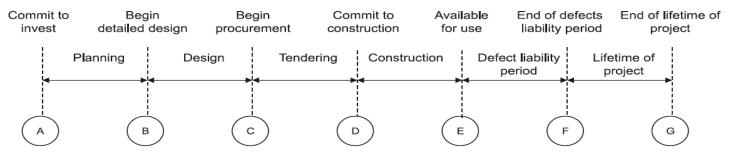
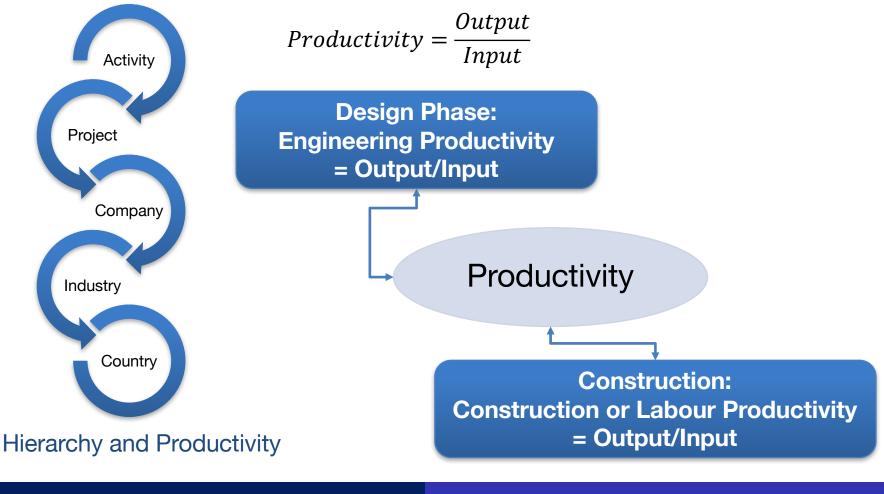

CENG 6101 Project Management

Engineering Productivity Assessment


Abraham Assefa Tsehayae, PhD

March, 2017

Construction Project Life Cycle


Source: PMBOK (PMI)

Source: Omar (2015)

Introduction to Productivity

 Productivity spans several disciplines including economics, operations research, and engineering

Introduction to Construction Productivity

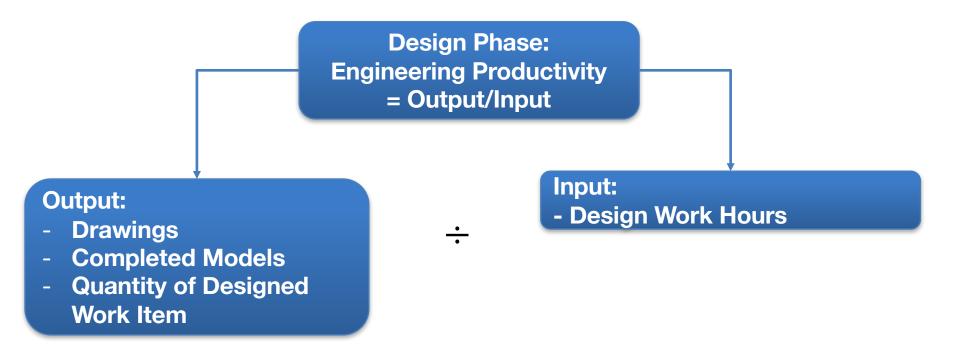
Type of Inpu Measur Type of Output Measure		Capital	Capital and Labour	Capital, Labour and Intermediate inputs (energy, materials, services)
Gross Output	Labour productivity (based on gross output)	Capital productivity (based on gross output)	Capital-Labour productivity MFP (based on gross output)	KLEMS productivity
Value Added	Labour productivity (based on value added)	Capital productivity (based on value added)	Capital-Labour productivity MFP (based on value added)	-
Measure	Single Factor Productivit	y (SFP) measures	Multifactor Productivity (M	1FP) measures

Introduction to Construction Productivity

 Construction Labour Productivity (CLP) is defined as activity-level labour productivity, where higher values are desirable:

Construction Labour Productivity $= \frac{Output}{Input} = \frac{Units \ of \ output}{Total \ labour \ manhours}$

	Input		Output	Productivity	
Activity	Duration (A)	Crew Size (B)	Total Manhours (C = A * B)	Installed Quantity (D)	Unit (E = D/C)
Concreting	hr	number	mhr	Volume (m³)	m³/mhr
Wire pulling	hr	number	mhr	Length (m)	m/mhr
Shield Installation	hr	number	mhr	Number (each)	each/mhr


Total Factor Construction Productivity

Policy Formation	Program Management	Planning/Design	Project Management/ Administration	Site Construction
 Policy Definition: Public works Defense Environment Employment Conservation Urban Renewal Investment incentives Etc. 	 Policy Interpretation: Design control Quality criteria Performance standards Usage goals Varticipation goals Resource allocation Project selection 	 Project Interpretation: Design Materials Quality assurance Budget Milestone schedule 	 Project Interpretation: Supplier selection Contractor selection Logistics Resource utilization Equipment selection Labour pool analysis Detail scheduling 	 Project Execution: Labour training Work rules Work conditions Work planning Supervision
\$Value of output \$cost (\$170 billion)	\$Value of output \$cost (\$8.9 billion)	\$Value of output \$cost (\$546 million)	\$ cost project unit (mile)	\$ cost work unit (manhour)
Benefit-Cost-Ratios (Take into account all factors-tangible, intangible, social, political, economic, etc.)			Unit Co	st Ratios

Kellogg, J., Caroll, J.D. and Green, P.E. (1981). "Hierarchy Model of Construction Productivity." Journal of Construction Engineering and Management, ASCE, 107 (1), 137-152.

Introduction to Engineering Productivity

- Engineering productivity is less well understood and has received less study than construction productivity
- Many engineering companies measure productivity using intermediate deliverables such as drawings as output.

Engineering Productivity Assessment

- Software engineering is a similar industry, where output is measured in terms of Source Lines of Code
- However, as Source Codes vary with language level, therefore, Function Points (FPs) has been defined as the weighted sum of:
 - Number of program inputs, outputs,
 - Number of user inquiries, and
 - Number of files and external interfaces.

Engineering Productivity = FP produced per person month

- Stull and Tucker (1986) attempted to make a quantitative evaluation of the effectiveness of the design process by studying piping design process:
- Parameters to describe the project's design effectiveness:
 - Accuracy, Usability, Cost of the design, Constructability, Performance against design schedule, Economy of the design, and Ease of start-up.
 - Parameters evaluation:
 - Quantitatively (e.g., Accuracy = number of drawings requiring revision/total number of drawings)
 - Subjectively using a 1 10 scale (e.g., Constructability and Usability)

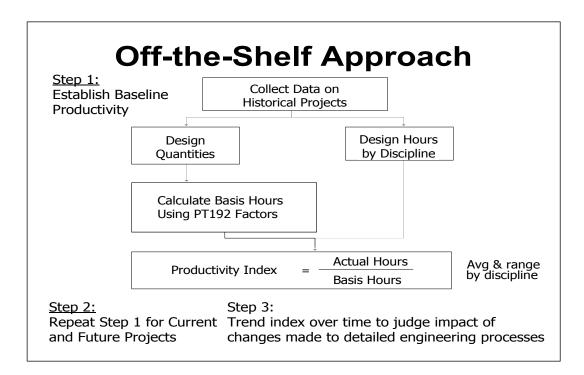
- Chang et. Al (2001) stated that majority of engineering firms today measure productivity based upon the number of CAD drawings completed using the earned value method.
 - Weakness: Productivity values can be easily skewed simply by increasing or decreasing the number of drawings delivered for a similar project scope
- CII 156 and Kim (2007) recommended the use of physical quantity based engineering productivity system:

 $Engineering \ Productivity = \frac{Output}{Input} = \frac{IFC \ Quantity \ Designed}{Actual \ Work - Hours}$

Driver engineering disciplines for various industries have been identified.

Industry \rightarrow	Light Industrial		Heavy Industrial		Buildings Infrastructure		
Discipline \downarrow	Process	Mech.	Process	Mech.	Dunungs	mnastructure	
Civil/Structural			×	×	×	×	
Architectural					×		
Project Mgmt & Controls							
Mechanical (HVAC, Utilities, Vessels)				×			
Piping (Design & Mechanical)	×		×				
Manufacturing Process (Mechanical)		×		×			
Manufacturing Process (Chemical)	×		×				
Electrical							
Instrument/ Controls/ Automation	×	×	×	×			
Other							

Table 2.1 Engineering	Productivity Drivers	by Industry (Source	: CII RR 156-11)

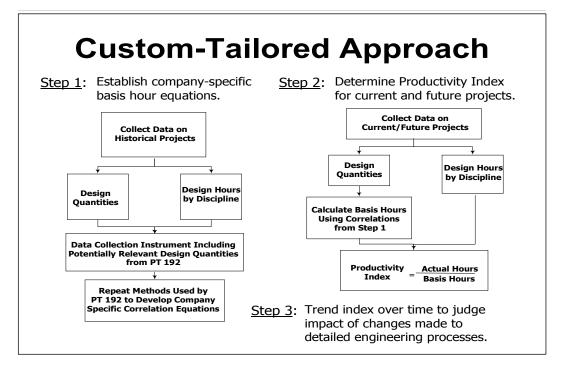

- CII RT 156: Proposed a conceptual model for design engineering productivity based on:
 - Raw Productivity (work-hours per designed quantity)
 - Adjustment factors for:
 - Input Quality Factor: For quality and completeness of the design, PDRI (Project Definition Rating Index) is useful indicator
 - Scope and Complexity Factor: For project complexity and project characteristics
 - Design Effectiveness Factor: For hidden transfer of cost from engineering to other parts of the project. Can be measured using % of field rework as a result of design tested against industry average.

Piping Design Hours for Feet of Piping = (0.44985 + 0.00134 * No. of Pieces of Equipment)

Civil or Structural Hour

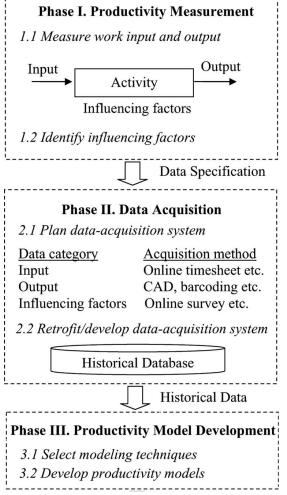
= (0.0161 * Square Feet of Building Area) + (0.492 * Cubic Yard of Concrete) + (6.39 * Tons of Steel) + (3.5 * No. of Deep Foundations)

- CII RT 156 suggested approaches:
- Off-the-Shelf approach: Using CII equations for establishing baselines



Engineerii

- CII RT 15
- Custom-1 hour func collected


Studies

r own basis 1 data

Productivity Models:

Framework for productivity modeling using historical data

Number	Factor	Description
1	Project type	Structural/plate work/both
2	Work scope	Supply only/supply and erect
3	Contract type	Lump sum/unit price
4	Piece cloning	Percentages of unique pieces over all pieces
5	Dynamic structure	Yes/no
6	Fireproofing	Yes/no
7	Special fall arrest provision	Yes/no
8	Overall complexity	1 very high, 3 average, 5 very low
9	Draftsperson qualification	1 very low, 3 average, 5 very high
10	Crew size	1-2, 3-5, 5+
11	Client	Index derived from historical data
12	Engineer firm	Index derived from historical data
13	Engineering standards	1 very low, 3 average, 5 very high
14	Administration	Percentages of administration hours
15	Overtime	Percentages of overtime hours over total hours
16	Subcontract	Percentages of subcontracts
17	Total work quantity	Quantity in drafting unit

Table 1 Durde stimiter Inflorencing Eastern fam Starl Durfting

Modeling techniques: Regression, Expert Systems, Neural Networks, Self-Organizing Maps, System Dynamics, Fuzzy Rule-Based Systems

References:

- Kim, I. Development and Implementation of an Engineering Productivity Measurement System (EPMS) for Benchmarking. PhD Thesis, University of Texas at Austin, 2007.
- Song, L. and AbouRizk, S. M. (2008). "Measuring and Modeling Labor Productivity Using Historical Data." *Journal of Construction Engineering and Management*, ASCE, 134 (10), 786 – 794.
- Kellogg, J., Caroll, J.D., and Green, P.E. (1981). "Hierarchy Model of Construction Productivity." *Journal of Construction Engineering and Management*, ASCE, 107 (1), 137-152.