CENG 6101 Project Management

Scheduling of Non-Repetitive Construction Projects: PERT

Abraham Assefa Tsehayae, PhD
November, 2017
(1) What is PERT?
(2) Why use PERT over CPM?
(3) PERT vs. CPM
(4) Procedure for a project network
(5) PERT network and calculations
(6) Case study

WHAT IS PERT?

- PERT stands for Program Evaluation and Review Technique, a methodology developed by the U.S. Navy in the 1958 to manage the POLARIS submarine missile program
- A project management tool used for management of nonrepetitive projects, where the time and cost estimates tend to be quite uncertain; this technique uses probabilistic time estimates
- PERT is used to schedule, organize, and coordinate tasks within a project

WHY USE PERT OVER CPM?

- PERT enables us to answer two main questions:

1. What project duration will provide a probability p of meeting it?
2. What is the probability of finishing a project in x days/months/years?

- When you have a high degree of uncertainty surrounding your project, stochastic schedules are preferred to deterministic schedules (like CPM)
- PERT environment is estimated on the basis of optimistic, most likely, and pessimistic durations for each activity; these durations can be arrived at in various ways (heuristic, data, etc.)

WHY USE PERT OVER CPM?

- Advantages of PERT
- Accounts for uncertainty
- More realistic
- Limitations of PERT
- Time and labour intensive
- Mostly used on large, complex projects
- Both use Network Diagrams
- CPM: deterministic
- PERT: probabilistic
- CPM: one estimate, PERT: several estimates

WHY USE PERT OVER CPM?

- Both useful at many stages of project management
- Both are mathematically simple
- Both give critical path and float time
- Both provide project documentation
- Both are useful in monitoring costs

WHY USE PERT OVER CPM?

Example: Placing concrete
Placing concrete might be delayed due to:

- Rain
- Low labour productivity
- Equipment breakdown

PERT allows scheduler to account for such uncertainties in activity durations

PERT PROCEDURE FOR A PROJECT NETWORK

1. Estimate the optimistic, most likely, and pessimistic durations for each activity
2. Do a forward and backward pass, and calculate the mean/expected project duration and variance of project completion time
3. Using the Central Limit Theorem, assume that the project completion time has a normal distribution function
4. Given a duration x, calculate Z (standard normal variate) and use a normal distribution table to assess the probability of completing the project in x units of time or less, OR
5. Given a probability p, read Z from a normal distribution table and calculate the duration x that will give this probability of completion

PERT NETWORK AND CALCULATIONS

Step 1: Identify activity durations:

- Optimistic Estimate (O) - duration expected to occur under best circumstances
- Most Likely Estimate (ML) - duration expected to occur under normal circumstances
- Pessimistic Estimate (P) - duration expected to occur under worst circumstances

PERT NETWORK AND CALCULATIONS

Step 2: Calculate mean/expected duration (μ) for each activity (assuming Beta distribution for activity durations):

$$
\mu=\frac{(1 * O+4 * M L+1 * P)}{6}
$$

PERT NETWORK AND CALCULATIONS

Step 3: Calculate variance (σ^{2}) and standard deviation (σ) for each activity:

$$
\begin{aligned}
& \sigma^{2}=\left(\frac{(P-O)}{6}\right)^{2} \\
& \sigma=\left(\frac{(P-O)}{6}\right)
\end{aligned}
$$

The higher the σ^{2} and σ, the greater the amount of uncertainty in the activity duration

PERT NETWORK AND CALCULATIONS

Step 4: Plot network diagram and perform calculations

PERT NETWORK AND CALCULATIONS

Step 5: Network calculations

Traditional CPM early and late date calculations, but treat activity durations as mean activity duration, so:

$$
\begin{aligned}
& E S+\mu=E F \\
& L F-\mu=L S
\end{aligned}
$$

PERT NETWORK AND CALCULATIONS

Step 5: Network calculations

- Forward Pass (Based on CPM)
-For activity A
$\mathrm{EF}_{\mathrm{A}}=\mathrm{ES}_{\mathrm{A}}+\mu_{\mathrm{A}}=\mu_{\mathrm{A}}$
-For activity C
$\mathrm{ES}_{\mathrm{C}}=\mathrm{EF}_{\mathrm{A}}$
$E F_{C}=E S_{C}+\mu_{C}$

-For activity E
$E S_{E}=\operatorname{Max}\left(E F_{B}, E F_{c}\right)$
$E F_{E}=E S_{E}+\mu_{E}$

PERT NETWORK AND CALCULATIONS

Step 5: Network calculations

- Backward Pass (Based on CPM)
-For activity A
$\mathrm{LS}_{\mathrm{A}}=\mathrm{LF}_{\mathrm{A}}-\mu_{\mathrm{A}}$
-For activity C
$L F_{C}=L S_{E}$
$\mathrm{LS}_{\mathrm{C}}=\mathrm{LF}_{\mathrm{C}}-\mu_{\mathrm{C}}$

-For activity B
$\mathrm{LF}_{\mathrm{B}}=\operatorname{Min}\left(\mathrm{LS}_{\mathrm{D}}, \mathrm{LS}_{\mathrm{E}}\right)$
$L S_{B}=L F_{B}-\mu_{B}$

PERT NETWORK AND CALCULATIONS

Step 5: Network calculations
Project duration $(\bar{T})=\sum_{i}^{n} \mu_{i}$, where μ_{i} is mean duration of the n activities on the longest path
$V^{2}=\sum_{i}^{n} \sigma_{i}^{2}$, where σ_{i}^{2} is variance of the n activities on the longest path

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities

- Assume that there are n activities along the critical path and that the activity durations are independent
- Assume that each activity duration has a given distribution D (e.g., a beta distribution) with a finite mean and variance

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities

- If the number of activities on critical path is large, then the distribution of the mean of the activity durations approaches a normal distribution, according to Central Limit Theorem
- So, if n is large enough, distribution of the project completion time T can be approximated with normal distribution with mean $\overline{\mathrm{T}}$ and variance V^{2} as follows:

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities

- $\overline{\mathrm{T}}=\sum_{\mathrm{ij}=1}^{\mathrm{n}} \mu_{\mathrm{ij}}=\mu_{1 \mathrm{j}}+\mu_{2 \mathrm{j}}+\ldots+\mu_{\mathrm{nj}}$
such that j belongs to longest path leading to terminal node and i refers to the n activities on the path
- $\mathrm{V}^{2}=\sum_{\mathrm{ij}=1}^{\mathrm{n}} \sigma^{2}{ }_{\mathrm{ij}}=\sigma^{2}{ }_{1 \mathrm{j}}+\sigma^{2}{ }_{2 \mathrm{j}}+\cdots+\sigma^{2}{ }_{\mathrm{nj}}$
such that j belongs to longest path leading to terminal node and i refers to the n activities on the path
Note: Longest path is not necessarily the path with highest uncertainty; could have higher uncertainty along non-critical paths

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities

- Since \bar{T} and V^{2} are assumed to follow a normal distribution, statistical analysis can be performed to make probabilistic statements
- What is the probability of completing the project in x time units or less?
- What project duration would give a probability of $y \%$ of completing the project in time?

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities

- Normal distribution with mean μ and variance σ^{2} has a probability density function (PDF) and cumulative distribution function (CDF) as shown below:

IGURE 15.5 Sample Normal Distribution CDF

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities

- Using CDF, for any given value of x we can determine probability of having a number $\leq x$ by reading $F(x)$ from graph, or using the equation shown below, or using a normal distribution table (next slide)

[^0]
PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities From normal distribution table for $+Z$:

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

\mathbf{Z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
$\mathbf{0 . 0}$.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
$\mathbf{0 . 1}$.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
$\mathbf{0 . 2}$.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
$\mathbf{0 . 3}$.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
$\mathbf{0 . 4}$.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
$\mathbf{0 . 5}$.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
$\mathbf{0 . 6}$.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
$\mathbf{0 . 7}$.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
$\mathbf{0 . 8}$.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
$\mathbf{0 . 9}$.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
$\mathbf{1 . 0}$.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
$\mathbf{1 . 1}$.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
$\mathbf{1 . 2}$.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
$\mathbf{1 . 3}$.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
$\mathbf{1 . 4}$.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities
 From normal distribution table for $-Z$:

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-1.9	. 02872	. 02807	. 02743	. 02680	. 02619	. 02559	. 02500	. 02442	. 02385	. 02330
-1.8	. 03593	. 03515	. 03438	. 03362	. 03288	. 03216	. 03144	. 03074	. 03005	. 02938
-1.7	. 04457	. 04363	. 04272	. 04182	. 04093	. 04006	. 03920	. 03836	. 03754	. 03673
-1.6	. 05480	. 05370	. 05262	. 05155	. 05050	. 04947	. 04846	. 04746	. 04648	. 04551
-1.5	. 06681	. 06552	. 06426	. 06301	. 06178	. 06057	. 05938	. 05821	. 05705	. 05592
-1.4	. 08076	. 07927	. 07780	. 07636	. 07493	. 07353	. 07215	. 07078	. 06944	. 06811
-1.3	. 09680	. 09510	. 09342	. 09176	. 09012	. 088551	. 08691	. 08534	. 08379	. 08226
-1.2	. 11507	. 11314	. 11123	. 10935	. 10749	. 10565	. 10383	. 10204	. 10027	. 09853
-1.1	. 13567	. 13350	. 13136	. 12924	. 12714	. 12507	. 12302	. 12100	. 11900	. 11702
-1.0	. 15866	. 15625	. 15386	. 15151	. 14917	. 14686	. 14457	. 14231	. 14007	. 13786
-0.9	. 18406	. 18141	. 17879	. 17619	. 17361	. 17106	. 16853	. 16602	. 16354	. 16109
-0.8	. 21186	20897	. 20611	. 20327	. 20045	. 19766	. 19489	. 19215	. 18943	. 18673
-0.7	. 24196	. 23885	. 23576	. 23270	. 22965	. 22663	. 22363	. 22065	. 21770	. 21476
-0.6	. 27425	. 27093	. 26763	. 26435	. 26109	. 25785	- 25463	. 25143	. 24825	. 24510
-0.5	. 30854	. 30503	. 30153	. 29806	. 29460	. 29116	. 28774	. 28434	. 28096	. 27760
-0.4	. 34458	. 34090	. 33724	. 33360	. 32997	. 32636	. 32276	. 31918	. 31561	. 31207
-0.3	. 38209	. 37828	. 37448	. 37070	. 36693	. 36317	. 35942	. 35569	. 35197	. 34827
-0.2	. 42074	. 41683	. 41294	. 40905	. 40517	. 40129	- 39743	. 39358	. 38974	. 38591
-0.1	. 46017	. 45620	. 45224	. 44828	. 44433	. 44038	. 43644	. 43251	. 42858	. 42465
-0.0	. 50000	. 49601	49202	48803	48405	48006	. 47608	47210	46812	46414

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities
If x is normally distributed with mean μ and variance σ^{2}, then random variable Z :
$\mathrm{Z}=\frac{(\mathrm{x}-\mu)}{\sqrt{\sigma^{2}}}$
is normally distributed with mean $\mu=0$ and variance $\sigma^{2}=1$ and Z is referred to as standard normal variate; therefore to determine probability of completing project in x time units or less, read probability corresponding to value of Z from normal distribution table

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities
Sometimes, probability tables are provided for positive values of Z only:

- Use symmetric properties of normal distribution, so that:
$\varphi(-\mathrm{z})=1-\varphi(\mathrm{z})$
where φ is cumulative probability density function of normal distribution
- So, read value corresponding to $+Z$ in table and calculate probability of $-Z$ by subtracting value read from table from 1.0

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities
For a project network:
Since $\bar{T}=$ mean and $V^{2}=$ variance for the project completion time (assumed to have a normal distribution)
-Calculate $\overline{\mathrm{T}}$ and V^{2}

- Given values of x calculate Z and use normal distribution table to assess probability of completing project in x days or less, OR
- Given a probability, read Z from table and calculate duration x which will give this probability of completion.

PERT NETWORK AND CALCULATIONS

Case Study

Activity	Dependency	Predecessor Relationship Type	$\mathbf{0}$	ML	P
A			10	16	20
B	A	FS	7	10	20
C	A	FS	5	7	8
D	B	FS	15	18	21
E	B,C	FS,FS	25	30	32
F	D	FS	6	9	12
G	D,E	FS,FS	21	25	28
H	F,G	FS,FS	6	8	9

PERT NETWORK AND CALCULATIONS

Step 1: Determine activity durations

Activity	\mathbf{O}	ML	P
A	10	16	20
B	7	10	20
C	5	7	8
D	15	18	21
E	25	30	32
F	6	9	12
G	21	25	28
\mathbf{H}	6	8	9

PERT NETWORK AND CALCULATIONS

Step 2: Calculate mean/expected duration for each activity

Activity	Dependency	Predecessor Relationship Type	\mathbf{O}	$\mathbf{M L}$	\mathbf{P}	μ
A			10	16	20	15.67
B	A	FS	7	10	20	11.17
C	A	FS	5	7	8	6.83
D	B	FS	15	18	21	18.00
E	B,C	FS,FS	25	30	32	29.50
F	D	FS	6	9	12	9.00
G	D,E	FS,FS	21	25	28	24.83
H	F,G	FS,FS	6	8	9	7.83

PERT NETWORK AND CALCULATIONS

Step 3: Calculate variance and standard deviation for each activity

Activity	Dependency	Predecessor Relationship Type	\mathbf{O}	$\mathbf{M L}$	\mathbf{P}	μ	σ^{2}	σ
A			10	16	20	15.67	2.78	1.67
B	A	FS	7	10	20	11.17	4.69	2.17
C	A	FS	5	7	8	6.83	0.25	0.50
D	B	FS	15	18	21	18.00	1.00	1.00
E	B,C	FS,FS	25	30	32	29.50	1.36	1.17
F	D	FS	6	9	12	9.00	1.00	1.00
G	D,E	FS,FS	21	25	28	24.83	1.36	1.17
H	F,G	FS,FS	6	8	9	7.83	0.25	0.50

PERT NETWORK AND CALCULATIONS

Step 4: Plot network diagram

PERT NETWORK AND CALCULATIONS

Step 5: Perform network calculations

Activity	μ	ES	EF	LS	LF	σ^{2}
A	15.67	0	15.67	0	15.67	2.78
B	11.17	15.67	26.84	15.67	26.84	4.69
C	6.83	15.67	22.5	20.01	26.84	
D	18.00	26.84	44.84	38.3	56.34	
E	29.50	26.87	56.34	26.87	56.34	1.36
F	9.00	44.84	53.84	72.17	81.17	
G	24.83	56.34	81.17	56.34	81.17	1.36
H	7.83	81.17	89	81.17	89	0.25
					$\mathbf{V}^{2}=\text { Variance of Critical path }$	10.44

Critical Path is: $\mathrm{A}-\mathrm{B}-\mathrm{E}-\mathrm{G}-\mathrm{H}$

$$
\begin{aligned}
& \overline{\mathrm{T}}=15.67+11.17+29.50+24.83+7.83=89.00 \\
& \mathrm{~V}^{2}=2.78+4.69+1.36+1.36+0.25=10.44
\end{aligned}
$$

PERT NETWORK AND CALCULATIONS

- Step 6: Determining probabilities
- Probability of project completion in 92 days or less:
$\therefore x=92$
- $\mathrm{Z}=\frac{(\mathrm{x}-\overline{\mathrm{T}})}{\sqrt{\mathrm{V}^{2}}}=\frac{(92-89)}{\sqrt{10.44}}=0.9285 \approx 0.93$
- From normal distribution Table 1:
$\rightarrow p=0.82381$
$\therefore 82.4 \%$ chance of completing project in 92 days or less

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities
Probability of project completion in 83 days or less:
$\therefore x=83$

- $\mathrm{Z}=\frac{(\mathrm{x}-\overline{\mathrm{T}})}{\sqrt{\overline{\mathrm{V}}^{2}}}=\frac{(83-89)}{\sqrt{10.44}}=-1.8569 \approx-1.86$
- From $-Z$ normal distribution table: $\rightarrow p=0.03144$
- Alternatively,
- From $+Z$ normal distribution table:
- For $\mathrm{Z}=1.86, \mathrm{p}^{\prime}=0.96856 \rightarrow \mathrm{p}=1-0.96856 \approx 0.03144$
$\therefore 3.1 \%$ chance of completing project in 83 days or less

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities

Probability of project completion in:

- Minimum project duration such that probability of completing it on time is 90% :
\therefore Probability $=0.90$
- From normal distribution table for $p=0.90, Z=1.28$
$\mathrm{Z}=\frac{(\mathrm{x}-\overline{\mathrm{T}})}{\sqrt{\overline{\mathrm{V}}^{2}}}=\frac{(\mathrm{x}-89)}{\sqrt{10.44}}=1.28 \rightarrow(\mathrm{x}-89)=1.28 * \sqrt{10.44}=4.14$
$x=89+4.14=93.14$ Days

PERT NETWORK AND CALCULATIONS

Step 6: Determining probabilities

Probability of project completion in:

- If a contractor uses a 10% contingency, what probability of completion does this duration correspond to?
With 10% contingency
- $x=1.1 * \overline{\mathrm{~T}}=1.1 * 89=97.90$ Days
- $\mathrm{Z}=\frac{(\mathrm{x}-\overline{\mathrm{T}})}{\sqrt{\mathrm{V}^{2}}}=\frac{(97.90-89)}{\sqrt{10.44}}=2.75 \rightarrow \mathrm{p}=0.99702$
$\therefore 99.7 \%$ probability of completing on time (97.9 days)

References:

- CIV E 601: Project Management, Lecture Notes, Fayek, A. R. University of Alberta, 2013.

[^0]: FIGURE 15.5 Sample Normal Distribution CDF

