CENG 6108 Construction Economics

Public Sector Decision Making

Abraham Assefa Tsehayae, PhD

TO DO

- 1 Decisions for Public Projects
- 2 Benefit Cost Ratio

Introduction:

- Evaluation of public investment projects involves various social and political issues and interactions among economic, social, and political concerns.
- Fiscal Policy Objectives for Public Sector: Major functions
 - Allocation Function:
 - The process by which total resource use is divided between private and public goods, and by which the mix of public goods is chose.
 - Objective is to achieve economic efficiency, i.e., maximize the improvement of social welfare available under the prevailing income distribution.
 - Distribution Function:
 - Redistribution of wealth: 1) a tax scheme combining progressive income taxes for high-income households with a subsidy to low-income households, 2) publicly financed programs which benefit low-income households, 3) taxes on luxury goods and subsides of other goods which are used chiefly by low-income consumers.
 - Stabilization Function: High employment and price stability.

3

Introduction:

- Public Projects vs. Public Production
- Public Projects refers to government investments in goods and services in the public sector.
 - Public projects may be undertaken by private firms and paid for by the government, or carried out directly under public management.
- Public Production: Goods mainly produced by public enterprises.
- Economic efficiency is measured by the maximization of the net social benefit (NSB)
 Benefit

NSB

= Social Benefits (SB) - Social Costs (SC)

- Benefit-cost ratio is commonly used in public projects.
 - Who will benefit from a project (the users)
 - Who will pay for a project (the sponsor)
- For example for a highway expansion project:
 - Costs to the Sponsor: Construction costs, Operating and Maintenance costs, Administrative costs.
 - Savings to the Sponsor: Increased tax revenues due to higher land values
 - Social Benefits: Reduced travel time for business and recreational users; Increased safety; and Reduced vehicle operating costs for business and recreational users.
 - Social Costs: Increased noise and air pollution; Disruption to the local environment; Disruption to traffic flows or business transactions during construction; and Loss of business elsewhere due to traffic rerouting one to the new highway.
 - Benefits and Costs are directly or indirectly attributed to the project.

 Benefit-cost ratios can be based on either the present worth or the annual worths of benefits and costs of projects:

 $BCR = \frac{PW \; (users'benefits)}{PW \; (sponsors'costs)}$

- So, for independent projects: BCRM > 1 or BCR > 1
- Mutually exclusive projects: using incremental analysis
- Let X and Y represent two mutually exclusive projects $B_{H} = B_{H}$

$$BCR(X - Y) = \frac{B_X - B_Y}{C_X - C_Y}$$

• BCR(X - Y) > 1, chose X; BCR(X - Y) < 1, chose Y; BCR(X - Y) = 1, chose the project with the greater present worth of benefits.

MARR in the Public Sector:

- For example, public projects in Canada are evaluated using various MARRs.
- Sensitivity analysis is recommended, using 10% bas the base case and vary it in the range of 8% to 12%.

Project Type	Government Level	MARR	Suggested Range of Values
Benefit-Cost Analysis Guide	Federal	10%	8% - 12%
Pharmaceutical	Provincial	5%	0% - 3%
Land and resource management planning	Provincial (British Columbia)	8%	6% - 10%
Agricultural	Provincial (Alberta)	13%	-
Assessment of damages in personal injury and fatal accident litigation	Provincial (British Columbia and others)	2.5-3.5%	-

• Example:

- There are periodic floods in the spring and drought conditions in the summer that cause losses in a 15,000-square-kilometer river basin located between two regions (A and B) that has a population of 50,000 people. The area is mostly farmland, but there are several towns. Several flood control and irrigation alternative are being considered:
 - 1. Dam the river to provide floor control, irrigation, and recreation.
 - 2. Dam the river to provide floor control and irrigation without recreation.
 - 3. Control flooding with a joint regional water control project on the river.
 - 4. Develop alternative land uses that would not be affected by flooding.
- The constraints faced by the government are the following:
 - The project must not reduce arable land.
 - Joint regional state projects are subject to delays caused by legal and political obstacles.
 - Damming of the river in the side of region A will cause damage to wildlife refuges.
 - The target date for completion is three years.

- Taking into account the constraints, alternative 3 and 4 above can be eliminated, leaving two:
 - ... Construct a dam for floor control, irrigation, and recreation.
 - **II.** Construct a dam for floor control and irrigation only.
- The following assumption have been made:
 - 1. An earthen dam will have a 50 year useful life.
 - 2. Population and demand for recreation facilities will grow by 3.25% per year.
 - 3. A three-year planning and construction period is reasonable for the dam.
 - 4. Operating and maintenance costs for the dam will be constant in real dollars.
 - 5. Recreational facilities will be constructed in year 2.
 - 6. It will be necessary to replace the recreational facilities every 10 years. This will occur in years 12, 22, 32, and 42. Replacement costs will be constant in real dollars.
 - 7. Operating and maintenance costs for the three recreational facilities will be constant in real dollars.
 - 8. The real dollar opportunity cost of funds used for this project is estimated to be in the rage of 5% to 15%.

• The benefits and costs of the two projects are:

Estimated Average Benefits of the Two Projects

Year	Flood Damage Reduction	Irrigation Benefits	Recreation Benefits
0	0	0	0
1	0	0	0
2	0	0	0
3	182,510	200,000	27,600
4	182,510	200,000	27,600
:	÷	÷	:
52	182, 510	200,000	27,600

Estimated Average Costs of the Two Projects

Year	Dam Construction	Operating and Maintenance Dam	Recreation Construction	Operating and Maintenance Recreation
0	300,000	0	0	0
1	750,000	0	0	0
2	1,500,000	0	50,000	0
3	0	30,000	0	15,000
4	0	30,000	0	15,000
:	÷	÷	:	:
11	0	30,000	0	15,000
12	0	30,000	20,000	15,000
13	0	30,000	0	15,000
:	:	÷	:	:
21	0	30,000	0	15,000
22	0	30,000	20,000	15,000
23	0	30,000	0	15,000
:	:	:	:	:

Estimated Average Costs of the Two Projects (continued)

Year	Dam Construction	Operating and Maintenance Dam	Recreation Construction	Operating and Maintenance Recreation
31	0	30,000	0	15,000
32	0	30,000	20,000	15,000
33	0	30,000	0	15,000
÷	÷	÷	:	÷
41	0	30,000	0	15,000
42	0	30,000	20,000	15,000
43	0	30,000	0	15,000
:	÷	÷	:	:
52	0	30,000	0	15,000

- Determine the following:
 - a) What is the present worth of building the dam only? What is the benefit-cost ratio? What is the modified benefit-cost ratio? Use 10% as the MARR.
 - b) What is the present worth of building the dam plus the recreational facilities? Use 10% as the MARR.
 - c) What is the benefit-cost ratio for building the dam and recreation facilities together? What is the modified benefit-cost ratio?
 - d) What project, 1 or 2, is preferred, on the basis of your benefit-cost analysis? Use 10% as the MARR.

References:

- Au, T., Au, Thomas P. (1992). *Engineering economics for capital investment analysis*. Second edition. Prentice Hall, New Jersey.
- Treasury Board of Canada (2007). Canadian Cost-Benefit Analysis Guide Regulatory Proposals.
- Fraser, N.M., Jewkes, E., Bernhardt, I., Tajima, M. (2006). *Engineering Economics in Canada*. 3rd edition, Prentice Hall.