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Small Signal Stability

 Small-Signal (or Small Disturbance) Stability is the ability 
of a power system to maintain synchronism when 
subjected to small disturbances
 Such disturbances occur continually on the system due to 

small variations in loads and generation
 A disturbance is considered sufficiently small if linearization 

of system equations is permissible for analysis
 Small-signal analysis using linear analysis techniques 

provides valuable information about the inherent dynamic 
characteristics of the power system and assists in its 
robust design



Instability Forms

 Small signal instability may take two forms:
 aperiodic increase in rotor angle due to lack of 

sufficient synchronizing torque
 rotor oscillations of increasing amplitude due to 

lack of sufficient damping torque



Damping and Synchronising Torques

Example: 
Assume a synchronous generator is connected through a transformer by two parallel 
transmission lines to a receiving-end transformer and a large system


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Pm0 =Pe0

 when two lines are in service an 
equilibrium or steady-state condition
exists, in which the power output of 
the prime-mover Pm0 is equal to the 
electrical power output of the 
generator, Pe0 , at synchronous 
speed and the rotor angle is 0 ; 

 at time t, one of the two lines is 
opened

 the power output of the prime-mover 
assumed to remain constant during a 
disturbance on the electrical system0



Synchronising and Damping Torques

Pm0 =Pe0

 Immediately after the disturbance the electric 
power output of the generator falls to Pt. 

 The net torque acting on the shaft of the 
generator will cause it to accelerate with 
respect to the system. 

 The rotor angle of the generator, 0, 
immediately starts to increase. 

 Once the electrical power output exceeds the 
prime-mover power output Pm0 the generator 
decelerates but, due to the inertia of the rotor, 
the rotor angle continues to increase until the 
speed falls to synchronous speed. 

 At this time the electric power output and the 
rotor angle are at their peak values, Pp

 However, the net decelerating torque 
continues acting on the shaft to reduce the 
electrical power flow until zero net 
accelerating torque once more 

 Due to inertia, the electric power output and 
rotor angle continue to decrease and reach 
their minimum values at Pt and at 
synchronous speed. 

 Thereafter the process repeats itself with the 
electric power output and rotor angle 
oscillating about Pm0, between peak and 
trough values Pp, and Pt, respectively.

 In the absence of damping, these
oscillations will continue indefinitely. 

0

Pt

Pp

 Synchronism in this scenario is maintained by the electrical power 
flow

𝑃 ൌ  𝑃௠௔௫ sin 𝛿

between the generator and the system, resulting in a synchronizing
torque being produced on the shaft of the generator.



Synchronising torque as a function of
operating point
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 The level of the synchronising torque depends on 
the operating point
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Nature of small signal stability
problem

 In today's practical systems, small signal stability is usually one 
of insufficient damping of system oscillations
 Local problems / global problems

 Local problems involve a small part of the system. They may be 
associated with
 rotor angle modes
 local plant modes
 inter-machine modes
 control modes
 torsional modes

 Global problems have widespread effects 
 They are associated with inter-area oscillations

Local plant mode oscillations
 oscillation of a single generator or plant against the rest of the power system

Inter-machine or inter-plant mode oscillations
 oscillation between the rotors of a few generators close to each other



Local Rotor Angle Stability Problems

 Associated with either local plant mode 
oscillations or inter-machine oscillations
 frequency of oscillation in the range of 0.7 to 2.0 Hz

 Stability of the local plant mode oscillations is 
determined by the strength of the transmission 
as seen by the plant excitation control, plant 
output and voltage

 Instability may also be associated with a non-
oscillatory mode
 encountered with manual excitation control



Global Rotor Angle Stability Problems

Large interconnected systems usually have two distinct forms 
of inter-area oscillations:
 A very low frequency mode involving all the generators in 

the system 
 system is essentially split into two parts
 generators in one part swing against generators in the other part
 frequency in the order of 0.1 to 0.3 Hz

 Higher frequency modes involving sub-group of generators 
swinging against each other
 frequency typically in the range of 0.4 to 0.7 Hz



Methods of Small-Signal
Stability Analysis

 State Space Representation of the Dynamic System
 Linearization



State space representation

 The behaviour of a dynamic system can be described 
by a set of first order differential equations in the 
state-space form:

 x is an n-dimensional state vector
 f is an n-dimensional nonlinear function
 u is an r-dimensional input vector

 The outputs of the system are nonlinear functions of 
the state and input vectors:

• y is an m-dimensional output vector
• g is an m-dimensional nonlinear function

 In steady state, the system is at an equilibrium point 
x0 satisfying:

𝒇 𝒙𝟎, 𝒖𝟎 ൌ 𝟎



Linearization

 For small perturbation about equilibrium point:

଴ ଴
 New state equation:

𝒙ሶ ൌ  𝒙ሶ 𝟎 ൅ ∆𝒙ሶ ൌ 𝒇ሺ 𝒙𝟎 ൅ ∆𝒙 , 𝒖𝟎 ൅ ∆𝒖ሻ

 Since perturbations are small:
– f(x,u) can be expressed in terms of Taylor's series expansion
– terms involving second and higher order powers of x and u may be 

neglected



Linearization

∆𝒙ሶ ൌ 𝑨 ∆𝒙 ൅ 𝑩 ∆𝒖
∆𝒚 ൌ 𝑪 ∆𝒙 ൅ 𝑫 ∆𝒖

 A, B, C, D are the Jacobians of the system. A is also 
referred to as the state matrix or the plant matrix.
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Stability

 Stability is concerned with determination of conditions of 
an equilibrium point
 what will happen if the system is perturbed at an equilibrium condition

 Stability of a linear system is independent of the input
 Stability of a nonlinear system depends on 

 the type and magnitude of input
 the initial state

 In control system theory, it is common practice to classify 
stability of nonlinear systems into the following categories, 
depending on the region of state space in which the state 
vector ranges:
 local stability or stability in the small
 finite stability
 global stability or stability in the large



Stability categories

 Local stability
 The system is said to be locally stable about an equilibrium point, if 

when subjected to a small perturbation, it remains within a small 
region surrounding the equilibrium point

 If, as time increases, the system returns to the original state, it is said 
to be asymptotically stable in the small

 Finite stability
 If the state of a system remains within a finite region R, the system is 

said to be stable within R
 If, further, the state returns to the original equilibrium point from any 

point within R, it is said to be asymptotically stable within the finite 
region R

 Global stability
 The system is said to be globally stable if R includes the entire finite 

space



Analysis of Stability in the Small
(Small Signal Stability)

Nonlinear Time Domain Analysis
Using nonlinear time domain simulations to analyze small signal 
stability problems has the following limitations:

 Results can be deceptive
 critical mode may not be sufficiently excited by the chosen 

disturbance

 poorly damped modes may not be dominant in the observed 
response

 This approach does not give insight into the nature of the 
problem
 difficult to identify sources of the problem

 mode shapes not clearly identified

 corrective measures are not readily indicated

 Computational burden high ; massive amount of data has to be 
analyzed



Analysis of Stability in the Small
(Small Signal Stability)

Modal analysis
 The theoretical foundation for the analysis of stability in the 

small is based on Liapunov's first method:
 The stability in the small of a nonlinear system is given by the 

roots of the characteristic equation of the system of first 
approximation, i.e., by the eigenvalues of the state matrix A

 If the eigenvalues have negative real parts, then the original 
system is asymptotically stable

 When at least one of the eigenvalues has a positive real part, 
the original system is unstable



Modal Analysis Approach

 Modal analysis using eigenvalue approach has 
proven to be the most practical way to analyze small 
signal stability problems

 Advantages are:
 individual modes of oscillations are clearly identified

 relationships between modes and system variables/parameters can 
be easily determined by computing eigenvectors

 Frequency response, poles, zeros, and residues can 
be easily computed. Such information is useful in 
control system design



Eigenproperties of the State Matrix

 Eigenvalues and eigenvectors
𝑨 . ൌ 𝝀 .  
𝝍 . 𝑨 ൌ  𝝀 . 𝝍

 A is an n x n matrix (real for a physical system)
  is the eigenvalue
  is the right eigenvector associated with 
  is the left eigenvector associated with 

 Modal matrices
𝚽 ൌ 𝟏 𝟐 ⋯ 𝒏 

𝝍 ൌ 𝝍𝟏
𝒕  𝝍𝟐

𝒕 ⋯ 𝝍𝒏
𝒕

»  is the right eigenvector matrix
»  is the left eigenvector matrix



Eigenproperties of the State Matrix

 Relationships

𝑨 . 𝚽 ൌ 𝚽. 𝚲                                      𝝍 . 𝚽 ൌ 𝑰 
𝚽ି𝟏. 𝑨 . 𝚽 ൌ 𝚲 

 I is the unit matrix
 𝚲 is a diagonal matrix: 𝚲 = diag [1... n]



Free Motion of a Linear Dynamic System

• Free motion of a linear dynamic system is described  by

• In order to eliminate the cross coupling between the  
state variables consider the state transformation

𝑥 ൌ 𝜙. 𝑧
 State space equations in z is a set of decoupled

ିଵ

• The above represents uncoupled first order (scalar) 
differential equations:

𝑧௜ሶ ൌ 𝜆௜. 𝑧௜ , i = 1,2,…,n
 Time domain response

𝑧௜ሺ𝑡ሻ ൌ 𝑧௜ 0 . 𝑒ఒ೔௧

Where 𝑧௜ 0 ൌ 𝜓௜. 𝑥ሺ0ሻ is the initial condition



Time Response of System Variables

 Response in terms of the original state vector 

 The time response of the state variable xi  is given by
𝑥௜ 𝑡 ൌ 𝜙௜ଵ. 𝐶ଵ. 𝑒ఒభ௧ ൅ 𝜙௜ଶ. 𝐶ଶ. 𝑒ఒమ௧+…+𝜙௜௡. 𝐶௡. 𝑒ఒ೙௧

 a linear combination of n dynamic modes corresponding to 
the n eigenvalues of the state matrix

 ci = I x(0) represents the magnitude of the excitation of  the 
ith mode due to the initial conditions

 if the initial condition lies along the jth eigenvector, only  the jth
mode will be excited (since I j = 0 for all i  j)

 if the vector representing the initial condition is not an  
eigenvector, it can be represented by a linear  combination of the 
n eigenvectors. The response of the  system will be the sum of n
responses
 if a component along an eigenvector of the initial  conditions is 

zero, the corresponding mode will not be  excited.



Eigenvalue and stability
 A real eigenvalue corresponds to a non-oscillatory  mode
 A pair of complex eigenvalues     j  correspond to  an oscillatory

mode
 Frequency of the mode:

𝑓 ൌ  ఠ
ଶగ

 Damping ratio of the mode:

𝝇 ൌ  
െ𝝈

𝝈𝟐 ൅ 𝝎𝟐

To ensure an acceptable 
performance, a damping 
margin 𝝇 in the range of 3% -
5% is normally required

A real eigenvalue, or a pair of 
complex eigenvalues, is 
usually referred to as a mode



Modal characteristics
 While an eigenvalue indicates the stability, its right and left 

eigenvectors give much more information on the 
characteristics of the mode

 The right eigenvector shows the mode shape, i.e., the 
observability of the mode

 A mode should be observable from generator rotor 
oscillations if the generator is high in its mode shape

 A weighted left eigenvector shows the participation factors, 
i.e., the controllability of the mode

 A mode should be controllable from a generator if the 
generator is high in its participation factors

 A generator which is high in the mode shape of a mode is 
not necessarily high in the participation factor of the same 
mode



Controllability and Observability
 For a linear dynamic system 

𝒙ሶ ൌ 𝑨 𝒙 ൅ 𝑩 𝒖
𝒚 ൌ 𝑪 𝒙 ൅ 𝑫 𝒖

 Apply state transformation x =  z
𝑧ሶ ൌ 𝜙ିଵ. 𝐴. 𝜙. 𝑧 ൌ  Λ. 𝑧

𝑦 ൌ 𝐶 𝜙 𝑧 ൅ 𝐷 𝑢
• If the ith row of matrix 𝝓ି𝟏 𝑩 is zero, the ith mode is said to be

uncontrollable
• If the ith column of matrix C  is zero, the ith mode is said 

to be unobservable



Characteristics of Local Plant Mode
Oscillations

• Local mode oscillation problems most commonly 
encountered

– dates back to the 1950s and 1960s
– associated with units of a plant swinging against the rest of the system

• Characteristics well understood
– analysis using block diagram approach (K-constants); gives

physical insight
• Encountered by a plant with high output feeding into 

weak transmission network (K5 negative)
– more pronounced with high response exciters/AVR

• Adequate damping readily achieved using Power System 
Stabilizers (PSS)
– excitation control



Block Diagram Approach to the Analysis
of Local Mode Problems

• First published by Heffron and Phillips to analyze a 
single machine (or a plant) connected to a large system 
(represented by an infinite bus) through a transmission
network

• System is represented by a block diagram (the following 
slide):





Interpretation of the block diagram



Power System Stabilizers



Characteristics of Low Frequency
Interarea Oscillations (LFIO)



Fundamental Nature of Low Frequency
Interarea Oscillations (LFIO)



Damping of Low Frequency
Interarea Oscillations (LFIO) with PSS



Enhancement of small signal stability


