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Resource management ensures that a project is completed on time and at cost, and that its quality is as
previously defined; nevertheless, resources are scarce and their use in the activities of the project leads to
conflicts in the schedule. Resource leveling problems consider how to make the resource consumption as
efficient as possible. This paper presents an Adaptive Genetic Algorithm for the Resource Leveling Problem,
and its novelty lies in using the Weibull distribution to establish an estimation of the global optimum as a ter-
mination condition. The extension of the project deadline with a penalty is allowed, avoiding the increase in
the project criticality. The algorithm is tested with the Project Scheduling Problem Library PSPLIB. The pro-
posed algorithm is implemented using VBA for Excel 2010 to provide a flexible and powerful decision support
system that enables practitioners to choose between different feasible solutions to a problem in realistic
environments.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Project management is the process of the coordination and inte-
gration of activities in an efficient and effective manner using limited
resources. It consists of linking resources to their respective deliver-
ables and assembling them into the whole project [1]. Resource
management is an intrinsic element of project management [2–4];
resource management ensures that the project is completed on
time and at cost and that the quality is as previously defined [5–7].
This is even more necessary for project-based companies such as
contractors [3,8,9]. In fact, project scheduling problems are one of
themost important problems that practitioners deal with in schedul-
ing, especially when they need to achieve the most efficient resource
consumption without increasing the prescribed makespan of the
project.

However, because resources are scarce, the use of resources in the
activities of the project leads to conflicts in the schedule [10]. Project
scheduling problems comprise not only resource-constrained prob-
lems but also Resource Leveling Problems, among others [11]. These
two kinds of problem consider resource consumption in two different
ways: in the former it is seen as a constraint, and in the latter the
problem is to make it as efficient as possible. Even though these two
nda), vyepesp@cst.upv.es
pv.es (J. Moreno-Flores).
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approaches may seem similar, they are conceptually different. Both
have been widely studied by researchers and applied by practitioners,
although these two groups are unaware of the differences between
the approaches and the serious limitations imposed by the heuristics
used in the commercial software.

These two problems are defined as non-deterministic polynomial-
time hard (NP-hard) problems [12]. Thefirst approach is a regular prob-
lemknown as the Resource Constrained Project Scheduling Problem; its
objective is to reduce the makespan without exceeding the constraints
of resource availability [13,12]. The second, known as the Resource
Leveling Problem (from now on, RLP) is a non-regular problem; its ob-
jective is to achieve the most efficient resource consumption without
increasing the prescribed makespan of the project [14,12]. The two
problems can be combined together as a multi-objective optimiza-
tion problem, but there is always one main objective (usually the
makespan); the other objective (usually the efficient resource con-
sumption) is secondary.

Nevertheless, conventional analytical and heuristicmethods are nei-
therflexible nor productivewhen solving theRLP [15]. Some reasons for
this inefficiency are, on the one hand, that exact procedures simplify the
real problems so are not useful at offering optimal solutions with ac-
ceptable computational effort [16] and, on the other hand, that heuris-
tics offer solutions which are far from optimal, so that it is necessary
to apply metaheuristic algorithms to complex and realistic projects
[17]. Recently, important approaches have been made by researchers
to improve the efficiency of resource consumption, proposing different
heuristics which are applicable to small projects; simple examples
try to show the merits of a particular algorithm, without establishing
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clear criteria for a performance comparison between the different
algorithms [18].

Following this line of work, Liao et al. [11] proposed some ideas to
advance the RLP in realistic environments; these authors made sever-
al proposals for the development or the improvement of the RLP. Re-
garding resource allocation, these authors proposed the use of a
decision support system to assist project managers, as well as the de-
velopment of benchmarking tests for performance assessment and
comparison [11]. Concerning resource leveling, they suggested the
use of multiple resources allowing the extension of the project dead-
line with a penalty [11]. We take these proposals as challenges to be
overcome in this paper, contributing a little to the corpus of knowl-
edge in this field.

Therefore, in this paper we present an Adaptive Genetic Algorithm
(AGA) for the RLP with multiple resources allowing the extension of
the project deadlinewith a penalty; for this purpose,we use theWeibull
distribution as a termination condition, establishing an estimation of
the global optimum. The proposed algorithm is testedwith the standard
“project scheduling problem library” (PSPLIB) [18], presenting a com-
plete set of benchmarking tests. A decision support system is also
used in order to implement this algorithm. Without loss of generality,
we consider the classical resource leveling objective function: the
total squared utilization cost for a given schedule.

The remainder of this paper is organized as follows. Section 2 pro-
vides the classification and formulation of the RLP. Section 3 details
the different solving procedures: exact, heuristic, and metaheuristic al-
gorithms with the new use of the Weibull distribution as a termination
condition. Section 4 describes the algorithm proposed for the RLP with
multiple resources. Computational results and the benchmarking test
are explained in Section 5. Finally, conclusions are drawn.

2. Classification and formulation of the Resource Leveling Problem

The general formulation of the RLP requires us to consider the fol-
lowing elements:

1. The set of activities, N:

N ¼ j1; j2; ⋯; jnf g ð1Þ

n being the total number of activities.
2. The set of durations, D:

D ¼ d1;d2; ⋯; dnf g ð2Þ

where di, 1≤ i≤n is the assigned duration for each activity.
3. The set of periods of time in which these activities have to be dis-

tributed:

T ¼ t1; t2; ⋯; tp
n o

ð3Þ

tp being the deadline of the project, from now on denoted T .
4. The set of resources, R:

R ¼ r1; r2; ⋯; rkf g ð4Þ

k being the total number of resources.
5. The set of availabilities of the resources, A:

A ¼ ait ;1≤i≤k;1≤t≤pf g ð5Þ

where ait is the availability of the resource ri in the period t.
6. The set of costs, C:

C ¼ c1; c2; ⋯; ckf g: ð6Þ

7. The set SS: to distribute the performance of the activities along the
elements of the set T one needs to allocate a starting time for each
activity, given by the ordered set, SS:

SS ¼ SS1; SS2; ⋯; SSnf g: ð7Þ

SSi,1≤ i≤n, is the starting time of the activity ji. �T can be consid-
ered as the starting time of a finish dummy activity SSfinish, and
then SS becomes:

SS ¼ SS1; SS2; ⋯; SSn; SSfinish
n o

: ð8Þ

Obviously, the schedule SS is not unique; on the contrary, there are
a large number of different possibilities, according to the logic and
restrictions of the project to be performed. Each of these schedules
has significant differences in the efficiency of resource consump-
tion, and this is the reason for finding the values of SS which opti-
mize this efficiency.

8. The functions ri(S,t), 1≤ i≤k: given a schedule SS, the function ri(S,t)
is defined as the consumption of the resource ri in the period of time
t, belonging to the set T, in such a way that the consumption of the
resource ri throughout the project is given by:

ui1 ¼ ri S; t1ð Þ;ui2 ¼ ri S; t2ð Þ; ⋯;uip ¼ ri S; tp
� �

: ð9Þ

9. The function f: Given a schedule SS, the efficiency of resource con-
sumption depends on the layout of its use. Therefore, it becomes
fundamental to establish an optimal criterion for the distribution
of the resources. This is the role we want f to play in the develop-
ment of the problem. Hence, the function f will be different for
each optimization criterion to be considered.

Once we have the elements that compose the problem, a general
formulation could be:

Minimize
Xk
i¼1

cif ri S; tð Þ½ � ð10Þ

subject to:

SSfinish≤�T ð11Þ

SSi þ di þ γij≤SSj ; for all i which are successors to j ð12Þ

uij≤aij ð13Þ

where γij is the lead/lag between i and j.
Having done this, the choice of the function f, which defines the

criterion for the optimization of the resource consumption, provides
different ways of solving the problem. In the case of the RLP, the op-
timization criterion focuses on getting the resource consumption as
level as possible. Consequently, a suitable choice of f could be:

f ri S; tð Þ½ � ¼
X�T
t¼1

uit−aitð Þ2
�T

: ð14Þ

And Eq. (10) turns into:

Minimize
Xk
i¼1

ci⋅f ri S; tð Þ½ � ¼
Xk
i¼1

XT̄̄
t¼1

ci
uit−aitð Þ2

T̄̄
: ð15Þ
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Next, we can simplify the problem by taking into account the
following:

1. ci=1,for all 1≤ i≤k
2. ait=a, for all 1≤ i≤k and for all 1≤ t≤p

And then Eq. (15) becomes:

Minimize
Xk
i¼1

XT̄̄
t¼1

uit−að Þ2

T̄̄
: ð16Þ

As the minimum depends neither on how far the variable is
shifted nor on the constant values, we can take a=0 and �T ¼ 1:

Minimize
Xk
r¼1

XT̄̄
t¼1

urt
2
: ð17Þ

The objective function expressed in Eq. (17) is known as a mini-
mum squares optimization, and was introduced by Burgess and
Killebrew [19] in a heuristic algorithm in which the near-optimality
is determined by the schedule with the minimum total sum of the
squares of resource consumption for each period, as illustrated in
Fig. 1. Other measures for the objective function are the Minimum
Moment (MOM) proposed by Harris [20], and more recently the
entropy-maximization proposed by Christodoulou et al. [21], using
the maximality and sub-additivity properties of the entropy function.

To compare the leveling effectiveness between different projects,
we use the Resource Improvement Coefficient (RIC) developed by
Robert Harris [20], a measure that is independent of the total resource
demand and is given by Eq. (18). The RIC relates the variation of a
selected resource histogram to an ideal resource histogram which is
a rectangle-shaped resource histogram (the ideal leveled schedule
corresponds to a RIC value of one):

RIC ¼
�T ⋅
X�T
t¼1

ut
2

X�T
t¼1

ut

 !2 : ð18Þ

A different kind of non-regular objective function for Eq. (14) can
be considered if the objective function to be optimized represents the
Net Present Value Problem. In this case, the objective function repre-
sents the net present value of the project, which is to be maximized,
and this is used in practice when expensive resources have to be
purchased.

3. Solving procedures

The previous conceptual linear programming cannot be solved di-
rectly, because there is no easy way to translate the set S, used in
Fig. 1. Initial
XT
t¼1

ukt
2 ¼ 10:669
Eq. (10), into a linear programming formulation. Other linear pro-
gramming formulations have to be used in order to be able to specify
the resource constraints in a correct and solvable form.

The most efficient formulations are based on integer and binary
programming, and can be of two kinds, depending on whether the
decision variables establish the period of execution or the finishing
time of the activities.

The first formulation for the Resource Leveling Problem in the
multi-mode case is based on a set of binary decision variables xjst
[22] that establish the period in which the activities are finished:

xjst ¼ 1; if job j is finished in mode s at the end of period t
0; otherwise

� �
;

for j∈J; s∈Mj; and t∈ ESj þ dj; ⋯; LFj
h i

:

ð19Þ

The variables xjst can only be executed in one mode, and are de-
fined over the interval between the earliest and latest finishing
times (the delimiting periods) of the activities of the project. These
limits are established using the traditional forward and backward
pass calculations for the unconstrained problem.

The vector SS of Starting Scheduled period for each activity is defined
by:

SSj ¼
XPj
s¼1

XLFj
t¼EFj

t⋅xjst−djs

0
@

1
A: ð20Þ

The objective function to minimize the minimum total sum of the
squares of resource consumption for each period is:

Minimize
XR
k¼1

XT̄̄
t¼1

ck⋅ ∑
j∈E tð Þ

XPj

s¼1

urst⋅
XLFj
q¼EFj

xjst

0
@

1
A2

: ð21Þ

Subject to:

XPj
s¼1

XLFj
t¼EFj

xjst ¼ 1 for j∈J ð22Þ

XPj
s¼1

XLFj
t¼EFj

t−djs
� �

⋅xjst −γij−
XPj
s¼1

XLFj
t¼EFj

t⋅xist≥0 for j∈J and i∈Pj ð23Þ

xjst∈ 0;1f g for j∈J; s∈ 1; ⋯; Pj

h i
and t∈ ESj þ dj; ⋯; LFj

h i
: ð24Þ

The objective function modeled in Eq. (21) minimizes the total
sum of the squares of resource consumption for each period.
Eq. (22) specifies that only one mode and one completion time are
; leveled
X�T
t¼1

ukt
2 ¼ 6:477.
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allowed for every activity. The precedence constraints are given in
Eq. (23). Finally Eq. (24) specifies that the decision variables are binary.

Another possible formulation for the RLP is also based on binary
programming, but the decision variables xjst establish the period in
which the activities are executed [23]:

xjst ¼ 1; if job j is processed in mode s in period t
0; otherwise

� �
;

for j∈J; s∈Mj; and t∈ ESj þ 1; ⋯; LFj
h i

:

ð25Þ

The vector SS of Starting Scheduled period for each activity is de-
fined by:

SSj ¼
XPj
s¼1

XLFj
ESj

t⋅xjst⋅ xjst−1−xjst
� �0

@
1
A: ð26Þ

The objective function will be:

Minimize
XR
k¼1

X�T
t¼1

ck⋅ ∑
j∈E tð Þ

XPj
s¼1

urst⋅xjst

0
@

1
A2

ð27Þ

subject to:

XPj
s¼1

XLFj
t¼ESjþ1

xjst ¼ dj for j∈J ð28Þ

djs⋅ xjst−xj;tþ1

� �
−

Xt
q¼ESjþ1

xjsq≤0 for j∈J; s∈Mj; and t∈ ESj þ 1; ⋯; LFj−1
h i

ð29Þ

di⋅xjst−γij−
Xt−1

q¼ESjþ1

xist≤0 for j∈J; i∈Pj; s∈Mj; and t∈ ESj þ 1; ⋯; LFi
h i

ð30Þ

xjst∈ 0;1f g for j∈J; s∈ 1; ⋯; Pj

h i
and t∈ ESj þ 1; ⋯; LFj

h i
: ð31Þ

The objective function in Eq. (27) minimizes the total sum of the
squares of resource consumption for each period. Eq. (28) ensures
that each activity is executed for dj time units. The execution of the
activities without pre-emption is modeled in Eq. (29). The prece-
dence constraints are given in Eq. (30). Finally, Eq. (31) specifies
that the decision variables are binary. Easa [24] proposed a different
binary integer formulation, preserving the precedence constraints
by limiting the shifting of the activities to the free float, which must
be equal to or greater than zero.

The Resource Leveling Problem is NP-Hard even if only one resource
is considered [24,12]. The time complexity function is of the order of
O(qn) with q being a positive constant. The universe of schedules for
an instance is:

∏
J

j¼1
∏
Mj

s¼1
Htjs þ �T−mkp þ 1
� �

ð32Þ

with Htjs being the total float of the activity j processed in mode s, �T the
prescribedmakespan,mkp themakespan for the resource unconstrained
problem (RUPSP or resource relaxation of the RCPSP) andMj the execu-
tion modes of activity j.

If the prescribed makespan is established to be equal to the
makespan for the RUPSP and only one execution mode is considered,
Eq. (32) can be simplified to:

∏
J

j¼1
Htjs þ 1
� �

: ð33Þ
3.1. Exact algorithms

Exact algorithms based upon implicit enumeration, integer pro-
gramming, and dynamic programming techniques, have been proposed
to solve the RLP. Easa [24] used a mixed binary-integer programming
technique that guarantees the optimum leveling. Exhaustive enumera-
tion procedures were presented by Ahuja [25]. Bandelloni et al. [26]
developed an optimal technique based on dynamic programming.
Recently, Rieck et al. [27] proposed a new mixed-integer linear model
formulation and domain-reducing pre-processing techniques for the
RLP based on smart discrete-time formulations.

The branch-and-bound technique [28] is probably the most widely
used exact solution technique for solving project scheduling problems,
as it is the only techniquewhich allows for the generation of optimal so-
lutions with acceptable computational effort. Neumann and Zimmer-
mann [29] describe a branch-and-bound procedure that reduces the
set of all feasible solutions by successively scheduling activities for ap-
proximately solving the problem. Recently, a lower bound improved
method (Maximum Allowable Daily Resources Method) to branch the
nodes has been developed by Mutlu [30], which may form a basis for
the performance evaluation of heuristic and metaheuristic procedures
for the RLP. Recently, Gather et al. [31] presented a new enumeration
scheme embedded into a branch-and-bound framework using a con-
structive lower bound as well as pre-processing techniques and Hariga
and El-Sayegh [32] a new mixed integer binary linear optimization
model that allow activity splitting and minimizes its associated costs.

The RLP as anNP-Hard problemhas a phenomenon of “combinatorial
explosion” [15], especially for large-scale projects. For this reason, exact
algorithms are only efficient for small projects.

3.2. Heuristics algorithms

To avoid the explosion problem, heuristic rules are mostly used to
solve the RLP. These are simple rules or sets of ruleswhich aim to obtain
a “good” solution (locally optimal) for a difficult problem but do not
guarantee the best solution (globally optimal). Heuristic algorithms
can be of two kinds, construction and improvement procedures. Con-
struction procedures are used to establish a feasible solution to the
problem, and the other procedures are used to improve it.

The first heuristic procedure for the RLP was proposed by Burgess
and Killebrew [19], establishing the minimum squares as the perfor-
mance measure. The Burgess–Killebrew algorithm is an improvement
procedure that readjusts the starting time of each activity and reduces
the variability to a near optimum (local optimum). The first step of
the algorithm consists in establishing the starting time scheduled of
each activity at their earliest starting time. Later, the activities are
selected one by one according to the priority rule (earliest finishing
time), selecting the best starting time, which is the one that minimizes
the total sum of the squares of resource consumption for each period.

The Burgess–Killebrew algorithm is a single-pass algorithm that
requires one to be aware of the precedence relationships between ac-
tivities because this is not considered in the formulation. This prob-
lem was considered and solved by Burman [33] using the free float
as the limit for the activity shifting.

Harris proposed a multi-pass algorithm [20] called the MOM, which
established theminimummoment as the performancemeasure for min-
imizing the daily fluctuations in resource use while keeping the total
project duration unchanged. Later, Harris improved the MOM with
the packingmethod (PACK) [34], which recognizes network interactions
with a more in-depth analysis. Martinez and Ioannou [35] improved
this method by introducing the Modified Minimum Moment Method to
level resources in construction projects. Hiyassat [36] devised a heuris-
tic to reduce the calculations needed for the minimum moment
approach. Jeetendra et al. [37] proposed the use of Petri Nets (PNs) and
a P-matrix to help in token movements, describing an algorithm for
the RLP.
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3.3. Metaheuristic algorithms

Given the variety of network structures and resources, no single
heuristic rule can always produce the optimal solution for all the RLP,
and exact algorithms require extensive computational effort. Therefore
they are unable to deal with real large problems.

Metaheuristicmethods are general purpose high level search frame-
works grounded in physical, biological and animal behavior that can be
applied to any optimization problem. Several metaheuristic methods
have been proposed, such as Grasp (Greedy Randomized Adaptive
Search Procedure). Other improved methods are evolutionary algo-
rithms (EA), genetic algorithms (GA), scatter search (SS), simulated
annealing (SA), ant colony optimization (ACO), particle swarm optimi-
zation (PSO), and shuffled frog-leaping (SFL).

Evolutionary and genetic algorithms (EAs/GAs) [38,39] and simulat-
ed annealing (SA) [40] are the most popular metaheuristic methods for
solving the RLP. Hybrid methods are presented by Son and Skibniewski
[40], and by Alsayegh and Hariga [41], with a new approach for the RLP
which considers the cost of splitting the non-critical activities and com-
bines the particle swarm optimization (PSO) and simulated annealing
(SA) methods. A hyperheuristic approach implemented within com-
mercial project management software has been proposed by Koulinas
and Anagnostopoulus [42]. Hyperheuristics chooses a sequence of
“knowledge poor” heuristics that are used to choose themost appropri-
ate low-level heuristic from a set of heuristics during the search.

Metaheuristic algorithms search for a better solution until a termi-
nation condition (or one of a set of termination conditions) has been
satisfied. Possible reasonable termination conditions include: a cer-
tain amount of time, a maximum CPU time, a fixed maximum number
of iterations, a vector SS of Starting time Scheduled with a measured
value less than a predefined threshold value (Objective Bound), and
a fixed maximum number of iterations without improvements in
the best solution found so far.

An Objective Bound as a termination condition should be established
by computing a Lower Bound (LB), by relaxing the restrictions of the
RLP. Some LB methods are LP-relaxation, cutting planes relaxing the
integrality restrictions, Lagrangean Relaxation, removing a set of con-
straints from the original problemand incorporating them into the objec-
tive function, or Set Covering Based Approach, discarding the precedence
constraints and/or allowing the pre-emption of activities [43].

Recently, Paya-Zaforteza et al. [44] and Carbonell et al. [45] used the
three-parameter Weibull distribution [46] to establish an estimation of
the global optimum. They based their research on the fact, proved by
Fisher and Tippet [47] that, as the number of independent samples of
sizem grows, their distribution approaches a three-parameter Weibull
distribution with location parameter γ as an estimation of the global
optimum.

4. An Adaptive Genetic Algorithm (AGA) for the RLP with
multiple resources

Genetic Algorithms (GAs) [48] are stochastic search techniques
based upon the principles of Darwinian evolution, and simulate bio-
logical evolution. Basically, a collection of candidate solutions (initial
population) is manipulated (evolved) through a number of iterations
(generations). A candidate solution, called a chromosome or individual,
is represented by a set of integer values (genes).

In the RLP, the most usual representation for encoding a candidate
solution is the vector SS of Starting time Scheduled for each activity
[15]:

individuali ¼ SSi1; SSi2;…; SSij;…; SSiJ
n o

: ð34Þ

The initial population is generated randomly by heuristic constructive
algorithms, and the quality of individuals is evaluated and ranked using
Eq. (10) as a fitness function. In the RLP the fitness function can be any of
the performance measures: the minimum moment [20], the minimum
squares (Eq. (17)), the RIC (Eq. (18)) or the entropy function [21].

The initial population (P) evolves, under a set of cyclic genetic
operators. First, two parents are randomly selected, based on their fit-
ness values (a mechanism is used to ensure that a solution with a bet-
ter fitness has a higher chance of being selected as a mate). One or
more point crossovers divide the parents into different sub-parts, gen-
erating, by recombination, two children or offspring (P ') as new candi-
date solutions. Some genes of the offspring can mutate producing
different offspring (P ' '), adding them to the population and reducing
the population by selection. The previous algorithm can be structured
as follows:

begin:
P←Generate Initial Population ()
Evaluate(P)
Do

P′←Recombine(P)
P″←Mutate(P′)
Evaluate(P″)
P←Select(P″∪P′)

Loop until termination condition is met
end

4.1. The formulation for the AGA

The formulation used to solve the RLP with the proposed AGA is
based on an integer programming formulation with decision vari-
ables δj that represents the shifting of the initial early start (ESj) of
each activity using the traditional forward and backward pass calcula-
tions for the resource unconstrained problem.

The vector SS of Starting time Scheduled (not period) for each activ-
ity is defined by:

SSj ¼ δj þ ESj: ð35Þ

The objective function to minimize the minimum total sum of the
squares of resource consumption for each period is:

Minimize
XR
k¼1

XT̄̄
t¼1

ck⋅ ∑
j∈E tð Þ

ukt

 !2

þ ε⋅
XJ
j¼1

δj þ ρ⋅ΔT̄̄ : ð36Þ

Subject to:

δj þ ESj − δi þ ESi þ di þ γij

� �
≥0 for j∈J and i∈Pj ð37Þ

ESfinish≤�T þ Δ�T ð38Þ

δj≥0 and integral for j∈J : ð39Þ

Consequently, the individuals are encoded as follows:

individuali ¼ δi1; δi2;…; δij;…; δiJ
n o

: ð40Þ

The objective function Eq. (36) minimizes the total sum of the
squares of resource consumption for each period. The precedence con-
straints are given in Eq. (37). The prescribed makespan, as the maxi-
mum project duration, is preserved by Eq. (38) and, finally, Eq. (39)
specifies that the decision variables are non-negative integer values.

The objective function in Eq. (36) has been improved by “punishing”
the minimum total sum of the squares, ensuring a better solution with
the lower shifting and consequently increasing the float of the activities.
Besides this, Eq. (36) has been completed by allowing an extension
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(Δ�T ) of the project deadline ( �T ) or the prescribed makespan, with
penalty (ρ). To avoid undermining the main objective ε must be very
small; we recommend a value such that the sum of the total float for
all the activitiesmultiplied by ε is less than one, as expressed in Eq. (41):

ε⋅
XJ
j¼1

Totalf loatjb1: ð41Þ

One of the major difficulties of GA is the premature convergence to-
ward suboptimal solutions, and the loss of genetic variability that is
caused by inbreeding (crossing individuals with common parentage).
To avoid this, a GAmust find an equilibrium point between intensifica-
tion and diversification strategies. Intensification produces convergence
to a local optimum with high levels of inbreeding, and diversification
produces unfeasible individuals. Static and dynamic strategies have
been proposed by researchers; the static methodologies modify the op-
eration parameters according to a linear or logarithmic function [49];
the dynamic strategies adjust the mutation probability [50], or cross-
over and mutation [51], dynamically, with the aim of overcoming the
premature problems of convergence and closing to a local optimum.

4.2. The initial population

The initial population is randomly generated by a heuristic back-
ward constructive procedure to preserve the maximum diversifica-
tion of the population with feasible individuals. The procedure in
pseudocode is as follows:

begin:
Topological ordering
Popsize=max(50, 2×Totaljobs)
For(k=1;Popsize;1)

For(j= J;1;−1) in a decreasing topological order
δij ¼ random 0; Free Float þ Δ�T

� �
;

;
end

Note that in the previous procedure, the shifting values δij are
randomly established between 0 and the free float of each activity, to
guarantee that all the individuals are feasible solutions to the problem.

4.3. The evolution

Once the initial population is generated, individuals evolve by a
principle inspired by natural evolution, each transmitting its genetic
material to its offspring. Only the most adapted individuals (the
elite) are able to survive and breed new individuals. Additionally,
the genetic information of the offspring is subject to small mutations.

The population is evaluated and ranked, and Eq. (42) is applied to
establish the individuals of the elite as a fraction of the total population:

0bElitesizeb1
Elite← Elitesize� Popsizeð Þ Best individuals:

Based on the knowledge of the problem, the global optimum is in
the neighborhood of the best individuals. Thus, parents are selected
from the elite population through the classic roulette-wheel mecha-
nism to probabilistically select individuals based on the fitnessmeasure
(fi):

P Sið Þ ¼ f iXElitesize�Popsize

i¼1

f i

;1≤i≤Elitesize� Popsize

Parents←random P Sið Þ:

ð42Þ
4.4. Recombination and mutation

Like its counterpart in nature, recombination or crossover pro-
duces offspring (s-on and d-aughter) that have some parts of both
(f-ather and m-other) parent's genetic material. For a one-point
crossover C, the pseudo-code is:

individualf ¼ δf1; δf2;…; δfc; δf cþ1;…; δfJ
n o

individualm ¼ δm1; δm2;…; δmc; δmcþ1;…; δmJ

n o
Crossover Cð Þ ¼ random 1; Jð Þ
of f springs ¼ δf1; δf2;…; δfc; δmcþ1;…; δmJ

n o
of f springd ¼ δm1; δm2;…; δmc; δf cþ1;…; δfJ

n o
:

For a multi-point crossover, the procedure is very similar. Cross-
over points are chosen randomly and sorted without duplicates.
Then the genes between successive crossover points are exchanged
between the parents to produce new offspring.

A mutation operator acts as natural mutation does in natural evo-
lution, perturbing the genome. In the mutation process, randomly se-
lected genes of a chromosome are probabilistically replaced by other
genes from the valid domain of the problem, to produce a new genet-
ic structure. The mutation process is controlled by a mutation proba-
bility range (mutprob) that must lie between 0 and 1 (0bmutpropb
b1) and a maximum number of mutation genes (maxmut).

4.5. Evaluation and unfeasibility

Along the evolution process, offspring are potentially infeasible.
Infeasible individuals are penalized in the function that measures
the quality of an individual, but are not rejected; this guarantees the
diversification of the population.

The feasibility range of individuals in the evolved population is
controlled using the feasibility lower and upper ranges (Flr, Fur).
The feasibility range guarantees the equilibrium between intensifica-
tion and diversification strategies, changing the mutation probability
range (mutprob) by a value of f and the maximum number of muta-
tion genes (maxmut) by η, dynamically maintaining the genetic evo-
lution, the diversity in the population and the convergence capacity
of the AGA. The proposed adaptive procedure in pseudocode is as
follows:

begin:
P←Generate Initial Population()
Evaluate(P)
f=1;η=0
Do

P '←Recombine(P)
P ' '←Mutate(P ')
Evaluate(P ' ')
If feasibility in last g generations is out of range adjust mutprob

and maxmut :
if feasibilitybFlr;maxmut-= f;mutprob−=η
if feasibility>Fur;maxmut+= f;mutprob+=η

P←Select(P ' '∪P ')
Loop until termination condition is met
end

Due to the conditions of the problem, it is very difficult to establish
a general rule for the feasibility range. The best performance values
have been obtained with values for the feasibility lower range equal
to 10% (Flr=0.1) and for the feasibility upper range equal to 35%
(Fur=0.35). The effect on the evolution process with different values
for the feasibility lower and upper ranges can be seen in Fig. 2.



10%-15%

30%-35%

50%-55%

10%-35%

Fig. 2. Effect of different values for the feasibility lower and upper range.
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4.6. Termination conditions; the Weibull distribution

4.6.1. Formulation of the Weibull distribution
The formulation of theWeibull distribution to compute the location

parameter (γ) or, as we call it for this special case the Weibull Bound
(WB), to be used as termination condition, is explained in the following
lines. Let F be the distribution of a random variable X, in other words:
F(x)=Prob[X≤x], such that, given a sample of size n, the following
equality holds:

Prob X1≤x1; ⋯;Xn≤xn½ � ¼ Prob X1≤x1½ �⋯Prob Xn≤xn½ � ð43Þ

Let Ln be a new random variable, given by:

Ln ¼ min
i¼1;2;⋯n

Xif g: ð44Þ

The problemwewant to solve is to determine the distribution that
Ln follows, in particular at the limit of large samples, and the asymp-
totic behavior of the random variable Ln. Fisher and Tippet [47] solved
this problem based on the so-called Stability Postulate: The distribu-
tion of the largest (smallest) value in samples of size N×n will tend
to the same asymptotic expression as the distribution of the largest
(smallest) value in samples of size n, since the largest (smallest) of
the minimums of N samples of size n is the same as the minimum
of the sample of size N×n. Consequently the asymptotic distribution
must be the same for both cases.

Since a linear transformation does not change the form of the dis-
tribution, the Stability Postulate can be formulated as:

Fn xð Þ ¼ F anxþ bnð Þ: ð45Þ
W32 W64

Fig. 3. Approach of Weibull distrib
Solving this functional equation for F, the Weibull distribution for
the smallest value is obtained as:

W xð Þ ¼ 1−e
−

x−γ
η

� 	β

; if x > γ
0; if x≤γ

8><
>: ð46Þ

with η,β>0 and where γ is called the location parameter, η the scale
parameter, and β the shaper parameter.

4.6.2. How to compute the parameters γ,η and β when F(x) is unknown
First: We take a sample of size n in a random way.
Second: From the sample, we calculate the density and distribu-
tion functions: f xð Þ ¼ Nx

n ; Nx being the number of times that the
value x appears in the sample

F xð Þ ¼ ∑
X≤x

f xð Þ: ð47Þ

Third: We approach the Weibull distribution using the experi-
mental values of F(x).

F xð Þ ¼ 1−e−
x−γ
η

� �β
→

1
1−F xð Þ ¼ e−

x−γ
η

� �β
ð48Þ

Taking logarithms:

log
1

1−F xð Þ
� 	

¼ x−γ
η

� 	β
: ð49Þ
W96

ution for W32, W64 and W96.

image of Fig.�2


Table 1
GA parameters (1).

Totaljobs Popsize Elitesize Crosspoints mutprob Flr Fur

j30 32 32,64,96 0.1 1 0.1 15% 35%
j60 62 62,124,186 0.1 1 0.1 15% 35%
j120 122 122,244,366 0.1 1 0.1 15% 35%

Table 2
A parameters (2).

ε Ck;k={1,2,3,4} �T ;Δ�T ρ Instances Max iterations

j30 0 1 RUPSP, 0 0 480 1000
j60 0 1 RUPSP, 0 0 480 2000
j120 0 1 RUPSP, 0 0 480 3000
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Taking logarithms again:

log log
1

1−F xð Þ
� 	� 	

¼ β log x−γð Þ−β log ηð Þ: ð50Þ

Changing the variables:

y ¼ log log
1

1−F xð Þ
� 	� 	

; z ¼ log x−γð Þ: ð51Þ

Eq. (49) becomes:

y ¼ βz−β log x−γð Þ ð52Þ

which can be seen to be a linear regression problem in the variables y
and z;

δ γð Þ2 ¼ σ2
yz γð Þ= σ2

z γð Þσ2
y

� �
: ð53Þ

The value of γ that minimizes Eq. (53), γ0, is found using deriva-
tion techniques. In this way we get the regression for the best corre-
lation between y and z:

y ¼ azþ b: ð54Þ

Comparing Eq. (51) with Eq. (53) we get:

β ¼ a;−β log ηð Þ ¼ b ð55Þ

which allows us to compute the other parameters β and η.
Finally, the termination conditions for the proposed AGA are:

or
iteration ¼ established number of iterations
BB≤Objective Bound;where BB is the better bound obtained
W BBð Þ ¼ P x≤BBð Þ≤0:001;whereW is the Weibull distribution:

8<
:
And then the adaptive procedure in pseudocode is as follows:

begin:
P←Generate Initial Population()
Evaluate(P)
Compute Weibull Bound (WB= ⌊γ⌋) with InitialPopulation()
f=1;ε=0
Do

P '←Recombine(P)
P ' '←Mutate(P ')
Evaluate(P ' ')
if feasibility in last g generations is out of range adjust

mutprob and maxmut :
if feasibilitybFlr;maxmut-= f;mutprob−=ε
if feasibility>Fur;maxmut+= f;mutprob+=ε

P←Select(P ' '∪P ')
Loop until terminatino condition is met
end

4.6.3. Numerical example
For a better understanding and to illustrate the application of the

Weibull distribution for the estimation of the global optimum as a ter-
mination condition, we will show a step by step calculation, based on
the first instance of the set of problems j30. The exact location parame-
ter (γ) of the Weibull distribution is obtained when n, the size of the
sample, goes to infinity. For each sample of size n, a location parameter
(γn) is obtained, in such a way that limn→∞ γn ¼ γ. So there is a monot-
onous subsequence γnk

; k ¼ 1;2;3; ⋯ð Þ, either increasing or decreasing,
that tends to γwhen k goes to infinity. Then, by performing a heuristic
search for such a monotonous subsequence of samples of size n1=32,
n2=64, and n3=96, we obtain the following results step by step:

First: We choose three samples of feasible solutions of sizes 1×n,
2×n,3×n, (S1,S2,S3 respectively), n being the number of jobs of
the instance j30_1, in a random way, for example, the S2 sample:

S2 ¼

7863; 8115; 7905; 7931; 7983; 8151; 7969; 7957; 8113; 8077;
7803; 7903; 8055; 8163; 8193; 8127;8145; 7963; 8051; 7959;
7733; 8151; 8005; 7767; 7883; 7937; 7939; 7877; 7945; 8001;
7745; 7811; 7949; 7865;8043; 8161; 8033; 7763; 8039; 8259;
7881; 8129; 7993; 8187; 7957; 8019; 7921; 7965; 8057; 7985;
8137; 7989;7981; 7999; 8003; 7775; 8171; 8081; 7969; 8193;
7855; 7953; 8075; 7975

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

:

Second: From S1,S2,S3, we calculate the density and distribution

functions:f xð Þ ¼ Nx
n ; F xð Þ ¼ ∑

X≤x
f xð Þ; (from Eqs. (46) and (47)).

Third: We approach the Weibull distribution using the experi-
mental values of F(x) in accordance with Eqs. (48) to (55),
obtaining the location parameters (γ32,γ64,γ96) respectively, and
the other parameters (β1,η1β2,η2β3,η3) to compute the three
Weibull distributions (see Fig. 3):

γ32 ¼ 7517:19 with R2 ¼ 0:972123
γ64 ¼ 7494:65 with R2 ¼ 0:982858
γ96 ¼ 7488:38 with R2 ¼ 0:968511:

Fourth: if the algorithm finds a value for BB (Better Bound) which
satisfies the inequalities Wn(BB)=P(x≤BB)≤0,001;n=32,64,96,
then it stops.

W32 7549ð Þ ¼ 0:000017≤0:001;where BB ¼ 7549
W64 7549ð Þ ¼ 0:000036≤0:001;where BB ¼ 7549
W96 7549ð Þ ¼ 0:000313≤0:001;where BB ¼ 7549:

5. Computational results and benchmarking test

As test instances, we have used the standard sets j30, j60 and j120
for the RCPSP (Resource Constrained Project Scheduling Problem).
The instances, represented as activity-on-node networks, were generat-
ed with a full-size instance generator, named ProGen [52], for a general
class of project scheduling problems with four renewable resources.
The PSPLIB library is fully accessible in the Project Scheduling Project
Library (PSPLIB) at http://129.187.106.231/psplib/library.html [18].

The values used to compute the instances are shown inTables 1 and 2.
The instances are solved with ε=0 and Ck=1, the prescribed

makespan as that obtained for the RUPSP (the resource relaxation of

http://129.187.106.231/psplib/library.html


Fig. 4. Decision support system application (VBA for Excel 2010).
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the RCPSP), and the penalty as zero (ρ=0). The termination condi-
tions are established at a maximum number of iterations and a prob-
ability for WB of 0.001%, as can be seen in Table 2.

The AGA is programmed with VBA (Visual Basic for Applications)
for Excel 2010, applying a matrix algorithm for the RUPSP (the re-
source relaxation of the RCPSP), as can be seen in Fig. 4 [53,54]. We
have used a computer with an Intel Core i7 processor, 3.6 Gh of veloc-
ity and 8 GB of RAM with an average time consumed for the j30 set of
15 s with 1000 iterations.

The main statistics of the best improvement values found over the
initial value of the measure function (total sum of the squares of re-
source consumption for each period) are shown in Table 3.

The complete information about the benchmarking test can be
downloaded from the “Benchmarking for Resource Leveling Problem
(PSPLIB j30, j60, j120)”, (https://docs.google.com/spreadsheet/ccc?key=
0AgisRN826029dHdEZmNDbmxBZDI1QmZNSGQ4a1VhY3c), with the
initial and leveled value for all the analyzed instances, the improvements
and the vector SS of Starting time Scheduled for each activity.

The correlation values obtained as a function of the logarithm of
the time complexity and the initial value of the measure function
for the solved instances are shown in Table 4, Figs. 5 and 6.
Table 3
Test statistics.

Average
μ

Deviation
σ

Min value Max value % values
μ±2σ

j30 18.45% 0.07176 4.41% 42.33% 96.04%
j60 23.10% 0.07483 7.57% 48.24% 95.42%
j120 27.86% 0.06737 11.25% 47.74% 96.25%

Table 4
Test correlation.

Over complexity
O(qn)

Over initial
Sum of the squares

j30 j60 j120 j30 j60 j120

Covariance 0.146 0.301 0.556 −449.025 −2295.646 −854.354
Pearson
(rxy)

0.544 0.544 0.583 −0.213 −0.341 −0.040

rxy
2 29.578% 29.624% 33.962% 4.544% 11.609% 0.160%
Finally, as there are no known results from other researchers for
the PSPLIB, and to determine how good the proposed AGA algorithm
is, we have computed the same instances with three different parallel
scheduling schemes [55]: a parallel backward scheme with earliest
finishing time as the priority rule and maximum free float as the sec-
ondary one, a parallel forward scheme with latest finishing time as
the priority rule and maximum total float as the secondary one, and
a forward–backward scheme with the priority rule depending on
the direction of the scheduling. The results obtained compared with
the proposed AGA are shown in Table 5 and Fig. 7.

The results obtained in the test instances show that there is a sig-
nificant positive correlation between the improvement and the loga-
rithm of the time complexity O(qn), but that this is not statistically
significant when compared with the initial sum of the squares.

This is due to the fact that algorithmic complexity is determined
by the slack in the tasks, and, in the majority of cases, if the slacks
are regularly distributed over the geometry of the graph they will
provide a greater number of feasible solutions to the problem, and
consequently a greater improvement capacity.

The heuristic does not differ significantly between the forward
and backward scheduling schemes, but a forward–backward scheme
presents significant improvements compared with the single direc-
tion scheduling scheme. The improvement of the forward–backward
scheme with respect to case of the single direction scheme is con-
stant, and it seems not to be related to the time complexity or the
number of tasks. However, comparing the values obtained from the
application of the AGA and the analyzed heuristics, the improvement
over the best heuristic significantly increases with the number of
tasks of the problem.

6. Conclusions

The Resource Leveling Problem (RLP) is a non-regular problem
whose objective is to achieve a resource consumption which is the
most efficient possible, without increasing the prescribed makespan
of the project. Conventional analytical and heuristic methods are nei-
ther flexible nor productive when solving the RLP. Exact procedures
are not useful for offering optimal solutions with acceptable compu-
tational effort; and, on the other hand, heuristics offer solutions
which are far from the optimal so that it is necessary to apply
metaheuristic algorithms for complex and real projects in realistic
environments.

https://docs.google.com/spreadsheet/ccc?key=0AgisRN826029dHdEZmNDbmxBZDI1QmZNSGQ4a1VhY3c
https://docs.google.com/spreadsheet/ccc?key=0AgisRN826029dHdEZmNDbmxBZDI1QmZNSGQ4a1VhY3c
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Fig. 5. Correlation (rxy); Improvement over logarithm of the time complexity O(qn).

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

0

10
0,

00
0

20
0,

00
0

30
0,

00
0

40
0,

00
0

50
0,

00
0

60
0,

00
0

70
0,

00
0

80
0,

00
0

90
0,

00
0

1,
00

0,
00

0

1,
10

0,
00

0

1,
20

0,
00

0

1,
30

0,
00

0

1,
40

0,
00

0
j30 j60 j120
Lin(j30) Lin(j60) Lin(j120)

Fig. 6. Correlation (rxy); Improvement over initial sum of the squares.

Table 5
Heuristic results vs. proposed AGA.

j30 j60 j120

Parallel forward scheme 12.645% 15.314% 17.208%
Parallel backward scheme 12.641% 15.530% 17.496%
Fw–Bw scheme 14.652% 18.014% 20.742%
AGA 18.452% 23.099% 27.858%
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In this paper:

1. We describe the complete state of the art of the RLP, proposing dif-
ferent binary and integer mathematical formulations and incorpo-
rating modifications and improvements on previous contributions.

2. We propose an Adaptive Genetic Algorithm (AGA) for the RLP with
multiple resources allowing the extension of the project deadline
with a penalty.

3. We propose the use of the three-parameterWeibull distribution as a
termination condition for themetaheuristic, with location parameter
γor theWeibull Bound (WB) as an estimation of the global optimum.

The previous contributions have been tested with the standard
“project scheduling problem library” (PSPLIB), presenting a complete
set of benchmarking tests solvedwith only themost usual and common
parameters to provide clear criteria for comparison between the
different algorithms. To prove the merits of the proposed algorithm,
the results we obtained have been compared with the most common
heuristic procedures and with a more efficient forward–backward
scheduling scheme. The proposed AGA is always better than the heuris-
tics, especially for the most difficult problems with 120 jobs.

The proposed AGA for the RLP has been implemented with VBA for
Excel 2010 to provide a flexible and powerful decision support sys-
tem that enables practitioners to choose between different feasible
solutions to a problem, and that is in addition easily adjustable to
the constraints and particular needs of a project in a realistic

image of Fig.�5
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environment. This contribution is a tool that can be applied in a direct
and simple way by practitioners; besides, it can serve as a starting
point for specialists in order to develop user-friendly and practical
computer applications to provide realistic and good solutions for pro-
duction and project management.

The use of the Weibull distribution was applied following a heuristic
process. Its improvement is proposed as a future researchfield, searching
for a bound (ε>0) in such a way that the inequality |γn−γ|≤ε,∀n≥N0

holds for all sample sizes n greater than a given size N0; the exact
parameter would therefore be in the interval γn−ε≤γ≤γn+ε.

Another important area for future research is the consideration of
the graph density as a new variable in the computational test, to de-
termine its influence on the optimization and the correlation between
the other variables.
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