
State Estimation



State estimation (SE)

 What is a “state”?
– All variables in a power network can be calculated 

if voltage magnitudes and angles at all buses are 
known. 

• These quantities provide the unique description of the 
state of the system at this operating point
 are the “state variables” of the system.

 Why “estimate” the state?
– Meters aren’t everywhere.
– Meters aren’t perfect.
– Voltage phase angle measurement difficult



SE as part of EMS functions

 The state estimator is a central part of every 

control center.

 Out of all energy management system (EMS) 

functions, SE is the most important, because
– Other EMS functions will work only when SE is running 

normally.

– SE gives the base case  for further analysis.

 SE result is the starting point for other applications dealing 

with contingency analysis and system optimization





State estimation - definition

 Definition:

 State Estimation is the process of assigning values to unknown 

system state variables based on limited measurements from that 

system.

 SE provides an estimate for all metered and unmetered 

quantities;

 Filters out small errors due to model approximations and 

measurement inaccuracies;

 Detects and identifies discordant measurements, the so-called 

bad data.

 Detects topology error
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Measurement for use in SE

• Measurements that can be used
– Bus voltage magnitudes.
– Active, reactive and current injections.
– Active, reactive and current branch flows.
– Bus voltage magnitude and angle 

differences.
– Transformer tap/phase settings.
– Sums of real and reactive power flows.
– Active and reactive zone interchanges.





Topology Error Identification
 A topology error is caused by errors in the status of 

the circuit breakers of a line, a transformer, a shunt 
capacitor or a bus coupler.

Assumed Actual



State estimation - process

 The process involves imperfect, redundant 

measurements
 the process of estimating the system states is based on a statistical criterion that 

estimates the true value of the state variables by minimizing the error.

 Most Commonly used method: minimizing Weighted Least Squares

General assumptions:
 The system is balanced. 
 The line parameters are known.
 The topology is known.
 No time-skew between measurements.



State Estimation - process

 Inputs to the estimator:
 measurements (voltage magnitude, P, Q, or I flows).

 The estimator algorithm:
 is designed to produce the “best estimate” of the system voltage and 

phase angles, recognizing that there can be errors in the measured 

quantities and that there may be redundant measurements

 Output:
 State Variables (voltage magnitudes and relative phase angles at all 

network nodes).



Bus1 Bus2

Bus3

60 MW

40 MW

65 MW

100 MW

Per unit reactance 

(100 MVA Base):

X12=0.2

X13=0.4

X23=0.25

M12

M13

M32

5 MW

Meter Location
35 MW

Definition of the problem - example

Only two of these 
meter readings would 
be sufficient to 
calculate the bus 
voltage phase angles
 1 measurement is 

redundant

measured values = 
exact values

The only information we have
about this system is provided 
by three MW meters located 
as shown.



Solution  - M13 and M32 are chosen

𝑃
𝑈  𝑈
𝑋 𝑠𝑖𝑛𝜃

𝑈  ≅ 𝑈  ≅1 p.u.;  𝑠𝑖𝑛𝜃 = sin 𝜃 𝜃 𝜃 𝜃 (DC Power Flow)

Measurement: M13 = 5 MW = 0.05 p.u.       M32 = 40 MW = 0.40 p.u.

Functions: P13 = f13  = 1/x13*(1- 3) = M13 = 0.05 p.u.
P32 = f32  = 1/x32*(3- 2) = M32  = 0.40 p.u.

Solution: 
1/0.4*(1- 0 )= 0.05 (3 = 0 (chosen to be reference bus))
1/0.25*(0- 2)= 0.40



Bus1 Bus2

Bus3

62 MW

37 MW

65 MW

100 MW

Per unit Reactances 

(100 MVA Base):

X12=0.2

X13=0.4

X23=0.25

M12

M13

M32

6 MW

Meter Location
35 MW

Case with measurement error



Solution using different measurements

Solution using M13 and M32

M13=6 MW=0.06 p.u.
M32 =37 MW=0.37 p.u.

f13=1/x13*(1- 3)=M13 = 0.06
f32=1/x32*(3- 2)=M32 = 0.37

3=0 
1/0.4*(1- 0 )= 0.06
1/0.25*(0- 2) = 0.37

1 = 0.024 rad
2 = -0.0925 rad

Solution using M12 and M32

M12=62 MW=0.62 p.u.
M32 =37 MW=0.37 p.u.

f12=1/x12*(1- 2)=M12 = 0.62
f32=1/x32*(3- 2)=M32 = 0.37

3=0 
1/0.2*(1- 2 )= 0.62
1/0.25*(0- 2) = 0.37

1 = 0.0315 rad
2 = -0.0925 rad



SE procedure

 To estimate the two states 1 and 2,only 
two measurements would be enough 
SE uses information available from all three meters to produce the best 
estimate

 the redundant measurement is utilized to improve estimation accuracy, detect bad 
data and topology error



Solution Algorithms

• Objective… Weighted Least Squares:

Minimize:    J(x) = 0.5 [Z - h(x)]t R-1 [Z - h(x)]

where,
J  = Weighted least squares matrix
R = Error covariance matrix
Z      = Measurement vector
h (x) = System model relating state vector to the

measurement set
x = State vector (voltage magnitudes and

angles)
 = Error vector associated with the

measurement set

Z = [ h( x ) +  ]



Mathematical formulation

f12=1/x12*(1- 2)
f13=1/x13*(1- 3)
f32=1/x32*(3- 2)

Z = (M12  M13  M32 )T

x = (1  2  3 )T

 : unknown

In the previous example:

ℎ 𝑥
1/x12 1/x12 0
1/x13 0 1/x13

0 1/x32 1/x32

.x



General solution of the SE problem

 True values : 𝑧

𝑧
𝑧
⋮

𝑧

 Errors: 𝜂

𝜂
𝜂
⋮

𝜂

 Measured                       𝑧

𝑧
𝑧
⋮

𝑧
= h(x)

𝑧 𝑧  = h(x)   = 𝑧 - h(x)



General solution of the SE problem

 = - h(x)

The sum of the squared errors:

𝐽
1
2 𝜂

1
2 𝜂 𝜂

1
2 𝑧 ℎ 𝑥 𝑧 ℎ 𝑥

Solution of the SE problem
Determining x that minimizes J

 Some measurement devices are more precise 
than others 
 It is therefore reasonable to place more weight 

on the better measuring devices. 



Calibration curve

i assumed to be a 
random variable with a 
normal (Gaussian) 
distribution having zero
mean

 Measurement errors distributed according to a normal probability 
density function with the standard deviation 
 Meter reading will be within +/- 3 of the true value for 99.7 % of the 

time. 
 Example: meter full scale value = 100 MW; accuracy +/- 3 MW

  = 1MW/100 MW = 0.01

Where:
 : the mean value
 : the standard deviation
2 : the variance

f(i)

i



Weighted least squares solution

 Classical Approach: Weighted Least Squares

Minimize: 𝐽 𝑥 𝑧 ℎ 𝑥 . 𝑊. 𝑧 ℎ 𝑥
where, 
J = Weighted least squares matrix

W = Weighting matrix
Place more weight on better measuring devices:
Good device  small variance 𝜎   large covariance 

Conversely, bad device                    small covariance 

Weighting matrix W  Covariance matrix



SE problem in final form

Find x which minimises:

W= 𝑅
⋯ 0

⋮ ⋱ ⋮
𝑜 ⋯

with



Problem formulation



Minimize:

 At minimum error, all first order derivatives with respect to decision
variables must be zero, i.e.

𝛻 𝐽 0 

𝛻 𝐽 = 
⋮

=
0
0
⋮
0

m: number of measurements

n: number of state variables

𝐽  
1
2 𝑧 ℎ 𝑥 𝑅 𝑧 ℎ 𝑥 =

1
2

𝑧 ℎ 𝑥




Problem formulation

𝜕𝐽
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥

⋯
𝜕ℎ 𝑥

𝜕𝑥
𝑅

𝑧 ℎ 𝑥
𝑧 ℎ 𝑥

⋮
𝑧 ℎ 𝑥

Example for a single element:

For all elements:

𝜕𝐽
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥 …

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥 ⋯

𝜕ℎ 𝑥
𝜕𝑥

⋮ ⋮ ⋮ ⋮
𝜕ℎ 𝑥

𝜕𝑥
𝜕ℎ 𝑥

𝜕𝑥 ⋯
𝜕ℎ 𝑥

𝜕𝑥

𝑅

𝑧 ℎ 𝑥
𝑧 ℎ 𝑥

⋮
𝑧 ℎ 𝑥

𝜕𝐽
𝜕𝑥

1
2 .

𝜕
𝜕𝑥

𝑧 ℎ 𝑥


 
𝑧 ℎ 𝑥


𝜕ℎ 𝑥

𝜕𝑥  



Problem formulation

 It is an n x m matrix (and not a square matrix)
 Unlike the standard Jacobian, the rows vary with variables (x1, x2, …), and not 

the functions (h1, h2, …)

The matrix of the partial derivatives resembles the Jacobian matrix, 
but :

𝜕𝐽
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥 …

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥 ⋯

𝜕ℎ 𝑥
𝜕𝑥

⋮ ⋮ ⋮ ⋮
𝜕ℎ 𝑥

𝜕𝑥
𝜕ℎ 𝑥

𝜕𝑥 ⋯
𝜕ℎ 𝑥

𝜕𝑥

𝑅

𝑧 ℎ 𝑥
𝑧 ℎ 𝑥

⋮
𝑧 ℎ 𝑥



Problem formulation

 Thus we have as the optimality condition:

H is an m x n matrix and the transpose of the previous matrix

𝐻

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥 …

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥 ⋯

𝜕ℎ 𝑥
𝜕𝑥

⋮ ⋮ ⋮ ⋮
𝜕ℎ 𝑥

𝜕𝑥
𝜕ℎ 𝑥

𝜕𝑥 ⋯
𝜕ℎ 𝑥

𝜕𝑥

Define:

𝛻 𝐽= 𝐻 𝑥 𝑅 𝑧 ℎ 𝑥 0

The solution will yield the estmated state vector x
 which minimizes the squared error.

n nonlinear equations



Bus1 Bus2

Bus3

P12, Q12

Measured values

EXAMPLE

P23, Q23

U1

𝑧 𝑧 

𝑧

𝑈
𝑃
𝑄
𝑃
𝑄

𝑧 = true value
(unknown)

= error
(unkown)

Measured values

 Write the
corresponding equations



Power flow equation

i j

Iij Iji

-j𝐵
1

𝑅 𝑗𝑋
𝑅 𝑗𝑋

𝑅 𝑋j𝐵 𝐺
𝑅

𝑅 𝑋
Where:  

R +jX : line series impedance
C : line capacitance

𝑆 𝑈 𝐼 ∗ 𝑃 𝑄



Power flow equations (cont‘d)

𝐼 𝑈
𝑗𝜔𝐶

2
𝑈 𝑈
𝑅 𝑗𝑋

𝑃
𝑅. 𝑈 𝑈 . 𝑈  𝑐𝑜𝑠𝜃 𝑋. 𝑈 . 𝑈 𝑠𝑖𝑛𝜃

𝑅 𝑋

=𝐺 . 𝑈 𝑈 . 𝑈  𝑐𝑜𝑠𝜃 +𝐵 .𝑈 . 𝑈 𝑠𝑖𝑛𝜃

𝑄 𝑈
𝜔𝐶
2

𝑋. 𝑈 𝑈 . 𝑈 𝑐𝑜𝑠𝜃 𝑅. 𝑈 . 𝑈 𝑠𝑖𝑛𝜃
𝑅 𝑋

=-𝐵 . 𝑈 +𝐵 . 𝑈 𝑈 . 𝑈 . 𝑐𝑜𝑠𝜃 -𝐺 .𝑈 . 𝑈 . 𝑠𝑖𝑛𝜃

𝑆 𝑈 𝐼 ∗ 𝑃 𝑄

𝜃 : the voltage phase angle difference 𝜃 -𝜃



Problem formulation

 For each parameter for which we have a 
measurement, we write an equation in terms of the 
states

𝑧 = h(x)
 For a voltage measurement (Uk):

𝑧 = Uk

 For power flow across the line from bus i - bus j:  
𝑃 𝐺 . 𝑈 𝑈 . 𝑈  𝑐𝑜𝑠𝜃 +𝐵 . 𝑈 . 𝑈 𝑠𝑖𝑛𝜃

𝑃 𝐺 . 𝑈 𝑈 . 𝑈  𝑐𝑜𝑠𝜃 +𝐵 . 𝑈 . 𝑈 𝑠𝑖𝑛𝜃

𝑄 =-𝐵 . 𝑈 +𝐵 . 𝑈 𝑈 . 𝑈 . 𝑐𝑜𝑠𝜃 -𝐺 .𝑈 . 𝑈 . 𝑠𝑖𝑛𝜃

𝑄 =-𝐵 . 𝑈 +𝐵 . 𝑈 𝑈 . 𝑈 . 𝑐𝑜𝑠𝜃 -𝐺 .𝑈 . 𝑈 . 𝑠𝑖𝑛𝜃



Problem formulation

𝑧

𝑈
𝑃
𝑄
𝑃
𝑄

𝑈
𝐺 . 𝑈 𝑈 . 𝑈  𝑐𝑜𝑠𝜃 +𝐵 . 𝑈 . 𝑈 𝑠𝑖𝑛𝜃

−𝐵 . 𝑈 +𝐵 . 𝑈 𝑈 . 𝑈 . 𝑐𝑜𝑠𝜃 −𝐺 .𝑈 . 𝑈 . 𝑠𝑖𝑛𝜃
𝐺 . 𝑈 𝑈 . 𝑈  𝑐𝑜𝑠𝜃 +𝐵 . 𝑈 . 𝑈 𝑠𝑖𝑛𝜃

−𝐵 . 𝑈 +𝐵 . 𝑈 𝑈 . 𝑈 . 𝑐𝑜𝑠𝜃 −𝐺 .𝑈 . 𝑈 . 𝑠𝑖𝑛𝜃  

𝑥

𝑈
𝑈
𝑈




𝐻

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥 …

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥

𝜕ℎ 𝑥
𝜕𝑥 ⋯

𝜕ℎ 𝑥
𝜕𝑥

⋮ ⋮ ⋮ ⋮
𝜕ℎ 𝑥

𝜕𝑥
𝜕ℎ 𝑥

𝜕𝑥 ⋯
𝜕ℎ 𝑥

𝜕𝑥



Problem formulation

𝑧

ℎ
ℎ
ℎ
ℎ
ℎ

𝑈
𝐺 . 𝑈 𝑈 . 𝑈  𝑐𝑜𝑠𝜃 +𝐵 . 𝑈 . 𝑈 𝑠𝑖𝑛𝜃

−𝐵 . 𝑈 +𝐵 . 𝑈 𝑈 . 𝑈 . 𝑐𝑜𝑠𝜃 −𝐺 .𝑈 . 𝑈 . 𝑠𝑖𝑛𝜃
𝐺 . 𝑈 𝑈 . 𝑈  𝑐𝑜𝑠𝜃 +𝐵 . 𝑈 . 𝑈 𝑠𝑖𝑛𝜃

−𝐵 . 𝑈 +𝐵 . 𝑈 𝑈 . 𝑈 . 𝑐𝑜𝑠𝜃 −𝐺 .𝑈 . 𝑈 . 𝑠𝑖𝑛𝜃  

𝑥

𝑈
𝑈
𝑈



𝐻

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝜃

𝐻 𝑥 𝑅 𝑧 ℎ 𝑥 0 → 𝑥 ?



Solution procedure

𝑥

𝑈
𝑈
𝑈



𝐻

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝑈

𝜕ℎ 𝑥
𝜕𝜃

𝜕ℎ 𝑥
𝜕𝜃

𝐺 𝑥 𝐻 𝑥   𝑅 𝑧 ℎ 𝑥 0

n x m m x m m x 1 n : number of state variables
m : number of measured values

n x 1

Performing a Taylor series expansion of 𝐺 𝑥 around an initial estimate 𝑥



Bad Data Suppression

• Bad Data Detection
– Mulit-level process.
– “Bad data pockets” identified.
– Zoom in on “bad data pocket’ for rigorous 

topological analysis.
– Status estimation in the event of 

topological errors.



Final Measurement Statuses

• Used… The measurement was found to be “good” 
and was used in determining the final SE solution.

• Not Used… Not enough information was 
available to use this information in the SE solution.

• Suppressed… The measurement was initially 
used, but found to be inconsistent (or “bad”).

• Smeared… At some point in the solution process, 
the measurement was removed. Later it was 
determined that the measurement was “smeared” by 
another bad measurement.



State Estimation...
Measurements and Estimates

• SE Measurement Summary Display
– Standard Deviations… Indicates the 

relative confidence placed on an individual 
measurement.

– Measurement Status… Each measurement 
may be determined as “used”, “not used”, 
or “suppressed”.

– Meter Bias… Accumulates residual to help 
identify metering that is consistently poor. 
The bias value should “hover” about zero.



State Estimation...
Measurements and Estimates (Cont.)

• Observable System
– Portions of the system that can be completely 

solved based on real-time telemetry are called 
“observable”.

– Observable buses and devices are not color-
coded (white).

• Unobservable System
– Portions of the network that cannot be solved 

completely based on real-time telemetry are called 
“unobservable” and are color-coded yellow.


