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Introduction

Over the last fifty years, the critical path method (CPM) has been
widely used as a project scheduling and control tool for supporting
project managers to ensure project completion on time and on
budget. In its basic form, CPM disregards resource management
issues by assuming that resources required by activities are unlim-
ited. However, project managers are frequently confronted with
complex management situations due to limited availability of re-
sources. The main concerns related to resource management were
formulated long ago in the resource-constrained project scheduling
problem (RCPSP) and the resource leveling problem (RLP).

In constrained-resource scheduling or resource allocation, lim-
ited resource availability during project execution is assumed. The
aim is to minimize the project duration by rescheduling efficiently
the project activities, since finding feasible solutions often extends
the project completion time calculated by CPM with no resource
limitations. On the other hand, resource leveling aims to reduce
indirectly the total cost since it prevents from hiring and firing
of resources on a short-term basis. The scheduling objective of re-
source leveling is to make the resource requirements as smooth as
possible on a day-by-day basis, usually, with unlimited resource
availability and without extending the project duration beyond
the initial one that was calculated by the CPM (Demeulemeester
and Herroelen 2002). Although in the typical form of resource lev-
eling the resource availability is infinite, the problem can be con-
sidered with situations of limited resources leading to an extension

of the initial project duration (Hiyassat 2000; Neumann and
Zimmermann 1999). As Chan et al. (1996) note, though, in practice
the distinction between resource allocation and resource leveling is
not so clear, and a decision maker will consider a trade-off between
the increasing resource availability and the prospect of shorter
project durations.

In this paper we consider both resource leveling and allocation
objectives integrated into a biobjective model. We propose a thresh-
old accepting based hyperheuristic (TAH) to handle both resource
allocation and leveling. Owing “a debt to work within the field of
Artificial Intelligence on automated planning systems” (Burke et al.
2003a), hyperheuristics are a new approach to optimization aiming
to manage solution methods rather the solutions themselves (Burke
et al. 2003a; Chakhlevitch and Cowling 2008). The proposed algo-
rithm runs within Microsoft Project (MS-Project), by acting on the
priorities levels that MS-Project assigns on activities without any
concerns for the heuristics used by the software.

Literature Review

Early attempts have been focused on inventing procedures to solve
optimally the resource-constrained project scheduling and resource
leveling problems. Regarding to RCPSP, Gavish and Pirkul (1991)
used dynamic programming, and Demeulemeester and Herroelen
(1992) and Brucker et al. (1998) developed branch-and-bound al-
gorithms. Implicit enumeration (Ahuja 1976), integer programming
(Easa 1989) and dynamic programming techniques (Bandelloni
et al. 1994) implemented for the RLP.

However, both RCPSP and RLP have been proved to be NP-
hard problems (Demeulemeester and Herroelen 2002; Neumann
and Zimmermann 2000). Consequently, optimization methods
seeking for exact solutions are suitable only for small-sized proj-
ects, due to the so called “combinatorial explosion” phenomenon.
To get over this difficulty, many heuristic and metaheuristic proce-
dures have been proposed in the literature to find an acceptable but
not necessarily optimal solution.

Boctor (1990) and Kolisch (1996) investigated heuristic algo-
rithms based on priority rules for the RCPSP. Concerning to the
RLP, Burgess and Killebrew (1962) presented a priority rule based
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heuristic; Harris (1990) proposed the minimum moment and the so
called PACK methods; Hiyassat (2000) devised a heuristic to
reduce the needed calculations in the minimum moment approach;
and Neumann and Zimmermann (2000) presented several heuristic
procedures, and a variant of their exact branch-and-bound
procedure.

Several metaheuristic approaches have also been proposed to
reach near-optimum solutions in these problems such as genetic
algorithms (Hegazy 1999; Chan et al. 1996; Hartmann 1998;
Leu et al. 2000; Senouci and Eldin 2004), simulated annealing
(Boctor 1996; Bouleimen and Lecocq 2003), neural network
models (Savin et al. 1996), tabu search (Nonobe and Ibaraki
2001; Neumann and Zimmermann 2000; Pan et al. 2008), hybrid
metaheuristics (Lova et al. 2009), particle swarm optimization
(Zhang et al. 2006a, b), and ant systems (Christodoulou 2010) have
also been proposed.

It is worth noticing that the RLP is a special case of the classic
RCPSP problem, and various objective functions have been used in
the past in order to modelize real-world resource leveling problems
(Demeulemeester and Herroelen 2002). Similarly, various exten-
sions of the basic RCPSP have been formulated, for instance,
by introducing generalized precedence relations for the activities
(RCPSP-GPR), and allowing for activity preemption (PRCPSP).
Recent literature reviews for the RCPSP and its extensions can
be found in (Hartmann and Briskorn 2010; Weglarz et al. 2011).

Formulation of the Problem

To formulate the problem, we use an acyclic activity-on-node
(AoN) representation of project scheduling network. The network
consists of n activities (nodes) and precedence relations (arcs) be-
tween activities. We denote di and f i the duration and the finish
time of activity i respectively, and assume that node 1ðnÞ is the
dummy activity of the project beginning (completion) with no
ingoing (outgoing) arcs.

The resource allocation and leveling problem can be defined as
follows:

minMx ¼
Xf n
t¼1

u2t ð1Þ

min f n ð2Þ
subject to

f i ≤ f j � dj for all precedence relations ði; jÞ ð3Þ

f 1 ¼ 0; d1 ¼ 0; dn ¼ 0 ð4Þ

f n ≤ f Pn ð5Þ
X
iϵPt

uit ≤ U for t ¼ 1;…; f n ð6Þ

The aim is to find a feasible schedule so that both the moment
Mx around the horizontal axis of the resource usage histogram and
the project duration f n are being minimized (Eqs. (1) and (2)).
Eq. (3) assures that precedence relations are not violated, and
Eq. (4) that the project starts at time 0. A single resource R is
assigned to each activity, whose usage is assumed to remain con-
stant throughout the progress of the activity. It is also considered
a resource availability U which is constant during the project
execution. The sum uit of resource usage of all ongoing activities
Pt in any time period t cannot exceed U (Eq. (6)).

This is a biobjective model consisting of the two traditional
objectives of resource leveling and resource allocation. Eq. (1) rep-
resents the minimization of the moment around the horizontal axis
of the resource usage histogram. This resource leveling objective
expresses the minimization of the sum of the squared deviations
of the resource requirements around the average resource require-
ment for each time period, i.e., the ideal histogram is a rectangle and
the moment of the resource usage histogram is minimized as it ap-
proaches to the ideal one (Burgess and Killebrew 1962; Harris
1990). Also, numerous different objective functions have been
proposed in the literature to obtain an acceptable resource profile
(Demeulemeester and Herroelen 2002; Neumann and Zimmermann
1999). Since the evaluation function is independent of the hyper-
heuristics, only minor changes to Eq. (1) are needed to use another
performance measure.

The second objective is the minimization of project duration f n
(Eq. (2)), which is traditionally the objective of resource allocation.
On account of the limited resource units that can be assigned to
activities, the project completion time after resource allocation will
most likely be greater than the duration calculated initially by CPM,
without considering the resource usage limit. As a result, a maximal
acceptable duration f Pn for completing the project after leveling and
allocation is specified (Eq. (5)).

The model described by Eqs. (1)–(6) has no a single optimal
solution, rather it has a set of nondominated solutions—a solution
is said to be nondominated if there is no other feasible solution
better in both the momentMx and the project duration f n. Although
many multiobjective algorithms have been proposed for finding the
nondominated solutions, i.e., the so called Pareto front, we use
the oldest and much simpler approach of the linear aggregating
functions. This method consists in using a trade-off coefficient
λ to combine the two objectives into a single value to be
optimized. Thus the two objective functions are combined into
the following function, so as to maximize the weighed sum of
relative improvements:

max z0 ¼ λ ×
MP

x �Mx

MP
x

þ ð1� λÞ × f Pn � f n
f Pn

¼ 1�
�
λ ×

Mx

MP
x
þ ð1� λÞ × f n

f Pn

�
¼ 1� z ð7Þ

where MP
x and f Pn are the moment and the maximum project

duration respectively resulting from the application of the standard
leveling feature of the software. Given that max ð1� zÞ ¼
min ðz� 1Þ, the aggregated objective function becomes:

min z ¼ λ ×
Mx

MP
x
þ ð1� λÞ × f n

f Pn
ð8Þ

The scalar 0 ≤ λ ≤ 1 reflects the preferences of the decision
maker. When λ ¼ 0, the project manager completely ignores the
leveling of resources; conversely, when λ ¼ 1, he/she only wants
to minimize the fluctuations in resource usage.

Hyperheuristic Algorithms

Although the core idea of multilevel algorithms is an old one
(Fischer and Thomson 1963), the term “hyperheuristic” has been
recently proposed to describe a multilevel computational procedure
in which an upper heuristic layer controls the application of some
underlying heuristic methods rather the solutions themselves
(Burke et al. 2003a). These low-level heuristics in turn depend
upon the characteristics of the solution space under exploration.
Thus, only the low-level heuristics are accessible to the
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hyperheuristic, which has no knowledge of both the solutions
domain and the function of the low-level heuristics. The lower heu-
ristic layer can consist of simple heuristic operators, metaheuristic
algorithms or even other more simple hyperheuristics.

Hyperheuristics have been emerged as an alternative approach
for solving NP-hard problems, by overcoming some drawbacks of
the popular metaheuristic algorithms, especially their dependence
on the problem that they try to solve. Hyperheuristics are metaheur-
istic algorithms in the sense that they can be applied to a variety of
problems (Burke et al. 2003a). Unlike metaheuristics that guide the
search in a space of solutions, though, a hyperheuristic operates in a
space of heuristics choosing and applying one low-level heuristic
from a given set at each decision point (Chakhlevitch and Cowling
2008). Despite the significant progress in developing metaheuristic
algorithms for a wide variety of application areas so far, including
project scheduling problems, such approaches are strongly depen-
dent on incorporating the expertise of a professional in a given
problem domain. Instead, a hyperheuristic usually aims at reducing
the amount of domain knowledge in the search process. The result-
ing approach should be simple and easy-to implement, and it would
be robust enough to effectively treat a range of problem instances
from a variety of domains (Burke et al. 2003a).

Hyperheuristic algorithms have been used for treating schedul-
ing problems in industrial and manufacturing environment, such
as the well-known job shop scheduling problem (Fischer and
Thomson 1963; Dorndorf and Pesch 1995; Storer et al. 1995)
and the flow shop scheduling problem (Ouelhadj and Petrovic
2010), and in resource leveling (Anagnostopoulos and Koulinas
2010) and resource-constrained project scheduling problem
(Anagnostopoulos and Koulinas 2011). In addition, hyperheuristics
have been developed for a variety of applications such as large-
scale university exam timetabling problems (Burke et al. 2003b)
and determining shipper sizes for storage and transportation to re-
duce packaging waste (Dowsland et al. 2007). A review of hyper-
heuristic algorithms applications can be found in the study of
Chakhlevitch and Cowling (2008).

Several metaheuristic-based strategies for designing hyperheur-
istics have been investigated in the literature: simulated annealing
(Storer et al. 1995; Dowsland et al. 2007; Anagnostopoulos and
Koulinas 2010), tabu search (Burke et al. 2003b), variable neighbor-
hood search (Qu and Burke 2009), and GRASP (Anagnostopoulos
and Koulinas 2011) based hyperheuristic. Also, Burke et al. (2005)
proposed an ants system based algorithm, and Dorndorf and
Pesch (1995), and Han and Kendall (2003), genetic algorithm based
hyperheuristics.

Proposed Hyperheuristic

The proposed algorithm operates within MS-Project by altering the
priorities assigned to activities. As the most commercial software
packages do, MS-Project permits the assignment of priorities to
project activities allowing the project manager to control how
the activities are “leveled” in relation to one another. It is noted
that in MS-Project terminology “leveling”means creating a feasible
solution for resource allocation using the heuristics embedded in
the software, and as side-effect a better resource leveling.

Priorities are defined either as numbers (0 to 1000) or as linguis-
tic values (“lowest” to “highest”). An activity that has been as-
signed the “highest” (or 1000) priority is not leveled. Since the
priority of each activity affects the project schedule, leveling with
modified priorities has an influence to the resource profile. The de-
veloped hyperheuristic operates through the low-level heuristics on
the priorities domain, and then via the MS-Project heuristics on the

scheduling. Consequently, MS-Project scheduling processes are
not transparent to the proposed algorithm.

The hyperheuristic was coded using the embedded in the soft-
ware programming language Visual Basic for Applications, and an
MS-Project add-in has been developed to increase user friendliness.
This software-depended algorithm provides the project managers
with an effective and entirely automated tool that improves the re-
source allocation and the resource usage histogram resulting from
the standard feature of the software.

Threshold Accepting Hyperheuristic

The threshold accepting hyperheuristic (TAH) is based on the
threshold accepting metaheuristic algorithm (Dueck 1990). Ac-
cording to the core idea of threshold accepting metaheuristic,
the algorithm tries to escape from local optima by accepting some
solutions that increase the value of the objective function using a
deterministic acceptance criterion. This metaheuristic fits well with
the main characteristic of the core hyperheuristic idea for creating
simple and easy-to-implement procedures.

The crucial factor of the algorithm is the definition of an appro-
priate threshold sequence τ r which determines whether a new sol-
ution could be accepted or not. The thresholds are high at start to
allow for diversification, and are decreased during the searching
process. After a number of iterations, the threshold value is very
small and TAH converts into a local search hyperheuristic to allow
for intensification of the search. Since not much is known about
how to choose this sequence in a way to improve the performance
of the algorithm, the threshold sequence is often determined in a
rather ad hoc approach, and linearly decreasing sequences appear to
be preferred (Winker and Maringer 2007). In this study the thresh-
olds are calculated according to the equation τ rþ1 ¼ τ r � b, where
b is a constant. The steps of the TAH algorithm are illustrated as
follows:
1. Initialize the number of iterations per cycle Cycle_Iter and the

sequence of thresholds τ r; r ¼ 1; 2;…rmax.
2. Generate the initial schedule Sc using the automatic leveling

feature of the software and compute zc.
3. Set Sbest ¼ Sc, r ¼ 0 and Count Iteration ¼ 1 while stopping

condition is not met do.
4. While Count Iterations ≤ Cycle Iter do Set r ¼ r þ 1.
5. Select a low-level heuristic l with probability pðlÞ, apply it to

the priorities of current schedule Sc, and compute the new
schedule Sn.

6. If (zn < zbest) then set Sbest ¼ Sn and zbest ¼ zn.
7. If (zn � zc ≤ τ r) then accept the new solution, and set zc ¼ zn

and Sc ¼ Sn.
8. Set Count Iterations ¼ Count Iterationsþ 1 end while.
9. Update all choice probabilities pðlÞ; Set Count Iterations ¼ 1

end while Output Sbest.
The hyperheuristic starts with the initial schedule Sc generated

using the automatic leveling feature of the software, chooses with a
probability a low-level heuristic, and applies it once to the priorities
domain (step 2). The resulting new solution Sn is accepted if it is
better than Sc, or if it is “not much worse” than the current one,
meaning that the algorithm moves to solutions with higher objec-
tive function value in order to avoid being trapped in local mini-
mums (step 7). The choice probability pðlÞ of each low-level
heuristic remains constant during a fixed number of iterations
(Cycle_Iter) that correspond to a cycle. For the first Cycle_Iter iter-
ations all heuristics have equal choice probabilities. Afterward a
bias which is based on an elementary learning mechanism is intro-
duced in this choice, in a manner that the choice probability pðlÞ for
each heuristic l to be a function of its past performance. The prob-
ability pðlÞ is updated after Cycle_Iter iterations, by calculating the
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cumulative improvement caused by heuristic l over the total num-
ber of its calls (step 9). These (normalized) probabilities will be
used throughout the next cycle, i.e., the next Cycle_Iter iterations.

Low-Level Heuristics

TA hyperheuristic controls eleven low-level heuristics. Based on
simple moves such as “swap” and “replace”, these heuristics com-
ply with the requirement for simplicity introduced by the hyper-
heuristic framework. The low-level heuristics operate on the
activities priorities. Nine priority levels are used in this study,
ranged from 100 to 900. It is possible to fix the priorities of some
activities, and the algorithms to operate on the others.

The heuristics are partitioned into four groups according to the
criterion used for choosing the activity whose priority will be modi-
fied. Group A contains heuristics based on random selection, and
heuristics of group B choose activities according to their total slack
(TS). The heuristics belonging to groups C and D find the time
periods Δ and δ with the maximum umax and the minimum umin
resource demand over the project horizon respectively, and modify
the priority of an activity according to its relative contribution
to these undesirable facts. The values for selecting activities are
calculated by the equations:

�ui ¼
uiΔ
umax

for iPΔ ð9Þ

��ui ¼
uiδ
umin

for iPδ ð10Þ

where PΔðPδÞ is the set of all activities in progress in time period
ΔðδÞ. A description of the low-level working model follows:

Group A—Random based low-level heuristics
• L1: select at random two activities and swap their priorities.
• L2: select at random one activity and replace its priority with a

new one randomly selected.
Group B—TS based low-level heuristics

• L3: assign the lowest priority value (100) to the activity with the
largest TS.

• L4: assign the highest priority (900) to the activity with the
smallest TS.

• L5: select the activity with the largest TS and replace its priority
with a random one selected within the interval (100, 500). Select
the activity with the smallest TS and replace its priority with a
random one selected within the interval (500, 900). In case of a
tie, select the activity at random.
Group C—Maximum resource demand based low-level

heuristics
• L6: assign the “lowest” priority (100) to the activity with the

largest �ui value.
• L7: assign the “highest” priority (900) to the activity with the

smallest �ui value.
• L8: select the activity with the largest �ui and replace its priority

with a random selected within the interval (100, 500). Select the
activity with the smallest �ui and replace its priority with a
random selected within the interval (500, 900). In case of a
tie, select the activity at random.
Group D—Minimum resource demand based low-level

heuristics
• L9: assign the “highest” priority (900) to the activity with the

largest ��ui value.
• L10: assign the “lowest” priority (100) to the activity with the

smallest ��ui value.
• L11: select the activity with the largest ��ui and replace its priority

with a random selected within the interval (500, 900). Select the
activity with the smallest ��ui and replace its priority with a

random selected within the interval (100, 500). In case of a
tie, select the activity at random.
The rationale behind the criterion based heuristics is to reduce

the resource demand peaks over the project duration, and to in-
crease the consumption in days with very small demand forming
valleys in the resource profile graph.

Illustrative Example

The TA hyperheuristic has been applied to the example project
solved in (Hegazy 1999) with 20 activities and six resources as-
signed. Table 1 summarizes the duration, predecessors and daily
resource usage for every activity. The daily constraint (Eq. (6))
is fixed at 16 units for the resource “R4” which is considered as
critical. The initial project duration according to CPM calculations
is 32 days, the moment Mx is equal to 3375 and the resource usage
on a day-by-day basis ranges from 2 to 21 units. The archive of this
example, in MS-Project format, is available at http://www.civil
.uwaterloo.ca/tarek/hegazyfre1.html.

The stopping condition was defined to be 2,000 iterations. The
parameter b and the initial value for the threshold τ were set equal
to 0.001 and 1.0, respectively. Fixed after trial experimentation,
these settings assure that the probability of accepting a non improv-
ing solution is high during the first 50% of iterations to favor di-
versification in search. Thereafter the threshold value is very small,
so the probability of accepting a non improving solution virtually
converge to zero and the algorithm switches to local search hyper-
heuristic to allow for intensification.

Table 2 presents the results reached by the TAH and the genetic
algorithm (GA) developed by Hegazy (1999). The results are
organized according to the objective function used. At the bottom
of each column are illustrated the project duration, the moment Mx
of resource R4, the value of the objective function z and the
resource usage range. The second column contains the results

Table 1. Example Data

Activity Duration
Prede-
cessors

Resource requirements per day

R1 R2 R3 R4 R5 R6

A 6 5 2 2 2 7 4

B 3 3 5 2 3 9 6

C 4 A 2 4 4 2 3 1

D 6 5 4 3 5 5 4

E 7 A, B 3 5 2 3 8 0

F 5 C 4 1 4 9 2 5

G 2 D 4 1 4 3 9 8

H 2 A, B 5 5 4 0 9 1

I 2 G, H 3 2 4 3 4 2

J 6 F 1 5 4 6 7 3

K 1 C, E 3 3 2 4 5 1

L 2 E, G, H 3 2 2 8 3 4

M 4 I, K 2 2 2 2 4 8

N 2 F, L 1 4 4 3 4 1

O 3 L 5 5 4 6 2 3

P 5 J, M, N 3 2 3 4 7 8

Q 8 O 4 5 4 2 3 4

R 2 D, O 5 3 3 3 7 8

S 6 P, R 2 4 6 2 3 4

T 2 Q 1 6 2 7 5 2

Daily resource availability 7 10 10 16 18 13
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achieved by the automatic leveling feature of MS-Project, which
reduces theMx to 2449, the daily fluctuation range of R4 to 12 units,
and extends project duration to 49 days. This makespan is consid-
ered as the maximal acceptable project duration f Pn (Eq. (5)). This is
the starting point for the hyperheuristic.

The next two columns show the set of priorities and the achieved
results using the minimization of project duration as objective func-
tion (λ ¼ 0, Eq. (8)). As shown, the GA reduces the duration to
44 days and the usage range to 10 units, while the TAH algorithm
finds a better solution since it improves the duration to 43 days.
Note that Pan et al. (2008) found the same duration of 43 days
by resolving the same example with their tabu search algorithm
and mentioned that this is optimal in terms of makespan minimi-
zation. This smaller duration increases Mx to 2475 and the usage
range to 11 units, which are acceptable because in this case the
predefined objective is the project duration minimization.

The same example has been also solved using as objective func-
tion the z value with λ ¼ 50%, i.e., the minimization of both the
project duration and the moment Mx of R4 equally weighted
(Eq. (8)). Hegazy (1999) reports that the GA achieves a z value
of 92.17% (Mx ¼ 2265; f n ¼ 45). TAH found better solution than
GA, since it reaches a z value of 91.43%, and smaller resource us-
age range (8 units) as well. This solution has a duration of 48 days
which is smaller than the f Pn constraint (Eq. (5)). TAH required 47 s
to meet the stopping condition of 2,000 iterations.

From this example case we see that the hyperheuristic improves
the automatic leveling feature of MS-Project and enhances the soft-
ware’s capability to allocate the resource efficiently. Moreover

TAH reaches better results than the GA. These conclusions clearly
cannot be generalized based exclusively on a sole example project.

Advanced Analysis

Algorithms and Dataset

In this section, we study the computational behavior of the TAH as
a function of a number of parameters, and at the same time we com-
pare it with two other hyperheuristics: a simulated annealing hyper-
heuristic (SAH) proposed in (Anagnostopoulos and Koulinas 2010)
for solving solely the resource leveling problem, and a multistart
random descent hyperheuristic (MRDH) for scheduling a sales
summit (Cowling et al. 2001). It should be emphasized that our
aim is to better understand the computational behavior of TAH
by investigating the performance of these single-point (as opposed
to population based) algorithms on a problem for which no hyper-
heuristic has been proposed in the literature. For a fair comparison,
both the MRDH and SAH manage the set of low-level heuristics
proposed in the present paper.

The SA hyperheuristic uses the same bias process and stopping
condition with TAH. The main difference between the two algo-
rithms is the use by SAH of a probabilistic acceptance criterion
instead of the deterministic one used in TAH. The probability of
accepting a worse solution depends on the factor of temperature
T which is initially high to allow for diversification and decreases
according to the cooling schedule Ti ¼ a × Ti�1 to allow for inten-
sification. The parameter a represents the rate of temperature reduc-
tion (cooling rate).

The MRDH is an adaptation to the problem under study of a
hyperheuristic proposed by Cowling et al. (2001). Additionally,
the MRDH embodies a recursively applied multistart process in
the priorities domain to escape from local optima. The low-level
heuristics are applied in a descent fashion, i.e., each selected heu-
ristic is reapplied until no improvement to the current solution
achieved. MRDH starts by randomly constructing priorities for
the activities. Then it chooses at random a low-level heuristic
and applies it once to the solution space. The resulting new solution
is accepted if it is better than the current one, and the chosen low-
level heuristic is reapplied as long as no further improvement is
observed. Otherwise, the new solution is rejected and the hyper-
heuristic selects another heuristic. This process continues until
all the available low-level heuristics have been applied at least once
to the solution space. Subsequently, a new random solution is con-
structed and the hyperheuristic restarts. It is worth noticing that this
algorithm does not require parameters to be tuned, apart from the
stopping condition.

Fig. 1 illustrates the userforms of our MS-Project add-in used
for defining the settings of each algorithm. Initially, the user de-
fines, individually or by groups, the low-level heuristics to be used
by the algorithm. In this study all available heuristics are selected.
Both the stopping condition—the maximum number of iterations or
the allowable total run time for each hyperheuristic—and the num-
ber of priority levels are also determined. Finally, the user selects
one of the proposed algorithms, and if TAH (SAH) is selected val-
ues for the initial threshold τ and the parameter b (the temperature
T and the cooling rate a) are defined. Both algorithms require also
setting the value of Cycle_Iter parameter. MRDH needs no addi-
tional parameters definition. All algorithms have run on a PC Pen-
tium IV 3.0 GHz with 512 MB RAM, running under Microsoft
Windows XP. The stopping condition, after preliminary testing,
was set to 2,000 iterations.

Table 2. Results for the Example

Activity

Priorities

Software

Proj. Dur. 100% Proj. Dur. 50%

Mx of R4 0% Mx of R4 50%

GA TAH GA TAH

A 100 900 900 700 800

B 100 500 100 300 800

C 100 800 200 500 800

D 100 800 800 700 800

E 100 800 900 100 600

F 100 800 400 600 800

G 100 500 100 100 100

H 100 100 100 600 700

I 100 800 100 600 800

J 100 500 100 600 100

K 100 500 100 800 800

L 100 500 100 600 800

M 100 800 400 700 700

N 100 200 300 500 700

O 100 600 600 700 800

P 100 800 500 500 700

Q 100 100 200 100 700

R 100 700 800 700 800

S 100 500 100 400 700

T 100 100 600 800 600

Duration (days) 49 44 43 45 48

Mx 2449 2381 2425 2265 2079

100 89.80 87.76 92.17 91.43

Resource range 12 10 11 10 8
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We study the computational behavior of the hyperheuristics as a
function of three factors: the number of activities n, the order
strength OS (or network density), and the resource availability
Res. The experimental analysis aims to determine if the algorithmic
performance is affected by any of these factors, and if different lev-
els of factors cause distinguishable better algorithmic performance.
Although well-known benchmarks used in the literature for
the RCPSP, no such set exists for the problem described by
Eqs. (1)–(6), so it is necessary to generate our own benchmark set.

The algorithms have been applied on a set of random generated
projects created with the network generator RanGen1 (http://www
.projectmanagement.ugent.be/rangen.php). RanGen1 generates
randomly AoN networks using as input parameters the number
of activities n and the order strength OS.

The first two factors are the input parameters of the network
generator. The parameter n, taken equal to 20, 30, 40, 50 and
60 activities, determines the size of the project. The density of
the network OS is defined as the total number of precedence rela-
tions p, including the transitive ones, divided by the theoretical
maximum number of such precedence relations (Demeulemeester
and Herroelen 2002):

OS ¼ 2p
nðn� 1Þ ð11Þ

As most project activity networks are rather sparse, networks
with OS value of 0.1, 0.15 and 0.20 are studied. Apart from these
network morphological factors, the possible effect of the resource
availability to the algorithmic performance is examined. The
resource availability Res is set equal to the 2∕3, 1∕2 and 1∕3 of
the maximum daily resource demand for each generated project.

Since five levels for n, three levels for OS and three levels for
Res are considered, 5 × 3 × 3 ¼ 45 different combinations are
studied. In order to improve the reliability of the analysis, three
networks for each combination have been generated and three rep-
licates of each instance have been solved, that is 45 × 3 × 3 ¼ 405
instances. Each hyperheuristic is evaluated according to the objec-
tive function z with λ ¼ 0:5.

Results

Table 3 summarizes the results of the hyperheuristics application to
the random networks. Due to the large number of instances, only
average z values for each parameter level are presented. As shown,
MRDH remains the most efficient algorithm for three of the five
levels of parameter n, apart from networks with 30 and 40 activities,
wherein TAH is slightly superior. Practically, MRDH and TAH
have the same performance for the different levels of the network
size parameter. This conclusion is also valid for the levels of the
density parameter OS. The MRDH hyperheuristic achieves the
larger improvement to the objective function for every OS level,
and TAH follows closely. The SAH achieves the worst results
for each level of this parameter. Regarding to the factor Res, there
are differences in the performance of algorithms for the various lev-
els. For Res set to 1∕3 of the maximum, TAH is more effective with
SAH following, while MRDH has slightly worse performance than
the latter. For Res equal to 1∕2, TAH is still the best algorithm
but MRDH achieves better results than SAH. Finally, for Res
set to 2∕3, SAH remains in the last place, TAH is the second more

Fig. 1. User defined settings for the hyperheuristics

Table 3. Average z Values (%) for the Hyperheuristics

n TAH SAH MRDH

20 97.71 98.31 97.36

30 97.47 98.33 97.48

40 97.31 98.13 97.34

50 97.39 98.43 97.35

60 97.41 98.47 97.39

OS TAH SAH MRDH

0.10 96.93 98.03 96.80

0.15 97.47 98.25 97.45

0.20 97.97 98.73 97.88

Res TAH SAH MRDH

1∕3 98.47 98.64 98.68

1∕2 97.21 97.89 97.49

2∕3 96.69 98.47 95.96
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efficient algorithm, and MRDH achieves the largest improvement
with average z value of 95.96%.

The algorithmic performance for the several levels of the analy-
sis factors is displayed in Fig. 2–4. Fig. 2 shows clearly the
supremacy of TAH and MRDH over SAH. The size of the network,
though, does not affect the performance of the algorithms signifi-
cantly, since very small differences in the performance of algo-
rithms are observed. This conclusion is also confirmed from the
analysis of variance (ANOVA) that has been performed on the re-
sults of the 405 instances solved by each algorithm. The core idea
of ANOVA is to assume that all the nonrandom variations in ex-
perimental observations are due to differences in mean performance
values at various levels of the experimental factors (Montgomery
2001). In this analysis, ANOVA aims at demonstrating if different
factor levels cause a significantly different algorithmic perfor-
mance. Table 4 contains the results of ANOVA as derived by using
the SPSS Statistics 17.0 software package. Concerning the factor n,
the p-value for all hyperheuristics is greater than the significance

level 5% (the confidence intervals are 95%), and thus its effect on
the performance of the algorithms is considered as negligible.

Fig. 3 illustrates the performance for different levels of OS. As
shown, both TAH and MRDH appear to have clearly better results
than SAH, the MRDH has a small advantage over TAH, and the
performance of all algorithms deteriorates as OS increases. Since
the p-values of all algorithms for parameter OS are very close to
zero (Table 4), it could be said that the algorithmic performance
depends on the network density. In addition, we argue that the re-
source availability affects the algorithmic performance, as Fig. 4
illustrates, since increasing availability helps TAH and MRDH
to find better solutions, and all three algorithms have almost similar
behavior for low availability. As shown in Table 4, the p-values are
smaller than 5%, verifying the effect of Res factor in algorithmic
performance. The interactions of n × OS and n × Res mean that the
effect of one parameter (n) depends on the effect caused by the
other two factors. Also, an interaction between OS × Res and a
three-way interaction (n × OS × Res) are observed. The main con-
clusion derived from these interactions is that more complex and
resource-constrained projects prevent algorithms from achieving
large improvement.

There exist instances for which the hyperheuristics failed to im-
prove the solution obtained by the software. This appears because
MS-Project finds a good enough solution for these networks such
that it could not be found a better one by a hyperheuristic. More
specifically, the TAH failed to improve 16 (3.95%), the SAH 42
(10.37%) and the MRDH 55 (13.58%) of the 405 instances. A fur-
ther investigation of the experimental results is shown in Table 5, in
which an entry (i; j) contains the number of instances that the algo-
rithm i has improved but not j. Regarding to SAH, we observed 33
instances which failed while TAH succeeded and 21 that MRDH
succeeded, and 20 instances that both TAH and MRDH improved
the software’s solution but not SAH. The results of Table 5 confirm
that the TAH is the most reliable among the three algorithms. On
the other hand, MRDH is very possible to be trapped quickly in
local minimums, and thus the multistart process should be applied
more frequently to increase its performance.

Another issue that has been investigated is the number of iter-
ations that every algorithm required on average for finding the best
found solution for all the instances that achieved improvement.
More specifically, the TAH achieved on average its best solution
in 851 iterations, the SAH in 159, and MRDH in 1014 iterations.
Additionally, in order to show how early or late in the search each
algorithm succeeds, we have grouped the number of the iterations
that every hyperheuristic reached its best found solution into ten
classes (Table 6). For TA hyperheuristic, it is observed that 200
iterations were enough to find a local optimum for about 25%
of the instances, and the rest classes contain almost equal number
of elements. As expected, TAH performs better when its threshold
is large, and its efficiency reduces with decreasing threshold.

Concerning the two other algorithms, SA hyperheuristic reaches
92% of the better than the software found solutions within the first
200 iterations. So SAH practically works only with very high tem-
perature values; and if this parameter value decreases, it is fre-
quently trapped into local minimums. This characteristic is
considered to be responsible for its poor performance regarding
to other hyperheuristics, and for more failures in treating instances
(42 against 16) than TAH. As for MRDH, the ten classes have al-
most the same number of instances meaning that this algorithm can
practically achieve its best value everywhere in the search, appa-
rently because the multistart process helps it to escape from local
minimums. Finally, it is noted that no best solution was found by
any algorithm in the last iteration. These findings prove that, for

Fig. 2. Hyperheuristic performance as function of the number of
activities

Fig. 3. Hyperheuristic performance as function of the network density

Fig. 4. Hyperheuristic performance as function of the resource
availability
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this experiment, the 2000 iterations are enough for the algorithms to
find good solutions.

Table 7 contains the average running time needed by each algo-
rithm to complete the stopping condition. As expected, the running
time strongly depends on the size of the network n. TAH proved to
be the fastest algorithm for all parameter levels and MRDH the
slowest. It seems that the recursively applied multistart process

causes delay to MRDH, while the deterministic way in which
TAH accepts a worst solution appears to be less time consuming.
Regarding to the effect of OS on the running time, the small differ-
ences confirm that the average running time is independent of the
network density. Finally, the factor Res affects the running time of
the algorithms, since larger availability helps each algorithm to al-
locate faster and easier the constrained resource. As is the case with
parameter n, TAH needs less time than any other algorithm, SAH
follows and MRDH remains the slowest for the studied levels of
resource availability factor.

To sum up this analysis, the three hyperheuristics construct so-
lutions of competitive quality against the software. Hyperheuristics
TAH and MRDH are practically equivalent and both better than
SAH regarding the obtained solutions; TAH is better than MRDH
regarding the time efficiency; and most reliable since it has im-
proved the most instances. Thus we can conclude that the TAH
is the better algorithm. Finally, it is noted that the deterministic

Table 4. ANOVA Table for the Advanced Analysis

Source Dependent Variable Type III Sum of Squares df Mean Square F Sig.

n z TAH 0.001 4 0.000 0.946 0.437

z SAH 0.001 4 0.000 0.993 0.411

z MRDH 0.000 4 3.070E-5 0.112 0.978

OS z TAH 0.007 2 0.004 18.468 0.000

z SAH 0.003 2 0.002 11.411 0.000

z MRDH 0.008 2 0.004 14.548 0.000

Res z TAH 0.023 2 0.011 57.620 0.000

z SAH 0.004 2 0.002 13.907 0.000

z MRDH 0.050 2 0.025 91.660 0.000

n × OS z TAH 0.005 8 0.001 2.925 0.004

z SAH 0.005 8 0.001 4.134 0.000

z MRDH 0.006 8 0.001 2.868 0.004

n × Res z TAH 0.004 8 0.001 2.720 0.006

z SAH 0.007 8 0.001 5.584 0.000

z MRDH 0.005 8 0.001 2.231 0.025

OS × Res z TAH 0.005 4 0.001 6.228 0.000

z SAH 0.004 4 0.001 5.967 0.000

z MRDH 0.003 4 0.001 3.085 0.016

n × OS × Res z TAH 0.010 16 0.001 3.173 0.000

z SAH 0.011 16 0.001 4.612 0.000

z MRDH 0.013 16 0.001 2.991 0.000

Table 5. Matrix of Pairwise Algorithmic Comparisons

Algorithm of comparison

Failures

TAH SAH MRDH

TAH — 33 40

SAH 7 — 34

MRDH 1 21 —
Both the other 0 20 27

Table 6. Number of Instances as a Function of Iterations Needed by Each
Algorithm for Finding a Local Optimum

Iterations

Number of instances

TAH SAH MRDH

1–200 98 335 33

201–400 36 4 37

401–600 33 1 35

601–800 30 4 37

801–1000 25 2 29

1001–1200 29 3 41

1201–1400 32 2 31

1401–1600 35 4 26

1601–1800 32 3 35

1801–2000 39 5 46

Table 7. Time Efficiency of the Hyperheuristics (sec)

n TAH SAH MRDH

20 32.07 47.07 53.52

30 56.32 78.58 92.79

40 80.83 108.63 133.03

50 100.96 132.48 167.49

60 132.96 171.91 217.82

OS TAH SAH MRDH

0.10 78.22 103.67 130.64

0.15 82.77 111.13 136.45

0.20 80.90 108.40 131.70

Res TAH SAH MRDH

1∕3 102.99 134.96 174.36

1∕2 79.82 107.80 128.37

2∕3 59.07 80.45 96.06
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criterion used by the TAH for accepting a worse solution was be
proved more efficient and less time consuming than the stochastic
one used by the SAH.

Conclusion

Hyperheuristics are an emerging approach to optimization that al-
lows professionals to rapidly produce solutions of acceptable qual-
ity in real-world problems. In this paper we presented a threshold
accepting hyperheuristic for solving in a single run both the re-
source leveling and allocation problems. The hyperheuristic
controls eleven low-level heuristics, and was implemented within
a widely used project management software package.

The proposed hyperheuristic has been programmed as an upper
algorithmic layer that controls a set of heuristics based on simple
moves such as “replace” and “swap”. The low-level heuristics are
applied to the priorities of the project activities, and the hyperheur-
istic has no access to the solution domain but only selects the heu-
ristic that would be applied to the priorities. The TA hyperheuristic,
and the two other hyperheuristics included in this paper for com-
parison purposes, i.e., a simulated annealing hyperheuristic (SAH)
and a random descend hyperheuristic with a multistart process
embedded (MRDH), are based on single-point metaheuristic
approaches in the sense that the corresponding hyperheuristic
applies one low-level heuristic at each iteration.

The proposed threshold accepting hyperheuristic has been
proved a promising procedure for solving both resource allocation
and leveling problems. Applied to an example project from the
construction project management literature (Hegazy 1999), the
proposed approach found better solutions than the GA metaheur-
istic that initially solved the case example. Moreover, TAH has
been tested on a set of randomly generated projects, against the
SAH and MRDH. TAH and MRDH are practically equivalent
and both better than SAH regarding the obtained solutions;
TAH proved to be the less time consuming algorithm and the
most reliable procedure in the sense that it has improved the most
instances.

The proposed hyperheuristic shows the flexibility of the hyper-
heuristic framework, i.e., the development of a hyperheuristic is
independent of the utilized low-level heuristics, and thus it is
easy-to add or remove low-level heuristics without any concern
of how the hyperheuristic operates. This flexibility facilitates the
reapplicability of developed procedures, as this study has made
apparent, and makes easy the development of decision support
systems for project scheduling.

Although both the presented case study and the experimental
analysis on randomly generated activity networks demonstrate that
the algorithm reaches satisfactory results, modifications to the pro-
posed approach could improve its performance. For example, a
more efficient learning mechanism, sophisticated low-level heuris-
tics such as crossover operators, and a software-independent pro-
cedure to generate feasible schedules more efficiently could
improve both the runtime and the quality of obtained solutions.
In any case this study shows that hyperheuristics is of a great
research interest for handling project scheduling problems.
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