
OPTIMIZATION OF RESOURCE ALLOCATION AND LEVELING USING

GENETIC ALGORITHMS

By Tarek Hegazy,1 Member, ASCE

ABSTRACT: Resource allocation and leveling are among the top challenges in project management. Due to the
complexity of projects, resource allocation and leveling have been dealt with as two distinct subproblems solved
mainly using heuristic procedures that cannot guarantee optimum solutions. In this paper, improvements are
proposed to resource allocation and leveling heuristics, and the Genetic Algorithms (GAs) technique is used to
search for near-optimum solution, considering both aspects simultaneously. In the improved heuristics, random
priorities are introduced into selected tasks and their impact on the schedule is monitored. The GA procedure
then searches for an optimum set of tasks’ priorities that produces shorter project duration and better-leveled
resource profiles. One major advantage of the procedure is its simple applicability within commercial project
management software systems to improve their performance. With a widely used system as an example, a macro
program is written to automate the GA procedure. A case study is presented and several experiments conducted
to demonstrate the multiobjective benefit of the procedure and outline future extensions.
INTRODUCTION

Few companies can remain competitive in today’s highly
competitive business environment without effectively manag-
ing the cost of resources. In practice, basic PERT and CPM
scheduling techniques have proven to be helpful only when
the project deadline is not fixed and the resources are not con-
strained by either availability or time. Since this is not prac-
tical even for small-sized projects, several techniques have
been used to modify CPM results in account of practical con-
siderations. In dealing with project resources, two main types
of techniques have been used: resource allocation and resource
leveling. Resource allocation (sometimes referred to as con-
strained-resource scheduling) attempts to reschedule the proj-
ect tasks so that a limited number of resources can be effi-
ciently utilized while keeping the unavoidable extension of the
project to a minimum. Resource leveling (often referred to as
resource smoothing), on the other hand, attempts to reduce the
sharp variations among the peaks and valleys in the resource
demand histogram while maintaining the original project du-
ration (Moselhi and Lorterapong 1993). These techniques, as
such, deal with two distinct subproblems that can only be ap-
plied to a project one after the other rather than simultane-
ously. Accordingly, they do not guarantee (either individually
or combined) a project schedule that minimizes the overall
project time or cost (Karshenas and Haber 1990).

In this paper, an attempt is made to develop a practical
procedure that searches for a near-optimum solution to re-
source allocation and leveling, simultaneously. The paper
starts with a brief description of the advantages and limitations
of current optimization-based and heuristic approaches. Indi-
vidual improvements to existing heuristics are then proposed
and tested on a case study. A multiobjective optimization using
the genetic algorithms (GA) technique is then described and
coded in a macro program. The performance of the proposed
GA procedure is then evaluated on the case study, and rec-
ommendations made.

RESOURCE ALLOCATION AND LEVELING
HEURISTICS

Limited-resource allocation algorithms deal with a difficult
problem that mathematicians refer to as a ‘‘large combinatorial

1Asst. Prof. of Constr. Mgmt., Dept. of Civ. Engrg., Univ. of Waterloo,
Waterloo, ON, Canada N2L 3G1. E-mail: tarek@uwaterloo.ca

Note. Discussion open until November 1, 1999. To extend the clos-
ing date one month, a written request must be filed with the ASCE Man-
ager of Journals. The manuscript for this paper was submitted for review
and possible publication on January 8, 1999. This paper is part of the
Journal of Construction Engineering and Management, Vol. 125, No.
3, May/June, 1999. qASCE, ISSN 0733-9634/99/0003-0167–0175/
$8.00 1 $.50 per page. Paper No. 17338.
JOURNAL OF CONSTR
problem.’’ The objective is to find the schedule duration that
is shortest, as well as consistent with specified resource limits.
There exist optimization methods as well as heuristic methods
for solving the resource allocation problem that go back in
time to the 1960s (e.g., Wiest 1964). Various approaches have
been formulated to solve the problem optimally, including In-
teger Programming, branch-and-bound, and Dynamic Pro-
gramming (Gavish and Pirkul 1991). None of these, however,
is computationally tractable for any real-life problem size,
rendering them impractical (Moselhi and Lorterapong 1993;
Allam 1988).

Alternatively, heuristic approaches have been proposed for
solving the resource allocation problem. These approaches ap-
ply selected heuristic (rules) that are based on activity char-
acteristics, such as the ‘‘minimum total-slack’’ rule, to prior-
itize the activities that compete for the limited resource.
Accordingly, the resource is given to the top-ranked activities
and the others are delayed. When ties occur during the imple-
mentation of a rule (e.g., when two or more activities have the
same total slack), another rule such as ‘‘shortest duration’’ can
be used to break the tie. The scheduling process, as such, starts
from the project’s start time, identifying eligible activities ac-
cording to the network logic and resolving the over-require-
ments of resources using the selected set of heuristic rules.
The process, as such, ensures that all project activities are
scheduled without violating the logical relationships or the re-
source constraints. However, this comes on the expense of the
total project duration, which often exceeds the duration deter-
mined by the original CPM analysis.

Heuristic rules have the advantage of being simple to un-
derstand, easy to apply, and very inexpensive to use in com-
puter programs. They are able to rationalize the scheduling
process and make it manageable for practical-size projects
(Talbot and Patterson 1979). Furthermore, research has iden-
tified rules such as the ‘‘least total-slack’’ and the ‘‘earliest
late-start,’’ which generally provide good solutions (Davis and
Patterson 1975). Almost all commercial software for planning
and scheduling, therefore, utilizes heuristic rules to provide
resource allocation capabilities. Despite these benefits, how-
ever, heuristic rules perform with varying effectiveness when
used on different networks, and there are no hard guidelines
that help in selecting the best heuristic rule to use for a given
network. They, as such, cannot guarantee optimum solutions.
Furthermore, their drawbacks have contributed to large incon-
sistencies among the resource-constrained capabilities of com-
mercial project management software, as reported in recent
surveys (Hegazy and El-Zamzamy 1998; Johnson 1992).

Resource-leveling algorithms, on the other hand, attempt to
reduce peak requirements and smooth out period-to-period
UCTION ENGINEERING AND MANAGEMENT / MAY/JUNE 1999 / 167

TABLE 1. Case Study Data

Activity
(1)

Duration
(days)

(2)
Predecessors

(3)

Resource Requirements per
Day

R1
(4)

R2
(5)

R3
(6)

R4
(7)

R5
(8)

R6
(9)

A 6 — 5 2 2 2 7 4
B 3 — 3 5 2 3 9 6
C 4 A 2 4 4 2 3 1
D 6 — 5 4 3 5 5 4
E 7 A, B 3 5 2 3 8 0
F 5 C 4 1 4 9 2 5
G 2 D 4 1 4 3 9 8
H 2 A, B 5 5 4 0 9 1
I 2 G, H 3 2 4 3 4 2
J 6 F 1 5 4 6 7 3
K 1 C, E 3 3 2 4 5 1
L 2 E, G, H 3 2 2 8 3 4
M 4 I, K 2 2 2 2 4 8
N 2 F, L 1 4 4 3 4 1
O 3 L 5 5 4 6 2 3
P 5 J, M, N 3 2 3 4 7 8
Q 8 O 4 5 4 2 3 4
R 2 D, O 5 3 3 3 7 8
S 6 P, R 2 4 6 2 3 4
T 2 Q 1 6 2 7 5 2

Daily Resource Limits 7 10 10 16 18 13

fluctuations in resource assignment without changing project
duration. Typical resources considered include a rented piece
of equipment that needs to be returned early or a number of
skilled workers who need to be hired for the job. Optimal
solutions for the resource-leveling problem are based on mixed
integer program formulations (Shah et al. 1993; Easa 1989).
Such formulations are NP-complete and optimal solutions are
reached for small-sized construction projects only. Heuristic
algorithms are therefore needed.

A well-known heuristic algorithm is the minimum moment
algorithm (Harris 1978). The objective in this algorithm is to
minimize daily fluctuations in resource use while keeping the
total project duration unchanged. As a proxy to this objective,
the algorithm minimizes the moment of the resource histogram
around the horizontal axis (time, calculations presented later
in more detail). To accomplish this objective, the algorithm
starts from an early start schedule and shifts noncritical activ-
ities within their float times so as to cause no project delay.
At each time step, the shift(s) that yields the maximum reduc-
tion in the histogram moment is selected. Despite the simple
nature of resource-leveling heuristics and their wide imple-
mentation on commercial project management software, they
can only produce good feasible solutions and by no means
guarantee an optimum solution.

IMPROVING RESOURCE-ALLOCATION HEURISTICS
USING BIASED PRIORITIES

Since it is not possible to select an optimum heuristic rule
for a given project network, one common procedure is to try
a series of heuristic rules and then select the schedule with
minimum duration. This procedure, however, has little diver-
sity since the number of effective rules to enumerate is small
and it is not expected that less effective rules will change much
when effective rules are not improving the schedule. There-
fore, without introducing new rules or changing the mechanics
of heuristic procedures, a simple approach of forcing random
activity priorities is presented to improve the goodness of the
schedule. The concept is demonstrated on a case study of a
project with twenty activities and six resources. The case study
data including activities’ resource requirements and daily re-
source limits is presented in Table 1. This data was input to
168 / JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMEN
Microsoft (MS) Project software (Microsoft Project 1995) for
quick analysis.

Without considering the given resource constraints, the total
project duration, determined by simple CPM analysis, is 32
days. When the resource-leveling feature (leveling is used in
the software’s terminology for both allocation and leveling) of
MS Project was set to ‘‘Automatic,’’ total project duration was
extended to 49 days, avoiding resource over-allocations. This
solution was obtained using the software’s ‘‘standard’’ set of
heuristic rules, which maintains logical relationships and ap-
plies the ‘‘minimum total slack’’ rule to resolve conflicts. The
same results were also obtained using the ‘‘minimum total
slack’’ rule on Primavera Software (Primavera 1995) as a
high-end system. Several other heuristic rules were also tried
on Primavera software, without improving the schedule. A
project duration of 49 days is, therefore, the best result that
can be obtained from widely used commercial software. It is
noted that this result is obtained when all project activities
have the same priority level.

Most commercial scheduling software systems allow users
to specify priority levels to activities. MS Project implements
that in a direct manner by allowing users to select among eight
priority levels (‘‘Highest,’’ ‘‘High,’’ etc., to ‘‘Lowest’’), and
assign it in a simple spreadsheet form. The software also pro-
vides a second set of heuristic rules for resource allocation in
which activity priority takes precedence over its ‘‘standard’’
set of heuristic rules. It is possible, therefore, to introduce
some bias into some activities and consequently monitor the
impact on the schedule. As an example, consider the case
when only activity (R) in the present case study is given
‘‘Highest’’ priority while all others are set to ‘‘Lowest.’’ With
this limited change to the original schedule, the project dura-
tion substantially decreased to 46 days (Fig. 1), one of the
solutions for that particular example obtained by Talbot and
Patterson (1979) using optimization. This simple approach is
therefore proven to provide better results than existing heuris-
tics.

Since it is not possible to readily identify, from a given
network, which activities to assign higher priorities than others
to improve the schedule, a simple iterative procedure may be
used. A flow chart of such a procedure is presented in Fig. 2.
It starts by initializing the scheduling software by setting its
resource allocation feature to ‘‘Automatic’’ and defining a set
of heuristic rules, ‘‘activity priority’’ being the leading one.
Afterwards, each activity in the project is selected in turn,
given ‘‘highest’’ priority over all others, and the consequent
project duration is monitored. If the project duration decreases
at any step in the process, corresponding activity priorities are
saved and the process continues to improve the schedule fur-
ther. It is also possible to automate this procedure by writing
a simple macro on the scheduling software. Despite its per-
ceived benefit, however, the main shortcoming of this proce-
dure is its inability to identify an optimum set of activities’
priorities that reduces project duration the most. This issue is
dealt with later using the GA.

IMPROVING RESOURCE LEVELING HEURISTICS
USING DOUBLE MOMENTS

In the course of optimizing resource allocation, the schedule
repeatedly changes and along with it are the daily demands of
resources. It is the objective of project managers, therefore, to
optimize both the allocation and the leveling aspects of re-
sources. As mentioned previously, the minimum moment al-
gorithm has been used as a heuristic approach to calculate a
measure of the fluctuations in daily resource demands. This is
represented in Fig. 3(a), where Histogram 1 and Histogram 2
are two alternative resource histograms, both having a total
area of 40 resource days (i.e., equal total resource demands).
T / MAY/JUNE 1999

FIG. 1. Case Study Project with High Priority Assigned to Task (R)
FIG. 2. Iterative Procedure for Improving Resource Allocation
Heuristics

Histogram 1 is an ideal one, with a constant daily demand of
four resource units, and no day-to-day resource fluctuations;
the resource will be released after day 10. Histogram 2, on the
other hand, exhibits high resource fluctuation with daily de-
mand in the range of 2–6 resource units, and the resource will
not be released until the end of day 12. The moment (Mx) of
both histograms around the horizontal axis (days) are 160 and
166, respectively, representing a better resource leveling of
Histogram 1. The moment Mx is calculated by summing the
daily moments, as follows:
JOURNAL OF CONSTR
n
1

M = (1 3 Resource Demand) 3 Resource Demandx j jO F G2j =1

(1)

where n = working-day number of the project’s finish date.
Or, for comparison reasons, (1) becomes

n

2M = (Resource Demand) (2)x jO
j =1

While the minimum moment (Mx) method can be used to com-
pare among histograms in terms of resource fluctuation, it does
not take into consideration the resource utilization period. The
latter is very important to minimize, particularly for equipment
resources that are shared among projects or rented from ex-
ternal sources. Fig. 3(b), for example, shows a resource his-
togram having the same 40 resource days (total area), a max-
imum resource demand of 4, and a utilization period that
extends till the end of day 13. Its Mx is 160, the same as that
of Histogram 1, indicating resource fluctuation similar to His-
togram 1 and better than Histogram 2, regardless of its 3- and
1-day extensions, respectively, beyond the two histograms.
The single moment Mx, therefore, does not consider for the
extended assignment of the resource. To overcome that, the
moment My (around the vertical axis, resource amount) is com-
puted as follows:

n

M = [(1 3 Resource Demand) 3 j] (3)y jO
j =1

Using (3), the (My) values calculated for the three resource
histograms of Figs. 3(a and b) are 220, 255, and 316, respec-
tively. The value of My, as such, gets higher as the resource
remains employed in the project till a later date. Accordingly,
My can be used as a good indicator of the resource release date
in the project. Also, a simple modification to (3) can be used
to calculate the moment My around a vertical axis that corre-
sponds to the first day the resource is employed in the project
[k, Fig. 3(c)]. In this case, the value of My represents the re-
source utilization period, irrespective of when the resource is
employed or released, expressed as follows:

n

M = [(1 3 Resource Demand) 3 (j 2 k)] (4)y jO
j=k
UCTION ENGINEERING AND MANAGEMENT / MAY/JUNE 1999 / 169

FIG. 3. Resource Histogram and Moment Calculations

Having the moment calculations defined, a project manager
may use them as modified heuristics in four ways, according
to his resource management objectives: (1) Minimize the Mx

alone when the focus is on reducing daily resource fluctua-
tions; (2) minimize the My of Eq. (4) alone when the focus is
on reducing the resource utilization period; (3) minimize the
My of Eq. (3) alone when the focus is on releasing the resource
at an early date; or (4) minimize the double moments (Mx 1
My) when the focus in on both aspects. Incorporating such
heuristics into a unified procedure for resource management is
discussed in the next section.

MULTIOBJECTIVE OPTIMIZATION SEARCH USING
GENETIC ALGORITHMS

Individual optimization of resource allocation or leveling
has not been a simple task, let alone their simultaneous opti-
mization. Given the modified heuristics presented in this paper,
the objective can be restated, in a heuristic sense, as the search
for a near-optimum set of activities’ priorities that minimizes
the total project duration under resource constraints while also
minimizing the appropriate moment(s) of selected resources.
This objective has a direct relationship to project cost mini-
mization, which cannot be adequately achieved using mathe-
matical optimization techniques. A schedule that efficiently
employs limited resources, avoids daily fluctuation, and re-
duces project duration is eventually less costly. To deal with
these multiobjectives, a search technique based on artificial
170 / JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMEN
FIG. 4. Gene Formation

intelligence, GAs, is used. Analogous to natural selection and
genetics in reproduction, GAs have been successfully adopted
to solve many science and engineering problems (Feng et al.
1997; Hegazy and Moselhi 1994). GAs also have been proven
to be an efficient means for searching optimal solutions in a
large problem domain such as the one at hand.

GAs are, in essence, optimization search procedures in-
spired by the biological systems’ improved fitness through
evolution. GAs employ a random-yet-directed search for lo-
cating the globally optimal solution. Typically, GAs require a
representation scheme to encode feasible solutions to the op-
timization problem. Usually this is done in the form of a string
called a chromosome (or gene). Each gene represents one
member, i.e., one solution, that is better or worse than other
members in a population. The fitness of each gene is deter-
mined by evaluating its performance with respect to an objec-
tive function. To simulate the natural ‘‘survival of the fittest’’
process, best genes exchange information to produce offspring
that are evaluated in turn and can be retained only if they are
more fit than the others in the population. Usually the process
is continued for a large number of offspring generations until
an optimum gene is arrived at.

Implementing the GA technique for the problem at hand
involved five primary steps: (1) Setting the gene structure; (2)
deciding the gene evaluation criteria (objective function); (3)
generating an initial population of genes; (4) selecting an off-
spring generation mechanism; and (5) coding the procedure in
a computer program. First, the gene structure was set as a
string of elements, each corresponding to a priority level as-
signed to an activity, as shown in Fig. 4. As such, each gene
represents one possible solution to the problem. To evaluate
genes, an objective function can be constructed by eliciting
the user’s preference (or weights) among the multiobjectives.
For example, assume a project with (r) resources, initial proj-
ect duration D0 determined by any resource allocation heuristic
rule, initial Mx moment of every (j) resource (Mxj0), and initial
My moment of every (j) resource (Myj0). The values D0, Mxj0’s,
and Myj0’s are therefore constants associated with the best so-
lution provided by the scheduling software, before the GA
procedure is applied. The user then needs to input the weight
Wd of his preference in minimizing project duration and the
weights Wj’s of his preference in leveling every resource (j).
In addition, the user needs to input the type of leveling mo-
ment (i.e., Mx, My, or Mx 1 My) that needs to be minimized
for every resource (j). The weights and moment types are also
constants representing the project manager’s objective.

When a gene (i) is being evaluated, its priority values are
assigned to the project activities to produce a new schedule
T / MAY/JUNE 1999

FIG. 5. Crossover Operation to Generate Offspring

with duration Di, in addition to new moments Mxji and Myji for
every resource (j). The fitness of that schedule (i.e., the fitness
of its gene) is then determined by the relative improvement it
exhibits over the initial schedule, as computed by an objective
function that has two components for duration and moments,
as follows:

r

W ? (D /D) 1 [W ? (M 1 M)/(M 1 M)] (5)d i 0 j xji yji xj0 yj0O
j =1

The smaller this fitness value below 1.0, the less the duration
and/or applicable comments, and accordingly the more fit the
gene is. It is noted that the objective functions of (5) consider
the minimization of both resource fluctuation and utilization
period (Mxj’s 1 Myj’s) of all resources. If, however, the objec-
tive is to minimize only one aspect (e.g., Mxj) for any resource
(j), the resource’s Myj component in the equation can be preset
to zero, rather than calculated.

Once the gene structure and fitness function are set, GA’s
evolutionary optimization takes place on a population of par-
ent genes. The simplest way to generate that population is
randomly, if no information is available on any activity that
must have a fixed priority level. Population size (number of
genes) is also an important factor affecting the solution and
the processing time it consumes. Larger population size (on
the order of hundreds) increases the likelihood of obtaining a
global optimum; however, it substantially increases processing
time. In the present application the user is given the flexibility
to input the population size. Once the population is generated,
the fitness of each gene in this population is evaluated using
the objective function (5), and accordingly its relative merit is
calculated as the gene’s fitness divided by the total fitness of
all genes.

The reproduction process among the population members
takes place by either crossover or mutation, resembling natural
evolution. Crossover (marriage) is by far a more common pro-
cess and can be conducted by selecting two parent genes, ex-
changing their information, and producing an offspring. Each
of the two parent genes is randomly selected in a manner such
that its probability of being selected is proportional to its rel-
ative merit. This ensures that the best genes have a higher
likelihood of being selected, without violating the diversity of
the random process. Also, the exchange of information be-
tween the two parent genes is done through a random process
(Fig. 5). As opposed to crossover, which resembles the main
natural method of reproduction (Goldberg 1989), mutation is
a rare process that resembles the process of the sudden gen-
eration of an odd offspring that turns to be a genius. This can
be done by randomly selecting one gene from the population
and then arbitrarily changing some of its information. The ben-
efit of the mutation process is that it can break any stagnation
in the evolutionary process, avoiding local minimums.

Once an offspring is generated by either method, it is eval-
uated in turn and can be retained only if its fitness is higher
JOURNAL OF CONSTR
than others in the population. Usually the process is continued
for a large number of offspring generations until an optimum
gene is arrived at. In the present application, the user is given
the flexibility to input the number of offspring generations.

PROCEDURE AUTOMATION AND EXAMPLE
APPLICATION

Implementing the proposed GA procedure on commercial
scheduling software simplifies the implementation process and
provides project managers with an automated tool to improve
the results of their familiar software. In this study Microsoft
Project software is selected for implementing the GA proce-
dure, for the reasons mentioned earlier as well as its ease of
use and programmability features. The detailed GA procedure
is outlined in Fig. 6. Using the macro language of Microsoft
Project, the procedure was coded and then used to search for
an optimum schedule for the case study at hand.

For simplicity, only one resource (R4) of the six resources
in the present case study is assumed to be critical. As discussed
previously, the software’s initial solution to the resource-con-
strained schedule used ‘‘Lowest’’ priority for the project’s 20
activities (column 2 of Table 2), producing a schedule of 49
days, in addition to Mx of 2,409, and My of 7,231 for resource
R4. The GA optimization-search procedure was used to con-
duct four experiments with different objectives, as outlined in
the second and third rows of Table 2. After initial experimen-
tation with different population sizes and number of off-
springs, a population of 200 genes and offspring of 1,000 was
found to be a reasonable compromise between diversity and
processing time for this size of problem. Accordingly, these
were fixed for all experiments. Also, to avoid stagnation,
crossover operation was set to be responsible for 95% of off-
spring generations while mutations was set to only 5%. Once
the procedure was activated, an input screen, shown in Fig. 7
for Experiment 2, was displayed, requesting user input regard-
ing GA parameters and the weights needed to formulate the
objective function. The GA procedure then performed the op-
timization search, producing an output screen as shown in Fig.
8. The activity priorities resulting from the four experiments
are shown in Table 2 along with the associated project dura-
tions and moment calculations.

It can be seen from the results of Table 2 that each exper-
iment improved the schedule in a manner that is consistent
with its objective. In Experiment 1 the objective was to solely
minimize project duration, and accordingly a 44-day schedule
was obtained (Fig. 9). This is 5 days shorter than the initial
schedule and is also 2 days less than the 46-day schedule of
the iterative process discussed earlier. Giving a 50% weight to
minimizing the Mx of R4, Experiment 2 produced the smallest
resource fluctuation moment of all the experiments (2,265).
This was also reflected on the daily fluctuation range of R4
demand, which decreased from the initial 12 units to 10 units
(Table 2). This experiment also decreased project duration to
45 days. Experiment 3 attempted to equally minimize the re-
source utilization moment (My) and the project duration, re-
sulting in best improvements to both. Experiment 4 also at-
tempted to minimize the three aspects of project duration, R4
fluctuation, and R4 utilization period, resulting in improve-
ments to the three. Based upon these results, the case study
clearly shows the benefits of the GA procedure in optimizing
both resource allocation and leveling to improve scheduling
results over those of existing heuristic procedures and com-
mercial scheduling software systems. Clearly these benefits, in
terms of shorter duration and better resource utilization, can
be readily translated into cost savings as a function of indirect
cost, incentive gains, and reduced resource rental or salary
amounts.
UCTION ENGINEERING AND MANAGEMENT / MAY/JUNE 1999 / 171

FIG. 6. Genetic Algorithms Procedure
In terms of processing time, the four GA experiments for
the present 20-activity network took from 50 to 120 min on a
Pentium 233 MMX PC to complete 1,000 offspring genera-
tions. To further examine the performance of the GA procedure
on larger networks, several other experiments were conducted
on networks with 40, 100, and 200 activities. Each of these
networks was constructed by copying the 20 activities of the
present case study several times. The GA procedure was then
applied to each network for varying number of offspring gen-
erations 50, 100, and 200. While the GA procedure performed
consistently and improved all schedules achieving an average
of 10% reduction in duration, larger networks exhibited a no-
172 / JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT
ticeable increase in processing time (Fig. 10). Interestingly,
however, larger networks arrived at best solutions earlier in
the process than smaller ones, even with a lesser number of
offspring generations (50 and 100). As such, the number of
offsprings could be substantially reduced to decrease process-
ing time. For practical-size projects with hundreds of activities,
a population of 100 genes and intervals of 100 offspring could
be used. Also, an overnight run may be a good option, given
the potential saving in duration and resource-oriented savings.
For interested readers, the GA procedure and the case study
can be downloaded from the writer’s web site, www.civil.
uwaterloo.ca/tarek, under My Free Educational Software.
/ MAY/JUNE 1999

TABLE 2. Results of Genetic Algorithm Experiments
COMMENTS ON ALGORITHM PERFORMANCE

The proposed GA procedure is, in essence, a heuristic search
algorithm that attempts to optimize the schedule. It has been
demonstrated to have several interesting characteristics, in-
cluding the following:

• It attempts to improve on an existing schedule determined
using all the power features of commercial project man-
agement software.

• The GA approach is an efficient search procedure that
arrives at solutions by searching only a small fraction of
the total search space. With 20 activities, each having 8
options for its priority, the total search space is 820. It took
only 1,000 offspring (involving a search space of 20,000)
to arrive at the results of Table 2.

• It combines both resource allocation and leveling into the
objective function for the GA search.

• Since the GA procedure works on top of scheduling soft-
ware, activities’ cost data may not be available in this type
JOURNAL OF CONSTR
of software. The formulation of the GA procedure and its
objective function, therefore, have costs implied by the
calculated moments, without requiring additional user in-
put.

• The GA approach and its objective function can be mod-
ified to incorporate other objectives—for example, those
related to selecting the appropriate methods of construc-
tion to use in the different tasks so that a certain deadline
is met in the least-costly manner. This adds a time-cost
trade-off dimension to the GA search. Such an extension
can consider for the the daily penalty of exceeding the
deadline and also for the incentive for early completion.
As opposed to mathematical optimization, the GA pro-
cedure will work regardless of the complexity of the
model. Implementation of these extensions is currently
being investigated by the writer.

The main downside of the algorithm is its random nature,
which requires a long processing time. One option is to code
UCTION ENGINEERING AND MANAGEMENT / MAY/JUNE 1999 / 173

FIG. 7. GA Input Screen for Experiment 2

FIG. 8. GA Output Screen for Experiment 2

the procedure in a faster programming language than the VBA
language included with Microsoft Project, one such as C or
C11. Another option is to code it to work as a memory res-
ident program that runs automatically, similar to screen savers
174 / JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMEN
FIG. 10. Processing Time versus Number of Activities

when the process is set idle for some time. Accordingly, it can
propose improvements to the schedule at times when sufficient
processing is possible.

In addition to these programming improvements, there are
several other ways to improve the performance of the GA pro-
cedure. Some changes could be made to the basic genetic al-
gorithm formulation to make it faster and more efficient in
similar types of problems. This is currently an area of extended
research among researchers who perceive the many benefits of
using this technique in many applications within the civil en-
gineering domain. Also, since the heuristic rules underlying
the GA procedure are constant in the optimization, it is pos-
sible to experiment with a different set of heuristic rules. The
‘‘activity priority’’ rule still has to be the leading one; how-
ever, it could be followed by any rule other than the ‘‘mini-
mum total slack,’’ such as ‘‘smallest duration.’’ This may lead
to further improvement in the schedule. Furthermore, one pos-
sible approach to speed the GA procedure is to combine into
it the iterative procedure of Fig. 2, as a preprocessor. Step 2
of the GA procedure (Fig. 6) can therefore be changed to ac-
tivate the iterative procedure. This approach tries to arrive at
quick improvements to the schedule upon which the GA pro-
cedure works.

It is noted that the implementation of the GA procedure on
Microsoft Project software benefited from the software’s fea-
ture of allowing user-specified priorities to activities. Other
software systems such as Primavera, for example, do not di-
rectly allow for that and as such requires some manipulation.
FIG. 9. Optimum Schedule of Experiment 1
T / MAY/JUNE 1999

The user, for example, can specify a custom activity code
called ‘‘priority,’’ containing a number that represents the pri-
ority level of each activity. This code can then be used as the
leading heuristic rule for resource allocation and for the im-
plementation of the GA procedure.

SUMMARY AND CONCLUDING REMARKS

Three main developments were made in this paper with re-
spect to improving the resource management of projects: (1)
An effective improvement to resource allocation heuristics us-
ing random activity priorities; (2) a practical modification to
resource leveling heuristics using a double-moment approach;
and (3) a multiobjective optimization of both resource allo-
cation and leveling using the genetic algorithms technique. Us-
ing a widely used project management software, a macro pro-
gram was written to automate the GA procedure and a case
study was used to demonstrate its benefits and future improve-
ments and extensions.

In recent years, project management software systems have
been improving continuously and recent versions have exhib-
ited better interfaces, integrated planning and control features,
and Internet capabilities. Yet, basic project management func-
tions such as resource allocation, resource leveling, and time-
cost trade-off analysis have been the least improved. Still, to
some practitioners software systems provide merely powerful
presentation capabilities and real savings can be achieved only
by putting a hammer to a nail. It is hoped that practical im-
plementations of new approaches such as genetic algorithms
justify the effort spent in proper planning and scheduling as
keys to effective project management and ultimately to actual
savings in project time and cost.

APPENDIX. REFERENCES
Allam, S. I. G. (1998). ‘‘Multi-project scheduling: A new categorization

for heuristic scheduling rules in construction scheduling problems.’’ J.
Constr. Mgmt. and Economics, E&FN Spon, 6(2), 93–115.
JOURNAL OF CONST
Davis, E. W., and Patterson, J. H. (1975). ‘‘A comparison of heuristic and
optimum solutions in resource-constrained project scheduling.’’ Mgmt.
Sci., 21(8), 944–955.

Easa, S. (1989). ‘‘Resource leveling in construction by optimization.’’ J.
Constr. Engrg. and Mgmt., ASCE, 115(2), 302–316.

Feng, C., Liu, L., and Burns, S. (1997). ‘‘Using genetic algorithms to
solve construction time-cost trade-off problems.’’ J. Comp. Civ. Engrg.,
ASCE, 11(3), 184–189.

Gavish, B., and Pirkul, H. (1991). ‘‘Algorithms for multi-resource gen-
eralized assignment problem.’’ Mgmt. Sci., 37(6), 695–713.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and
machine learning. Addison-Wesley, Reading, Mass.

Harris, R. (1978). Resource and arrow networking techniques for con-
struction. Wiley, New York.

Hegazy, T., and El-Zamzamy, H. (1998). ‘‘Project management software
that meet the challenge.’’ Cost Engrg. J., 4(5), 25–33.

Hegazy, T., and Moselhi, O. (1994). ‘‘Analogy-based solution to markup
estimation problem.’’ J. Comp. Civ. Engrg., ASCE, 8(1), 72–87.

Johnson, R. (1992). ‘‘Resource constrained scheduling capabilities of
commercial project management software.’’ Proj. Mgmt. J., 22(4),
39–43.

Karshenas, S., and Haber, D. (1990). ‘‘Economic optimization of con-
struction project scheduling.’’ J. Constr. Mgmt. and Economics, E&FN
Spon, 8(2), 135–146.

Li, H., and Loing, P. (1997). ‘‘Using improved genetic algorithms to
facilitate time-cost optimization.’’ J. Constr. Engrg. and Mgmt., ASCE,
123(3), 233–237.

Microsoft Project. (1995). Reference manual, ver. 4.1 for Windows 95.
Microsoft Corporation, Redmond, Wash.

Moselhi, A., and Lorterapong, P. (1993). ‘‘Least impact algorithm for
resource allocation.’’ Can. J. Civ. Engrg., CSCE, 20(2), 180–188.

Premavera. (1995). Reference manual, ver. 1.0 for Windows. Primavera,
Bala Cynwyd, Pa.

Shah, K., Farid, F., and Baugh, J. (1993). ‘‘Optimal resource leveling
using integer-linear programming.’’ Proc., 5th Int. Conf. in Comp. in
Civ. & Bldg. Engrg., ASCE, Reston, Va., 1, 501–508.

Talbot, F., and Patterson, J. (1979). ‘‘Optimal methods for scheduling
projects under resource constrains.’’ Proj. Mgmt. Quarterly, Dec.,
26–33.

Wiest, D. (1964). ‘‘Some properties of schedules for large projects with
limited resource.’’ Operations Res., 12, 395–416.
RUCTION ENGINEERING AND MANAGEMENT / MAY/JUNE 1999 / 175

