

SCHOOL OF CIVIL AND ENVIROMENTAL ENGINEERING

Surveying II CENG 2092

Chapter 4 Photogrammetric Surveying

Tamru T.

2012EC (2019/20GC) 2nd Sem

Photogrammetry

The method of determining the shapes, sizes and position of objects using photographs.

 based on the possibility of optically projecting the terrain onto a flat surface

Use of photogrammetry

Determining spatial information

- Distance
- Elevation
- Area
- Volume
- Cross -section

Construction of topographical map

Two types photogrammetry

• Aerial: photograph taken from air

• **Terrestrial:** photograph taken on or near the ground

Vertical photograph

Oblique photograph

Advantage of aerial photograph

- Speed of coverage of an area
- Ease of obtaining topography in
 - inaccessible area
- Freedom from possible omission of data in the field
- The tremendous amount of detail shown

History of photogrammetry

- 1851 --- produced the first camera
- 1858 ---- aerial photograph began from balloons and measurement on photographs
- 1875 produced the first aerial camera
- 1888 --- ground photography began
- 1901 --- introduced stereoscopic principle of measurement
- World War II gave rise to a new development of aerial photographs

What information can I find on an air photo?

A15183-37 (September 1955) Chinchaga River, Alberta

"U"-shaped oxbow lakes

A26458-82 (May 1984) CFB Uplands Ottawa, Ontario

Plantation forest Natural forest Open field

A28411-345 (May 1999) Highway 401 & Dufferin Toronto, Ontario Size

Residential street Multi-lane highway

A26999-20 (August 1986) Sandbanks Provincial Park Picton, Ontario

Tone/Color

Water Sand

What information

A27773-86 (July 1991) Notre Dame Ouest & Autoroute Bonaventure Montréal, Quebec

Shadow

High-rise building (long shadow)

Low-rise building (short shadow)

Texture

Calm water (smooth)

Forest (rough)

A22288-4 (July 1971) Lake Louise, Alberta

Association /Site

Dry-dock for ships Railway access Water

A27949-186 (July 1993) Esquimalt Harbour, British Columbia

Aerial Photogrammetry

Definition of technical terms

- **Exposure (or Air) Station (O)** is a point in the air occupied by the front nodal point of the camera lens at instant of exposure.
- **Perspective projection:** a projection is said to be perspective when the straight rays radiate from the common or selected point and pass thorough points on the sphere to the plane of projection.
- **Perspective Center (O):** the real or imaginary point of the origin of bundles of perspective rays is known as perspective center.
- Flying height (H): is the elevation of the exposure station O above mean sea level.
- Line of flight: a line which represents the track of an aircraft on an existing map

Technical terms in Figure

- Focal Length (f): The distance from the front nodal point of the lens to the plane of the photograph
- **Principal point (p and P):** principal point is a point where a perpendicular dropped from the front nodal point of the camera lens strikes the photograph.
- Nadir point (plumb point)(v or V) : The point where a plumb line dropped from the front nodal point, strikes the photograph
- **Principal line (vp) :** is the line of intersection of the principal plane with the plane of photograph.

- **Tilt (t):** Tilt is the angle vOp which the optical axis makes with the plumb line.
- **Tilted photograph** : At the time of exposure if the camera axis (or optical axis) is tilted intentionally from the plumb line by a small amount usually less than 3°
- **Isocenter (i):** is the point i in which the bisector Oi of the angle of tilt meets the photograph.
- **Swing(s)**: The horizontal angle measured clockwise in the plane of the photograph from the positive y-axis to the plumb point is known as the swing.

- Azimuth of the principal plane (∝) : is the clockwise horizontal angle ∝ measured about the ground-nadir point from the ground survey north meridian to the principal plane of the photograph.
- Horizon Point (h): the point of intersection of the principal line vip produced with the horizontal line Oh through the exposure station O, is known as the horizon point.

Scale of a vertical photograph—flat area

 $S = \frac{ab}{AB}$ From the similar Δ^s Oab and OAB, we get: $\frac{ab}{AB} = \frac{Op}{OP} = \frac{f}{H'}$ $S = \frac{J}{H'}$ or Where f = focal length of the aerial camera flying height above the g.ound 0 Positive a **Optica!** axis TIM B 711 P

Ground surface

Image Displacement

Consider similar triangle vbO & EBO $\frac{vb}{vO} = \frac{EB}{EO} \Leftrightarrow \frac{vb}{f} = \frac{EB}{H-h}$ Also from similar triangles vcO & VCO

$$\frac{vc}{vO} = \frac{VC}{VO} \Leftrightarrow \frac{vc}{f} = \frac{VC}{H} = \frac{EB}{H}$$

$$\frac{vb}{vc} = \frac{H}{H-h} = \frac{vb}{vb-bc} \Rightarrow \frac{vb}{bc} = \frac{H}{h} \Rightarrow bc = \frac{h}{H}vb$$
Thus, the distortion due to height $BC = bc = \frac{h}{H}vb$

Mirror Stereoscope

The impression of depth is caused by:

Relative apparent size of near and far objects

Effects of light and shade

■ Viewing of an object simultaneously by two eyes which is separated in space → principle of stereoscopic vision

Parallax

The algebraic difference of the distances of two images of a ground point from their perspective principal point, measured parallel to the air base.

 Parallax heighting is the process of finding the height of objects from stereo-pair of photographs that have no tilt and are taken from the same flying height.

Determination of height of object

The parallax of X has magnitude of PB – (-CQ) when distances are measured positive to the right. Parallax of Y is PA – (-DQ).

$$\frac{OO_1}{D'A} = \frac{H - h_y}{f}$$

Triangles OD'A and XO₁O are similar:
$$\frac{OO_1}{C'B} = \frac{H - h_x}{f}$$

Ð

$$hx = H - \frac{Bf}{Px}$$

 $\Delta p = Px - Pv$

$$hy = H - \frac{Bf}{Py}$$

$$\Rightarrow D'A = P_y = \frac{fB}{H - h_y} \text{ (Parallax of Y)}$$
$$\Rightarrow C'B = P_x = \frac{fB}{H - h_x} \text{ (Parallax of X)}$$
In general, $P = \frac{fB}{H - h} = Parallax = Scale * B$

$$\Delta h = Bf \frac{(Px - Py)}{PxPy}$$

$$\Delta h = \frac{Bf\,\Delta P}{Py(Py+\Delta P)}$$

Flight Planning

In order to obtain stereo pairs, every part of the ground to be surveyed must be photographed at least twice.

Photograph Required

- Lp = length of the photograph in cms in the direction of flight
- Lg = Net ground distance corresponding to Lp
- Wp = width of photograph in cms at right angles to the direction of flight
- Wg = Net ground distance corresponding to Wp
- OL = %longitudinal overlap
- Ow = % of side overlap
- S = scale of photograph
- Ap = Net area of the ground in each photograph
- Ag = Total area land to be photographed
- N = Numbers of photographs required

Total Number of photograph

Then $\frac{Lg = SLp(1 - O_L)}{Wg = SWp(1 - O_W)}$ Theoretical spacing of flight strips = W_G Theoretical No of strips, $K = \frac{width \ of \ the \ area}{W_c}$ Actual Number of strips= K+1 (one strip being added to cover the sides) Theoretical no of photographs per strips, $M = \frac{length \ of \ the \ area}{r}$ Actual no of photograph per strip, = M+1Actual no of photographs for complete coverage of the area = N = (K+1)(M+1)

Interval between Exposures

 $=\frac{3600Lg}{V}$ Where V = speed of the aircraft in Km/hr, Lg = distance traveled by the airplane between exposures

Example 1: In pair of overlapping vertical photographs the mean distances between two principal points lying on the datum is 6.385 cm. the flying height of the aircraft at the time of photography, was 580 m above datum. Determine the difference of parallel for top and bottom of a tower of height 115 m having base in the datum surface. The focal length of the camera is 150 mm. Solution:

B = (b/f)H = (6.385X580/15) = 246.89 mParallax is given by : P = (Bf)/(H - h)For the bottom of the tower, h = 0. Hence $P_T = (246.89x150/(580-115) = 79.64 mm)$ PB = (246.89x150/580) = 63.85 mm The difference of parallax is given by $\Delta p = PT - PB = 79.64 - 63.85 = 15.79 mm$

The result can be checked $\Delta h = hT - hB = (H \Delta p)/(bm + \Delta p)$ = (580x15.79)/(63.85 + 15.79) = 115 m (the given value) Example 2: An area 40 km in the north-south direction and 36 km in the eastwest direction, it to be photogrammetrically surveyed. For this, aerial photography is to be made with the following data:

= 20 cm x 20 cm**i**) **Photograph size** Average scale of photographs ii) = 1:15000iii) Averaged elevation of the terrain (h) = 450 m= 60%iv) End lap = 30%Side lap **V**) = 220km/hr vi) Ground speed of the aircraft vii) Focal length of the camera = 30 cm

Calculate the following data:

- a) Flying height of the aircraft
- b) Number of photographs in each flight (i.e. strip)
- c) Number of flights (i.e. strips)
- d) Total Number of photographs
- e) Spacing of flight lines
- f) Ground distance between exposures
- g) Exposure interval

Solution

Given that

- S = 1/15000
- f = 30 cm
- Lp = 20 cm
- Wp = 20 cm
- Lo = 40 km
- Wo = 36 km
- H = 450 m
- E = 60%
- **S** = 30%

a) S =
$$f/(H - h) \rightarrow H = (f/S) + h = 4950 \text{ m}$$

b) Number of photograph for each flight / Strip

$$N_1 = (L_0/L) + 1$$

 $L = L_p(1-E)/S = 20(1-0.6)x15000/100 = 1200 m$
 $N_1 = (40x1000/1200) + 1 = 34.3 = 35$

c) Number of flights or strips

$$N_2 = (Wo/W) + 1$$

 $W = L_p(1-Side lap)/S = 20(1-0.3)x15000/100 = 2100 m$

 $N_2 = (30 \times 1000/2100) + 1 = 18.1 = 19$

d) Total number of photographs

 $N = N_1 x N_2 = 35x19 = 665$

- e) Spacing between flights $d = (W_o/(N_2-1)) = 2000 \text{ m}$
- **f**) Ground distance between exposure is L = 1200 m
- **g**) Exposure interval

t = L/V = (1200x3600/(220x1000)) = 19.6 sec