Dynamic Security Analysis

On-Line Dynamic Security Assessment

Dynamic Security Assessment (DSA)

- A challenging task
 - changing system conditions; complexity and size of power systems
- Historically based on off-line studies
 - system operated conservatively within pre-established limits
- On-line DSA essential in the new competitive environment
 - evaluation of available transfer capability (ATC)

On-Line Voltage Stability Assessment (VSA)

Components of DSA

- All forms of system instability must be addressed
- Two categories important for on-line assessment
 - Transient (angle) stability
 - Voltage stability
- Small-signal (angle) stability
 - control problem addressed in system design
 - on-line assessment important for some systems

Key Elements of VSA

- Interface with EMS; Model Initialization
- Contingency screening and selection
- Determination of secure operating region
 - using static analysis
- Determination of remedial actions
- Fast time-domain simulation
 - validation and checking

Contingency Selection Module

- Impractical to consider every conceivable contingency
- A limited number (typically 20) critical contingencies determined for detailed studies
- Performance Indices based on a few power flow solutions and reactive reserve not reliable
- A fast screening method used:
 - based on exact margin to voltage collapse and full power flow solutions
 - number of power flow solutions 1.2 to 2.0 times number of contingencies
- Supplemented with user-specified contingencies

Automatic Critical Contingency Selection

Security Computation Module

- static analysis using detailed models
- Secure region is defined by a number of Coordinates
 - key system values: MW generation, area load, interface transfers, etc.
- Voltage stability determined by
 - existence of power flow solution
 - MVAr reserves of key reactive sources
 - post-contingency voltage decline
- Specialized power flow dispatcher and solver to quickly search for stability limit

Modelling:

- generator capability curves
- governor response, economic dispatch, AGC
- nonlinear loads
- control of ULTCs, switched shunts, etc.

Inputs and Outputs:

- Inputs
 - list of contingencies produced by screening and ranking (+user defined)
 - base case powerflow from state estimator
 - definition of SCRs
 - voltage security criteria and definition of parameter of stress
- Output
 - secure region in secure region space

Generator Capability Curve

- The loading capability of a synchronous generator is determined by its size and outlay. The major limiting factors:
 - Cooling limits of the rotor and stator windings,
 - Iron saturation,
 - The dimensioning of the excitation system, etc.
- Technical limits must be observed during operation.

Limit: Maximum permissible heating of the stator winding

- The maximum apparent power (S_{max}) is the determining factor for the maximum permissible heating of the stator winding
 - The machine must not supply more than its maximum apparent power S_{max} (for which the machine is built), i.e.
 - The boundary is represented by a circle in the P Q diagram
 - The corresponding equation:

$$S^2 = P^2 + Q^2$$

Equation of a circle in PQ plane

Limit: Minimum and maximum deliverable active power

- In the case of thermal power plants, these limit values (P_{min} , P_{max}) are determined by the minimum and maximum steam flow through the turbine
- For hydropower generators: P_{min} = 0, and P_{max} determined by the maximum flow rate of the water.
 - The minimum and maximum deliverable active power, P_{min} and P_{max} , are shown as horizontal lines in the operating diagram.

 $P = P_{min}$ and $P = P_{max}$ straight lines in the PQ plane

Operational Diagram

Limit: Stability limit

$$\underline{I}_{a} = \frac{\underline{U}_{p} - U}{jX_{d}} = \frac{U_{p} \angle \delta - U}{jX_{d}} = \frac{U_{p} \angle \delta - \pi / 2 + jU}{X_{d}}$$

$$\underline{S} = 3 \cdot U \cdot \underline{I}_{a}^{*} = 3 \cdot U \cdot \frac{U_{p} \angle - \delta + (\pi/2) - jU}{X_{d}} = \frac{3 \cdot U \cdot U_{p} \cdot \sin \delta}{X_{d}} + j \frac{3 \cdot U \cdot U_{p} \cdot \cos \delta - U^{2}}{X_{d}}$$

$$P = \frac{3 \cdot U \cdot U_p \cdot \sin \delta}{X_d} = \omega_m \cdot M$$

$$Q = \frac{3 \cdot U \cdot U_p \cdot \cos \delta - U^2}{X_d}$$

- The theoretical stability limit is at $\delta = 90^{\circ}$.
 - Generally, however, an operational limit of δ_{max} = 70° is chosen.

Limit: Stability limit (cont'd)

$$\sin \delta = \frac{P \cdot X_d}{3 \cdot U \cdot U_p}$$

$$\cos \delta = \frac{Q \cdot X_d + U^2}{3 \cdot U \cdot U_p}$$

$$\tan \delta = \frac{P \cdot X_d}{Q \cdot X_d + U^2} \to P = Q \cdot \tan \delta + \frac{U^2}{X_d} \cdot \tan \delta$$

$$P = 0 \to Q = -\frac{U^2}{X_d}$$

 $P=0 \rightarrow Q=-\frac{U^2}{X_A}$ The stability limit for $\delta_{max}=70^0$ is a straight line with:

The slope: $tan 70^0 = 2.75$ and

X - intercept at:
$$Q = -\frac{U^2}{X_d}$$

Limit: Maximum permissible rotor heating

- Most generators have a voltage regulator.
- By changing the excitation current, the generated voltage and thus also the terminal voltage of the generator can be controlled.
- The voltage control specifies a minimum generated voltage U_{p,MIN}.
- The maximum generated voltage U_{p,MAX} is specified by the maximum permissible heating of the rotor winding.
 - These two limit values can be represented in the operating diagram by two circles.

$$\sin \delta = \frac{P \cdot X_d}{3 \cdot U \cdot U_p} \qquad \qquad \cos \delta = \frac{Q \cdot X_d + U^2}{3 \cdot U \cdot U_p}$$

$$\left(\frac{3 \cdot U \cdot U_p}{X_d}\right)^2 = P^2 + \left(Q + \frac{U^2}{X_d}\right)^2$$

Maximum/minimum Excitation

The locus
$$\left(\frac{3 \cdot U \cdot U_p}{X_d}\right)^2 = P^2 + \left(Q + \frac{U^2}{X_d}\right)^2$$

A circle with the origin at:
$$\left(-\frac{U^2}{X_d}, 0\right)$$
 and the radius $\frac{3 \cdot U \cdot U_p}{X_d}$

$$\frac{3 \cdot U \cdot U_p}{X_d}$$

$$\frac{3 \cdot U \cdot U_{p,MIN}}{X}$$

Minimum excitation:
$$\frac{3 \cdot U \cdot U_{p,MIN}}{X_d}$$
 Maximum excitation: $\frac{3 \cdot U \cdot U_{p,MAX}}{X_d}$

Capabilty Curve / Operational Chart

heating limit

Secure Operating Region

Remedial Measures Module

- Determines necessary remedial measures to
 - ensure sufficient stability margins
 - expand the secure region
- Preventative control actions:
 - taken prior to a contingency
 - caps/reactor switching, generation re-dispatch, voltage rescheduling
- Corrective (emergency) control actions:
 - applied following a contingency
 - load shedding, generator runback, transformer tap changer blocking
- Ranking of each remedial measure using sensitivity analysis

Ranking Remedial Measures

- Objective is to identify the most effective remedial measures to give the desired stability margin
- Obtain solved power flow case for the most severe contingency
 - gradually introduce the effect of the contingency
 - bus injection compensation technique
- Compute the sensitivities of reactive power (or bus voltage) to different control measures
 - rank the remedial measures
- Apply controls one at a time in order of ranking until power flow solves for the most severe contingency

Expanding the Secure Region

Fast Time-Domain Simulation

- Determines the essential dynamic phenomena without step-bystep numerical integration
 - when chronology of events significant
 - for validating the effect of remedial measures
- Focuses on the evolution of system dynamic response driven by slow dynamics
 - transformer tap changers, field current limiters, switched caps
- Captures the effects of fast dynamics by solving associated steady state equations

VSAT Structure

Transient Stability Assessment (TSA)

- Time-domain simulations essential
 - modeling detail and accuracy
- Sole dependence on time-domain simulations has severe limitations
 - high computational burden
 - no stability margin/sensitivity information
 - requires considerable human interaction
- Supplementary techniques for speeding up and automating overall process
- Methods available for deriving useful indices
 - Transient Energy Function (TEF)
 - Signal Energy Analysis
 - Extended Equal Area Criterion (EEAC)

Key Elements of TSA

- Interface with EMS; Model Initialization
- Contingency screening and selection
- Simulation engine
 - detailed modeling
 - time-domain simulation
 - speed enhancement
- Post-processing of detailed simulation
 - stability margin index using EEAC
 - power transfer limit search
 - remedial measures
 - damping calculation using PRONY

A Practical Tool for TSA

- Overall architecture similar to that of VSA
- Time-domain program, with detailed models and efficient solution techniques, forms simulation engine
- EEAC used for screening contingencies, computing stability margin, stability limit search, and early termination of simulation
- "Prony analysis" for calculation of damping of critical modes of oscillation
- A power flow dispatcher and solver for finding the stability limit
 - a fully automated process
- No modeling compromises;
 can handle multi-swing instability

Extended Equal Area Criterion (EEAC)

- Integrates the dynamic response in the multi-machine space, and maps the resultant trajectory into a set of one-machine-infinitebus planes
 - by applying complementary cluster center of inertia (CCCI) transformations
 - keeps all dynamic information in the multi-machine space
 - stability analysis can be quantitatively performed for the image OMIB systems
 - has the same accuracy and modeling flexibility
 - fast, quantitative

Extended Equal Area Criterion (EEAC)

 Loss of transient stability in a power system always starts in a binary splitting of generators:

- critical cluster of generators
- rest of the system

 At any given point in the time-domain trajectory of the system, the system can be visualized as a one-machine-infinite-bus (OMIB) system

Extended Equal Area Criterion (EEAC)

 The classical equal area criterion can be extended to the visual OMIB system
 Stability margin of the system is defined as

$$\eta = \begin{cases}
100 \text{ } x \frac{A_d - A_a}{A_d} \text{ if the system is stable } (A_d < A_a) \\
100 \text{ } x \frac{A_d - A_a}{A_a} \text{ if the system is unstable } (A_a > A_d)
\end{cases}$$

Thus, $-100 \le \eta \le 100$, and

 $\begin{array}{ll} \eta \! > \! 0 & \text{if the system is stable} \\ \eta \leq 0 & \text{if the system is unstable} \end{array}$

η can be used as a stability index

Use of EEAC Theory

- Contingency screening
 - stability margin gives an indication of the relative severity
- Corrective measures for maintaining secure system operation
 - critical cluster of generators (CCG) provides valuable information
- Power transfer limit search
 - stability limit can be determined in four iterations using stability margin
 - each iteration involves a detailed simulation and computation of stability index

Speed Enhancement: Parallel Processing

- Code parallelization
 - differential equations easily parallelized, but not network equations
 - speed-ups limited by serial slowdown effect
 - up to 7 times speed-up can be achieved with 20-30 processors
 - not an effective way
- Conventional serial computers offer much faster computational per-CPU
- Best approach is to use <u>multiple processors</u>
- Perform TS analysis and VS analysis in parallel
- For multiple contingencies
 - perform initialization only once
 - run contingencies on multiple processors

TSAT Structure

Computational Performance of DSA

- Target cycle time from capture of state estimation to completion of security assessment for all specified transactions:
 - 20 minutes
- TSA and VSA functions performed in parallel
 - distributed processing on separate CPUs
- This can be readily achieved with low cost PCs

Summary

- On-line DSA is a complex problem
- It is a challenge to provide comprehensive analysis with the required
 - accuracy, speed, and robustness
- A practical tool for use with large complex systems has been built by
 - drawing on techniques developed over many years;
 - enhancement and integration of these techniques;
 - use of specialized software designs and distributed hardware architectures
- May be used for real time application, or previous day to post ATC

New and Emerging Technologies

- Real-Time Monitoring and Control
- Risk-Based Security Assessment
- Intelligent Control

Real-Time Monitoring and Control

Real-Time Wide Area Monitoring

- Advances in communications technology have made it possible to:
 - monitor power system over a wide area
 - remotely control many functions
- Wide Area Monitoring:
 - phasor measurement units (PMUs) provide time synchronized measurements with an accuracy of 1 microsecond, utilizing Global Position System (GPS)
 - PMUs send measured voltage and current phasors to a Centralized Monitoring System, typically at 100 millisecond intervals
 - Data stored and processed for various applications
 - Results displayed on a Graphical User Interface
- Examples of Wide Area Monitoring Systems:
 - North American Western Interconnected System's Wide Area Measurement System (WAMS) project; BPA, EPRI, DOE as participants
 - ETRANS Wide Area Monitoring (WAM) project for the Swiss Power Grid; developed by ABB

Wide Area Monitoring Current Applications

- On-line monitoring of transmission corridors for loading
- Fast detection of critical situations
 - voltage stability
 - power system oscillations
 - transmission overloading
- Additional input values of system variables for state estimator
- Disturbance recording
 - for calibration of power system model
 - validation of stability analysis software

WAM Potential Future Applications: Wide Area Emergency Control

- Prevention of partial or total blackout of power systems
 - trigger emergency controls based on system response and measurements
- Research into the application of "Multisensor Data Fusion" technology
 - process data from different monitors and integrate information
 - determine nature of impending emergency
 - make intelligent control decisions in real time
- A fast and effective way to predict onset of emergency conditions and take remedial control actions

Risk-Based Dynamic System Assessment

Dynamic Security Assessment Current Practice

- The utility practice has been to use deterministic approach
 - build strong systems and operate with large security margins
 - overly conservative, but cost could be passed on to captive customers
- The deterministic approach has served the industry well
 - high security levels
 - study effort minimized
- In the new environment, with a diversity of new participants, the deterministic approach not readily acceptable
 - need to account for the probabilistic nature of conditions and events
 - need to quantify and manage risk

Risk-Based Dynamic Security Assessment

- Examines the <u>probability</u> of power system becoming unstable and its <u>consequence</u>
- Computes indices that measure security level or degree of exposure to failure
 - capture all cost consequences
- Notion of security posed in a language and form understood by marketers and financial analysts
- Possible with today's computing and analysis tools

Intelligent Control

Power System Control

- Overall control functions highly distributed
 - several levels of control
 - involve complex array of devices
- Human operators provide important links at various levels
 - acquire and organize information
 - make decisions requiring a combination of deductive, inductive, and intuitive reasoning
- "Intuitive reasoning" allows quick analysis of unforeseen and difficult situations and make corrective decisions
 - most important skill of an operator

Intelligent Control of Power Systems

- Future power systems more complex to operate
 - less structured environment
- Current controls do not have
 - "human-like" intelligence
- Add intelligent components to conventional controls
 - learn to make decisions quickly
 - process imprecise information
 - provide high level of adaptation
- Overall control of power systems
 - utilize both conventional methods and decision making symbolic methods
 - intelligent components form higher level of control