CENG 6101 Project Management

Project Cost Control

Abraham Assefa Tsehayae, PhD April, 2017

Construction Project Management

- 1. Decision to Bid
- 2. Project Planning (develop WBS and CMS)
- 3. Project Estimating and Scheduling
- 4. Resource Allocation and Leveling
- 5. Submit Bid (proceed if awarded contract)
- Estimate then forms basis of budget during construction (both use similar WBS and CBS)
- 7. Schedule forms basis of execution plan (use similar WBS)
- 8. Cost control: compare actual to budgeted costs
- 9. Schedule control: compare actual to planned progress
- 10. Detect deviations and implement timely corrective actions

Job-based Cost Control

Two types of systems for job cost data collection:

- Financial control system: payroll, accounting, etc.
- Cost control system: man-hours spent on work packages, cost and productivity data, data on labour, material, equipment

Where are Cost Data Initiated?

- Labour: time sheets, foreman's daily work report, company's payroll system
- Labour data collected: craft, level (apprentice, journeyman), hours (regular, overtime), work package(s) worked on
- Equipment: equipment time sheets (similar to labour)
- Material: purchase orders, material delivery slips, material cost records (materials management system)

46			Descr	Dal iption of		Descr	iption of			ription of	Work	Desc	Fo		Desc	ime	
Foreman:				Contract			Contract			Contract			Contract			Contract	
Signature:		Area Unit Cost Code			Area Unit Cost Code			Area Unit Cost Code			Area Unit Cost Code		Area Unit Cost Code				
																Signature:	
Badge Employee Name	Time IN	Total Hours	ST	OT	DT	ST	OT	DT	ST	ОТ	DT	ST	ОТ	DT	ST	0 T	DT
		,					,							,			
										-							! !

Monitoring Productivity

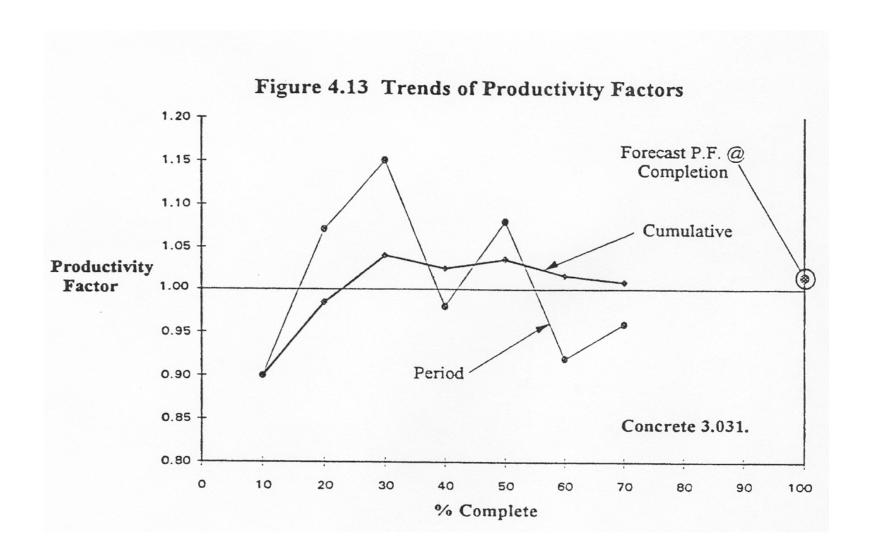
- Another component of control is tracking productivity on basis of manhours/unit (i.e., input/output)
- Three methods of measuring output:
 - Estimated % complete
 - Physical measurement
 - Farned value

Estimated % Complete

- Based on observation
- Simple and inexpensive
- Subjective and not sensitive to scope changes
- Estimated quantity complete
 - = total quantity * estimated % complete

Physical Measurement

- Output based on actually counting or measuring number of work units completed (e.g., diameter inches of pipe welds, m³ of earthwork)
- Objective, detailed, accounts for scope changes
- Time consuming, expensive

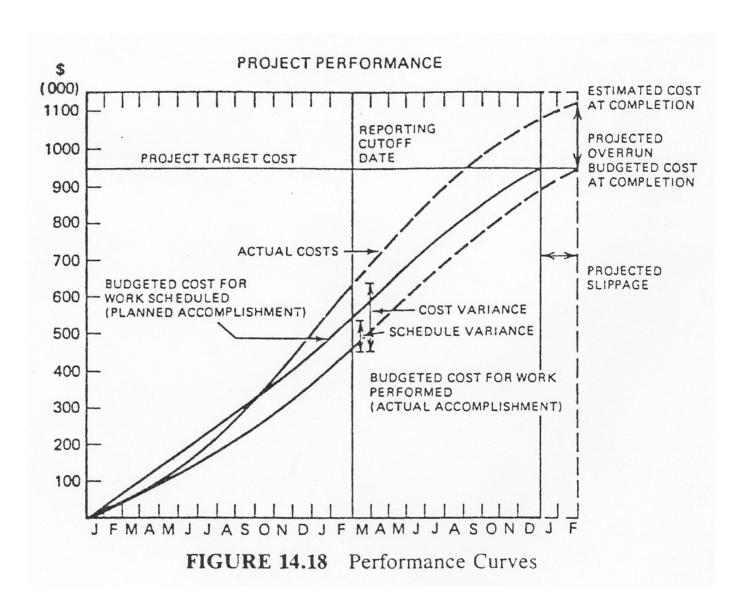

Earned Value

- Actual manhours taken from time sheets
- Actual quantities based on "rules of credit" agreed upon in advance of work being undertaking (for budgeting and payment purposes)
- e.g., 80-20 rule: 20% credit given for commencing activity, 80% credit given for completing activity

- Earned Value
- More common is milestone approach: e.g., formwork activity:
 - Fabricate = 60% credit, Erect = 20% credit, Remove forms = 15% credit, Clean forms = 5% credit
- Rules of credit may reflect effort or work involved

Earned value for manhours

- = earned value for quantities * estimated (budgeted) productivity
- EV (mhrs) = EV (m³) * estimated mhr/m³
- Performance (Productivity) Factor (PF)
 - = Earned value mhrs / Actual mhrs (PF > 1.0 is good in this case)


- Period PF used for immediate control purposes to remedy trends.
- Cumulative PF used to forecast costs at completion.

BETTER SUPERVISION PUMPSTATION PROJECT PROGRESS AND PERFORMANCE REPORT AS OF 13-JUNE-94 5/1380 100 7 X 6 7 X 5 10/9 5 1 2 7 3 4 6 8 10 11 % % Earned Earned Spent Perf. ID Description Dur Start Finish Mhrs Compl Value Value Mnhrs Mnhrs Factor 1 CONTRACT AWARD 30-May 30-May 0 0.00 100% 0 0 1.00 2 MOBILIZE 32 2.32 80% 1.86 30-May 2-Jun 25.6 22 0.86 3 SPOOL DWGS 30-May 1-Jun 24 1.74 100% 1.74 24 26 1.08 4 DEL. PIPE & FITTINGS 0.29 100% 30-May 4-Jun 0.29 4 4 1.00 5 DEL. PUMP & VALVES 10 30-May 2 8-Jun 0.14 100% 0.14 2 1.00 6 DEL. PMPHSE BLD'G PKG 5-Jun 0% 0.00 30-May 0.14 0 0 1.00 7 SURVEY 3-Jun 16 100% 3-Jun 1.16 1.16 16 12 0.75 8 FAB. PIPE SPOOLS 64 6 2-Jun 7-Jun 4.64 60% 2.78 38.4 36 0.94 9 DRILL AND CAST PILES 4-Jun 5-Jun 64 100% 4.64 4.64 64 72 1.13 10 EXCAVATE FOR FDN'S 48 100% 6-Jun 8-Jun 3.48 3.48 48 41 0.85 11 FORM FDN'S & REBAR 120 100% 9-Jun 13-Jun 8.70 8.70 120 130 1.08 12 POUR CONC. FDN'S 40 2.90 14-Jun 14-Jun 100% 2.90 40 45 1.13 15-Jun 32 32 13 STRIP FORMS 16-Jun 2.32 100% 2.32 30 0.94 17-Jun 21-Jun 120 72 14 BACKFILL 8.70 60% 5.22 63 0.88 48 0% 15 INSTALL PUMP 17-Jun 19-Jun 3.48 0 0 18 CONC. SLAB 48 3.48 0% 0 0 22-Jun 22-Jun 17 INSTALL PIPING 10 23-Jun 2-Jul 240 17.39 0% 0 0 12 18 ERECT PUMPHOUSE 21.74 300 0% 0 0 30-Jun 11-Jul 32 2.32 19 INSTALL INSTRUMENTS 3-Jul 4-Jul 0% 0 0 20 INSTALL DOORS 12-Jul 14-Jul 32 2.32 0% 0 0 64 0% 21 PULL & TERM. CABLE 4 5-Jul 8-Jul 4.64 0 0 22 DEMOBILIZE SITE 3 15-Jul 17-Jul 48 0 0 3.48 0% 23 PROJECT COMPLETE 17-Jul 17-Jul 0.00 0% 0 0 35.22 1380 100.00 486.00 483.00 Total 0.99

- Project and Budget Performance
- BCWS (planned value PV) = budgeted cost of work scheduled
- BCWP (earned value EV) = budgeted cost of work performed
- ACWP (actual cost AC) = actual cost of work performed = commitments + payments due + payments made

- Cost Performance
- CV = cost variance
 - CV = BCWP-ACWP = EV-AC
- CPI = cost performance index (periodic)
 - CPI = BCWP/ACWP = EV/AC
 - CPI < 1.0 indicates cost overrun
 - CPI > 1.0 indicates cost underrun
- Cumulative cost performance index (CPI^C) (sum of periodic values for each index):
 - CPI^C = EV^C/AC^C
 - Used to forecast project costs at completion

- Schedule Performance
- SV = schedule variance
 - SV = BCWP-BCWS = EV-PV
- SPI = schedule performance index (periodic)
 - SPI = BCWP/BCWS = EV/PV
 - SPI < 1.0 indicates behind schedule
 - SPI > 1.0 indicates ahead of schedule
- SPI used to predict project completion date, and in conjunction with CPI to forecast costs at completion

Earned Value Technique

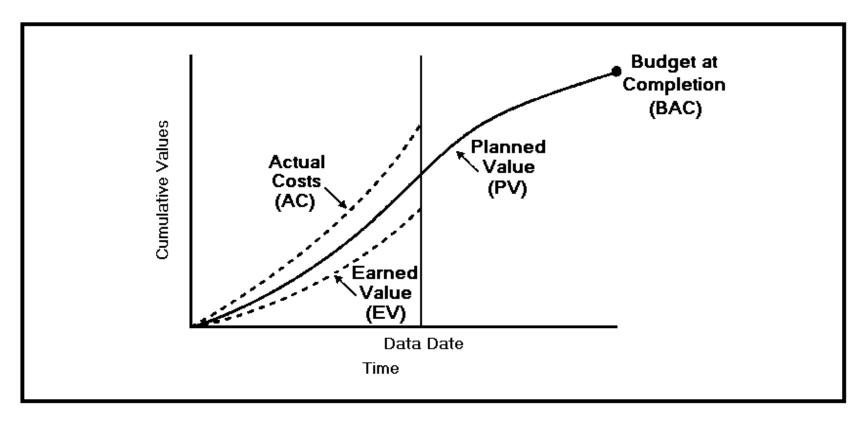


Figure 7-7. Illustrative Graphic Performance Report

Forecasting

- Budget at completion (BAC):
 - BAC = total cumulative PV at completion
- Estimate to complete (ETC): estimate for completing remaining work
- ETC can be calculated based on 3 different scenarios

Scenario 1:

- ETC based on new estimate:
 - Revised estimate for work remaining
 - Original estimate assumptions flawed or no longer relevant

Scenario 2:

- ETC based on atypical variances:
 - ETC = BAC EV^C
 - Current variances atypical and will not occur in future

Forecasting

Scenario 3:

- ETC based on typical variances:
 - ETC = (BAC EV^c)/CPI^c
 - Current variances typical of future variances

Estimate at completion (EAC): projected or anticipated total cost when project is completed. Accordingly, EAC can be calculated based on 3 different scenarios

Scenario 1:

- EAC based on new estimate
 - EAC = AC^C + ETC (new estimate)
 - Original estimate assumptions flawed or no longer relevant

Forecasting

Scenario 2:

- EAC based on atypical variances:
 - $EAC = AC^{C} + BAC EV^{C}$
 - Current variances atypical and will not occur in future

Scenario 3:

- EAC based on typical variances:
 - EAC = AC^{C} + ((BAC EV^{C}) / CPI^{C})
 - Current variances typical of future variances

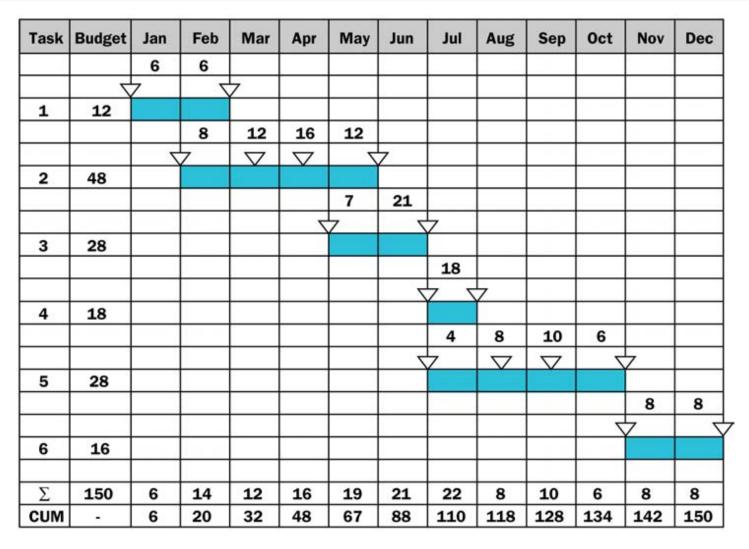


Figure 1-4. Work Plan—Gantt (Bar) Chart

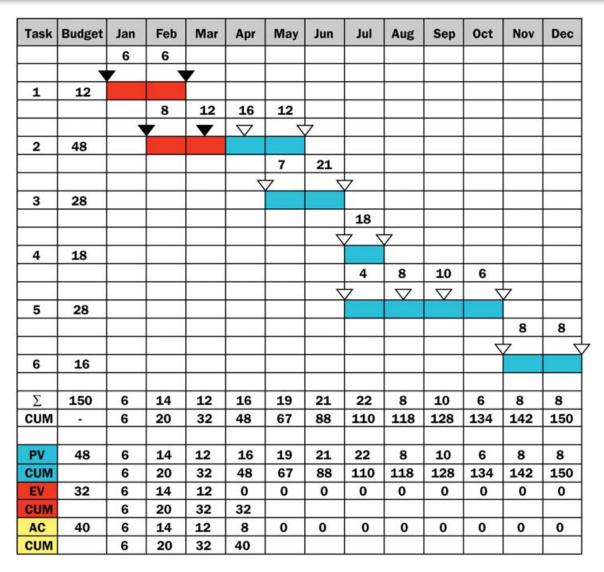
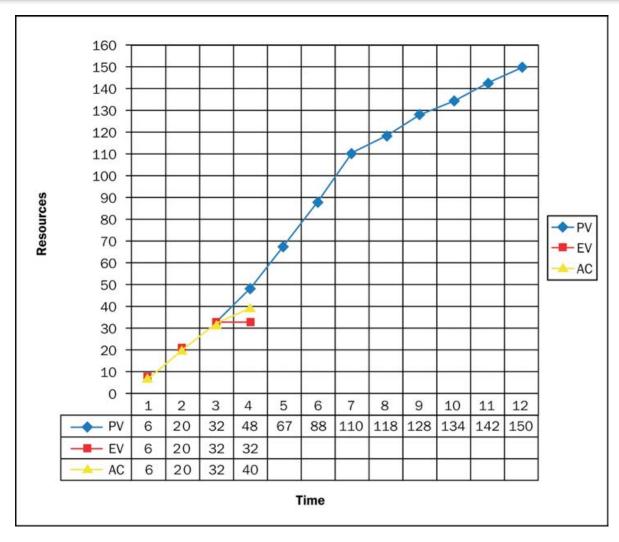



Figure 2-6. Work Plan and Status for Project EZ (As of April 30)

Figure 2-7. Cumulative Planned Value, Earned Value, and Actual Cost for Project EZ (As of April 30)

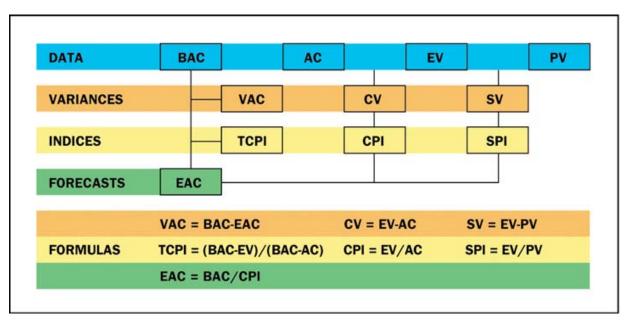


Figure 3-1. EVM Performance Measures

Project Management Question	EVM Performance Measures	
How are we doing time-wise?	Schedule Analysis & Forecasting	
- Are we ahead or behind schedule?	- Schedule Variance (SV)	
- How efficiently are we using time?	- Schedule Performance Index (SPI)	
- When are we likely to finish work?	- Time Estimate at Completion (EACt)	
How are we doing cost-wise?	Coast Analysis & Forecasting Pro	ect Control
- Are we under or over our budget?	- Cost Variance (CV)	
- How efficiently are we using our resources?	- Cost Performance Index (CPI)	1

Schedule Analysis and Forecasting

•
$$SV = EV - PV = 32 - 48 = -16 \{unfavourable\}$$

•
$$SV\% = \frac{SV}{EV} = -\frac{16}{48} = -33\% \{unfavourable\}$$

•
$$SPI = \frac{EV}{PV} = \frac{32}{48} = 0.67 \{unfabourable\}$$

•
$$EAC_t = \frac{(\frac{BAC}{SPI})}{(\frac{BAC}{months})} = \frac{\frac{150}{0.6667}}{\frac{150}{12}} = 18 \text{ months} > 12 \text{ months}$$

Cost Analysis and Forecasting

•
$$CV = EV - AC = 32 - 40 = -8 \{unfavourable\}$$

•
$$CV\% = \frac{CV}{EV} = -\frac{8}{32} = -25\% \{unfavourable\}$$

•
$$CPI = \frac{EV}{AC} = \frac{32}{40} = 0.80 \{unfabourable\}$$

•
$$EAC = \frac{BAC}{CPI} = \frac{150}{0.80} = 187.50 > 150$$

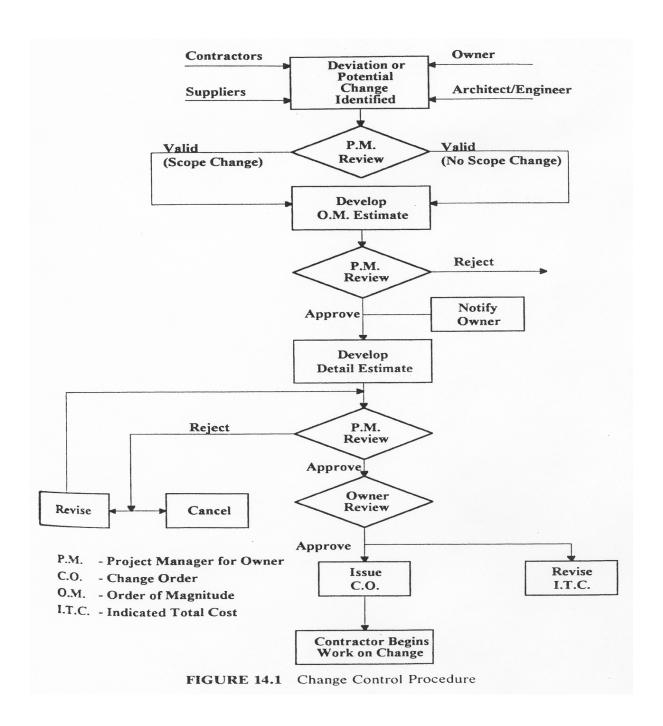
•
$$TCPI = \frac{BAC - EV}{BAC - AC} = \frac{150 - 32}{150 - 40} = 1.07 \rightarrow For the project to achieve the BAC,$$
 performance must improve from a CPI of 0.80 to a TCPI (To-Complete PI) of 1.07

Project Cost Control

Factors Influencing Original Plan

- Changes in time or cost objectives for completion
- Changes in operating policies
- Changes in technical specifications
- Changes in construction methods
- Changes in owner's needs
- Revised activity time estimates
- Inaccurate planning of activity relationships
- Failure of suppliers or contractors to deliver on time
- Reassessment of resource requirements and usage
- Unexpected technical difficulties, environmental conditions, market fluctuations

Project Cost Control


Elements of Management Control

- Obtaining feedback from output and comparing it with designed performance levels
- Responding to changing conditions to mitigate their effects
- Implementing corrective actions
- Requires management of change and unexpected conditions

Project Cost Control

Change Control

- Changes required to: (1) correct errors or omissions (2) changes in scope due to economic or functional reasons
- Project manager must establish formal procedure for control of changes
- Authorization of changes required → becomes a change order
- Risky for contractor to implement changes prior to obtaining written authorization

JONES AND SMITH PROJECT MANAGERS GANDER, NFLD

	GANDER, NFLD	
CONTR	ACT CHANGE ORD	ER
Project: Airport Terminal Bui For: Dept of Transportation To: The Labrador Construction Churchill, NFLD		Change Order No. / Date July 27, 19
	Previous contro Amount of this	
		(increase) <u>5,478.00</u> ict Amount 5,768,112.00
An (increase) (decrease) (no char hereby authorized		
The work covered by this order s conditions as included in the orig	hall be performed un inal construction co	der the same terms and
Changes Approved	Jones and	Smith, Project Managers
(Owner)		
by		
(Contractor)		
by		

FIGURE 14.2 Contract Change Order

FIGURE 12.3

UPDATED BAR CHART FOR WAREHOUSE PROJECT

PROJECT: ACME Warehouse Project

Updated As Of: End of 8 th Week

Weeks 12 | 13 | 14 | 15 Dur Pct Curr 1 2 3 4 5 9 10 11 Task Project Wks Tot Stat Status Site Preparation 2 100 100% Construct Footings 2 100 90% Pour Floor Slab 6 100 80% Erect Columns and Girders 3 6 100 70% Set Roof Joists 100 60% Install Metal Roof Install Metal Wall Panels 3 | 15 33 40% 3 12 Install Doors and Windows 33 30% Install HVAC System 8 0 20% Install Electrical 8 0 System 10% Install Sprinkler 9 System 0 _____ 0% Install Moveable 6 Partitions Pave Drives and 6 Hardstands 0 Landscape Site 2 0 Scheduled Cumulative % 3 7 12 17 25 | 40 1 67 83 Actual Cumulative \$ 0 7 1 3 12 17 25 40 % -1 -2 -4 -5 -8 -15 Deviation -14

Project Closeout

Data to Collect at Project Closeout

- "As-built" CPM network from design to construction
- Crew composition, mhrs per unit measure
- Equipment usage per unit measure
- Materials consumed per unit measure
- Overhead expenditure as % total job cost
- Learning curve effects
- Progress at different stages in project
- Special difficulties, problems encountered
- Effective techniques and corrective actions
- Evaluation of consultants', contractors', subcontractors' performance
- Comparison of sub-element cost in design estimates with actual costs at completion
- Actual vs. estimated contingency and profit

References:

- CIV E 601: Project Management, Lecture Notes, Fayek, A. R. University of Alberta, 2013.
- Project Management: Techniques in Planning and Controlling Construction Projects, 2nd Edition, Ahuja, Dozzi, and AbouRizk, John Wiley and Sons, 1994.
- Earned Value Management: Practical Guide, PMI, 200?.