
State Estimation



State estimation (SE)

 What is a “state”?
– All variables in a power network can be calculated 

if voltage magnitudes and angles at all buses are 
known. 

• These quantities provide the unique description of the 
state of the system at this operating point
 are the “state variables” of the system.

 Why “estimate” the state?
– Meters aren’t everywhere.
– Meters aren’t perfect.
– Voltage phase angle measurement difficult



SE as part of EMS functions

 The state estimator is a central part of every 

control center.

 Out of all energy management system (EMS) 

functions, SE is the most important, because
– Other EMS functions will work only when SE is running 

normally.

– SE gives the base case  for further analysis.

 SE result is the starting point for other applications dealing 

with contingency analysis and system optimization





State estimation - definition

 Definition:

 State Estimation is the process of assigning values to unknown 

system state variables based on limited measurements from that 

system.

 SE provides an estimate for all metered and unmetered 

quantities;

 Filters out small errors due to model approximations and 

measurement inaccuracies;

 Detects and identifies discordant measurements, the so-called 

bad data.

 Detects topology error
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Measurement for use in SE

• Measurements that can be used
– Bus voltage magnitudes.
– Active, reactive and current injections.
– Active, reactive and current branch flows.
– Bus voltage magnitude and angle 

differences.
– Transformer tap/phase settings.
– Sums of real and reactive power flows.
– Active and reactive zone interchanges.





Topology Error Identification
 A topology error is caused by errors in the status of 

the circuit breakers of a line, a transformer, a shunt 
capacitor or a bus coupler.

Assumed Actual



State estimation - process

 The process involves imperfect, redundant 

measurements
 the process of estimating the system states is based on a statistical criterion that 

estimates the true value of the state variables by minimizing the error.

 Most Commonly used method: minimizing Weighted Least Squares

General assumptions:
 The system is balanced. 
 The line parameters are known.
 The topology is known.
 No time-skew between measurements.



State Estimation - process

 Inputs to the estimator:
 measurements (voltage magnitude, P, Q, or I flows).

 The estimator algorithm:
 is designed to produce the “best estimate” of the system voltage and 

phase angles, recognizing that there can be errors in the measured 

quantities and that there may be redundant measurements

 Output:
 State Variables (voltage magnitudes and relative phase angles at all 

network nodes).



Bus1 Bus2

Bus3

60 MW

40 MW

65 MW

100 MW

Per unit reactance 

(100 MVA Base):

X12=0.2

X13=0.4

X23=0.25

M12

M13

M32

5 MW

Meter Location
35 MW

Definition of the problem - example

Only two of these 
meter readings would 
be sufficient to 
calculate the bus 
voltage phase angles
 1 measurement is 

redundant

measured values = 
exact values

The only information we have
about this system is provided 
by three MW meters located 
as shown.



Solution  - M13 and M32 are chosen

𝑃ଵଶ ൌ
𝑈ଵ 𝑈ଶ
𝑋ଵଶ

𝑠𝑖𝑛𝜃ଵଶ

𝑈ଵ ≅ 𝑈ଶ  ≅1 p.u.;  𝑠𝑖𝑛𝜃ଵଶ= sinሺ𝜃ଵെ𝜃ଶሻ ൎ 𝜃ଵ െ𝜃ଶ(DC Power Flow)

Measurement: M13 = 5 MW = 0.05 p.u.       M32 = 40 MW = 0.40 p.u.

Functions: P13 = f13  = 1/x13*(1- 3) = M13 = 0.05 p.u.
P32 = f32  = 1/x32*(3- 2) = M32  = 0.40 p.u.

Solution: 
1/0.4*(1- 0 )= 0.05 (3 = 0 (chosen to be reference bus))
1/0.25*(0- 2)= 0.40



Bus1 Bus2

Bus3

62 MW

37 MW

65 MW

100 MW

Per unit Reactances 

(100 MVA Base):

X12=0.2

X13=0.4

X23=0.25

M12

M13

M32

6 MW

Meter Location
35 MW

Case with measurement error



Solution using different measurements

Solution using M13 and M32

M13=6 MW=0.06 p.u.
M32 =37 MW=0.37 p.u.

f13=1/x13*(1- 3)=M13 = 0.06
f32=1/x32*(3- 2)=M32 = 0.37

3=0 
1/0.4*(1- 0 )= 0.06
1/0.25*(0- 2) = 0.37

1 = 0.024 rad
2 = -0.0925 rad

Solution using M12 and M32

M12=62 MW=0.62 p.u.
M32 =37 MW=0.37 p.u.

f12=1/x12*(1- 2)=M12 = 0.62
f32=1/x32*(3- 2)=M32 = 0.37

3=0 
1/0.2*(1- 2 )= 0.62
1/0.25*(0- 2) = 0.37

1 = 0.0315 rad
2 = -0.0925 rad



SE procedure

 To estimate the two states 1 and 2,only 
two measurements would be enough 
SE uses information available from all three meters to produce the best 
estimate

 the redundant measurement is utilized to improve estimation accuracy, detect bad 
data and topology error



Solution Algorithms

• Objective… Weighted Least Squares:

Minimize:    J(x) = 0.5 [Z - h(x)]t R-1 [Z - h(x)]

where,
J  = Weighted least squares matrix
R = Error covariance matrix
Z      = Measurement vector
h (x) = System model relating state vector to the

measurement set
x = State vector (voltage magnitudes and

angles)
 = Error vector associated with the

measurement set

Z = [ h( x ) +  ]



Mathematical formulation

f12=1/x12*(1- 2)
f13=1/x13*(1- 3)
f32=1/x32*(3- 2)

Z = (M12  M13  M32 )T

x = (1  2  3 )T

 : unknown

In the previous example:

ℎሺ𝑥ሻ ൌ
1/x12 െ1/x12 0
1/x13 0 െ1/x13

0 1/x32 െ1/x32

.x



General solution of the SE problem

 True values : 𝑧 ൌ

𝑧ଵ
𝑧ଶ
⋮

𝑧௡

 Errors: 𝜂 ൌ

𝜂ଵ
𝜂ଶ
⋮

𝜂௡

 Measured                       𝑧 ൌ

𝑧ଵ
𝑧ଶ
⋮

𝑧௡

= h(x)

𝑧 ൌ 𝑧 ൅  = h(x)   = 𝑧 - h(x)



General solution of the SE problem

 = - h(x)

The sum of the squared errors:

𝐽 ൌ
1
2 ෍ 𝜂௜

ଶ
௠

௜ୀଵ

ൌ
1
2 𝜂்𝜂 ൌ

1
2 𝑧 െ ℎሺ𝑥ሻ ் 𝑧 െ ℎሺ𝑥ሻ

Solution of the SE problem
Determining x that minimizes J

 Some measurement devices are more precise 
than others 
 It is therefore reasonable to place more weight 

on the better measuring devices. 



Calibration curve

i assumed to be a 
random variable with a 
normal (Gaussian) 
distribution having zero
mean

 Measurement errors distributed according to a normal probability 
density function with the standard deviation 
 Meter reading will be within +/- 3 of the true value for 99.7 % of the 

time. 
 Example: meter full scale value = 100 MW; accuracy +/- 3 MW

  = 1MW/100 MW = 0.01

Where:
 : the mean value
 : the standard deviation
2 : the variance

f(i)

i



Weighted least squares solution

 Classical Approach: Weighted Least Squares

Minimize: 𝐽 𝑥 ൌ ଵ
ଶ

𝑧 െ ℎ 𝑥
்

. 𝑊. 𝑧 െ ℎ 𝑥
where, 
J = Weighted least squares matrix

W = Weighting matrix
Place more weight on better measuring devices:
Good device  small variance 𝜎௜

ଶ  large covariance ଵ
ఙ೔మ

Conversely, bad device                    small covariance ଵ
ఙ೔మ

Weighting matrix W  Covariance matrix



SE problem in final form

Find x which minimises:
் ିଵ

W= 𝑅ିଵ ൌ

ଵ
ఙభమ ⋯ 0

⋮ ⋱ ⋮
𝑜 ⋯ ଵ

ఙ೘మ

with



Problem formulation



Minimize:

 At minimum error, all first order derivatives with respect to decision
variables must be zero, i.e.

𝛻௫𝐽 ൌ 0 

𝛻௫𝐽 ൌ డ௃
డ௫

= 

డ௃
డ௫భ
డ௃

డ௫మ
⋮

డ௃
డ௫೙

=
0
0
⋮
0

m: number of measurements

n: number of state variables

𝐽 ൌ  
1
2 𝑧 െ ℎሺ𝑥ሻ ்𝑅ିଵ 𝑧 െ ℎሺ𝑥ሻ =

1
2 ෍

𝑧 െ ℎሺ𝑥ሻ ଶ

௜
ଶ

௠

௜ୀଵ



Problem formulation

𝜕𝐽
𝜕𝑥ଵ

ൌ
𝜕ℎଵ 𝑥

𝜕𝑥ଵ

𝜕ℎଶ 𝑥
𝜕𝑥ଵ

⋯
𝜕ℎ௠ 𝑥

𝜕𝑥ଵ
𝑅ିଵ

𝑧ଵ െ ℎଵሺ𝑥ሻ
𝑧ଶ െ ℎଶሺ𝑥ሻ

⋮
𝑧௠ െ ℎ௠ሺ𝑥ሻ

Example for a single element:

For all elements:

𝜕𝐽
𝜕𝑥 ൌ െ

𝜕ℎଵ 𝑥
𝜕𝑥ଵ

𝜕ℎଶ 𝑥
𝜕𝑥ଵ

…
𝜕ℎ௠ 𝑥

𝜕𝑥ଵ
𝜕ℎଵ 𝑥

𝜕𝑥ଶ

𝜕ℎଶ 𝑥
𝜕𝑥ଶ

⋯
𝜕ℎ௠ 𝑥

𝜕𝑥ଶ
⋮ ⋮ ⋮ ⋮

𝜕ℎଵ 𝑥
𝜕𝑥௠

𝜕ℎଶ 𝑥
𝜕𝑥௠

⋯
𝜕ℎ௠ 𝑥

𝜕𝑥௠

𝑅ିଵ

𝑧ଵ െ ℎଵሺ𝑥ሻ
𝑧ଶ െ ℎଶሺ𝑥ሻ

⋮
𝑧௠ െ ℎ௠ሺ𝑥ሻ

𝜕𝐽
𝜕𝑥ଵ

ൌ
1
2 .

𝜕
𝜕𝑥ଵ

෍
𝑧 െ ℎሺ𝑥ሻ ଶ

௜
ଶ

௠

௜ୀଵ

ൌ  ෍ െ
𝑧 െ ℎ௜ 𝑥

௜
ଶ

𝜕ℎ௜ 𝑥
𝜕𝑥ଵ

௠

௜ୀଵ

 



Problem formulation

 It is an n x m matrix (and not a square matrix)
 Unlike the standard Jacobian, the rows vary with variables (x1, x2, …), and not 

the functions (h1, h2, …)

The matrix of the partial derivatives resembles the Jacobian matrix, 
but :

𝜕𝐽
𝜕𝑥 ൌ െ

𝜕ℎଵ 𝑥
𝜕𝑥ଵ

𝜕ℎଶ 𝑥
𝜕𝑥ଵ

…
𝜕ℎ௠ 𝑥

𝜕𝑥ଵ
𝜕ℎଵ 𝑥

𝜕𝑥ଶ

𝜕ℎଶ 𝑥
𝜕𝑥ଶ

⋯
𝜕ℎ௠ 𝑥

𝜕𝑥ଶ
⋮ ⋮ ⋮ ⋮

𝜕ℎଵ 𝑥
𝜕𝑥௡

𝜕ℎଶ 𝑥
𝜕𝑥௡

⋯
𝜕ℎ௠ 𝑥

𝜕𝑥௡

𝑅ିଵ

𝑧ଵ െ ℎଵሺ𝑥ሻ
𝑧ଶ െ ℎଶሺ𝑥ሻ

⋮
𝑧௡ െ ℎ௠ሺ𝑥ሻ



Problem formulation

 Thus we have as the optimality condition:

H is an m x n matrix and the transpose of the previous matrix

𝐻 ൌ െ

𝜕ℎଵ 𝑥
𝜕𝑥ଵ

𝜕ℎଵ 𝑥
𝜕𝑥ଶ

…
𝜕ℎଵ 𝑥

𝜕𝑥௠
𝜕ℎଶ 𝑥

𝜕𝑥ଵ

𝜕ℎଶ 𝑥
𝜕𝑥ଶ

⋯
𝜕ℎଶ 𝑥

𝜕𝑥௠
⋮ ⋮ ⋮ ⋮

𝜕ℎ௠ 𝑥
𝜕𝑥ଵ

𝜕ℎ௠ 𝑥
𝜕𝑥ଶ

⋯
𝜕ℎ௠ 𝑥

𝜕𝑥௠

Define:

𝛻௫𝐽= െ𝐻் 𝑥 𝑅ିଵ 𝑧 െ ℎ 𝑥 ൌ 0

The solution will yield the estmated state vector x
 which minimizes the squared error.

n nonlinear equations



Bus1 Bus2

Bus3

P12, Q12

Measured values

EXAMPLE

P23, Q23

U1

𝑧 ൌ 𝑧 ൅ 

𝑧 ൌ

𝑈ଵ
𝑃ଵଶ
𝑄ଵଶ
𝑃ଶଷ
𝑄ଶଷ

𝑧 = true value
(unknown)

= error
(unkown)

Measured values

 Write the
corresponding equations



Power flow equation

i j

Iij Iji

-j𝐵௜௝ ൌ ି௝௑
ோమା௑మ

1
𝑅 ൅ 𝑗𝑋 ൌ

𝑅 െ 𝑗𝑋
𝑅ଶ ൅ 𝑋ଶj𝐵௜ ൌ ௝ఠ஼೔

ଶ 𝐺௜௝ ൌ
𝑅

𝑅ଶ ൅ 𝑋ଶ

Where:  
R +jX : line series impedance
C : line capacitance

𝑆௜௝ ൌ 𝑈௜𝐼௜௝
∗ ൌ 𝑃௜௝ ൅ 𝑄௜௝



Power flow equations (cont‘d)

𝐼௜௝ ൌ 𝑈௜
𝑗𝜔𝐶

2 ൅
𝑈௜ െ 𝑈௝

𝑅 ൅ 𝑗𝑋

𝑃௜௝ ൌ
𝑅. 𝑈௜

ଶ െ 𝑈௜. 𝑈௝ 𝑐𝑜𝑠𝜃௜௝ ൅ 𝑋. 𝑈௜. 𝑈௝𝑠𝑖𝑛𝜃௜௝

𝑅ଶ ൅ 𝑋ଶ

=𝐺௜௝. 𝑈௜
ଶ െ 𝑈௜. 𝑈௝ 𝑐𝑜𝑠𝜃௜௝ +𝐵௜௝.𝑈௜. 𝑈௝𝑠𝑖𝑛𝜃௜௝

𝑄௜௝ ൌ െ𝑈௜
ଶ 𝜔𝐶

2 ൅
𝑋. 𝑈௜

ଶ െ 𝑈௜. 𝑈௝𝑐𝑜𝑠𝜃௜௝ െ 𝑅. 𝑈௜. 𝑈௝𝑠𝑖𝑛𝜃௜௝

𝑅ଶ ൅ 𝑋ଶ

=-𝐵௜. 𝑈௜
ଶ+𝐵௜௝. 𝑈௜

ଶ െ 𝑈௜. 𝑈௝. 𝑐𝑜𝑠𝜃௜௝ -𝐺௜௝.𝑈௜. 𝑈௝. 𝑠𝑖𝑛𝜃௜௝

𝑆௜௝ ൌ 𝑈௜𝐼௜௝
∗ ൌ 𝑃௜௝ ൅ 𝑄௜௝

𝜃௜௝ : the voltage phase angle difference 𝜃௜-𝜃௝



Problem formulation

 For each parameter for which we have a 
measurement, we write an equation in terms of the 
states

𝑧 = h(x)
 For a voltage measurement (Uk):

𝑧௜ = Uk

 For power flow across the line from bus i - bus j:  
𝑃ଵଶ ൌ 𝐺ଵଶ. 𝑈ଵ

ଶ െ 𝑈ଵ. 𝑈ଶ 𝑐𝑜𝑠𝜃ଵଶ +𝐵ଵଶ. 𝑈ଵ. 𝑈ଶ𝑠𝑖𝑛𝜃ଵଶ

𝑃ଶଷ ൌ 𝐺ଶଷ. 𝑈ଶ
ଶ െ 𝑈ଶ. 𝑈ଷ 𝑐𝑜𝑠𝜃ଶଷ +𝐵ଶଷ. 𝑈ଶ. 𝑈ଷ𝑠𝑖𝑛𝜃ଶଷ

𝑄ଵଶ=-𝐵ଵ. 𝑈ଵ
ଶ+𝐵ଵଶ. 𝑈ଵ

ଶ െ 𝑈ଵ. 𝑈ଶ. 𝑐𝑜𝑠𝜃ଵଶ -𝐺ଵଶ.𝑈ଵ. 𝑈ଶ. 𝑠𝑖𝑛𝜃ଵଶ

𝑄ଶଷ=-𝐵ଶ. 𝑈ଶ
ଶ+𝐵ଶଷ. 𝑈ଶ

ଶ െ 𝑈ଶ. 𝑈ଷ. 𝑐𝑜𝑠𝜃ଶଷ -𝐺ଶଷ.𝑈ଶ. 𝑈ଷ. 𝑠𝑖𝑛𝜃ଶଷ



Problem formulation

𝑧 ൌ

𝑈ଵ
𝑃ଵଶ
𝑄ଵଶ
𝑃ଶଷ
𝑄ଶଷ

ൌ

𝑈ଵ
𝐺ଵଶ. 𝑈ଵ

ଶ െ 𝑈ଵ. 𝑈ଶ 𝑐𝑜𝑠𝜃ଵଶ +𝐵ଵଶ. 𝑈ଵ. 𝑈ଶ𝑠𝑖𝑛𝜃ଵଶ

−𝐵ଵ. 𝑈ଵ
ଶ +𝐵ଵଶ. 𝑈ଵ

ଶ െ 𝑈ଵ. 𝑈ଶ. 𝑐𝑜𝑠𝜃ଵଶ −𝐺ଵଶ.𝑈ଵ. 𝑈ଶ. 𝑠𝑖𝑛𝜃ଵଶ

𝐺ଶଷ. 𝑈ଶ
ଶ െ 𝑈ଶ. 𝑈ଷ 𝑐𝑜𝑠𝜃ଶଷ +𝐵ଶଷ. 𝑈ଶ. 𝑈ଷ𝑠𝑖𝑛𝜃ଶଷ

−𝐵ଶ. 𝑈ଶ
ଶ +𝐵ଶଷ. 𝑈ଶ

ଶ െ 𝑈ଶ. 𝑈ଷ. 𝑐𝑜𝑠𝜃ଶଷ −𝐺ଶଷ.𝑈ଶ. 𝑈ଷ. 𝑠𝑖𝑛𝜃ଶଷ 

𝑥 ൌ

𝑈ଵ
𝑈ଶ
𝑈ଷ
ଵ
ଶ
ଷ

𝐻 ൌ െ

𝜕ℎଵ 𝑥
𝜕𝑥ଵ

𝜕ℎଵ 𝑥
𝜕𝑥ଶ

…
𝜕ℎଵ 𝑥

𝜕𝑥௡
𝜕ℎଶ 𝑥

𝜕𝑥ଵ

𝜕ℎଶ 𝑥
𝜕𝑥ଶ

⋯
𝜕ℎଶ 𝑥

𝜕𝑥௡
⋮ ⋮ ⋮ ⋮

𝜕ℎ௠ 𝑥
𝜕𝑥ଵ

𝜕ℎ௠ 𝑥
𝜕𝑥ଶ

⋯
𝜕ℎ௠ 𝑥

𝜕𝑥௡



Problem formulation

𝑧 ൌ

ℎଵ
ℎଶ
ℎଷ
ℎସ
ℎହ

ൌ

𝑈ଵ
𝐺ଵଶ. 𝑈ଵ

ଶ െ 𝑈ଵ. 𝑈ଶ 𝑐𝑜𝑠𝜃ଵଶ +𝐵ଵଶ. 𝑈ଵ. 𝑈ଶ𝑠𝑖𝑛𝜃ଵଶ

−𝐵ଵ. 𝑈ଵ
ଶ +𝐵ଵଶ. 𝑈ଵ

ଶ െ 𝑈ଵ. 𝑈ଶ. 𝑐𝑜𝑠𝜃ଵଶ −𝐺ଵଶ.𝑈ଵ. 𝑈ଶ. 𝑠𝑖𝑛𝜃ଵଶ

𝐺ଶଷ. 𝑈ଶ
ଶ െ 𝑈ଶ. 𝑈ଷ 𝑐𝑜𝑠𝜃ଶଷ +𝐵ଶଷ. 𝑈ଶ. 𝑈ଷ𝑠𝑖𝑛𝜃ଶଷ

−𝐵ଶ. 𝑈ଶ
ଶ +𝐵ଶଷ. 𝑈ଶ

ଶ െ 𝑈ଶ. 𝑈ଷ. 𝑐𝑜𝑠𝜃ଶଷ −𝐺ଶଷ.𝑈ଶ. 𝑈ଷ. 𝑠𝑖𝑛𝜃ଶଷ 

𝑥 ൌ

𝑈ଵ
𝑈ଶ
𝑈ଷ
ଶ
ଷ

𝐻 ൌ െ

𝜕ℎଵ 𝑥
𝜕𝑈ଵ

𝜕ℎଵ 𝑥
𝜕𝑈ଶ

𝜕ℎଵ 𝑥
𝜕𝑈ଷ

𝜕ℎଵ 𝑥
𝜕𝜃ଶ

𝜕ℎଵ 𝑥
𝜕𝜃ଷ

𝜕ℎଶ 𝑥
𝜕𝑈ଵ

𝜕ℎଶ 𝑥
𝜕𝑈ଶ

𝜕ℎଶ 𝑥
𝜕𝑈ଷ

𝜕ℎଶ 𝑥
𝜕𝜃ଶ

𝜕ℎଶ 𝑥
𝜕𝜃ଷ

𝜕ℎଷ 𝑥
𝜕𝑈ଵ

𝜕ℎଷ 𝑥
𝜕𝑈ଶ

𝜕ℎଷ 𝑥
𝜕𝑈ଷ

𝜕ℎଷ 𝑥
𝜕𝜃ଶ

𝜕ℎଷ 𝑥
𝜕𝜃ଷ

𝜕ℎସ 𝑥
𝜕𝑈ଵ

𝜕ℎସ 𝑥
𝜕𝑈ଶ

𝜕ℎସ 𝑥
𝜕𝑈ଷ

𝜕ℎସ 𝑥
𝜕𝜃ଶ

𝜕ℎସ 𝑥
𝜕𝜃ଷ

𝜕ℎହ 𝑥
𝜕𝑈ଵ

𝜕ℎହ 𝑥
𝜕𝑈ଶ

𝜕ℎହ 𝑥
𝜕𝑈ଷ

𝜕ℎହ 𝑥
𝜕𝜃ଶ

𝜕ℎହ 𝑥
𝜕𝜃ଷെ𝐻் 𝑥 𝑅ିଵ 𝑧 െ ℎ 𝑥 ൌ 0 → 𝑥 ൌ?



Solution procedure

𝑥 ൌ

𝑈ଵ
𝑈ଶ
𝑈ଷ
ଶ
ଷ

𝐻 ൌ െ

𝜕ℎଵ 𝑥
𝜕𝑈ଵ

𝜕ℎଵ 𝑥
𝜕𝑈ଶ

𝜕ℎଵ 𝑥
𝜕𝑈ଷ

𝜕ℎଵ 𝑥
𝜕𝜃ଶ

𝜕ℎଵ 𝑥
𝜕𝜃ଷ

𝜕ℎଶ 𝑥
𝜕𝑈ଵ

𝜕ℎଶ 𝑥
𝜕𝑈ଶ

𝜕ℎଶ 𝑥
𝜕𝑈ଷ

𝜕ℎଶ 𝑥
𝜕𝜃ଶ

𝜕ℎଶ 𝑥
𝜕𝜃ଷ

𝜕ℎଷ 𝑥
𝜕𝑈ଵ

𝜕ℎଷ 𝑥
𝜕𝑈ଶ

𝜕ℎଷ 𝑥
𝜕𝑈ଷ

𝜕ℎଷ 𝑥
𝜕𝜃ଶ

𝜕ℎଷ 𝑥
𝜕𝜃ଷ

𝜕ℎସ 𝑥
𝜕𝑈ଵ

𝜕ℎସ 𝑥
𝜕𝑈ଶ

𝜕ℎସ 𝑥
𝜕𝑈ଷ

𝜕ℎସ 𝑥
𝜕𝜃ଶ

𝜕ℎସ 𝑥
𝜕𝜃ଷ

𝜕ℎହ 𝑥
𝜕𝑈ଵ

𝜕ℎହ 𝑥
𝜕𝑈ଶ

𝜕ℎହ 𝑥
𝜕𝑈ଷ

𝜕ℎହ 𝑥
𝜕𝜃ଶ

𝜕ℎହ 𝑥
𝜕𝜃ଷ

𝐺 𝑥 ൌ െ𝐻் 𝑥   𝑅ିଵ 𝑧 െ ℎ 𝑥 ൌ 0

n x m m x m m x 1 n : number of state variables
m : number of measured values

n x 1

Performing a Taylor series expansion of 𝐺 𝑥 around an initial estimate 𝑥଴



Bad Data Suppression

• Bad Data Detection
– Mulit-level process.
– “Bad data pockets” identified.
– Zoom in on “bad data pocket’ for rigorous 

topological analysis.
– Status estimation in the event of 

topological errors.



Final Measurement Statuses

• Used… The measurement was found to be “good” 
and was used in determining the final SE solution.

• Not Used… Not enough information was 
available to use this information in the SE solution.

• Suppressed… The measurement was initially 
used, but found to be inconsistent (or “bad”).

• Smeared… At some point in the solution process, 
the measurement was removed. Later it was 
determined that the measurement was “smeared” by 
another bad measurement.



State Estimation...
Measurements and Estimates

• SE Measurement Summary Display
– Standard Deviations… Indicates the 

relative confidence placed on an individual 
measurement.

– Measurement Status… Each measurement 
may be determined as “used”, “not used”, 
or “suppressed”.

– Meter Bias… Accumulates residual to help 
identify metering that is consistently poor. 
The bias value should “hover” about zero.



State Estimation...
Measurements and Estimates (Cont.)

• Observable System
– Portions of the system that can be completely 

solved based on real-time telemetry are called 
“observable”.

– Observable buses and devices are not color-
coded (white).

• Unobservable System
– Portions of the network that cannot be solved 

completely based on real-time telemetry are called 
“unobservable” and are color-coded yellow.


