CENG 6108 Construction Economics

Life Cycle Costing Analysis

Abraham Assefa Tsehayae, PhD

June, 2017

Abraham Assefa Tsehayae (PhD)

• Life Cycle Stages:

- Life-Cycle Cost Analysis (LCCA): is a process of evaluating the economic performance of a building over its entire life.
 - LCCA balances initial monetary investment with the long-term expense of owning and operating the building.
 - Government agencies have began implementing it to improve cost effectiveness of buildings and equipment procurement.
 - Usage has spread around the business world for project evaluation and management accounting.

Building Life Cycle

Source: Isola and Dutton, Faithful+Gould

- Life Cycle Costing Analysis (LCCA):
 - Compares execution options: Technically equally appropriate or Different costs
 - Takes into account the whole life-cycle of a building
 - Implemented early on, during concept planning and design
- Life Cycle Costs of Construction Projects include:
 - Initial costs Purchase, Acquisition, Construction costs
 - Fuel Costs
 - Operation, Maintenance and Repair Costs
 - Replacement Costs
 - Residual Values Resale or Salvage Values or Disposal Costs
 - Finance Charges Loan Interest Payments
 - Non-Monetary Benefits or Costs

Subsystem Categories

1a.

Average Life Cycle

1b. 1c. 2a. 2b. 3. 4. 5. 6. Life expectancy 7. 8. of building 9. 10. subsystems: 11. 12. Other Categories Foundations Lifetime 13. Subgrade drainage and waterproofing As needed 14. 15. Vertical Elements Lifetime 16. Horizontal Elements.....Lifetime 17. Interior Partitions As needed 18. Electrical – Rough-in Lifetime 19. Site Preparation Lifetime Categories Included as Infrastructure Site Development – Softscape...... Infrastructure 20. 21. Site Development – Hardscape..... Infrastructure 22. Site Development – Distribution......Infrastructure 23. Site Utilities Infrastructure

• LCCA Process:

Process Phase	LCCA Goals	Leader
Scoping	Assign O&M cost benchmark	Capital Planning
Feasibility/ Programming	 Develop O&M cost benchmark in addition to project benchmark (if not done at Scoping) Hold LCCA work session Develop LCCA Decision Matrix 	Project Manager
Schematic Design (SD)	 Review LCCA Decision Matrix Determine which LCCA studies to perform Select cost-effective alternatives based on LCCA studies Report results of LCCA 	Project Manager
Design Development (DD)	 Review LCCA studies to confirm/verify results given project development 	Project Manager
Construction Documents (CD)/Permitting	 Confirm value engineering decisions from earlier design phases with LCCA results 	Project Manager
Construction	 Outline LCCA elements to contractor Discuss commissioning and testing requirements 	Project Manager
Closeout	Conduct training program; perform eleventh-month evaluation	Project Manager
Ownership	Validate LCCA study outcomes and assumptions	Facilities Operation Representative

Life Cycle Costing: Steps

- Steps:
- 1. Identify Alternatives
 - Consider alternatives which bring value for each project participant and end user
- 2. Define Constant Parameters
 - Time period and discount rate
- 3. Identify Costs
 - Operating expenditures (OPEX) and Capital expenditures (CAPEX)
- 4. Generate LCCs for Each Alternative
 - Evaluate all project alternatives using the same time period and discount rate
- 5. Performe a LCCA Comparison
 - Compare the net present value of each alternative
 - Compare benefit-to-cost -ratio of best alternatives in order to select the most cost-effective options for the project budget

Example Project A - Cash Flow Diagram

C – Annually recurring non-uniform costs

LCCA

• In Project A, calculating the PW of the various costs: $PW_{Replacement Cost} = F(P/F, 12\%, 3) = $1,000 * (P/F, 12\%, 3) = 712

 $PW_{Disposal Cost} = F(P/F, 12\%, 5) = $2,000 * (P/F, 12\%, 5) = $1,135$

 $PW_{0\&M \ Cost} = A(P/A, 12\%, 3) = $500 * (P/F, 12\%, 5) = $1,802$

$$PW_{Engery\ Cost} = A(P/A, g, i, n) = \$91\left(\frac{P}{A}, 10\%, 12\%, 5\right) = \$431$$

Item	Present Value of
Acquisition cost	\$10,000
O&M costs	\$1,802
Replacement cost	\$712
Energy costs	\$431
Disposal cost	\$1,135
Total Life Cycle Cost	\$14,080

LCCA

- Supplementary Measures of Economic Performance
- LCCA is the most complete and accurate way to estimate project costs over its lifetime
- Other measures of economic evaluation that supplement LCCA:
 - Net Savings (NS)
 - Savings to Investment Ratio (SIR)
 - Adjusted Internal Rate of Return (AIRR)
- All of these supplementary measures are based on lifecycle costs

Net Savings

- The amount that an alternative project will save over the base case:
- NS = LCC LCC
- NS calculations can be used to determine whether to accept or reject a project (NS > 0)
- A project with the highest NS is equivalent to choosing a project with the lowest LCC

Savings to Investment Ratio

•
$$SIR = \frac{\text{Operating Savings}}{\text{Investment Costs}}$$

- SIR > 1 generally means that a project is cost effective
- Can be used to accept or reject a project
- Useful in ranking and prioritizing independent projects (a higher SIR means higher savings)

Adjusted Internal Rate of Return

- Measures the economic performance of an investment as a % yield
- AIRR is a more accurate measure of return because it adjusts the cash flows using an explicit reinvestment rate
- $AIRR = (1+i)SIR^{1/n} 1$
- For projects to be attractive, AIRR > MARR
- Similar to SIR, also useful in ranking and prioritizing independent projects

References:

- Economic and Financial Analysis for Engineering and Project Management, Abol Ardala, Technomic, 2000.
- CIVL 401: Introduction to Capstone Project, Lecture Note, Yitmen, I. East Mediterranean University, 2016.