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SIMPLIFIED PROGRAM EVALUATION AND REVIEW

TECHNIQUE (PERT)

By Wayne D. Cottrell,1 P.E.

ABSTRACT: A simplified version of the program evaluation and review technique (PERT) for project planning
is developed and tested. The simplification is to reduce the number of estimates required for activity durations
from three, as in conventional PERT, to two. This is accomplished by applying the normal distribution, rather
than the beta, to an activity duration. The two required duration estimates are the ‘‘most likely’’ and the
‘‘pessimistic.’’ These modifications reduce the level of effort needed to apply PERT. Simplified PERT durations
are subject to errors of greater than 10% when the skewness of the actual distribution is greater than 0.28 or
less than 20.48. In analyzing 12 project networks, though, the simplified PERT produced values similar to those
of conventional PERT for activity and project durations and variances and project duration probabilities. Hence,
when activity duration distributions are not highly skewed, results similar to those of conventional PERT can
be obtained using the simpler technique. Two suggestions for future research are to survey practitioners on the
usefulness of the simplified PERT and to find a fixed, skewed distribution that can approximate activity durations
having long tails.
INTRODUCTION

The current paper presents and evaluates a simplified pro-
gram evaluation and review technique (PERT), a planning tool
for application to construction and other projects. The outline
of the paper is as follows: First, PERT is described; second,
criticisms of PERT in the literature are reviewed; third, the
simplified PERT is presented; fourth, the simplified technique
is tested and evaluated, both on activity duration means and
on a set of project networks. The results are compared with
those of conventional PERT. Finally, the conclusions are
stated. The objective of the present research is to present a
simplified technique that might be more easily and readily ap-
plied in industry, particularly in construction project planning,
than conventional PERT. The simplified PERT algorithm could
be embedded into construction scheduling software to facili-
tate its application.

Description of PERT

PERT was originated by the U.S. Navy in 1958 as a tool
for scheduling the development of a complete weapons system
(Malcolm et al. 1959). The technique considers a project to be
an acyclic network of events and activities. The duration of a
project is determined by a system flow plan in which the du-
ration of each task has an expected value and a variance. The
critical path includes a sequence of activities that cannot be
delayed without jeopardy to the entire project. PERT can be
used to estimate the probability of completing either a project
or individual activities by any specified time. It is also possible
to determine the time duration corresponding to a given prob-
ability (Callahan et al. 1992).

The first step in applying PERT is to diagram the project
network, where each arc represents an activity and each node
symbolizes an event (such as the beginning or completion of
a task), as in Fig. 1. Alternatively, each node can symbolize
an activity. The second step is to designate three time estimates
for each task: optimistic (a), pessimistic (b), and most likely
(m). Small probabilities are associated with a and b. In the
original PERT, a is the minimum duration of an activity; the
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probability of a shorter duration is zero. Similarly, b is the
maximum duration; the probability that the duration will be
less than or equal to b is 100%. No assumption is made about
the position of m relative to a and b. In statistical terms, a and
b are the extreme ends of a hypothetical distribution of dura-
tion times. The mode of the distribution is m. To accommodate
flexibility in the positions of these parameters, the beta distri-
bution is used, as shown in Fig. 2 (Malcolm et al. 1959; Clark
1962). The beta distribution is useful for describing empirical
data and can be either symmetric or skew (Benjamin and Cor-
nell 1970).

The third step is to compute the expected value and variance
of the duration of each activity in the project network. The
mean of a beta distribution is a cubic equation. The PERT
equation for the mean [(1)] is a linear approximation to this

t = (a 1 4m 1 b)/6 (1)e

where te = expected duration of an activity. Badiru (1991)
shows that (1) is exact when m is equal to the mode, which
occurs when a and b are symmetrical about m.

In unimodal probability distributions, the standard deviation
of the distribution is equal to approximately one-sixth of the
range (Watson et al. 1993). With 100% of the possible dura-
tions bound by a and b, the estimated variance of the duration
is as follows:

2 2s (t ) = [(b 2 a)/6] (2)100 e

where s2 = variance of the activity duration. Moder and Rod-
gers (1968) argue that the exact endpoints of the range of the
duration are impossible to define. Their alternative is to define
a and b as the 5% and 95% thresholds of the range, respec-
tively. Then, the variance is as follows:

2 2s (t ) = [(b 2 a)/3.2] (3)90 e

Perry and Greig (1975), alternatively, use 3.25 in the de-
nominator of (3), rather than 3.2. They argue that subjective
probability distributions tend to be rounded (platykurtic) rather
than peaked. The denominator of 3.25 is more appropriate for
platykurtic, bell-shaped curves (Perry and Greig 1975). Moder
and Rodgers’ result seems to be cited more frequently in the
literature, though.

The fourth step is to order the activities sequentially, from
the beginning to the end of the project, in a tabular format,
listing the optimistic, pessimistic, most likely, and expected
durations and the variances. Fifth, forward and backward
passes through the network are performed to identify the crit-
ical path, just as in the widely used critical path method. The
T / JANUARY/FEBRUARY 1999
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FIG. 1. Project Network for Gas Pipeline Operation: a-m-b Ac-
tivity Durations

central limit theorem is then applied as follows: The distri-
bution of the sum of the expected durations of the activities
along the critical path is approximately normal, particularly as
the number of activities increases. The expected duration of
each sum is equal to the sum of the expected durations. Sim-
ilarly, the variance of each sum is the sum of the variances.

These applications of the central limit theorem enable the
computation of project duration probabilities using the devia-
tions from a zero mean of the standard normal variable (Z).
These probabilities can be critical in making financial deci-
sions about the viability of a project (Callahan et al. 1992).

EVALUATION OF PERT IN LITERATURE

Problems with PERT

Various criticisms and proposed modifications to PERT have
appeared in the literature since the early 1960s. There are five
recognized problems with PERT. First, it is difficult for project
engineers and planners to accurately estimate the optimistic,
most likely, and pessimistic durations of an activity. Grubbs
(1962) and Moder et al. (1983) note that subjective estimates
of a, m, and b are based on judgment and may not be closely
related to statistical sampling of the actual times. The latter
authors note that the subjectivity is compounded by the fact
that the activity duration distribution is purely hypothetical, as
well, as discussed later. MacCrimmon and Ryavec (1964) cal-
culate the sensitivity of (1) and (2) to incorrect estimates of a,
m, and b. Swanson and Pazer (1971), along with Lau et al.
JOURNAL OF CONSTRUCTION
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(1996), indicate that ‘‘optimistic’’ and ‘‘pessimistic’’ are am-
biguous and are subject to interpretation. For example, b has
been described as having a ‘‘small chance’’ or a ‘‘one in 100’’
chance of being exceeded (Swanson and Pazer 1971). Little-
field and Randolph (1987) state that, based on past research,
‘‘people are not very good estimators of the extreme values.’’
Moder and Rodgers (1968) relax this requirement, as shown
in (3). Lau et al. (1996) further state that little is known about
modal estimation. The simplification of PERT proposed in the
present paper reduces the dependence on subjective estimation
of activity durations by decreasing the number of time esti-
mates from three to two.

Second, the mean and variance of an activity duration, as
calculated using (1) and (2) or (1) and (3), are estimates of
the actual mean and variance of a beta distribution. Badiru
(1991) summarizes and discusses both the estimated and actual
equations. MacCrimmon and Ryavec (1964) compute the max-
imum possible errors between the estimated and actual means
and variances. If (2) is assumed to be accurate, then the max-
imum possible error in the mean is about 33%; if (1) is pre-
sumed accurate, then the maximum possible error in the stan-
dard deviation is about 17%. McBride and McClelland (1967),
alternatively, calculate a maximum possible error of 18.8% in
the mean when (2) is held as accurate. (The writer verified
MacCrimmon and Ryavec’s result.) Sasieni (1986) finds no
basis for the values of the beta distribution parameters as-
sumed in the derivation of (1). Littlefield and Randolph (1987)
refute Sasieni, restating the rationale given by the developers
and early reviewers of PERT.

Third, the beta distribution is presumed to be applicable to
all project activities. Grubbs (1962) and MacCrimmon and Ry-
avec (1964) criticize this aspect of PERT. At the time of
PERT’s development, no empirical study had been done to
determine the typical distribution of activity times of repre-
sentative projects. MacCrimmon and Ryavec (1964) estimate
the level of error introduced by an incorrect activity distribu-
tion assumption. AbouRizk and Halpin (1992) show, through
their analysis of empirical construction activity duration data,
that the beta distribution is appropriate. AbouRizk and Halpin
(1994) develop a procedure to fit beta distributions to construc-
tion operations.

Fourth, PERT considers only the critical path in computing
project completion time probabilities. The method ignores
FIG. 2. Beta Distributed Activity Duration Example
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near-critical paths that possess a not in significant probability
of becoming critical (Callahan et al. 1992). Numerous authors
have described this problem and have proposed solutions, in-
cluding time-probability computations (Fulkerson 1962), crit-
icality indexes (Van Slyke 1963; Dodin 1984; Bandopadhyay
and Sundararajan 1987), activity time adjustments (Lindsey
1972), and total project duration probability distributions
(Hartley and Wortham 1966; Robillard and Trahan 1977;
Kamburowski 1985; Anklesaria and Drezner 1986; Sculli and
Shum 1991). One of the results of missing near-critical paths
in PERT is a ‘‘merge event bias.’’ The magnitude of this prob-
lem, which worsens as the number of parallel paths in a net-
work increases, has been evaluated by a number of authors
(Crandall 1976; Moder et al. 1983; Sculli 1983). The simpli-
fied PERT proposed in the present paper does not attempt to
tackle the near-critical paths or the merge event bias problem.
This would be a subject for further research.

Finally, Callahan et al. (1992) state that ‘‘one of the major
drawbacks of PERT in construction applications is that it re-
quires multiple time estimates, which can be time-consuming
to develop.’’ The authors indicate that PERT is rarely used on
construction projects. Moder et al. (1983) propose that PERT
is not used either because ‘‘top project managers do not un-
derstand the basic principles of probability and statistics’’ or,
regardless of their understanding of the subject, ‘‘they have
not learned how to use PERT.’’ One of the objectives of the
present paper is to enhance PERT’s applicability by reducing
the number of time estimates needed for its use. Project man-
agers would still need to know a few basics about probability
and statistics; however, the availability of scheduling software
would make knowledge of the mathematics and of the intri-
cacies of the algorithm less essential.

Modifications to PERT

Numerous authors have developed modifications to PERT,
including the adjustments to (2) (Moder and Rodgers 1968;
Perry and Greig 1975) and criticality indexes (see prior text).
Some authors have, as is done in the present paper, modified
PERT’s time estimates. Troutt (1989) replaces the mode with
the median in (1). He states that this produces a good estimate
of the mean regardless of the probability distribution assumed.
Three time estimates are still required, however. Izuchukwu
18 / JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMEN
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(1990) eliminates m and uses only a and b. He argues that m
is ‘‘practically useless,’’ but offers no evaluation of his new
procedure. Contrarily, other research has indicated that a and
b are more difficult to estimate than is m (Littlefield and Ran-
dolph 1987; Lau et al. 1996). Finally, Lau et al. (1996) state
that the estimation of all three of PERT’s time estimates is
subject to ambiguity. They replace a, m, and b with sets of
either five or seven quantiles (the 0.25 quantile, for example,
is greater than 25% of the numbers in the distribution). The
estimation of quantiles is argued as being more straightforward
than the estimation of modes and extreme values. Their
method has merit, but the number of time estimates required
is increased from three to five or seven.

SIMPLIFIED PERT PROCEDURE

The proposed simplification of PERT is to reduce the num-
ber of time estimates required for each task from three to two.
This reduction decreases both the level of effort needed to
apply PERT and the required knowledge of activity durations.
To retain a probabilistic procedure, the time estimates must be
inputs to determining the expected value and variance of an
activity duration. The only choice is to assume that the distri-
bution of a duration is symmetric, i.e., normal, as in Fig. 3,
rather than beta. A unique normal distribution is defined by
any given pair of mean and standard deviation values (Watson
et al. 1993). Thus, a unique normal distribution can be defined
by any two points on one side of the curve. The other elements
of the PERT technique remain the same.

Given that Izuchukwu (1990) uses a and b in his procedure,
the question remains as to which of a, m, and b to use in the
new, simplified procedure. Moder et al. (1983) report that most
time estimates are on the optimistic side, resulting in actual
project durations being longer than those forecast. This finding
is congruous with Izuchukwu’s on the closeness of m to a.
Hence, relying on a and m only may result in optimistic time
estimates. The more conservative approach is to use m and b.
Here, m, the mode, is equal to the mean, since the distribution
is symmetric.

The expected duration of an activity in simplified PERT can
be determined as follows:

T = m (4)e
FIG. 3. Normally Distributed Activity Duration Example
T / JANUARY/FEBRUARY 1999
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where Te = expected duration. The two variances can be com-
puted as follows: The standard normal variable, Z, is equal to
3.44 when b is the upper bound on 100% of all durations, and
is 1.645 when b is greater than 95% of the durations. Z = (b
2 m)/s, so

2 2s (T ) = [(b 2 m)/3.44] (5)100 e

and

2 2s (T ) = [(b 2 m)/1.645] (6)90 e

In choosing between (5) and (6) for the variance, it is rec-
ognized that the normal distribution is not bound on either end.
Hence, b as the upper limit on 100% of the durations would
be, by definition, infinite. Eq. (6), therefore, is preferable. The
remainder of the simplified PERT procedure is the same as
that of conventional PERT. Hence, the merge event bias prob-
lem is not explicitly corrected.

TESTING AND EVALUATION

Normal Distribution Assumption for
Activity Durations

The first step in evaluating the simplified PERT procedure
is to review the normal distribution assumption for individual
activity durations. AbouRizk and Halpin (1992) perform a sta-
tistical analysis of construction activity duration data. The au-
thors developed a database of 71 construction activities, in-
cluding various forms of loading, dumping, bulldozing, pipe
jacking, and hauling. The data are not described in detail, but
the authors state that at least 20 observations of each activity
were available, with over 100 observations in some samples.
Most of the sample duration distributions are associated with
some degree of skewness (21.207 # g1 # 4.869) and kurtosis
(1.008 # g2 # 31.346). The beta distribution is found to cover
most of the density shapes.

The normal distribution is associated with a skewness of 0
and a kurtosis of 3 (AbouRizk and Halpin 1992). Demenais
et al. (1986), in discussing how major genes are analyzed in
family studies, identify three ranges of skewness for sample
sizes of 100 nuclear families: low, intermediate, and high.
When there is low skewness (20.2 # g1 # 0.2), the sampled
distribution can be considered normal. For intermediate skew-
ness (20.4 # g1 # 20.2 and 0.2 # g1 # 0.4), the distribution
is nearly normal. In cases of high skewness (g1 < 20.4 or g1

> 0.4), the normal distribution assumption is questionable. Of
the 71 construction activities sampled by AbouRizk and Hal-
pin (1992), 13 have low skewness, 10 have intermediate skew-
ness, and 48 have high skewness. There does not appear to be
any pattern in the degree of skewness by type of activity.
Hence, in about one-third of the cases, a normal distribution
assumption is reasonable.

The indication is that the normal distribution is viable only
part of the time. The questions, then, are: How much error
might be introduced into the mean of an activity duration by
assuming that its distribution is normal, when, in fact, it is
skewed? What cumulative effect might such errors have on
project duration probabilities? To answer these questions, a
theoretical evaluation of activity durations and a practical eval-
uation of some project durations were conducted.

Evaluation of Activity Duration Means

The beta distribution has four parameters that enable its
flexibility. For a standardized (0, 1) beta distribution, the mode
(mb), mean (mb), and variance are as shown in (7), (8),2(s )b

and (9), respectively (Benjamin and Cornell 1970; Swanson
and Pazer 1971)
JOURNAL OF CONSTRUCTION
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TABLE 1. Means of Simplified and Conventional PERT Activ-
ity Durations

mb =
Te

(1)
a

(2)
b

(3)
te

(4)
mb

(5)

% Difference
mb 2 Te

(6)

% Difference
mb 2 te

(7)
g1b

(8)

0.01 0.03 2.91 0.173 0.208 95.2 16.8 1.01
0.10 0.36 3.25 0.233 0.243 58.8 3.8 0.81
0.20 0.89 3.57 0.300 0.293 31.7 22.4 0.59
0.30 1.57 3.67 0.367 0.355 15.5 23.2 0.38
0.40 2.32 3.48 0.433 0.426 6.0 21.8 0.18
0.50 3.00 3.00 0.500 0.500 0.0 0.0 0.00
0.60 3.48 2.32 0.567 0.574 24.5 1.3 20.18
0.70 3.67 1.57 0.633 0.645 28.6 1.8 20.38
0.80 3.57 0.89 0.700 0.707 213.1 1.0 20.59
0.90 3.25 0.36 0.767 0.758 218.8 21.2 20.81
0.99 2.91 0.03 0.827 0.792 225.1 24.4 21.01

Note: mb and a were determined from (10); b was deduced using (7);
te was calculated using (1) with a = 0 and b = 1; mb was computed from
(8). Skewness g1b is that of beta distribution, as computed using (14).

m = a/(a 1 b) (7)b

m = (a 1 1)/(a 1 b 1 2) (8)b

2 2s = [(a 1 1)(b 1 1)]/[(a 1 b 1 2) (a 1 b 1 3)] (9)b

In the preceding equations, a and b = parameters of the
beta distribution. The conventional PERT equations for the
mean and variance of an activity duration are approximations.
For example, (1) is exact only when a 1 b = 4 (Gallagher
1987). This restriction was established to simplify the equation
for the mean. Badiru (1991) indicates that, regardless of the
values of a and b, (1) is exact when the PERT estimates are
symmetric about m.

Another approach, based on stronger assumptions, is to let
the standard deviation of the beta distribution be equal to one-
sixth of the range. Then, the variance, shown in (9), is equal
to 1/36. Solving this equation, and using (7) and (8) to sub-
stitute terms, produces a cubic equation in terms of a and mb,
as shown in (10) (Littlefield and Randolph 1987)

3 3 2 2 2 3a 1 (36m 2 36m 1 7m )a 2 20m a 2 24m = 0 (10)b b b bb

Varying mb between 0 and 1 produces (a, b) pairs that fa-
cilitate the computation of the actual mean mb. Then, mb can
be compared to the estimated mean te. To evaluate simplified
PERT’s time estimate, mb can also be compared to Te from
(4).

The comparison between the actual mean of the beta distri-
bution, the estimated mean of conventional PERT, and the
mean of simplified PERT, over a 0–1 range [i.e., in (1), a =
0 and b = 1], is shown in Table 1. Note that this approach
requires that the original formula for the standard deviation be
used—the variance is shown in (2)—rather than Moder and
Rodgers’ (1968) modification. Since a different definition for
the variance is used in simplified PERT, the evaluation focused
on comparing the means. For values of mb (=Te) ranging from
0.01 to 0.99 (column 1), both te and mb were computed, as
shown in columns 4 and 5, along with the percent differences
between Te and mb and between te and mb, as shown in col-
umns 6 and 7. The difference between te and mb ranges from
16.8% at mb = 0.01, to 0.0% at mb = 0.50, to 24.4% at mb =
0.99. By comparison, the difference between Te and mb ranges
from 95.2% at mb = 0.01, to 0.0% at mb = 0.50, to 225.1%
at mb = 0.99. The skewness of the beta distribution, computed
from (14) in Appendix I, ranges from 1.01 at mb = 0.01, to
0.00 at mb = 0.50, to 21.01 at mb = 0.99. The indication is
that the simplified PERT’s Te is subject to greater error than
the conventional PERT’s te. The error is particularly large at
small mb values, which occur when the beta distribution has
a large positive skewness.
ENGINEERING AND MANAGEMENT / JANUARY/FEBRUARY 1999 / 19
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It is apparent that the potential for an error in estimating the
mean of an activity duration is greater with simplified PERT
than with conventional PERT. An error of 610% in the mean
time of a simplified PERT activity occurs at standardized Te

values of 0.35 and 0.75, respectively. Standardized durations
of between 0.35 and 0.75 occur at degrees of skewness be-
tween 0.28 and 20.48. Thus, when the skewness of the dis-
tribution is greater than 0.28 or less than 20.48, the error is
greater than 10%. In AbouRizk and Halpin (1992), 51 of the
71 construction activities studied have such skewed distribu-
tions. Hence, applying the normal distribution to the mean of
an activity duration distribution would be adequate in 30%,
but inaccurate in about 70%, of all construction activities. This
conclusion assumes that the activities surveyed by AbouRizk
and Halpin (1992) are common and would be critical in a
typical project.

Practical Evaluation of Conventional and Simplified
PERT Project Durations

The second phase in evaluating the simplified PERT is to
compare its results for entire projects with those obtained us-
ing the conventional PERT. Comparisons of multiple networks
have been used to assess the computing speed of probabilistic
scheduling methods (Diaz and Hadipriono 1993). To apply a
similar approach, expected durations and variances were com-
puted for a set of 12 project networks, each featuring a, m,
and b estimates for the activities. One of these networks is
shown in Fig. 1. The duration data and network layouts were
obtained from a host of sources (Van Slyke 1963; Mac-
Crimmon and Ryavec 1964; Moder et al. 1983; Dodin 1984;
Callahan et al. 1992; Diaz and Hadipriono 1993).

In each of the 12 project networks, the critical path is the
same for both PERT procedures; this does not always have to
be the case. The results are shown in Table 2. Column 1 dis-
tinguishes the projects; project ‘‘G’’ is the network shown in
Fig. 1. Column 2 lists the number of activities on the critical
paths; the range is from 3 to 16. Column 3 lists the number
of merge events on the critical paths. The probability that an-
other path is critical increases as the number of merge events
increases (Moder et al. 1983).

Column 4 lists the expected project durations using conven-
tional PERT. These values can be compared with those in col-
umn 6, which are the expected durations using simplified
PERT. In all 12 networks, Te # te. The differences between
the expected durations range from 210.9% to zero. There are
three possibilities for the expected durations computed by the
two procedures, each of which can be demonstrated mathe-
matically. By definition, b $ m $ a

(a 1 4m 1 b)/6 = m, so a 1 b = 2m = m 1 m;

thus b 2 m = m 2 a (11)

(a 1 4m 1 b)/6 > m, so a 1 b > 2m or m 1 m;

thus b 2 m > m 2 a (12)

(a 1 4m 1 b)/6 < m, so a 1 b < 2m or m 1 m;

thus b 2 m < m 2 a (13)

When (11) holds, a and b are symmetric about m. When
(12) holds, the duration distribution is skewed left. When (13)
holds, the distribution is skewed right. The a, m, and b values
of the 172 activities included in the 12 project networks were
studied. Izuchukwu (1990) states that a and m are typically
closer together than are m and b. This actually occurs in only
67 of the 172 activities. However, the overall average values
of m 2 a and b 2 m are 3.05 and 4.16, respectively, with
variances of 10.06 and 21.67. A hypothesis test on the equiv-
20 / JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT
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TABLE 2. Critical Path PERT Duration Data

Project
(1)

Activities
(2)

Merge
events

(3)

Conventional

te

(4)

2s (t )90 e

(5)

Simplified

Te

(6)

2s (T )90 e

(7)

A 5 1 89.0 36.7 89.0 48.0
B 7 4 55.0 16.2 55.0 15.2
C 5 2 41.7 13.3 41.0 19.2
D 10 3 58.3 29.3 58.0 29.6
E 16 4 286.2 396.6 285.0 385.1
F 3 2 12.2 4.4 12.0 5.2
G 6 4 64.0 200.4 57.0 405.8
H 3 1 13.0 3.1 13.0 3.0
I 4 1 12.0 2.7 12.0 2.6
J 10 4 47.7 38.3 45.1 92.2
K 3 1 7.2 2.8 7.0 3.3
L 4 3 66.0 211.9 63.0 290.1

TABLE 3. PERT Project Duration Probabilities

Project
(1)

Activities
(2)

Conventional, b > 95%

t80

(3)
P10

(4)

Simplified, b > 95%

T80

(5)
P10

(6)

A 5 94.1 7.1% 94.8 10.0%
B 7 58.4 8.6% 58.3 7.9%
C 5 44.7 12.7% 44.7 17.5%
D 10 62.9 14.1% 62.6 14.3%
E 16 302.9 7.5% 301.5 7.3%
F 3 13.9 28.1% 13.9 29.9%
G 6 75.9 32.6% 74.0 38.9%
H 3 14.5 23.1% 14.4 22.4%
I 4 13.4 23.4% 13.4 22.8%
J 10 52.8 22.1% 53.2 31.9%
K 3 8.6 33.5% 8.5 35.1%
L 4 78.3 32.5% 77.3 35.6%

Note: t80, T80 = project duration estimated to occur with 80% proba-
bility. P10 = probability that project’s duration is 10% longer than ex-
pected duration.

alence of the two means was conducted using the Satterthwaite
test (Watson et al. 1993). This test is appropriate for two sam-
ples with unequal variances. The test is described in Appendix
II. The null hypothesis that the mean values of m 2 a and
b 2 m are equal was rejected. Hence, even though the con-
dition shown in (13) occurs with the greatest frequency, b 2
m > m 2 a in enough cases to offset this.

The most extreme example of the difference between Te and
te occurs in the network shown in Fig. 1; the simplified PERT
expected duration is 10.9% less than that of conventional
PERT. An examination reveals that, for four of the six activ-
ities on the critical path, (b 2 m) = 3*(m 2 a). In the other
11 project networks, these ratios are not nearly as great.

Column 5 of Table 2 lists the project variances computed
using (3). These can be compared with the simplified PERT
variances listed in column 7. The value of ranges from2s (t )90 e

2.7 to 396.6 while 2.6 # # 405.8. The simplified2s (T )90 e

PERT variances are greater than the conventional PERT vari-
ances in eight of the 12 networks. This indicates that, in gen-
eral, the simplified PERT variances are greater than those com-
puted using conventional PERT.

Project duration probabilities are shown in Table 3. Column
3 lists the project durations expected to occur with 80% prob-
ability using conventional PERT (t80). Column 5 lists T80 val-
ues for simplified PERT. Columns 4 and 6 list the probabilities
that the expected project durations will be exceeded by 10%
(P10). Column 4 lists P10 values for conventional PERT, while
column 6 lists P10 values for simplified PERT. The probabili-
ties were calculated by applying the central limit theorem to
the sums of the individual project activities. Then, the standard
normal variable (Z) along with cumulative normal distribution
/ JANUARY/FEBRUARY 1999
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TABLE 4. Hypothesis Tests on Activity Durations and Variances

Statistic
(1)

X1

(2)
X2

(3)

2s1

(4)

2s2

(5)
sX12X2

(6)
tcalc

(7)
n

(8)
ta/2,n

(9)

Expected duration 9.10 8.91 86.93 86.21 1.10 0.185 171 1.98
Variance, b > 95% 14.42 10.19 1,379.24 651.87 3.44 1.229 171 1.98

Note: Symbols and equations are detailed in Appendices II and IV.
tables were used to compute probabilities. The T80 values range
from 2.5% less than to 0.8% greater than t80. Seven of the t80

values are greater than, three are equal to, and two are less
than the T80 values. Eight of the simplified PERT P10 values
are greater than those of conventional PERT, while the re-
maining four are less.

It is difficult to draw firm conclusions from this analysis of
the variances and probabilities of simplified and conventional
PERT durations in the 12 project networks. The indication is
that simplified PERT produces shorter expected project dura-
tions, but greater project duration variances, than does con-
ventional PERT. The effects of these cancel each other, such
that the project duration probabilities of simplified PERT are
not much different from those of conventional PERT. Thus, in
these and similar project networks, results at least as reliable
as those of conventional PERT can be obtained using the sim-
pler technique.

To extend the analysis, the durations of the 172 activities
comprising the 12 networks were examined. Two null hypoth-
eses were tested: that the means of the 172 expected durations
computed using conventional and simplified PERT are equal,
and that the means of the 172 variances with b > 95% of the
durations are equal. The Satterthwaite test was used (see Ap-
pendix II).

The results are shown in Table 4. The null hypotheses that
the means of both the expected durations and the variances
are equal are not rejected in any case. The overall conclusion
is that the conventional and simplified PERTs produce similar
values for activity durations and variances.

CONCLUSIONS

A simplified version of PERT has been developed. The new
technique reduces the level of effort required by conventional
PERT because only two time estimates, rather than three, are
required for each activity. The remainder of the procedure is
identical to the conventional method. The reduced effort may
result in a significant time savings for large projects in which
there are many tasks. Two evaluations of the new method were
conducted. In the first phase, the estimated means of a range
of modal duration values were computed for both simplified
and conventional PERT. The estimated means were compared
with actual means obtained from the standardized beta distri-
bution. The activity duration means computed using simplified
PERT are subject to greater error than are those computed
using conventional PERT, especially when the distribution is
highly skewed. At degrees of skewness between 0.28 and
20.48, the error in the mean would be less than or equal to
10% of the actual value. Based on the AbouRizk and Halpin
(1992) study, about 30% of all construction activities have
skewness levels within this range.

This second phase of the evaluation featured the computa-
tion of project durations for 12 networks using both simplified
and conventional PERT. The expected durations and variances
of individual project activities, computed using simplified
PERT, are essentially equal to those computed using the con-
ventional procedure. Simplified PERT produces shorter project
durations, but greater project duration variances, than does
conventional PERT. The combination of these two effects re-
sults in similar project duration probabilities. These conclu-
sions are drawn from the analysis of the networks and via
JOURNAL OF CONSTRUCTION

J. Constr. Eng. Mana
hypothesis tests on 172 project activities. These results are in
contrast to those obtained in the first phase of the evaluation.
The implication is that the 12 networks tested did not include
activities with highly skewed duration distributions. If the 12
project networks are truly representative, then the simplified
PERT produces results similar to those obtained with conven-
tional PERT, but with less effort.

Further analysis of the simplified PERT procedure is rec-
ommended, possibly on other networks, and via simulation of
activity durations on a single network. The new procedure
does not explicitly improve upon PERT’s merge event bias
problem. Further research is suggested toward developing a
probabilistic procedure that is easy to apply and that eliminates
merge event bias and the ignorance of near-critical paths. Fur-
ther analysis of construction activity duration distributions is
also suggested. If the critical activities in a given project fea-
ture highly skewed duration distributions, then simplified
PERT may be inappropriate. An alternative might be to use a
fixed, positively skewed distribution, defined by two param-
eters, for all activities. A survey of practitioners is suggested
to ascertain the usefulness of the new procedure. To facilitate
its usage, the simplified PERT algorithm could be embedded
into construction scheduling software.

APPENDIX I. DEGREE OF SKEWNESS OF
BETA DISTRIBUTION

The degree of skewness of a standardized (0, 1) beta dis-
tribution can be computed as follows:

1 (a 1 1) (a 1 3)(a 1 2)
g =1b F3s (a 1 b 1 2) (a 1 b 1 4)(a 1 b 1 3)

23(a 1 1)(a 1 2) 2(a 1 1)
2 1 G2(a 1 b 1 2)(a 1 b 1 3) (a 1 b 1 2) (14)

The parameters of the beta distribution are a and b, while s
= standard deviation.

APPENDIX II. SATTERTHWAITE TEST

The Satterthwaite test (Aspin test; Welch test) is applied to
a hypothesis test on two means when the samples have un-
equal or separate variances (Watson et al. 1993). The test is
as follows:

H : m = m and H : m ≠ m (15)0 1 2 a 1 2

Reject H if t < 2t or t > t , where (16)0 calc a/2,n calc a/2,n

¯ ¯t = (X 2 X )/s (17)¯ ¯calc 1 2 X12X2

2 2 0.5s = [(s 1 s )/n] , and (18)¯ ¯X12X2 1 2

n = n 2 1 (19)

In (15)–(19), H0 = null hypothesis; Ha = alternative hy-
pothesis; m = population mean; t = value of the statistic from
Student’s t distribution; a indicates the confidence level; n =
degrees of freedom; = sample mean; s2 = sample variance;X̄
and = pooled sample standard deviation. Eqs. (18) andsX12X2

(19) are valid when the number of observations in each sample
is the same.
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APPENDIX IV. NOTATION

The following symbols are used in this paper:

a = optimistic activity duration; first shape parameter of beta
distribution;

b = pessimistic activity duration; third shape parameter of
beta distribution;

g1 = sample skewness coefficient;
g1b = skewness coefficient of standardized beta distribution;
g2 = sample kurtosis coefficient;
m = most likely or modal activity duration;

mb = mode of beta distribution;
n = number of observations in sample;

P10 = probability that project’s duration is 10% longer than
expected duration;

s2 = variance of sample of values;
sX12X2 = pooled sample standard deviation;

Te = expected duration time of activity using simplified PERT
procedure;

T80 = simplified PERT project duration estimated to occur
with 80% probability;

t, tcalc = value of statistic in Student’s t distribution;
X̄ = mean of sample of values;
Z = standard normal variable;
a = parameter of beta distribution; 1 2 (desired statistical

confidence level/100);
b = parameter of beta distribution;
m = population mean;

mb = mean of beta distribution;
n = degrees of freedom;
2sb = variance of beta distribution;

2s90 = variance of activity’s duration when a and b are greater
than 5% and 95%, respectively, of activity’s duration;

2s100 = variance of activity’s duration when a and b are lower
and upper bounds, respectively, on activity’s possible
durations;

te = expected duration time of activity using conventional
PERT procedure; and

t80 = conventional PERT duration estimated to occur with
80% probability.
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