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Abstract

Project scheduling is concerned with single-item or small batch production where scarce resources have to be allocated

to dependent activities over time. Applications can be found in diverse industries such as construction engineering,

software development, etc. Also, project scheduling is increasingly important for make-to-order companies where the

capacities have been cut down in order to meet lean management concepts. Likewise, project scheduling is very attractive

for researchers, because the models in this area are rich and, hence, di�cult to solve. For instance, the resource-con-

strained project scheduling problem contains the job shop scheduling problem as a special case. So far, no classi®cation

scheme exists which is compatible with what is commonly accepted in machine scheduling. Also, a variety of symbols are

used by project scheduling researchers in order to denote one and the same subject. Hence, there is a gap between

machine scheduling on the one hand and project scheduling on the other with respect to both, viz. a common notation

and a classi®cation scheme. As a matter of fact, in project scheduling, an ever growing number of papers is going to be

published and it becomes more and more di�cult for the scienti®c community to keep track of what is really new and

relevant. One purpose of our paper is to close this gap. That is, we provide a classi®cation scheme, i.e. a description of the

resource environment, the activity characteristics, and the objective function, respectively, which is compatible with

machine scheduling and which allows to classify the most important models dealt with so far. Also, we propose a unifying

notation. The second purpose of this paper is to review some of the recent developments. More speci®cally, we review

exact and heuristic algorithms for the single-mode and the multi-mode case, for the time±cost tradeo� problem, for

problems with minimum and maximum time lags, for problems with other objectives than makespan minimization and,

last but not least, for problems with stochastic activity durations. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Scope and purpose

Project scheduling has attracted an ever grow-
ing attention in recent years both from science and
practice. It is concerned with single-item or small
batch production where scarce resources have to
be met when scheduling dependent activities over
time. Project scheduling is important for make-to-
order companies where the capacities have been
cut down in order to cope with lean management
concepts. Project scheduling is very attractive for
researchers also, because the models in this area
are rich in the sense that many well-known opti-
mization problems are special cases of the more
general project scheduling models. For instance,
the resource-constrained project scheduling prob-
lem contains the job shop scheduling problem as a
special case. Without surprise, project scheduling
problems in general are really challenging from a
computational point of view.

Both practice and science of project scheduling
have evolved fast recently, producing numerous
acronyms to distinguish between di�erent problem
classes. Also, a variety of symbols are used by
project scheduling researchers in order to denote
one and the same subject. Hence, sometimes it is
di�cult to keep a clear view of what the subject is
all about, because the models in this area are not
standardized. Recently Herroelen et al. [94] made a
®rst attempt to provide a classi®cation scheme for
project scheduling. Unfortunately, their scheme is
not compatible with what is commonly accepted in
machine scheduling. Hence, there is still a gap
between machine scheduling on the one hand and
project scheduling on the other with respect to
both, viz. a common notation and a classi®cation
scheme. One purpose of our paper is to close this
gap. We provide a classi®cation scheme, i.e. a de-
scription of the resource environment, the activity
characteristics, and the objective function, respec-
tively, which is compatible with machine schedul-
ing and which allows to classify the most

important models dealt with so far. Also, we
propose a unifying notation.

Another purpose of this paper is to review some
of the recent developments. 5 Additional surveys
have been given by, e.g., [67,92,113,151].

The paper is organized as follows. In Section 2
the notation and the classi®cation scheme are in-
troduced. Section 3 covers exact and heuristic al-
gorithms for the single-mode resource-constrained
project scheduling problem. In Section 4 we review
solution procedures for the time±cost tradeo�
problem. The multi-mode resource-constrained
project scheduling problem is the subject of Sec-
tion 5. In Section 6 we concentrate on resource-
constrained project scheduling in the presence of
minimum and maximum time lags. Section 7 is
dedicated to problems with nonregular objective
functions. Section 8 discusses models with sto-
chastic activity durations. We conclude the paper
in Section 9 with an exposition of further models.

Our work will illustrate that there are numerous
di�erent models each of which requires tailored
methods in order to cope with their inherent
(computational) complexity. Nevertheless, con-
straint propagation techniques have recently
evolved, the aim of which is to solve a variety of
constraint satisfaction problems. Although their
impact on the ®eld of resource-constrained (pro-
ject) scheduling still is not clear we decided to add
an Appendix A the subject of which are constraint
propagation-based sequence consistency tests.

2. Notation and classi®cation scheme

In the last few years many di�erent problems in
project scheduling have been considered and time

5 Most of the working papers covered in this review are

available on the internet via http://www.wior.uni-karlsruhe.de/

rcpsp/.
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is ready to have a uni®ed notation and a general
classi®cation scheme for project scheduling. It is
important that this scheme is compatible with
what is generally accepted in machine scheduling
(cf. [77]) and resource-constrained machine
scheduling (cf. [18]), because machine scheduling
models are special cases of project scheduling
models.

In the sequel we will ®rst propose a unifying
notation. Basically, we assume a project to consist
of activities (jobs) 1; . . . ; n. For the sake of sim-
plicity, in general a unique dummy beginning ac-
tivity 0 and a unique dummy termination activity
n� 1 are added. Frequently, the structure of the
project is depicted by a so-called activity-on-node
(AON) network where the nodes and the arcs
represent the activities and the precedence rela-
tions, respectively. G � �V ;E� denotes the graph of
precedence constraints (transitively reduced),
while single precedence constraints are denoted
alternatively by i! j or �i; j�. Pred�j� de®nes the
set of direct predecessors while Succ�j� is the set of
direct successors of activity j. The processing time
of activity j is given by pj.

There is a set Rq of renewable, a set Rm of
nonrenewable and, possibly, a set of doubly con-
strained resources. Renewable means that a pre-
speci®ed number of units of a resource is available
for every period of the planning horizon T . Non-
renewable says that a number of units of a re-
source is available for the entire planning horizon.
As usual, we skip the notion of doubly constrained
resources, because they can be covered by the re-
newable and the nonrenewable ones. The per pe-
riod usage of activity j of renewable resource k is
denoted by rq

jk while Rq
k de®nes the (constant)

number of units of resource k available in every
period. In the multi-mode case, Mj de®nes the set
of modes, that is, processing alternatives of activ-
ity j. The processing time of activity j in mode m is
given by pjm. The per period usage (total resource
consumption) of activity j of renewable (nonre-
newable) resource k is given by rq

jkm (rm
jkm) while Rm

k
de®nes the number of units of nonrenewable re-
source k available for the entire planning horizon.
In the single-mode case, that is for jMjj � 1 for all
j and Rm � ;, we skip the mode index m and the
superscript q for the sake of simplicity.

Sj (Cj) denotes the start time (completion time)
of activity j. Consequently, S � �S1; . . . ; Sn� is a
schedule and C � �C1; . . . ;Cn� is the vector of
completion times. ST de®nes the set of time-fea-
sible schedules, SR the set of resource-feasible
schedules and S �SR \ST the set of feasible
schedules. t is an index for time periods. Finally,
dmin

ij and dmax
ij denote minimum and maximum

time lags, respectively, between the start of activ-
ities i and j. In general, parameters are assumed to
be integer-valued.

Table 1 summarizes the notation introduced
along with some minor additions.

Now we extend the ajbjc-scheme used in the
machine scheduling literature.

a: Resource environment: To distinguish be-
tween speci®c machine scheduling problems and
project scheduling problems we introduce in the a-
®eld PS (project scheduling) or MPS (multi-mode
project scheduling). PS can be augmented to PS
m; r; q according to the notation of Bla _zewicz et al.
[18] for resource-constrained machine scheduling.
In the case of multi-mode project scheduling also
nonrenewable resources may be considered. In this
case the notation is analogously augmented by
MPSm; r; q; l; s;x.

If an entry of m; r;q; l; s;x is replaced by �, the
values of the parameters are speci®ed in the input.
For PSm; �; � and PSm; r; � we write PSm and PSm; r,
respectively, for short. If all values in m; r; q are
speci®ed in the input, we write � instead of �; �; �.

PS project scheduling
MPS multi-mode project scheduling
PSm; r; q m resources, r units of each

resource available, each activ-
ity requires at most q units of
the resources

MPSm; r; q; l; s;x multi-mode project scheduling
with m renewable resources, r
units of each resource avail-
able, each activity requires at
most q units of the resources,
l nonrenewable resources, s
units of each resource avail-
able, each activity requires at
most x units of the resources

P. Brucker et al. / European Journal of Operational Research 112 (1999) 3±41 5



Likewise, for PS� and MPS�; � we write PS and MPS,
respectively.

Examples:

b: Activity characteristics: We use established
notations from machine scheduling (cf. [77]) like pj

processing times, prec general precedence con-
straints, etc.

PSm; 1; 1 m resources, 1 unit of each resource
available, each activity requires at
most 1 unit of the resources

PSm;1 m resources, unlimited number of
resource units available (i.e., there are
no explicit resource constraints, e.g. in
resource leveling)

PS1 one resource

pj � 1 all processing times (activity
durations) are equal to one

pj � sto stochastic processing times
�d deadline for project duration
prec precedence constraints be-

tween activities
chains, intree,
outtree, tree . . .

precedence relations between
activities are speci®ed by
chains, intree, outtree, tree . . .

temp general temporal constraints
given by minimum and maxi-
mum start±start time lags be-
tween activities

Table 1

Basic notation

Symbol De®nition

V set of activities

n number of real activities

E set of precedence or temporal constraints

G � �V ;E� directed graph of precedence or temporal constraints

i! j, �i; j� precedence constraint

Pred�j� set of direct predecessors of activity j
Succ�j� set of direct successors of activity j
pj processing time of activity j
Rq set of renewable resources

Rq
k constant amount of available units of renewable resource k

rq
jk per period usage of activity j of renewable resource k
Mj set of modes (processing alternatives) of activity j
pjm processing time of activity j in mode m
Rm set of nonrenewable resources

Rm
k total amount of available units of nonrenewable resource k

rq
jkm per period usage of activity j of renewable resource k

when processed in mode m
rm

jkm consumption of activity j of nonrenewable resource k
when processed in mode m

Sj start time of activity j
S � �S1; . . . ; Sn� schedule

Cj completion time of activity j
C � �C1; . . . ;Cn� vector of completion times

ST set of time-feasible schedules

SR set of resource-feasible schedules

S � SR \ST set of feasible schedules

rk�S; t� resource consumption of resource k of schedule S at time t
�d deadline for project duration

T ; t time horizon, index for periods

t � 1; 2; . . . ; T periods

�t ÿ 1; t� time interval corresponding to period t
dmin

ij =dmax
ij minimum/maximum time lag between start of activities i and j

6 P. Brucker et al. / European Journal of Operational Research 112 (1999) 3±41



c: Objective function: As in most cases for ma-
chine scheduling we describe objective functions
by the corresponding formulas. Besides classical
objective functions like Cmax; Lmax;

P
wjCj etc.,

further criteria may be considered, for example:

Di�erent types of functions f which have been
considered in literature and practice will be dis-
cussed in Section 7.1.

Some of the models covered in this paper can
now be classi®ed as follows:
· PS j prec j Cmax: This model forms the core

problem among the class of resource-con-
strained project scheduling problems. Basically,
while minimizing the project's makespan, we
have to observe precedence and resource con-
straints. Recently, a couple of papers have con-
tributed new solution procedures. However, the
problem is still rather challenging from a com-
putational point of view. Methods for solving
this model are reviewed in Section 3.

· MPS j precj Cmax: Models of this class capture
resource±resource and time±resource tradeo�s.
Hence, they come more close to what can be ob-
served in reality of project management. Meth-
ods for solving this model are reviewed in
Section 5.

· PS j temp j Cmax: In many applications, beside
minimum time lags, maximum start±start time
lags between activities must be observed. Here,
already the feasibility problem is NP-complete
in the strong sense. Methods for solving this
model are reviewed in Section 6.

· PS j temp jP ckf �rk�S; t��: In some applications
the availability of renewable resources is limited
and, in addition, we have to come up with a
schedule which levels the resource usage over
time. Methods for solving this model and relat-
ed ones are reviewed in Section 7.

3. Single-mode case

In this section enumerative and heuristic
methods for solving the basic resource-constrained
project scheduling problem PS j prec j Cmax will be
summarized. Assume that the project consists of a
set V � f0; 1; . . . ; n; n� 1g of activities where ac-
tivity j � 0 (j � n� 1) is a ®ctitious beginning
(termination) activity. The network is assumed to
be acyclic and depicted by an activity-on-node
network with nodes as activities and arcs as pre-
cedence relations. Preemption is not allowed.
There are scarce renewable resources. All data are
assumed to be integer-valued. The objective is to
®nd a makespan-minimal schedule that meets the
constraints imposed by the precedence relations
and by limited resource availabilities.

Given an upper bound T on the minimum
project duration we can use the precedence rela-
tions to derive time windows, i.e. intervals
�ECj; LCj�, with earliest completion time ECj and
latest completion time LCj, containing the prece-
dence feasible completion times of activity j 2 V ,
by forward and backward recursion. Analogously,
the interval �ESj;LSj� bounded from below and
above by the earliest start time ESj and latest start
time LSj, respectively, can be calculated to re¯ect
the precedence feasible start times. In general,
PS j prec j Cmax is formulated as a 0-1 integer
program which makes use of variables xjt � 1, if
activity j is completed in period t (0, otherwise).
Alternatively, it is stated similar to what is pre-
sented in Section 6.1 for the more general
PS j temp j Cmax. For the sake of shortness, we do
not present a formal model here.

Section 3.1 describes recent branch-and-bound
approaches for PS j prec j Cmax while Section 3.3
surveys heuristics. Lower bounds are important
for both types of methods. They are the subject of
Section 3.2. In Section 3.4 computational results
are brie¯y discussed.

Within the last years branch-and-cut methods
improved the solvability of several combinatorial
optimization problems substantially. The genera-
tion of valid inequalities and their propagation
through an LP solver might be considered as an
early e�ective start of propagation of constraints
based on consistency tests. In scheduling successful

P
cF

j bCj net present value (cF cash ¯ow,
b discount factor)P

ckf �rk�S; t�� resource leveling (ck cost per
unit of resource k, rk�S; t� us-
age of resource k at time t
given schedule S)P

ck max rk�S; t� resource investment
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applications have been achieved for disjunctive
scheduling problems (e.g. job shop scheduling) and
are currently going to be extended to
PS j prec j Cmax. The aim of such e�orts is to ac-
celerate heuristics or branch-and-bound methods
through an early detection of nonattractive or in-
feasible nodes. A comprehensive introduction into
constraint propagation has been provided by e.g.
Tsang [195]. Constraint propagation-based con-
sistency tests are described in Appendix A.

3.1. Branch-and-bound methods

Starting with an early work of Johnson [101] a
variety of branch-and-bound algorithms have been
developed for PS j prec j Cmax. Most of them use
partial schedules which are associated with the
vertices of the enumeration tree. The branching
process consists of extending the partial schedule
in di�erent ways. Dominance rules, lower bounds,
and immediate selection allow to decrease the
number of alternatives for extending the partial
schedule. The methods use di�erent branching
schemes and pruning methods. In general, depth-
®rst-search is used in order to keep memory re-
quirements low.

The Precedence Tree: Patterson et al. [155]
proposed an algorithm guided by the so-called
precedence tree. The procedure begins with start-
ing the dummy beginning activity at time 0. At
each level g of the branch-and-bound tree, the set
SJg of the currently scheduled activities and the set
EJg of the eligible activities, that is, those activities
the predecessors of which are already scheduled, is
determined. Then an eligible activity jg is selected.
Now the earliest precedence and resource feasible
start time Sjg that is not less than the start time
assigned on the previous level of the search tree is
computed. Then we branch to the next level. If the
dummy termination activity is eligible, a complete
schedule has been found. In this case, backtrack-
ing to the previous level occurs. Here, the next
untested eligible activity is chosen. If all eligible
activities have been tested, we track another step
back. Each branch from the root to a leaf of the
precedence tree corresponds to a permutation of
the set of activities which is precedence feasible in

the sense that each predecessor of an activity jg has
a smaller index in the sequence than jg. Recently,
this algorithm has been enhanced with powerful
search tree reduction techniques by Sprecher [185].

Delay Alternatives: This algorithm bases on the
concept of delay alternatives used by Christo®des
et al. [40] which has been enhanced by De-
meulemeester and Herroelen [48]. In contrast to
the precedence tree algorithm, here each level g of
the branch-and-bound tree is associated with a
®xed time instant tg (decision point) at which ac-
tivities may be started. Consequently, a di�erent
de®nition of eligible activities is used in this algo-
rithm: A currently unscheduled activity j is called
eligible at time tg if all of its predecessors i are
scheduled with a completion time Ci6 tg. Fur-
thermore, an activity j with start time Sj is said to
be in process at time tg if we have Sj6 tg < Sj � pj.
The proceeding at the current level g of the
branch-and-bound tree is as follows: The new de-
cision point tg is determined as the earliest com-
pletion time of the activities in process at tgÿ1.
Note that, due to the constant availability levels of
the renewable resources, only ®nish times of
scheduled activities need to be considered for
starting unscheduled ones. Using the set FJg of the
activities that are ®nished at or before the decision
point, the set EJg of the eligible activities is com-
puted. Having started all eligible activities by
adding them to the set JIPg of the activities in
process, may have caused a resource con¯ict.
Thus, the set of the minimal delay alternatives is
computed according to the following de®nition: A
delay alternative DAg is a subset of JIPg such that
for each renewable resource k 2 R it isP

j2JIPgnDAg
rjk 6Rk. A delay alternative DAg is

called minimal if no proper subset of DAg is a
delay alternative. A minimal delay alternative is
selected and the activities to be delayed are re-
moved from the current partial schedule. Note, if
no resource con¯ict occurs, the only minimal delay
alternative is the empty set. We store the start
times of an activity j to be delayed because this
information has to be restored during backtrack-
ing. Then it is branched to the next level and the
next decision point is computed. If the schedule is
complete now, backtracking is performed and the
next minimal delay alternative is tested. Clearly,

8 P. Brucker et al. / European Journal of Operational Research 112 (1999) 3±41



this procedure is di�erent from the precedence tree
algorithm in that sets of activities instead of (sin-
gle) activities are started at each level of the
branch-and-bound tree. Moreover, here the time
instant at which activities may be started is de-
termined before the activities themselves are se-
lected. Finally, in contrast to the precedence tree
algorithm, this approach allows to withdraw
scheduling decisions at the current level that have
been made at a lower level.

Extension Alternatives: Stinson et al. [188]
proposed to use extension alternatives to construct
partial schedules. As in the previous algorithm,
each level g of the branch-and-bound tree is as-
sociated with a decision point tg, a set JIPg of the
activities in process, a set FJg of the ®nished ac-
tivities, and a set EJg of eligible activities. Then the
current partial schedule is extended by starting a
subset of the eligible activities at the decision point
without violating the resource constraints. More
precisely, an extension alternative EAg is a subset
of the eligible set for which

P
j2JIPg[EAg

rjk 6Rk

holds for each resource k 2 R and, moreover,
EAg 6� ; if JIPg � ;. Note, in order to secure that
the algorithm terminates, we may only have non-
empty extension alternatives if no activities are in
process. However, if there are currently activities
in process, the empty set is always an extension
alternative which must be tested in order to
guarantee optimality. At the current level g of the
branch-and-bound tree the procedure is as follows:
Determine the new decision point and compute the
set of the eligible activities and the set of extension
alternatives. Finally, select an extension alternative
EAg and start the corresponding activities before
branching to the next level. The backtracking
mechanism equals the one of the previous algo-
rithm. Note that this procedure is di�erent from
the previous algorithm: Whereas the former in-
cludes the possibility to delay activities that have
been started on a lower than the current level, the
latter does not allow to withdraw a scheduling
decision of a lower level. As a consequence, we
may not restrict the search to ``maximal'' extension
alternatives while we do not lose optimality when
considering only minimal delay alternatives. Note,
Stinson et al. [188] introduced the procedure solely
by means of an example.

Block Extensions: Mingozzi et al. [126] consider
a slightly di�erent approach based on the follow-
ing ideas. There exists an optimal schedule de®ning
times

t0 � 0 < t1 < t2 < � � � < tl

and corresponding sets of activities A1; . . . ;Al such
that

(i) each ti�i > 0� is the ®nishing time of some ac-
tivity,
(ii) all activities in Ai can be processed jointly
during �tiÿ1; ti� �i � 1; . . . ; l�,
(iii) if an activity j 2 Ai is not ®nished in �tiÿ1; ti�
it will also be processed in �ti; ti�1�, and
(iv) all predecessors of any activity which start
at time ti are scheduled before time ti.
A block consists of such an interval �tiÿ1; ti� with

a set Ai of activities which can be processed jointly.
Furthermore a partial schedule is de®ned by a se-
quence of blocks satisfying conditions (iii) and (iv).
Then it is branched by adding new blocks pro-
viding again partial schedules.

Schedule schemes: The branch-and-bound al-
gorithm developed by Brucker et al. [32] general-
izes branch-and-bound methods for the job shop
scheduling problem and the multiprocessor task
scheduling problem (cf. [30,118]). It also uses
concepts which can be found in Bartusch et al.
[12]. Instead of using partial schedules, sets of
feasible schedules are represented by the so-called
schedule schemes. Schedule schemes can be moti-
vated as follows.

For two arbitrary activities a schedule S induces
either a parallelity relation ikj or one of the two
conjunctions i! j or j! i. i! j holds if and only
if i ®nishes before the start time of j. ikj means that
i and j are processed in parallel for at least one
time unit. We get sets of schedules by relaxing
these relations. i! j or j! i are relaxed by the
disjunction iÿ j. iÿ j means that we have either
i! j or j! i. Furthermore disjunctions iÿ j and
parallelity relations ikj can be relaxed to ¯exibility
relations i � j. i � j means that it is undecided yet
which of the two relations iÿ j or ikj holds.
C;D;N and U denote the sets of conjunctions,
disjunctions, parallelity relations, and ¯exibility
relations, respectively. �C;D;N;U� is a schedule
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scheme if for any two di�erent activities i; j exactly
one of the following relations holds: i! j 2 C or
j! i 2 C or iÿ j 2 D or ikj 2N or i � j 2 U. A
schedule scheme �C;D;N;U� de®nes a set of
feasible schedules (which may be empty), namely
all feasible schedules which satisfy all the relations
in C;D;N.

If C0 is the set of all given precedence relations,
D0 is the set of all pairs of activities which cannot
be processed in parallel due to the resource con-
straints, and U0 the set of all remaining pairs i � j,
then �C0;D0; ;;U0� represents the set of all feasible
schedules. �C0;D0; ;;U0� corresponds to the root
of the enumeration tree.

For a schedule scheme of the form �C;D;N; ;�
it can be shown that either no feasible schedule
satisfying all the relations exists or a dominating
feasible schedule can be calculated (cf. [117]). Both
can be done in O�n3� time. Thus, schedule schemes
of the form �C;D;N; ;� can be treated as leaves of
the enumeration tree and one can branch by re-
placing a ¯exibility relation i � j by iÿ j or ikj.

The inclusion of conjunctions in schedule
schemes allows to form a temporal analysis in each
node of the enumeration tree. By this analysis new
conjunctions, disjunctions or parallelity relations
are deduced. Furthermore, for the activities time
windows can be calculated which improve lower
bound calculations.

Minimal forbidden sets: Igelmund and Rader-
macher [99,100] have introduced a branching
scheme based on minimal forbidden sets. A more
detailed discussion of these concepts can be found
in Sections 6.2 and 8.2 of this survey.

Beside lower bounds which are described in
Section 3.2, dominance rules are successfully used
within e.g. the partial enumeration algorithms of
Demeulemeester and Herroelen [48,49] and
Sprecher [185] in order to prune large parts of the
search tree. Among the most powerful dominance
rules is the cutset rule which makes use of stored
information about already evaluated partial
schedules. During the search process the rule
compares the current partial schedule with the
stored data. If it can be proven that any solution
obtainable from the current partial schedule can-
not be better than a solution obtainable from a
previously evaluated partial schedule the infor-

mation of which has been stored, then back-
tracking may be performed. A description of such
rules is skipped here for the sake of shortness and
the reader is referred to Section 5.2 where some
rules are outlined.

3.2. Lower bounds

Usually lower bounds for the optimal solution
value of PS j prec j Cmax can be calculated by re-
laxing some of the constraints and solving the re-
laxed problem to optimality. Relaxation of the
resource constraints leads to the critical path
length which provides a simple lower bound.
Stinson et al. [188] improve this bound by adding
an activity i which does not belong to a critical
path CP . They calculate a maximal number ei of
time units activity i can be processed in parallel
with CP . By adding maxf0; pi ÿ eig to the critical
path length a new lower bound is provided. In-
stead of adding a single activity, Demeulemeester
and Herroelen augment a critical path CP by a
path P node-disjoint with CP and calculate a lower
bound for CP [ P using a dynamic programming
procedure. In general this lower bound does not
coincide with the optimal solution value for
CP [ P (cf. [172]). However, the two-path relax-
ation can be solved to optimality by a graphical
method developed for the job shop problem with
two jobs. This approach also allows to ®nd an
optimal solution for CP [ P which respects time
windows for the activities in CP [ P (cf. [28]).

A bound of Mingozzi et al. [126] is based on the
following linear program which relaxes partially
the precedence constraints and allows preemption.
They consider maximal sets of activities which can
be processed in parallel. Let a1; a2; . . . ; aq be the
characteristic vectors of all these sets. Then the
linear programming relaxation has the form

min
Xq

j�1

xj �1�

s:t:
Xq

j�1

aijxj P pi; i � 1; . . . ; n; �2�

xj P 0; j � 1; . . . ; q; �3�
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where xj denotes the number of time units all ac-
tivities represented by aj are processed jointly. The
integer version of the dual of Eqs. (1)±(3) is a set
packing problem. Mingozzi et al. [126] provide
lower bounds for the resource-constrained project
scheduling problem by solving the set packing
problem heuristically.

Baar et al. [5] solve the linear program (1)±(3)
directly by applying column generation tech-
niques. Although the number of columns is
growing exponentially with the number of activi-
ties the method is quite fast. Brucker and Knust
[31] enhanced the approach by taking into account
time windows for the activities. These time win-
dows are derived from the precedence constraints
using a ®ctitious upper bound T for the makespan.
Now the columns correspond to sets of activities
which can be processed jointly in a given time
window. The objective is to ®nd a preemptive
schedule respecting all times windows. If such a
schedule does not exist, T is a lower bound. Binary
search provides largest T with this property. These
``destructive improvement'' technique has also
been used by Klein and Scholl [105] who tested
various methods for proving infeasibility of an
upper bound T .

Other linear programming based bounds have
been introduced in connection with the branch-
and-bound algorithm of Christo®des et al. [40].

3.3. Heuristic methods

The ®rst heuristic methods were priority-rule
based scheduling methods (cf. [103]). Up to now, a
multitude of priority rules were proposed and
tested experimentally (cf. [4,22,42,153,194]). Pri-
ority-based heuristics have the advantage of being
intuitive, easy to implement, and fast in terms of
computational e�ort. However, they do not excel
with respect to the average deviation from the
optimal objective function value. Hence, recent
research interests shifted to more elaborate heu-
ristics like truncated branch-and-bound (cf. [4]),
integer programming based heuristics (cf. [148]),
disjunctive arc concepts (cf. [4,14]), local con-
straint-based analysis (cf. [196]), sampling tech-

niques (cf. [110]), and local search techniques (cf.
[5,24,85,108,119,169]).

3.4. Computational results

Demeulemeester and Herroelen [48] tested their
branch-and-bound algorithm on the Patterson-set
(cf. [154]) which consists of 110 test problems with
up to 51 activities. They solved these problems with
an average computation time of 0.21 s (IBM PS/2
Model 70 A21, 25 MHz) outperforming the algo-
rithm of Stinson et al. [188] by a factor of nearly 12.

Kolisch et al. [116] developed the parameter-
driven project generator ProGen which thereafter
has been widely used as a tool for the evaluation of
algorithms proposed for resource-constrained
project scheduling. Meanwhile test sets with 30, 60,
90, and 120 activities have been generated each
consisting of 480 instances of various types. The 30
activity test set was also used to test the approach
by Demeulemeester and Herroelen [48] on a per-
sonal computer (IBM PS/2 Model 55SX, 386SX,
15 MHz). Whereas the Patterson-set has been
solved within 1.06 s on average, only 415 of the
480 problems instances have been solved within a
time limit of 1000 s per problem.

Mingozzi et al. [126] report that their linear
programming formulation based bounds perform
better than the critical sequence bound introduced
by Stinson et al. [188], and that their algorithm is
competitive to the procedure presented by De-
meulemeester and Herroelen [48], the best one
known up to then. Demeulemeester and Herroelen
[49] enhanced their approach by adapting a lower
bound of Mingozzi et al. [126] and by representing
four resources of 8 bit size through one 32 bit
unsigned integer. Allowing as much as 24 Mbyte
they could solve the entire 30 activity benchmark-
set for the ®rst time. The CPU-time averages about
34 s on a personal computer (80486, 25 MHz).
Sprecher [185] compared his branch-and-bound
algorithm with the enhanced version of the algo-
rithm of Demeulemeester and Herroelen pointing
out the tradeo� between computation times and
memory requirements. While the enhanced algo-
rithm of Demeulemeester and Herroelen [49]
solves 479 of the 480 benchmark problems with 30
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activities within average time of 12.33 s using 24
Mbyte memory, the algorithm of Sprecher solves
the same problems with average time of 12.85 s
using 400 Kbyte memory.

The branch-and-bound algorithm of Brucker et
al. [32] solves less problems than other algorithms,
but its main advantage is smaller memory re-
quirement. For problems with up to 90 activities it
uses at most 10 Mbyte. 326 of the 480 benchmark
problems with 60 activities were veri®ed for the
®rst time within a 1 h time limit on a SUN/Sparc
20/801 workstation.

Comparing the heuristic methods it can be
concluded that the adaptive search algorithm of
Kolisch and Drexl [110], the tabu search method
based on schedule schemes of Baar et al. [5], the
genetic algorithm of Hartmann [85] and the simu-
lated annealing algorithm of Bouleimen and Le-
cocq [24] provide the best results. Recently,
Kolisch and Hartmann [112] performed a com-
parison of most of the available heuristic algo-
rithms for larger instances. According to these
results, the genetic algorithm of Hartmann [85] and
the simulated annealing algorithm of Bouleimen
and Lecocq [24] are the most promising candidates.

4. Time±cost tradeo� problems

So far, we have only considered project net-
works with ®xed (and known) processing times. A
generalization of this setting that is still deter-
ministic (and assumes complete information) is
obtained by permitting processing times to vary
according to how much the planner is willing to
pay for it. In view of the next section, this control
on the processing times can be interpreted as al-
location of a nonrenewable resource to the activi-
ties, where a larger allocation to an activity (i.e., a
higher cost input) reduces its processing time.

The planner then aims at either minimizing the
project makespan subject to a ®xed upper bound
on the nonrenewable resource (the budget prob-
lem), or at minimizing the total allocation subject
to a given bound on the makespan (the deadline
problem). As the allocation is usually measured in
money, these problems are commonly referred to
as time±cost tradeo� problems.

4.1. Model

A formal model for time±cost tradeo� prob-
lems consists of a set V � f0; 1; . . . ; n; n� 1g of
activities, a directed graph G � �V ;E� of prece-
dence constraints among the activities, and, for
each activity j, a set Mj of possible processing
times pj 2Mj, together with a nonincreasing
function cj : Mj ! R� that models the individual
tradeo� between processing time pj of activity j
and the cost (or amount of resource) cj�pj� allo-
cated to it. Section 5 covers the model
MPS j prec j Cmax, a generalization of the model
dealt with in this section. There, Mj will be used in
a similar way to denote the set of modes.

Di�erent assumptions on the sets Mj and the
cost functions cj lead to di�erent subcases of time±
cost tradeo� problems.

For instance, if every Mj is a closed interval
Mj � �aj; bj� and cj is a�ne linear and decreasing
on Mj, we have the linear time±cost tradeo�
problem introduced by Kelley and Walker [104].

If, on the other hand, every Mj is a discrete
(i.e., ®nite) set and cj is decreasing on Mj, we have
the discrete time±cost tradeo� problem introduced
by Harvey and Patterson [87] and Hindelang and
Muth [96].

A realization p 2 Rn�2
� of the project is an as-

signment of processing times pj 2Mj to activities
j 2 V . The total cost c�p� of the realization p is
given by c�p� �Pj2V cj�pj�. The makespan
Cmax�p� of the realization p is the makespan of the
earliest start schedule of the project when activity j
has processing time pj, i.e., the length of a longest
path in G � �V ;E� with pj as ``length'' of vertex
j 2 V .

Fixing either cost or time, we obtain two related
optimization problems with the objective to mini-
mize the other parameter.

Budget problem: For a given nonnegative bud-
get b P 0, ®nd a realization p with c�p�6 b that
minimizes the makespan Cmax�p�.

Deadline problem: For a given deadline d on the
makespan, ®nd a realization p with Cmax�p�6 d
that minimizes the total cost c�p�.

Usually, one wants to solve these problems for
all possible budgets or deadlines. This leads to the
function
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Topt�b� :� minfCmax�p� j pj 2Mj; c�p�6 bg
giving the minimum makespan as a function of the
budget b, and the function

Bopt�d� :� minfc�p� j pj 2Mj; Cmax�p�6 dg;
giving the minimum cost as a function of the
deadline d (the project cost curve).

The budget problem is a special case of
MPS1 j prec j Cmax which is covered in Section 5.
While in this section we have no renewable re-
sources and only one single nonrenewable re-
source, Section 5 considers the general multi-mode
version. Similarly, the deadline problem combines
characteristics of the multi-mode case (Section 5)
and of the resource levelling problem (Section 7).
In our notation, it could be denoted by
MPS1 j prec jP ckrk�S; t�.

4.2. Exact algorithms

Kelley and Walker [104] discuss both the bud-
get problem and the deadline problem within the
context of the linear time±cost tradeo� problem.
In this setting (and also in a more general one, see
[15]), the project cost curve Bopt can be obtained as
the inverse function of Topt, so it su�ces to con-
sider only Bopt.

For every ®xed deadline d, Bopt�d� can be ex-
pressed as a special linear program whose dual
resembles a min-cost ¯ow problem (see [74]).
Using standard results from parametric linear
optimization it hence follows that Bopt�d� is a
piecewise linear and convex function of the pa-
rameter d.

Fulkerson [74] and Kelley [102] independently
developed the same algorithm to compute the
project cost curve Bopt. This algorithm uses an
activity-on-arc representation of the network and
iteratively calculates a sequence of less and less
``cheap'' cuts in the current network of critical
activities by which the makespan is reduced. Every
breakpoint of the project cost curve corresponds
to a change of the current cut to a more expensive
one.

Every such cut can be determined by a max-
¯ow computation in which the capacities are de-

rived from the slopes of the linear cost functions cj

of the critical activities. These ideas have subse-
quently been improved by Phillips and Dessouky
[159,160].

This algorithm is polynomial per cut
�O�jV j2 log jV j� by standard ¯ow methods (cf.
[79]), but the number of cuts to be computed may
be large. Skutella [178] provides a class of exam-
ples for which the project cost curve has expo-
nentially many breakpoints, thus requiring an
exponential number of cut calculations.

The case where the possible processing times
are discrete is quite common in practice. Only re-
cently, De et al. [46] showed that, given the budget
b, it is strongly NP-complete to decide whether
there is a realization p such that c�p�6 b and
Cmax�p�6 2. This holds already for activities with
at most two processing time alternatives, i.e.,
jMjj6 2.

Due to the practical importance of the problem,
many (exponential time) exact algorithms have
been proposed. Early examples are dynamic pro-
gramming approaches by Hindelang and Muth
[96] and Robinson [164], and an enumeration al-
gorithm by Harvey and Patterson [87].

The currently best known algorithms still rely
on dynamic programming, but exploit in
addition the decomposition structure of the
underlying network. The decomposition that fa-
cilitates the computation is known as modular
decomposition or substitution decomposition and
has many applications in network and other
combinatorial optimization problems, see the
comprehensive article by M�ohring and Rader-
macher [129].

Its usefulness for the time±cost tradeo� prob-
lem was ®rst observed by Frank et al. [71] and
Rothfarb et al. [165] for the special case of series±
parallel decompositions. The general decomposi-
tion theorem that involves arbitrary modules is
due to Billstein and Radermacher [15] (see also
[130]).

Because of the modular decomposition, the
project cost curve needs only to be evaluated for
certain indecomposable subnetworks (the factors
in a composition series) of the original network.
This is done by ``transforming'' such an inde-
composable network to a series±parallel network
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and then performing the ``easy'' calculations for
the series±parallel case. The transformation into a
series±parallel network successively identi®es cer-
tain nodes for ``duplication''. Any such duplica-
tion transforms the network ``closer'' to a series±
parallel one, but increases the computation time by
a multiplicative factor.

This idea seems to be due to Robinson [164]
and has been further developed by Bein et al. [13],
De et al. [45] and Elmaghraby [66]. The same ideas
also came up in reliability theory and seem to have
in¯uenced each other, see [6].

Demeulemeester et al. [50] provide the ®rst
implementation of this approach. They imple-
ment two strategies for ®nding the nodes for
duplication. The ®rst follows the theory of Bein
et al. [13], which results in the minimum number
of duplications required, while the second tries
to minimize the number of realizations that have
to be considered during the algorithm. De-
meulemeester et al. [50] report on computational
experience for networks with up to 45 activities
without identifying a clear winner between the
two strategies.

The crucial parameter in the theoretical run-
time analysis of this algorithmic approach is the
minimum number of node duplications needed to
transform an activity-on-arc network into a series±
parallel network. Bein et al. [13] refer to it as the
reduction complexity of the network. It provides a
measure for the ``distance'' of the given network
from being series±parallel.

Such a distance measure is important for the
design of polynomial-time algorithms for many
network problems (see also Section 8.1 on sto-
chastic scheduling), since computational ap-
proaches for series±parallel graphs can often be
extended to algorithms for arbitrary graphs that
are exponential only in the ``distance'' from being
series±parallel, rather than in its size.

Another measure for this distance is the fac-
toring complexity also introduced by Bein et al.
[13], which is based on a special way of describing
all paths from the source to the sink of the net-
work. Bein et al. [13] showed that the factoring
complexity provides an upper bound for the re-
duction complexity. Naumann [137] showed that
both measures are in fact equal.

4.3. Approximation algorithms

The approximation behavior of the discrete
time±cost tradeo� problem has recently been an-
alyzed by Skutella [177].

He ®rst presents a polynomial reduction to the
case where every activity has at most two pro-
cessing times, and one of them is zero. So
Mj � f0; �pjg or Mj � f�pjg for activity j 2 V .

For such a discrete time±cost tradeo� problem,
Skutella de®nes a natural linear relaxation, which
replaces Mj by the interval ~Mj � �0; �pj� and takes as
cost function cj the linear interpolation between cj�0�
and cj��pj�. All other parameters remain the same.

Now consider the deadline problem P for a
®xed deadline d. One then ®rst solves the linear
relaxation ~P for the same deadline d, which yields
an optimal realization ~p of ~P in polynomial time.
Since all parameters are assumed to be integral,
the obtained optimal realization p will in this
special case also be integral, but ~pj need not be in
f0; �pjg. This solution ~p is then ``rounded'' to a
solution of the original problem P by rounding the
processing time ~pj of those activities j with
0 < ~pj < �pj to the lower value pj � 0. Rounding to
the lower value is necessary in order to preserve
the deadline d.

If the budget problem is considered, the
rounding must be done into the other direction,
i.e., pj � �pj, thus preserving the budget condition.
In both cases, the produced realization p of the
discrete time±cost tradeo� problem is an `-ap-
proximation, where ` is the largest occurring pro-
cessing time of any activity. So Cmax�p�6 ` � Topt�b�
and c�p�6 ` � Bopt�d�, respectively.

For the deadline problem, the performance
guarantee of ` cannot be improved by this
rounding algorithm and it is open whether it can
be improved at all. For the budget problem,
however, Skutella develops better approximation
algorithms. Unlike the situation for the deadline
problem, he can now repair a budget violation by
rounding some processing times to the higher
value �pj, thus ``saving'' part of the budget that can
then be ``reinvested'' to shorten ``critical'' activities
to the lower value 0.

For projects with �pj 2 f0; 1; 2g this leads to a 3
2
-

approximation, i.e., for a given budget b, the al-
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gorithm produces a realization p with c�p�6 b and
Cmax�p�6 d32 Topt�b�e. The running time of the al-
gorithm is O�jV j3 log jV j�.

The NP-completeness of deciding whether a
makespan of 2 can be realized with a given budget
shows that the performance ratio of 3

2
cannot be

improved (unless P�NP).
For projects with pj6 `, Skutella uses addi-

tional partitioning techniques and obtains a
strongly polynomial approximation algorithm
with a performance guarantee of 2� log2 `� 1�. A
di�erent variant yields 3

2
log2 `� 3.

Another idea for approximation algorithms
consists in relaxing also the tight constraint (bud-
get or deadline), thus arriving at the so-called
bicriteria approximation algorithms. Using ideas
similar to those above, Skutella shows that, for a
value 0 < l < 1 and an optimal time±cost pair
�d; b� (i.e., d � Topt�b� and b � Bopt�d�), one can in
polynomial time construct a realization p such that
c�p� < �1=�1ÿ l��b and Cmax�p�6 �1=l�d. For
l � 1

2
, this yields a realization which is at most

twice as expensive and twice as long as an optimal
realization for the given deadline or budget.
Choosing l uniformly at random in the interval
�1=e; 1� one obtains improved approximation ra-
tios of e=�eÿ 1� � 1:58 for the expected cost and
expected makespan.

5. Multi-mode case

This section covers exact and heuristic algo-
rithms for solving MPS j prec j Cmax which is de-
®ned as follows. Like in the previous sections the
project network is assumed to be acyclic and to-
pologically sorted. Each activity j 2 V may be
executed in one out of a set of Mj modes. Also,
each activity may not be preempted and a mode
once selected may not be changed, that is, an ac-
tivity j once started in mode m 2Mj has to be
completed in mode m without interruption. Pro-
cessing activity j in mode m takes pjm periods and
is supported by a set Rq of renewable and a set Rm

of nonrenewable resources. Considering a horizon
T , that is, an upper bound on the project's make-
span, we have an available amount of Rq

k units of
renewable resource k in period t � 1; . . . ; T like in

Section 3. The overall capacity of the nonrenew-
able resource k 2 Rm is given by Rm

k. If activity j is
processed in mode m then rq

jkm units of the re-
newable resource k are used each period activity j
is in process. Similarly, activity j consumes rm

jkm
units of the nonrenewable resource k. In general,
the parameters are assumed to be integer-valued.
We assume the modes to be labeled with respect to
nondecreasing processing times, that is,
pjm6 pj;m�1 for all activities j 2 V and modes
m 2 f1; . . . ; jMjj ÿ 1g. The objective is to ®nd a
makespan-minimal schedule S that meets the
constraints imposed by the precedence relations
and by limited resource availabilities. Similar to
PS j prec j Cmax in general also MPS j prec j Cmax is
formulated mathematically in terms of a binary
optimization model which makes use of binary
variables xjmt � 1, if activity j is completed in
mode m in period t (0, otherwise). For the sake of
shortness, we do not present a formal model here.

If jRmjP 2 and jMjjP 2; j 2 V ; then ®nding a
feasible solution is NP-complete (cf. [109]). How-
ever, presuming feasibility and a constant per-pe-
riod availability of the renewable resources, an
upper bound on the minimum makespan T is given
by the sum of the maximum activity processing
times. Given an upper bound T we can use the
precedence relations and the modes of the shortest
processing times to derive time windows, i.e. in-
tervals �ECj; LCj� similar to what has been ex-
plained in Section 3.

5.1. Exact algorithms

Optimal procedures for solving
MPS j prec j Cmax generalize procedures described
in Section 3.1 for solving the special case
PS j prec j Cmax. We summarize three algorithms.

The Precedence Tree: Sprecher and Drexl [186]
improved the precedence tree algorithm intro-
duced by Patterson et al. [155] by including new
bounding criteria. Here, on level g of the branch-
and-bound tree an eligible activity jg and, subse-
quently, a mode mjg of this activity are selected.
Each combination of an eligible activity and a
related mode corresponds to a descendant of the
current node in the branch-and-bound tree.
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Mode and delay alternatives: We summarize the
branch-and-bound approach proposed by Sprec-
her et al. [187]. An eligible activity j scheduled in
mode mj with start time Sj is said to be in process
at time tg if we have Sj6 tg < Sj � pjmj . Eligible
activities are (temporarily) started at the decision
point that have already been assigned a mode at a
previous level of the search tree. If there are eli-
gible activities that have not yet been assigned a
mode, that is, if EJg n EJgÿ1 is not empty, then the
set of mode alternatives is computed: A mode al-
ternative is a mapping which assigns each activity
j 2 EJg n EJgÿ1 a mode mj 2Mj. Selecting a mode
alternative, the remaining eligible activities can be
(temporarily) started at the decision point as well.
Having started all eligible activities by adding
them to the set JIPg of the activities in process, may
have caused a resource con¯ict. Thus, the set of the
minimal delay alternatives is computed according
to the following de®nition: A delay alternative
DAg is a subset of JIPg such that for each re-
newable resource k 2 Rq it is

P
j2JIPgnDAg

rq
jkmj
6

Rq
k . Observe that each combination of a mode al-

ternative and a related minimal delay alternative
corresponds to a descendant of the current node in
the branch-and-bound tree.

Mode and extension alternatives: Using again
the concept of mode alternatives extension al-
ternatives are introduced by Hartmann and Drexl
[86] to construct partial schedules. More pre-
cisely, an extension alternative EAg is a subset of
the eligible set for which

P
j2JIPg[EAg

rq
jkmj
6Rq

k
holds for each renewable resource k 2 Rq and,
moreover, EAg 6� ; if JIPg � ;. At level g of the
branch-and-bound tree we determine the new
decision point and the set of the eligible activi-
ties. Then we compute the set of mode alterna-
tives for ®xing the modes of the eligible activities
that have not been eligible before, that is, those
activities the modes of which have not yet been
®xed. After selecting a mode alternative, compute
the set of extension alternatives. Finally, select an
extension alternative EAg and start the corre-
sponding activities before branching to the next
level. Each combination of a mode alternative
and a related extension alternative corresponds to
a descendant of the current node in the branch-
and-bound tree.

Recently, the more general problem
MPS j temp j Cmax with general temporal con-
straints given by minimum and maximum start±
start time lags between activities has been the
subject of research in Heilmann [88], where an
exact branch-and-bound procedure is presented.

A combination of the discrete time±cost trade-
o� problem covered in Section 4 and of the multi-
mode case dealt with in this section has been
studied by Ahn and Ereng�uc [1].

5.2. Dominance rules

In Hartmann and Drexl [86] a description of
several bounding rules can be found. Some of
them will be revisited in what follows.

Non-delayability rule: If an eligible activity
cannot be feasibly scheduled in any mode in the
current partial schedule without exceeding its lat-
est ®nish time, then no other eligible activity needs
to be examined on this level.

Local left shift rule: If an activity that has been
started at the current level of the branch-and-
bound tree can be locally left shifted without
changing its mode, then the current partial
schedule needs not be completed.

Multi-mode rule: Assume that no currently
unscheduled activity will be started before the
®nish time of a scheduled activity j when the cur-
rent partial schedule is completed. If a multi-mode
left shift or a mode reduction of activity j with
resulting mode m0j, 16m0j6 jMjj, can be performed
on the current partial schedule and, moreover, if
rm

jkm0j 6 rm
jkmj

holds for each nonrenewable resource
k, then the current partial schedule need not be
completed.

Order swap rule: Consider a scheduled activity
the ®nish time of which is less than or equal to any
start time that may be assigned when completing
the current partial schedule. If an order swap on
this activity together with any of those activities
that ®nish at its start time can be performed, then
the current partial schedule need not be completed.

Cutset rule: De®ning a cutset of a partial
schedule PS as the set of the activities scheduled
in PS, Sprecher and Drexl [186] proposed the
following rule. Let PS denote a previously eval-
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uated partial schedule with cutset CS�PS�, max-
imal ®nish time f max�PS� and leftover capacities
Rm

k�PS� of the nonrenewable resources k. Let PS
be the current partial schedule considered to be
extended by scheduling some activity j with start
time Sj. If we have CS�PS� � CS�PS�,
Sj P f max�PS� and Rm

k�PS�6Rm
k�PS� for all

k 2 Rm, then PS needs not be completed.
Immediate selection: Consider an eligible activ-

ity j no mode of which is simultaneously per-
formable with any currently unscheduled activity
in any mode. If the earliest feasible start time of
each other eligible activity in any mode is equal to
the maximal ®nish time of the currently scheduled
activities, then j is the only eligible activity that
needs to be selected for being scheduled on the
current level of the branch-and-bound tree.

5.3. Heuristic algorithms

Heuristic algorithms for solving MPS j prec j
Cmax have for instance been provided by Drexl
[60], Drexl and Gr�unewald [61], �Ozdamar [149]
and Kolisch and Drexl [111]. Slowi�nski et al. [179]
address the same set of constraints, but attack the
multi-criteria version of the problem. MPSm; r; q;
0 jprec j Cmax is the subject of Boctor [23]. While
Boctor, Drexl, and Drexl and Gr�unewald analyze
priority rule based multi-pass heuristics, Slowi�nski
et al. provide simulated annealing algorithms,
�Ozdamar favorizes a genetic algorithm and Ko-
lisch and Drexl present problem speci®c local
search algorithms.

Recently, Hartmann [84] developed the most
e�ective and e�cient heuristic algorithm for solv-
ing the general version of the problem dealt with in
this section. It is a generalized version of the ge-
netic algorithm already mentioned in Section 3.3
and basically works as follows. The genetic algo-
rithm generates an initial population, i.e. the ®rst
generation, containing POP individuals and then
determines their ®tness values. POP is assumed to
be an even integer. Then the population is ran-
domly partitioned into pairs of individuals. To
each pair of (parent) individuals, the crossover
operator produces two new o�springs. Subse-
quently, the mutation operator is applied to the

genotypes of the newly produced children. After
computing the ®tness of the o�springs, they are
added to the current population, leading to a
population size of 2 � POP . Then the selection op-
erator is applied to reduce the population to its
former size POP and to obtain the next generation
to which again the crossover operator is applied.
This process is repeated for a prespeci®ed number
of generations which is denoted as GEN .

Now a short description of the genetic opera-
tors crossover, mutation, selection is given (for
details the reader is referred to Hartmann [84]).

Consider two individuals selected for crossover,
a mother and a father. Then two random integers
w1 and w2 with 16w1;w26 n are drawn. Now two
new individuals, a daughter and a son, are pro-
duced from the parents. The daughter is de®ned as
follows: In the sequence of activities of the
daughter, the positions i � 1; . . . ;w1 are taken
from the mother. The activity sequence of posi-
tions i � w1 � 1; . . . ; n is taken from the father.
However, the activities that have already been ta-
ken from the mother may not be considered again.
This de®nition ensures that the relative positions
in the parents' activity sequences are preserved.
Observe that the resulting activity sequence is
precedence feasible. The modes of the activities on
the positions i � 1; . . . ;w2 in the daughter are de-
®ned by the mother's mode assignment. The
modes of the remaining activities on the positions
i � w2 � 1; . . . ; n are derived from the father's
mode assignment. The son is computed similarly.
However, the positions 1; . . . ;w1 of the son's ac-
tivity sequence are taken from the father and the
remaining positions are determined by the mother.
Analogously, the ®rst part up to position w2 of the
mode assignment of the son is taken from the fa-
ther while the second part is derived from the
mother. Given an activity sequence and a mode
assignment for all activities an earliest start
schedule is constructed.

The mutation is applied to each newly generated
child individual and is de®ned as follows: Given an
individual I of the current population, then two
random integers q1 and q2 with 16 q1 < n and
16 q26 n are drawn. q1 is used to modify the ac-
tivity sequence by exchanging activities jI

q1
and

jI
q1�1 if the result is an activity sequence which
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ful®lls the precedence constraints. Note that each
of the changed activities keeps its assigned mode,
that is, this modi®cation does not change the mode
assignment. Then a new mode for the activity on
position q2 is randomly chosen, that is, we rede-
termine mI�jI

q2
� by drawing a random integer out

of f1; . . . ;MjI
q2
g. While the ®rst step may create

activity sequences that could not have been pro-
duced by the crossover operator, the second step
may introduce a mode that has not occurred in the
current population. It should be noted that per-
forming a mutation on an individual does not
necessarily change the related schedule. This is due
to the redundancy in the genetic representation.

Two variants of the selection operator have
been considered. The ®rst variant is a simple sur-
vival-of-the-®ttest method: The original popula-
tion size is restored by keeping the POP best
individuals and removing the remaining ones from
the population (ties are broken arbitrarily). The
second variant is a randomized version of the
survival-of-the-®ttest technique.

A number of ISL islands are considered on
which the arti®cial evolution as described above
takes place. On each island, the evolution starts
with an independently generated initial popula-
tion. Let the island currently under consideration
be denoted as i with 16 i < ISL, and let the current
generation be denoted as g with 16 g6GEN . A
prespeci®ed migration probability wmigration is used
and a random number q 2 �0; 1� is drawn to con-
trol the migration between the islands: If
q6wmigration, then the ®ttest individual of genera-
tion g leaves island i and migrates to island i� 1
where it is added to the population of generation
g.

The stopping criterion is either to reach a pre-
speci®ed number of islands as described above or,
alternatively, to meet a given limit on the CPU
time without bounding the number of islands. In
the latter case, if GEN generations have been
completed and the time limit has not yet been met,
we skip to the next island and start a new evolu-
tion. Clearly, if the number of islands is given by
ISL, at most ISL � POP � GEN di�erent individuals
are calculated.

The genetic algorithm is augmented by a
problem speci®c local search method to improve

the schedule related to an individual. The ap-
proach is based on the de®nition of a multi-mode
left shift which has been introduced by Sprecher et
al. [187] in order to accelerate their branch-and-
bound algorithm outlined above. A multi-mode
left shift of an activity j is an operation on a given
schedule which reduces the ®nish time of activity j
without changing the modes or ®nish times of the
other activities and without violating the con-
straints. Thereby, the mode of activity j may be
changed.

5.4. Computational results

A set of test problems constructed by the pro-
ject generator ProGen which has been developed
by Kolisch et al. [116] has been used. They are
available in the project scheduling problem library
PSPLIB. For detailed information the reader is
referred to Kolisch and Sprecher [115] (cf. [114]
also). The multi-mode problem sets containing
instances with 10, 12, 14, and 16 nondummy ac-
tivities have been used. Each of the real activities
may be performed in one out of three modes. The
duration of a mode varies between 1 and 10 peri-
ods. There are two renewable and two nonrenew-
able resources. For each problem size, a set of
instances was generated by systematically varying
four parameters, that is, the resource factor and
the resource strength of each resource category.

In Hartmann and Drexl [86] a computational
comparison of the three branching schemes in
combination with bounding rules can be found.
The precedence tree algorithm with the cutset rule
is the fastest procedure on the average. It is two
times faster than the algorithm based on mode and
delay alternatives when 10 activities are considered
and seven times faster for projects with 16 activi-
ties, that is, the comparison factor increases with an
increasing number of activities. The algorithm
based on mode and delay alternatives is at most 1.4
times faster than the algorithm based on mode and
extension alternatives, hence, the latter one is out-
performed by the other two algorithms with respect
to average computation times. This seems to be due
to the fact that branching may not be restricted to
``maximal'' extension alternatives. The precedence
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tree algorithm is faster than the other two proce-
dures even if the cutset rule is not included.

Noteworthy to mention that the precedence
tree algorithm is more general than the other
branching schemes in the sense that the case of
time-varying availability pro®le of renewable re-
sources can be covered.

The genetic algorithm of Hartmann [84] has
been compared with the algorithm of Kolisch and
Drexl [111] and �Ozdamar [149] on the ProGen set
with 10 nondummy activities. Hartmann's algo-
rithm produces an average deviation of 0.22%
from the optimal makespan. The procedure of
Kolisch and Drexl produces an average deviation
of more than 0.8% from the optimal makespan.
Also, the algorithm of �Ozdamar has an average
deviation of more than 0.8%. Hence, the average
deviation produced by the genetic algorithm of
Hartmann [84] is nearly four times lower than
those of the two heuristics from the literature.

6. Minimum and maximum time lags

This section is concerned with the problem
PS j temp j Cmax, that is, maximum time lags be-
tween the start of di�erent activities occur in ad-
dition to minimum ones. Maximum time lags are
often needed in practice, for example, if simulta-
neous or nondelay execution of several activities is
required, deadlines for subprojects or individual
activities are prescribed, time windows for re-
sources are given, or in scheduling of make-to-
order production (cf. [138,139]).

Section 6.1 deals with modeling problem
PS j temp j Cmax. Section 6.2 describes branch-and-
bound methods for PS j temp j Cmax. Heuristic
procedures are brie¯y discussed in Section 6.3. The
latter two sections also summarize computational
results.

6.1. Model

As in Section 3, V � f0; 1; . . . ; n; n� 1g is the
set of activities of the project, which coincides with
the node set of the corresponding activity-on-node
project network. The ®ctitious activities 0 and

n� 1 represent the beginning and termination of
the project, respectively. If there is a given mini-
mum time lag dmin

ij 2 ZP 0 between the start of two
di�erent activities i and j, that is, Sj ÿ Si P dmin

ij ,
we introduce an arc �i; j� in the project network
with weight dij � dmin

ij . If there is a given maximum
time lag dmax

ij 2 ZP 0 between the start of activities
i and j, that is, Sj ÿ Si6 dmax

ij , we introduce an arc
�j; i� with weight dji � ÿdmax

ij . The resulting net-
work with node set V , arc set E, and arc weights dij

which satisfy the constraints Sj ÿ Si P dij for
�i; j� 2 E generally contains cycles due to maxi-
mum time lags. An appropriate speci®cation of the
minimum and maximum time lags ensures the
unique assignment of the network to the underly-
ing project (see [139]).

Given a schedule S � �S0; S1; . . . ; Sn�1�,
A�S; t� � fj 2 V j Sj6 t < Sj � pjg
is the set of activities in progress at time t 2 ZP 0

(or in time interval �t; t � 1� or period t � 1, re-
spectively) and

rk�S; t� �
X

j2A�S;t�
rjk

is the usage of renewable resource k 2 R at time t.
Problem PS j temp j Cmax can then be stated as
follows:

min Sn�1 �4�
s:t: Sj ÿ Si P dij �i; j� 2 E

Sj P 0; j 2 V : �5�
rk�S; t�6Rk; k 2 R; t � 0; 1; . . . ; T ÿ 1; �6�

where T �Pi2V max �pi; max�i;j�2Edij� is an upper
bound on the minimum project duration.

It is well known that the set ST of time-feasible
schedules (which satisfy Eq. (5)) is nonempty ex-
actly if the network does not contain a cycle of
positive length (see [12]). The set S of feasible
schedules (which satisfy Eqs. (5) and (6)) is gen-
erally disconnected and represents the union of
convex polyhedra whose number grows exponen-
tially in n. Moreover, the decision problem
whether or not S 6� ; is strongly NP-complete (cf.
[12,144]).

Sometimes the constraints S0 � 0 and Sj 2
Z �j 2 V � are added to Eq. (5). We deleted these
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constraints for the following reasons: For each
optimal schedule S it holds that S0 � 0. Moreover,
S0 � 0 for all feasible schedules S constructed using
any heuristic method discussed in Section 6.3.
Since all parameters dij ��i; j� 2 E� are integers,
there always exists an integer optimal schedule
provided that S 6� ;. All methods discussed in
Sections 6.2 and 6.3 construct integer schedules.

For approximately solving PS j temp j Cmax, a
decomposition approach often turns out to be
expedient. A cycle structure of the project network
is a strong component which contains at least two
nodes. For each cycle structure treated as a sepa-
rate subproject with original resource capacities
and started at time zero, a scheduling problem
corresponding to problems (4)±(6) can be stated
whose (feasible) solutions are called (feasible)
subschedules. Neumann and Zhan [140] have
proven the following theorem.

Decomposition Theorem. There is a feasible sched-
ule for the project network if and only if there is a
feasible subschedule for each cycle structure.

Several heuristic procedures for (approximate-
ly) solving project scheduling problems require a
strict order � in node set V (cf. [70]). Let dij be the
length of a longest path from node i to node j in
the project network, where dij � ÿ1 if there is no
path from i to j. For i; j 2 V ; i 6� j, we then de®ne
i � j if and only if either (a) dij > 0 or (b) dij � 0
and dji < 0.

6.2. Branch-and-bound methods

The basic idea of branch-and-bound algorithms
for solving PS j temp j Cmax is as follows. An opti-
mal solution to the resource relaxation of
PS j temp j Cmax (i.e. problems (4) and (5)), for
example, the earliest schedule ES � �ESj�j2V with
ESj � d0j, can be found in polynomial time.
Starting with schedule S � ES, resource con¯icts
at points in time t, that is,X
j2F

rjk > Rk for some k 2 R and F �A�S; t�

�7�

can be resolved successively by introducing addi-
tional temporal constraints which delay one or
several activities. Set F in Eq. (7) is called a for-
bidden set. If F is minimal with respect to set in-
clusion, it is termed a minimal forbidden set.

Bartusch et al. [12], De Reyck [51], and De
Reyck and Herroelen [54] have used ``ordinary''
precedence constraints of the type Sj P Si � pi,
which correspond to adding arcs �i; j� with weight
pi to the network. Schwindt [174] has introduced
disjunctive precedence constraints

Sj P min
i2F nfjg

�Si � pi�; �8�

where F is a minimal forbidden set. Instead of
delaying only one activity j, several activities can
be delayed at the same time which form a so-called
minimal delaying alternative (cf. [51]). Then
(Eq. (8)) is replaced by

min
j2M2

Sj P min
i2M1

�Si � pi�

with minimal delaying alternative M2 and
M1 :�A�S; t� nM2. M2 is an inclusion-minimal set
containing at least one element of each minimal
forbidden set F �A�S; t�.

To solve PS j temp j Cmax, Schwindt [174] has
considered two partial problems. The sequencing
problem consists of ®nding a set Q of schedules
which satisfy disjunctive precedence constraints
such that ; 6� ST \ Q � S. The corresponding
scheduling problem consists of minimizing Sn�1

subject to S 2ST \ Q. In contrast to the case of
ordinary precedence constraints, the feasible re-
gion ST \ Q of the latter problem is no longer
convex if disjunctive precedence constraints are
used, but represents the union of convex polyhe-
dra. A pseudopolynomial ®xed-point algorithm
for solving the scheduling problem has been de-
vised by Schwindt [174].

The branch-and-bound algorithm then consists
of appropriately enumerating sequencing solutions
Q1; . . . ;Qr with

Sr
m�1�ST \ Qm� � S such that

min
S2S

Sn�1 � min
m�1;...;r

min
S2ST\Qm

Sn�1:

Preprocessing procedures as well as good lower
bounds and fathoming rules speed up the branch-
and-bound method (see [174]). An overview of recent
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preprocessing techniques as well as constructive and
destructive lower bounds for PS j temp j Cmax can be
found in Heilmann and Schwindt [89].

The concept of disjunctive precedence con-
straints markedly reduces the number of enumer-
ation nodes of the search tree to be investigated in
comparison with the branch-and-bound method
by De Reyck [51]. An experimental performance
analysis by Schwindt [174] based upon 1080
problem instances with 100 activities and ®ve re-
sources each (generated by the problem generator
ProGen/max by Schwindt [174]) has shown that
Schwindt's method solves more instances to opti-
mality within 10 s than De Reyck's method in 100
s (using an IBM-compatible PC Pentium 200).

Another branch-and-bound procedure for
PS j temp j Cmax has been investigated by M�ohring
et al. [135]. The main di�erence lies in the way of
resolving resource con¯icts. Contrary to the pro-
cedures proposed by Bartusch et al. [12], De Reyck
[51], De Reyck and Herroelen [54] and Schwindt
[174], where additional (disjunctive) precedence
constraints are introduced to resolve a con¯ict, the
idea is to introduce ordinary release dates instead.
That is, a resource con¯ict at a certain time t is
resolved by increasing the release dates d0j of ac-
tivities j 2 M2 (i.e. the time lags between activities
0 and j 2 M2) according to

dnew
0j :� min

i2M1

�Si � pi� for all j 2 M2;

where M2 is a minimal delaying alternative and
M1 :�A�S; t� nM2. Every node of the enumeration
tree is then represented only by a vector of release
dates (or start times, respectively), and, except for
the values d0j, the path lengths dij �i; j 2 V � remain
unchanged in the course of the algorithm.

On the one hand, this may in principle enlarge
the enumeration tree considerably as has also been
observed by Schwindt [174]. Since no precedence
relation is introduced, neither ``ordinary'' nor
disjunctive, it may happen that the same resource
con¯ict has to be resolved several times, due to the
existence of maximal time lags. But on the other
hand, this way of branching gives rise to a re-
markable speedup in the computation of time-
feasible schedules once a branching has been per-
formed. More precisely, the computation of opti-

mal time-feasible schedules, and the corresponding
lower bounds for newly generated nodes is then
linear in the number of activities for every release
date that has been increased. This is a major ad-
vantage over the procedures that introduce pre-
cedence constraints, where the complexity for the
computation of time-feasible schedules is qua-
dratic in the number of activities for every added
precedence constraint (see e.g. Bartusch et al. [12]),
and pseudopolynomial in the case of disjunctive
precedence constraints (see the above-mentioned
scheduling problem and [174]).

The disadvantage of multiple occurrence of the
same resource con¯icts, and the corresponding
growth of the enumeration tree is tried to be kept
small by performing immediate selection rules as
well as a (surprisingly simple) dominance rule.
Computational results indicate that, even without
implementation of more sophisticated lower
bounds, the procedure is competitive with the ones
proposed by Schwindt [174] and De Reyck and
Herroelen [54].

Recently, Dorndorf et al. [57] used constraint
propagation techniques for PS j temp j Cmax. They
showed that an integration of further constraints
on the start times in the aforementioned sense
within a new time-oriented branching scheme
provides very promising results.

6.3. Heuristic procedures

To solve large instances of PS j temp j Cmax ap-
proximately, truncated branch-and-bound tech-
niques based upon Schwindt's algorithm and
priority-rule methods have been developed. As to
truncated branch-and-bound procedures, a ®ltered
beam search technique, an e-approximate algo-
rithm, and a decomposition method have been
proposed by Schwindt [174]. The decomposition
method exploits the Decomposition Theorem from
Section 6.1. First, for each cycle structure C of the
network, an optimal schedule SC is computed by
the branch-and-bound algorithm. Second, each
cycle structure C is replaced by an equivalent cycle
of length zero whose arc weights are determined
using SC. Third, the e-approximate algorithm is
applied to the resulting network.
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Priority-rule methods for PS j temp j Cmax have
been devised and tested by Zhan [201], Neumann
and Zhan [140], Brinkmann and Neumann [26],
and Franck and Neumann [70] (the last reference
contains the most recent results). Two di�erent
approaches have turned out to be expedient. The
sequential or direct method schedules the activities
one after another without considering the cycle
structures of the network separately. The con-
traction method again exploits the Decomposition
Theorem. First, a feasible subschedule is deter-
mined for each cycle structure. Second, each cycle
structure is replaced by a single node or activity,
respectively, with appropriate duration and (time-
dependent) resource usage. Third, a feasible
schedule for the resulting ``contracted'' network
without cycles is computed. Fourth, a feasible
schedule for the original network is determined
using the schedules for the contracted network and
the individual cycle structures.

To ®nd a feasible schedule (for the whole net-
work, the contracted network, or a cycle structure),
a serial and a parallel schedule generation scheme
have been developed. Among a large number of
priority rules, the LST rule has turned out to be
best. That is, the activity to be scheduled next is
always an ``eligible'' activity (all of its predecessors
with respect to strict order � have already been
scheduled) with smallest latest start time (cf. [70]).
To take maximum time lags into account, both
generation schemes contain a backward scheduling
process which is as follows: If the earliest resource-
feasible start time of the activity j to be scheduled
exceeds the latest possible start time of j induced by
some maximum time lag dmax

ij , the start time of
activity i (and of some additional activities already
scheduled) has to be enlarged appropriately.

An experimental performance analysis based
upon 120 instances with 500 activities and ®ve
resources each (generated by ProGen/max) has
provided the following main results (cf. [142,174]):
The priority-rule methods are much faster than the
truncated branch-and-bound procedures. Whereas
the direct and contraction methods require 1 and
2 s, respectively, of computing time per instance on
the average (using a PC Pentium 200), the de-
composition method as slowest heuristic requires
almost 1 m. The decomposition and contraction

methods, which exploit the Decomposition Theo-
rem, provide feasible (optimal) schedules for 100%
(6%) and 98% (4%), respectively, of all solvable
instances, where the average relative deviation of
the project duration computed from the best lower
bound is around 5%. The remaining heuristics
solve much less instances to feasibility (the direct
method only 53%), but more instances to opti-
mality (the ®ltered beam search technique 62%).

7. Nonregular objective functions

The objective function of problem PS j temp j
Cmax discussed in Section 6 is regular, i.e. nonde-
creasing in the completion times of activities (in
the case of a minimization problem). In this sec-
tion, we deal with two kinds of nonregular objec-
tive functions where we again assume that general
minimum and maximum start±start time lags are
given. If the objective function to be minimized
represents some measure of the variation of re-
source utilization, we speak of a resource leveling
problem. In the net present value problem, the ob-
jective function represents the net present value of
the project which is to be maximized.

7.1. Model

In addition to the temporal constraints (5) of
PS j temp j Cmax, we explicitly require that S0 � 0;
Sj 2 Z �j 2 V �, and there is a prescribed maximum
project duration d 2 ZP 0 with d P d0;n�1.

In the objective function of the resource leveling
problem PS j temp jP ckf �rk�S; t��, ck > 0 is the
cost per unit of resource k. This problem can then
be stated as follows:

min
X
k2R

ckf �rk�S; t�� �9�

s:t: Sj ÿ Si P dij �i; j� 2 E;

S0 � 0;

Sn�16 �d; �10�
Sj 2 ZP 0 j 2 V ;

rk�S; t�6Rk; k 2 R; t � 0; 1; . . . ; �d ÿ 1:

�11�
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In Neumann and Zimmermann [141,142], three
types of objective functions (9) are considered. If

f �rk�S; t�� � max
t�0;1;...;dÿ1

rk�S; t�; �12�

we speak of the resource investment problem de-
noted by PS j temp jP ck max rk�S; t�, which is
used in practice when expensive resources have to
be purchased. A second type of objective function
where

f �rk�S; t�� �
Xdÿ1

t�0

�rk�S; t� ÿ Yk�� �13�

measures the deviation of the consumption of re-
source k from a target value for resource usage
Yk P 0. Yk may be equal to the average resource
utilization

P
j2V rjkpj=d. �. . .�� in Eq. (13) can be

replaced by j . . . j or �. . .�2. A third type of objective
function where

f �rk�S; t�� �
Xd

t�0

�rk�S; t� ÿ rk�S; t ÿ 1��� �14�

with rk�S;ÿ1� � rk�S; d� � 0 considers the varia-
tion of resource utilization over time and is used,
for example, if the resources represent di�erent
kinds of manpower. Again �. . .�� in Eq. (14) can be
replaced by j . . . j or �. . .�2.

The basic concepts of cash ¯ows and net pres-
ent values of the cash ¯ows of a project can be
found in Russell [166] and Herroelen et al. [95]. In
the objective function of the net present value
problem PS j temp jP cF

j bCj , b is the discount rate
per period and cF

j the cash ¯ow associated with
activity j, which is assumed to occur at the com-
pletion time Cj � Sj � pj of activity j and can be
positive (payment received) or negative (cost in-
curred). The net present value problem can then be
formulated as follows:

max
X
j2V

cF
j bCj

s:t: �10�; �11�

7.2. Exact algorithms

As with problem PS j temp j Cmax, testing
whether there is a feasible solution to PS j temp j

P
ckf �rk�S; t�� or PS j temp jP cF

j bCj is strongly
NP-complete.

For the net present value problem
PS;1 j temp jP cF

j bCj (that is, there are no re-
source constraints (11)), De Reyck [51] has pro-
posed a recursive search procedure which runs in
O�n4� time. This algorithm generalizes methods for
problem PS;1 j prec jP cF

j bCj (that is, there are
only minimum time lags dmin

ij � pi) devised by
Grinold [78], Elmaghraby and Herroelen [68], and
Herroelen et al. [93]. De Reyck's recursive proce-
dure starts with the earliest schedule ES and tries
to delay ®rstly activities j with cF

j < 0 and secondly
sets of connected activities with negative net
present value as far as possible without violating
the temporal constraints (10) in order to increase
the net present value of the project. An experi-
mental performance analysis has shown that, on the
average, an instance with 100 activities can be
solved in less than 1 s using a PC Pentium 60.

For the general net present value problem
PS j temp jP cF

j bCj , De Reyck [51] has devised a
branch-and-bound method, which is based upon
De Reyck's branch-and-bound algorithm for
PS j temp j Cmax, where the resource-unconstrained
scheduling problems with net present value as
objective function are solved by De Reyck's re-
cursive procedure for PS;1 j temp jP cF

j bCj . An
experimental performance analysis with instances
with up to 50 activities and ®ve resources has
shown that, in principle, the branch-and-bound
method for PS j temp jP cF

j bCj has the same ef-
fectiveness and e�ciency as the corresponding
procedure for PS j temp j Cmax. For PS j prec jP

cF
j bCj , Icmeli and Ereng�uc [98] have proposed a

similar branch-and-bound algorithm, which in-
troduces additional precedence constraints to re-
solve resource con¯icts in analogy to the branch-
and-bound procedure by Demeulemeester and
Herroelen [48] for PS j prec j Cmax.

For the resource leveling problem PS;1 j prec jP
ckf �rk�S; t�� with special objective functions,

exact algorithms based upon enumeration, integer
programming, or dynamic programming have
been proposed by Ahuja [2], Easa [62], Bandelloni
et al. [7], and Younis and Saad [200]. For
PS;1 j temp jP ckf �rk�S; t��, a time-window
based branch-and-bound procedure has been
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devised by Zimmermann and Engelhardt [203].
This algorithm exploits the fact that given a partial
schedule S0 � �Si�i2V 0 with V 0 � V , for an un-
scheduled activity j 2 V n V 0, there is a time win-
dow

Tj � fESS0
j ;ESS0

j � 1; . . . ; LSS0
j g; �15�

where

ESS0
j � max �d0j;max

i2V 0
�Si � dij��:

LSS0
j � min �d ÿ dj;n�1;min

i2V 0
�Si ÿ dji��:

�16�

The nodes of the enumeration tree correspond to
partial schedules S0 with the root corresponding to
S0 � 0. At a node representing partial schedule S0,
the algorithm branches as follows: Select an ac-
tivity j 2 V n V 0 with minimum LSS0

j ÿ ESS0
j and,

for each t 2 fESS0
j ; . . . ; LSS0

j g, generate a child St by
setting St

j � t. For so-called r-monotonous objec-
tive functions (which include functions of types
(12) and (13) with Yk � 0), good lower bounds at
the nodes S0 can be computed. For a generalization
of this branch-and-bound algorithm to problem
PS j temp jP ckf �rk�S; t�� with resource con-
straints (11) and a preliminary performance anal-
ysis we refer to Zimmermann and Engelhardt
[203].

For the resource investment problem
PS j temp jP ck max rk�S; t�, N�ubel [143] has pro-
posed a branch-and-bound procedure in analogy
to the algorithm by Schwindt [174] for
PS j temp j Cmax. For the nodes of the enumeration
tree, which correspond to sequencing solutions,
®ctitious maximum resource capacities are intro-
duced to decrease the resource capacity levels re-
quired. Resulting ®ctitious resource con¯icts are
again resolved by adding disjunctive precedence
constraints. The special case
PS j prec jP ck max rk�S; t� is the subject of De-
meulemeester [47] and M�ohring [127].

7.3. Heuristic procedures

For the net present value problem
PS j prec j cF

j bCj , several priority-rule heuristics
have been proposed, for example, by Russell [167]

and Padman and Smith-Daniels [152]. These pa-
pers also contain an experimental performance
analysis for problem instances with 1000 or more
activities and several resources. A simulated an-
nealing approach has been presented and com-
pared with priority-rule methods using stochastic
scheduling rules by Yang et al. [199]. For the re-
source leveling problem PS;1 j prec j ckf �rk�S; t��
with special objective functions, pseudopolynomi-
al priority-rule methods have been devised by
Burgess and Killebrew [33], Harris [82,83], Taka-
moto et al. [191], and Savin et al. [170]. Only small
problem instances with up to 20 activities have
been solved (approximately) by those methods.
For problem PS;1 j temp jP ckf �rk�S; t��, pseu-
dopolynomial heuristics have been proposed and
tested for instances with up to 100 activities and
several resources by Brinkmann and Neumann
[26].

Several variants of a polynomial priority-rule
method have recently been presented by
Zimmermann [202] and Neumann and Zimmerm-
ann [141,142], which can be applied to both
PS j temp jP ckf �rk�S; t�� and PS j temp j cF

j bCj .
We brie¯y sketch the basic idea of that procedure.
At ®rst we consider the case without resource
constraints (11). Given a partial schedule
S0 � �Si�i2V 0 ; V

0 � V , the activity to be scheduled
next is either a critical activity j 2 V n V 0 (that is,
with slack time equal to zero) or, if there is none,
an activity j 2 V n V 0 with highest priority. For the
net present value problem, the priority rule great-
est absolute value of cash ¯ow (GCF) is recom-
mended. The start time Sj of activity j to be
scheduled next equals ESS0

j for cF
j P 0 and LSS0

j for
cF

j < 0 (where ESS0
j and LSS0

j are again given by
Eq. (16)). For the resource leveling problem, the
priority rules MSO (minimum number of prede-
cessors with respect to strict order �), GRD
(greatest resource demand pj

P
k2R rjk�, MST

(minimum slack time), and LST (smallest latest
start time) are appropriate, where the ``best'' rule
depends on the type of objective function (cf.
[141,142]). The start time Sj of activity j to be
scheduled next is a minimizer of a penalty function
which represents the additional cost arising when
activity j is scheduled at time Sj on a certain de-
cision set Dj. Dj is a subset of the time window Tj
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(see (15)) whose cardinality is linear in n and which
depends on the objective function.

Two methods of generalizing the above pri-
ority-rule procedure to the case where there are
resource constraints (11) are described in Neu-
mann and Zimmermann [141,142]. An experi-
mental performance analysis has shown that, on
the average, an instance of problem PS;1 j temp jP

ckf �rk�S; t�� with 500 activities and ®ve re-
sources can (approximately) be solved in less than
2 s using a PC Pentium 200. For an instance of
PS j temp jP ckf �rk�S; t�� with 200 activities and
®ve resources, the average running time is less
than 1 s. The running times for instances of the
net present value problem are much smaller.

8. Stochastic activity durations

In real life projects, it usually does not su�ce to
®nd good schedules for ®xed deterministic pro-
cessing times, since these times mostly are only
rough estimates and subject to unpredictable
changes due to unforeseen events (weather condi-
tions, obstruction of resource usage, delay of pre-
decessors of an activity etc.).

In order to cope with such in¯uences, the pro-
cessing time of an activity j is assumed to be a
random variable pj. Then p � �p1; p2; . . . ; pn� de-
notes the (random) vector of processing times,
which is distributed according to a joint proba-
bility distribution P . In principle, this distribution
P is assumed to be known (though, as will become
clear later, there are methods that can deal with
incomplete information about the distribution).
Moreover, there may be stochastic dependencies
between the di�erent individual processing times
pj, which are represented by the joint distribution
P . In our classi®cation, these problems are denoted
by PS j prec; pj � sto j Cmax.

The necessity of involving stochastic methods
into project planning becomes obvious if one com-
pares the ``deterministic makespan'' Cmax�E�p1�;
. . . ;E�pn�� obtained from the expected processing
times E�pj�with the expected makespan E�Cmax�p��,
even in the absence of resource constraints. There is
a systematic underestimation

Cmax�E�p1�; . . . ;E�pn��6E�Cmax�p1; . . . ; pn��;
which may become arbitrarily large with in-
creasing number n of activities or, for ®xed n,
increasing variances of the processing times (see
[90]). Equality holds if and only if there is one
path that is critical with probability 1. This sys-
tematic underestimation of the expected make-
span has already been observed by Fulkerson
[75]. The error becomes even worse if one com-
pares the deterministic value Cmax�E�p1�; . . . ;
E�pn�� with quantiles tq such that
ProbfCmax�p�6 tqgP q for large values of q (say
q � 0:9 or 0:95). This is the reason why good
practical planning tools should incorporate sto-
chastic methods. An overview about these meth-
ods is given in Section 8.1. Section 8.2 then deals
with random processing times in the presence of
resource constraints.

8.1. Stochastic scheduling without resource con-
straints

Due to the practical importance of stochastic
scheduling, many methods have been developed
over the last 35 years. For stochastically indepen-
dent processing times, these methods can be
roughly grouped into simulation methods (e.g.
[34,176,180,190]), methods for bounding or calcu-
lating the expected makespan (e.g.
[55,59,63,65,76,163]), methods for analyzing the
\most critical" path (e.g. [181,182]), and methods
for bounding the whole distribution function of the
makespan (e.g. [56,81,107,175,183]).

An overview of the knowledge and the mathe-
matical tools up to 1989 has been given by
M�ohring and Radermacher [131].

Most of these contributions have not been
aware of the enormous inherent complexity of the
problem, which was formally analyzed only 1988
by Hagstrom [80]. She considers the following two
problems:

MEAN: Given a project network with discrete,
independent processing times pj, compute the ex-
pected makespan E�Cmax�p��.

DF: Given a project network with discrete, in-
dependent processing times pj and a time t,
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compute the probability ProbfCmax�p�6 tg that the
project ®nishes by time t.

Hagstrom shows that the 2-state versions of
these problems, in which every processing time pj
has only two discrete values, are #P-complete
(any #P-complete problem is polynomially
equivalent to counting the number of Hamiltonian
cycles of a graph and thus in particular NP-com-
plete). This result is derived from a fundamental
result of Provan and Ball [161] on the #P-com-
pleteness of reliability problems and shows an-
other connection of project scheduling to
reliability theory besides time±cost tradeo� prob-
lems.

The complexity status of the general version of
MEAN is open (only the 2-state version, which has
a short encoding, is #P-complete). If the pro-
cessing times pj may take more than 2 values, the
problem has a longer encoding that in principle
could admit a polynomial algorithm for solving
MEAN. This is, however, not the case for DF. But
also for MEAN, Hagstrom provides some evi-
dence that problems with a long encoding may still
be di�cult, since MEAN and DF cannot be solved
in time polynomial in the number of values of
Cmax�p� unless P �NP.

These results show that e�cient methods for
calculating the expected makespan or quantiles of
the distribution function of the makespan are very
unlikely to exist, and thus (although in retrospect)
justify the great interest in approximate methods
such as bounds, simulation etc.

Many of the methods that provide bounds for
the distribution function of the makespan trans-
form the given network (mostly represented as an
activity-on-arc network) into a series±parallel
network that is more easily evaluated since series
and parallel reductions of two activities h; j in the
network correspond to the convolution Fh � Fj and
pointwise product Fh � Fj of their processing time
distribution functions Fh; Fj, respectively. Typical
examples in this respect are the bounds by Dodin
[56], Kleindorfer [107] and Spelde [183].

M�ohring and M�uller [128] give a uni®ed model
for such bounding results in terms of a chain-minor
notion for project networks. A network
G1 � �V1;E1� is a chain-minor of a network
G2 � �V2;E2� if (1) and (2) below hold.

(1) Every activity j 2 V1 is represented in G2 by a
set of copies or duplicates D�h�, where
D�h� \ D�j� � ; if h 6� j.

(2) Every chain C (the set of activities on a path)
of G1 is ``contained'' in a chain C0 of G2 in the
sense that, for every activity j 2 C, there is a
duplicate j0 2 D�j� with j0 2 C0. (These dupli-
cates j may be di�erent for di�erent chains C
of G1.)

M�ohring and M�uller [128] show that, if G1 is a
chain-minor of G2, then one obtains a lower bound
for the distribution function FG1

of the makespan
of G1 if one gives every duplicate j0 of an activity j
the same processing time distribution as activity j,
treats them as independent, and calculates the
distribution function FG2

of the makespan of G2. In
other words,

ProbfCmax6 t in G1gP ProbfCmax6 t inG2g
for every t.

This very general bounding principle covers the
mentioned speci®c bounds of Kleindorfer, Spelde,
Dodin and others. Moreover, if one can identify
networks G1;G2 that ``sandwich'' the given net-
work G in the sense that G1 is a chain-minor of G
and G is a chain-minor of G2, then the unknown
makespan distribution function FG of G is ``sand-
wiched'' by those of G1 and G2, i.e., FG1

P
FG P FG2

.
This brings up the question to identify networks

G1 and G2, for which the distribution functions FG1

and FG2
are easier to evaluate. If G1 and G2 are

chosen to be series±parallel, then the computation
reduces to a sequence of convolutions and prod-
ucts of distribution functions. M�ohring and M�uller
[128] show that the 2-state version of DF is still
NP-complete, but only in the weak sense. How-
ever, MEAN can in this case be solved in time
polynomial in the largest number of values of the
makespan of a network encountered in any series±
parallel reduction sequence.

The quality of these bounds depends on the
``distance'' of the given network G from being se-
ries±parallel, and is another motivation for
studying distance measures as the reduction com-
plexity and the factoring complexity discussed in
connection with time±cost tradeo� problems in
Section 4.2. In fact, any activity duplication in the
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sense discussed there, leads to a lower bound for
the makespan distribution function by the chain-
minor result. This is the driving principle behind
the bound of Dodin [56].

Another way to facilitate the calculation of the
makespan distribution function is, similar to time±
cost tradeo� problems, the substitution or modu-
lar decomposition. The ®rst rigorous analysis of
modular decomposition in connection with sto-
chastic networks was done by Radermacher [162],
see also [131]. It can be used both for exact cal-
culation and for bounds.

All the methods discussed above assume that
the processing time distributions are known, which
usually is not the case in practice and often inhibits
the use of these methods. A way to cope with this
incomplete information is o�ered by the bounds of
Spelde [183]. He takes as network G2 in the
``sandwich'' a series composition of all paths of G,
thus duplicating an activity as many times as it is
contained in a path of G. The distribution function
FG2

of the resulting series±parallel network G2 is
then the product of the distribution functions of the
lengths of these paths, say FG2

� F1 � F2 � . . . � FN ,
where Fi is the distribution function of the ith path.

If the network G is large enough, i.e. all paths
contain ``enough'' activities, then, by the central
limit theorem, every Fi is approximately a normal
distribution function, whose mean li and variance
r2

i are obtained as the sum of the means and
variances of the processing times pj of all activities
j contained in the ith path.

Hence it su�ces to know the expected pro-
cessing time E�pj� and the variance V �pj� of every
activity in order to calculate the Spelde bound.
There is, however, a complication since the num-
ber N of all paths may be exponential in the size of
the given network G. This can be overcome by
calculating the ®rst k longest paths w.r.t. expected
processing times E�pj�, until Probfkth path is
longer than 1 st pathg6 e for a given accuracy
parameter e (say e � 0:05). If F1; F2; . . . ; Fk are the
normal distribution functions of these paths, then
FG2
� F1 � F2 � . . . � Fk. In practice k will be small.

In fact, this method contains the traditional
PERT as a special case, since PERT only analyzes
the distribution of the path with the longest ex-
pected path length.

Ludwig et al. [121] have implemented several of
these bounds (Kleindorfer, Dodin, Spelde) and
have made an extensive computational study of
their bounding behavior on networks having up to
500 activities. The main conclusions from this
study are that the Spelde bounds provide an ex-
cellent approximation that can be computed very
fast. It usually overestimates the quantiles tq for
q 2 �0:9; 1� only by about 5%, and thus provides a
very good practical planning tool. The bounds of
Dodin and Kleindorfer have an even smaller
overestimation, but require complete knowledge of
the processing time distributions. The accuracy of
the bounds can be improved to less than 2%
overestimation through the use of decomposition.

For dependent processing times, the above
bounds cannot be used. Instead, there is a di�erent
approach that calculates an upper bound for the
expected tardiness E�maxf0;Cmax�p� ÿ tg� as
function of t, which is valid for any joint distri-
bution of the processing times and hence for all
possible dependencies among them.

This approach has been investigated by Klein
Haneveld [106], Meilijson and Nadas [124] and
Weiss [198]. Interestingly, for discrete processing
time distributions, the evaluation of this bound
can be interpreted as a time±cost tradeo� problem
with piecewise linear and convex cost functions
that is equivalent to a linear time±cost tradeo�
problem as discussed in Section 4.2. An overview
of this bound is given in [131].

Another, more recent extension of stochastic
network analysis concerns the combination of
random processing times with the time±cost
tradeo� paradigm. Here, one in¯uences the pro-
cessing time distribution of an activity by allocat-
ing more resources (money) to it. One then wants
to minimize the expected makespan (or other dis-
tribution parameters) subject to a ®xed budget. We
refer to the work of Bowman [25] and Foldes and
Soumis [69] for details.

8.2. Stochastic scheduling with resource constraints

We now consider random processing times to-
gether with resource constraints as for
PS j prec j Cmax. This combination has often been
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studied in machine scheduling, but much less in
project scheduling. The model leads into the area
of stochastic dynamic programming. Scheduling is
done by policies or strategies. A complete charac-
terization of all policies and subclasses thereof has
been given by M�ohring et al. [132,133].

For stability reasons explained there, only so-
called elementary strategies are applicable in
practice. Such a policy P has the following dy-
namic interpretation. It chooses actions at decision
points. Decision points are t � 0 (project start) and
activity completions. An action at time t consists
of starting a feasible set S�t� at t, where feasible
means that precedence and resource constraints
are respected. The decision may of course only
exploit information that has become available
until the current time t.

In the end, when every activity has been
scheduled, we have a realization p of processing
times and P has constructed a schedule
P�p� � �S1; S2; . . . ; Sn� of starting times for the
activities. CP

max�p� denotes the makespan of that
schedule, and E�CP

max�p�� the expected makespan
under policy P. The aim then is to ®nd a policy
that minimizes the expected makespan.

Policies may be classi®ed according to how they
solve the resource con¯icts. This can be modeled
by looking at the set F of minimal forbidden sets
F � V . Every proper subset F 0 � F of such a set
F 2F can in principle be scheduled simulta-
neously, but the set F itself cannot because of the
resource constraints.

A natural class of policies is the class of prese-
lective policies introduced by Igelmund and Rad-
ermacher [99,100]. They solve the resource con¯ict
on every forbidden set F 2F by choosing an ac-
tivity jF 2 F that can only start after some other
activity j 2 F n fjFg has ®nished. This idea has
also recently been used in deterministic scheduling
under the name of delaying alternatives, see also
Section 6.2.

A subclass of the class of preselective policies is
obtained by letting the selected activity jF 2 F al-
ways wait for the same activity iF 2 F n fjFg. Any
such policy P can be identi®ed with a network G0

constructed from the given network G by adding
all such precedence constraints iF ! jF. The policy
P then constructs as P�p� the earliest start

schedule of G0 for processing times p. These poli-
cies are therefore called ES-policies (Earliest Start
policies).

Stork [189] has implemented a branch-and-
bound algorithm for both classes of policies that
®nds an optimal preselective policy or ES-policies
for stochasti®ed ProGen instances with up to 20
activities in reasonable time. Unlike branch-and-
bound algorithms for the associated deterministic
setting, these algorithms require knowledge of the
set F of minimal forbidden sets in advance and
cannot use lower bounding techniques or domi-
nance rules that involve knowledge of all pro-
cessing times.

Motivated by the precedence tree concept used
in branch-and-bound algorithms for PS j prec j
Cmax, see Section 3.1., M�ohring and Stork [134]
identify an interesting subclass of the class of
preselective policies, the linear preselective policies.
Such a policy P chooses the waiting activities
jF 2 F as the last activity in F according to a
prede®ned linear ordering on the set V of activities
that is a topological sorting of the graph G of
precedence constraints.

This class of policies leads to a signi®cant
speedup in computation time, since the calculation
of the expected completion time can be done more
e�ciently, and since many preselective policies
that are dominated by others are no longer gen-
erated. Moreover, it is possible to e�ciently decide
whether the con¯ict on a currently considered
forbidden set has already been indirectly settled by
previous choices of waiting activities jF for other
forbidden sets. These properties make it currently
possible to solve most of the ProGen instances
with up to 30 activities to optimality.

9. Further models

Enterprises are and have been facing mounting
pressures to exercise reductions in costs arising
from producing their goods or services and to
make better use of existing sta� or equipment. It is
well known from practical experience that this
pressure can be met, at least in part, by more ef-
®cient and intelligent planning. Successful appli-
cation of these methods, however, depends to a
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large degree on the ability to unambiguously and
e�ciently model the relevant speci®cs of the
problems tackled. This ability, in turn, calls for
expressive modeling concepts, which allow to
capture a wide range of requirements appearing in
real world problems. Additionally, advanced
methods exploiting the degree of freedom covered
by advanced models are also necessary.

Obviously, the models and methods discussed so
far in this paper meet these requirements to some
extent. However, there are numerous practical
problem settings which require more general mod-
els. Some of them are mentioned in what follows.

(i) Recently, it has been shown by Dayanand
and Padman [43,44] that the usual approach to
relate to one single model which has to cover both
the contractor's and the client's view of the prob-
lem might not be appropriate in practice. Conse-
quently, in [43] models for the contractor and in
[44] models for the client are discussed.

(ii) A generalization of PS j prec j Cmax is con-
sidered in B�ottcher et al. [21]. There so-called par-
tially renewable resources are de®ned by assuming
for each resource a capacity on subsets of periods.
In [21] exact branch-and-bound and serial heuristic
algorithms have been developed. The concept of
partially renewable resources is a fundamental tool
in order to make e.g. timetabling and shift sched-
uling amenable to project scheduling. In addition,
partially renewable resources serve to model com-
plicated labor regulations. Furthermore, they cover
traditional renewable and nonrenewable resource
constraints as special cases. Finally, in Schirmer
and Drexl [171] it is shown that partially renewable
resources can be used to express several kinds of
logical relations between the scheduling of activi-
ties. In addition, a number of practical require-
ments on activities' scheduling can be formulated
such as maximum or minimum quotas, as well as
issues of calendarization. This underscores the ex-
pressive power of partially renewable resources.

(iii) In the multi-mode case of project scheduling
all mode-activity-assignments are mutually inde-
pendent in the sense that assigning a mode to one
activity j of a project consisting of n nonpreemp-
table activities does not necessarily force any other
activity to be processed in a speci®c mode. In some
applications this is not feasible. Imagine, e.g., a

situation in which certain activities belong together
in the sense that they must be executed in the same
way. This leads to the mode identity case that has
been recently introduced into the project schedul-
ing literature by Salewski et al. [168]. There it is
proven that MPS j prec j Cmax is a special case of
the more general mode identity case. Moreover, it
is shown that the (feasibility variant of the) mode
identity case is strongly (NP-complete) NP-hard.
Furthermore, greedy randomized adaptive search
procedures are presented. Finally, it is shown that
the mode identity case serves to model applications
to audit-sta� scheduling.

10. For further reading

[3,27,41,52,53,64,150,156,173,184,192,193]
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Appendix A. Constraint propagation techniques

So far we have discussed methods which are
tailored for solving, e.g., PS j prec j Cmax. Now, a
short review of the basis of constraint propaga-
tion, the sequence consistency tests which have
primarily been developed for solving the special
case PSm; 1; 1 j prec j Cmax will be given. Though
designed for the special case, it is strongly con-
jectured that these tests are also applicable to the
more general problem PS j prec j Cmax. We start
with the description of some basic concepts.

A.1. Basic concepts

The scope of inference or propagation tech-
niques is to reach a certain level of consistency in
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order to accelerate exact algorithms or local search
procedures. Model based local reasoning over the
constraint set makes problem speci®c knowledge,
which is implicitly contained in the model de-
scription, explicitly available.

Most existing knowledge based scheduling
systems are only capable of incorporating a small
fraction of scheduling knowledge. Encouraged by
this little success and the progress that is made in
the development of general problem solvers in
form of constraint based logic programming lan-
guages (cf. ILOG, see [120]), here we are going to
restrict ourselves to the problem PSm; 1;
1 j prec j Cmax. Recognizing some typical features
probably could enormously increase the power of
general problem solvers in order to solve optimi-
zation, and in particular constraint satisfaction
problems.

A constraint satisfaction problem (CSP) con-
sists of a set of n variables Y1; . . . ; Yn, their domains
D1; . . . ;Dn, respectively, and a set of constraints of
these variables. An n-ary relation or constraint on
Y1; . . . ; Yn is a subset of the cartesian product
D1 � D2 � � � � � Dn of the domains. A solution is a
value assignment of the variables such that all
constraints are satis®ed. As a special case a binary
CSP consists only of constraints on two variables
(cf. [122,125]). Obviously, project scheduling
problems can be considered as constraint satis-
faction problems whereby the objective function is
included into the set of constraints.

A graph may serve as an illuminating repre-
sentation of constraint satisfaction problems. In
the dual representation each vertex of the graph
corresponds to a constraint and vertices are adja-
cent if the vertices representing constraints have at
least one variable in common. In the primal rep-
resentation ± the only one we are going to consider
± each vertex of the graph corresponds to some
variable of the CSP. An edge is a subset of the
vertex set. The edge represents precisely those
constraints which constitute of these and only
these variables represented by the edge de®ning
vertex set. Hence, an edge implicitly is de®ned by
the set of all feasible tuples of variable instantiat-
ions of the edge de®ning constraints. The resulting
graph is a hypergraph. The situation is much
simpler in case of a binary CSP, i.e. a constraint

CONij�Yi; Yj� contains at most two variables Yi and
Yj, and corresponds to a subset of the Cartesian
product Di � Dj. An edge connecting the vertices
of the variables Yi and Yj corresponds to all binary
relations on these two variables. The resulting
graph is said to be the constraint graph of the
underlying CSP. A universal relation between any
two variables Yi and Yj, i.e. constraints which are
satis®ed by all tuples of the Cartesian product Di

and Dj, is not included into the graph. Universal
constraints do not deliver any information.

Some simple consistency checks at the begin-
ning of the search can drastically reduce the size of
the search tree. These tests of consistency have the
advantage that the constraint graph becomes more
explicit, i.e. hidden constraints on variables cur-
rently not adjacent in the constraint graph get
visible and new edges may be introduced into the
graph. Hereby we say that a set of variables is a-
consistent if it is �aÿ 1�-consistent and for any
subset of aÿ 1 variables and any instantiation of
these aÿ 1 variables satisfying all constraints there
exists a value in the domain of the remaining
variable such that all constraints on all a variables
are satis®ed. 1-consistency means that for every
variable and each of its domain variables all con-
straints are satis®ed. A set of variables is arc
consistent if it is 2-consistent (this is said in rela-
tion to the constraint graph). A pair of variables Yi

and Yj is path-consistent if for any feasible, i.e.
CONij�Yi; Yj� respecting, instantiation ai and aj of
Yi and Yj and any sequence of edges �CONi;i1 ;
CONi1;i2 ; . . . ;CONim;j� in the constraint graph there
is an instantiation ai1 2 Di1 ; ai2 2 Di2 ; . . . ; aim 2 Dim
of variables Yi1 ; Yi2 ; . . . ; Yim such that all constraints
CONi;i1�ai; ai1�; CONih;ih�1�aih ; aih�1�;CONim;j�aim ;
aj�; h � 1; . . . ; mÿ 1, are satis®ed. Thus path-
consistency means that for any pair of variables
and any explicitly feasible value pair there is also a
feasible variable-value assignment on each path
(edge sequence) connecting this variable pair in the
constraint graph (including the universal relation).
The constraint graph is arc- or path-consistent if
any pair of variables is arc- or path-consistent,
respectively. Arc-consistency requires an O�e � a2�
e�ort while path-consistency can be reached with
an e�ort of O�n3a3� where e is the number of edges
in the constraint graph, a is the maximum number
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of elements in a domain, and n is the number of
variables (cf. e.g. [91]).

As mentioned earlier consistency tests yield a
more explicit constraint graph. This is quite com-
parable to what happens during backtrack search.
The enumeration only takes those constraints into
account which are explicitly contained in the con-
straint graph, while implicitly existing edges be-
come just visible during the search process. Finding
implicitly existing constraints means to generate
new knowledge in the knowledge base, it is called
constraint propagation and dates back to an early
idea of Waltz [197]. Clearly, the higher the level of
consistency the more constraints become visible.
That means, to reach arc-consistency, path- or 3-
consistency can be considered as local constraint
propagation. In order to reach backtrack-poor
search it is necessary to make as many constraints
explicit as possible, because variable instantiations
which violate implicitly existing constraints usually
are detected much later during the search process.
Such inconsistencies then lead to backtracking. In
order to reach backtrack-free search it is indis-
pensable to make all implicitly existing constraints
explicit. Montanari [136] called that the ``central
problem'', obviously an NP-hard one. For some
special cases it is possible to require su�cient
conditions in order to reach a backtrack-free or a
backtrack-poor search. For instance, arc-consis-
tency with respect to a constraint graph which is a
tree guarantees backtrack-free search, cf. [72,73].

Constraint propagation, i.e. local consistency
checks, can reduce the enumeration procedure
before searching substantially but also during the
search process it may happen that the modi®cation
of a variable domain reduces the domains of other
variables, of those which are connected to the
former by some constraints. That may lead to a
cut of some search tree branches. Certain methods
are described in the literature in order to reduce
the search tree. Some of these consistency tests are
described in what follows.

A.2. Resource-based sequence consistency tests

Consider the minimum makespan problem of
project scheduling with m resources each of which

is available in precisely one unit at a time, i.e.
consider PSm; 1; 1 j prec j Cmax. The job shop
scheduling problem is a special case and has re-
ceived considerable attention in the literature, see
the surveys by Bla _zewicz et al. [16,17]. There are a
couple of solution approaches on job shop sched-
uling available which we are going to describe in
the more general project scheduling setting (cf.
[20,29,30,36,37,147,157,158] and the annotated
bibliography by Hoogeven et al. [97]). An illumi-
nating description of the problem is the disjunctive
graph model which has been extended by
Bla _zewicz et al. [19].

Such a disjunctive graph is a particular form
of a binary constraint graph. An activity repre-
senting vertex corresponds to a variable in the
constraint satisfaction model. A variable's do-
main consists of all possible starting times of the
activity. Conjunctive arcs describe the precedence
constraints and the orientation of the arc de®nes
certain time dependencies. A disjunctive arc pair
connecting two activities i; j; which are competing
for the same resource, may be replaced by an
undirected edge connecting activities i and j, or
variables Yi and Yj, respectively. Yi is the domain
variable which shall be instantiated with start
times Si. Each edge de®nes the constraint
CONij�Yi; Yj� � CONji�Yj; Yi� corresponding to
Yi � pi6 Yj or Yj � pj6 Yi, i.e. either activity i is
scheduled before activity j or the other way
round.

In order to increase e�ciency a domain is rep-
resented as an interval of integers of possible
processing starts, hence only the interval de®ning
endpoints are considered as domain values. Thus
an inconsistency of a tuple is not realized if one of
the tuple entries belongs to the interior of an in-
terval. Such an inconsistency is only excluded from
the interval if the value of the tuple responsible for
the inconsistency, will become an interval endpoint
at a certain time. Consider again any constraint
CONij�Yi; Yj�. Then the left bound (with respect to
arc-consistency on constraint CONij) of the do-
main interval Di is de®ned by the temporarily
earliest possible starting (release) time of activity i
such that there is a possible start time of activity j
within its domain Dj. The right bound (with re-
spect to arc-consistency on constraint CONij) of
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the domain Di is de®ned as the temporarily latest
possible start time of activity i such that there is a
possible start time of activity j in Dj and both
activities can be processed.

Assume that the order in which i and j are
processed is not ®xed. An arc-consistent domain of
activity i means that Di is bounded to the left by
the maximum of all such earliest possible start
times with respect to all activities j requiring the
same resource. The right bound is given by the
minimum of all such latest possible start times of
activity i with respect to all activities j requiring
the same resource. Arc-consistency of an interior
point of the interval is not guaranteed unless it
becomes an interval endpoint at some time. Con-
sider the disjunctive graph model. Then the longest
path from the initial dummy activity to activity i,
which de®nes the release date ESi of i, is a lower
bound of the left bound of an arc-consistent in-
terval. Correspondingly, if we subtract the tail, i.e.
the length of a longest path connecting activity i
(including pi) to the ®ctitious termination activity
in the disjunctive graph, from the makespan (or an
upper bound) then we obtain an upper bound LSi

for the right endpoint of the interval. Hence,
computing heads (release times) and tails generally
yields only node-consistent (1-consistent) domains
of possible starting points for all activities but, if
one arc is selected from each disjunctive arc pair,
i.e. we have an acyclic graph de®ning a feasible
schedule, then the computation of heads and tails
provides arc-consistency. Even more, without
backtracking a feasible solution can be found. As
the constraint graph corresponds to an activity-on-
node network, these start time windows can be
derived in a straightforward way. A test of path-
consistency means that for any two path-consis-
tent activities i and j, where i may be processed
before j, and any third activity h either h; i; j is a
possible processing sequence or i; h; j or i; j; h. All
three possibilities are checked and the intervals are
modi®ed.

Let us go into more details in order to describe
a class of logical tests called sequence consistency
tests which are based on resource constraints.
Constraint propagation ®nally is a full exploration
of all available resource constraints in a sense that
constraints are activated to reduce variable do-

mains unless domain reductions are no longer
possible. Hence the e�ect of any propagation
heavily depends on the kind of constraints. The
e�ciency depends on the constraint activation se-
quence, the variable and value selection in the
backtrack search (if no further domain reduction
can be achieved) and the level of consistency.
These sequence consistency tests reduce activity
domains by ruling out infeasible start time as-
signments. The bene®t of the tests is that they can
reduce the search space and direct an algorithm
towards good solutions. From now on we are only
interested in the tests themselves and will not ad-
dress scheduling algorithms in which they can be
embedded.

We assume that all activity domains have been
made node-consistent (heads and tails have been
calculated), i.e. we impose an upper bound on the
makespan of at least one feasible schedule. First
we derive the tests for the case of unit resource
capacity as, for instances, encountered in machine
scheduling. Finally, the results will be generalized
for arbitrary usage of resources and arbitrary re-
source availability. A comprehensive presentation
can be found in [58].

Recall pj, the processing time of activity j, rjk ,
the per period usage of renewable resource k, and
�ESj; LSj] ��ECj; LCj��, the start (completion) time
window of activity j. The domain Dj is the set of
all possible start times Sj of j. It is bounded by
the start time window �ESj; LSj� but some values
in the start time window may be infeasible. We
will use the following shorthand description w.r.t.
any activity from a subset W of the set V of ac-
tivities:

E�W � :� minfESj j j 2 W g;
P �W � :�

X
j2W

pj

C�W � :� maxfLCj j j 2 W g;
LS�W � :� minfLSj j j 2 W g;
EC�W � :� maxfECj j j 2 W g:

A sequence relation i! W n j says that activity
i has to be scheduled (started and ®nished) before
the start of any activity in set W n j, i.e. there is no
precedence relation between i and j.
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The idea behind all sequencing tests described
now is to consider subsets W of activities requiring
the same resource k for being processed. Within
these subsets all possible activity sequences with a
particular property are examined, e.g. the property
that the activity sequence does not start with an
activity j from W . If all such sequences are infea-
sible, then we can conclude that the sequence must
not have the property; therefore, we could deduce
that j must be ®rst in W since all sequences where
this is not the case are infeasible. The sequencing
tests are presented in order of decreasing strength.
While a stronger condition allows a stronger con-
clusion, it is at the same time more likely to be
inapplicable. Except for the last one all other tests
in this section are derived for disjunctive schedul-
ing problems where all activities are mutually ex-
clusive in the sense that they exclusively occupy
any required resources throughout their processing
time. This is of course the case for instances of
PSm; 1; 1 j prec j Cmax. However, even for instances
of PS j prec j Cmax the tests may still be used for
subsets of disjunctive activities. Disjunctive tests
for activity pairs lead to good lower bounds for
PS j prec j Cmax, cf. Klein and Scholl [105].

Carlier and Pinson [37] have derived conditions
under which it can be concluded that an activity j
from W must be scheduled ®rst or last in W , see
also Carlier [35]. They even used the preemptive
bound for calculation of tighter values LS�W � and
EC�W �. If an activity j is scheduled before or after
W n j we may also think of j as the input or output
of W n j, which stipulates the name of the follow-
ing condition.

Input/output: Let j be an activity from a subset
W of the activity set V where all activities of W
require one unit of the same resource during each
period of processing. If C�W � ÿ E�W n j� < P �W �
then j must precede all activities in W n j. If
C�W n j� ÿ E�W � < P �W � then j must succeed all
activities in W n j.

If the input condition holds we can reduce the
domain of j through an update of the latest start
time LSj to minfLSj; LS�W n j� ÿ pjg. Symmetri-
cally, if the output condition holds, the earliest
start time ESj can be updated to max
fESj;EC�W n j�g. After reducing the domain of j it

may be possible to reduce the domains of activities
in W n j by applying other tests. In branch-and-
bound procedures that branch over disjunctive
arcs, the rules may be employed to ®x disjunctions,
a process often called immediate selection or edge
®nding, cf. Brucker et al. [29].

From the input/output condition it can be de-
duced that an activity j must be scheduled ®rst or
last in W . The weaker input or output condition
can be used to show that a precedence relation
i! j exists between an activity pair i; j from W , cf.
Bla _zewicz et al. [20].

Input or output: Let i and j be two activities
from a subset W of the activity set V where all
activities of W require one unit of the same re-
source during each period of processing. If
C�W n j� ÿ E�W n i� < P �W � then i must be
scheduled ®rst or j must be scheduled last in W . If i
and j are two distinct activities then i! j.

If the input or output condition holds and i 6� j
we can reduce the domains of i and j through an
update of the latest start time LSi to
minfLSi; LSj ÿ pig. Symmetrically, the earliest start
time ESj can be updated to maxfESj;ECig. If the
input or output condition holds and i � j we can
reduce the domain of j by the interval
�LS�W n j� ÿ pj;EC�W n j��. For the case where
there are only three activities in W the input or
output condition allows to draw the conclusions as
the r-set condition described in Brucker et al. [29]
which present an O�n2� algorithm for checking 3-
set conditions. By further relaxing the test for the
input or output condition, we can still draw ad-
ditional conclusions in situations where the input
or output condition and the input/output condi-
tion do not hold.

Input/output negation (cf. [8,36,147]): Let j be an
activity from a subset W of the activity set V where
all activities of W require one unit of the same
resource during each period of processing. If
C�W n j� ÿ ESj < P �W � then j must not precede all
activities in W n j. If LCj ÿ E�W n j� < P �W � then j
must not succeed all activities in W n j.

The input negation extracts the interval
�0;minfECj0 j j0 2 W n jg� from the set of possible
start times of j. Symmetrically, if the set output
negation holds, j must precede at least one activity
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in W and it extracts the interval
�maxfLSj0 ÿ pj � 1 j j0 2 W n jg;1� from the set of
possible start times of j.

We now try to reason about the amount of
processing time of an activity that must fall into
a given interval �t1; t2�. The smallest amount of
time during which an activity j must be executed
in the interval �t1; t2�, say the interval processing
time, is:

pj�t1; t2� :�
maxf0;minfpj; t2 ÿ t1;ECj ÿ t1; t2 ÿ LSjgg:

The processing time for a set W that must fall
into �t1; t2� is P �W ; �t1; t2�� :�Pj2W pj�t1; t2�.

Interval pair ordering: Let i and j be two ac-
tivities from a subset W of the activity set V where
all activities of W require one unit of the same
resource during each period of processing. If
C�fjg� ÿ E�fig� < P �W n fi; jg; �E�fig�;C�fjg���
�P �fi; jg� then j! i.

Interval consistency: Let j be an activity from a
subset W of the activity set V where all activities of
W require one unit of the same resource during
each period of processing. Let t 2 �ESj; LCj�. If
t ÿ ESj < P �W n j; �ESj; t�� �minfpj; t ÿ ESjg then
j must be delayed, i.e. its earliest possible start can
be increased by P �W n j; �ESj; t��. Symmetrically, if
LCj ÿ t < P �W n j; �t; LCj�� �minfpj; LCj ÿ tg then
j must be preferred, i.e. its latest possible com-
pletion can be decreased by P�W n j; �t; LCj��.

The interval consistency test can be limited to
earliest start and latest completion times of activ-
ities, thus providing an e�cient algorithm for this
consistency test, see [58].

The aforementioned consistency tests got dif-
ferent names by di�erent authors, some of them
are called edge-®nding. The two interval tests are
also known as energetic reasoning, cf. [8]. Many of
these tests generalize and extend the earlier tests on
job shop scheduling, e.g. Nuijten [145] and Nuijten
and Le Pape [147] update time bounds of activities
using ideas presented in Carlier and Pinson [37]
and incorporates the tests into a constraint satis-
faction framework, cf. [146].

The results for PSm; 1; 1 j prec j Cmax can be
generalized for resources and activities with arbi-
trary resource availability and usage, respectively,

cf. [9±11]. Assume for simplicity that the resource
capacity is constant.

Set input/output: Let j be an activity from a
subset W of the activity set V where all activities of
W require at least one unit of the same resource k
during each period of processing.

If �C�W � ÿ E�W n j��Rk <
X
i2W

pirik; then j! W n j:

If �C�W n j� ÿ E�W ��Rk <
X
i2W

pirik; then W n j! j:

Note that the meaning of j! W n j (or
W n j! j) is, that j must start before (or end after)
all activities in W n j.

Hence, consistency checks, or roughly speaking
propagation of constraints will make implicitly
de®ned constraints more visible and will prune the
search tree in a branch and bound algorithm.
Obviously, n-consistency, where n is the number of
activities, immediately implies that a feasible
schedule can be generated easily, however, to
achieve n-consistency is in general not practicable.
Moreover, worse upper bounds on the makespan
of an optimal schedule will hardly reduce variable
domains, i.e. only a few arc directions are ®xed
during the constraint propagation process. The
better the bounds the more arc directions can be
®xed, see also [38,39,123].

The main interest of propagation of constraints
is the ¯exibility that results from the fact that each
constraint propagates independently from the ex-
istence or non-existence of other constraints. It
appears that the propagation process can be or-
ganized to guarantee that propagation can be done
via longest path computation (cf. [19,20,39]).
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