and antenna R, moves to station k, followed by at least one epoch of observations to
the same satellites. The antennas remain connected to their respective receivers. Dur-
ing data processing, it is assumed that the antennas never moved. Using an expanded
form of notation to identify the receiver and the respective observation, a double dif-
ference at epoch 1 when R was at k and at epoch # when R; was at m can be written,
respectively, as

&Ry =R, D) = A7 [ANR D) = pl(R. 1) = ph(Ry. 1) + pl(Ry, D] + NV
(6.4.55)

oo Ry = Ry.0) = 27 [, Ry 1) = pfy Ry 0) = F[(Ry 1)+ p{(Ry. )] + N}
(6.4.56)

Notice the sequence of subscripts on the right-hand side of (6.4.56). Differencing
both observations gives

O (Ry =Ry 1) — @ (Ry = Ry, 1)y = A7 [7(0) = o () + o (1) = ol (D)]
~ 22740 = P )] (6.4.57)

Equation (6.4.57) can be solved for x,,, given X, and observations to at least four
satellites (three double differences). Once the position of m is known, the ambiguities
can be computed from (6.4.53).

If the topocentric satellite distances would not change during the antenna swap-
ping due to motion of the satellites, the antenna swap technique would yield a baseline
vector of twice the actual length. The geometry of antenna swap can be readily visu-
alized in a simplified one-dimensional situation. Consider a horizontal baseline and
a satellite located somewhere along the extension of that baseline. As one antenna
moves from one end of the baseline to the other, it will register, let’s say, a positive
accumulated carrier phase change equal to the length of the baseline. As the other
antenna switches location, it will also register a carrier phase change equal to the
negative of the length of the baseline. Both receivers together will register a motion
of twice the length of the baseline.

Initialization by antenna swap on the ground is conveniently done for a very short
baseline of a couple of meters. A typical point positioning solution for X, is sufficient
for such short baselines.

6.4.4 Equivalent Undifferenced Formulation

The double-difference algorithm can readily be changed to an equivalent one of
single-difference processing. Following Goad (1985) we write the undifferenced
phase equation (6.1.30) as

ACE R A (6.4.58)

where ég includes the ambiguity parameter, the receiver and satellite clock terms,
ionospheric and tropospheric effects, hardware delays, and multipath. Considering
again station 1 as base station and satellite 1 as base satellite, then the undifferenced
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equations, comprising a double-difference observation containing satellite 2, can be
written as

(0 =2""p +& +ep,
P =20+ + ey,
P10 =20 + & + e,
w0 ="+ 8 + e, (6.4.59)

12

Next we compute the double-difference term & 15

12 1 1 2 2 12 12 12
Er=(el-8)-(8-8)=N3+M3 +e, (6.4.60)

in which we have neglected the double-difference ionospheric and tropospheric
terms. Solving (6.4.60) for 5; and substituting into (6.4.59) gives

P (0 =2""p) +& e,
Py =A""pl + &)+ z—:;’(p
Pi(O = Aol + &+ si(p

P = A NG HE + G +E e, (6.4.61)

This is the required reformulation. The undifferenced observations are parameterized
in terms of epoch parameters by & 11 s 521, and 52, which refer to either the base station
or the base satellite, and the double difference ambiguity N 113 Note that only the
nonbase station nonbase satellite observation contains the ambiguity term.

Given that the £ -parameters must be estimated every epoch and the stations coor-
dinates and ambiguity parameters are common to all epochs, the resulting normal
matrix has a well-known pattern. Although the size matrix increases quickly with
time, it can be efficiently stored in computer memory and the normal equation can be
solved quickly using either matrix partitioning techniques or recursive least squares.
The advantage of the undifferenced formulation is that no variance-covariance prop-
agation is needed for the observations, i.e., the variance-covariance matrix of the
undifferenced observations is diagonal.

6.4.5 Ambiguity Function

The least-squares techniques discussed above require partial derivatives and the
minimization of v/Pv, with v and P being the double-difference residuals and
double-difference weight matrix. The derivatives and the discrepancy terms depend
on the assumed approximate coordinates of the stations. The least-squares solution is
iterated until the solution converges. In the case of the ambiguity function technique,
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we search for station coordinates that maximize the cosine of the residuals. Consider
again the double-difference observation equation

q _ a _ I pq Pq q
Vp - kma - kmb — Z km,a +Nkma - km,b (6462)
In usual adjustment notation, the subscripts @ and b denote the adjusted and the
observed values, respectively. In (6.4.62), we have neglected again the residual
double-difference ionospheric and tropospheric terms, as well as the signal multipath
term. The residuals in units of radians are

yld =27 (6.4.63)

The key idea of the ambiguity function technique is to realize that a change in the
integer Nf’;’l changes the function y/kq by a multiple of 2z and that the cosine of this
function is not affected by such a change because

cos (w,f,Z’L) = cos (ZEVQZI’L) = cos [Zn'(v” + AN ] (6.4.64)

km,L
where AN’7 “ ;, denotes the arbitrary integer. The subscript L, denoting the frequency
identifier, has been added for the purpose of generality.
There are 2(R — S)(S — 1) double differences available for dual-frequency obser-
vations. If we further assume that all observations are equally weighted, then the sum
of the squared residuals becomes, with the help of (6.4.63),

2 R-18-1 1 2 R-1S8-1 2
VPV, NG )= Y Y Y () = s 2 Y X (vh,)T (6469)
L=1 m=1 g=1 L=1 m=1 g=1

If the station coordinates X, are known, the function could be minimized by varying
the coordinates X,,, and the ambiguities using least-squares estimation. The ambiguity
function is defined as

R-15-1
AFX,) = 3, ¥ D cos (v )
L=1 m=1 g=1
R-15-1
=Z COS{Z”[L kgna+N£;11La_ k;]an]}
L=1m=1 g=1 o
2 R-15-1
L
= cos{ [ LA b] } (6.4.66)
L=1 m=1 g=1

The small double-difference ionospheric, tropospheric, and multipath terms are
not listed explicitly in this equation, although they are present and will affect
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the ambiguity function technique just as they affect the other solution methods.
Nevertheless, if we assume that these terms are negligible, and that the receiver
positions are perfectly known, then the maximum value of the ambiguity function
(6.4.66) is 2(R — 1)(S — 1) because the cosine of each term is 1. Observational noise
will cause the value of the ambiguity function to be slightly below the theoretical
maximum. Since the ambiguity function does not depend on the ambiguities, it is
also independent of cycle slips. This invariant property is the most attractive feature
of the ambiguity function and is unique among all the other solution methods.

Because the values (pifflL in (6.4.63) are small when good approximate coordi-
nates are available (typically corresponding to several hundredths of a cycle), we can
expand the cosine function in a series and neglect higher-order terms. Thus,

2 R-15-1 2 R-1S5-1 (Wlqu)Q
AF(x,,) = Z Z 2 cos <¥’]frZ7L> = Z 1- —'2"' +
L=1 m=1 g=1 L=1 m=1 g=1 '
1 2 R-15-1 )
=2R-16S-1-3 3 ¥ X (vfi,)
L=1 m=1 g=1
=2(R-1)(ES-1)=27v"Pv (6.4.67)

The last part of this equation follows from (6.4.65). The ambiguity function and the
least-squares solution are equivalent in the sense that the ambiguity function reaches
maximum and v’ Pv minimum at the point of convergence, i.e., at the correct X,,,.

There are several ways to initialize an ambiguity function solution. The simplest
procedure is to use a search volume centered at some initial estimate of the station
coordinates X,,. Such an estimate could be computed from point positioning with
pseudoranges; the size of the search volume would be chosen as a function of the
accuracy of the coordinate estimates. This physical search volume is subdivided into
a narrow grid of points with equal spacing. Each grid point is considered a can-
didate for the solution and used to compute the ambiguity function (6.4.66). The
double-difference ranges qun’d, which are required in (6.4.66), are evaluated for the
trial position. As the ambiguity function is computed by adding the individual cosine
terms one double difference at a time, an early exit strategy can be implemented to
reduce the computational effort. For example, if the trial position differs significantly
from the true position, the residuals are likely to be bigger than one would expect
just from measurement noise, unmodeled ionospheric and tropospheric effects, and
multipath. An appropriate strategy could be to abandon the current trial position, i.e.,
stop accumulating the ambiguity function, and to begin with the next trial position.
This would occur as soon as one term is below the cutoff criteria, e.g.,

cos {27 | kfn,L’a(t)— kfn,L,b(t)]}i<£ (6.4.68)

The choice of the cutoff criteria € is critical not only for accelerating solutions but
also for assuring that the correct solution is not missed. This early exit strategy is
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unforgiving in the sense that once the correct (trial) position is rejected, the scanning
of the remaining trial positions cannot yield the correct solution.

A matter of concern is that the grid of trial positions is close enough to assure that
the true solution is not missed. Of course, a very narrow spacing of the trial positions
increases the computational load, despite the early exit strategy. The optimal spacing
is somewhat related to the wavelength and the number of satellites. On the other hand,
the ambiguity function technique can be modified in several ways in order to increase
its speed, such as using the double-differenced wide-lanes first. In this case, the trial
positions can initially be widely spaced to reflect the wide-lane wavelength of 86 cm.
These solutions could serve to identify a smaller physical search space, which can
then be scanned using narrowly spaced trial positions.

The ambiguity function technique offers no opportunity to take the correlation
between the double-difference observables into account. There is no direct accu-
racy measure for the final position that maximizes the ambiguity function, such as
standard deviations of the coordinates. The quality of the solution is related to the
spacing of the trial positions. If the trial positions, e.g., having a 1 cm spacing and a
maximum of the ambiguity function is uniquely identified, then one could speak of
centimeter-accurate positioning. In order to arrive at a conventional accuracy mea-
sure, one can take the position that maximizes the ambiguity function and carry out
a regular double-difference least-squares solution. Because the initial positions for
this least-squares solution are already very accurate, a single iteration is sufficient
and it should be possible to fix the integer. The fixed solution would give the desired
statistical information.

The ambiguity function values of all trial positions are ordered by size and normal-
ized (dividing by the number of observations). Often, peaks of lesser value surround
the highest peak and it might be impossible to identify the maximum reliably. This
situation typically happens when the observational strength is lacking. The solution
can be improved by observing for a longer period of time, selecting a better satellite
configuration, using dual-frequency observations, etc.

The strength of the ambiguity function approach lies in the fact that the correct
solution is obtained even if the data contain cycle slips. Remondi (1984) discusses the
application of the ambiguity function technique to single differences. The geodetic
use of the ambiguity function technique seems to be traceable to very long baseline
interferometry (VLBI) observation processing. Counselman and Gourevitch (1981)
present a very general ambiguity function technique and discuss in detail the patterns
to be expected for various trial solutions.

6.4.6 GLONASS Carrier Phase

The current GLONASS system implements frequency division multiple access
(FDMA) signal modulation as discussed in Chapter 5, whereas other satellite
systems utilize CDMA modulation. A consequence of this arrangement is that each
GLONASS satellite transmits at a slightly different carrier frequency within its
bands while all GPS satellites transmit at the same carrier frequency within the L1
and L2 bands. The GPS carrier phase equation (6.1.30), therefore, must be slightly
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generalized to allow frequency-dependent hardware delays. We write

I f’ f1

(ngl(t)z?lp;(t,t D+ Ny = A =0 TS e,
(6.4.69)
6, =d , + D’ + M, (6.4.70)

k1,0 — “kle k1,

where superscript » denotes the GLONASS channel number that identifies the fre-
quency within the L1 band at which the satellite is transmitting.Note that the hardware
delay terms have been given a superscript r. The receiver hardware delay in (6.1.31)
has no superscript since in the case of GPS, all satellites transmit on the same L1
carrier frequency. The satellite hardware delay DI also uses a superscript r to iden-
tify the frequency of the GLONASS satellite, whereas in (6.1.31), once again, the
superscript p identifies the GPS satellite.

As an introductory example to GLONASS carrier phase processing, we discuss the
experimental test of a 10 m baseline collected in 1998 on the roof of 3S Navigation
Company, Irvine, California. The receivers were connected to a rubidium clock and
recorded single-frequency pseudorange and carrier phases of S; = 5 GPS satellites
and Sp = 4 GLONASS satellites every second. As Figure 5.3.1 shows, during the
mid-1990s, the GLONASS satellite population was sufficiently robust, thus allow-
ing the development of mixed system positioning techniques. This baseline solution
was reported in Leick et al. (1998), who used a Kalman filtering program and a
least-squares batch program for independent computational verification (both include
the LAMBDA ambiguity fixer).

Let the superscripts p and r identify any of the S; GPS or S, GLONASS satellites,
respectively. Following this notation, the single-difference observations can then be
written as

fi
goZm,l,G = ;pzm + N:m .G + dkm,l,G _fldtkm (6.4.71)
r Tl r r
PrmiR = ?pkm +Newir t Aignag =1 Al (6.4.72)

These equations utilize a common receiver clock error df;,, for GPS and GLONASS
observations. The across-receiver hardware delay differences d,,, | ; and dy,, |  are
dealt with separately. Note, however, that the GLONASS hardware delay term dy,, | »
does not have a superscript, which may seem contrary to what one would expect
from the undifferenced hardware delay in (6.4.70). Since both receivers were of the
same type, produced by the same manufacturer, and were running the same soft-
ware, the implicit assumption is that the frequency-dependency contribution within
the same band is negligible in the across-receiver difference. Studying the validity of
this assumption was one of the purposes for collecting this experimental data set.

When processing GPS observations only, one would set dy,, ; ¢ = 0 since GPS
satellites transmit on the same L1 frequency and identical receivers were used, and
then estimate the time-dependent clock errors and the constant ambiguities and
station coordinates. A suitable ambiguity fixing technique would be applied to fix
the across-difference ambiguities to integer.
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For the combined processing of GPS and GLONASS across-receiver observations,
we used the satellite-dependent parameterization

5km 1.6~ me gt 1.6 (6.4.73)
é:km,l,R = N;Zm 1t g1 R (6.4.74)

According to the model assumptions, & parameters are constants in time but not inte-
gers because of the receiver hardware delays. Letting the superscripts ¢ and s denote
the respective GPS and GLONASS base satellites, we can then write the following
set of equations:

(pkm .G = -4 /’Zm + 98gm,l,a —f1 dty (6.4.75)
Pt = fl pim + 816+ Nomic ~ 1 Al (6.4.76)
Prmir = gp}im + S ~ L1400 (6.4.77)
Promi R = rpkm + o1k T Nomix =19t (6.4.78)

where Ni)i G = fp 1.6 fkmlc and N]:jan = lem,l,R —/,‘;zm’l‘R are the GPS and
GLONASS double difference ambiguities, respectively. Note that the across-
receiver observations (6.4.75) and (6.4.77) refer to the base satellites, and that there
are S; — 1 equations (6.4.76) and S, — 1 equations (6.4.78) that refer to nonbase
satellites. A Kalman filter, or equivalently recursive least squares, provides the
estimated real-valued ambiguity Np q and N rs ml R the station coordinates, and the
receiver clock and base satellite epoch parameters fk ; and fk

The float solution allows a first look at the variation of the hardware delays. First,

compute the nonbase parameters

2l _ NP 2q
EZm,l,G Nkm 16t 5km,],c (6.4.79)
EIZm,l,R N/Z% Rt élim,l,R (6.4.80)
and then analyze the differences Afkm . ékm o- éfm | and Agkm or= éZm G-

.fkn LR Note that these differences are taken relative to the estimated GPS base station

parameter. The fractional parts of Aé ¢ estimates the difference dq LG and d LG
(we have added the superscripts for clarlty) These fractional parts are expected to be
zero. Indeed, the computed values are located around zero within a couple of hun-
dredths of a cycle, and the fractional values of Aé‘g GR which estimate the difference

of dy, 1 g and d; | .. are clustered at 0.35 cycles and also vary by a couple of hun-
dredths of a cycle (Leick et al. 1998). Since Aékm G and Acfkm GR’ respectively, vary
only a couple of hundredths of a cycle over time, one can draw two conclusions:
first, the offset of Aék GR by about 0.35 cycles is significant and second, there is no
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Figure 6.4.1 Fractional parts of across-system across-receiver hardware delays after
fixing double-difference system ambiguities.

evidence in the data that the across-receiver hardware delays have a dependency on
the GLONASS channel number that exceeds a couple of hundredths of a cycle.

The above conclusions are reconfirmed by the fixed ambiguity solution. The float
solution is subjected to an ambiguity fixing routine yielding integer ambiguities, and
then the other parameters are updated accordingly. Figure 6.4.1 shows the updated
qur r differences for a period of one hour, in which all double-difference ambigu-
ities could be fixed. The figure shows identical graphs for each GLONASS satellite,
i.e., the lines are plotted on top of each other. The fixed solution confirms the off-
set described above, which is due to the frequency offset of GPS L1 and the bundle
of GLONASS frequencies in the L1 band. The remaining minor variation is due to
multipath and possibly temperature change and could be modeled as a constant in
practical applications.

Having verified the insensitivity of the across-receiver hardware delays to the
GLONASS channel number within the same band, the conventional carrier phase
double differences have the form

q _fl

q Pq
1.6 = 7 Pn T Nim1.6 (6.4.81)
i A " L
qokmlG pkm - _pkm NkmlR (fl _f1 )dtkm (6.4.82)

In contrast to GPS double differences, the GLONASS double differences depend on
the receiver clock error scaled by the respective frequency difference. This depen-
dency is demonstrated in Figure 6.4.2, which shows the functions

T S
rs

— y 1 J1 )
¢ = (p/:in,l,R - ?pl’;m,a + ?p;cm,a +4A" (6.4.83)

where the observations have been corrected for the adjusted topocentric satellite dis-
tances and translated by A’ in order to zero the function at the first epoch. The
graph shows essentially straight lines because the receivers were connected to a stable
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Figure 6.4.2 Impact of receiver clock errors on GLONASS double-differenced observa-
tions.

rubidium clock. The slope of the lines is a function of the frequency difference f — f7.
Four lines are shown corresponding to the five GLONASS satellites in the data.

Equations (6.4.81) and (6.4.82) could be used in principle to estimate the
double-difference integers, as long as the receiver clock differences are also
estimated at each epoch. However, caution is required because the coefficients of
the clock parameter in (6.4.82) are relatively small compared to, for example, the
respective coefficient in the single difference (6.4.78). Another way of looking at
this situation is to scale the carrier phases in such a way that the clock term cancels.
Consider this example: s f’ s

(plim,l,R 7 ‘pkm IR~ pkm + NI:m LR fSNlim 1.R (6.4.84)
1

One could attempt to compute an approximation N, | ., of the across-receiver ambi-
guity using (6.4.72), with station coordinates and receiver clock estimated from pseu-

doranges and assuming that dj,, ; r is negligible. The function (6.4.84) can then be

written as
I o A

Prom 1R~ F‘P‘Zm,l,RJf w5 Non. 15,0 = ~ Pt N g+ 1 (6.4.85)
. 1 1
with g
N,gfn LR —N,:m LR — AN*® n’ = 7 AN,ﬁm 1Lr £0.01 AN, g (6.4.86)
1
If AN/im, LR is sufficiently small, i.e., Nlim,l, .0 Can be computed sufficiently accu-

rately, it might be possible to neglect #'* and estimate and fix the ambiguity N o LR
as an integer.

Other elements of the GLONASS system, such as the form and contents of the
broadcast navigation message, the coordinates system, and the system time, are
described elsewhere. GLONASS attracted a lot of interest during the mid-1990s
because more usable satellites became available to the user, the GLONASS
dual-frequency pseudoranges were not encrypted, and the carrier frequencies were
different from those of GPS. The following is a sample of relevant literature from
the so-called first GLONASS period: Raby and Daly (1993), Leick et al. (1995,
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1998), Gourevitch et al. (1996), Povalyaev (1997), Pratt et al. (1997), Rapoport
(1997), Kozlov and Tkachenko (1998), RoBach (2001), and Wang et al. (2001).
Today, GLONASS once again has a fully deployed constellation and GLONASS
observations are routinely combined with GPS observation. For additional details
on generalized processing of observations from different satellite systems that allow
even nonidentical receivers, see Chapter 7.

6.5 AMBIGUITY FIXING

Ambiguity fixing is essential for achieving centimeter-level accuracy in relative posi-
tioning. We first discuss ambiguity fixing in the context of a constrained adjustment,
provide a brief background on the various approaches proposed to solve the ambigu-
ity fixing problem, and then discuss in detail the popular LAMBDA method. In the
second part of this section, the view is broadened by looking at practices in related
disciplines to solve similar problems that might also be of benefit in certain circum-
stances when applied to GNSS applications.

6.5.1 The Constraint Solution

Fixing ambiguities implies converting real-valued ambiguity estimates to integers.
The procedures follow the general linear hypothesis testing as described in Section
2.7.3. The objective is to constrain the estimated ambiguities of the float solution to
integers. Let’s assume that the parameters are grouped as

X = [a:] (6.5.1)

The symbol a* denotes the estimated station coordinates and possibly other parame-
ters, such as tropospheric refraction or receiver clock errors. The symbol b* denotes
the estimated float ambiguities. Using the same partitioning, other relevant matrices
from the float solution are

T
N,, N L 0||L 0

N — 11 21] — [ 11 ] [ 11 ] 6.5.2
[NZI N22 L12 L22 L12 L22 ( )

_ Q. Qs

— I _ a a*b
Q.=N"'= [Qz*b* o ] (6.5.3)
Ql:*l == L22L§2 (654)

The submatrices L,:i are part of the Cholesky factor L. The relation (6.5.4) can be
readily verified. In the notation of Section 2.7.3, we state the zero hypothesis H, as

These are n conditions, one for each ambiguity. The hypothesis states that a partic-
ular integer set is statistically compatible with the estimated ambiguities from the
float solution. When constraining ambiguities, the coefficient matrix A, takes on the
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simple form A, = [0 I] , where the identity matrix / is of size n. The misclosure is
£, = —b, where b is the set of integer ambiguity values that are to be tested. The
change in v/ Pv due to the n constraints can be written according to (2.7.54)

AVIPv = [b* - b17Q}'[b* - b] (6.5.6)

which can he used in the F test (2.7.55)

TPy d
é‘T’P': "% ~Fyy (6.5.7)
to test the acceptance of H,,. The value v/ Pv* comes from the float solution and df
denotes the degree of freedom of the latter.

Once the hypothesis H;, has been accepted, thus the best ambiguity candidate b has
been identified, the change in the float solution due to the constraints can be computed
using expressions from Table 2.5.5. One obtains for the station coordinates, given the
integer-constrained ambiguities

alb=a* -Q,,.Q;'(b*-b) (6.5.8)
The respective cofactor matrix after constraining is
Qﬁ”) = Qa* - Qu*h*Qb*QZ*b* (659)

It follows from the positive definiteness properties of the diagonal submatrices of N
or Q that the diagonal elements of Q,,;, are smaller than the diagonal elements of Q,,-,
thus expressing a reduction in the variances of the coordinates due to imposing the
constraints.

In the early days of GPS surveying, a test set b of integer values was obtained by
simply rounding the estimated float ambiguities to the nearest integer. This approach
works well for long observation times where many satellites can be observed, and
the change in satellite geometry over time significantly improves the float solution.
In such cases, the estimated real-valued ambiguities are already close to integers
and their estimated variances are small. The situation changes drastically when one
attempts to shorten the time of observation, possibly down to the extreme of just
one epoch. It is only the distribution of the satellites in the sky and the availability
of observations at multiple frequencies that adds strength to the geometry in such a
case. The estimated float ambiguities will not necessarily be close to integer, and the
estimates will have large variances and be highly correlated in general. A possible
solution is to find candidate sets b; of integers and compute Av’Py; according to
(6.5.6) for each member of the set. Those with the smallest contribution are subjected
to the test (6.5.7).

There are two potential problems with this approach, however. The first one is that
we might have many sets b that need to be tested if the variances of the real-valued
ambiguities are large. An efficient algorithm, therefore, is needed to shorten the
computation time for ambiguity fixing. The second problem is that several candidate
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sets might pass the test (6.5.7). Naturally, one would like to identify the correct
candidate as soon as possible in order to avoid collecting additional observations.
The discernibility of the candidate sets will be addressed in Section 6.5.3.

Frei and Beutler (1990) suggest a specific ordering scheme for the candidate ambi-
guity sets based on the float solution and the covariance matrix. The efficiency of their
algorithms relies on the fact that if a certain ambiguity set is rejected, then a whole
group of sets is identifiable that can also be rejected and consequently need not be
computed explicitly.

Euler and Landau (1992) and Blomenhofer et al. (1993) point out that the
matrix Ly, in (6.5.4) remains the same for all candidate sets. They further recom-
mend computing (6.5.6) in two steps. First, compute g = LgZ(b* —b,) and then
AVIPv =Y giz’ i=1---n. As soon as the first element g, has been computed,
it can be squared and taken as the first estimate of the quadratic form. Note that
AVTPv > g2, The value Av'Pv = g7 is substituted in (6.5.7) to compute the test
statistic. If that test fails, the trial ambiguity set b; can immediately be rejected.
There is no need to compute the remaining g; values. If the test passes, then the next
value, g,, is computed and the test statistic is computed based on Av’ Pv = g% + g%.
If this test fails, the ambiguity set is rejected; otherwise, g5 is computed, etc. This
procedure continues until either the zero hypothesis has been rejected or all g; have
been computed and the complete sum of n g-squared terms is known. This strategy
can be combined with the ordering scheme mentioned above.

Chen and Lachapelle (1995) take advantage of the fact that integer ambiguity
resolution accelerates if the range of candidates for a specific ambiguity is small. The
smaller these search ranges, the fewer ambiguity sets need to be tested. Their method
leads to a sequential reduction in the range of candidates for ambiguities not yet
fixed. The procedure is an application of sequential conditional adjustment. When
an ambiguity has been fixed and the covariance matrix of the parameters has been
propagated, the standard deviations of the remaining ambiguity parameters become
smaller. See the explanation given in regard to (6.5.9). The procedure starts with
determining the range of the ambiguity which has the smallest variance. There is a
strong resemblance between this method and LAMBDA, which will be discussed
below in detail. The latter technique first reduced correlation between ambiguities
and then applies sequential conditional adjustment.

Melbourne (1985) discusses an approach in which station coordinates are
eliminated from the observation equation prior to the search for the ambiguities. The
S — 1 double-difference epoch observation equations v = Aa + b + £ are multiplied
by G”, with G'A = 0, giving G’ (b-v + £) = 0. The columns of the matrix G span
the null space of A or AAT Taking v = 0 one could attempt to identify by trial and
error the correct set of ambiguities that fulfills the condition. Observing five satellites
generates one condition; each additional satellites adds another condition. Since
the elements of G change with time enough epochs will eventually be available to
allow a unique identification of the ambiguity. Only the correct set of ambiguities
will always fulfill the condition. As an alternative to the trial-and-error method, one
could use the mixed adjustment model to estimate b.
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Hatch (1990) suggests a scheme that divides satellites into primary and secondary
ones. Consider four satellites, called the primary satellites. The respective three
double-difference equations contain the station coordinates and three double-
difference ambiguities. When the satellite geometry changes over time, it is possible
to estimate all of these parameters. Any secondary satellites in addition to these
four primary satellites are, strictly speaking, redundant and are used to develop
a procedure for rapidly identifying integer ambiguities. The procedure starts by
computing trial sets for the three primary ambiguities using an initial position
estimate from a point positioning solution, or from the float solution if several
epochs of observations are available and the receivers do not move.

For details on the procedures mentioned above, please check the references cited.
Over the years, another method has become the most popular one of all. This is
LAMBDA, which we will discuss in some detail in the next section.

Finally, we have pointed out above that there might be several sets of integer
ambiguities that pass the test (6.5.7). Since the adjustment has already passed the basic
chi-square test, the adjustment as such is correct, i.e., there are no model errors, the
observational weights have been chosen correctly, and blunders have been eliminated.
In that case, it is natural to look for the smallest Av?’ Pv. From this point of view,
the integer fixing problem is called integer least squares and (6.5.8) is the integer
least-squares estimator. In short, one seeks the integer vector b that minimizes AVTPv.

6.5.2 LAMBDA

Teunissen (1993) introduced the least-squares ambiguity decorrelation adjustment
(LAMBDA) method. This technique has the highest probability of correct integer
estimation among a certain group of estimators (Teunissen, 1999). This probabilistic
property and its speed of resolving the ambiguities have resulted in high popular-
ity and general acceptance of the technique. The reader is referred to de Jonge and
Tiberius (1996) for details about implementation. The software is available from the
TU Delft. This section merely highlights some features of the LAMBDA algorithm.
At the core of the LAMBDA decorrelation is the Z transformation:

z=2"p (6.5.10)
2=2"h 6.5.11)
Q.=2'q,z (6.5.12)

In (6.5.11) we used the symbol b instead of b* to denote the float ambiguity estimate.
The matrix Z is a regular and square. In order for integers to be preserved, i.e., the
integers b should be mapped into integers z and vice versa, it is necessary that the
elements of both matrices Z and Z~! are integers. The condition |[Z| = +1 assures
that the inverse contains only integer elements if Z contains integers. Simply consider
this: if all elements of Z are integers, then this is also true for the cofactor matrix C.
Therefore, the inverse

1 _C’

z —

== 6.5.13
Z] ( )
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has integer elements because |Z| = +1. The latter condition also implies that
Q. =1270,2] =12"11Q,11Z| = 1Q,| (6.5.14)

The quadratic form also remains invariant with respect to the Z transformation. Sub-
stituting (6.5.10) and (6.5.11) into (6.5.6) and using the inverse of (6.5.12) gives

AVTPv = [b-b]"Q;'[b-b]
=[z-2"27'Q;'@Z ") [2-z]
= [2-2]"Q; ' [2-z] (6.5.15)
Note again that in (6.5.15) we used the symbol b instead of b* to denote the float
ambiguity estimate.

. . . . . f e T
Consider the following example with two random integer variables b = [b 1 bz] .
Let the respective covariance matrix be

0'2 O,
= 0 T (6.5.16)
Obyby G,

where we have omitted the hat notation for simplicity. Let the transformationz = Z' b
utilize a transformation matrix of the special form

r_ |1 B
- [o 1] (6.5.17)

where 2 = [2, %,]7. We note that |Z| = 1. The element f§ is obtained by rounding
2 . o 2 . .

~0ph,h, /o-b2 to the pearest 1.nteger p —.mt( - ablbz/ahz). Bec.ause pis an integer, the

transformed Z variables will also be integers. Applying variance-covariance propa-

gation gives

> =2'3Z= (6.5.18)

2.2 2 2
p %}, +22ﬁ°'b1b2 + %, ﬁobz -26”1”2
ﬁO'b2 + 64, %,

Let € denote the change due to the rounding, i.e., € = o’blbz/ag2 + f. Using (6.5.18),
the variance afl of the transformed variable can be written as

2 2 Gzlbz 2\ 2
0z, =0), — T € o, (6.5.19)

()'b2

This expression shows that the variance of the transformed variable decreases com-
pared to the original one, i.e., 0'121 < o-Z whenever
1

|6b,0, /07, > 0.5 (6.5.20)

and that both are equal when o, ;,, / 0'22 = |e| = 0.5. The property of decreasing the
variance while preserving the integer makes the transformation (6.5.17) a favorite for
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resolving ambiguities because it reduces the search range of the transformed variable.
It is interesting to note that z; and z, would be uncorrelated if one were to choose
B=—0pu,/ 0'52. However, such a selection is not permissible because it would not
preserve the integer property of the transformed variables.

When implementing LAMBDA, the Z matrix is constructed from the n X n sub-
matrix Q,, given in (6.5.3). There are n variables b that must be transformed. Using
the Cholesky decomposition, we find

Q, =H'KH (6.5.21)

The matrix H is the modified Cholesky factor that contains 1 at the diagonal positions
and follows from (6.5.4). The diagonal matrix K contains the diagonal squared terms
of the Cholesky factor. Assume that we are dealing with ambiguities i and i + 1 and
partition these two matrices as

o .
H=| " =|H,, H,, 0 (6.5.22)
Pigya oo g 1 H;, H;, Hi;
| hn,l hn,i hn,i+l l_
X ]
K= B X =10 Ky, 0 (6.5.23)
i+t 0O O K
| kn,n_

The transformation matrix Z is partitioned similarly

I

Z = 51 =10 Z, 0 (6.5.24)

where f = —int(h;, | ;) represents the negative of the rounded value of 7, ;, and
2, = ZIT[) (6.5.25)
Q.,=2/Q,Z, =Z/H'KHZ, = H{K\H, (6.5.26)

It can be shown that the specific form of Z; and choice for Z,, imply the following
updates:
Q, sym
Q. =|Z2,Q, Z,0,2), (6.5.27)
Q; QnZy Qs
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H,=Hz, =|H, ﬂ22 0
H;, Hy, Hy

— 1 0
H,, =
2 [hi+l,i+ﬂ 1]
hivo i+ Bhiss ivi higo i
H.. = hizsi+ Bhizsivr higs i
32 — . .
hy i + Bhy, i1 hy, i1
K, =K

(6.5.28)

(6.5.29)

(6.5.30)

(6.5.31)

The matrix K does not change as a result of this decorrelation transformation.
If § = 0, the transformation (6.5.25) is not necessary. However, it is necessary to
check whether or not the ambiguities i and i + 1 should be permuted to achieve further

decorrelation. Consider the permutation transformation

I
zz = 1 0 =10 P 0
i 0 0 Iy
This specific choice for Z, leads to
1 0 ! 0
H.. — hivy ikivy s
H22 = [hgﬂ i 1] +1,21 i+1,i+1 |
’ ki i + hi+1,,~ki+1,i+1
— [ _};{i+l,i 1
H21 = - i h/._H ' H21
| kit ki T
[hin i1 P
ﬁ32 — hivs v Migsi
| hn, i+1 hn,i
2k
- k;i 0 ki+1 - i+1,0 i+, i+
o = [ 0 1 i+1] ’ kiii+ hi2+1,iki+1~i+1
‘ 0

0

(6.5.32)

(6.5.33)

(6.5.34)

(6.5.35)

2
ki i + hi+1,,-ki+1,i+1

(6.5.36)

Permutation changes the matrix K at Rzz. To achieve full decorrelation, the terms
K and k;,; ;;; must be inspected while the ith and (i + 1)th ambiguity are

i+1,i+1
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considered. Permutation is required if klf tnipl < ki1, i+1- If permutation occurs, the
procedure again starts with the last pair of the (n — 1)th and nth ambiguities and
tries to reach the first and second ambiguities. A new Z transformation matrix is
constructed whenever decorrelation takes place or the order of two ambiguities is
permuted. This procedure is completed when no diagonal elements are interchanged.

The result of the transformations can be written as

2=z .Z,Zb (6.5.37)

T T T T
Q.=2, ..2,2Q22,.2 =HKH, (6.5.38)
The matrices Hq and K o are obtained as part of the consecutive transformations. The
permuting steps assure that K , contains decreasing diagonal elements, the small-
est element being located at the lower right corner. As a measure of decorrelation
between the ambiguities, we might consider the scalar (Teunissen, 1994)

r=IR|"? 0<r<i1 (6.5.39)

where R represents a correlation matrix. Applying (6.5.39) to Q, and Q_ , will give
a relative sense of the decorrelation achieved. A value of r close to 1 implies a high
decorrelation. Therefore, we expect r;, <r, .. The scalar r is called the ambiguity
decorrelation number.

The search step entails finding candidate sets of 2; given (Z, Q, ), which minimize

AV'Pv = (22)"Q | [2-2] (6.5.40)

A possible procedure would be to use the diagonal elements of Q, ,, construct a range
for each ambiguity centered around Z;, form all possible sets Z;, evaluate the quadratic
form for each set, and keep track of those sets that produce the smallest Av? Pv. A
more organized and efficient approach is achieved by transforming the Z variables
into variables W that are stochastically independent. First, we decompose the inverse
of Q, , as

Q;, = MSM" (6.5.41)

where M denotes the lower triangular matrix with 1 along the diagonal, and S is a
diagonal matrix containing positive values that increase toward the lower right corner.
The latter property follows from the fact that S is the inverse of K. The transformed
variables W

w=M"'z-z] (6.5.42)

are distributed as w ~ N(0, S_l). Because S is a diagonal matrix, the variables W are
stochastically independent. Using (6.5.42) and (6.5.41), the quadratic form (6.5.40)
can he written as

n
AVIPy =W SW = ) Wis;; < 7 (6.5.43)

i=1
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The symbol y? acts as a scalar; additional explanations will be given below. Finally,
we introduce the auxiliary quantity, also called the conditional estimate

Wy = Z Gz (6.5.44)

Jj=i+1

The symbol |/ indicates that the values for z; have already been selected, i.e., are
known. Note that the subscript j goes fromi = 1 ton. Sincem; ; = 1 and using (6.5.44)
and (6.5.42), we can write the ith component as

W, =2,-2z,+W, i=ln-1 (6.5.45)
The bounds of the z parameters follow from (6.5.43). We begin with the nth level to
determine the bounds for the nth ambiguity and then proceed to level 1, establish-
ing the bound for the other ambiguities. Using the term with W in (6.5.43), and
knowing that the matrix element m,, , = 1 in (6.5.42), we find

n l’li‘l

n,n
WaSyn = @y = 2850 S 27 (6.5.46)
The bounds are
2\ 1/2 2\ /2
2n—<x ) Szn32n+<1 ) (6.5.47)
sn,n Sn,n
Using the terms from i to n in (6.5.43) and (6.5.45), we obtain for level i
Wizsi,i =@ -z+ Wi,1)2Si,i < l)(z - Z szsj,j] (6.5.48)
Jj=i+1
1/2
Zi+w Wil l,}’ - Z ] <z
\/ Jj=i+1
" 1/2
<4 1 2 _ -2
Sgtwyt X WS (6.5.49)
S; -
L1 Jj=i+l

The bounds (6.5.47) and (6.5.49) can contain one or several integer values z,, or z;.
All values must be used when locating the bounds and integer values at the next lower
level. The process stops when level 1 is reached. For certain combinations, the process
stops earlier if the square root in (6.5.49) becomes negative.

Figure 6.5.1 demonstrates how one can proceed systematically, trying to reach the
first level. At a given level, one proceeds from the left to the right while reaching
a lower level. This example deals with n = 4 ambiguities — z;, 25, z3, and z4. The
fourth level produced the qualifying values z, = {—1,0,1}. Usingzy = —lorz, =1
does not produce a solution at level 3 and the branch terminates. Using z, = 0 gives
z3 = {—1,0} at level 3. Using z3 = —1 and z, = 0, or in short notation z = (-1, 0),
one gets z, = 0 at level 2. The combination z = (0, —1, 0) does not produce a solution
at level 1 so the branch terminates. Returning to level 3, we try the combination z =
(0,0), giving z, = {—1,0, 1} atlevel 2. Trying the left branch with z = (-1, 0, 0) gives
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no solution and the branch terminates. Using z = (0,0, 0) gives z; = {-2,-1,0, 1,2}
at the first level. The last possibility, using z = (1,0, 0), gives no solution. We con-
clude that five ambiguity sets Z; = (z;, 0,0, 0) satisfy the condition (6.5.43). In gen-
eral, several branches can reach the first level. Because s, , is the largest value in
S, the number of z, candidates is correspondingly small, thus lowering the num-
ber of branches that originate from level n and assuring that not many branches
reach level 1.

The change Av” Py, can be computed efficiently from (6.5.43) because all W; sets
become available as part of computing the candidate ambiguity sets. The matrix S
does not change. The qualifying candidates z; are converted back to b, using the
inverse of (6.5.37).

If the constant y> for ambiguity search is chosen improperly, it is possible that
the search procedure may not find any candidate vector or that too many candidate
vectors are obtained. The latter case results in time-consuming searches. This
dilemma can be avoided if the constant is set close to the AvTPv value of the
best candidate ambiguity vector. To do so, the real-valued ambiguities of the float
solution are rounded to the nearest integer and then substituted into (6.5.40). The
constant is then taken to be equal to AvTPv. This approach guarantees obtaining at
least one candidate vector, which probably is the best one because the decorrelated
ambiguities are generally of high precision. One can compute a new constant y2 by
adding or subtracting an increment to one of the nearest integer entries. Using this
procedure results in only a few candidate integer ambiguity vectors and guarantees
that at least two vectors are obtained.

LAMBDA is a general procedure that requires only the covariance submatrix and
the float ambiguity estimates. Therefore, the LAMBDA is applicable even if other
parameters are estimated at the same time, such as station coordinates, tropospheric
parameters, and clock errors. LAMBDA readily applies to dual-frequency obser-
vations, or even future multifrequency situations. Even more generally, LAMBDA
applies to any least-squares integer estimation, regardless of the physical meaning of
the integer parameters.

LAMBDA can also be used to estimate a subset of ambiguities. For example, in
the case of dual-frequency ambiguities one might parameterize in terms of wide-lane
and L1 ambiguities. LAMBDA could operate first on the wide-lane covariance sub-
matrix and fix the wide-lane ambiguities and then attempt to fix the L1 ambiguities.
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Teunissen (1997) shows that the Z transformation always includes the wide-lane
transformation.

6.5.3 Discernibility

The ambiguity testing outlined above is a repeated application of null hypotheses
testing for each ambiguity set. The procedure tests the changes Av?Pv due to the
constraints. The decision to accept or reject the null hypothesis is based on the proba-
bility of the type-I error, which is usually taken to be « = 0.05. In many cases, several
of the null hypotheses will pass, thus identifying several qualifying ambiguity sets.
This happens if there is not enough information in the observations to determine the
integers uniquely and reliably. Additional observations might help resolve the sit-
uation. The ambiguity set that generates the smallest Av” Py fits the float solution
best and, consequently, is considered the most favored fixed solution. The goal of
additional statistical considerations is to provide conditions that make it possible to
discard all but one of the ambiguity sets that passed the null hypotheses test.

The alternative hypothesis H, is always relative to the null hypothesis H,. The
formalism for the null hypothesis is given in Section 2.7.3. In general, the null and
alternative hypotheses are

Hy: AX*+4,=0 (6.5.50)

Ha: A2X*+»62+W2 =0 (6551)
Under the null hypothesis, the expected value of the constraint is zero. See also

equation (2.7.45). Thus,
E(2y,) = EAX" +£,) =0 (6.5.52)

Because w, is a constant, it follows that
E(zy ) = EAX* + £, +w,) =w, (6.5.53)
The random variable z;; is multivariate normal distributed with mean w, i.e.,
2y ~N,  (w,y,0;T") (6.5.54)

See equation (2.7.47) for the corresponding expression for the zero hypothesis. The
matrix T has the same meaning as in Section 2.7.3, i.e.,

—1 AT \—1
T= (Ale A2) (6.5.55)
The next step is to diagonalize the covariance matrix of z; and to compute the sum
of the squares of the transformed random variables. These newly formed random
variables have a unit variate normal distribution with a nonzero mean. According to
Section A.5.2, the sum of the squares has a noncentral chi-square distribution. Thus,

[
AVTPv %, '%H,
=~ A (6.5.56)
% %
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where the noncentrality parameter is

T
w, Tw,

2
0

A= (6.5.57)

(o}

The reader is referred to the statistical literature, such as Koch (1988), for additional
details on noncentral distributions and their respective derivations. Finally, the ratio
AvIPvny —r F
viPv: n, = Py

(6.5.58)

has a noncentral F distribution with noncentrality A. If the test statistic computed
under the specifications of H, fulfills F < F, ,, _, ;. then H, is accepted with a type-I
error of a. The alternative hypothesis H, can be separated from H,, with the power

1 — p(a, A). The type-II error is

Fnz =T
fla, A) = / Fnz’nl_,’ﬂ dx (6.5.59)
0
The integration is taken over the noncentral F-distribution function from zero to the
value F,, ,, _,,» which is specified by the significance level a.

Because the noncentrality is different for each alternative hypothesis according to
(6.5.57), the type-II error f(a, A) also varies with H,,. Rather than using the individual
type-II errors to make decisions, Euler and Schaffrin (1990) propose using the ratio of
noncentrality parameters. They designate the float solution as the common alternative
hypothesis H,, for all null hypotheses. In this case, the value w, in (6.5.51) is

and the noncentrality parameter becomes

T
w,Tw,  Av7Py
2 2
% %

A

(6.5.61)

where AV’ Py is the change of the sum of squares due to the constraint of the null
hypothesis.

Let the null hypothesis that causes the smallest change Av’ Pv be denoted by H,.
The changes in the sum of the squares and the noncentrality are Av?Pv,, and A
respectively. For any other null hypothesis we have 4; > A,. If

sm?

AVTPVj A;

— -1 > , 6.5.62
AVTPVSI.n j.sm = ()(a’ﬁgmsﬂj) ( )

then the two ambiguity sets comprising the null hypotheses H,, and H; are suffi-
ciently discernible. Both hypotheses are sufficiently different and are distinguishable
by means of their type-II errors. Because of its better compatibility with the float



336 GNSS POSITIONING APPROACHES

8.0
0 5s=3
e s=4
& 5=5
70 + p,=001 * s=6
2
s
ey
% 6.0 +
E
2
T 504 % B, =00s
oo
ES=S
40 —t : ——t p———

o 10 20 30 40 5 60 70 8 90 jgg

degree of freedom

Figure 6.5.2 Discernibility ratio. (Permission by Springer Verlag).

solution, the ambiguity set of the H,, hypothesis is kept, and the set comprising H;
is discarded.

Figure 6.5.2 shows the ratio 4y(a, By, f;) as a function of the degree of freedom
and the number of conditions. Euler and Schaffrin (1990) recommend a ratio between
5 and 10, which reflects a relatively large f, and a smaller f;. Since Hy, is the
hypothesis with the least impact on the adjustment, i.e., the most compatible with
the float solution, it is desirable to have f, > f; (recall that the type-II error equals
the probability of accepting the wrong null hypothesis). Observing more satellites
reduces the ratio for given type-II errors.

Many software packages implement a fixed value for the ratio of the best and the
second-best solutions, e.g.,

AVTPVan smallest >3 (6563)
AVTPv
to decide on discernibility. The explanations given above lend some theoretical jus-
tification to this commonly used practice, at least for a high degree of freedom.

A lot of work has been done to investigate the theoretical foundations of the ratio
test, to suggest better tests for the particular case of integer fixing, and to refine the
respective statistics. Examples are Wang et al. (1998), who constructed a test based
on the distance between the minimum and the second minimum of Av’Pyv instead
of the ratio. Teunissen (1998) looked at the success rate of ambiguity fixing for the
rounding and bootstrapping techniques. Teunissen (2003) introduced the integer aper-
ture theory and showed that the ratio test is a member of a class of tests provided
by the aperture theory. The probability density function of GNSS ambiguity resid-
uals, defined as the difference of float and integer ambiguity, and optimal testing is
addressed in Verhagen and Teunissen (2006a,b). There is a lot of literature available
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on testing and validation of integer estimation. As a first reading, we recommend
Verhagen (2004) and Teunissen and Verhagen (2007).

6.5.4 Lattice Reduction and Integer Least Squares

Though the LAMBDA method described above is sufficient to process the GNSS
data, another look is essential for understanding how to possibly improve the perfor-
mance of processing engines as the number of signals increases. At the time when
L1, L2, and L5 GPS signals are available along with L1, L2 GLONASS, L1, E5a,
E5b, E6 Galileo, L1, L2, L5, E6 QZSS, L1, L5 WAAS, and B1, B2, B3 Beidou sig-
nals, the ambiguity resolution problem can encounter 40 and more variables. The
need to solve such a large number of ambiguities in real time when performing RTK
positioning makes it necessary to revisit the ambiguity resolution problem in view of
computational experience accumulated in computer science since the early eighties
of the last century.

Usually all integer least-squares methods, including LAMBDA, consist of two
parts. The first part transforms the variables in such a way that the new covariance
matrix (or its inverse) is closer to the well-conditioned diagonal matrix with diagonal
entries sorted in ascending or descending order. This is called the lattice reduction.
The second part is the integer least squares. Both parts can be performed in many
different ways and combined together to form new algorithms.

There are many areas in which the minimization of quadratic functions over a
set of integer points is important. Several methods to solve such problems have been
developed and are described in the literature—see, for example, Pohst (1981), Fincke
and Pohst (1985), Babai (1986), and Agrell et al. (2002). These or similar problems
appear, for example, in the implementation of maximum likelihood decoders (MLD)
of signals over the finite alphabet performing the search over a certain lattice for a
vector closest to a given vector. In order to optimize the search over the lattice, the
lattice reduction algorithms have been proposed. A systematic study of this subject
starts with Lenstra at al. (1982), giving rise to many applications in mathematics and
computer science, as well as data transmission and cryptology. The paper by Korkine
and Zolotareff (1873) should also be mentioned. It shows that the conditioning prob-
lem for integer lattices has drawn the attention of mathematicians for a long time.
The independent statistical study by Teunissen (1993) on the decorrelation method
was a response to the need to deal with integer ambiguities in GPS applications.

As a brief introduction to the current state of integer quadratic programming, we
start with a description of the branch-and-bound algorithm. It produces a number of
candidate solutions, whereas whole subsets of unpromising candidates are discarded
by using lower estimated bounds of a cost function. The branch-and-bound algo-
rithm was proposed in Land and Doig (1960) and is still receiving attention in the
literature; see, for example, Buchheim et al. (2010) for effective and fast computer
implementations.

Then we describe the Finke and Pohst algorithm of Pohst (1981) and Fincke and
Pohst (1985). Then the lattice reduction problem will be addressed. In addition,
three other algorithms will be briefly identified. Note again that the lattice reduction
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and integer search can be combined together in different combinations, allowing the
derivation of new algorithms that are numerically efficient.

6.5.4.1 Branch-and-Bound Approach Consider the minimization of
4@ =(@2-2'Dz-2) (6.5.64)

over the integer vector Z € Z", where Z" is the integer-valued lattice in the
n-dimensional Euclidean space. In Figure 6.5.3, the contour line ellipse illustrates
the constant level set for the positive definite quadratic function. The ellipse is
centered at the real-valued vector z. The problem consists of searching for a vector
Z* € Z" which minimizes (6.5.64), i.e., the vector which is closest to Z with respect
to the norm ||-|3,.

%
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Figure 6.5.3 Contour line of the quadratic function (dashed ellipse centered at the
point 2) in the two-dimensional case. The vector z* closest to Z in the norm ||-||§,must be
found.
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The branch-and-bound method sequentially reduces the uncertainty of vector z*
by constructing subsets of the space R"(Z" C R"). Each subset corresponds to certain
hypothesis about the location of the solution. Each subset is accompanied by the
lower estimate of the cost function (6.5.64). The initial hypothesis corresponds to set
S = R?. The lower estimate of the function (6.5.64) is

ming(y)=¢qZ) =0 (6.5.65)
yes

We describe the branch-and-bound method using the example shown in Figure 6.5.3.
Then we will give its formal description. The point Z has noninteger values of entries.
Consider the second entry. As follows from the figure, it belongs to the segment 0 <
z, < 1. Construct two subsets S¢V ¢ S and S® C § in such a way that

sSSP =g (6.5.66)
and
2P c sHys® (6.5.67)

More specifically, SO =z : 7, > 1} and S =z : z, < 0}. The subsets are
dashed in the figure. The white (not dashed) strip {Zz : 0 < z, < 1} does not contain
integer-valued vectors and can be taken out from further consideration because of
(6.5.67). The conditions (6.5.66) and (6.5.67) mean that either z* € §; or z* € §,.
We described the first branching shown in Figure 6.5.4. Calculate the lower bounds
of the function g(y) over the subsets S and S@:

v = min ¢(y) < min g(y) (6.5.68)
yesh yeZ2nsm

V@ = min g(y) < min g(y) (6.5.69)
yes® yeZ’ns®

Note that v(! and v® take their values at the points 21 and z®, respectively (see
Figure 6.5.3). The values v(!) and v® estimate the lower bound of the minimum over
the integer lattice in the sets S!) and S® because

V' = g(Z") = min ¢(2)
2e2?

=min{ min__¢(2), min 61(2)}

2es(HnZ? 2e5nZ?
> min{ min g(y), min q(y)} = min{yV, v} (6.5.70)
yes) yes®@

Figure 6.5.4 Branching of the set S = R into two parts
S US? c S in such a way that no one integer point is lost:
ZcsVus®.
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In other words, v > v() = g(z(V) and v* > v = ¢(z?). Proceed with the branching
to decrease the uncertainty of the location of the optimal point z*. Look at the tree
in Figure 6.5.4 (consisting of root S and two leaves S and §®)) and choose the
leaf having the least estimate, which is v as seen from the figure because the ellipse
passing through point 2 lies inside the ellipse passing through point (). The second
entry of the vector z? is an integer, whereas the first one is not and can, therefore,
be used for branching. Let us divide the set S® (for which 2 is the optimum point)
into two subsets and exclude the strip {z : —1,<z, <0}: SCD ={ze€ S® : 7, <
—1}and $®? = {z € @ : z; > 0}. Figures 6.5.5 and 6.5.6 show the partition of the
plane corresponding to sets S U @V U §@? ¢ § and the corresponding branching
tree, respectively. Points z(1, D, and 2%, which are minimizers of g(y) over the
sets SV, @D and S@?), respectively, are shown in Figure 6.5.5. The same way as it
was proven in (6.5.70), the following conditions are established: v* > vZD = ¢(z(?1)
and v* > 12 = g(z??).

%

: ;'ifx/z/';? s
Sf 22) /

Figure 6.5.5 Partition of the plane corresponding to the sets S U S®" U S§® c §.
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Q

Figure 6.5.6 The branching tree with leaves L 1

SD, 8@V §@2 Not one of the integer points is lost in such a ./5 N ﬂ)
partition. N 45

More generally, at each step of branching, the estimates v~ corresponding to
the leaves of the branching tree do not exceed the optimal value v*

v > o (6.5.71)

Again, choose the leaf of the tree shown in Figure 6.5.6 corresponding to the
least estimate. There are three leaves: SV, S@D_ and §S@2. As it follows from
Figure 6.5.5, the least estimate is v(!) because the ellipse passing through the point
2z lies inside two other ellipses. The first entry for point 1) is not an integer and it,
therefore, will be used for branching the leaf node SV into two subsets excluding the
strip {z:0<z;<1}: 8 ={zeSD : 7, <0} and S1? = {zeSD : 7, > 1}.
Figures 6.5.7 and 6.5.8 show the partition of the plane corresponding to the sets
SAD Y $U2 y §@H y §@2) ¢ § and the corresponding branching tree, respectively.

Choose the least estimate among YD 02 @D and v@2 | T js vED according
to Figure 6.5.7. The estimate v! achieves at the point z?" which has a first
integer entry —1 and a second entry satisfying constraints —1 < z, < 0. The leaf
node SV is then split into two subsets excluding the strip {z : —1 < z, < 0}:
SCD =z SCY 17, >0} and SP? ={zeSCD :z, <—1}. Obviously,
S ={z : 7z, < -1,z =0}. Figures 6.5.9 and 6.5.10 show the partition of
the plane SUV U SU2 Yy SCID Yy §C12 Yy §22 C S and the corresponding tree. The
least estimate among v(!D | v @D @12 "and 122 s y(12) (see Figure 6.5.9).
The estimate v satisfies condition V(12 = ¢(z?) because the ellipse pass-
ing through it lies inside all other ellipses. The set S!'? is split into two sets,
S§A2Dand  §U22, according to conditions SU?D = {ze€ S1? : 7z, >2} and
S0 =1z 81D . 7, <1} ={z:z7 >1,2,=1}. Figures 6.5.11 and 6.5.12
show the partition of the plane SV u §U2D y §122 y §CID y §C12) y §22) ¢ § and
the corresponding tree.

As it follows from Figure 6.5.11, the least estimate is v>'" which satisfies condi-
tion V21D = g(z@!D), Also, as it can be observed from the figure, it is integer valued.
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Figure 6.5.9 Partition of the plane corresponding to the sets S'V U §12 u §@!D y @12
5@ c 8.

Now we conclude that

L2 min{v(“), yazh (122 el - @12) |@2) }

=min{ min , min min
{yes(m aw). min q@). min q).

< Z) = ) = ¥ 5.
yg;(lzl}l) qy), yns‘é‘}z> qy), ml(gz) q(y)} ;ggq(Z) qZ*) =v" (6.5.72)

On the other hand, v?'D = ¢(z?'D) and taking into account that 2! is integer val-
ued, we conclude that v®!D = g(z@?!D) > v*, Together with (6.5.72) this means

pCID = (6.5.73)

or, in other words, 'V is the optimal integer-valued point.
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Figure 6.5.10 Branching tree with
leaves S(ll) S(12) S(211) S(212) S(22)‘

Now we provide a more formal description of the branch-and-bound method. The
binary tree is subject to a transformation at each step k. Each node of the tree corre-
sponds to the subset of space R". In all figures, the branching starts from the node
marked by the symbol S. It is called the root and corresponds to R". At the step k = 0,
the tree consists of only root. Let {S©1),§@), s(@m) } be subsets corresponding
to the leaves of the current tree, @; being a multi-index. If the leaf node is subjected
to branching into another two leaves, the index «; is transformed into two indices «; 1
and ;2. The total number of leaves at the step k is m,, with m, = 1. Note that a leaf
of a tree is a node that has not been subjected to branching (see Figure 6.5.13).

The subset corresponding to leaves has the following property:

Z'n @,2 S("i)> -z (6.5.74)

1

which means that every point of the integer lattice Z" belongs to one of the leaf sub-
sets. There is an estimate V(%) and a point 2% assigned to a leaf subset as follows:

V(U’i) = min q(y) = q(z(ai)) (6.5.75)
yes@)

At step k, the leaf subjected to branching is chosen. That is, the leaf corresponding to
the minimum value of the estimate

V@) = min @ (6.5.76)
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Figure 6.5.11 Partition of the plane corresponding to the sets S'" uS!2) y§U12 y
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If the vector 2%+ is integer valued, then it is a solution to the problem (6.5.64). Actu-
ally, according to conditions (6.5.75), (6.5.76), and (6.5.74), we have

% )—,mln ()—,{nm {mln q(y)}
= My =

Loomg  i=l,..., yes@

< min { min q(y)} = min qy)
=l yezins@) yGZ"”(UTn_kl S(ai))

= min =" 6.5.77
min qw) ( )

On the other hand, for any integer point including z(), the following condition holds:

V< ) (6.5.78)
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Figure 6.5.13 Binary tree and set of leaves (surrounded by the dashed line).
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The combination of (6.5.77) and (6.5.78) proves that v* = v(%), which means opti-
mality of z(®+),
If the vector Z(*) is not integer valued, then at least one of its entries, say the /th
entry, satisfies the condition
[4™)] <™ <[] +1 (6.5.79)

where [-] is the integer part of the value. Then the set S is split into two parts

sev=snfz:g <[]} s =5 n{z:g2 ]+ 1;
(6.5.80)
Excluding the slice, we have [zga*)] <z < [z?a*) ] + 1, which means that the leaf node
5@ is subjected to the branching as shown in Figure 6.5.14. The multi-indices a, 1
and a,2 are constructed by adding the symbol 1 or 2 to the end of the multi index «,.
This completes the description of the branch-and-bound algorithm.

A
4

Figure 6.5.14 Binary tree and the set of leaves after the branching is performed.
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Figure 6.5.15 Single-branch tree.

The estimation problem (6.5.75) is a quadratic programming problem with
component-wise box constraints. Algorithms for such problems are considered in
Gill et al. (1982). The practical numerical complexity of the branch-and-bound
method depends on how much branching has been made. The closer the branching
tree is to a single branch (see Figure 6.5.15), the faster the algorithm. On the other
hand, the full binary tree supposes exponential computational complexity.

It has been noted that the closer the matrix D in (6.5.64) is to a diagonal matrix
(the closer the problem is to a minimization of squares of independent variables),
the less branching (fewer leaves) is involved in the resulting tree when performing
the algorithm. A significant task, therefore, is to transform problem (6.5.64) into a
form that makes the matrix D close to being a diagonal. The integer-valued nature
of the problem must be preserved, of course. The unimodular transformations are
used for that purpose because they are integer valued together with their inverse.
The reduction of the off-diagonal entries of the matrix is tightly connected with the
reduction of the lattice, generated by its Cholesky factor. Among all bases generating
the same lattice, one looks for the bases having the shortest possible vectors, that is,
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the subject of lattice reduction theory pioneered by Korkine and Zolotareff (1873).
The work of Lenstra et al. (1982) has drawn attention to the lattice reduction problem
in modern literature in the area of linear and quadratic integer optimization. We will
describe the LLL (Lensta- Lenstra- Lovasz) algorithm after a short introduction to
another approach to integer minimization known as the Finke-Pohst algorithm [see
Pohst (1981) and Fincke and Pohst (1985)].

6.5.4.2 Finke-Pohst Algorithm The algorithm described in this subsection
overlaps with the LAMBDA method, while being proposed by other authors
independently. The problem (6.5.64) can be equivalently formulated as calculating
the vector of the given lattice that is closest to a given vector. Recall that for
linearly independent vectors by, ..., b,, € R", the lattice A is the set of their linear
combinations with integer coefficients

A= {B =Y zb; oz eZ} (6.5.81)
i=1

Calculating the Cholesky decomposition of the matrix D = LLT and b = Lz, we can
formulate (6.5.64) as a problem of calculating a vector of the lattice A that is closest
to b (closest vector problem, or CVP). Note also that there can be different bases
b,,....b, € R" generating the same lattice A. Let B and B* be matrices composed of
columns by, ..., b, and bT, ..., b, respectively. Two bases generate the same lattice
A if there exists an integer-valued unimodular (integer-valued invertible) matrix U
such that B* = BU. Pohst (1981) and Fincke and Pohst (1985) suggest the following
algorithm for CVP:

Let /;; be entries of the matrix L and g; = [;;/1; for 1 <j <i < n. Then (6.5.64)

can be written as
n n 2
i=1 i

i=j+1

The following sequential search over entries of the vector Z is induced by the
triangular structure of the matrix L and (6.5.82). Let C be the upper bound of the
minimum in (6.5.64). For example, C = ¢([z]). The value |Z,, — z,,| is clearly bounded
by the value C'/2/1, . More specifically,

172 1/2
]zn _ [ <3, < [zn ;¢ ] (6.5.83)

lVlVl lnn

where [x] is the least integer greater or equal to x and ]x[ is the largest integer less or
equal to x. When introducing LAMBDA we already obtained similar bounds (6.5.47).
For each possible value of Z,, satisfying (6.5.83), we obtain

lzn—l,n—l(zn—l —Zy-1 t qn,n—1(2n—1 - Zn—l))2 <C- lﬁn(zn - Zn)2 (6584)
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The last inequality implies lower and upper bounds

<z (6.5.85)
T1/2
~ Gunt (Bt = 2y) — (6.5.86)
ln—l,n—l
T1/2
-1
Un—] = |%n—1 ~ 9nin—1 ( in—-1— Zn—]) + - (6587)
ln—l,n—l
1 =C =1, —2,) (6.5.88)
Proceeding with other entries 2, _,,Z,_3, ..., we obtain for each fixed set of values

A A

Zp,Zn—15 = > Lkt

2
n
l;fk(%k et ) an (2 —a)) < Ty (6.5.89)

i=k+1
n 2
Ty =Ty — l]%+1,k+1<2k+1 — g T Z 9ik+1 (21‘ - Zi)) (6.5.90)
i=k+2
with 7,, = C and k taking values in decreasing ordern — 1,n — 2, ..., 1. Each time the

vector satisfying condition ¢(Z) < C is obtained, C is decreased suitably. Again, sim-
ilarity with earlier described estimates (6.5.48) and (6.5.49) should be noted. These
considerations are summarized in the following algorithm. Denote by z* the current
record vector and f* as the binary flag taking the unit value if the record has been
updated at the most outer iteration of the algorithm, and zero otherwise.

-z =[2],C=q(z]). f = 1.
If f = 0, the algorithm terminates with Z* being a solution.
.Setk=n,T,=C,S5,=0,f=0.

712 e
SetUk= |:],;_1< +Zk_Sk:|’Lk=:|_li_k +Zk—Sk|:,2=Lk—1.

Set 2, :=7Z,+ 1.1f z, < Uy, go to step 7; else go step 6.

R

. If k =n, gotostep 2; else set k := k+ 1 and go to step 5.

7. Ifk=1,gotostep 8;elsesetk :=k—1, 5, = z 945G = 7))s
i=k+1
Ty =Tipr = et Qo — G + Ses1)?. Go to step 4.
. Ifg2) < C,set C=¢q(2),z" =2,and f = 1. Go to step 5.

e}

This is the Fincke-Pohst algorithm [Pohst (1981) and Fincke and Pohst (1985)]. Its
various modifications differ in the strategy of how the values 2, are updated at step 5.
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For example, they can be sorted from left to right, or from the center incrementally,
ie,0,—-1,1,-2,2,....

As noted in Fincke and Pohst (1985), using lattice reduction can significantly
decrease the computation complexity of the algorithm. Let r; denote the columns
of the matrix (L7)~!. Then

G-z = (L@ -2) < InlP@-2"DeE -2) < |Ir,|I>C (6.5.91)

foralli = 1,- - -, n. This means that by reducing the length of rows of the matrix L_l,
we reduce the search range of the integer variables. Applying any of the reduction
methods to the matrix (L7)~!, we obtain the reduced matrix by multiplying it by
appropriately chosen unimodular matrix U™, thus obtaining (M7)~! = U~'(LT)~ 1.
Then, instead of solving CVP (6.5.64), we solve CVP:

9@ =G -y MM @ -y) (6.5.92)

using the algorithm described above, y = U~'z and recover the original integer-
valued vector
z2=Uy (6.5.93)

The resulting algorithm is as follows:

1’. Compute Cholesky decomposition D = LLT and L™" (it is computed as a solu-
tion of the system LX = I (see Section A.3.6 of Appendix A).

2'. Perform the lattice reduction, computing the row-reduced matrix M")!
together with the unimodular matrix U™ subject to (M")~! = U~'(L")~".
Compute M" = L"U.

— T —
3’. Compute Cholesky decomposition LL = MM and q;; =L/l
4’. Compute Z := U'zand perform the algorithm step 1 to 8 described above.

6.5.4.3 Lattice Reduction Algorithms Now we describe the algorithms of
lattice reduction aimed to reduce the rows of the matrix L (columns of the matrix
L"). Letb,,....b, be columns of L” generating the lattice (6.5.81). Starting with
the LLL algorithm, we apply the Gram-Schmidt orthogonalization process to vec-
tors by, ..., b,. The orthogonal vectors b7, - - -, b, and numbers Hj 1 <j<i<nare

inductively defined by
i1

bi=b,, b} =b,— ) u;b’ (6.5.94)
j=1

;= bb; /b b! (6.5.95)
Note that b} with i > 1 is the projection of b; on the orthogonal complement of the

linear subspace spanned on the vectors b;, j=1,...,i—landbj,...,b,. Vectors b’
form the orthogonal basis of R". The smaller the absolute values of H;j» the closer
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the original basis for the lattice b, ..., b, to the orthogonal basis. The basis for the
lattice is called LLL reduced if

luyl < thforl <j<i<n (6.5.96)
and
6] 1> + 47 1D, 117 = 81Ib}_[I* for 1 <i<n (6.5.97)

where i < 6 < 1. In the original Lenstra et al. (1982) paper, the case 6 = 3/4 was
considered. Condition (6.5.96) is called the size reduction condition, and condition
(6.5.97) is called the Lovdsz condition. The following transformation will be referred
to as the size reduction transformation and denoted by T'(k,[) for [ < k:

| r = integer nearestto yy,;, b, = b, —rb,,
If | pgy| > 3 then § py; 1= py —rpgfor j=1,2,---i—1, (6.5.98)
Hig 2= P =7

The LLL algorithm for 6 = 3/4 consists of the following steps:

1. Perform the Gram-Schmidt orthogonalization according to (6.5.94) and
(6.5.95), and denote B; = ||b}||>. Set k = 2.
2. Perform T'(k,k —1). If B; < (% - yik_l ) B;_,, then go to step 3.
Perform T'(k,[)forl =k —2,...,1.If k = n,terminate k :=k + 1, go to step 2.
3. Setu = pypoys B 1= B+ wBiy, oy 1= uBiy /B,

Bk :=Bk—lBk/B’Bk—] :=B,

swap vectors (by_;,b;) 1= (b, by_)),

swap values Hi—1j = Hij forj=1,2,...,k—2
Hi Hi—1,

J
Mig—1) . (1 mpsp—1) (O 1 <Mik—1> for i
’ = : ’ orj=k+1,k+2,...,n
< Hik > (0 1 > <1 —H Hik /

ifk>2,thenk :=k—1, goto step 2.

The unimodular matrix U is constructed along with the construction of the reduced
basis. The transformation 7'(k, [) is equivalent to the multiplication of the matrix B =
[b,.b,, ...,b,] by the matrix

1
1 —k
I y (6.5.99)
1
Step 2 is equivalent to the permutation matrix
1
0 1 — (k=1
1 0 -k (6.5.100)



AMBIGUITY FIXING 353

The product of sequentially generated matrices (6.5.99) and (6.5.100) results in the
matrix U.

There are other definitions of lattice reduction and other reduction algorithms.
They can be applied at step 2’ of the algorithm 1’ to 4'.

Note that the LLL algorithm is not the first reduction algorithm proposed in history.
Another type of basis reduction is the Korkine-Zolotareff (KZ) reduction. To define
it, given the basis b, b,, ..., b, we construct the upper triangular matrix, obtained
via Gram-Schmidt decomposition (6.5.94) and (6.5.95),

L Sy - 72 1 (R TN [
0 b3l pxllbyll e pplibsll

G=|0 0 1155 < psllbyl (6.5.101)
0 0 0 bl

The basis b, b,, ..., b, is KZ reduced if its upper triangular representation (6.5.101)
is KZ reduced. The matrix (6.5.101) is defined, recursively, to be KZ reduced if either
n = 1 or each of the following conditions holds: (6.5.96), the vector (||bT II,0,...,07
is shortest in the lattice generated by columns of the matrix (6.5.101), and the sub-
matrix

”b;” M32*||b§|| s ﬂn2||b§||
(:) |:|b3” ) f’n3”b3” (6.5.102)
0 0 byl

is KZ reduced. The KZ-reduced basis is also LLL reduced, but for LLL there exists the
LLL algorithm described above, having polynomial complexity, while KZ reduction
requires more extensive calculations. Hybrids between KZ and LLL reductions have
been proposed in Schnorr (1987). It is noted in Agrell et al. (2002) that the KZ reduc-
tion is recommended for applications where the same lattice is to be searched many
times for different vectors Z in (6.5.64); otherwise, LLL reduction is recommended
(the latter is the case for applications to RTK).

Wiibben et al. (2011) introduce Seysen’s reduction and Brun’s reduction algo-
rithms. Both methods use unimodular transformations, differing in definition of the
orthogonality measure of the resulting basis.

Another class of methods, called inverse integer Cholesky decorrelation, is intro-
duced in Wang et al. (2010) and Zhou and He (2013). In order to make the matrix D or
its inverse closer to diagonal, different decorrelation techniques have been developed.
The construction of the unimodular transformation starts with Cholesky decomposi-
tion in the form

D=LAL" (6.5.103)

where L is the lower triangular matrix with unit diagonal and A is a diagonal matrix
with positive elements. The unimodular transformation U, is constructed as inverse
L rounded

U =I[L" (6.5.104)
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The unimodular transformation can be applied to D or D' In the first case, we have
D, =U,DU] (6.5.105)

The matrix D, is not diagonal since the rounding operation has been applied to L
in (6.5.104). Repeating calculations (6.5.103) to (6.5.105) construct the unimodu-
lar transformation U7 = U{Ug - - -. Calculations repeat until either convergence or a
predetermined condition number is reached.

6.5.4.4 Other Searching Strategies The second stage of the integer least-
squares algorithm was presented in this section by the branch-and-bound algorithm
and sphere decoding (Fincke-Pohst) algorithm. In order to describe other approaches
to the searching strategies, we will use the conceptual description presented in Agrell
et al. (2002), Section IIIA.

Let the problem (6.5.64) be rewritten in the form

Gz —x|*> - nenzn (6.5.106)
r4

The recursive characterization of the lattice spanned on columns of the matrix G
follows from the representation
G=[G,_, g, (6.5.107)

with G,_; being the n X (n — 1) matrix and g,, being the last column of G. Moreover,
g, can be written as g, = g, + g, where g|; € span(G,_,) belongs to the column
space of G,_; and G,_;g, = 0. If the matrix G is upper triangular as in (6.5.101),
then obviously @), = (g,1»---»8n-1-0)" and g; = (0,...,0,g,,)". Then the lattice
A(G) can be factorized as a stack of (n — 1)-dimensional translated sublattices

+oo
AG@) = U {e+z5,9,+59, i €€ AG) (6.5.108)

The hyperplanes {¢ +z,9, +2,9, : C€ A(G")} containing these sublattices are
called layers. Thus, the number z, indexes the layers. It denotes to which layer a
certain lattice point belongs. The vector g, is the offset by which the sublattice is
translated within its layer, relative to the adjacent layers. The distance between two
adjacent layers is ||g ||. For the upper triangular case (6.5.101), we have ||g, || =
|gn| = &, because g, > 0.

Now, a large class of search algorithms can be described recursively as a finite
number of (n — 1)-dimensional search operations.

The distance from the vector X in (6.5.106) to the layer indexed by the number z,,
is

Yn = |Zn - an ' ”g_l_” (65109)

with z,, being defined as
- x'g,
" g{gl

(6.5.110)
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For the upper triangular case (6.5.101), we have y, = |z,8,,, — X,,| (because g,,, > 0).
Let z* be a solution to (6.5.106) and p, be the upper bound on ||GZ -x||. Then only
the finite number of layers in (6.5.108) must be searched, indexed by numbers

Zn=]zn_L[,...,[zn+”—”] 6.5.111)
lg.ll lg. |l

The layer with z, = integer nearest (z,,) has the shortest orthogonal distance to X. In
addition to the two search methods already described above, another three methods
will be identified. Each is indexed in search layer segments (6.5.111), but they differ
in the order the layers are tried and in the way the upper bound p, is treated and
updated. Note that in the branch-and-bound method we dealt with the lower bounds.

Let us denote [z]| = integer nearest(z). If only z; = [z, ] is considered in (6.5.111),
the problem is immediately reduced to one (n — 1)-dimensional problem. Sequential
application of this strategy yields the Babai nearest plane algorithm (Babai, 1986).
Note that the lattice reduction can be repeated or updated for each reduction of dimen-
sion. The Babai nearest plane algorithm can be performed without the reduction to the
upper triangle from (6.5.101). It is a fast time-polynomial method giving an approx-
imate solution to (6.5.106). In other words, its computational cost has polynomial
dependence on the dimension n. The result depends not only on the vector X and
the lattice A(G) but also on the lattice reduction lattice basis. Effectively, this means
dependence on the lattice reduction method used. The solution 28 found by this algo-
rithm is called the Babai solution and the lattice point X® = Gz? is called the Babai
lattice point.

Other methods find the strict solution to (6.5.106). Running through all layers and
searching each layer with the same value of p,_, regardless of z, yields the Kannan
strategy (Kannan 1983, 1987).

The error vector Gz* — x consists of two orthogonal components. The first one
belongs to the column space of G,_; [g,, € span(G,_,)] and it represents the (n —
1)-dimensional error vector. The second one is collinear to g, and its length is y, as
defined in (6.5.109). Since the distance y, depends on the layer index z,, the upper
bound p,,_; can be chosen as

n’

Puet =\ Pi = Vi (6.5.112)

The idea to let the bound be dependent on the layer index represents the Pohst strategy
(Pohst,1981; Fincke and Pohst,1985). A detailed description of the algorithm based
on this strategy for the case of the upper triangular matrix G has already been given
above (see the algorithm steps 1 to 8). The points lying inside the sphere are searched.
That is why the method is called “the sphere decoder,” since decoding of the vector
X is the goal in the communication applications. When the lattice point inside the
sphere is found, the bound p, is immediately updated (see step 8 with C = p2 ).

The Schnorr-Euchner strategy (Schnorr and Euchner, 1994) combines ideas of the
Babai nearest plane algorithm and the Fincke-Pohst decoder. Let z, < [z,,]. Then the
sequence

z, = [z, 1 [z, 01 = L[z, 1+ 1, [z,0 -2, ... (6.5.113)
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orders layers in (6.5.111) in non-decreasing distance from Xx. Similarly, they are
ordered as
Zp = 2,0 2,0+ L[z, 0 - LIz,0+2, ... (6.5.114)

if z, > [z, . Since the volume of the layer decreases with increasing distance y,,, the
chance to find the correct layer earlier maximizes. Another advantage to have the
order of layers according to nondecreasing distance to X is that the search can be
safely terminated as soon as y, exceeds the distance to the best lattice point GZ has
found so far. The very first lattice point generated by the algorithm will be the Babai
lattice point. Since the ordering (6.5.113) or (6.5.114) does not depend on the bound
p,» 1o initial guess about this bound is needed. The bound is updated each time the
record value is found. The first value of the bound is the distance from X to the Babai
lattice point.

6.5.4.5 Connection Between LAMBDA and LLL Methods The LLL algo-
rithm plays a significant role in different fields of discrete optimization and communi-
cation theory. It is used as a preconditioning step in integer programming algorithms
(Schrijver, 1986). In 1993, Teunissen published the LAMBDA method for solving
integer least-squares problems for GPS ambiguity resolution [see Teunissen (1993)
and Subsection 6.5.2]. At its first stage, the preconditioning unimodular transfor-
mation is constructed and applied to the covariance matrix. Historically, LAMBDA
appeared later than LLL, but theoretically LAMBDA is independent of LLL and
based on different statistical constructions. Overlaps and differences between the
decorrelation LAMBDA algorithm and LLL are pointed out in many papers (Lannes,
2013; Grafarend, 2000). Also, there are similarities between the integer search part
of LAMBDA and the Fincke-Pohst algorithm. Currently these approaches are devel-
oping simultaneously. All developments made on the LLL algorithm can be applied
to the LAMBDA algorithm and vice versa.

The statistical proof of optimality of LAMBDA was published in Teunissen
(1999). A class of integer estimators is introduced that includes integer rounding,
integer bootstrapping; see Blewitt (1989) and Dong and Bock (1989) for details,
and the integer least squares. The integer least-squares estimator was proven to
be best in the sense of maximizing the probability of correct integer estimation.
For the case of ambiguity resolution, this implies that the success rate of any other
estimator of integer carrier phase ambiguities will be smaller than, or at most equal
to, the ambiguity resolution rate of the integer least-squares estimator. This useful
conclusion can be extended on any of the algorithms considered in this subsection
but excluding the Babai algorithm, since it provides a fast but approximate solution.
It would be interesting to extend the analysis of Teunissen (1999) to the case of
the Babai algorithm to see how its success rate relates to the success rate of the
approximate algorithms.

With these remarks on the connection between LAMBDA and other integer least-
squares estimators, we conclude this subsection. These existing connections may
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serve as an illustration of the fact that similarly effective results can be obtained by sci-
entists solving different technology problems having similar mathematical meaning.

It should be noted that currently there is no best algorithm showing superior per-
formance among all others in terms of the success rate and the computational cost
simultaneously, including computational cost of the preconditioning and search. This
leaves a huge opportunity for the creativity of engineers working on efficient geodetic
software.

6.6 NETWORK-SUPPORTED POSITIONING

Positioning is always supported in one way or another by a network of reference sta-
tions. This is even the case for PPP (precise point positioning), where the “network
in the background” is the global IGS network whose observations are used to com-
pute the precise ephemeris and the satellite clock error. We discuss three types of
positioning techniques. The first one is the PPP model, which uses lumped parame-
ters that combine the ambiguities and the receiver and satellite hardware delays and
clock errors that are part of the receiver code bias and satellite code bias. The second
technique is CORS-based relative positioning, which uses double-difference observa-
tions to eliminate clock errors and hardware delay terms. RTK (real-time kinematic)
is part of this solution group and applies the classical differential correction to the
user observations. RTK, with focus on across-receiver differencing, is discussed in
Chapter 7. The third technique is PPP-RTK. We reparameterize the unknowns to elim-
inate the singularities of the system, compute bias parameters instead of the classical
differential corrections, use these to correct the user observations, and fix reparame-
terized undifferenced ambiguities. Several PPP-RTK models will be discussed. The
first model is for single-frequency observation. The development starts with the basic
carrier phase and pseudorange equations and formulates a network solution to com-
pute the biases. All terms are carried through the development up to the user solution,
in order to better understand how various terms are combined as part of the reparame-
terization. Next, the dual-frequency model is given for network solutions, as well as a
line-by-line approach. The last model discussed used dual-frequency across-satellite
differences. All dual-frequency PPP-RTK approaches are equivalent in the sense they
use the same observational content, although performance differences may occur in
practice due to implementation considerations.

6.6.1 PPP

In traditional network-supported positioning which includes traditional RTK, the car-
rier phase and code (pseudorange) differential corrections of a base station are trans-
mitted to the user. At the user station the observations and differential corrections are
transformed into equivalent double differences or across-station single differences
in order to carry out the ambiguity-fixed position determination. This technique is
discussed in Section 6.6.2. In PPP or PPP-RTK the focus is on transmitting satellite
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phase and code biases, which consist of clock errors and hardware delays. These
biases become estimable after all linear- dependent parameters have been eliminated
through reparameterization. In the case of PPP, reparameterization consists of lump-
ing together the integer ambiguities and receiver and satellite hardware delays and
estimating the new parameter as a real number, whereas in PPP-RTK (Section 6.2.3)
the ambiguities are isolated and thus become accessible to integer constraining.

The estimation of the tropospheric delay is briefly addressed in the PPP section,
with the understanding that such an estimation also applies to PPP-RTK.

As to PPP, Zumberge et al. (1998a) introduced precise point positioning utilizing
the ionospheric-free carrier phase and pseudorange functions. The ionospheric-free
carrier phase equation requires a minor modification to deal with the clock errors,
the hardware delays, and the ambiguities. Equation (6.1.39) can be written and mod-
ified as

<1>1F121,: = /’i + (cdty — diprr1n) = (Cdtp - DZ)IFIZ) + ’1¢1F12N£,¢1F12 + TII:

P
+ M gipin T Eairi2

P P P
+(cd = dy prprp) = (cdi” =Dl ) + RO+ T, + My 0 + €airna

=4
_ p PP P
=0+ &epiri = S T ROH T + My orp1n T €orr1 (6.6.1)

where d; g5, and D’;Imz are the respective receiver and satellite L1 and L2 hard-
ware phase delays of the function @IF12. These delays follow from applying the
ionospheric-free function to the hardware delay terms listed in (6.1.33), in particular
the receiver delay is a function of (d}. | ¢, dj ) and the satellite delay is a function of
(D} - D5, 5)- The terms Agypy; and Ny .., are the ionospheric-free wavelength and
ambiguity, Tlf is the tropospheric delay, Mf’ o1r1o 18 the multipath, and € gy, is the
random measurement noise of the ionospheric-free function. In line two, we add and
subtract the receiver and satellite ionospheric-free hardware code delays d; p;r1, and
D’;, 1r1, Of the PIF12 function. These delays follow from applying the ionospheric-free
function to the hardware delay terms listed in (6.1.29), in particular the receiver delay
is a function of (d; ; p,d; , p) and the satellite delay is a function of (D’l? P Dg P). The
combined terms are

P _ P _ _ _
Rk - }”‘I’IFlsz,q)IFlZ + (dk,PIFlZ D;mz) (dk,a)lFlZ Dtpplnz)

Sepipin = cdty — dy prpin

= cdfP —
Eppry = cd” =Dy (6.6.2)
The lumped parameters RZ bundle the ambiguity parameters and the receiver and
satellite hardware code and phase delays. In traditional PPP, the hardware delay terms
are considered constant, even for long observation sessions. The lumped parameters,
one per satellite and station pair, are therefore also constants unless there are cycle
slips. The.new pararpeters EepiF12 an.d 5’;] F1p are calleq the ionospheric-free receiver
and satellite code biases. They consist of the respective clock errors and hardware

code delays of the PIF'12 function. These delays are functions of the original hardware
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code delays dy | p, dy o p. D , and D , listed in (6.1.29), as mentioned above. Simi-
larly, we have an ionospheric-free receiver phase bias & g/r12 = cdiy — dy gr1, and
a satellite phase bias fz, pp = cdi’ — DZ) 1o+ These biases do not explicitly appear
in (6.6.1) because of the introduction of the lumping parameter.

The ionospheric-free pseudorange observations (6.1.38) are the second
type of observation in the PPP model. Using the parameterization in terms of

ionospheric-free receiver and satellite code biases, this equation becomes

PIF12] = pll + & prria = Epppyy + T + My, ey + Epipia (6.6.3)
Equations (6.6.1) and (6.6.3) comprise the PPP model. We first discuss the network
solution and the user solution, retaining all terms of the equations, and then provide
brief remarks on how to deal with the tropospheric and ionospheric terms.

Reparameterization and Network Solution: The network consists of R
known stations that observe S satellites in common view. Even a first glance at
equations (6.6.1) and (6.6.3) reveals the linear dependency of the code biases. Any
change in the receiver code bias can be compensated by a respective change in the
satellite code biases. This linear dependency is conveniently eliminated by selecting
a base station and estimating the code bias parameters relative to the receiver code
bias of that station. This is another type of reparameterization.

The topocentric satellite range term pZ should be moved to the left side of the
equations since the network receivers are located at known stations, and station
coordinates are consequently not estimated. Consider the following formulation and
solution of a small network consisting of three stations that observe three satellites
(omitting the multipath terms):

(@IF12,—p, | [1 1 0 0 0 o] e
PIF12, - p, 1000 0 ol B
@IF12,—p, | (10 1T 1T 0 of R, 664
PIF12, - p, I 0 01 0 0, -
DIF12, = p, Ioo0o0 11| 5
PIF12; — p, 1000 01|
- = N &3.pir12
®IF12, - p} PIF12} — p}
DIF12, — p, = |®IF12; — p>| PIF12, — p, =|PIF12} — p?|  (6.6.5)
DIF12] - p? PIF12; - p}
~1
. 51231F12 —~Ehpin + € prn + T}
Erir12 = | Epppra | = | ~Epip1n *+ S1piri2 + T} (6.6.6)
A 3 3
_51301F12 ~Sppy Férpr2 T T
R, R, 133;
R =|R}| R,=|R)| R;=|&k, (6.6.7)
~3 ~3 ~3
| R, R, R3




360 GNSS POSITIONING APPROACHES

_ | -
52,P1F12 - 51,P1F12 - T12
P _ 2

& pir2 = | Sopiri2 = Sippn — T

| $2.p1F12 = €1, -7, ]
PIF PIF12 12 (6.6.8)

_ 1 -
53,P1F12 - él,P]F]Z - T]3
g _ 2

g3,PIF12 - 53,P1F12 - gl,p”:]z - T]3

3
| S3.p1F12 = S1prrn — T3

It can readily be verified by direct substitution that (6.6.4) to (6.6.8) indeed represent
the system of equations (6.6.1) and (6.6.3) correctly (ignoring the multipath terms).
The reparameterizations resulted in estimable parameters that have been denoted by
an overhead arc. Station 1 has been selected as the base station in this example. As a
consequence of this arbitrary selection, the reparameterized ionospheric-free satellite
code biases Elzi]mz’ p=1,---,8,arerelative to the ionospheric-free receiver code bias
&\ pir12, Of the base station, i.e., the receiver delay term in (6.6.6) refers to station 1.
The reparameterized ionospheric-free receiver code biases 22! pir12, and 23’ PpIF12, 4T€
also relative to the receiver code bias of the base station. The latter two estimable
biases contain cross-receiver tropospheric delay with respect to the base station. The
lumped parameters Rf are defined in (6.6.2).

This example can readily be generalized for a larger network. As the number of
satellites increases, so does the number of components in vectors (6.6.5) to (6.6.8).
Each additional station adds two rows to the matrix in (6.6.4). These rows are iden-
tical to the bottom two rows, but the submatrix in the lower right corner shifts to the
right accordingly. For R receivers and S satellites the system consists of 2RS equations
and as many parameters; the matrix has full rank. These are S reparameterized satel-
lite code biases (6.6.6), RS lumped parameters (6.6.7), and (R — 1)S reparameterized
receiver code biases (6.6.8).

The estimated reparameterized ionospheric-free satellite code biases E’;,Flz are
transmitted to the user at the unknown station u.

User Solution: The user solution also begins with equations (6.6.1) and (6.6.3).
We subtract the received bias corrections (6.6.8) and then balance the equations, rec-
ognizing that the received corrections includes a tropospheric term, giving

p_ 2P _ P P P
PIF12; — Epppyy = ply + Supiri2 + Ry + T +Mpip1r + Eqipin

¥ P (6.6.9)
PIF12l, = Epypyy = f) + Eupria + T+ Mppis + €pppa

~

Suwpiri2 = Supir12 — S1piF12 (6.6.10)

The user receiver code bias estimate Eu, pir12 18 relative to the base station code
bias. The solution presented contains the unaltered tropospheric term of the original
equations. Clearly the multipath is omnipresent in both the estimated code biases and
in the user solution. In order to simply the expressions, the multipath terms will only
be listed in the user solution. The transmitted satellite bias corrections depend on the
tropospheric delay at the base station, as can be seen from (6.6.6). This tropospheric
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delay appears also on the right side of (6.6.9). Note that in the standard subscript
notation the double subscript implies differencing, thus 77, = T — T}

Tropospheric Considerations: The tropospheric delay typically varies with tem-
perature, pressure, and humidity. If the tropospheric model corrections with sufficient
accuracy are available at the network stations, a network solution of two stations
observing three satellites becomes

QIF12 —p, - T, 1 1.0 o]| éprn !
PIF12,—p,-T, | |l 0 0 0 R, |k
OIF12,—p,-T, | I 0 b I|| g T, = T,; (6.6.11)
PIF122_p2_T2 I 0b 0 ~ 2 Tk
' &2 piF12
b'=[1 1 1] (6.6.12)
~1 1
- 51231”2 ~Epyrn * ELpiFn2 . sz
Epirr = | Eoyprn | = | ~Epir1a ¥ S1pr2 | Bi =R, (6.6.13)
A 3 -
51301F12 —Spir1a T S1LPIFI2 ;
& pir12 = So.pir12 — €112 (6.6.14)

The absence of the tropospheric terms in the estimated code biases causes the dimen-
sion of 52’ pir12 to reduce to one. Consequently, the code bias estimates at the nonbase
stations do not contain any terms that depend on the satellites. There are S + RS +
(R — 1) parameters, i.e., S satellite code biases, RS lumped parameters, and R — 1
nonbase station receiver code biases. There are now more equations than parameters.
The user solution for this case is

/'\p ~
(DIFIZZ — §P1F12 = P],: + éu,PIFlZ + Rﬁ + Tlf + M(DIF12 + EpIF12 (6615)
PIF12} — fﬁlmz =l + Eupirn Ty + Mpjp1a + €piria

This user solution differs from the previous one in that it contains only the tropo-
spheric term for the user station.

In practical applications the tropospheric delay is estimated or modeled at the net-
work stations and the user station. The tropospheric slant total delay Tlf is typically
decomposed into the hydrostatic and wet delay components. Following (8.2.18), we
write

T} = ZHD, m,(9") + ZWD; m,.(9")

=T7, +dT,m,, (%) (6.6.16)

Examples for the zenith hydrostatic delay (ZHD) and the zenith wet delay (ZWD)
models are given in (8.2.14) and (8.2.15). These models use meteorological data as
input. The mapping functions m,, and m,,, follow from (8.2.19), with § being the
zenith angle of the satellite. The term Ti o represents an approximation of the slant
total tropospheric delay as computed by temperature, pressure, and relative humidity
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observations using the ZHD and ZWD models, and d7, is the unknown vertical tropo-
spheric correction at the station. The latter is multiplied by the wet mapping function,
assuming that the tropospheric correction becomes necessary because of inaccurate
knowledge of the wet delay. As to the mapping function, one can use the well-known
Niell mapping function discussed in Section 8.2.2 or other functions developed more
recently.

In order to incorporate tropospheric estimation, the system (6.6.4) is expanded to
include the new parameters d7}. The mathematical model for the network now is

Epimz
DIF12, - p, - T Il m 0 00 R,
PIFlzl_pl_Tl,O _ I 0 ml 0 0 01| d T1 ........ (6.6.17)
DIF12, — p, - T, 110 0 1 my b ﬁz o
PIF12, - p, - T, I 0 0 0 m, b dT,
_EZ,PIFIZ_
Mo (9;)
my =|m,,(97) (6.6.18)
mWV(&Z)

The observations must be corrected by the model value T]’: o- The subscript zero is
borrowed from adjustment notation and means approximate value, i.e., point of lin-
earization. The matrix needs extra columns to accommodate the new tropospheric
parameters. In addition to these new parameters, the estimable parameters (6.6.13)
and (6.6.14) apply. There are S + RS + R + R — 1 parameters, i.e., S satellite code
biases, RS lumped parameters, R tropospheric parameters, and R — 1 nonbase station
receiver code biases. The user solution is

BIF12, — Epppr - Tho=pu+ Eupiria + Ry +dT,m,, (90) + Mayris + €
PIF12) — &0y — TZ,U = py + Eu,PIFlZ +dT,m,, (8,) +Mpipip + €prpi
(6.6.19)
There are, of course, more refined ways of modeling and estimating the tropospheric
delays at the network and at the user, in particular when observing over a longer
period of time. This more elaborate modeling is not discussed here.

Let us note that some linear dependencies were eliminated by parameterizing all
code bias parameters relative to the base station receiver code bias. Since this bias
term includes the receiver clock, it varies accordingly. Also, the corrections (6.6.8)
include the across-receiver tropospheric difference which adds additional variability.
If the tropospheric corrections are estimated at the network, then the biases do not
depend on the troposphere. See equation (6.6.13).

Let us note that, apart from using carrier phase observations, the formulation pre-
sented above includes code observations on L1 and code observations on L2. Since
the code hardware delays depend on the type of codes, i.e. the P1Y and C/A-code
delays differ, the satellite code bias éjﬁlﬂz estimated with (6.6.1) and (6.6.3) also
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depends on the choice of the codes. The IGS estimates its “satellite clock correc-
tion”, which corresponds to §£1F12’ based in P1Y and P2Y-code observations. If one
wishes to remain compatible with the “IGS clock™ but uses other code observations,
one needs to correct the pseudoranges by what has traditionally been called the differ-
ential code bias (DCB). For example, if one observes the C/A-code and the P2Y code,
one needs the correction DCBpy_c14, Which is the difference of the respective hard-
ware code delays. These can then be transformed to the respective ionospheric-free
code delays to correct PIF12. In practical applications one needs to be aware that not
all receivers observe the same codes. Also, since GPS modernization and other GNSS
systems provide new frequencies and codes, such compatibility issues need special
attention. Refer to Section 6.2.2.2 for a general approach and notation in regards to
intersignal corrections.

6.6.2 CORS

Continuously operating reference stations (CORS) transmit their carrier phase and
pseudorange observations in real time to a processing center. The center computes
corrections, such as ionospheric and tropospheric corrections and possibly orbital
corrections, and transmits these and possibly the original observations of a master
reference station to users. The user combines this information with observations col-
lected by the user receiver to determine its position. This conceptual model applies
to one CORS station or a network of such stations and to one user or several users.

6.6.2.1 Differential Phase and Pseudorange Corrections Let us look at
a simple way for computing the differential corrections to the observations. For every
satellite p observed at station k, we determine an integer number Kf :

o= lPZ(l)—cD‘;m] 1

= [E (2, - ang +8, - 80, )| (6.6.20)

K A
using the observed pseudoranges and carrier phases at some initial epoch. The sym-
bol [-] denotes rounding. The modified carrier phase @i(t) at subsequent epochs is

Y1) = D (1) + AK? (6.6.21)

The numerical value of the carrier phase range is close to that of the pseudorange,
differing primarily because of the ionosphere, as can be seen from the right side of
(6.6.20); KZ is not equal to the ambiguity. The discrepancy of the carrier phase range
at epoch ¢ is

=60~ = (& +K)) - ol (6.6.22)

where p‘; is the topocentric satellite distance from the known station. The mean dis-

crepancy y, of all satellites observed at the site and epoch ¢ is

N
(1) = éz () (6.6.23)
p=1
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where § denotes the number of satellites. This mean discrepancy is driven primarily
by the receiver clock error. The carrier phase correction at epoch ¢ is

AD] = 0] — pf = (D] + AKY) — o} — 1y (6.6.24)

The second part of this equation follows by substituting (6.6.21) for the carrier phase
range. The phase correction (6.6.24) is transmitted to the user receiver u.

The user’s carrier phase @ is corrected by subtracting the carrier phase correction
that was computed at receiver k:

@, = ) - AD, (6.6.25)
Let us recall the across-receiver phase difference

D) — ) =g + AN +cdi, + +710 +68 (6.6.26)

D
Iuk,lD uk,®@

Substituting (6.6.24) in (6.6.25) gives the expression for the corrected carrier phase
at receiver u,

=P
@, =+ AN = KY) +ediy +wy+ 10 o +Th + 80 (6.6.27)

Differencing (6.6.27) between two satellites gives

P4 _ pq Pq Pq Pq Pq Pq q
D, = u +/1(Nuk_Kk )+Iuk,¢+Tuk+M +£p

" o T Euo (6.6.28)

The position of station u can now be computed at site u using the corrected obser-
vation EZ to at least four satellites and forming three equations like (6.6.28). These
equations differ from the conventional double-difference following (6.6.26) by the
fact that the modified ambiguity

Ny = NP9 — K7 (6.6.29)

is estimated instead of N”/.

The telemetry load can be reduced if it is possible to increase the time between
transmissions of the carrier phase corrections. For example, if the change in the dis-
crepancy from one epoch to the next is smaller than the measurement accuracy at
the moving receiver, or if the variations in the discrepancy are too small to adversely
affect the required minimal accuracy for the moving receiver’s position, it is possi-
ble to average carrier phase corrections over time and transmit the averages. Also,
it might be sufficient to transmit the rate of correction dA@/or. If ¢, denotes the
reference epoch, the user can interpolate the correctors over time as

0AD!
AL (1) = AL (1) + — = 1) (6.6.30)
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One way to reduce the size and the slope of the discrepancy is to use the best avail-
able coordinates for the fixed receiver and a good satellite ephemeris. Clock errors
affect the discrepancies directly. Connecting a rubidium clock to the fixed receiver
can effectively control the variations of the receiver clock error. Prior to its termina-
tion, selective availability was the primary cause of satellite clock error and was a
determining factor that limited modeling like (6.6.30).

In the case of pseudorange corrections, we obtain similarly

=g P (6.631)
AP) = o) — P — (6.6.32)
P, (1) = Pi(t) + AP (1) (6.6.33)

Py = gy + 179, + TV 4 MY 4 ¢

uk,P uk,P uk,P (6634)

The approach described here is applicable to carrier phases of any frequency and to
all codes. As seen from (6.6.22) to (6.6.24), the carrier phase and pseudorange correc-
tions contain the ionospheric and tropospheric terms. As suggested in the previous
section, the tropospheric delay could be estimated at the network, the ionosphere
effects could be eliminated by using dual-frequency observations, and in doing so
one would obtain less variability in the corrections. The receiver and satellite clock
errors have canceled as part of the implicit double differencing, as have the receiver
and satellite hardware delays.

6.6.22 RTK In real-time positioning (RTK), the users receive the differential
correction from one or several CORS stations (simply referred to as the reference
stations) and determine their positions relative to these stations, preferably with an
ambiguity-fixed solution. As mentioned above, for short baselines one neglects the
tropospheric, ionospheric, and orbital errors. In practical applications it is desirable
to extend the reach of RTK over longer baselines. Because of the high spatial correla-
tion of troposphere, ionosphere, and orbital errors, these errors exhibit to some extent
a function of distance between the receivers. Wiibbena et al. (1996a) took advantage
of this dependency and suggested the use of reference station networks to extend the
reach of RTK.

There are two requirements at the heart of multiple reference station RTK. First,
the positions of the reference stations must be accurately known. This can be readily
accomplished using postprocessing and long observation times. The second require-
ment is that the across-receiver or double-difference integer ambiguities for baselines
between reference stations can be computed. It is then possible to compute tropo-
spheric and ionospheric corrections (and possibly orbital corrections) and transmit
them to the RTK user.

Let k denote the master reference station and m the other reference stations of
the network. Let the master reference station record its own observations and receive
observations from the other reference stations in real time. The processor at the mas-

ter reference station can then generate the corrections 77 and I? at every epoch
km km,1,P
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for all reference stations and all satellites. These corrections are used to predict the
respective corrections at a user location. Various models are in use or have been pro-
posed for computing these corrections and making them available to the user.

Wiibbena et al. (1996a) proposed to parameterize the corrections in terms of coor-
dinates. One of the simplest location-dependent models is a plane

T, (1) =d(1) + d5(On, + dy(D)e,, + dy(t)u, (6.6.35)
(1) = V(0 + BoO)n,, + B (De,, + D0 u, (6.6.36)

I[k)m,P
where the symbols n,,, ¢,,, and u,, denote northing, easting, and up coordinates in
the geodetic horizon at the master reference station k. A set of coefficients af (1) and
bf.’ (1), also called the network coefficients, are estimated for every satellite p and net-
work station m as a function of time. Because of the high temporal correlation of
the troposphere and ionosphere, simple models in time are sufficient to reduce the
amount of data to be transmitted. The master reference station k transmits its own car-
rier phase observations and the network coefficients a;, b;, or alternatively the carrier
phase corrections (6.6.24), over the network. A rover u interpolates these correc-
tions for its approximate position and determines its precise location from the set of
double-difference observations. This modeling scheme (6.6.35) and (6.6.36) is also
referred to as the FKP (flachen korrektur parameter) technique.

Rather than transmitting network coefficients a;, b;, one might consider transmit-
ting corrections computed specifically for points on a grid at known locations within
the network. The user would interpolate the corrections for the rover’s approximate
location and apply them to the observations. Wanninger (1997) and Vollath et al.
(2000) suggest the use of virtual reference stations (VRS) to avoid changing existing
software that double differences the original observations directly. The VRS concept
requires that the rover transmit its approximate location to the master reference sta-
tion, which computes the corrections for the user approximate location. In addition,
the master reference station computes virtual observations for the approximate rover
location using its own observations and then corrects them for troposphere and iono-
sphere. The rover merely has to double difference its own observations with those
received from the master reference station. No additional tropospheric or ionospheric
corrections or interpolations are required at the rover because the effective virtual
baseline is very short, typically in the range of meters corresponding to the rover’s
initial determination of its own location from pseudoranges.

Euler et al. (2001) and Zebhauser et al. (2002) suggest transmitting the obser-
vation of the master reference station and the correction differences between pairs
of reference stations. The latter would be corrected for location, receiver clock, and
ambiguities. The approach is called MAC (master auxiliary concept).

The message formats for data exchange between the reference station, the
master station, and the user generally follow standardized formats set by the Radio
Technical Commission for Maritime Services (RTCM). This is a nonprofit scientific,
professional, and educational organization consisting of international member orga-
nizations that include manufacturers, marketing, service providers, and maritime
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user entities. Special committees address in-depth concerns in radionavigation.
The reports prepared by these committees are usually published as RTCM rec-
ommendations. The RTCM Special Committee 104 deals with global navigation
satellite systems.

As the network area increases, the tropospheric and ionospheric corrections and
the orbit corrections require a more elaborate parameterization and are typically trans-
mitted to the user via geostationary satellites. Such networks are called wide area
differential GPS (WADGPS) networks. Examples of such systems are WAAS (wide
area augmentation system) and EGNOS (European Geostationary Navigation Over-
lay Service). A more complete listing of systems is found in Chapter 5. RTK solutions
are discussed in detail in Chapter 7.

6.6.3 PPP-RTK

The goal of PPP-RTK algorithmic development is to find estimable quantities for
undifferenced phase and pseudorange observations that allow the fixing of undiffer-
enced ambiguities to integers. In contrast to the PPP solution, the ambiguity param-
eters and the receiver and satellite hardware delay terms are not lumped together.
Examples of PPP-RTK implementations are reported in Ge et al. (2008) and Loyer
et al. (2012).

There are at least two equivalent approaches for finding estimable quantities. One
is reparameterization and the other is imposing minimal constraints. The advantage
of reparameterization is that all terms remain visible in the expression and thus might
make it easier to interpret the impact of any residual errors on the estimable quantities.

Three models are presented. The first model is the one-step single-frequency
solution in which observations from all stations are processed in one batch
solution, providing a single solution for the estimated parameters and a full
variance-covariance matrix. The second model deals with dual-frequency obser-
vations. A one-step solution is given and then a sequential solution in which
the wide-lane ambiguities are estimated first, followed by a model variation that
estimates the parameters and biases by baseline. Only the one-step solutions can
take advantage of the full variance-covariance matrix, while the others ignore some
correlations between parameters. The third model utilizes across-satellite differences
of dual-frequency observations. The network solution provides the PPP-RTK biases
to be transmitted to users.

6.6.3.1 Single-Frequency Solution The case of single-frequency carrier
phase and pseudorange equations (6.1.31) and (6.1.27) are

— PP _ P P
)~ P = o= S+ AN, +T] — 1) + M, +€]

¢ e (6.6.37)

e e PP P
PZ - pf: - ‘Sk,P 5P + Tk + Ik,P + Mk,P + 627,13
Sro = cdty —d 1 o Sep=cdly—diyp

i (6.6.38)
§5,=cdtP+D’i¢ ﬁ:cdﬂ +D1;,P
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The topocentric range term pZ has been moved to the left side of the equation since
the network station coordinates are assumed to be known. Other symbols denote the
receiver phase and code biases &, 4 and & p, the satellite phase and code biases éfp
and &, the slant tropospheric delay 77, the slant ionosphere IZ p» the wavelength
A, the integer ambiguity N, the multipath terms MZ‘ » and Mi’ P,’and € denotes the
respective observational noise. We note that each £-term combines a clock error and
a hardware delay term. As to terminology, in Collins (2008) the these terms are
referred to as decoupled clock parameters, with & 4 and éfb respectively called the
receiver and satellite “phase clocks”, and &, p and 5’; termed the receiver and satellite
“code clocks.”

Reparameterization and Network Solution: The system (6.6.37) is singular
because a number of linear dependencies exist between the various parame-
ters. Assuming R receivers observing § satellites, there are 2RS equations and
2R + 25 + 2RS + 2RS + RS unknowns, i.e., 2R receiver phase and code biases, 25
satellite phase and code biases, 2RS tropospheric terms, 2RS ionospheric terms, and
RS ambiguities. Traditional double differencing removes linear dependencies by
introducing the base station and base satellite concept and differencing the observa-
tions to eliminate the receiver and satellite biases and creating double-differenced
ambiguities. Contrary to the popular double differencing, in PPP-RTK the origi-
nal observations are kept in undifferenced form and the linear dependencies are
eliminated by means of reparameterization (Teunissen et al., 2010). For the current
development, all terms are initially retained (except multipath). Eventually the
tropospheric delay terms can be omitted because the tropospheric delay will be
modeled or estimated at the network. The ionospheric delay terms will not be
present when using ionospheric-free dual-frequency carrier phase and pseudorange
functions.

Considering the carrier phase observation (6.6.37), we observe that an arbitrary
constant added to the satellite phase bias 52 can be offset by adding the same con-
stant to each of the receiver phase biases & 4, keeping the observable (D‘Z unchanged.
Similarly, it further shows that any arbitrary constant change in either &, 4 or (E’:b can
be offset by a corresponding change in the ambiguity Ni . The result of reparameter-
ization to eliminate linear dependencies is demonstrated by the following example
consisting of three stations observing three satellites:

@
- | = (6.6.39)
@ - p;
P - py
&, —p.=|®I-p}| A=[10 (6.6.40)
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! Ll gl
B [ AN T
Eo=|C, | = |65 +E10 +ANT +T7 -1}, (6.6.41)
3
2| L= T +aNy 417 -1},
$r0 = [52,@ — &+ ANy + T211 - 1211,1)]
(6.6.42)
Sio = [53@ — &1+ ANy + T3 - 1311,13]
~2 21 21 21
= (V2] = [t T
ﬁ; ANy + T4 = I,
) (6.6.43)
~ 20, 2l _ g2
T S I D
3= | o3| =
3 ANG + T3, - I

The correctness of the solution (6.6.41) to (6.6.43) can be verified by substituting
it into (6.6.39) and comparing the result to (6.6.37). Again, in accordance with the
traditional notation, the double subscripts or superscripts indicate a differencing oper-
ation. See equation (6.1.7) for a definition of the differencing operation. There are RS
observations and as many reparameterized unknowns, i.e., S satellite biases, R — 1
nonbase receiver phase biases, and (R — 1)(S — 1) ambiguities. Therefore, the matrix
in (6.6.39) has full rank and the system has a unique solution. The estimable quanti-
ties are identified by an overhead arc. The base station and base satellite are station 1
and satellite 1, respectively. Similar to the case of PPP, the phase bias estimates are
relative to the phase bias &; 4 of the base station.

Let us consider the view of constraining parameters to eliminate linear depen-
dencies. We could impose the constraint & 4, = 0, delete the term &, 4 from (6.6.41)
and (6.6.42), and call it definition of the clock datum at the base station. This step
eliminates one parameter. Second, we realize that (6.6.41) contains only base station
ambiguities. Imposing the constraints N’f = 0 establishes the ambiguity datum for
the base station and eliminates S parameters. This step allows us to remove the base
station ambiguities in (6.6.41) to (6.6.43). Third, we look at the nonbase station ambi-
guities contained in (6.6.42) and (6.6.43). For every nonbase station, we constrain its
ambiguities to the base satellite to zero, i.e., Nl1 =0,/=2---R. For example, look-
ing at (6.6.43), we see the ambiguity N3] = N;' — N}'. The across-satellite difference
N?! is already zero because of constraints of the second step. The third step results in
N; =0, and thus Ngll becomes Ng. One can continue in a similar fashion with non-
base station 3 and other nonbase stations. The third step establishes the ambiguity
datum for each nonbase station and eliminates R — 1 additional linear dependencies.
All three steps combined generate S + R minimal constraints. Considering there are
RS observations and S + R + RS original parameters, i.e., S satellite phase biases,
R receiver phase biases, and RS undifferenced ambiguities, imposing that many min-
imal constraints results in a zero degree of freedom solution, identically to what has
been obtained with the reparameterization approach.
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Imposing minimal constraints or reparameterization leads to the same set of
estimable quantities. The important thing is that in (6.6.43) there are eventually
only integers left. As already mentioned, at the network stations the tropospheric
delays will either be corrected by a model value or estimated. The tropospheric term
will not be present or appear as a separate term to be estimated. The ionospheric
delay term will also not be present when dual-frequency observations are used.
As a result of the reparameterization and the stipulations regarding tropospheric and
ionospheric delays, the ambiguities have been isolated as separate parameters and
can be estimated as integers. Yet another view is that of short baselines, for which
the double-differenced troposphere and ionosphere are negligible per definition.
This leaves only integers in (6.6.43). There is one ambiguity for each nonbase station
and nonbase satellite pair. Finally, the system (6.6.39) can readily be generalized to
include more satellites and stations.

The reparameterization of the pseudoranges in (6.6.37) requires only the elimina-
tion of the base receiver code bias & p. For the case of three receivers observing three
satellites and base station 1 and base satellite 1, we have

Pl=ri| 1 0 0][&
Pl |=|1 1 0l||E,, (6.6.4)
P —pt I o I])¢g,
P1 pk
P.—p, = Pi—pi (6.6.45)
3_ 3
Pe—p;
N 1, gl
gl’ _§P+§1,P+T1 +11,P
- ~2 2 oA
Sp=|Ep|=|-Cp+eip+TI+1I], (6.6.46)
~3 ~3 ~
Sp _—§P+51,P+T13 +1,
Sp—Cp+t Ty +1, Gp—Eipt Ty +1,
Ep=|ap—Cp+ T +5, | Ep=|&Gp—&p+T5+1,| (6647)
&p—E&ip+T5 +I;1p &Gp—Cpt+ Ty +15,,

The combined network solution of the carrier phases (6.6.39) and pseudoranges
(6 6.44) prov1des S satellite phase bias estimates fz, and S satellite code biases
fp, =1,---,8, which are transmitted to the user. The estimated ambiguities
Nl ,[=2,--- R, and ¢ =2,---,5 may at first glance appear as a by-product in
PPP- RTK, but their resolution to integers is important to achieve maximal accuracy
for the satellite phase and code biases.

Instead of transmitting the full bias values, it is sufficient to only transmit the
fractional parts. Consider the following:

| -
= lf] Eorcn = (6.6.48)
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withp = 1,-- -, S. The symbol [e] denotes the rounding operation to the nearest inte-
ger and should not be confused with a matrix bracket, and the subscript FCB denotes
the fractional cycle bias. The symbol n’l’ denotes the integer number of wavelengths 4
that go into the satellite phase bias EZ;. In case the tropospheric and ionospheric terms
are not present the bias simply consists of —555 +&1t ANf . Therefore, more pre-
cisely and in tune with subsequent sections, n‘lj is the integer number of wavelengths in
—é‘g + &) ¢ plus Nf .The second equation in (6.6.48) provides the computed fractional
satellite phase bias EZ,, rcp- This value is transmitted to the user.

For convenience, this fractional bias is parameterized in terms of An”, which is
the number of integer cycles in —é‘g +&10:

W= An’ + N (6.6.49)

Multiplying E’;,FCB in (6.6.48) by 4, substituting (6.6.41) for the satellite phase
bias Efb and then substituting (6.6.49), the desired form for the fractional cycle bias

becomes .
Ao rep = —52 +&0— AARP + Tf - IT’P (6.6.50)

This equation expresses the computed fractional satellite phase bias as a function of
satellite and base station phase biases and an unknown integer An”.

User Solution: The user begins with the phase and pseudorange equations (6.6.37).
Subtracting the fractional cycle bias of the base satellite from the observation gives

~1
@y — Mg re = PutEup =1+ ANy +An)) +T) =1 ,+e4  (6.6.51)

The reparameterized receiver phase bias at the user station, Eu’(p, is defined as
Eu,@ =80 S0t /1(N,i + Anl) (6.6.52)

This lumped parameter contains the receiver phase difference of station u# and base
station, the unknown ambiguity of the base satellite, and the unknown number of
integer wavelengths defined in (6.6.49). The equation for a nonbase satellite, g =
2,---,8,is
24 2 1
D} = Ao pep = P+ Eup + ANL + 20T ) + T — 17+ g (6.6.53)
The expression has been algebraically rearranged such that the estimable receiver

phase parameter is the same as in (6.6.52). In the process of this rearrangement, the
ambiguity became an across-satellite ambiguity. The lumped integer

NP =N+ An?! (6.6.54)

becomes the estimable ambiguity for station u and satellite g. The corrected pseudo-
range follows from (6.6.37) by subtracting transmitted code bias (6.6.46)

Pl—Co=p+Ep— &)+ T+ +ep (6.6.55)
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The code phase bias difference becomes the new estimable code bias at station u

gu,P =&p—Sip (6.6.56)

Equations (6.6.51), (6.6.53), and (6.6.56) comprise the complete set for the user solu-
tion. In summary, they are

1 2! 1, % 1 1
¢u - /1§d>,FCB = Pu + éu,w + Tul - I,,,LP + Md> tép

24 2 549
@y — A pep = Py + Eup + AN, +T) = I  + Mg + g (6.6.57)
f\p ~
Pi—ép=p+&p+ T +I§1’P+M1,+ep

The superscript g runs from 2 to S and p runs from 1 to S. There are a total of 2§
observation and 3 4 2 + (S — 1) parameters; they are the three baseline components,
the receiver phase bias and receiver code bias terms, and the S — 1 ambiguities.

In the solution (6.6.57) only the nonbase satellite phase equation contains an ambi-
guity parameter; all phase equations contain the same receiver phase bias parameter.
Keeping these important characteristics in mind, it is clear that the user can select
the base satellite independently of which base satellite might have been used in the
network solution. Therefore, no information about the identification of the network
base satellite needs to be transmitted to the user. The user is free to select any satel-
lite as the base satellite. With tropospheric delays modeled at the network, the user
equation will only contain 7. Similar handling could be argued for the ionosphere;
however, the dual-frequency solutions discussed below will eliminate the ionospheric
term anyway.

Equation (6.6.57) represents the essence of PPP-RTK. The satellite phase and code
biases are generated by a network of stations at known locations and transmitted to
the user. In the user solution these biases are treated as known quantities and applied
to the observations. The network could in principle consist of just a single station.
However, with more network stations, the strength of the solution increases by virtue
of fixing the ambiguities to integers since a full variance-covariance matrix becomes
available. The estimated satellite phase and code biases depend on the base station
receiver clock. Unless the base station is equipped with an atomic clock, epoch-wise
estimation is required and one cannot readily take advantage of the long-term stability
of the satellite clocks and reduce the transmission load for the phase and code biases.

6.6.3.2 Dual-Frequency Solutions All dual-frequency solutions make use of
the Hatch-Melbourne-Wiibbena (HMW) function for computing the wide-lane ambi-
guity. Furthermore, the ionospheric-free functions are used in order to eliminate the
first-order ionospheric delays. The tropospheric delays are assumed to be modeled or
estimated using a mapping function that depends on the satellite elevation angle, and
therefore are not relevant to linear independence considerations for parameters. The
tropospheric delay and multipath terms will be omitted below. The one-step solution
given resolves the integer ambiguities as part of a network solution, and the satel-
lite biases and HMW satellite hardware delays are computed for transmission to the
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user. The line-by-line method resolves the ambiguities through simple rounding of
averaged observation from a receiver-satellite pair. The fractional satellite biases and
HMW satellite hardware delays are computed and transmitted. In all cases we assume
that the tropospheric delays at the network station have been corrected using a tropo-
spheric model. An initial comparison of various techniques to fix integers in precise
point positioning can be found in Geng et al. (2010).

One-Step Network Solution: Collins (2008) proposed a one-step solution using
the dual-frequency ionospheric-free phase function, the HMW function, and the
ionospheric-free pseudorange function. Although these functions are correlated
since the HMW function depends on carrier phase and pseudorange observations, he
showed that the correlation is small and suggested that it be neglected. The respective
model equations are (6.1.39), (6.1.48), and (6.1.38) and listed for easy reference as:

P _ Y.
PIF12 = pl + & oir12 = Egyprn + /14’1F12Nk oir2 T T ¥ My orpn + €orrn

P _ P
HMWI12, = —di yywin + DZMle + /llsz nt MkHMW12 + Eguwia

P _ P
PIF12} = p + & prria = Epppyy + T + My s + Epirn2

(6.6.58)

The ionospheric-free receiver phase biases & 4,1, and satellite phase biases & DIFID
contain the receiver and satellite clock errors and receiver and the satellite hardware
delays obtained from (6.1.39) by lumping the respective clock and hardware terms
contained in Jg,, or by applying the ionospheric-free function to the phase function

of (6.6.38). The product of ionospheric-free wavelength and ambiguity is according

to (6.1.39), - ;
=N+ e N (6.6.59)
=5 " -5

/1¢1F12Nk DIF12

where c is the velocity of light. In the case of GPS, the integer Np is the L1 ambi-

guity and Np = Np il Np is the wide-lane ambiguity. Using the GPS frequencies
f1 = 1541, f2 = 120f,, and fo 10.23 MHz, the scaled ionospheric-free ambiguity
becomes numerically

=0. 107Np +0.378N”

P P
17N | + 60N .

2cf;
Aorr12Ny = — ( 1) =

KPIF12 — 72 _
1 2

(6.6.60)

For other frequencies or satellite systems, the numerical values in (6.6.60) change
accordingly. We further note that the HMW function does not depend on the receiver
and satellite clock errors and the tropospheric delay. The terms dj yy1, and
DZMle are the receiver and satellite hardware delays of the HMW 12 function. The
ionospheric-free receiver code biases & pri, and satellite biases 5:,1“2 contain the
receiver and satellite clock errors and respective hardware code delays.

For the network solution the linear dependencies in the mathematical model
(6.6.58) are removed by reparameterization, as was done in the previous section.

In fact the solution steps applied for the single-frequency case to achieve the
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reparameterization also apply to this dual-frequency case. The example presented
again includes three satellites and two stations. The extension to more network
stations observing more common satellites can readily be implemented. As was the
case above, station 1 is the base station and satellite 1 is the base satellite. With these
specifications the reparameterized solution can be written as

DIF12 Sorrn
1~ P1 D
HMW121 B 5 ..... HMW12
DIF12,—p, |~ Saelrt
HMW12, dHMylz
N
®IF12, - p, [HMW12,
DIF12; — p; = | @IF12; — p} | HMWI12, = | HMW12}
DIF12] - p? | HMW 12}
0O 0 0 O 0 0 0 O
0O 0 17 60 0 0 0 1
- "
EpiF2 _‘§<21>1F12 + & o2 T /11D1F12N11’¢]F12
Soir12 = | Eqrrin | = _§<3151F12 +&1omr + ’11D1F12N12,¢.[F12
| Sorri ~Eorri2 + ELarria + 2N} g
MAl
~ D yywiz D%;Mwn —di gywi2 + /112N£’12
Duyiwi> = | Dypwin | = ngwu —dyguwiz + /llzN%n
Dingwia | [Prwiz t dvamwia + 42Ny,

2 _ 1
Sroir12 = S .0r12 — S1wiF12 T /1¢1F12N21,¢1p12

s _ 1
&y w12 = —do w2 + Ay iz + ANy 1

~2 21
Ny, M
~2 21
N=["212 N21,12
- ~3 - N31
Ny 21,1
~3 31
N2,12 N21,12

(6.6.61)

(6.6.62)

(6.6.63)

(6.6.64)

(6.6.65)

(6.6.66)

For verification purposes, substitute (6.6.64) to (6.6.66) into (6.6.61) and compare
with (6.6.58). The equation system is of full rank. It consists of 2RS equations and
as many parameters, i.e., S satellite phase biases Epr 12- S satellite HMW hardware
biases ﬁlewuv p=1---S,R—1 receiver phase biases Ek’(pmz, R—-1 HMW
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receiver hardware biases ;ik,HMle,k =2---R, and 2(R—1)(S—1) ambiguity

parameters Nzl]l | and NZ:l 1 with m=2,---,Rand g =2---8S. In order to aid in
reading the notation, let us recall the notational use in the case of dual frequencies:
the subscripts preceding the comma identify stations and the differencing operation,
the superscripts identify the satellites and the differencing operation, the numerical
1 after the comma refers to the L1 ambiguity, and the 12 indicates the L1 and L2
wide lane. For example, in this notation N2211 1= N2211’1 - N§1l,2 is the difference of
the double-differenced L1 and L2 ambiguities.

The pseudorange solution is identical to the one given in (6.6.44) to (6.6.47),
except replacing subscripts P by PIF12 and omitting the tropospheric term. It is

repeated here for easy referencing. The two-station and three-satellite solution is

PIF12, — Pl] [’ 0] 2P1F12 ]
= o 6.6.67
[PIF122 —p| T B (&, s (6.6.67)
[PIF12, — p,
PIF12, — p, = PIFIZ}c - p}c (6.6.68)
| PIF12, — p;
1
EpiF1n _Cf}r:]plz + &1 piri2
- e _
§P1F12 =\ épirn | = _512:1p12 + 51,P1F12 52,P1F12 = 52,P1F12 - 51,P1F12
A 3
| o —Epir1n + 81 P12

(6.6.69)

The vector b is given in (6.6.12). If one combines the pseudorange and carrier phase
observations into one solution, there are in total 3RS observations and 2RS + S + R —
1 parameters, giving a degree of freedom of RS — R — S+ 1.

User Solution: For the user solution, the original equations (6.6.58) are corrected
for the transmitted ionospheric-free satellite phase biases, HMW hardware delays,
and satellite code biases are applied to the observations. Assuming again without
loss of generality that the user selects satellite 1 as the base satellite, the user
solution is

INrL | 1
@IF12, — Sprr1n = Put+ &y orr12— Storr12 T Ao + Ny grrin
1
+ T, + €prri2
_ 1,7 1
=putCuori2 t T, +€ar (6.6.70)
PIF12] — Egpypyy = pl + +domwNT o+ T+
u @IF12 = Pu u, ®IF12 o1F12'V 1 oIF12 u T EDIF12
_ 44 % S q
= pu+ & wiriz t Aoir1oNy o2 + Ty + €gpn - (6.6.71)
1Al _ 1
HMW12, = Dyywia = =y guwia + di amwiz + 412N, 10 + Eguwia

= au,HMWIZ + Eguwin (6.6.72)
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g R4 _ 5 gl
HMW 12, = Dyywin = dy gawin + ANy 1o+ Emuwia

= au,HMWlZ + /112195, 12 + Eguwin (6.6.73)

PIF12) = 8pyppy = pl) + Su.PIF12 5?;:,”2 + T} +eppia
=+ Eu,PIFIZ + T, + €prrpa (6.6.74)
with ¢ =2,---,S5. We note again that, as is the case with the single-frequency user

solution, the base satellite phase equation and the HMW equation do not contain
ambiguity parameters. As long as this property is recognized, the user is free to adopt
any satellite as the base satellite, regardless of the choice made during the network
solution. The final form of the user solution for all three functions is

N

DIF12, - alpmz - T;,o =Py + Eu, 12 + dT,my, (O) + Mopps + gprrn
DIF12] — Egsmz - T,l,o =i+ Eu orF12 t /1¢1F12(171\7q 1t 60]93, 12)
+dT,m,, () + Mop12 + €qir12
HMW12,, DHMW12 = du w12 T Muywio + Egpuwiz
HMW12{ = D jypy12 = du amwi2 ’112Nu 12+ Myywiz + €apwin
PIF12} — Z:IIIJIFIZ - T,l =+ 5:4 pir12 + AT, m, () + Mppi + €pippn
(6:6.75)

where g =2---Sandp = 1---S. We have added one vertical tropospheric parame-
ter. There are 3S observations and 3 + 3 + 2(S — 1) parameters to be estimated, i.e.,
three baseline components, three receiver biases, 2(S — 1) ambiguities, and one tropo-
spheric parameter. In (6.6.75) the satellite phase and code biases and HMW satellite
hardware delays are subtracted.

Network Wide-laning First: The solution of (6.6.61) can be carried in two
steps by first estimating the wide-lane ambiguities from the HMW function and
then estimating the L1 ambiguities from the ionospheric-free phase function using
the wide-lane ambiguities as known quantities. This approach ignores the corre-
lation between both functions. Extracting the HMW equations from (6.6.61), the
solution is

[HMWIZI] 3 [I 0 0 ] Do

HMWI2,| = |1 b apA || d2mmwi (6.6.76)
2, HIW12
NZ ]r\}Zl
N, iwiz = la%’n] = laéll’n] (6.6.77)
2,12 Noi 12

The estimates D amwi2 and cﬁiz’ amwi12 are identical to those in (6.6.64) and (6.6.65).
There are RS equations and as many unknowns, i.e., S satellite hardware biases, R — 1
receiver hardware delays, and (R — 1)(S — 1) double-difference ambiguities. Given



NETWORK-SUPPORTED POSITIONING 377

the wide-lane ambiguities N, j;/1,, One can now compute the ionospheric-free
phase solution components as

@DIF12, - p, (1 0 0 Sarrn
DIF12, — — 60 KI = I b 174 A 52!4)11:12 (6.6.78)
2= P2 Awir12No mywi2 i DIF12 Az
1
527 21
~ N N;
N, = [,\23'] = lN?ll] (6.6.79)
Ny 21,1

The estimates EQIFIZ and 22’ o1r12 are identical to those in (6.6.64) and (6.6.65).
The system (6.6.78) contains again RS equations for as many unknowns. The
ionospheric-free phase observations are corrected for the known wide-lane ambi-
guities N g1, obtained from the first step. Next we can compute the fractional
cycle biases Z:q)lmz, rcp and D amwi2, Fegs Which can be transmitted to the user. The
fractional biases are explicitly computed in the next approach.

Line-by-Line Approach: This procedure was proposed in Laurichesse and
Mercier (2007). We again select station 1 as the base station. The approach first
calls for the HMW functions in (6.6.58) to be averaged individually over time and
then rounded to determine the integer number of wide lanes of the hardware delays.
Next, the fractional satellite hardware delays are computed. The solution of this first
step is

HMW12]17 = _dl,HMW12 + DZMWIZ + Allelj’ 12 (6680)
HMW12] HMW12!
n[i,HMle = T D[I){MWIZ,FCB = T - nl;,HMWlZ (6.6.81)
p AP P
" w2 = Mwn TN 1 (6.6.82)
’112DZMW12, FCB = DiIMW]Z = dy gywi2 — ﬂle”ZMW]Q (6.6.83)

withp = 1,---,S. The overbar of HMW 12 indicates averaging over time. The integer
unknown An’;Mle represents, the integer number of wide-lane wavelengths that go
into the hardware difference —d; pyw s + DilMWlZ' Equation (6.6.83) follows from
the second equation in (6.6.81) multiplied by the wide-lane wavelength, and then sub-
stituting (6.6.80) and (6.6.82). The integer n’; can usually be identified reliably
after only a short period of observations.

The second step requires a similar treatment of the ionospheric-free phase func-
tion (6.6.58). The observation is averaged again over time, then the known integer
n’ of (6.6.81) is subtracted from the averaged observation, and finally (6.6.82)

"1, HMW12 ) k )
is used on the right side. The result is

,HMW12

d = ®IF12) - pf - /1¢]F1260n11),HMW12 = C1airi2 = i

+ dorpi2 (1TN] | — 604G, o) (6.6.84)
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W= uf & = G 6.6.85

la — /1_0 a,FCB_TC_nl,a (6.6.85)
W= AN (6.6.86)
ACSS,FCB = 51,(1)[17]2 - 52]}:12 - ﬂ‘(DIF12<17Anp + 6OAI’IZMW]2) (6687)

where A, = 17Ag;r1» & 10.7. Thus, the quantity n , 18 the integer number of 4, units
in ap Since A, is small and the function (6.6.84) depends on the receiver clock errors,
a longer observatlon series is required to determine the correct integer n1 . This con-
cludes the required computations at the network. The fractional HMW12 satellite
hardware delays D‘ZMW 12.FCB and satellite phase biases éji Fep Are transmitted to the
user to correct user observations.

However, the nonbase stations have thus far not been used. The fractional satellite
hardware delays D’;IMW 12.FCB and satellite phase biases 5” rep Were computed above
without the benefit of observations from nonbase stations. The observations from
these stations can serve as quality control. In the case of the HMW 12 observations,
the nonbase station observations are also first averaged over time, then corrected for
the HMW 12 fractional satellite hardware bias, and then rounded to determine the

fraction receiver hardware delays. Using (6.6.83), one obtains

HMW12] = A,D% 101 pep = ~diamwiz + diaawin + A (V] 5 + Ay )
(6.6.88)
TIAw1oP
o _ HMlek - AIZDI;IMWIZ,FCB
kHMW12 — y)
12
(6.6.89)
P
HMlek - }”12DZMW12,FCB o
dk,HMle,FCB = 1 "k HMW12
12
with p=1,---,8S and k=2,---,R. The S values for a specific receiver hardware

delay di gywia.rcp should agree within random noise. Similarly, the averaged
ionospheric-free phase observations are corrected for (6.6.87), giving

— P P
b, = ®IF12] — pf — A.&

a,FCB
= & o2 — ELariz + /1¢,F12(17N + 60N, |, + 17An; + ULV —
(6.6.90)
L v,
w= |7 & rep = = e (6.6.91)
with p=1,---,5 and k=2,---,R. The S values for a specific nonbase station

receiver phase bias &, ;-5 should be consistent.
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User Solutions: The solution that can readily be built having the fractional cycle

. ]’} . .
delays and biases D’;IMW12 rep @nd éa’ rcp @vailable is

1
HMW12, ilzDHMle e = ~dusmmwiz + dyawiz + Az (N, wiz T Antgyrn)

=y (6.6.92)

s 1 1
HMW12,, - ’112DI;1MW12,FCB = dyaywiz + ’112(Np + A”};ﬂwwn) (6.6.93)

1 1
®IF12, - Acéa,FCB = gu,(DIFH - fl,zpmz

+ dgrpis [IT(NLy + Bnk) +60(NL 1, + Al ) |

= Eu ®IF12 (6.6.94)

PIF12 = 3.8 1 p = Evarrrn + Aarra [1T(ND) + An') + 60NY, + A

,FCB MW]Z)]

(6.6.95)
Parameterizing and adding pseudorange observations:

HMW12), — /llzDHMle FCB = du amwiz T MHMW12 + Egpwiz
HMW12;, — AIZDHMW12 FeB = du amwi2 t '112Nu 12+ Muywio + Eapwiz
DIF12, — ﬂcfiFCB Py + fu oiF12 + Mo + Egrrin
DIF12; — ﬂcetZ’FCB =i+ Suarri2 + A'(D1F12(17Nu,1 + 607\73,12)
Moo + Eorr12
PIF12}, = Epypyy = p) + E.piria + Mpipia + Epipin

(6.6.96)

q=2,---,8, p=1,---,S. The parameterized ambiguities in (6.6.93) and (6.6.95)
contain the unknowns AnZMW |, Which equal the number of full 4,, wavlengths in the
satellite hardware delays DIZIMW12 dy gpwi2> and the unknown Arf), which equals
the number of A, distances in & g/p15 — 521”2 60Agp 12 AT, The reparame-

terized wide-lane ambiguities in (6.6.96) are the same.

HMW12*

6.6.3.3 Across-Satellite Differencing The attraction of across-satellite dif-
ferencing relates to the cancelation of receiver clock errors and receiver hardware
delays. The technique was applied in Garbor and Nerem (1999) and later refined in
Ge et al. (2008). The model functions are again the ionospheric-free carrier base and
pseudorange functions, the HMW 12 function, and, for convenience, we add the AIF'12
function (6.1.49). Assuming satellite 1 as the base satellite, the difference functions
are for a general station k:

lg _ nlg
HMW12 = DHMW12 + /112 k 12 + EgMwi2

1 1 1
AIF12) =D 4 G (17N ‘4 60Nk‘§2) +earn

<151F121q P! + (:(p,m + dgiri (1IN + 60N %,
1 1
PIF12," = pk e T T+ epppnn

" (6.6.97)
) +T," + eqpiri2



380 GNSS POSITIONING APPROACHES

The superscripts indicate the across-differencing operation. The receiver terms
dr ymw12s Sr.wir12» and & ppy, cancel due to the differencing, i.e., the receiver clock
error and the receiver hardware delays cancel. Since AIF12 is the difference of
@IF12 and PIF12 according to (6.1.49), the satellite hardware delays of function
AIF12 are the differences of the @IF12 satellite phase bias and PIF'12 satellite code
bias:

D’ D - (6.6.98)

AIF12 = ‘Sgslmz - ‘fgmz = YpiF12 DIF12

In the difference (6.6.98) the satellite clock error cancels. The receiver clock error
and receiver hardware delay in AIF'12 have canceled due to the cross-satellite differ-
encing, as mentioned above. It follows that DHMWIZ’ D/lgﬂz, & DIF1D and .fll,‘llﬂz only
contain satellite hardware phase and code delays.

The approach is to determine the fractional cycle biases of the across-satellite hard-

ware delays DY HMW12.FCB and D'  \IF12.FCB from the network and transmit these values

to the user who will utilize (6.6.98) to convert DAIFIZ rep 1© 5¢1F12
phase observations. No base station needs to be specified.

Network Solution: For the network solution, the HMW 12 function of (6.6.97) is
averaged over time and then its fractional cycle bias is computed following the regular

procedure:

and correct the

HMW12’ = D,!

lq
w12 T ’112Nk 12 (6.6.99)
N HMW12}4 HMW12}
4 k lq k na
M amwi2 = T A HMW12,FCB /17 e Hmw12
12 12
(6.6.100)
11] 1q 1q
Wewia = Agvwin TN 1o (6.6.101)
lq
/112DHMW12 res = Prywin = /112AnHMW12 (6.6.102)
The average is again indicated by the overbar. The unknown integer An'? w1z 1S the

number of wide-lane cycles in D' The fractional cycle hardware delay (6.6.100)

HMW12'
is averaged over all stations, k = 1 - - - R and denoted by D' w1

Second, the AIF'12 function of (6.6.97) is averaged over time and corrected for the
known integer n}( w1z ©f (6.6.100), and then the fractional cycle bias is computed.
The result is

lg _ g g _ g g lg
AL = AIF12,7 = 60Agpon = ,1¢,F12(17Nk 6OAnHMWl2) +D,

(6.6.103)

lq lq
A A
n = li] DYy = Ai -n (6.6.104)
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nd = And+ N (6.6.105)
1q 1g
4D ey = Dty = Ao (1780, + 60Am, 1 0) (6.6.106)

where 4, = 17)@“;12. Average the fractional cycle bias over all stations, k=1---R

and denote it by D A FCB

The fractional cycle biases DY and D are transmitted to the user,

HMW12,FCB A,FCB

q =2,---,S. The ionospheric-free satellite code bias 5;,1F12 must also be made avail-
able to the user for computing %qmz via the relation (6.6.98) and for correcting the
pseudorange observations. Ideally, the biases for all across-satellite difference com-
binations should be available to the users to enable them to select any base satellite.

User Solution: For the user solution, the HMW12 and PIF12 functions in (6.6.97)
q . .
can readily be corrected for DHMW12 rep and &, o, respectively. The correction

§¢DIF12 follows immediately from (6.6.98) and (6.6.106) as

_ pla
€¢1F12 DAIF12 djP1F12

DY Agiriz (17817 + 60AR, !

A,FCB HMW12) + §P1F12 (66107)

Applying the three corrections to (6.6.97), the three user equations become

lq 4
HMW12, ﬂnDHMle re = AN w2+ Myywio + Epvwin

1 g 1
@OIF12," = ADp = Eptey = pha 4 Aoir12 (17N 41 + 60N, 1,)

1q
+ Tu +Mpipiz + Eprrin

1
with
Ny =N"+An"  Nop =N +Ant (6.6.109)

The HMW 12 and @IF 12 functions contain the same wide-lane ambiguity. It consists
of the original wide-lane amblguity plus an unknown number of w1de lane cycles
in satellite hardware delay DY w12 Lhe ionospheric-free code bias 5 pip1o 18 needed
for every epoch. The user can select any base satellite but must be able to identify
the respective transmitted biases. The system includes 3(S — 1) observations,
three position coordinates, 2(S — 1) ambiguities, and one tropospheric parameter.
Since across-satellite differencing cancels the receiver clock errors and receiver
hardware delays, the transmitted fractional cycle biases are more stable than those
of PPP.

The fractional satellite hardware delays (6.6.102) and (6.6.106) for the HMW 12
and AIF12 functions can be computed without knowledge of the network sta-
tion coordinates. Both are geometry-free linear functions of carrier phases and
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pseudoranges. It follows that the observational noise and impact of the multipath
are dominated by that of the pseudoranges, because the noise and multipath of the
carrier phases are much smaller than those of the pseudoranges. Consequently, the
. . . . . . 1g
observational noise and multipath impact of the computed satellite phase bias & .,
in (6.6.107) is correspondingly large. However, the satellite code difference is still
needed to complete this computation. Even though network station coordinates are

not needed for the computations of the DHMW]2 rep @nd D! A FCB hardware delays, the

coordinates are needed for computing & 11) 1712+ 1 the latter biases can be obtained from
the clock corrections of the IGS precise ephemeris, i.e., the equality ‘fPIF 1
valid, then the network station coordinates are not needed at all.

However, instead of computing 58;‘]11«‘12 via (6.6.107), one can compute it more
accurately using the function @IF12. One could apply the procedure expressed in
(6.6.80) to (6.6.87) to across-satellite differences. A possible drawback is that now
the network station coordinates must be known. Also, one can apply the AIF'12 and
(6.6.107) approach to any dual-frequency observations, not just to L1 and L2 obser-
vations discussed above.

The recursive adjustment technique applies to all of the models because they
contain a mix of epoch parameters and constant parameters For example in the
one-step network case (6.6.61) and (6.6.67) the éq,,ﬂz, §k DIF12> 5P1F12» and cfk PIF12
are epoch parameters; the most active varying parameter is the receiver clock error.

= fle

~2 ~
The HMW 12 hardware delays D 1, and d; g1, are fairly stable. Similarly, in
the line-by-line case the fractional cycle bias é‘g rcp varies rapidly while the hardware
delay D? HMW12.FCB varies more slowly. In the across-satellite single-differencing

case, both hardware delays, DHMW12 rep and DY wrcp Vary slowly. In all cases the
ambiguity parameters remain constant until cycle slips occur. In that case the
ambiguity parameters must be reinitialized and some convergence time might be
required depending on the number of slips. If the time between consecutive epochs
is sufficiently small one might succeed in modeling the ionospheric change between
the epochs and use across-time differences to determine the cycle slips and avoid or

reduce re-convergence time.

6.7 TRIPLE-FREQUENCY SOLUTIONS

Special triple-frequency functions are considered that bring uniqueness to
triple-frequency processing as opposed to classical dual-frequency methods.
We basically discuss two types of solutions. The first one is the one-step batch
solution in which all observations are combined and all parameters are estimated
simultaneously. The second solution is TCAR (three-carrier ambiguity resolution),
in which one attempts to resolve the ambiguities first and then computes the position
coordinates of the station.

6.7.1 Single-Step Position Solution

Processing of triple- and dual-frequency observations does not conceptually differ
much. In the triple-frequency case, the complete set of observations consists of the
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three pseudoranges and three carrier phases. As in the dual-frequency case, the orig-
inal observables can be processed directly or first transformed into a set of linear
independent functions, also called combinations, which may exhibit certain desirable
characteristics. Consider the following example set:

P, = p+Il,P+T+M1,P+6P

Py=p+PoioliptT+Myp+ep

Py=p+Poonhip+T+Msp+ep

@Dl = p+/11N1 —[1,P+T+M1,¢+£¢

Di_10y=p+Aa-10Na-10 —Pa-10lip+ T +Mi_100+E1-100
D1y =P+ Aa0-0Nao-1 = Puo-nlip+T+Muo_ne +Euo-ne

6.7.1)

in which we have used a mixture of traditional notation and new triple-frequency
subscript notation. We use the traditional subscript notation, which identifies the
frequency by a single subscript when it is convenient and there is no concern of los-
ing clarity. Examples of identity in notation are ¢ oo, = 4, and M(; 00,0 = M o-
Checking the definition of auxiliary quantities given in (6.1.62), we readily see that
the ionospheric scale factor §; o5, = 1 and any variance factor u? with one nonzero
index equals one.

Since this section exclusively deals with relative positioning between two stations
using double differences, we have dropped the subscripts and superscripts that iden-
tify stations and satellites and also indicate the differencing operation. For example,
we simply use Py instead of P\ | to identify the pseudorange of the first frequency.
In the simplified notation we, therefore, have the following double- differenced quan-
tities: pseudorange P, scaled carrier phase @, topocentric satellite distance p, iono-
spheric delay 7, p at the first frequency, tropospheric delay 7', integer ambiguity N,
multipath M, and measurement noise €.

In the model (6.7.1) we have chosen the original pseudoranges as observables.
As to the carrier phase observation, we selected the extra-wide-lane @ _y), the
wide-lane @, _, ), and the original phase observation on the first frequency, @;.
Triple-frequency observations allow for additional combinations, many of which have
desirable properties. Any of them can be used as long as the set is linearly indepen-
dent. In all cases, it is assumed that variance-covariance propagation is fully applied
to any functions of the original observables.

When estimating the positions in a network solution or even processing a sin-
gle baseline, it might be advantageous to group the ambiguity parameters by narrow
lane, wide lane, and extra wide lane and apply sequential estimation. With such a
grouping of parameters, the required variance-covariance elements for estimating
the extra-wide-lane integer ambiguities are conveniently located in the lower right
submatrix or the top left submatrix of the full variance-covariance matrix. The ambi-
guity estimator could be used to identify the extra-wide-lane integer ambiguities and
then constrain them. The smaller variance-covariance matrix resulting from imple-
menting the extra wide-lane ambiguity constraints serves as a basis to estimate the
wide-lane integer ambiguities. One can again take advantage of the grouping of the
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wide-lane ambiguity parameters. The number of remaining ambiguities, i.e., the wide
lane and narrow lanes, is the same as in the case of traditional dual-frequency pro-
cessing. After estimating and constraining the wide-lane integer ambiguities, the new
variance-covariance matrix that is now even smaller in size, is the basis for esti-
mating the narrow-lane ambiguities. Alternatively, of course, the search algorithm
could operate on the full variance-covariance matrix and optimize the sequence of
search itself.

The need to minimize the computation load during ambiguity resolution has
resulted in a strong desire to estimate the extra-wide-lane ambiguities first. This can
be done as described above, i.e., as part of the positioning solution estimate the extra
wide lanes first, implement the integer constraints, and then apply the ambiguity
estimator to the updated solutions containing less ambiguity parameters, and so on.
Alternatively, one can estimate the extra-wide-lane ambiguities independently and
prior to the positioning solution. The latter approach is the essence of the TCAR
technique to be discussed below.

In the network or baseline solution with model (6.7.1), all correlations between
the parameters are considered in the ambiguity resolution by way of utilizing the
full variance-covariance matrix. Techniques like LAMBDA are optimal because they
operate on the full variance-covariance matrix. Some correlations between parame-
ters are ignored if integer ambiguities, such as the extra wide lanes, are resolved by
TCAR techniques prior to the positioning solution. In that sense the one-step solution,
which simultaneously searches on all integer ambiguities as part of the positioning
solution, is optimal.

The tropospheric and ionospheric effects on the observations are as relevant to
triple-frequency observations as they are to dual-frequency observations. These
effects cancel in double differencing for a sort baseline per definition. For longer
baselines, the tropospheric delay must be either estimated or corrected based on a
tropospheric model or mitigated using available external network corrections. The
same is true for the ionosphere in principle. However, triple-frequency observations
provide the possibility of formulating ionospheric-reduced functions for longer
baseline processing when the residual double difference ionosphere can become
significant. In fact, observations from three or more frequencies make it possible
to create functions of the original observables that to some degree balance noise,
virtual wavelength, and ionospheric dependency. Generally speaking, for rapid and
successful ambiguity fixing, it is beneficial to have functions that are affected by
the ionosphere as little as possible, have a long wavelength relative to the remaining
ionospheric delay, and yet exhibit minimal noise amplification.

Cocard et al. (2008) provides a thorough mathematical treatment to identify all
phase combinations for GPS frequencies that exhibit the properties of low noise,
reduced ionospheric dependency, and acceptable wavelengths. They group the
functions (6.1.59) by the sum of the integer indices i, j, and k, i.e., i+j+k =0,
i+j+k==+1, etc. and demonstrate that two functions from the first group are
needed, as well as one from another group. Among the many functions identified,
only a small subset exhibits the desirable properties; this includes the triplet
consisting of the two extra wide lanes (0,1,—1) and (1, —6,5), and the narrow lane
(4,0, =3).
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Feng (2008) also carries out an extensive investigation to identify the most suit-
able functions for the GPS, Galileo, and Beidou systems. He generalizes the search by
minimizing a condition that not only considers the noise of the original observations
but also includes noise factors for residual orbital errors, tropospheric errors, first-
and second-order ionospheric errors, and multipath. This total noise is considered a
function of the baseline length for a more realistic modeling of uncertainty. Because
the GPS, Galileo, and Beidou satellite systems use in part different frequencies, the
optimal set of combinations depends on the system. Additionally, the assumptions
made for the modeling of the noise as a function of baseline length affects the out-
come. He also identifies a number of combinations of interest, among them the three
combinations given above for GPS.

Table 6.7.1 provides relevant values for the phase functions used in this section. For
other relevant combinations, the reader is referred to the references. The numerical
values listed are the wavelength A, the ionospheric scale factor f, the variance factor
42, and a multipath factor v. The definition of these quantities is given in (6.1.63).
All values refer to GPS frequencies. The function (1, —6, 5) is indeed an extra wide
lane because its wavelength is 3.258m, and (4,0, —3) is a narrow lane. The relative
insensitivity of these two new functions regarding the ionosphere is evidenced from
the small ionospheric scale factors of —0.074 and —0.0099. They should, therefore,
be good candidates for the processing of longer baselines. However, their variance
factors are high because of the close adjacency of the second and third frequencies.

Even though the new extra wide lane functions (1, —6, 5) show a very desirable low
ionospheric dependency as compared to the other extra wide lane (0,1, —1), there is
still a need for the traditional ionospheric-free function. In fact, with triple-frequency
observations, we can formulate several dual-frequency ionospheric-free functions. Of
special interest are the triple-frequency ionospheric-free functions that also minimize
the variance. Consider the pseudorange and carrier phase functions

PC = aP, + bP, + cP; 6.7.2)
&oC = a¢1 + b¢2 + C®3 (673)

and the conditions of the factors

a+b+c=1
o
Lpylio—0

2 + f}zc (6.7.4)
a® 4+ b* + ¢ = min

a—+

TABLE 6.7.1 Selected Triple-Frequency Function Values for GPS Frequencies.
The wavelength is in meters.

@, j, k) (4,0, -3) (1,0, -1) (1,-1,0) (1,-6.5) 0,1, -1)
Aiin 0.108 0.752 0.863 3.258 5.865
Biin —0.0099 -1.339 —1.283 —0.074 -1.719
u(zi’j’k) 6.79 24 33 10775 1105

Vi j b 4 1 8 161 47
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It follows from (6.1.59) to (6.1.66) that the first condition preserves the geometric
terms, the second condition enforces the function to be ionospheric free, and the
third condition minimizes the variance of the function. The third condition assumes
that the standard deviations o, = 0 and op, = op are, respectively, the same for all
frequencies. The general solution for the coefficients is

_1-F,—F,+2F,F,
 2(1-F,+F2)
1t LG =5
F,==5—— F,= % (6.7.6)
f] _f3 fz (fl _f3)

For GPS frequencies, we have a = 2.3269, b = —0.3596, and ¢ = —0.9673. These
computed functions can be written in the standard form

b=F,—aF, c=1-a-b (6.7.5)

PC=p+cdt—cdt+T+6pc+ €pc (6.7.7)
OC=p+R+cdi—cdi+T+6pc + Epc (6.7.8)

with R = aA;N| + bA,N, + cA;N;. The respective standard deviations can be com-
puted as op- = 2.5450p and 64 = 2.54504. Please note that the derivation (6.7.2) to
(6.7.8) as presented refers to undifferenced observations. When viewed as double dif-
ferences, the only changes are in (6.7.7) and (6.7.8), i.e., deletion of the clock terms,
and the replacement of 6p- with Mp- and 64 With Mgc. The @C function is pre-
sented in Hatch (2006), including the general form of the solution coefficients. Using
only the first two conditions of (6.7.4) leads to geometry-free and ionospheric-free
(GIF) solutions, which are popular in dual-frequency processing.

6.7.2 Geometry-Free TCAR

The idea behind the TCAR approach is to find three carrier phase linear combina-
tions that allow integer ambiguity resolution in three consecutive steps. In a fourth
step, the resolved integer ambiguities are considered known when estimating the
receiver position in a geometry-based solution. One can either use the estimated inte-
ger combination or transform them to original ambiguities and use the latter in the
position computation. This transformation must, of course, preserve the integer nature
that imposes some restrictions on admissible combinations. Consider the following
example of the transformations:

o 1 —t][m] [Nei-p
1 =6 5 [|Ny|=|Nues) (6.7.9)
40 =3|[N]| | Naos
N [-18 =3 1[N
Ny|=|-23 -4 1||Ny_es (6.7.10)
Ny| |24 4 1| Nygs)
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For the original ambiguities to be integers, it is necessary that the elements of the
matrix on the left side of (6.7.9) are integers and that the determinant is either plus
or minus one. These conditions can readily be explained by computing the matrix
inverse. Equation (A.3.4) shows a general way to compute the inverse. If the elements
of the matrix are integers, then the cofactor matrix also contains integers, and if the
determinant located in the denominator is plus or minus one, then the elements of the
inverse matrix must be integers.

There are two approaches to TCAR. The first to be discussed is the geometry-free
approach (GF-TCAR), in which the functions do not contain the topocentric satel-
lite distance and the tropospheric delay. In the second approach, the geometry-based
(GB-TCAR) approach, the topocentric satellite distance and tropospheric delay are
present in the equations. However, the topocentric distance is not parameterized in
terms of station coordinates. For each of these approaches, the double differences are
processed separately and the respective ambiguity is determined by simple round-
ing in a sequential solution. Both approaches begin by resolving the extra-wide-lane
ambiguity, proceed with estimating the wide-lane ambiguity, and then resolving the
narrow-lane ambiguity. In deviation from the original idea of TCAR, which calls for
consecutive estimation of these ambiguities, one can readily combine two or even all
three steps into one solution.

We first review the geometry-free solutions in the context of dual-frequency obser-
vations. This type of a solution approach has been frequently used even during the
time when only dual-frequency observations were available. For example, already
Goad (1990) and Euler and Goad (1991) use the geometry-free model to study opti-
mal filtering for the combined pseudorange and carrier phase observations for single
and dual frequencies. We will discuss this model to demonstrate the reduction in
correlation between estimated ambiguities due to wide-laning, and clarify the term
extra-wide-laning as used traditionally during the dual-frequency era and its use today
in connection with triple-frequency processing.

Taking the undifferenced pseudorange and carrier phase equations (6.1.28) and
(6.1.32), carrying out the double differencing, and dropping the subscripts and super-
scripts that identify stations and satellites, the dual-frequency pseudoranges and car-
rier phases are written in the form

Pl 1 l O 0 p+ A MI,P gl,P
Pyl _ (1 vz O Of] Lp M, p €2pP
o [T =1 4 of N |T[Me|T|ere 6.7.11)
D, L =y, 0 A4 N, M, 4 &2.0

The auxiliary parameter A includes the tropospheric delay, and in case of undiffer-
enced equations it includes also the clock corrections and hardware delays of receiver
and satellite. Other parameters are the ionospheric delay /; p, and the ambiguities
Ny and N,. The factor yy, is given in (6.1.1). The parameters p + A and /; p change
with time, but the ambiguity parameters are constant unless there are cycle slips.
Equation (6.7.11) is called the geometry-free model; it is valid for static or moving
receivers and is readily applicable to estimations with recursive LSQ having a set of
constants and a set of epoch parameters to be estimated.
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Dropping the multipath term as usual, the matrix form of (6.7.11) is £, = AX + €.
The A matrix contains constants that do not depend on the receiver-satellite
geometry. Since the matrix has full rank, the parameters can be expressed as a
function of observations, i.e., X =A_1£b. Applying variance-covariance propaga-
tion, one obtains X = Alx ¢, (A_I)T. Next we consider the linear transformation
z = 2Zx, with

1 00 0
010 0

Z=|0 0 1 - 6.7.12)
001 0

with variance-covariance matrix X, =ZX Z". The new variables of z are
p+ AL p,Nyy, and Ny, with the wide- lane ambiguity being Ny, = N; = N,.

For numerical computations, we assume that the standard deviation of the
carrier phases o) , and o, , are related as 0, 4 =0} p \/ﬁ , and that the standard
deviations of the pseudorange and carrier phases follow the relation k = 6p/04
for both frequencies, where k is a constant. Assuming further that the observations
are uncorrelated, the covariance matrix of the observations consists of diagonal
elements (k%,y,,k?, 1,7;,), and is scaled by a . If we set k equal to 154, which
corresponds to the ratio of the L1 GPS frequency and the P-code chipping rate and
use 04 = 0.002m, then the standard deviations and the correlation matrix are,
respectively,

(op+A, 61,01 N> 62’,\,) = (0.99 m,0.77 m,9.22 cycL,,9.22 cycLz)

Opia 0.99 1 —0.9697 -0.9942 —0.9904
o, | 077 B 1 0.9904  0.9942
oy, | 922 C.= 1 0.9995 6.7.13)
oy, 9.22 sym 1
(6,44-07:06,.01 5) = (0.99 m,0.77 m,0.28 cycL,,,9.22 cycL,)
Opia 0.99 1 —0.9697 -0.1230 —0.9942
on, | _|0.77 3 1 0.1230  0.9904
on, | — [028 C.= 1 0.0154 6.7.14)
oy, 9.22 sym 1

Striking features of the epoch solution (6.7.13) are the equality of the standard devia-
tion for both ambiguities with the number of digits given, and the high correlation
between all parameters. Of particular interest is the shape and orientation of the
ellipse of standard deviation for the ambiguities. The general expressions (2.7.79)
to (2.7.83) can be applied to the third and fourth parameters. They could be drawn
with respect to the perpendicular N; and N, axes, which carry the units L1 cycles and



TRIPLE-FREQUENCY SOLUTIONS 389

L2 cycles. The computations show that the ellipse almost degenerates into a straight
line with an azimuth of 45°, the semiminor and semimajor axes being 0.20 and 13.04,
respectively.

The correlation matrix (6.7.14) shows a small correlation of 0.0154 between the
wide-lane ambiguity and the L1 ambiguity. Furthermore, the correlations between the
wide-lane ambiguity and both the topocentric distance and the ionospheric parame-
ter have been reduced significantly. Considering the small standard deviation for the
wide-lane ambiguity of 0.28 and the low correlations with other parameters, it seems
feasible to estimate the wide-lane ambiguity from epoch solutions. The semiaxes of
the ellipse of standard deviation for the ambiguities are 9.22 and 0.28, respectively.
The azimuth of the semimajor axis with respect to the N, axis is 89.97°, i.e., the
ellipse is elongated along the N, direction. The correlation matrix still shows high
correlations between N; and the ionosphere and topocentric distance, indicating that
the estimation of the N| ambiguity is not that straightforward and will require a long
observation set. If we consider the square root of the determinant of the covariance
matrix to be a single number that measures correlation, then (|C.|/ |Cx|)1/ 2533
implies a major decorrelation of the epoch parameters.

Assume that the double-difference wide-lane ambiguity has been fixed using the
HMW function (6.1.48), which is implied in (6.7.11), then AC2 of (6.1.56) allows
computation of the L1 double-difference ambiguity as

Ny =¢ +

i fi=tf
fi _1f2 Ny — @12) + 1f2 211,<p +Myer = @ +45[Njp — @] +- - -
(6.7.15)

Fortunately, this expression does not depend on the large pseudorange multipath
terms, but only on the smaller carrier phase multipath. Given the GPS frequencies
/1 and f>, and assuming that the wide-lane ambiguity has been incorrectly identified
within 1 lane, then the computed L1 ambiguity changes by 4.5 cycles. The first deci-
mal of the computed L1 ambiguity would be close to 5. However, since the L1 ambi-
guity is an integer, we can use that fact to decide between two candidate wide-lane
ambiguities. This procedure is known as extra-wide-laning (Wiibbena, 1990). It was
an important tool in the dual-frequency era that helped to shorten the time of success-
ful ambiguity fixing. It is important to note, however, that in triple-frequency process-
ing, the terms extra-wide-laning or extra-wide-lane ambiguity refer to any dual- or
triple-frequency frequency function whose corresponding wavelength is larger than
the legacy dual-frequency wavelength 4, _; ).

In the subsequent sections, we provide one or several algorithms for the resolution
of the extra-wide-lane, wide-lane, and narrow-lane ambiguity and briefly discuss dis-
tinguishing properties regarding ionospheric dependency, formal standard deviation
of the computed ambiguity, and multipath magnification. In order to provide numer-
ical values to approximately judge the quality of the various solutions, we assume
a standard deviation of 0.002 and 0.2 m for the carrier phase and pseudorange mea-
surement, respectively.

6.7.2.1 Resolving EWL Ambiguity The extra-wide-lane (EWL) ambiguity
No.1.—1) is easy to compute, possibly even in a single epoch. This is a direct result
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of the given pseudorange and carrier phase measurement accuracies, as well as the
closeness of the GPS second and third frequencies. Two solutions are discussed.
The first solution shows a reduced ionospheric dependency and the second solution
is ionospheric free. Just to be sure, the expression “extra wide lane” as used
here in connection with triple-frequency observations is not to be confused with
extra-wide-laning as used in connection with (6.7.15).

Differencing @,  _;, and P,: This solution differences the extra wide lane and
the pseudorange. Differencing (6.1.65) and (6.1.66) gives the function

Do1_1y—Pr=Ao1-1Noi-1y = Boi-n +Boio)ip+M+e  (6.7.16)

The hardware delay terms cancel as part of the double differencing. The symbol M,
without any subscript or superscript, denotes the total double-differenced multipath of
the function. The multipath of the pseudorange is the dominating part, i.e., M =~ Mp.
Similarly, the symbol € denotes the random noise of the function. Rearranging the
equation to solve for the ambiguity gives

Do i-1— P N B+ ﬂ(o,l,())[ M+ e

Noa-1 = (6.7.17)

1,P
/1(0,1,—1) j'(0,1,—1) A’(O,l,—l)

The EWL ambiguity solution still depends on the ionosphere because the factor of
I, p in (6.7.17), denoted henceforth as fy, equals —0.012. A double-difference iono-
sphere of 1 m falsifies the ambiguity by merely one hundredth of an extra-wide-lane
cycle. A similarly good ionospheric reduction is achieved if one were to use the third
pseudorange P; instead of P,.

Assuming that the carrier phases are stochastically independent and have the
same variance, and assuming a similar property for the statistics of the pseudoranges
(although in this particular case there is only one pseudorange used), and then apply-
ing variance propagation following (6.1.67), the variance of the EWL ambiguity is

Ho1-1n%a o}
oy = ————— =3205 +0.029, (6.7.18)

Equation (6.7.18) results merely from propagation of stochastic independent random
errors and does not reflect the multipath. The relatively large factor of 32 of the carrier
phase variance is caused by the close location of the second and third frequency. As
stated above, taking 0.002 and 0.2 m as standard deviations for the carrier phase and
pseudorange, respectively, the formal standard deviation of the EWL ambiguity is
oy = 0.036 (extra wide lanes).

The propagation of the multipath is more complicated. It is essentially unpre-
dictable since it depends on each individual carrier phase and pseudorange as well
as time (because the reflection geometry is a function of time). While the multi-
path is a perpetually worrisome unknown in precise positioning, its impact on the
calculation of the ambiguity is significantly reduced in this particular case because
of the EWL wavelength 4y ; _;, in the denominator of (6.7.17). The multipath effect
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on the ambiguity is My < 0.17M, where M is the multipath of @, ; _;) — P, and thus
itself a function of My, and Mp. Using factor v; ; 4 of (6.1.63), one can compute
the maximum value by adding the absolute values of phase and pseudorange com-
binations multipath. In this particular case, it actually is sufficient to approximate
M =~ Mp since Mp > M, thus simply obtain My < 0.17Mp. There is no additional
scaling since only one pseudorange is involved (and not a pseudorange combination).

We conclude that function (6.7.16) is a good candidate for estimating the EWL
ambiguity because the ionospheric impact is small, the formal standard deviation of
the ambiguity is low, and the multipath is significantly reduced.

Applying the HMW Function to Second and Third Frequency: An alternative
way of computing the EWL ambiguity follows directly from (6.1.48) when applied
to the second and third frequency:

Po,1,-1~ Porny = 4o1-yNop-n tM+e (6.7.19)
Dy, =P
Nt o= 0,1,-1) o.Lh M+ e (6.7.20)
0.1,-1) 7 7
0.1,-1) 0.1,=1)
2 2 2 2
U oL+ U o
0.1-n% " Fo1,)°p
oy = = =320, +0.0150, (6.7.21)

0,1,-1)

This solution is ionospheric free as to first-order ionospheric effects on the obser-
vation. The standard deviation is very close to the one determined for the previous
solution, and the multipath is reduced by the same factor. Therefore, both solution
approaches are essentially equivalent, although one might intuitively prefer the iono-
spheric free solution to alleviate any concerns about the ionosphere.

6.7.2.2 Resolving the WL Ambiguity Three solutions are discussed for
resolving the wide-lane (WL) ambiguity. The significance of the ionospheric delay
becomes more apparent as seen from the first solution presented. The second
solution uses the HMW function applied to the first and second frequency, as has
been traditionally done in the dual-frequency case. The third solution represents one
of the modern approaches, which is ionospheric free and minimizes the variance.

Differencing 5(0 1,—1pand @ _q g Knowing the EWL integer ambiguity, we
can readily write the ambiguity-corrected carrier phase extra wide lane as

¢(0,1,—1) = ¢(0,1,—1) - j'(0,1,—1)]\[(0,1,—1) (6.7.22)

Subtracting the wide-lane carrier phase function from the ambiguity-corrected func-
tion gives

D11y~ Pu-10=—Aa-1.0Na-1,0 + Bo1-1y+ Bu-10)ip+M+e
(6.7.23)

—501-1 +Da_10) —Poi-1nt+Pu-10 M+¢
N(l,—l,O): 0,1,=-1) (,,)+ 0,1,-1) (”)11P+

(6.7.24)
/l(l,—l,O) j'(1,—1,0) ’ /1(1,—1,0)
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“21 1 +“21 1
ol = 2 "/12) O 62 = (1485 + 44)02 = 152962, (6.7.25)

(1,-1,0)

The ionospheric factor gy = 0.505 is relatively large. An ionosphere of 1 m causes a
change of one-half of the WL ambiguity. The standard deviation of the WL ambiguity
is o)y = 3904. Notice that the variance factor of the extra wide lane is much larger
than that of the wide lane because of the relative closeness of the second and third fre-
quencies. There is also a similarly unequal contribution to the total multipath which
is My < 64M 4, applying again the multipath factor of (6.1.68). There is no pseudo-
range multipath because the function does not include pseudoranges. The technique
is best suited for short baselines, due to the residual impact of the ionosphere.

The above simple quality measures make clear that WL resolution should be
expected to be more difficult than the EWL resolution. More observations will need
to be taken over a longer period of time to reduce the noise to be able to identify the
correct integer of the ambiguity. Unfortunately, when observations are taken over a
longer period of time, the multipath variations can become a major concern.

Applying HMW Function to the First and Second Frequency: The HMW func-
tion provides an attractive alternative to the previous approach. We can readily write

D100~ Pa10 _ M+ ¢

Na-10 = (6.7.26)
(=10 A1-1,0) A1-1.0)
2 2 2 2
M,  \Op T U o
ol = & 1’0); LU T — 4402 +0.68207 (6.7.27)

(1,-1,0)

This estimate of the wide-lane ambiguity is free of ionospheric effects and even has
a good formal standard deviation of oy, = 0.17, assuming the default values. As with
any of the HMW functions, equation (6.7.26) contains a potentially large pseudorange
multipath that is even slightly amplified because the wide-lane wavelength is less than
Im,ie, My < 1.2Mg.

Ionospheric-Reduced and Minimum Variance: Zhao et al. (2014) propose to
minimize the variance of the sum of the scaled pseudoranges and ambiguity-corrected
extra wide lane. In addition, they introduce an adaptive factor that scales the iono-
spheric effect from zero (ionospheric free) to higher values that might relate to longer
baselines. Consider

aP1 + bP2 + CP3 + d(b(oy]_l) - @(1_1‘0) = _i(l—],O)N(l—l,O) + ﬂll,P +M + &€

(6.7.28)
—aP, —bPy —cPy —d®D g, _, + D, _
Nioo) = 1 2 3 (0,1,-1) (1,-1,0) + p Ip+ M+ ¢
A A ’ A
(1,-1,0) (1,-1,0) (1,-1,0)

(6.7.30)
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a+b+c+d=1
=0 (6.7.31)
(@®+b* + 02)0'12, + dz,uz(o,l’_l)aé = min

The first condition in (6.7.31) assures the geometry-free part, i.e., the topocentric
satellite distance and the tropospheric delay terms cancel. The second condition,
which includes the adoptive factor k, enforces the function (6.7.28) to be ionospheric
free even if k = 0. The idea is to increase x with baseline length to allow a residual
double-differenced ionosphere of kf, _ ) I, p- The third condition implies mini-
mum variance, assuming (as is done throughout this section) that the variances of the
three pseudoranges are the same. The conditions (6.7.31) together imply the need to
compute a new set of coefficients (a, b, c, d) for every k.

For the special case of k = 0, one obtains a = 0.5938, b = 0.0756, ¢ = —0.0416,
and d = 0.3721, and the variance of the wide-lane ambiguity becomes

(a2 + b2 + C2)62 + (dzﬂz(oyl’_]) + MZ _ )0'2
o2 = £ Q10”2 — 0.48402 + 25002 (6.7.32)
/1(21 ~1,0)

Using again the default standard deviations for pseudoranges and carrier phases,
we get oy = 0.143 for this ionospheric-free case. The maximum multipath M, <
0.82Mp + 29.6M 4 contains a significant phase contribution that comes from the EWL
component. For a discussion on the cases of k # 0, please see Zhao et al. (2014).

6.7.2.3 Resolving the NL Ambiguity Three solutions are presented for
resolving the narrow-lane (NL) ambiguity N5. All three solutions rely on ambiguity-
corrected wide-lane carrier phase observations. The first one is also applicable to
dual-frequency applications to resolve N, and shows a strong dependency in the
ionospheric delay. The second and third solutions are of the ionospheric-free type
and are characterized, as one would expect, by a very high standard deviation and
multipath factor.

Differencing Ambiguity-Corrected WL and Original Phase: Since the wide-
lane ambiguity is now known, we can compute

P10 = Py = —4N3 + (=P -10) + Poon)ip + M +e (6.7.33)
@ 10+ D3 (=Bu_10)* Boor)
N, = Lo * P Fhacothoon), | M+e (6.7.34)
),3 i3 , A3
2
u +1

(1,-1,0)
o2 = Tg; = 5220, (6.7.35)

3

The ionospheric factor of f; = 12.06 causes a large amplification of the residual iono-
spheric carrier phase delays. The standard deviation of the ambiguity is oy = 230.
Even if (6.7.33) were differenced with respect to @, or @,, the standard deviation
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would not change significantly because the wide lane is the largest contributor. The
multipath is My, < 36M . Once the N; ambiguity is available, the other original ambi-
guities follow from

Ny =Ng1-1y+N;

Nl = N(l,—l,O) + N2 (6.7.36)

Because of the high ionospheric dependency, this approach works best for short base-
lines.

In support of this approach, one might consider estimating the ionosphere. Differ-
encing the ambiguity-corrected extra wide lane and wide lane gives

¢(0,1,—1) - (D(l,—l,O) = (_ﬁ(O,l,—l) + ﬂ(l,—l,O))Il,P + M + e (6.7.37)

¢(0,1,—1) - ¢(1,—1,0) B M+ e

Ip= (6.7.38)

—Boi-ntPa-100 —Poi-n+Bu-10

) 2
Hoa-ny THG-10
012 _ ©.1,-1 " "(1,-1,0) 2(,; = 600863, (6.7.39)
W (=B + —Ba-10)

The respective numerical quality values are o, = 7804 and M; < 126M . Applying
the variance propagation to (6.7.34) for the carrier phases and the ionospheric delay
to take both the observational noise and the uncertainty of the computed ionosphere
into account, gives

o2 = (522 + 12.06” - 6008)c2, (6.7.40)

with oy = 9356 This high standard deviation clearly indicates that computing the
ionospheric delay first and then using it in (6.7.34) results in a high uncertainty for
the ambiguity.
An alternative way of computing the ionosphere is equation (6.1.57), which uses
the original observations explicitly. In the traditional notation the function is
AC3 = (A = A13)@1 = Ap@y + 41303 = Npdjp + Nizgs

= (V7= V7a)hp+M+e (6.7.41)

However, this equation is identical to (6.7.37) after appropriate scaling, and therefore,
does not offer a better way for computing the ionospheric delay. Given the significant
impact of the residual ionosphere when computing the original ambiguity N;, it is
tempting to look again for an ionospheric-free solution.

WL Ambiguity-Corrected Triple-Frequency Phases: A possible candidate for
computing the first ambiguity is equation (6.1.53), after all it is an ionospheric-free
and geometry-free function. Solving the equation for N, the general form can be
written as

Ny =a®, +bDy + c®@3;+dN, +eNz + M+ ¢ (6.7.42)

The ambiguity N5 is obtained from the previously resolved WL and EWL ambigu-
ities as Ny3 = N;, + N,3. The numerical phase factors are a = —143, b = =777, and
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¢ = —634. These values translate into a very large standard deviation of o)y = 101304
for the ambiguity and large multipath magnification of My < 1554M,. These extraor-
dinarily large values do not change even if (6.7.42) were to be formulated in terms of
N,; instead of N 5.

Ionospheric-Free Function with Ambiguity-Corrected EWL and WL:
Another approach to compute an ionospheric-free function is to utilize both
ambiguity-corrected EWL and WL functions. Consider

a®@ 1 1) + 0P _y ) — P3 = —A3N3 + (—abo 1 1) — DB —10) + Poo)]ip

+M+e (6.7.43)
—a®y, |\ —bD, o + P
N, = (0.1,-1) - (1,-1,0) 3 +ﬁNIl,P+M/1+E (6.7.44)
3 3
2.2 2,2
a1y 0210+ 1
2 _ 2
2 - o2 (6.7.45)
a+b=1
(6.7.46)
ap,1,-1y + bBu ~1,0) ~ Boon) = 0}
B —bBa-
O (el KU R NS B (6.7.47)

Bo.1-1-Ba-10

The first condition in (6.7.46) assures a geometry-free solution, and the second
condition makes the solution ionospheric free. The first phase factor is a = —7.07.
The standard deviation and the multipath can be computed as o, = 28180, and
My < 4686 M 4. These values are very high and render the solution to be of ques-
tionable value. Li et al. (2010) carried out the solution for the combination (0,1,—1),
(1,-6,5), and (4,0,=3), resulting in a = —0.039, oy = 99764, and My, < 1596 M.

6.7.3 Geometry-Based TCAR

The geometric terms, such as the topocentric satellite distance and the tropospheric
delay, are included in the solution. In order to make a solution possible, the mathemat-
ical model includes separate equations for pseudoranges and carrier phases. Because
the tropospheric delay is explicitly included, it might be necessary to model or esti-
mate this delay for long baselines. For short baselines, the tropospheric delay is
lumped with the topocentric satellite distance. The goal of geometry-based TCAR
(GB-TCAR) is still to estimate the integer ambiguities first in three separate steps
and then estimate the position coordinates in a fourth step. The topocentric satellites
distance is, therefore, not parameterized in terms of coordinates.

Even in the case of GB-TCAR, one also prefers to compute the extra wide-lane
ambiguity N _;, according to (6.7.19) using the HMW function. This is done
because this function can be easily applied and works well. Instead of resolving the
wide lanes Ng; _jy or N(; o _jy next, which certainly could be done, we resolve the
extra wide lane N(; _g 5), and then the narrow lane N _3).
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Resolving N(; _; 5): Consider the following model:
PCZPI+Mpc+5Pc

(6.7.48)
D65 =0 *+Ai-65N1-65 — Bu—-e6s5lpr+Mi_ss + 5(1,—6,5),¢>}

where PC is the triple-frequency function (6.7.7) that is ionospheric free and mini-
mizes the variances. The tropospheric delay is lumped with the topocentric satellite
distance as p’ = p + T. The standard deviation of the optimized pseudorange function
is given above as op- = 2.5450p, and the multipath is Mp- = 3.6 Mp. Instead of PC,
one could also use an ionospheric-free dual-frequency function because their stan-
dard deviations are not much larger. The ionospheric factor for the phase combination
is f1 _¢5) = —0.074, making this function suitable for processing of long baselines.
The standard deviation and the multipath are 6y g5, = 10404 and M(; ¢ 59 =
161My,. The wavelength is A _gs5) = 3.258 which, according to our adopted con-
vention, actually is an EWL and not a WL function.

The model contains two types of parameters, the lumped parameter p’ which is
estimated for each epoch, and the ambiguity parameter which is constant as long as
there is no cycle slip. Once the integer ambiguities have been determined, we can
compute the traditional WL and EWL ambiguities as

N 15| [N
110 = (1.-6.5) (6.7.49)
[Na,o,—l)] [1 6] [N<o,1,_1)]

which can then be used as known quantities.

Resolving the Narrow-Lane Ambiguity: Since Ny _;), N _¢5) and Ny o 1
are known, the narrow-lane ambiguity can be computed using one of the wide-lane
functions as

Do-1y=0 —Bao-nhipr+tMio-1)+Eqo0-1a } (6.7.50)
, 7.
Dyo-3 =0 +Aao-»Nuo-3 = Buo-3hip+Muo_3 +€uo-30

Several variations are possible. For example, instead of using the extra wide lane
D o.—1), one might consider @ _q5). The latter provides more reduction in iono-
spheric impact at the expense of potentially a higher multipath.

6.7.4 Integrated TCAR

The various steps of GB-TCAR can, of course, be combined into one step which is
referred to as an integrated TCAR (Vollath et.al., 1998). This model uses all obser-
vations simultaneously. In this example,

Pi=(p+T)+1,p+M p+ep
Py=(p+T)+ Borolip+Myp+ep
Py=(p+T)+Poonlip+Msp+ep
D =(p+D+ AN, =11 p+M p+ep ‘
Dyo-3=0+T)+ Au0-3Nuo-3) — Buo-3lip + Muo-30 +€u0-3.0
D _65=+T)+ A1 _65N1-65 — Bu-650r tMi_6s50+E10-10
Lip=1p

(6.7.51)
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the EWL and NL carrier phase functions were chosen. For long baselines, the
tropospheric delay might need to be modeled and parameterized separately. In
epoch-by-epoch sequential processing, one would fix the extra wide lane first and
continue processing epochs until the other ambiguities have been fixed. Since several
ambiguities are estimated in one step, one can readily use search algorithms that
take advantage of the full variance-covariance matrix and not neglect correlations
between the parameters.

The system (6.7.51) contains an ionospheric observation. In the simplest case the
initial value, conceptually identical to approximate values in adjustment terminology,
could be zero and the ionospheric parameter would be allowed to adjust according
to the assigned weight. If available, one could use an external ionospheric model to
assign the initial value. In that case the residual ionospheric delays to be estimated
would be small and the ambiguity estimation over longer baseline should be easier,
depending on the accuracy of the external information.

The system (6.7.51) can readily be replaced with another set of functions, as long
as they are independent. An interesting combination is the optimized pseudorange
equation (6.7.2), the triple-frequency ionospheric-free phase function (6.1.58), and
the dual-frequency ionospheric-free phase function (6.1.39). The ambiguities to be
estimated would be N, N,, and N 5.

6.7.5 Positioning with Resolved Wide Lanes

Following the TCAR philosophy, the station coordinates are estimated after all ambi-
guities have been resolved. Typically, one would prefer the resolved original integer
ambiguities N, N,, and N5 for accurate positioning. However, when in need of rapid
positioning with low accuracy, one can utilize the resolved EWL and WL ambiguities
and avoid the additional difficulties of resolving the NL ambiguity. For example, con-
sider the ambiguity-corrected EWL function

D65 =0~ Pa-esliptT+My_¢50+€1-650 (6.7.52)

Since this function has a low ionospheric dependency, it is suitable for long
baseline processing. Another candidate is function (6.1.58), given here in traditional
notation:

A Ay Az A3 A A3
ACA= Az |—¢ - | —=+— + —@;— —N;, + —N.
13 [11 P < A 1 %) 1 @3 A 12 s 23

=p+ T+ MAC4 + EAca (6753)

The formal standard deviation of the function is 6,4¢4 = 270,,. The multipath is M <
41M,,,.

For even coarser positioning, consider the special pseudorange function PC of
(6.7.2), which was designed to minimize the variance. As a matter of interest, another
pseudorange equation that includes all three pseudoranges can be readily derived
from (6.7.53). Divide each @, by 4; and replace the symbols ¢; with @;. In a second
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and final step, replace the @; by P; and delete the ambiguity terms, giving

Azt Az (A2, A Ai3hs
fep 28322, ) p BB T M 6.7.54
72 T\, T )t e € ( )

3

The numerical values of the respective pseudorange factors are 17.88, —84.71, and
67.82. Such large factors cause a very high variance for the combination and a
potentially large multipath magnification. Therefore, this function is not attractive
for use.

As to GF-TCAR and short baselines, for which per definition the double-
differenced ionosphere is negligible, only the formal standard deviation of the
ambiguities and multipath magnification factor need to be examined. For the extra
wide lane N, _;, and wide lane function N, _, ), there are several acceptable
choices. In both cases, the HMW function is among them. Approach (6.7.34) is
best-suited for estimating the N; ambiguities since the other two candidates have
a high standard deviation and high multipath magnification. The same functions
also seem to be the preferred functions for long baselines. Clearly, in that case the
ionospheric delay becomes noticeable, external information about the ionosphere
should be considered.

In terms of GB-TCAR, the system (6.7.51) is the preferred one because all obser-
vational information is used together. Since the extra wide lanes N ; _;) or N _g 5
can generally be determined over a short period of time, possibly even with a single
epoch of data, one might give preference to determining one of them separately and
then constrain it.

6.8 SUMMARY

In this chapter, we addressed the basic GNSS positioning approaches. This chapter
should be viewed together with Chapter 7, which provides all the details on RTK using
recursive least-squares. In Section 6.1, we derived the basic pseudorange and carrier
phase equation and then listed various undifferenced functions of these observables,
including triple-frequency functions. The notation used in this chapter was explained,
and efforts were made to keep the notation clear and systematic. We also referred to
the special triple-frequency subscript notation, which has become popular in recent
literature.

Section 6.2 referred to operational details of “things to know” for serious GNSS
users. We emphasized the excellent “GNSS infrastructure” that is in place and ready
to be used. Over the years, much effort has been made to establish various services
of exemplary quality that make it easy for the user to get the best performance out of
GNSS systems. Especially relevant are the services of the IGS and the various online
computing services that accept original field observations.

Sections 6.3 and 6.4 referred to the well-established navigation solution using
pseudoranges and the broadcast ephemeris for single-point positioning (nonlinear
and linearized solutions), as well as relative positioning using carrier phases and
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pseudoranges with emphasis on static positioning. The dilution of precision factors
was given. Although the ambiguity function technique does not seem to enjoy major
popularity among users, it was presented to provide an alternative to the customary
double-difference ambiguity fixing. Yet another alternative to double differencing
was briefly presented, i.e., the equivalent undifferenced formulation.

Ambiguity fixing with LAMBDA was dealt with in Section 6.5. The popular ratio
test was discussed, including one approach of discernibility that gives some guidance
as to the best value to adopt for the ratio. It was mentioned that a lot of research has
been done to improve the testing theory to assure that indeed the correct set of ambigu-
ities is accepted. An example is the aperture theory developed by Teunissen. However,
to keep the mathematics at a minimum, only respective references are cited for this
research. Instead, a major subsection was provided to see what other disciplines are
doing who have problems similar to ambiguity fixing in GNSS.

As to network-supported positioning in Section 6.6, the key parameters of PPP
are the lumped parameter RZ and the ionospheric-free receiver and satellite code
biases & pr1, and ffj 1712 11 (6.6.2). In the case of RTK, the differential corrections are
AQD’; in (6.6.24) and APZ in (6.6.33), which are transmitted to the user. There were
three PPP-RTK solutions discussed—the single-frequency, the dual-frequency, and
the across-satellite difference methods. For these three methods, the elements trans-
mitted to the user are, respectively, {&, . .. &} of (6.6.57),{&} ... D!

HMW12° éf’IFlZ} Of
(6.6.75), and {DII;IMWIZ,FCB’ DX’FCB, &t} of (6.6.108).

In Section 6.7, the triple-frequency solutions were examined. The major
difference between the single-step batch solution and TCAR is that the former
uses all correlations between parameters when resolving the integer ambiguities.
Of the TCAR solutions presented, the system that combines all observations is
preferred because it allows all correlations to be utilized when fixing the integers.
Both single-step solution and TCAR can be solved sequentially allowing the
EWL ambiguities to be estimates first, followed by the WL and then the NL
ambiguities. In terms of GF-TCAR and short baselines, for which per definition
the double-differenced ionosphere is negligible, only the formal standard deviation
of the ambiguities and multipath magnification factor need to be examined. As to
EWL and WL functions, there are several acceptable choices. In both cases, the
HMW function is among them. In terms of GB-TCAR, the system that uses all
observational information is preferred. Since the extra wide lanes can generally be
determined over a short period of time, possibly even with a single epoch of data,
one might in this case give preference to determining these separately and then
constrain them.







CHAPTER 7

REAL-TIME KINEMATICS RELATIVE
POSITIONING

Real-time kinematics (RTK) is a high-precision positioning technique that uses car-
rier phase and pseudorange measurements in real time. The high-precision position
calculations are performed at the rate of measurements at the rover station. The base
station, which is located at a known position, transmits its raw data, appropriately for-
matted, through a data communication channel. Ultra high frequency (UHF), cellular
Global System for Mobile Communications (GSM), Long Term Evolution (LTE),
WiFi, or Internet channels can be used for data transmission. Usually the data is trans-
mitted one way, from the base to the rover. One or several rovers can listen to a certain
base station and difference their raw measurements with raw measurements from the
base station to correct the position.

There are several formats in use for data transmission of full raw measurements
or differential corrections. All formats compact the transmission of information that
is necessary to cancel GNSS errors. Errors that do not depend on the position of
a station, or are nearly independent of location, tend to vary slightly with position
and have almost equal effects on the measurements of both stations. These include
satellite clock errors, satellite ephemerides errors, and atmospheric delays. The rover,
having available its own measurements and the measurements from the base station,
is able to form across-receiver differences to calculate the high-precision position
relative to the base. The rover computes across-receiver differences for all satellites
observed simultaneously at the base and the rover. Across-receiver differencing is
carried out in a uniform manner for all GNSS systems such as GPS, GLONASS,
Galileo, QZSS, Beidou, and SBAS.

In this chapter the recursive least-squares estimation approach of Chapter 3 is
applied exclusively. The notation of that chapter is in general also carried over.

401
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The estimation uses across-receiver differences and not double differences. Two data
sets of actual observations help in illustrating the numerical aspects.

We develop a unified scheme for processing multifrequency and multisystem
observations in RTK mode. We present tables that allow a unique association
of signals and satellite systems. The suitability of a linear model to express the
frequency dependency of GLONASS receiver hardware is verified first, which
then allows for ready incorporation of GLONASS observations into the processing
scheme. Although the linearization of carrier phase and pseudorange observations
has been addressed in the previous chapter, it is presented again in the context of
across-receiver difference observables and for providing the linearized form of the
light time iteration procedure discussed in Chapter 6.

We first apply the RTK algorithm to a short static baseline and generate figures
to demonstrate the convergence of across-receiver fractional hardware carrier phase
delays. The RTK kinematic processing solutions begin with a short line whose rover is
allowed unconstrained motions. This is followed by the RTK dynamic processing of
a short line, whose rover motion is described by a dynamic model, and by the process-
ing of a long line in which the ionospheric delay is also described by a dynamic model.
A separate section deals with the extension of the algorithm to allow the number of
signals to vary, as is the case when satellites set or rise or loss of signal occurs due to
blockage of the signal by physical objects along the line of sight to the satellites. New
ambiguity parameters are introduced after cycle slips. In addition, a special section
is dedicated to the detection and isolation of cycle slips. The approach selected bor-
rows from procedures that are popular in compressive signal sensing theory. The slip
history is considered a sparse event and is numerated by sparsely populated vectors
or matrices. The second to the last section deals with ambiguity fixing. We identify
one base satellite within a group, i.e., the group of GPS satellites, estimate the base
satellite ambiguities as real-valued number and fix the double-difference ambiguities.
The chapter closes with remarks on optimal software implementation.

7.1 MULTISYSTEM CONSIDERATIONS

When speaking about the GNSS navigation signal, we mean a combination of signals
from different carrier frequencies and satellite systems such as GPS, GLONASS,
Galileo, QZSS, SBAS, and Beidou. We note that not all combinations of systems
and frequencies are possible. For example, Galileo does not transmit signals in the
L2 frequency band and GPS does not transmit in the E6 band. Table 7.1.1 shows the
currently available satellite systems and carrier frequencies expressed in MHz.

The GLONASS FDMA L1 and L2 signals are available on GLONASS M satel-
lites. The integer number [ taking values from the range

le[-7,6] (7.1.1)

is referred to as the frequency letter. Actually, the same letter has been allocated to
two satellites having different satellite numbers. The respective satellites are located
at opposite points in the same orbital plane and thus cannot be observed simulta-
neously by a station located near or on the earth surface. The expected GLONASS
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TABLE 7.1.1 GNSS Name and Band Frequencies.

GNSS Band Frequency
GPS L1 154 x 10.23 = 1575.42
L2 120 X 10.23 = 1227.6
L5 115 % 10.23 = 1176.45
Galileo L1 154 x 10.23 = 1575.42
E5a 115%10.23 = 1176.45
E5Sb 118 X 10.23 = 1207.14
E6 125 % 10.23 = 1278.75
GLONASS FDMA L1 1602 +1x 0.5625
L2 1246 +1x 0.4375
Beidou (Compass) B1 152.5 x 10.23 = 1561.098
B2 (E5b) 118 X 10.23 = 1207.14
B3 124 x 10.23 = 1268.52
QZSS L1 1575.42
L2 1227.6
L5 1176.45
E6 1278.75
SBAS L1 1575.42
L5 1176.45

CDMA system (not shown in the table) will include the GLONASS CDMA L1, L2,
L3, and L5. GPS, Galileo, SBAS, and QZSS signals are using the same time scale,
while GLONASS and Beidou use their own time scale.

The basics of code and carrier phase processing are described in preceding
chapters. Now we are starting to describe the numerical algorithms for recurrent
processing of pseudorange and carrier phase measurements intended for both
real-time kinematics (RTK) processing and postmission processing. The next section
gives expressions for undifferenced measurements and across-receiver difference
measurements for rover and base. These are the navigation equations since they
connect measurements with the position of the rover station, which is the subject of
the position determination.

7.2 UNDIFFERENCED AND ACROSS-RECEIVER DIFFERENCE
OBSERVATIONS

Let S* be the set of signals currently available and S, be the set of signals available for
processing at receiver k. For s € S, we assume that the signal s = (p, b) is represented
by a pair of numbers consisting of an internal number p that uniquely identifies the
navigation system, and the frequency band identifier . Table 7.2.1 shows the internal
number assignment we have chosen. Note that internal numbering is for internal use
inside the receiver firmware, it is not standardized and certainly can differ by receiver
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TABLE 7.2.1 Assignment of Internal Satellite Numbers.

Internal Satellite Set of Available
Number p GNSS Frequency Bands F”
1,...,32 GPS L1,L2,L5
33,...,56 GLONASS FDMA L1,L2

57,...,86 Galileo L1, ESa, E5Sb, E6
87,...,90 QZSS L1,L2,L5, E6
91,...,120 Beidou B1,B2,B3
121,...,143 SBAS L1,L5

TABLE 7.2.2 Current Assignment of GLONASS Satellite Number
and Frequency Letters.

p I(p) P I(p) p I(p) p Ip)

33 1 39 5 45 -2 51 3
34 —4 40 6 46 =7 52 2
35 5 41 -2 47 0 53 4
36 6 42 =7 48 -1 54 -3
37 1 43 0 49 4 55 3
38 -4 44 -1 50 -3 56 2

manufacturer. The range of the frequency band identifier depends on the satellite
number. Let us denote the set of frequency bands available for the satellite p by F?P.
The GLONASS satellite letters (7.1.1) are mapped to numbers in Table 7.2.1 (cur-
rently for p = 33, ...,56) as shown in Table 7.2.2 according to the official site of the
Russian Information Analytical Center (http://glonass-iac.ru/en/GLONASS).

Let 27 denote the satellite system corresponding to satellite p. The mapping p —
27 is defined in the Table 7.2.1. Note again, that Table 7.2.1 describes an exemplary
mapping. Different manufacturers use different mappings.

We now present the fundamental set of navigation equations using notations intro-
duced in Chapter 6 and generalized to the signal concept notation s = (p,b) and
b € F?, and indexing the station by k, and time of measurement by ¢. The pseudorange
measurement equation becomes

P\ 2
PZ’b(t) = () + cdt (1) — cdP(r) + <%) If,u(t) +T7(1)
b
+ dk,b,P + Mi,b,P - DI;’P + gllz’b,p(t) (721)

The signal of the frequency band b emitted by the satellite p experiences a hardware
delay at the receiver k by d; , p. The corresponding satellite hardware delay is denoted
by DZ p- The code multipath delay of the signal emitted from satellite p at frequency

. . . P
band b and received by station k is denoted by M’ b.P"


http://glonass-iac.ru/en/GLONASS
http://glonass-iac.ru/en/GLONASS
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The carrier phase measurement has the form

1(’7)2
c fp

fP
9,0 =T A0 + fdn ) = [1d 1) + N (1, ) = Lo @

P

o
P P P
+ ?Tk O +d,,+M, — Di,w + g‘;’b’w (7.2.2)

where f}f is the carrier frequency of the signal. For example, according to

Tables 7.1.1, 7.2.1, and 7.2.2 we have: = 1575.42 MHz, p = 1227.6 MHz,
fs =1176.45MHz for p=1,...,32, ffl 1602 + I(p) ><O.5625 MHz, 52 =

1246 + (p) X 0.4375 MHz  for p=33,...,56, f/ =157542MHz, f/, =

1176.45 MHz, ng = 1207.14 MHz, 56 =127875MHz for p=57,...,86
and so on.
The symbol tfés b in (7.2.2) is the exact time the last cycle slip happened. Note that

the cycle slip leads to a jump, usually integer valued, of the carrier phase ambiguity.
Half a cycle slip can also occur, lasting for several seconds until certain phase-locked
loop (PLL) corrects its state to the nearest stable state. Other notation includes the car-
rier phase multipath delay M’ and the satellite hardware delay Dp . The receiver
hardware delay of a signal emltted at frequency band b by satelllte p at station k
usually depends on frequency. Assuming that

P
& =d Ty

kho = Ypo T = Hebg (7.2.3)

we are introducing a linear frequency dependence of the hardware delay as a rea-
sonable first-order approximation. For all GPS L1 signals, having the same carrier
frequency 1575.42 MHz (and therefore experiencing the same hardware delays), the
second term in (7.2.3) can be ignored so one obtains dZ Lo = dg Llo forp=1,...,32.
The same is true for GPS L2 signals, GPS L5 signals, and other signals except for
GLONASS FDMA L1 and GLONASS FDMA L2, because each satellite has its own
carrier frequency letter. In other words, considering dependency of hardware delay
on the satellite number inside the system and on the frequency band makes sense only
for the GLONASS system.

As discussed later, this first-order approximation is applicable in practice. The
coefficients of the linear dependency 44, , are available from a lookup table stored
in the computer or receiver memory. Another option is to consider it a constant param-
eter that is to be estimated along with other parameters. Note that using the lookup
table allows for a more precise representation and more thorough compensation of the
hardware biases as compared to their linear representation. Additional details about
the creation of a lookup table are given below.

All other notations used in (7.2.1) and (7.2.2) have been introduced in Chapter 6.
Using the following notation for the carrier wavelengths

W= (7.2.4)
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we can present the carrier phase measurements equation (7.2.2) in themetric form:

/1[7
@l,ih(t) = pl () + cdn (1) — cdiP (1) + liNih(tléS,k,b) - (/{Tb
L

1

2
>kum+ﬂm

+ A, ML, =D+ () (7.2.5)

The terms M b DZ o and £, »(t) denote carrier phase multipath, hardware-
dependent blases of the satellite, and noise expressed in the metric form.

The error terms in equations (7.2.1), (7.2.2), and (7.2.5) can be divided into two
groups—modeled errors and nonmodeled errors. The tropospheric delay can be mod-
eled using one of the models described in Chapter 8. According to the tropospheric
model, the delay term Tf (1) is estimated using a rough approximation of the position
and a priori atmospheric data such as temperature, pressure, and humidity. Improv-
ing the position solution iteratively also improves the tropospheric delay estimate,
provided the iterations converge. Therefore, the tropospheric delay is considered
as a correction to be compensated on the left side of (7.2.1) and (7.2.2), forming
left-side terms

Py =P (0 = T/(0) (7.2.6)
WM=%M—FW0 (7.2.7)
b

Note that we do not compensate for other terms that are specific to a certain satel-
lite and common for different stations because these will vanish when calculating
across-receiver differences.

The multipath error term is usually not modeled. We must accept its existence
together with possibly other unmodeled errors. Not being able to directly compensate
or estimate these unmodeled errors, we take into account their statistical properties,
such as epoch-wise variance or across-epoch correlation. Combining all unmodeled
terms with those on the right side of (7.2.1) and (7.2.2), we define the cumulative
unmodeled errors £, ,(¢) and EZJW(I).

k.b,P
The navigation equations can be now presented in the form

_ Y
Pl (1) = Po(t) + cdn(t) — cdi’ (1) + <]%> L@

b
+@W—U’+§”m (7.2.8)

b

P
+ o~ Dhy € (7.2.9)

P 2
0= A0, ) - () 1,0
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In equations (7.2.1), (7.2.2), (7.2.8), and (7.2.9), the symbol p‘z denotes the distance
that the signal travels from transmission at the satellite antenna to reception at the
receiver antenna. The travel time in the vacuum is

=t (7.2.10)
c

Assuming that two receivers k and m observe the same satellite p, the across-receiver

differences of pseudorange and carrier phase measurements that are introduced in

Section 6.1.2 can be written as

_ m\
P[/:m,b(t) = P[Z(I) - plr)n(t) + Cdtkm(t) + (prl) kle( )

b
+ dyyp + 2, o0, (7.2.11)

2\ 2
(DIZm b(t) = /117 (pp(t) pp (t)) +fpdtkm(t) + kmb(th,km,b) : (;1 > Ifm,Ll(t)
b b

P
+dy +e';mb¢ (7.2.12)

The symbol t]éS,km p= max{ CSb? Cs,m,b} denotes the time at which the last cycle
slip occurred at either carrier phase ‘/’Z b(t) or (I’Z \ b(t), i.e., the time the latest cycle
slip occurred in either receiver. As was mentioned in Section 6.1.2, errors or biases

which are specific for satellite p vanish in (7.2.11) and (7.2.12). We also denote
Sin=S:NS, (7.2.13)

as the set of signals common for both stations k and m. Across-receiver differences
are available only for signals s € §,,,.

The across-receiver difference of the hardware delay dp b €40 be written as dO
for all signals except GLONASS FDMA L1 and GLONASS FDMA L2, as was pre-
viously mentioned. The first-order approximation of km’b’(p for GLONASS signals
has the form

1
dim b,p d/(()m,b,q) + ? Him.b,e (7.2.14)
b

which is similar to (7.2.3). Note that the constant term dgm b always appears

as a sum with the across-receiver carrier phase ambiguity N]fm ,- Therefore, the
across-receiver ambiguity is part of it and estimated along as a lumped parameter. For
all signals except GLONASS FDMA, the hardware carrier phase delays disappear

in the across-receiver difference. For GLONASS FDMA, the constant term d]?m b

is combined with the across-receiver ambiguity while the linear term ( 1/ Ab) Him.b.p
is preserved. The coefficient 4y, , , is the additional delay expressed in metric units.
If receivers at stations k and m are absolutely identical, then we can assume that
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Figure 7.2.1 Across-receiver difference of GLONASS hardware carrier phase delay in
cycles (vertical axis) as a function of the frequency letter (horizontal axis).

the across-receiver difference fy,,;, , vanishes, which is confirmed by real-world

experience; however, if the pair of receivers are not identical (for example, if they

are produced by different manufacturers), the problem of estimation of this value

becomes critical. For example, for the pair Triumph-1 receiver by Javad GNSS and a

Leica receiver, the values di and & expressed as a function of the carrier
; m,L1,p km,L2,¢

phase letter / are shown in Figure 7.2.1.

The figure confirms that first-order approximation (7.2.14) is reasonable because

the first-order linear term dominates the variation. The constant terms d]?m Lo and
0 : P _ P _ e
dkm’ 12, 4T€ chosen in such a way, that dkm’ e =0and d ., =0 for the zero

letter or, in other words, for such p that I(p) = ‘(pin Table 7.2.2. They take large val-
ues and cannot be simply ignored because the ambiguity resolution would become
impossible.

There are two ways to determine these constants. The first way requires
long-term data collection of a zero baseline. Processing of the across-receiver and
across-satellite differences allows for determination of the fractional parts of carrier
phase ambiguity. The resulting averaged data is then stored in the software lookup
tables. The second way considers the linear dependence (7.2.14) and estimates the
“slope coefficients” py,, 11, and py,, 15, as additional constants along with other
parameters during positioning. The linearization (7.2.14) is part of the linearized
navigation equation scheme considered in the next section.

7.3 LINEARIZATION AND HARDWARE BIAS PARAMETERIZATION

Aiming to apply the linear estimation theory described in Chapter 3, let us linearize
. . . . T
the navigation equations around a nominal location. Let (xkyo(t), yk’o(t),zk,o(t)) be
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the vector of approximate Cartesian coordinates of the station k at the time 7. Note
that location of antenna, location of receiver, and location of station have the same
meaning throughout this chapter. Let the station m be located at the precisely known
static position

x, =y, (7.3.1)

Station k is considered unknown or only approximately known. The position of the
station k can be expressed as

)Ck (t) xk,o (t) + d.xk(t)
X () = | v (O | = | Yio®) + dy (1) (7.3.2)
Zk(t) Zk,O(t) + de(f)

by adding corrections to the approximate coordinates. Stand-alone, or autonomous
positioning using only pseudorange measurements as described below provides
approximation accurate to within several meters or better. Therefore, the expected
range of the corrections dxy, dy,, dz; is a few meters. Let

o (- 1))
XP(t—1)=| (- Tg (7.3.3)
P(t—1))

be Cartesian coordinates of the satellite p at the time (t - rl’: ) The signal travel dis-
tance p‘Z is defined in Section 6.2.1. In this section we expand this expression and
represent it in the form

A(tt—7) = X0 — X (t—7))|| +dpl (7.3.4)

where dpz is the additional distance between satellite and receiver antennas that the

signal travels due to the rotation of the earth. Let Q . be the angular speed of the earth
rotation, Qe =7.2921151467 x 1073 rad/ sec, and

. 0
Q,=(0 (7.3.5)
Q,

be the angular rotation velocity vector expressed in ECEF, where the arrow means
the vector. Since the earth rotation angle during the travel time is small, we can use
the first-order approximation of the rotation matrix

0 6 0
R,@®) ~1l,+|-6 0 0 (7.3.6)
0 0 0
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where I3 is the 3 X 3 identity matrix, as well as

0 6 0
Ry’ (1—t) X’ (t—7,)+[-0 0 Ofx"(t—1)
0 00
=x(1—7) =0 Q, x X (1 —¥) (7.3.7)

where the symbol X denotes the vector product. Preserving the first-order term in the
Taylor series expansion of the expression (7.3.4), we have

p(tt=7))
= |xi (1) = R3(0)x" (1 —

ll

A
~ %, (1) — X" (1 — 7)) —erexxP(t—r,’c’)”

-

,f[xk(t)—xp(t—r]f)] -Q,_, XXP(I—T]’:)
[, (0 = xv (£ = 27 ) |

R X0 — X (t—17)|| - (1.3.8)

where the symbol - is used for the scalar product. Estimating 7 as 7/ ~

k k
e () . .
———— =2 we rewrite the expression (7.3.8) in the form

[xk(t)—xl’(t—rf)] QXX (1 — 1))

c

A=)~ @ - % (=) -

(7.3.9)
The numerator in the second term of expression is a triple product of vectors, which
is further expressed as

Pxi(0) =X (t = )] - ;2 * (=)
= det [Xk(,)_xﬂ( T}i’) ;2 3 X (1 —711:)]

=wkwéz<iﬂwww&?im~ﬂ

0 x ¥
= —det [_Q X, (0 x( —Tf)] —det| 0y ¥
Q, z
= Q, (& (1 =) yuld) = 5,0 (1 = ) (7.3.10)

where we took into account that a determinant with two equal columns van-
ishes and the permutation of columns changes the sign of a determinant.
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Finally,

Q
At =7)) = X @) =X (1 = ) || + —= (6 (1 = )30 = w0 (1 = 7))

A O- (=) + (@ =w (=) + (0 —2(1- 7))

0
+Te(xp(t—rf)yk(t)—xk(t)yp(t—rf)) (7.3.11)

This equation gives a first-order approximation to the iterative solution discussed
at the end of Section 6.2.1. Linearization of (7.3.11) around the approximate point
(g o(D), Vi 0(D)s wk’o(t))r takes the following form:

A(ti—t) g (0= &)+ HY dx(0)+ HY  dy () + HY  dz () (7.3.12)

=V (o @ =2 (1 =)+ (o 0 = (1 = ) + (50 () = 2 (1 = 7))

Q
+ Te [ (£ = 27 ) yio(®) = xi o0y (1 = %) ] (7.3.13)

A first approximation %f , for the travel time is obtained from the pseudorange obser-
vation as ’
Py
%]f = (7.3.14)

c

The partial derivatives, or directional cosines, are expressed as

xk,o(t) bl xp<t - %g)

Hf,l(f) = : 2 2
Vo 0= (1= ) + (0 0 =32 (1= ) + (20 0 =2 (1 = 7))
-S4

Yo =y (1 =7,
Hy (1) = = k0 (r-%) 2 :
\/(xk,o (t)—xl’(t—%i)) + (yk’o 6] —yp([_;]l:)) + (Zk,o (t)_zp<t_%]1:))
Qe ~,
+ TXP(t - TZ)
(P
Hi:’(t) — 20— 2 (I Tk)

(00 O =2 (1= 7))+ (0 O = (1= )"+ (20 0 - 2 (1= 7))
(7.3.15)
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Finally, all necessary expressions are now available to express the across-receiver
differences (7.2.11) and (7.2.12) in the linearized form,

Pr0) = (1 = ) + ot = ) = HY | d(0) + HY , dyy(0) + HY , dz (1)

km,

2
1 _
+ cdiy, (1) + (prl B O+ dyyp+ 2, 0 (7.3.16)
b

B0~ 5 (Lot 2) = (1= 7)) = 5 (H i 0+ HY )+ HY )
b b

2\ 2

+f£dtkm(t) + me,b (lgs,km,b) - % <jf_17l> If:m,Ll o+ dim,b,(p + Eicjm,b,(p (7.3.17)
b \b

Let n,, be the number of signals, counting pseudoranges and carrier phases, in set

s € S;,,- The subscript km will be omitted whenever it does not lead to misunder-

standing throughout this section, i.e., S = S,,, n = ny,,, and so on. Assume that the

acros