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Small Signal Stability

 Small-Signal (or Small Disturbance) Stability is the ability 
of a power system to maintain synchronism when 
subjected to small disturbances
 Such disturbances occur continually on the system due to 

small variations in loads and generation
 A disturbance is considered sufficiently small if linearization 

of system equations is permissible for analysis
 Small-signal analysis using linear analysis techniques 

provides valuable information about the inherent dynamic 
characteristics of the power system and assists in its 
robust design



Instability Forms

 Small signal instability may take two forms:
 aperiodic increase in rotor angle due to lack of 

sufficient synchronizing torque
 rotor oscillations of increasing amplitude due to 

lack of sufficient damping torque



Damping and Synchronising Torques

Example: 
Assume a synchronous generator is connected through a transformer by two parallel 
transmission lines to a receiving-end transformer and a large system
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 when two lines are in service an 
equilibrium or steady-state condition
exists, in which the power output of 
the prime-mover Pm0 is equal to the 
electrical power output of the 
generator, Pe0 , at synchronous 
speed and the rotor angle is 0 ; 

 at time t, one of the two lines is 
opened

 the power output of the prime-mover 
assumed to remain constant during a 
disturbance on the electrical system0



Synchronising and Damping Torques

Pm0 =Pe0

 Immediately after the disturbance the electric 
power output of the generator falls to Pt. 

 The net torque acting on the shaft of the 
generator will cause it to accelerate with 
respect to the system. 

 The rotor angle of the generator, 0, 
immediately starts to increase. 

 Once the electrical power output exceeds the 
prime-mover power output Pm0 the generator 
decelerates but, due to the inertia of the rotor, 
the rotor angle continues to increase until the 
speed falls to synchronous speed. 

 At this time the electric power output and the 
rotor angle are at their peak values, Pp

 However, the net decelerating torque 
continues acting on the shaft to reduce the 
electrical power flow until zero net 
accelerating torque once more 

 Due to inertia, the electric power output and 
rotor angle continue to decrease and reach 
their minimum values at Pt and at 
synchronous speed. 

 Thereafter the process repeats itself with the 
electric power output and rotor angle 
oscillating about Pm0, between peak and 
trough values Pp, and Pt, respectively.

 In the absence of damping, these
oscillations will continue indefinitely. 
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 Synchronism in this scenario is maintained by the electrical power 
flow

𝑃  𝑃 sin 𝛿

between the generator and the system, resulting in a synchronizing
torque being produced on the shaft of the generator.



Synchronising torque as a function of
operating point
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 The level of the synchronising torque depends on 
the operating point
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Nature of small signal stability
problem

 In today's practical systems, small signal stability is usually one 
of insufficient damping of system oscillations
 Local problems / global problems

 Local problems involve a small part of the system. They may be 
associated with
 rotor angle modes
 local plant modes
 inter-machine modes
 control modes
 torsional modes

 Global problems have widespread effects 
 They are associated with inter-area oscillations

Local plant mode oscillations
 oscillation of a single generator or plant against the rest of the power system

Inter-machine or inter-plant mode oscillations
 oscillation between the rotors of a few generators close to each other



Local Rotor Angle Stability Problems

 Associated with either local plant mode 
oscillations or inter-machine oscillations
 frequency of oscillation in the range of 0.7 to 2.0 Hz

 Stability of the local plant mode oscillations is 
determined by the strength of the transmission 
as seen by the plant excitation control, plant 
output and voltage

 Instability may also be associated with a non-
oscillatory mode
 encountered with manual excitation control



Global Rotor Angle Stability Problems

Large interconnected systems usually have two distinct forms 
of inter-area oscillations:
 A very low frequency mode involving all the generators in 

the system 
 system is essentially split into two parts
 generators in one part swing against generators in the other part
 frequency in the order of 0.1 to 0.3 Hz

 Higher frequency modes involving sub-group of generators 
swinging against each other
 frequency typically in the range of 0.4 to 0.7 Hz



Methods of Small-Signal
Stability Analysis

 State Space Representation of the Dynamic System
 Linearization



State space representation

 The behaviour of a dynamic system can be described 
by a set of first order differential equations in the 
state-space form:

 x is an n-dimensional state vector
 f is an n-dimensional nonlinear function
 u is an r-dimensional input vector

 The outputs of the system are nonlinear functions of 
the state and input vectors:

• y is an m-dimensional output vector
• g is an m-dimensional nonlinear function

 In steady state, the system is at an equilibrium point 
x0 satisfying:

𝒇 𝒙𝟎, 𝒖𝟎 𝟎



Linearization

 For small perturbation about equilibrium point:

 New state equation:
𝒙  𝒙𝟎 ∆𝒙 𝒇 𝒙𝟎  ∆𝒙 , 𝒖𝟎  ∆𝒖

 Since perturbations are small:
– f(x,u) can be expressed in terms of Taylor's series expansion
– terms involving second and higher order powers of x and u may be 

neglected



Linearization

∆𝒙 𝑨 ∆𝒙 𝑩 ∆𝒖
∆𝒚 𝑪 ∆𝒙 𝑫 ∆𝒖

 A, B, C, D are the Jacobians of the system. A is also 
referred to as the state matrix or the plant matrix.
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Stability

 Stability is concerned with determination of conditions of 
an equilibrium point
 what will happen if the system is perturbed at an equilibrium condition

 Stability of a linear system is independent of the input
 Stability of a nonlinear system depends on 

 the type and magnitude of input
 the initial state

 In control system theory, it is common practice to classify 
stability of nonlinear systems into the following categories, 
depending on the region of state space in which the state 
vector ranges:
 local stability or stability in the small
 finite stability
 global stability or stability in the large



Stability categories

 Local stability
 The system is said to be locally stable about an equilibrium point, if 

when subjected to a small perturbation, it remains within a small 
region surrounding the equilibrium point

 If, as time increases, the system returns to the original state, it is said 
to be asymptotically stable in the small

 Finite stability
 If the state of a system remains within a finite region R, the system is 

said to be stable within R
 If, further, the state returns to the original equilibrium point from any 

point within R, it is said to be asymptotically stable within the finite 
region R

 Global stability
 The system is said to be globally stable if R includes the entire finite 

space



Analysis of Stability in the Small
(Small Signal Stability)

Nonlinear Time Domain Analysis
Using nonlinear time domain simulations to analyze small signal 
stability problems has the following limitations:

 Results can be deceptive
 critical mode may not be sufficiently excited by the chosen 

disturbance

 poorly damped modes may not be dominant in the observed 
response

 This approach does not give insight into the nature of the 
problem
 difficult to identify sources of the problem

 mode shapes not clearly identified

 corrective measures are not readily indicated

 Computational burden high ; massive amount of data has to be 
analyzed



Analysis of Stability in the Small
(Small Signal Stability)

Modal analysis
 The theoretical foundation for the analysis of stability in the 

small is based on Liapunov's first method:
 The stability in the small of a nonlinear system is given by the 

roots of the characteristic equation of the system of first 
approximation, i.e., by the eigenvalues of the state matrix A

 If the eigenvalues have negative real parts, then the original 
system is asymptotically stable

 When at least one of the eigenvalues has a positive real part, 
the original system is unstable



Modal Analysis Approach

 Modal analysis using eigenvalue approach has 
proven to be the most practical way to analyze small 
signal stability problems

 Advantages are:
 individual modes of oscillations are clearly identified

 relationships between modes and system variables/parameters can 
be easily determined by computing eigenvectors

 Frequency response, poles, zeros, and residues can 
be easily computed. Such information is useful in 
control system design



Eigenproperties of the State Matrix

 Eigenvalues and eigenvectors
𝑨 . 𝝀 .  
𝝍 . 𝑨  𝝀 . 𝝍

 A is an n x n matrix (real for a physical system)
  is the eigenvalue
  is the right eigenvector associated with 
  is the left eigenvector associated with 

 Modal matrices
𝚽 𝟏 𝟐 ⋯ 𝒏 

𝝍 𝝍𝟏
𝒕  𝝍𝟐

𝒕 ⋯ 𝝍𝒏
𝒕

»  is the right eigenvector matrix
»  is the left eigenvector matrix



Eigenproperties of the State Matrix

 Relationships

𝑨 . 𝚽 𝚽. 𝚲                                      𝝍 . 𝚽 𝑰 
𝚽 𝟏. 𝑨 . 𝚽 𝚲 

 I is the unit matrix
 𝚲 is a diagonal matrix: 𝚲 = diag [1... n]



Free Motion of a Linear Dynamic System

• Free motion of a linear dynamic system is described  by

• In order to eliminate the cross coupling between the  
state variables consider the state transformation

𝑥 𝜙. 𝑧
 State space equations in z is a set of decoupled

• The above represents uncoupled first order (scalar) 
differential equations:

𝑧 𝜆 . 𝑧 , i = 1,2,…,n
 Time domain response

𝑧 𝑡 𝑧 0 . 𝑒
Where 𝑧 0 𝜓 . 𝑥 0 is the initial condition



Time Response of System Variables

 Response in terms of the original state vector 

 The time response of the state variable xi  is given by
𝑥 𝑡 𝜙 . 𝐶 . 𝑒 𝜙 . 𝐶 . 𝑒 +…+𝜙 . 𝐶 . 𝑒
 a linear combination of n dynamic modes corresponding to 

the n eigenvalues of the state matrix
 ci = I x(0) represents the magnitude of the excitation of  the 

ith mode due to the initial conditions
 if the initial condition lies along the jth eigenvector, only  the jth

mode will be excited (since I j = 0 for all i  j)
 if the vector representing the initial condition is not an  

eigenvector, it can be represented by a linear  combination of the 
n eigenvectors. The response of the  system will be the sum of n
responses
 if a component along an eigenvector of the initial  conditions is 

zero, the corresponding mode will not be  excited.



Eigenvalue and stability
 A real eigenvalue corresponds to a non-oscillatory  mode
 A pair of complex eigenvalues     j  correspond to  an oscillatory

mode
 Frequency of the mode:

𝑓  
 Damping ratio of the mode:

𝝇  
𝝈

𝝈𝟐 𝝎𝟐

To ensure an acceptable 
performance, a damping 
margin 𝝇 in the range of 3% -
5% is normally required

A real eigenvalue, or a pair of 
complex eigenvalues, is 
usually referred to as a mode



Modal characteristics
 While an eigenvalue indicates the stability, its right and left 

eigenvectors give much more information on the 
characteristics of the mode

 The right eigenvector shows the mode shape, i.e., the 
observability of the mode

 A mode should be observable from generator rotor 
oscillations if the generator is high in its mode shape

 A weighted left eigenvector shows the participation factors, 
i.e., the controllability of the mode

 A mode should be controllable from a generator if the 
generator is high in its participation factors

 A generator which is high in the mode shape of a mode is 
not necessarily high in the participation factor of the same 
mode



Controllability and Observability
 For a linear dynamic system 

𝒙 𝑨 𝒙 𝑩 𝒖
𝒚 𝑪 𝒙 𝑫 𝒖

 Apply state transformation x =  z
𝑧 𝜙 . 𝐴. 𝜙. 𝑧  Λ. 𝑧

𝑦 𝐶 𝜙 𝑧 𝐷 𝑢
• If the ith row of matrix 𝝓 𝟏 𝑩 is zero, the ith mode is said to be

uncontrollable
• If the ith column of matrix C  is zero, the ith mode is said 

to be unobservable



Characteristics of Local Plant Mode
Oscillations

• Local mode oscillation problems most commonly 
encountered

– dates back to the 1950s and 1960s
– associated with units of a plant swinging against the rest of the system

• Characteristics well understood
– analysis using block diagram approach (K-constants); gives

physical insight
• Encountered by a plant with high output feeding into 

weak transmission network (K5 negative)
– more pronounced with high response exciters/AVR

• Adequate damping readily achieved using Power System 
Stabilizers (PSS)
– excitation control



Block Diagram Approach to the Analysis
of Local Mode Problems

• First published by Heffron and Phillips to analyze a 
single machine (or a plant) connected to a large system 
(represented by an infinite bus) through a transmission
network

• System is represented by a block diagram (the following 
slide):





Interpretation of the block diagram



Power System Stabilizers



Characteristics of Low Frequency
Interarea Oscillations (LFIO)



Fundamental Nature of Low Frequency
Interarea Oscillations (LFIO)



Damping of Low Frequency
Interarea Oscillations (LFIO) with PSS



Enhancement of small signal stability


